
HONEYWELL

DPS 6
GCOS 6 MOD 400
SYSTEM CONCEPTS

SOFTWARE

SUBJECT

System Concepts for GCOS 6 MOD 400

SPECIAL INSTRUCTIONS

DPS6
GCOS 6 MOD 400

SYSTEM CONCEPTS

This manual supersedes DPS 6 GCOS 6 MOD 400 System Concepts (Order No.
CZ03-00), dated December 1982. Sections 4 and5 have been restructured. The infor
mation that formerly resided in Section 6 has been made part of Section 5. Former
Section 7 has been renumbered as Section 6. Wherever possible, change bars are used
to indicate new and changed information, and asterisks are used to denote
deletions.

SOFTWARE SUPPORTED

This manual supports Release 4.0 of the MOD 400 Executive.

ORDER NUMBER

CZ03-01 March 1986

Honeywell

I

PREFACE

This manual is written for all users of the MOD 400 operating
system.

It will prove particularly informative to those responsible
for building MOD 400 systems and those who design application
programs and/or system functionality other than that supplied by
Honeywell.

This manual contains a general description of the way in
which processing is performed on MOD 400 systems. It presents a
discussion of the MOD 400 Executive in terms of its design
concepts and processing functionality. Not discussed are such
topics as equipment lists, available software, and supporting
manuals. No detailed procedural information is discussed;
several procedures are, however, outlined.

The major topics discussed are:

• File system, including file and pathname concepts, file
protection, and buffering operations.

• System access path including login, user registration, and
the command envirorunent.

• Execution envirorunent, including a description of tasks,
task groups, memory usage, and bound units.

• Task execution, including priority levels, logical
resource numbers, and deferred processsing facilities.

USER COMMENTS FORMS are included at the back of this manual. These forms are to be used to record
any corrections, changes, or additions that Will make this manual more useful.

Honeywell disclaims the implied warranties of merchantability and fitness for a particular
purpose and makes no express warranties except as may be stated in its written agreement
with and for its customer.
In no event is Honeywell liable to anyone for any indirect, special or consequential damages.
The information and specifications in this document are subject to change without notice.
Consult your Honeywell Marketing Representative for product or service availability.

©Honeywell Information Systems Inc., 1986 File No.: 1Rl3, 1813 CZ03-0l

• Backup and recovery facilities, including the backup and
restoration of disk files, the preservation of the
execution environment during a power failure, the recovery
of files at the record level, and the recovery and restart
of task groups.

Although no manual is prerequisite to this manual, you may
find it convenient to have read the Software and Documentation *
Directory.

Each section/appendix of this document is structured
according to the heading hierarchy shown below. Each heading
indicates the relative level of the text that follows it.

Level

1 (highest)

2

3

4

Heading Format

ALL CAPITAL LETTERS, UNDERLINED

Initial Capital Letters, underlined

ALL CAPITAL LETTERS, NOT ONDERL INED

Initial Capital Letters, not underlined

iii CZ03-0l

MANUAL DIRECTORY

The following publications constitute the GCOS 6 MOD 400
manual set. See the "Software/Manual Matrix" of the Guide to
Software Documentation for the current revision number and
addenda (if any) of the manuals.

Manuals are obtained by submitting a Honeywell Publications
Order Form to the following address:

Honeywell Information Systems Inc.
47 Harvard Street
Westwood, MA 02090
Attn: Publications Services

Honeywell software reference manuals are periodically updated
to support enhancements and improvements to the software. Before
ordering any manual listed below, the customer should refer to
the Guide to Software Documentation to obtain information
concerning the specific edition of the manual that supports the
software currently in use at the installation. When specifying
manuals on the Publications Order Form, a customer using the
4-digit base publication number listed below will obtain the
latest edition of the manual currently in stock. The
Publications Distribution Center can provide specific editions of
a publication only when supplied with the 7- or 8-character order
number described in the Guide to Software Documentation.

Honeywell applications software packages - such as INFO, the
Honeywell Manufacturing System (HMS), and TPS 6 - provide
specialized services. See your Honeywell representative for
information concerning the availability of applications software
and supporting documentation.

iv CZ03-0l

Base
Publication

Number

CW35
CZOl

CZ02

CZ03
CZ04
czos

CZ06

CZ07
CZ09

CZlO
CZll
CZ15
CZ16
CZ17
CZ18
CZ19
CZ20

CZ21
CZ22
CZ23
CZ24
CZ25
CZ29
CZ31
CZ32
CZ34
CZ35
CZ36
CZ37
CZ38
CZ39
CZ40
CZ42
CZ52
CZ53
CZ54
CZ70
CZ71
CZ72
CZ73
CZ74

CZ93
GZ13

Manual Title

GCOS 6 C User's Guide
GCOS 6 MOD 400 Guide to Software

Documentation
GCOS 6 MOD 400 System Building and

Administration
GCOS 6 MOD 400 System Concepts
GCOS 6 MOD 400 System User's Guide
GCOS 6 MOD 400 System Programmer's Guide -

Volume I
GCOS 6 MOD 400 System Programmer's Guide -

Volume II
GCOS 6 MOD 400 Programmer's Pocket Guide
GCOS 6 MOD 400 System Maintenance Facility

Administrator's Guide
GCOS 6 MOD 400 Menu System User's Guide
GCOS 6 MOD 400 Software Installation Guide
GCOS 6 MOD 400 Application Developer's Guide
GCOS 6 MOD 400 System Messages
GCOS 6 MOD 400 Commands
GCOS 6 Sort/Merge
GCOS 6 Data File Organizations and Formats
GCOS 6 MOD 400 Transaction Control Language

Facility
GCOS 6 MOD 400 Display Formatting and Control
GCOS 6 VISION Reference Manual
DM6 AZ7 Reference Card
Introduction to DM6 AZ7 Query Writing
DM6 AZ7 Reference Manual
GCOS 6 VISION Reference Card
GCOS 6 Advanced COBOL Compiler User's Guide
GCOS 6 Multi user COBOL Compiler Guide
GCOS 6 COBOL 74 Language Reference
GCOS 6 COBOL Quick Reference Guide
GCOS 6 BASIC Reference
GCOS 6 BASIC Quick Reference Guide
GCOS 6 Assembly Language (MAP) Reference
GCOS 6 Advanced FORTRAN Reference
GCOS 6 Pascal User's Guide
GCOS 6 Ada Compiler System User's Guide
DM6 I-D-S/II Programmer's Guide
DM6 I-D-S/II Data Base Administrator's Guide
DM6 I-D-S/II Reference Card
Electronic Mail Facility Administrator's Guide
DM6 TP Development Reference
DM6 TP Application User's Guide
DM6 TP Forms Processing
GCOS 6 Data Base Augmented Real-Time Tracing

System User's Guide
Electronic Mail Facility User's Guide
GCOS 6 MOD 400 Release 4.0 Migration Guide

v CZ03-0l

Base
Publication

Number

HCOl
HC12
HC13

Manual Title

MOD 400 Application Development overview
Disk-Based Data Entry Facility-II User's Guide
Disk-Based Data Entry Facility-II Operator's

Quick Reference Guide

The following manuals describe the MOD 400 distributed
processing software components:

Base
Publication

Number

CB35

CFll

CG90
CZ59

CZ60

CZ61

CZ62
CZ63
CZ64
CZ65
CZ66
GG19

GG20

GT18

GT19

Manual Title

DPS 6/DPS 7 PVE File Transfer Facility User's
Guide

DPS 6/DPS 7 PVE Remote Batch Facility User's
Guide

Interactive Entry Facility-II User's Guide
Level 6 to Level 6 File Transmission Facility

User's Guide
Level 6 to Level 66 File Transmission Facility

User's Guide
Level 6 to Level 62 File Transmission Facility

User's Guide
BSC Transport Facility User's Guide
2780/3780 workstation Facility User's Guide
HASP Workstation Facility User's Guide
Programmable Facility/3271 User's Guide
Remote Batch Facility/66 User's Guide
Disk-Based VIP7305 Emulator Facility User's

Guide
Asynchronous Communications Facility User's

Guide
Disk-Based VIP7705 Emulator Facility User's

Guide
Disk-Based VIP7814 Emulator Facility User's

Guide

vi CZ03-0l

The following manuals describe the ORACLE data base
management facility:

Base
Publication

Number

GS61
GS62

GS63

GS64

GS65

GS66

GS67
GS68

GS69

GS70

GS71
GS72
GS73
GS74

Manual Title

GCOS 6 MOD 400 ORACLE Installation Guide
GCOS 6 MOD 400 ORACLE Data Base Administrator's

Guide
GCOS 6 MOD 400 ORACLE Interactive Application

Facility (IAF) Terminal Operator's Guide
GCOS 6 MOD 400 ORACLE Interactive Application

Facility {IAF) Terminal Operator's Reference
Manual

GCOS 6 MOD 400 ORACLE Interactive Application
Facility (IAF) Designer's Guide

GCOS 6 MOD 400 ORACLE Interactive Application
Facility (IAF) Designer's Reference Manual

GCOS 6 MOD 400 ORACLE HLI Precompiler Interface
GCOS 6 MOD 400 ORACLE Host Language Call

Interface Manual
GCOS 6 MOD 400 ORACLE RPF Report Text Formatter

User's Guide
GCOS 6 MOD 400 ORACLE RPT Report Generator

User's Guide
GCOS 6 MOD 400 ORACLE SQL/UFI Reference Manual
GCOS 6 MOD 400 ORACLE Terminal User's Guide
GCOS 6 MOD 400 ORACLE Utilities Manual
GCOS 6 MOD 400 ORACLE Error Messages and Codes

In addition, the following publications provide supplementary
i nf o rma ti on :

Base
Publication

Number

AS22

AT97
CC71
CD18

FQ41

These five
Documentation.
concerning the
installation.

Manual Title

Level 6 Models 6/34, 6/36, and 6/43 Minicomputer
Handbook

Level 6 Communications Handbook
Level 6 Minicomputer Systems Handbook
Level 6 MOD 400/600 Online Test and Verification

Operator's Guide
Writeable Control Store User's Guide

manuals are not covered by the Guide to Software
See your Honeywell representative for information

versions of the manuals relevant to your

vii CZ03-0l

users should be aware that a software release bulletin
accompanies each software product ordered from Honeywell. Users
should consult the software release bulletin before using the
software. Users should contact their Honeywell representative if
a copy of the software release bulletin is not available.

viii CZ03-0l

CONTENTS

SECTION 1 SYSTEM CHARACTERISTICS. •

Operating Facilities ••••••••••••••••••••••••••••••••••••••
Software Facilities •••••••••••••••••••••••••••••••••••••••

System Control Software •••••••••••••••••••••••••••••••••
File System Software ••••••••••••••••••••••••••••••••••••
Utility Software•.•....
Program Development Software ••••••••••••••••••••••••••
Data Communications Software ••••••••••••••••••••••••••••
Distributed Systems Software ••••••••••••••••••••••••••••
Data Management Software ••••••••••••••••••••••••••••••
Data Entry Software •••••••••••••••••••••••••••••••••••••
Off ice Automation Software ••••••••••••••••••••••••••••••

SECTION 2 FILE CONCEPTS.
Disk File Conventions.

Directories •••
Root Directory ••
System Root Directory •••••••••••••••••••••••••••••••••
User Root Directory •••••••••••••••••••••••••••••••••••
Intermediate Directories............ • •••••••••••••
Working Directory•••••••••••••••••••••••••••••••••••••

Disk Directory and File Locations~ ••••••••••••••••••••••
Disk Directory and File Naming Conventions ••••••••••••••

Maximum Name Length •••••••••••••••••••••••••••••••••••
Uniqueness of Names •••••••••••••••••••••••••••••••••••

Pa th names • ••
Symbols Used in Pathnames •••••••••••••••••••••••••••••
Absolute and Relative Pathnames •••••••••••••••••••••••

Absolfite Pathname •••••••••••••••••••••••••••••••••••
Relative Pathname •••••••••••••••••••••••••••••••••••

Disk Device Pathname Construction •••••••••••••••••••••
Links•..•.•...............••...........

Automatic Disk Volume Recognition •••••••••••••••••••••••
Disk File Organization ••••••••••••••••••••••••••••••••••

UFAS Sequential Disk File Organization ••••••••••••••••
UFAS Relative Disk File Organization ••••••••••••••••••
UFAS Indexed Disk File Organization •••••••••••••••••••
UFAS Random Disk File Organization ••••••••••••••••••••
UFAS Dynamic Disk File Organization •••••••••••••••••••
Non-UFAS Relative Disk File Organizations •••••••••••••

Page

1-1

1-1
1-2
1-2
1-4
1-4
1-4
1-4
1-4
1-5
1-5
1-5

2-1

2-2
2-2
2-2
2-3
2-3
2-4
2-5
2-5
2-5
2-6
2-6
2-7
2-7
2-9
2-9
2-10
2-12
2-12
2-13
2-13
2-13
2-13
2-14
2-14
2-14
2-14

ix CZ03-0l

I

I

I

CONTENTS

Pipes
Alternate Indexes •••••••••••••••••••••••••••••••••••••••
Disk File Protection ••••••••••••••••••••••••••••••••••••

Access Control ••
Access fy pe s • •••••••••••••••••••••••••••••••••••••••
Access Control/User Id Relationship •••••••••••••••••
Access Control Lists ••••••••••••••••••••••••••••••••
Checking Access Rights ••••••••••••••••••••••••••••••

File Concurrency Control ••••••••••••••••••••••••••••••
Access Control/Concurrency Control Relationship •••••••
Shared File Protection (Record Locking) •••••••••••••••

Record Locking Implementation •••••••••••••••••••••••
Setting Record Locking ••••• L•••••••••• •••••••
Record Locking Considerations •••••••••••••••••••••••

Remote File Access ••••••••••••••••••••••••••••••••••••••
Remote File Catalog •••••••••••••••••••••••••••••••

Remote Object Information •••••••••••••••••••••••••••
Local Object Information ••••••••••••••••••••••••••••
Volume Identif i ca ti on •••••••••••••••••••••••••••••••
Establishing Remote File Catalogs •••••••••••••••••••

Initiating Remote File Access Operations ••••••••••••••
Remote File Access Security •••••••••••••••••••••••••••

Access Control Lists ••••••••••••••••••••••••••••••••
Record Locking ••••••••••••••••••••••••••••••••••••••
Data Commitment •••••••••••••••••••••••••••••••••••••

Multivolume Disk Files ••••••••••••••••••••••••••••••••••
Mul tivol ume Sets•.

Online Multivolume Set ••••••••••••••••••••••••••••••
Online Multivolume File •••••••••••••••••••••••••••••
Serial Multivolume Set ••••••••••••••••••••••••••••••
Serial Mul tivol ume File •••••••••••••••••••••••••••••

Disk File Buffering •••••••••••••••••••••••••
File Access Levels ••••••••••••••••••••••••••••••••••••
Buffer Pools

fypes of Buffer Pools •••••••••••••••••••••••••••••••
Buffer Pool Optimization ••••••••••••••••••••••••••••

Magnetic Tape File Conventions ••••••••••••••••••••••••••••
Tape File Organization ••••••••••••••••••••••••••••••••••
Magnetic Tape File and Volume Names •••••••••••••••••••••
Magnetic Tape Device Pathname Construction ••••••••••••••
Automatic Tape Volume Recognition •••••••••••••••••••••••
Magnetic Tape Buffering~ ••••••••••••••••••••••••••••••••

Unit Record Device File Conventions •••••••••••••••••••••••
Unit Record Device Pathname Construction ••••••••••••••••
Unit Record Device Buffering ••••••••••••••••••••••••••••

Unit Record Read Operations •••••••••••••••••••••••••••
Card Reader ••••••••••••••••••••••••••••• ••••••••••••

Page

2-15
2-15
2-16
2-16
2-17
2-17
2-18
2-19
2-20
2-21
2-21
2-22
2-23
2-24
2-25
2-26
2-26
2-26
2-26
2-27
2-28
2-28
2-28
2-29
2-29
2-30
2-30
2-31
2-31
2-32
2-32
2-33
2-33
2-33
2-34
2-34
2-36
2-36
2-36
2-37
2-37
2-37
2-38
2-38
2-38
2-38
2-39

x CZ03-0l

CONTENTS

Interactive Terminal ••••••••••••••••••••••••••••••••
Buffered Write Operations •••••••••••••••••••••••••••••

SECTION 3 SYSTEM ACCESS ••••••••••••

System Configuration and Definition •• .
User Registration •••
Accessing the Sy stem ••••••••••••••••••••••••••••••••••••••

Connecting to the Central Processor •••••••••••••••••••••
Connecting to the Executive •••••••••••••••••••••••••••••

Login Terminals •••••••••••••••••••••••••••••••••••••••
Non-Login Terminals •••••••••••••••••••••••••••••••••••

Activated Lead Task •••••
Menu Environment (UPP) ••••••••••••••••••••••••••••••••••••

Menu Processor ••• •••••••••••••••••••••••••••••••••••••••
Command-In File ..•.••....•...•..•...••.........•......
User-In File ••
User-Out File •••
Error-Out File ••••••••••••• .

Menu Level ••••••••••••••••. ••••.•••••••••••••• Achieving Menu Level.
Menu Level Processing.

Menu Format •••
Subsystem Switcher

Command Environment •••••••••••••••••••••••••••••••••••••••
Command Processor •••••••••••••••••••••••

Command-In File •••••
User-In File ••
User-Out File •••••••••••••••• .
Error-Out File ••••••••••••••••••••••••••••••

Conunand Level •••
Ach i ev ing Command Lev el ••
Command Level Processing.

.
Command Format •••••••••••••••••••• , ••••••••••••••••••••••

Arguments •••
Parameters ••
Spaces in Command Lines ••••••••••••• • • • • • • • • • • • • • • •
Protected Strings •••••••••••• ••
Active Strings and Active Functions ••••••••••••• ,• •••••
Command Abbreviations •••••••••••••••••••••••••••••••••

Command Acco un ting ••
Command Beaming •••
EC and START UP.EC Files ••

EC Files•.......••...•.••.....•........•...•......
START UP. EC Files ••••••••••••••••••••••••••••••••••••••• . System START UP. EC File ••

User START UP.EC File ••• .

Page

2-39
2-40

3-1

3-2
3-2
3-4
3-4
3-4
3-5
3-5
3-6
3-6
3-6
3-6
3-7
3-7
3-7
3-8
3-8
3-8
3-9
3-9
3-10
3-10
3-10
3-10
3-11
3-11
3-11
3-11
3-12
3-13
3-13
3-14
3-14
3-14
3-15
3-16
3-17
3-17
3-17
3-18
3-19
3-19
3-19

xi CZ03-0l

I

I

I

I

I

CONTENTS

SECTION 4 EXECUTION ENVIRONMENT.
Task Groups and Tasks •••••••••••••••••••••••••••••••••••••

Application Design Benefits of Task Group Use •••••••••••
Intertask Communication •••••••••••••••• System Control of Task Groups ••••••••.••••••••

Generating Task Groups and Tasks •••••••••.••••••••••••••
Characteristics of Task Groups and Tasks ••••••••••••••••
Task Group Identification ••••••••••••

Memory Management and Protection ••••••••••••••••••••••••••
Segmentation ••.•••••••••••••••••••••••••••••••

Segmentation With Basic Memory Management Unit ••••••••
Segmentation With Extended Memory Management Unit •••••

Segment Ring Protection ••••••••••
Memory Pools • • Sharing Memory Pools •••••

Memory Pool Attributes ••••••

••
Protection .•• .
Containment ••••••••••••• ••
Privilege •.•••
Serial Usage ••••••••••••••••••
Ring Access Rights •.••••••••

System Pool ••••••••• .
Swap Pools .. .
Independent Pools .•••••••••
Selecting Memory Pool Types ••••••

. Memory Pool Layout •••.•••
Fixed System Area ••••••••••••

.......
Bound Unit Characteristics •••••••••••••••••••••••••.••••••

General Bound Unit Characteristics.
Sharable Bound Units ••••••••••••••••

Sharable Bound Units in Swap Pools ••.
Sharable Bound Units in Independent Pools ••
Globally Sharable Bound Units •••••••••.••.•
Sharable Bound Units and Executive Extensions ••

Bound Unit Search Rules ••••••••••••••••
Bound Unit Overlays ••••••••••••••••••••

.
Nonfloatable and Floatable overlays •••••••••••••• ...

Nonfloatable Overlays •••••••••••••••••••••••••••
Floatable overlays •••••••••••••••••••••••• . .
Linking Floatable and Nonfloatable Overlays ••

overlay Areas ,
Bound Unit Allocation ••••••
Memory Deallocation ••••••••••••••••••••••••••

Swap Pool Task Address Space.
Bound Unit •••••••••••
User stack Area ••.•••••••••••••••••••••••

Page

4-1

4-1
4-3
4-3
4-4
4-5
4-6
4-7
4-8
4-8
4-8
4-9
4-9
4-10
4-10
4-11
4-11
4-11
4-11
4-12
4-12
4-12
4-13
4-15
4-16
4-16
4-17
4-17
4-17
4-18
4-18
4-19
4-19
4-19
4-20
4-21
4-21
4-21
4-22
4-23
4-25
4-28
4-29
4-29
4-29
4-29

xii CZ03-0l

CONTENTS

Dynamically Created Segments... •••••••• • ••••••
Group Work Space......... •••••••••••••••
G r o up Sy st em S pace •
System Global Space............ • • • • • • • • • • • • • • •
System Representation of Task Address Space •••••••••••••

Task Address Space in System With Basic Memory
Management Unit •••••••••••••••••••••••••••••••••••••••
Task Address Space in System With Extended Memory
Management Unit •••••••••.•••••••••••••••••••••••••••••

SECTION 5 TASK EXECUTION.
Central Processor Interrupt Priority Levels ••• . Interrupt Save Area ••••••••••••••••
Task Dispatching •••••••••••••••••••

Monoprocessor Task Dispatching •••
Multiprocessor Task Dispatching ••

. Timeslicing ••••••••••••••••••••••••
Monoprocessor Timeslicing ••••••••••••••••••
Multiprocessor Timesl icing.. • •••••••••••••

.
Trap Handling .••....•...............•.....•...........•.•.
System Features Affecting Task Execution ••

Priority Level Assignments............. • ••••••
Assigning Priority Levels to Devices and System Tasks.
Assigning Priorities to Application Tasks •••••••••••

Logical Resource Number....... • •••••••••••••••••
Dev i c e L RN s •
Application Task LRNs. ••••••••••••••• ••

Logical File Numbers ••••••••••••••••••••••••
Task and Resource Coordination ••••••••••• ..

Task Requests................
Semaphores. •

Task Handling.................
Task States..
Example of System Interaction With User Tasks....... • •••
Operator Terminal I/O Logging •••••••••••••••••••••••••
Intertask and Intra task Group Comm uni ca ti on......... • •

Request Blocks................................
Common Files. • . . • . . • • . • . . . • • • • . . •.•
Message Facility

Creating Mailboxes............. ••••••••••••••••
Activating Message Facility Task.............. • •••
Message Facility Command Interface •••••••••••••••••

Mail Command . .•...........•...•............... • •
Send Message Mailbox and Accept Message Mailbox
Commands •••••••••••••••••

Message Facility Macrocall Interface ••••••••••••••• •••

Page

4-30
4-30
4-30
4-30
4-30

4-31

4-33

5-1

5-1
5-3
5-3
5-4
5-5
5-5
5-5
5-6
5-6
5-7
5-7
5-7
5-10
5-10
5-10
5-11
5-11
5-12
5-12
5-12
5-14
5-15
5-16
5-16
5-18
5-18
5-18
5-18
5-19
5-19
5-19
5-20

5-20
5-21

xiii CZ03-0l

I

I
I

I

I

CONTENTS

Deferred Processing Facilities •••••••••
Def erring Task Group Requests •••••••••••••••••••••••••••

Creating Task Group Request Queues ••••••••••••••••••••
Queuing Task Group Requests ••••••

Deferring Print Requests •••••••••••••••••••••• Creating Print Request Mailboxes •••
Creating the Print Daemon ••••••
Queuing Print Requests ••••••••••••••••••••••••••••••••

Queuing and Transcribing Reports •••••••
Creating Report Queues ••••
Queuing Report Requests •••••••••••••••
Transcribing Reports ••••••

SECTION 6 BACKUP AND RECOVERY.
File Backup and Reorganization ••••••••••••••••••••••••••

Saving Files and Directories. • ••••••••••••••••••••
Restoring Files and Directories......... . ••••••••••

Power Resumption.... ••••
Implementing the Power Resumption Facility. • •
Power Resumption Functions ••••• .

File Recovery •••••••••••••••••••
Designating Recoverable Files ••••••••••
Recovery File Creation •• • •
File Recovery Process •••••••••••••••••••••••••••••••••••

Taking Cleanpoints ••••• .
Requesting Rollback ••••••••••••••••
Recovering After System Failure •••••••••••••••••• . .

File Restoration ••
Designating Restorable Files •••••••••
Journal File Creation ••••••••••••••••••••••••••
File Restoration Process ••

Checkpoint Restart
Checkpoint •••••••••••••••••••

Checkpoint File Assignment ••••••••••••••••••••••••••••
Taking a Checkpoint •••••••••••••••••••••••••
Checkpoint Processing •••••••••••••••••••••••••••••••••

. . . .
Restart ••••••••••••••••• .

Requesting a Restart •••••••••••••••••••••••
Restart Processing ••••••••••••••••••••••••••••••••••••

GLOSSARY ••••••••••••••••• .

Page

5-22
5-22
5-23
5-23
5-23
5-23
5-24
5-24
5-24
5-24
5-25
5-25

6-1

6-3
6-3
6-3
6-4
6-4
6-5
6-6
6-6
6-6
6-6
6-7
6-7
6-8
6-8
6-8
6-8
6-9
6-9
6-10
6-10
6-10
6-11
6-12
6-12
6-13

g-1

xiv CZ03-0l

ILLUSTRATIONS

Figure

2-1 Example of Disk Directory Structure •••••••••••••••••
2-2 Sample Directory Structure ••••••••••••••••••••••••••
2-3 Sample Pathnames•....................•.•...•.
2-4 Example of Online Multivolume Files •••••••••••••••••
2-5 Example of Serial Multivolume Files •••••••••••••••••

4-1 Sample Swap Pool Group Segment Assignments ••••••••••
4-2 Sample Independent Pool Group Segment Assignments •••
4-3 Relative Lo ca ti on in Memory of Memory Pool AA •••••••
4-4 overlays in Memory Pool AA ••••••••••••••••••••••••••
4-5 Sample Bound Unit Structure for overlay Area use ••••
4-6 Task Address Space in BMMU System •••••••••••••••••••
4-7 Task Address Space in EMMU System •••••••••••••••••••

5-1 Format of Level Activity Indicators for Each
Central Processor •••••••••••••••••••••.•••••••••••••

5-2 Order of Interrupt Vectors and Format of Interrupt
Save Areas for Each Central Processor ••••.••••••••••

5-3 Example of LRN and Priority Level Assignments
for System Tasks and Devices ••••••••••••••••••••••••

5-4 System Interaction with User Tasks in a
Monoprocessor Sy stern ••••••••••••••••••••••••••••••••

Page

2-3
2-4
2-11
2-31
2-33

4-14
4-16
4-24
4-24
4-25
4-32
4-34

5-2

5-4

5-11

5-17

TABLES

Table Page

2-1 Disk File Concurrency Control •.••••••••••••••••••••• 2-20
2-2 Access Control/Concurrency Control Relationship ••••• 2-21

4-1 Task Group and Task Functions Possible From
Interactive and Absentee Modes •••••••••••••••••••••• 4-6

4-2 System Task Group Identifiers ••••••••••••••••••••••• 4-7
4-3 Comparison of Executive Extensions

and Sharable Bound Uni ts............................ 4-20

5-1 Sample Priority Level Assignments for Tasks
and Devices... 5-8

xv CZ03-0l

I

I

Section 1
SYSTEM

CHARACTERISTICS

GCOS 6 MOD 400 is a disk-based operating system that supports
multitasking, real-time, or data communications applications in
one or more online streams. In addition, program development and
other non-interactive applications can be performed concurrently I
in multiple absentee streams.

MOD 400 is a multifunctional system capable of supporting a
variety of processing functions. You can develop and execute
applications software, perform forms data entry, transmit files
to other DPS 6 computers, and enter jobs for execution at remote
sites.

The system can be configured to process different functional
applications concurrently. For example, you can run your own
applications, utilize other system functionality such as the data
collection capability, and communicate with a host processor at
the same time.

OPERATING FACILITIES

MOD 400 supports multiprogramming, the concurrent execution
of multiple tasks running under one or more task groups. Each
task group owns the resources necessary for execution of an
application program (one or more related tasks). The task group
runs independently in its own operating environment while it
shares the resources of the system.

1-1 CZ03-0l

I

I

I

I

If you define the environment to run more than one
application task group concurrently, you are multiprogramming.
In this environment you can execute each task in a task group
sequentially, or concurrently (which is multitasking). You can
run multiple online and absentee task groups concurrently.

The number of task groups that can run is limited by the
number of central processors in your system, by central processor
power, and by the amount of memory available. Concurrently
executing task groups can occupy independent dedicated memory
areas, or they can contend for space within a memory pool. When
one task group is deleted, the released memory is available to
other task groups in the same pool. MOD 400 allocates memory
dynamically from pools and can relocate programs at load time.
Once a task group requests execution, its tasks are dispatched
according to their assigned priority levels. In a multiprocessor
system, a task is dispatched when a central processor becomes
free. When more than one task shares a priority level, tasks are
serviced in round-robin fashion.

Use of disk files by multiple independent users is
facilitated by the arrangement of File System entries
(directories and files) in a tree-structured hierarchy. Each
directory or file is identified by a pathname that indicates the
path from the root directory of the hierarchical structure of the
containing directory or file. File reference can be simplified
through the use of pathnames relative to a working directory that
indicates a user's current position in the File System
hierarchy. Access to sharable files and devices is controlled by
file attributes and concurrency procedures.

SOFTWARE FACILITIES

MOD 400 offers you a comprehensive set of software components
that perform a wide variety of functions. The following
paragraphs briefly describe these software components.

5ystem Control Software

System control software includes:

• Task Manager: Handles the disposition of tasks within the
system's central processor(s) and responds to requests
placed against tasks. The Task Manager processes requests
to activate tasks; returns control to interrupted tasks;
and synchronizes, suspends, and terminates tasks.

• Clock Manager: Handles all requests to control tasks
based on real-time considerations and responds to requests
for the time of day and date in ASCII format.

1-2 CZ03-0l

• Swapper: Controls the allocation of swap pool memory and
swap file space. swaps tasks out when swap pool memory is
required and swaps them back when the memory is available.

• Memory Manager: Controls dynamic requests for memory and
the return of memory to group work segments. Also I
controls the allocation of all memory in independent
(non-swapped) pools and of task groups assigned to the
swap pool.

• Trap Manager: Handles the transfer of execution control
from an executing program to a predefined trap location
when a trap (a special condition such as a hardware error)
occurs. The Trap Manager handles system traps and allows
a task group to connect its own trap routines for specific
traps.

• Operator Interface Mana9er: Manages all messages sent by
task groups to the operator terminal or from the operator I
terminal to task groups.

• Loader: Loads the root and overlays of a bound unit into
memory from a disk.

• Listener: Monitors a selected set of local and remote
terminals. When you enter a Login command requesting
access to the system at one of the terminals, the Listener
causes a task group to be spawned for you.

• Command Processor: Processes all commands. The Command
Processor must be the lead task of an absentee task group
and can be the lead task of any other task group.

• User Productivity Facility (Menu Subsystem): Provides you
with a screen-oriented interface to the Executive and to
applications.

• Messa9e Facility: Provides a means for sending and
receiving messages between tasks and between task groups.

• Message Reporter: Extracts messages from the message
library, formats them, and delivers them to a
user-specified location such as a terminal, a program
buffer, etc.

• Error Logging Facility: Provides a mechanism for
accumulating statistics on memory errors and peripheral
devices. Should the error-per-use ratio exceed a
specified threshold, a warning message is sent to the
operator terminal.

1-3 CZ03-01

I

File System Software

MOD 400 provides software to handle Input/Output (I/O)
functions of each of the supported devices. The File System
software is designed to work in conjunction with the data
management conventions established for each device. The File
System software is available through system commands or, for an
Assembly language program, through system service macrocalls .•

Utility Software

The system provides a comprehensive set of utility programs
for performing frequently used programming functions. The system
programs used by MOD 400 for the various utility functions are
invoked by system commands.

Program Development Software

MOD 400 supports a large set of program preparation
components, utilities, and debugging aids for application
development. Programming languages include PASCAL, FORTRAN,
COBOL, c, Ada, BASIC and Assembly language. Display formatting
and control facilities provide the means for developing, using,
and maintaining terminal display forms.

Data Communications Software

MOD 400 supports four levels of communications interface.
Terminals and/or remote host computers can be accessed through
the:

• Sequential file interface of the File System software
• Display formatting and control software
• Physical I/O interface of the system
• Various distributed systems facilities.

Specialized software components called Line Protocol Handlers
(LPHs) support the different device classes and the various con
ventions established for data transfer.

Distributed Systems Software

MOD 400 supports software packages that permit use of DPS 6
in a distributed processing environment. Using the packages
provided by Honeywell, your DPS 6 system can become a node on a
network and can communicate with DPS 6, DPS 7, DPS 8, and other
systems across a variety of links.

1-4 CZ03-0l

The Distributed Systems Architecture 6 {DSA6) package follows
the layered structure of the Open Systems Interconnection {OSI)
defined by the International Standards Organization. DSA6 is a
set of networking products that includes a transport facility, a
network terminal manager, a unified file transfer facility, a
remote file facility, a remote batch facility, and an application
interface facility. DSA6 also supports terminal access to
IBM-hosted applications through the DSA/SNA gateway.

The Systems Network Architecture 6 (SNA6) package emulates
most operations of standard IBM devices so that DPS 6 systems can
interface with an IBM SNA network. SNA6 provides a remote job
entry facility, a file transmission facility, an interactive
terminal facility, and an application interface facility.

Data Management Software

MOD 400 supports data base management, query and report
writing, and transaction processing software packages. Data base
management packages are available for relational and network data
bases. Query and report writing packages allow you to retrieve
information from all supported data bases. Transaction
processing packages support standalone systems as well as
applications connecting to remote host processors through the
Distributed Systems software.

Data Entry Software

MOD 400 supports a multistation, forms-oriented source data
collection capability. The Data Entry Facility-II {DEF-II)
package embodies established data entry concepts in a menu-driven
approach, making it easy to specialize and run procedures. Data
collected and validated by DEF-II can be organized into a file
and transferred to another system through the Distributed Systems
software.

Off ice Automation Software

MOD 400 supports the Off ice Automation System (OAS)
facility. OAS offers a wide range of office processing functions
including document processing, electronic mail, document
transfer, records processing, spreadsheets, communications, and
file management.

1-5 CZ03-0l

Section 2
FILE CONCEPTS

A file is a logical unit of data composed of a collection of.
records. The principal external devices available for storing
files are:

• Disk devices (for example, diskettes, cartridge disks,
cartridge module disks, fixed (sealed) disks, and mass I
storage uni ts)

• Magnetic tape units (for example, 1/2-inch tapes and I
1/4-inch cartridge tapes).

These external devices are referred to as volumes (for
example, disk volume, tape volume) •

various conventions have been established to identify and
locate files stored on disk and magnetic tape. These conventions
facilitate the orderly and efficient use of the data stored on
the volumes.

Unit record devices (such as card readers, card punches,
printers, and terminals) also use the file concepts. However,
since unit record devices cannot be used to store files, there is
less need to establish conventions for identification and
location. A unit record file is simply the data that is read or
written at any one time (for example, a line entered at a I
terminal) •

2-1 CZ03-0l

DISK FILE CONVENTIONS

You must be able to specify an access path to any given file
on a disk volume that contains multiple files. Files must
therefore be organized on the volume in some predictable
fashion. The MOD 400 File System provides a set of volume
organization conventions by which the system can locate any
element that resides on the volume.

The principle elements of this organization, aside from the
files themselves, are directories. The access path to any given
element on a volume is known as a pathname.

Directories

Files on disk devices are logically arranged by the File
System in a tree-structured hierarchy. The basic elements of
this hierarchy are special files known as directories. The
directories are used to point to the location of data files,
which are the endpoints of the tree structure.

A directory on a disk volume is an index that contains the
names and starting locations (sector numbers on the volume) of
files or other directories (or both). The elements in the
directory are said to be "contained in" or "subordinate to" the
directory. Therefore, the organization of a disk volume is a
multilevel structure. The complexity of the access path to any
given element in the structure depends on the number of
directories between the root and the desired element.

A sample directory structure is illustrated in Figure 2-1.
The base directory on a volume is termed a root directory. In
Figure 2-1 the root directory is VOLOl. Root directory VOLOl
contains two subordinate directories, DIRl and DIR2. Directories
DIRl and DIR2, in turn, contain data files FILEA, FILEB, FILEC,
and FILED.

The root directory and other special types of directories are
described in the following paragraphs.

ROOT DIRECTORY

The File System maintains a tree structure for each disk
mounted at any given time. At the base of each tree structure is
a directory known as the root directory. This is the directory
that ultimately contains every element that resides on the
volume, either immediately or indirectly subordinate to it. The
root directory name is the same as the volume identifier of the
volume on which it resides. The directory VOLOl in Figure 2-1 is
the root directory on the disk volume VOLOl.

2-2 CZ03-0l

VOL01

I

FILEA FILEB FILED I

Figure 2-1. Example of Disk Directory Structure

SYSTEM ROOT DIRECTORY

One or more disk root directories can be known to the system
at any time during its operation. One of these, the System Root
Directory (SRD), is required at all times. The access paths of
files in the SRD start with two greater-than signs (>>). The
volume used by the operator to initialize the system establishes
the SRD. The boot volume must contain the SRD; it also normally
contains system programs, commands, and other routinely used
elements. The SRD must contain a number of directories and files
that the system needs to perform its functions, including
>>Z3EXECUTIVEL, >>SID, >>AID, >>HIS, and >>USER REG. For more I
information, ref er to the System Building and Aaministration
manual.

USER ROOT DIRECTORY

The File System can recognize one User Root Directory (ORD), I
which you define through the Change System Directories command
with the -ROOT argument. Files in the ORD have access paths that
start with a single greater-than character. The ORD contains
items such as UDD, LDD, MDD, FORMS, FROGS, and TRANS. For more
information, ref er to the System Buildin9 and Administration
manual.

The URD and SRD can reside on different volumes or on the
same volume. The installation can also have user volumes created
to meet the installation's own particular needs. These volumes
may contain user application programs and their associated data
files,. application program source and object code files, listing
files, and anything else a user might want to store temporarily
or permanently.

2-3 CZ03-0l

I

I

Refer to "Links" later in this section for information on
another way to distribute software (system or user) onto more
than one volume.

INTERMEDIATE DIRECTORIES

When you first create (format and name) a volume under the
File System, it contains only a root directory. Within this
directory, you can create any additional directories required to
satisfy the needs of the installation. Consider, for example, a
volume that is to contain data used by two applicati'on projects,
each of which has several users associated with it. Each user
has one or more files of interest to him or her. The volume has
been initialized and contains a root dir.ectory name. Two
directories can be created subordinate to the root directory,
each identified by the project name. Then, subordinate to these
directories, a directory can be created for each user associated
with each project.

The data files are all contained within the personal
directories. This sample directory structure is illustrated in
Figure 2-2.

VOL01

FOSTER

84-818

Figure 2-2. Sample Directory Structure

When the need for a user-created directory no longer exists,
the directory can be deleted from the File System (deleted from
the disk). The space it occupies, as well as the space occupied
by its attributes in the immediately superior directory, is then
available for reuse. A directory must be empty before it can be
deleted. All directories and files subordinate to the one to be
deleted must have been previously deleted by explicit commands.

2-4 CZ03-0l

WORKING DIRECTORY

The File System always starts at a root directory when it
searches for a disk file or a directory. At times the search for
an element residing on a disk volume may traverse a number of
intermediate directory levels before the desired element is
located, and the File System must be supplied with the names of
all the directories it must pass on the way. Frequently all
files of interest to a user doing work on the system are
contained in a single directory that is three or four levels deep
in the hierarchy. It is convenient to be able to refer to files
in relation to a directory at some arbitrary level in the
hierarchy rather than in relation to the root directory. The
File System allows this to be done by recognizing a special kind
of directory known as a working directory.

A working directory establishes a reference point that
enables you to specify the name of a file or another directory in
terms of its position relative to the working directory. If the
access path of the working directory is made known to the File
System, and if the desired element is contained in that
directory, the element can be specified by just its name. The
File System concatenates this name with the names of the elements
of the working directory's access path to form the complete
access path to the element.

Disk Directory and File Locations

The File System has total control over the physical location
of space allocated to directories and files. You need never be
concerned about where a directory or file resides on a volume.
When a volume is first initialized, space is allocated to
elements in essentially the order in which they are created.
But, after the volume has been in use for some time, elements may
have been deleted and the space they occupied made reusable.
Then, when a new element is created, it is allocated the first
available space. If more space is needed, it is obtained from
the next free area.

Disk Directory and File Naming Conventions

Each disk directory and file name in the File System can
consist of the following American Standard Code for Information
Interchange (ASCII) characters:

• Uppercase and 1 ow er case primary character set alphabetics I
(A-Z, a-z)

• Digits (0-9)

• Underscore) -
• Hyphen (-)

2-5 CZ03-0l

• Period (.)

• Apostrophe (')

• Uppercase and lowercase characters whose hexadecimal
equivalents are from CO-FE (Western European Latin
alphabet, also called the extended character set).

The characters in the extended character set cannot be used
in volume identifiers.

NOTE

If the terminal is not capable of processing 8-bit
data, characters from the extended character set
are displayed as periods or as their 7-bit
equivalents.

When volumes, files, and directories are created, their
identifiers are stored on disk exactly as entered, in uppercase
and lowercase characters. For both the primary and extended
character sets,. MOD 40 0 considers uppercase and 1 ow er case
characters to be equivalent (for example, "DATA", "Data", and
"data" all refer to the same file).

The first character of any name must not be character FF.
The underscore character can be used to join two or more words
that are to be interpreted as a single name (for example,
DATE TIME). The period character and one or more following
alphabetic or numeric characters are normally interpreted as a
suffix to a file name. This convention is followed, for example,
by a compiler when it generates a file that is to be listed. The
compiler identifies this file by creating a name of the form
FIL EA. L.

I MAXIMUM NAME LENGTH

The name of a root directory (the volume identifier) can be
from one through six characters in length. The names of other
directories and files can be from 1 through 12 characters in
length. The length of a file name must be such that any
system-supplied suffix does not result in a name containing more
than 12 characters.

UNIQUENESS OF NAMES

Within the system at any given time, the access path to every
element must be unique. This requirement leads to the following
rules for naming files:

2-6 CZ03-0l

• Only one volume with a given volume identifier can be
mounted at any given time. (The system notifies you of an
attempt to mount a volume having the same name as one
already mounted.)

• Within a given directory, every immediately subordinate I
directory or file name must be unique. (The Create
Directory and Create File commands notify you of an
attempt to add a duplicate name.) *

Note that uppercase/lowercase differences do not constitute I
uniqueness. As previously mentioned, "DATA", "Data", and "data"
all ref er to the same file.

Pathnames

The access path to any File System entity (directory or file)
begins with a root directory name and proceeds through zero or
more subdirectory levels to the desired entity. The series of
directory names (and a file name if a file is the target entity)
is known as the entity's pathname. The construction of a
pathname is described below.

The total length of any pathname, including all symbols,
cannot exceed 57 characters. A working directory pathname,
however, cannot exceed 44 characters.

The last (or only) element in a pathname is the name of the
entity upon which action is to be taken. This element can be a
device name, directory name, or file name, depending on the
function to be performed. For example, in the Create Directory
command a pathname specifies the name of a directory to be
created. The last element of this pathname is interpreted by the
command as a directory name; any names preceding the final name
are names of superior directories leading to it. An analogous
situation occurs in the Create File command, except that in this
case the final pathname element is the name of a file to be
created.

SYMBOLS USED IN PATHNAMES

The following symbols are used to construct pathnames:

•

•

•

Circumflex (A). Used at the beginning of a pathname to
identify the name of a disk volume root directory (for
example, AVOLOll).

Circumflex Preceding Greater-Than Sign (A>). Used at the I
beginning of a pathname to identify the root directory of
the current working directory (for example, A>DIRl>FILEA
is equivalent to AVOLOll>DIRl>FILEA if the current working
directory is on VOLOll).

Greater-Than Sign (>). Used at the beginning of a
pathname and between the names in a pathname.

2-7 CZ03-0l

I

When used at the beginning of a pathname, the element
whose name follows the > symbol is immediately
subordinate to the root directory of the user root
volume (it resides under the URD). Honeywell-supplied
programs assume the URD contains the UDD, LDD, FORMS,
MDD, PROGS, and TRANS directories.

The correct way to refer to a directory in the URD is
to precede the directory name by one greater-than sign
(for example >UDD).

When used between names in a pathname the > symbol
indicates movement in the hierarchy away from the root
directory. The symbol is used to connect two directory
names or a directory name and a file name. Each
occurrence of the > symbol denotes a change of one
hierarchical level. The element to the right of the
symbol is immediately subordinate to the element on the
left.

Reading a pathname from left to right thus indicates
movement through the tree structure in a direction away
from the root directory. For example, if the root
AVOLOll contains a directory named DIRl, the pathname
of DIRl is AVOLOll>DIRl. If the directory named DIRl
in turn contains a file named FILEA, the pathname of
FILEA is AVOLOll>DIRl>FILEA

• Two Consecutive Greater-Than Signs (>>). Used at the
beginning of a pathname to specify entities that are
subordinate to the SRD. Honeywell-supplied programs
assume the SRO contains the Z3EXECUTIVEL, SID, AID, HIS,
and USER REG directories.

The correct way to ref er to a directory in the SRD is to
precede the directory name by two greater-than signs (for
example >>SID) •

SYSLIBl and SYSLIB2 can reside in either the SRD or the
URD.

• Less-Than Sign (<). Used at the beginning of a pathname
to indicate movement from the working directory toward the
root directory. Consecutive symbols can be used to
indicate changes of more than one level1 each occurrence
represents one 1 evel change. One or more less-than
symbols may precede only a pathname that assumes a
directory without actually referring to it explicitly.
Such a pathname is called a relative pathname.

• ASCII Space Character (Hexadecimal 20). Used to indicate
the end of an encoded pathname in a program. When
represented in memory, a pathname must end with a space
character.

2-8 CZ03-01

The use of these symbols at the beginning of a pathname can
be summarized as follows:

Symbol

"'volume

">

>

>>

<

Meanin9

Any volume or root directory

Under root of current working directory
volume

Under URD root

Under SRD root

Movement away from current working directory
toward volume root

ABSOLUTE AND RELATIVE PATHNAMES

A full pathname is one that begins with a circumflex. A full I
pathname contains all necessary elements to describe a unique
access path to a File System entity, regardless of the type and
location of the device on which it resides or where your working
or assumed directory is. You use a full pathname to locate
directories and files that reside on a device other than that on
which the system volume (the volum:e from which the system was
initialized) is mounted.

The File System uses a full pathname when ref erring to a
directory or file. However, it is frequently unnecessary for you
to specify all of these elements. The File System can supply
some of them when the missing elements are known to it and the
abbreviated pathname is used in the appropriate context. An
understanding of these conditions and contexts requires an
understanding of absolute and relative pathnames.

Absolute Pathname

An absolute pathname is one that begins with a circumflex ("')
or one or more greater-than symbols (>).

If an absolute pathname begins with a circumflex, it is a
full pathname.

If an absolute pathname begins with one greater-than symbol,
the first element named in the pathname is assumed to be
immediately subordinate to the URD.

If the pathname begins with two greater-than symbols, the
first element named in the pathname is assumed to be directly
subordinate to the SRD.

2-9 CZ03-0l

Relative Pathname

A relative pathname is a shortened version of the absolute
pathname and assumes the working directory (or a higher directory
in the structure) without explicitly referring to it. A relative
pathname is one that begins either with a file or directory name
or with one or more less-than symbols.

If the pathname begins with a name (for example, DIRl>FILEA
or FILEA), the elements so identified are immediately subordinate
to the working directory.

If a relative pathname begins with a less-than symbol (for
example, <FOSTER), the name following the less-than symbol
identifies an element that is immediately subordinate not to the
working directory, but to the directory to which the working * directory is immediately subordinate. If the pathname began with
two less-than symbols (for example, <<APP2), APP2 is immediately
subordinate to a directory two levels higher than the working
directory.

A relative pathname contains one or more names. If it
contains more than one name, each name except the last must be a
directory name, the first being immediately subordinate to the
current working directory level (or to a higher level, as
specified by one or more less-than symbols), the second
immediately subordinate to the first, and so on. The last or
only name can be a directory name or a file name, depending on
the function being performed.

A simple pathname is a special case of the relative
pathname. A simple pathname consists of only one name: the name
of the desired element that is immediately subordinate to the
working directory.

You can refer to a file or directory that is on the same
volume (but not subordinate to the working directory) by using an
absolute pathname or by using any of the described forms of a
relative pathname.

Figure 2-3 shows some relative pathnames and the full
pathnames they represent when the working directory pathname is
>PROJl>USERA.

2-10 CZ03-01

BOX NUMBER

1
2
3
4
5

RELATIVE PATHNAME8

DELTA
OLO>DELTA
<USERB>ALPHA
<<PROJ2>USERA>DEL TA
<

1
5

PROJ1

l l
USERA8 USERB

l 1 1
1 3

DELTA ALPHA

OLD

2

DELTA

FULL PATHNAME

11SYS01 >PROJ1 >USERA>DEL TA
11SYS01 >PROJ1 >USERA>O LD>DE LT A.
11 SYS01 >PROJ1 >USERB>ALPHA
11SYS01 >PROJ2>USERA>DEL TA
11SYS01>PROJ1

SYS01

]

PROJ2

]
USER A

J
4

DELTA

8 ASSUME CURRENT WORKING DIRECTORY IS "SYS01 >PROJ1 >USER A.

84-819

Figure 2-3. Sample Pathnames

2-11 CZ03-0l

I

I

I

DISK DEVICE PATHNAME CONSTRUCTION

A special pathname convention is used to specify an entire
disk volume. (This pathname convention is typically used in
volume copy, create, and dump requests.) The special pathname
consists of an exclamation point (!) followed by the symbolic
device name and, optionally, the name of the the disk volume.
The general form of the disk device pathname is:

! dev _name [>vol_ id]

where dev name is the symbolic device name defined for the disk
device at-system building, and vol id is the File System name of
the disk volume, without the circumflex (for example:
!MSMOO>VOLOl) •

If the vol id is not supplied, reservation of the disk is
exclusive (meaning that the reserving task group has read and
write access but other users are not allowed to share the
volume). This pathname form is used when a new volume is being
created. If the vol id is specified, reservation is read/share
(meaning that the reserving task group has read access only,
other users may read and write). This pathname form is used when
copying a volume, or when dumping selected portions of a volume
without regard for the hierarchical File System tree structure.

LINKS

Links are names you create through the Link Name command to
refer to files, directories, and indexes in other volumes or
directories as if they were in your working directory (or any
other specified directory). Instead of copying a file from one
directory to another, you can link to it. You can also link to
devices or to other links.

For example, once you have established a link between the
name A (in a given directory) and the pathname
AVOLID>MYDIR>MYFILE, you can perform file operations using the
1 ink-name A as if it were the pathname. Instead of having to
issue the command:

MFA AVOLID>MYDIR>MYFILE -RECOVER

you can issue the command:

MFA A -RECOVER

(Assuming you have defined A as a link-name in your current
working directory.)

For additional information concerning the Link Name and
Unlink Name commands, refer to the Commands manual.

2-12 CZ03-0l

Automatic Disk Volume Reco9nition

The automatic volume recognition facility dynamically notes
the mounting of a disk volume. This feature allows the File
System to record the root directory name in a device table. All I
references to disk files and directories begin, explicitly or
implicitly, with a root directory name; therefore, every mounted
file is automatically accessible to the File System software. I
Disk File Organization

Since no one disk file organization can meet the needs of all
users at all times, MOD 400 supports several different
organizations, each of which is well suited to a particular
application. Most of the supported organizations are based on
the concept of a control interval (a unit of transfer between
memory and disk) and are referred to as Unified File Access
System (UFAS) files. UFAS file organizations provide file
processing compatibility across the GCOS Executives.

You establish the organization of a data file when you create
the file through the Create File command. You read and write the
file using statements and macrocalls provided by the MOD 400
compilers and Assembler.

The following paragraphs summarize the MOD 400 disk file
organizations. Refer to the Data File Organizations and Formats
manual for detailed descriptions of each organization.

UFAS SEQUENTIAL DISK FILE ORGANIZATION

Logical records are normally read from or written to a
sequential file in consecutive order. Records must be written
sequentially although the file can be positioned for writing
through the use of a simple key. Records can be read, modified,
or deleted directly when you specify their exact control interval
and record address (simple key). Records cannot be inserted;
they can be appended to the end of a file. Fixed- or
variable-length records can be used. If a record is deleted, the
position it occupied cannot be reused.

UFAS RELATIVE DISK FILE ORGANIZATION

A relative disk file can contain fixed- or variable-length
records. If variable-length records are used, they occupy
fixed-length slots (and the size of the largest record must be
specified). Both sequential and direct access are supported; in
direct access, simple and relative keys can be used. A record
can be updated (rewritten), deleted, or appended to the file. If
a record is deleted, the position it occupied can be used for a
new record. A file can be created directly if you specify
relative record numbers in random sequence.

2-13 CZ03-0l

I

I

I

I

I

UFAS INDEXED DISK FILE ORGANIZATION

In an indexed disk file organization each logical record
contains a fixed-size key field that occupies a fixed position.
Records are logically ordered by key value; they can be accessed
sequentially in key sequence or directly by key value. Fixed- or
variable-length records can be used. Variable-length records
occupy variable-length slots. A record can be updated, deleted,
or inserted in key sequence into available free space. When no
space is available to insert a record in key sequence, the record
is placed in an overflow area. When the file is initially
loaded, the records must be supplied in sequence by key value.

UFAS RANDOM DISK FILE ORGANIZATION

In a random disk file organization records are accessed
directly or sequentially. Variable-length records occupy
variable-length slots. Direct access of records is performed
through CALC keys, which are fixed in size and located within
each record. Records are positioned according to a technique
involving an arithmetic derivation of their CALC keys. This
derivation is called a hashing algorithm (and is carried out by
the system). Insertions, updates, and deletions are handled
according to key value. When the file is initially loaded,
records can be supplied in random key value sequence.

UFAS DYNAMIC DISK FILE ORGANIZATION

i dynamic disk file can contain fixed- or variable-length
records and supports inventory information to describe available
space. The main purpose of this file organization is to provide
an efficient storage organization for records to be accessed
through alternate indexes (explained below). Records are
accessed sequentially or directly. Variable-length records
occupy variable-length slots. Records can be accessed indirectly
through alternate indexes or directly by specifying their exact
control interval and record address (simple key). Records are
inserted into the file according to inventory information on a
"best fit" basis. When the file is initially loaded, records can
be supplied in random key value sequence.

NON-UFAS RELATIVE DISK FILE ORGANIZATIONS

Non-UFAS relative disk file organizations are specific to the
DPS 6 and are not compatible with other GCOS systems. These file
organizations have fewer functional capabilities than UFAS files
but require little or no space overhead. The non-UFAS file
organizations are fixed relative and string relative.

2-14 CZ03-0l

• Fixed relative - A fixed relative disk file can contain
only fixed-length records. All records in the file are
considered active; the file cannot contain deletable
records. A fixed relative file can be accessed directly
or sequentially. New records can be inserted anywhere in
the file.

• String relative - A string relative disk file can contain
variable-length records. All records in the file are
considered active. A string relative file can be accessed
directly or sequentially. The ASCII line feed character
(OA) is automatically appended to the end of each record.

Pipes

A pipe is a special kind of UFAS sequential file that is used
for synchronizing and passing information among multiple
cooperating tasks. Pipes are accessed (reserved, opened, read,
written, closed, and removed) just like any other sequential
file. Pipes provide a synchronization/queuing facility and offer
a convenient way of organizing and distributing work.

One or more tasks write into the pipe while others read from
it. If the pipe is empty but open for writing, read requests are
suspended until data (a logical record) is available. A read
implicitly deletes the logical record just read from the pipe.
When the pipe is empty and no longer open for writing, read
actions return the normal end-of-file status.

Alternate Indexes

Alternate indexes allow you to define any number of alternate I
record keys to provide any number of different logical orderings
of keyed records within a single disk file. In effect, alternate
indexes provide different orderings (views) of the same data.
The same data file can be viewed in many different ways by having
more than one alternate index. For example, an application could
have a UFAS relative file containing employee information with
alternate indexes for employee numbers, employee names, and
social security numbers. You could access such a file as a
relative file, as an indexed file ordered by employee numbers, as
an indexed file ordered by employee names, or as an indexed file
ordered by social security numbers.

2-15 CZ03-01

The alternate index capability exists in addition to the
normal access mode based on type of file. You can establish an
alternate index for any UFAS relative, indexed, random, or
dynamic disk file. A file with more than one index can be
accessed in a number of ways. The manner in which the file is
reserved (through the Get File command) determines how the file
is accessed. If the data file itself is reserved, the file can
be accessed normally (according to file organization) or by a key
that is supported by one of the indexes. When the datafile is
reserved through an alternate index, the contents of the file can
be accessed as a standard indexed file. Additionally, if more
than one index exists, the indexes can be used as alternate keys
to refer to the data. When an alternate index is used for file
reservation, that index is used as the primary key and the
remaining indexes can be used as alternate keys. Any index can
be selected as a primary index. When one index is used to access
the file, it and the other indexes are automatically updated as
the file is updated.

UFAS dynamic disk files contain inventory information to
manage available file space. Therefore, in highly volatile file
environments that include many insert and delete operations,
dynamic disk files are the ideal data files to be used with
alternate indexes.

Character string, signed binary, signed unpacked decimal, and
signed or unsigned packed decimal key types can be used. Single
component keys, ordered in ascending or descending sequence, are
supported. Duplicate keys (more than one record in a file with
the same key value) are supported on an index-by-index basis.

An alternate index is created with the Create Index command.
Arguments of this command specify the name of the index and the
name of the datafile with which it is to be associated. The
system creates the index on the same directory as the data file
and, unless otherwise specified, with the same control interval
size as that of the data file.

Ref er to the Data File Organizations and Formats manual for
further information.

Disk File Protection

The File System provides facilities that enable you to
control the access to files and directories, to control the
concurrent access to files, and to control the contention for
records within shared files.

ACCESS CONTROL

Access control is an optional File System feature that allows
the creator of a file or directory to specify which users (if
any) are to be granted access to the file or directory and what
types of access these users are to be granted.

2-16 CZ03-01

There are two general forms of access control: Access
Control Lists (ACLs) and Common Access Control Lists (CACLs) •
ACLs apply directly to a file or directory; CACLs apply equally
to all immediately subordinate entries in a directory. Entries
in the ACLs and CACLs are managed through Set Access, Delete
Access, and List Access commands.

Access control is a file or directory attribute. The File
System maintains in each directory a list of users and the type
of access each user is allowed. If a directory does not contain
such a list, the items contained within it are not protected and
are accessible to all users. (Access control applies only to
disk files and directories. Tape files and other device-type
files such as terminals and card readers cannot be protected
through the access control facility.)

Access Types

Access types for files are read, write, and execute. Access
types for directories are list, modify, and create. A null
access type applies to both files and directories. Null access
indicates that no access is to be granted.

Access Control/User Id Relationship

Access control assumes that access to the system is I
controlled by a login process in which every user has a unique
user id. This user id is composed of three elements that are
specified at login and that remain unchanged during the time the
user is logged in. The 'three elements are:

person.account.mode

person - Name of individual who may access the system.

account - Name of account to which work is charged.

mode - Further identification of the user {optional). Can
name the mode in which the user is working {for
example, interactive, absentee, or operator).

The elements of the user id can consist only of the ASCII
uppercase and lowercase alphabetic characters {A-Z, a-z), digits
(0-9), underscores (),dollar signs {$),apostrophes {') and the
uppercase and lowercase graphics whose hexadecimal equivalents
are CO-FE (extended character set). Apostrophes and the
characters whose hexadecimal equivalents are CO-FE can be used
only in the person and account elements. For both the primary
and extended character sets, uppercase and lowercase characters
are equivalent {for example, JOHN.MOD400.AB is the same user id
as JohN.moD400.ab).

2-17 CZ03-0l

I

The elements are separated with periods (.). When
referencing user ids, you can replace any or all elements by
asterisks (*); for example:

*.account.mode
person.account.*
* * * . .

When an asterisk appears in an element position, it is
interpreted to mean any value that may exist. No test is
performed to match this element of the user id. For example, if
two persons (Smith and Jones) are registered in an account named
FILE SYS, the user id *.FILE SYS.* matches either person in any
possible mode. (The user id-*.FILE SYS.* matches all individuals
registered to use FILE_SYS in any mode.)

Access Control Lists

There are four kinds of access control lists: file ACLs,
directory ACLs, file CACLs, and directory CACLs.

• File ACL - A file ACL is a type of access control list
that applies to a specific file and is considered to be a
file attribute. It contains a list of those users who can
access the file and their specific access rights (read,
write, execute).

• Directory ACL - A directory ACL is a type of access
control list that applies to a specific directory and is
considered to be a directory attribute. It contains a
list of those users who can access the directory and their
specific access rights (list, modify, create).

• File CACL - A file CACL is a type of access control list
that applies to all files immediately subordinate to a
directory. A file CACL is considered to be a directory
attribute that applies only to files contained in that
directory. A file CACL contains a list of file users and
their specific access rights (read, write, execute). Use
of file CACLs can save disk space and search time if all
or most files in a directory have the same access
requirements. A file CACL does not override individual
file ACLs set on files in the directory.

• Directory CACL - A directory CACL is a type of access
control list that applies to all directories immediately
subordinate to a directory. A directory CACL is
considered to be a directory attribute that applies only
to immediately subordinate directories. A directory CACL
contains a list of directory users and their specific
access rights (list, modify, create). use of directory
CACLs can save disk space and search time when all or most
subdirectories have the same access requirements. A
directory CACL does not override individual directory ACLs
set on the subdirectories.

2-18 CZ03-0l

The Create Directory command allows a directory CACL to be I
established as a global directory attribute. The
directory CACL is automatically passed down to
subsequently created subordinate directories.

Checking Access Rights

When you reserve a file (through the Get File command or
system service macrocall), the File System checks your right to
access that file. You are said to be on the access control list
if your user id matches an entry,on the ACL or CACL in any of the
forms noted below.

Universal access (no access restriction) is implied if
neither an ACL nor a CACL exists for the file being reserved. If
either list is present, it is scanned by access control.

The checking priority is ACL first, CACL second. If a match
is found in the ACL for a fully specified user id (all three
elements explicitly stated), the CACL is not inspected. If a
match is found on a partially specified user id (one or more
elements specified as an asterisk), the CACL is inspected for a
more explicitly stated user id. The following list indicates the
inspection hierarchy of user id formats in order of decreasing I
priority. For example, if you are granted access by an ACL entry
in format 3, you can be denied access only by an ACL or CACL
entry in format 1 or 2.

1.
2.
3.
4.
s.
6.
7.
8.

person.account.mode
person.account.*
person.*.mode
person.*.*
*.account.mode
.account.
·.mode
* * * • •

Access is checked only for the target file or directory; the
access rights set on directories that may be traversed in
reaching the target file are not checked. You may be denied
access at some intermediate directory level and still gain access
to a subordinate directory or file.

Access control lists do not prevent the system operator from I
accessing files and directories. It is suggested that physical
access to the operator terminal be restricted.

2-19 CZ03-0l

FILE CONCURRENCY CONTROL

I Concurrent read or write use of a file among task groups is
established by the task group that first reserves the file.
Concurrency control performs the following functions:

I

I

I

• Establishes how tasks in the reserving task group intend
to access the file (read, write, or execute).

• Establishes what the reserving task group allows other
task groups to do with the file.

If the file is already reserved, a task group's concurrency
request (reservation) is denied if its intended access conflicts
with the access permitted by a prior reserver. The concurrency
request is also denied if what it allows others to do conflicts
with the access already established by another task group. For
example, if a task group reserves the file exclusively, other
task groups are denied access. If a task group permits read-only
access but does not permit write access, other readers are
allowed but writers are denied access.

Concurrency is controlled through the Get File command or
system service macrocall. The possible combinations of access
intended for the reserving task group and sharability permitted
other task groups are given in Table 2-1. Table 2-1 also shows
the Get File command arguments that establish the various
concurrrencies.

Table 2-1. Disk File Concurrency Control

Reserving Other Get File
Task Group Task Groups Arguments

Read only Read only (read share) -ACCESS R -SHARE R

Read or write -ACCESS R -SHARE W
(read/write share)

Read or write No read, no write -ACCESS W -SHARE N
(exclusive use)

Read only (read share) -ACCESS W -SHARE R

Read or write -ACCESS W -SHARE W
(read/write share)

2-20 CZ03-0l

Compiler-generated programs, commands, sort operations, and
other system software always request exclusive concurrency for
files they reserve for users. Since the operator terminal must
be reserved with read/write shared concurrency to allow
concurrent access by many task groups, it cannot be specified as
the path of the -COUT argument of a command that invokes a
compiler.

The command-in, user-in, user-out, and error-out files are
associated with the MOD 400 Command Processor (refer to "Command
Processor" in Section 3). If the command-in and user-in files
are on disk, they are reserved with read-only shared concurrency1
if assigned to a user terminal, they are reserved with exclusive
concurrency. You can use File Out commands to specify the I
concurrency with which the user-out and error-out files are to be
reserved.

ACCESS CONTROL/CONCURRENCY CONTROL RELATIONSHIP

In an environment that employs access control, users must
have certain minimum types of access privilege to obtain the
specific type of concurrency control they specify in Get File
commands or system service macrocalls.

Table 2-2 summarizes the relationship between access control
and concurrency control for disk files, disk directories, and
disk volumes. (Note that access control does not exist for other
types of devices.)

Table 2-2. Access Control/Concurrency Control Relationship

Object Desired Concurrency Minimum Access

Disk files Read Read
Read/write Read/write

Disk directories Exclusive use List/modify
Nonexclusive use List

Disk volumes Read or read/write Modify access to root
directory

SHARED FILE PROTECI'ION (RECORD LOCKING)

Record locking is a File System option that provides
interference protection so that co-operating users can share and
update file data. For example, with record locking in effect
there can be many task groups running COBOL applications that
read, write, and update record data in the same file or same set
of files.

2-21 CZ03-0l

User applications often employ standard data management
services to lock records as they access them. The purpose of the
locks is to prevent other users from simultaneously getting
access to these records. If other users could access the
records, they might get information that is only partially
updated or, as a result of some programming decision or error
condition, may soon be removed from the file. Also, if there
were no locks, two users could update the same records at the
same time. In this situation the second updater would
inadvertently remove any modifications made by the first updater.

For reasons such as these, record locking is a necessary
feature in most file sharing environments. Moreover, in many
file sharing environments it is important that more than one lock
be simultaneously maintained. For example, an "update"
transaction to a parts inventory file may involve multiple record
updates -- subtracting from some records and adding to others.
These multiple record locks may even involve access to multiple
files.

Note that record locking is not necessary to prevent a file
from being physically corrupted by several applications
performing multiple writes. Whether or not record locking is
present, the File System maintains indexes and record chains
properly so that the file structure is consistent. However,
without record locking there is no synchronization, and the file
data can be logically corrupted by two or more users who update
the same data records. Also, without record locking, data can be
viewed in a partially updated or inconsistent state.

Record Locking Implementation

The MOD 400 record locking option provides synchronization
mechanisms to lock out record data as it is accessed, thereby
making the data inaccessible to other applications until it is
explicitly unlocked via a cleanpoint call (a call to the ZCLEAN
utility in higher-level languages, or $CLPNT macrocall in
Assembly language).

The File System locks records by maintaining lists that
describe which file control intervals are locked, who has them
locked, and who is waiting for them to be unlocked. The File
System also provides a mechanism to recognize (and signal)
whenever a deadlock condition occurs. A typical example of a
deadlock is when one user owns (has locked) record A and wants to
lock record B while another user already has record B locked and
is waiting for record A to be unlocked.

2-22 CZ03-0l

When record locking is in effect and records are accessed
through standard read-, write-, rewrite-, and delete-record
calls, records are automatically locked for reading or writing
until explicitly unlocked through a cleanpoint call. Record
locking is performed on a shared-read/exclusive-write basis,
which allows many simultaneous readers but only one writer at a
time. This convention means that readers will wait until a
writer finishes (issues a cleanpoint call) and vice versa.

Normally a reader is determined at open time as a user who
has opened the file for read access only, while a writer is a
user who has opened the file for write or update access.
However, if a file has been designated as recoverable (see "File
Recovery" in Section 6), the determination of reader and writer
is made at each data access request. Read-record operations set
read locks; write-record, rewrite-record, and delete-record
operations set write locks.

NOTE

Since, with recoverable files, the type of lock is
determined dynamically at each access request
rather than once at open time, more readers can
access more file data at the same time.
Designating a file as recoverable will improve
performance if requests commonly involve reading
or searching through large amounts of data. Also,
if two or more readers attempt to update the same
data in a recoverable file, the data can be rolled
back and the program restarted.

Setting Record Locking

You can set record locking as a permanent file attribute when
you create the file or modify its attributes. You can set record
locking temporarily (only while the file is reserved) when you
reserve the file for processing.

To set record locking as a permanent file attribute, you
specify the -LOCK argument of the Create File or Modify File
commands. To set record locking temporarily, you specify the
-LOCK argument of the Get File command. To change from locking
to no locking, you specify the -NOLOCK argument in any of these
commands.

2-23 CZ03-0l

A file having the record locking attribute can be reserved
without record locking through the -NOLOCK argument of the Get
File command. This is a special "dirty reader" option that lets
you read data even though the data may be locked or may be in the
process of being updated by some other user. The consistency and
integrity of any data read is not guaranteed. The "dirty reader"
option is available only on a logical file number (LFN) basis.
The associated LFN is read-only, ignores any existing record
locks, and cannot set any locks. (LFNs are internal file
identifiers associated with file pathnames at the command or
source program level; refer to "Logical File Numbers" in Section
5 for further information.)

A file with the record locking attribute can also be reserved
with the no-wait option through the -NOWAIT argument of the Get
File command. If the no~wait option is specified, the File
System returns an error status rather than causing you to wait
for a record to be unlocked. The no-wait option is available
only on an LFN basis.

Record Locking Considerations

When using rec.ord locking, you should be aware of the
following points:

• To efficiently use record locking, your applications must
be written to be transaction-oriented so that records are
not locked for a long period of time (for example, while
waiting for terminal I/O) and so that as few records as
possible are locked to satisfy the request.

• You should consider using other file integrity features
(described in Section 6), especially file recovery, which
allows data to be reset (rolled back) to the state it was
in at the start of the transaction. In many situations,
file recovery is a necessary feature to maintain data
integrity in the event of system failure, record deadlock,
application failure, terminal failure, and so forth.

• To develop an efficient multiuser application that shares
and updates data in standard files, you must examine where
and how the application is accessing file data and design
the file structure carefully. In addition, you must pay
careful attention to error conditions involving data
recovery and program or transaction restarts.

• Applications that receive a deadlock notification must be
prepared to back out of the current "transaction" and free
up the locks they concurrrently own. If the file is
recoverable, this is done through the rollback call (a
call to the ZCROLL utility in higher-level languages; a
$ROLBK macrocall in Assembly language) •

2-24 CZ03-0l

• When a record is locked, the entire control interval in
which the record is contained becomes locked. When
defining control interval size, you should consider not
only I/O transfer size and memory buffer usage, but also
the number of records that may be locked out.

• If the no-wait option is selected, central processor time
must be given up so that other users who have the record
locked get a chance to unlock it. You may need to add a
"suspend for time interval" function to applications using
the no-wait option to allow other task groups enough time
to finish their I/0 and unlock records (issue a cleanpoint
call) •

• Closing a file, issuing a cleanpoint call, or issuing a
rollback call frees up all records locked by the task
group since the last cleanpoint. If a task group abort
occurs, the system issues a rollback call automatically as
part of the task group cleanup process. Likewise, if a
system failure occurs, the operator will issue the Recover
command after the system is restarted. When this command
is issued, the File System (in effect) performs a rollback
call for all task groups that were active at the time of
the failure.

Remote File Access

Remote file access is a File System facility that allows
applications to access remote data as if it were local. Remote
objects such as files, volumes, magnetic tapes, and printers
physically reside in some other computer node but, through remote
file access, appear to be attached to your system. The remote
file access facility captures references to remote objects and
interfaces with the appropriate networking software (DSA for
example) to get the desired function performed remotely.

When accessing data at another computer node, you may employ
any File System function through macrocalls or higher-level
language I/0 statements. No special naming conventions are
necessary. You supply the same kind of pathname you would to
access local data. The File System checks to see if the object
identified in the pathname is online (located on your node). If
the object is not online, the File System checks a remote file
catalog to see if the object is located at some other computer
node.

The Remote File Catalog command is used to manage catalog
information. This command allows a system operator or
administrator to define, update, and display information about
remote and local objects, nodes, and networking software.

2-25 CZ03-0l

The Remote File Access command is used to initiate the remote
file access facility. This command allows the system operator or
administr.atoi:- tc:> start the facility, retrieve network status
information, and open and close connections between nodes.

REMOTE FILE CATALOG

Each node has its own remote file catalog to identify objects
it can reference through remote file access. The catalog
contains only those objects of interest to the node. A remote
file catalog contains information about both remote and local
objects.

Remote Object Information

Remote object information consists of a list of remote
volumes and devices along with the node at which they are
currently located. The File System allows you to define your own
names for remote objects. For example, the line printer known as
LPT04 in NODE3 can be cataloged as LPTOl in NODEl. Any reference
to LPTOl in NODEl will result in a search of the catalog and
subsequent use of the printer through the remote file access
services. The catalog can be updated dynamically by an operator
or system administrator to configure new remote devices or to
reconfigure existing ones.

Local Object Information

Local object information consists of a list of your volumes
and devices that can be accessed from other nodes. This
information is used by the other nodes to verify the existence of
what is to them a remote object. It enables the File System to
automatically update the catalog when volumes are moved from one
system to another.

Volume Identification

Disk volumes can be exchanged or moved from one node to
another. The remote file catalog contains enough information to
uniquely identify a remote disk volume and to recognize when it
has moved to another node. This information consists of:

• A Node of Birth (NOB) field identifying where the volume
was originally cataloged for remote access.

• A Date of Birth (DOB) field identifying the date and time
the volume was originally cataloged for remote access.

• A Node of Residence (NOR) field identifying the node where
the volume is currently located (cataloged as a local
object).

• A Node Migration Number (NMN) field identifying the number
of times a volume has moved from one node to another.

2-26 CZ03-0l

The remote file catalog maintains the relationship between a
local name, its current location (NOR), and the actual name.
When a volume is moved to another node, only its NOR is changed,
no change is made to the local name.

When a node connection is established, the two systems
involved exchange local object information. A node ignores any
volume information received that is out of date with respect to
what it already has in its catalog. If a node has been off-line
for some time, any old information it has will be discarded and
any new information it received will be factored in.

Establishing Remote File Catalogs

Establishing a remote file catalog is usually a one-time
operation. The steps involved in setting up the catalog are as
follows:

1. Create the catalog.

You create the catalog by using the Remote File Catalog
(RFC) command with the -CAT argument. This step is
performed only once.

2. catalog a node for remote access.

You define the nodes with which you are to communicate by
using the RFC command with the -NODE argument. This step
is repeated once for each node.

3. Catalog a local object to be accessed remotely.

You define a local object that is to be accessed from
other nodes by using the RFC command followed by the
local pathname of the object. This step is repeated once
for each local object to be addressed remotely. Any
device to be cataloged must be configured on your
system. A disk volume to be cataloged must be mounted.

4. Enable the remote file access facility.

You invoke the remote file access facility by using the
Remote File Access (RFA) command with the -STARTUP
argument. This step configures and initializes the
facility for communicating between nodes. It must be
performed at the local node and each remote node whose
objects are to be cataloged.

5. Establish communication with a remote node.

You establish communication with the remote node by using
the RFA command with the -OPEN argument. This step must
also be performed at each remote node whose objects are
to be cataloged.

2-27 CZ03-01

6. catalog a remote object to be accessed locally.

You define a remote object that is to be accessed from
your node by using the RFC command followed by the local
name to be used to reference the object and the name of
the node at which the object is located. If you wish to
define a local name that is different from the name of
the object as it is known at the remote node, you must
use the -ROBJ argument. This step is repeated once for
each remote object to be addressed locally. Note that
communication must have been established with the remote
node through the RFA command.

INITIATING REMOTE FILE ACCESS OPERATIONS

Once a remote file catalog is set up, only two steps must be
performed on a day-to-day basis before you can access remote
devices and data.

1. Enable the remote file access facility.

You and the nodes with which you are to communicate must
issue the RFA command with the -STARTUP argument.

2. Open the remote nodes.

You must issue the RFA command with the -OPEN argument
for each node with which you are to communicate. Those
nodes that are to access objects at your node must also
issue the RFA command with the -OPEN argument.

After you have enabled the remote access facility and opened
the remote nodes, you can perform any operation on the remote
data that you would perform on local data. Whether you use
MOD 400 commands or your own application programs, the data will
appear to be located at your node.

REMOTE FILE ACCESS SECURITY

The following paragraphs describe the way in which the remote
file access facility handles access control, record locking, and
data commitment.

Access Control Lists

Access control lists define which users have access to data
and what kind of access they have. When files are accessed
remotely, the same level of file protection exists as when files
are accessed locally. If a file is protected by an access
control list, no local or remote user can access the file unless
the user is given permission through the access control list.

2-28 CZ03-0l

Record Locking

Record locking prevents other users from simultaneously
getting access to records that you are accessing. In many
applications record locking involves multiple record locks on
multiple files and, in networking environments, may involve locks
to multiple files in multiple nodes.

A typical deadlock condition can occur if one user has locked
some records and is trying to lock others while another user has
these other records locked and is trying to lock the records
already locked by the first user. The File System on your
computer node knows about the record locks on local data files
and is able to detect deadlocks. Since the File System does not
know about record locks on remote data files, it prevents
deadlocks from occurring by using a time stamp algorithm.

Users are assigned time stamps when they start to access
remote data. The time stamps are passed to remote nodes by the
remote file access facility. At a remote node, a user may only
wait for records that are held by younger users (users whose time
stamp is later). If the application attempts to lock a record
that is already locked by an older user (a user whose time stamp
is earlier), it receives a "deadlock has occurred" return
status. The application must then abort, backtrack, or restart.
If a record is held by a user who is local to that node, the
local user is always considered the younger.

Data Commitment

For purposes of data integrity, an application that accesses
and updates remote (and local) data may be structured in phases
known as commitment units. The end of a commitment unit is a
point at which the user is willing to commit changes to the data
base. This type of application is said to be transaction
oriented. It may complete successfully (commit) at a
program-defined commitment point or it may fail (abort), in which
case any updated data must be returned to its initial
pre-transaction state. To ensure reliability, the transaction
must either complete in its entirety or not complete at all.

In remote file access, data commitments are performed in two
phases: precommit and commit.

• Precommit - All data is recorded on disk with an indicator
to show that the data is in a precommitted state. This
step is done locally. Remote file access then sends
messages to precommit data at all remote nodes.

• Commit - Once messages have been received from all
affected remote nodes indicating that all data is in the
precommit state, local data is committed (unlocked and
made available to other users). Another round of messages
is then sent via the remote file access facility to commit
data in the remote nodes.

2-29 CZ03-0l

I

I

*

If a system or node failure occurs in any intermediate step,
there is enough information available so that, on restart, a
decision can be made to commit or recover the data. More
detailed information on file recovery is presented in Section 6.

Multivolume Disk Files

In most applications a disk file resides on a single volume.
However, there may be situations in which you want to extend a
file over more than one physical volume. The need for
multi volume files could arise from any of the fallowing:

• You want an endless sequential file capability similar to
that available with magnetic tape.

• You want to define a single file that is too large to be
contained on one volume.

• You want to improve access time to a file by spreading the
file data over several volumes and/or separating the index
portion of an indexed file from the data portion and
placing the portions on separate volumes.

A multivolume file is
sections. A file section
contained on one volume.
making up the multivolume

MULTIVOLUME SETS

treated as a collection of file
is that part of the file that is
A file set is all of the sections
file.

A multivolume set is a disk file that resides on more than
one volume. A volume is identified as being part of a
multivolume set when the volume is created through the Create
Volume command.

Each multi volume set has a root volume (in which the set
begins) and a number of additional volumes. All volumes that are
part of the set are called members.

The name of a multivolume set is independent of the names of
the volumes it contains. A volume is established as a member of
a set when the set name and a sequential member number are
specified at volume creation. The root volume is always member
number 1.

There are two types of multivolume sets: online and serial.
Online multivolume sets are used for all nonsequential
multi volume files. They may al so be used for sequential
mutivol ume files. Serial multi volume sets are an alternative for
large sequential files. They are also used for files that
require an endless sequential capability similar to that of
magnetic tape.

2-30 CZ03-0l

The types of multi volume sets and files are described in
detail below.

Online Multivolume Set

A volume is designated as part of an online multivolume set
at volume creation. An onl ine multi vol urne set has the foll owing
characteristics:

• All members of the set must be mounted and available while
the set is in use.

e Member volumes, other than the root volume, can be used
independently of other members in the set to contain
single-volume files and directories.

Online Multivolume File

A file is designated an online multivolume file when it is
created under a directory in the root volume of an online
multivolurne set. An online multivolurne file has the following
characteristics:

• Can have any UFAS file organization.
• Can be located by any type of pathname.
• Can skip set members when continuing to another volume.

Figure 2-4 illustrates the combination of files and volumes
used by a sample online multivolume set. Multi volume files
FILEA, FILEB, and FILEC must begin on VOLl. FILEX, FILEY, and I
FILEZ are single-volume files because they do not begin on VOLl.
The pathnames used to access the files are shown at the bottom of
the figure.

VOL1

/
[FI LEC]

&
[FILEA]

L

[FIU:B]

ROOT VOLUMF

"V0L1>FILEA
"V0L1>FILEB
"V0L1 >FILEC
"VOL3>FILEX
"VOL4>FILEY
"VOL4>FILEZ

VOL2

......
[FILEA] [

"""" [FILEB] I

MEMBER

VOL3 VOL4

I

~
[FILEc]

"' FILEA l I FILEZ I

Fl LEX I [FILEY I

MEMBER MEMBER

86-020

Figure 2-4. Example of Online Multivolume Files

2-31 CZ03-0l

I

I

I

Serial Multivolume Set

A volume is designated as part of a serial multivolume set at
volume creation. A serial multi volume set has the foll owing
characteristics:

• No member of the set need be mounted until the data on it
is required for processing.

• Any member of the set, including the root volume, can be
used independently of other members of the set to contain
single-volume files and directories.

Serial Mul tivol ume File

A file is designated as a serial multivolume file when it is
created in the root directory of a volume in a serial multivolume
set. A serial multi volume file has the following
characteristics:

• Must be a UFAS sequential file.

• Must be cataloged in the root directory of the volume on
which it starts. More than one serial multivolume file
can belong to a set, and each such file can begin on a
different volume if desired.

• Must be located through a pathname of the form
Avolid>f ilename.

• Must continue serially from one volume to the next.

Figure 2-5 illustrates the combination of files and volumes
used in a sample serial multivolume set. Serial multivolume file
A begins in VOLl. Serial multivolume file B begins in VOL2.
Both continue in other volumes of the set. Files C, D, and E are
single-volume files. The pathnames by which the files are
located are shown at the bottom of the figure.

2-32 CZ03-0l

VOL 1

FIRST VOLUME
OF THE SET

- VOL1>A
- VOL2>B

VOL3>C
- VOL4>D
- VOL4>E

VOL2

A

B

SECOND
MEMBER

VOL3

A

c

B

THIRD
MEMBER

VOL4

E

B

D

FOURTH
MEMBER

Figure 2-5. Example of Serial Multivolume Files

Disk File Buffering

86-026

A buff er is a memory storage area used to compensate for a
difference in the rate of data flow, or time of occurrence of
events, during transmission of data from one device to another.
Buffering is the process of allocating and scheduling the use of
buffers. In some applications, overlap of input operations and
processing can be achieved by anticipatory buffering, where the
next block of data is read into memory before it is needed. The
program can then process records from block n while block n+l is
being read into memory.

FILE ACCESS LEVELS

Disk files can be processed at either block or record level.
In block level access, data is transferred directly between the
file and a buffer in your program. Your program must perform all
buffer management operations. In record level access, the system
assigns disk files to buffer pools when your program opens the
files. The system buffering facilities are used to perform all
buff er management operations.

BUFFER POOLS

When a file is opened for read, write, rewrite, or delete
operations, the File System assigns the file to a particular
buffer pool. A buffer pool is a collection of buffers that
provides a method of conserving memory for disk file access.
Buffer pools are designed to:

2-33 CZ03-0l

I

I

• Reduce the amount of memory required for buffers by all
users.

• Reduce the number of I/O operations in a random access
environment.

• Provide more flexibility for shared file applications.

All buffers in a pool are the same size. Any number of files
with matching control interval sizes can be assigned to the same
buffer pool. A particular file, however, can be assigned to only
one pool.

Each buff er in a buffer pool can store a disk control
interval. When an application program issues a read instruction
and the desired record is not in any buffer, the next empty
buffer is filled with the control interval containing the
record. When all buffers are filled, an active buffer is
selected for the next different control interval according to a
least-recent-usage algorithm.

In addition to conserving memory when disk files are
accessed, buffers eliminate the need for each user to define
private buffer areas. One or more system-wide buffer pools
should be created at system startup (through a startup EC file;
see Section 3). Users who have special buffering requirements
can create their own buffer pools for files they reserve
exclusively.

Types of Buffer Pools

Each buffer pool is created as either a public or a private
buffer pool, and can be considered file-specific or general.
Buffer pools are created by the Create Buffer Pool command and
deleted by the Delete Buffer Pool command. When creating a
buffer pool, you specify the number of buffers it is to contain,
the buffer size, and (optionally) the name of the buffer pool.

• Public buffer pools - Public buffer pools are those
created by the operator or the system startup EC file.
Public buffer pools reside in system memory and are
available to all files and task groups. A disk file is
assigned to a public pool if its control interval size
(specified in the command that creates the file) matches
the pool's buffer size.

In many env ironrnents, three or four public buff er pools
corresponding to three or four common file control
interval sizes are sufficient for all performance and
buffering needs.

2-34 CZ03-0l

If the system volume is associated with the disk cache
processor, heavily used directories, as well as files that
are read sequentially, are likely to be resident in the
disk cache buffer. Buffer pools for these directories and
files may not be needed.

• Private buffer pools - Private buffer pools can be created
by each user. Private buffer pools reside in the task
group's memory space and are available only for disk files
reserved exclusively by that task group. A disk file is
assigned to a private pool if the file is reserved for
exclusive use and its control interval size (specified in
the command that creates the file) matches the pool's

•

buff er size. Private buff er pools should be created only
if necessary to meet specific buffering needs. Public
buffer pools should be sufficient in most cases.

File-specific buffer pools - When you reserve a disk file
with the Get File command, you can specify the number of
buffers (using the -NBF argument) to be used when
accessing the file. When the file is opened, a buffer
pool is automatically created for use only by that file.
This file specific pool is created in the task group's
memory if the file is reserved exclusively, or in system
memory if the file is reserved as sharable. The -NBF I
argument should be used carefully since it prevents a file
from being assigned to a public or private buffer pool.

Buffer Pool Optimization

The File System collects a set of statistics on the use of
each buffer pool. The installation can use this information to
optimize disk I/0 operations. Buffer pool statistics are
obtained through the Buff er Pool Status and Buff er Pool
Information commands. The Buffer Pool Status command provides a
summary of the public or private buffer pool status. The Buffer
Pool Information command provides a detailed status report on a
particular buff er pool.

The installation should analyze applications and their
associated file usage to fully utilize the advantages offered by
buffer pools. Only a limited number of control interval sizes
should be allowed for user files. In general, buffer and control
interval sizes should be chosen to evenly distribute high and low
activity files over the various buffer pools, thus reducing the
amount of contention in the pools. The initial determinations
will provide an acceptable level of performance and provide the
basis for further analysis.

The Adjust Buffer Pool command can be used to temporarily
alter the number of buffers in a private buffer pool. Once the
most efficient buffer pool size has been established, it should
be permanently fixed through the Create Buffer Pool and Delete
Buffer Pool commands.

2-35 CZ03-01

MAGNETIC TAPE FILE CONVENTIONS

The magnetic tape file conventions discussed in the following
paragraphs include file organization, naming conventions,
pathnames, and buffering operations.

Tape File Organization

I The following information applies only to 1/2-inch, 9-track
magnetic tapes.

I

Magnetic tape supports only the sequential file
organization. Fixed- or variable-length records can be used.
Records cannot be inserted, deleted, or modified, but they can be
appended to the end of the file. The tape can be positioned
forward or backward any number of records.

The unit of transfer between memory and a tape file is a
block. Block size varies depending on the number of records and
whether the records are fixed or variable in length.

A block can be treated as one logical record called an
"undefined" record. An undefined record is read or written
without being blocked, unblocked, or otherwise altered by data
management. Spanned records (those that span across two or more
blocks) are supported. No record positioning is allowed with
spanned records.

A labeled tape is one that conforms to the current tape
standard for volume and file labels issued by the American
National Standard Institute (ANSI). The following types of
labeled tapes are supported:

• Single-volume, single-file
• Multivolume, single-file
• Single-volume, mul tif il e
• Multivolume, multifile.

The following types of unlabeled tapes are supported:

• Single-volume, single-file
• Single-volume, multif ile.

Magnetic Tape File and Volume Names

Each tape file and volume name in the File System can consist
of the following ASCII characters: Uppercase alphabetics (A
through Z), lowercase alphabetics (a through z), digits (0
through 9), exclamation point (!), double quotation marks ("),
dollar sign ($),percent sign(%), ampersand (&), apostrophe ('),
left parenthesis((), right parenthesis()), asterisk(*), plus
sign (+), comma (,), hyphen (-), period (.), slash(/), colon
(:), semicolon (;), less-than sign (<), equal sign (=), question
mark (?), underscore () , and the characters whose hexadecimal
values are in the range CO through FE (extended character set).

2-36 CZ03-0l

NOTE

If the terminal is not capable of processing 8-bit
data, characters from the extended character set
are displayed as periods or as their 7-bit
equivalents.

The underscore character can be used as a substitute for a
space. If a lowercase alphabetic character is used, it is
converted to its uppercase counterpart ("DATA', "Data" and "data"
all refer to the same file).

Any of the characters defined above can be used as the first
character of a file or volume name.

The name of a tape volume can be from 1 through 6 characters
in length. Tape file names can ,be from 1 through 17 characters.

Magnetic Tape Device Pathname Construction

A magnetic tape volume must be dedicated to a single user.
For this reason, the device pathname convention must always be
used when referring to magnetic tape volumes or files. The
general form of a tape device file pathname is:

!dev _name [>vol id [>filename]]

where dev name is the symbolic name defined for the tape device
at system-building, vol id is the name of the tape volume, and
filename is the name of-the file on the volume. Tape devices are
always reserved for exclusive use (the reserving task group has
read and write access, other users are not allowed to share the
file) •

Automatic Tape Volume Recognition

Automatic volume recognition dynamically notes the mounting
of a tape volume. This feature allows the File System to record
the volume identification in a device table, thus making every
tape volume accessible to the File System software.

Magnetic Tape Buffering

The -NBF argument of the Get File command can be used with
magnetic tape files to reserve one or two buffers. If -NBF is
not used, the File System attempts to allocate two buffers. If
two buffers are allocated, the File System does "double
buffering." When the tape file is being read, the File System
unblocks one buff er while an anticipatory read is done into the
other buffer. Similarly, when the tape file is being written,
the File System blocks records into one buffer while a previously
filled block is written out of the other buffer. This allows
application code to execute in parallel with I/O transfers.

2-37 CZ03-01

UNIT RECORD DEVICE FILE CONVENTIONS

Unit record devices (card readers, card punches, printers,
terminals, and paper tape reader/punches) are used only for
reading and writing data. They are not used for storing data,
and thus do not require conventions for file identification and
location.

Unit Record Device Pathname Construction

The pathname of a unit record device consists of the symbolic
device name defined at system building preceded by an exclamation
point (!). The pathname format is:

!dev name

where dev name is the symbolic device name of the unit record
device.

Unit Record Device Buffering

All printers and most interactive terminals are provided with
one File System buffer. (The operator terminal cannot be
buffered.) By providing a File System buffer, application code
can execute in parallel with I/O transfers.

All printers and all terminals (except the operator te~minal)
have a tabbing capability through software that converts the tab
into spaces. Default tabulation stops are set at position 11 and
at every tenth position thereafter for the line length of the
device~

UNIT RECORD READ OPERATIONS

when an application task issues a logical read to a File
System buffered device, one of the following actions occurs:

• If the buffer is full from a prior anticipatory read, the
data in the buffer is transferred into the application
task's area and a physical I/O transfer (an anticipatory
read) is performed in parallel with continued execution.

• If the buffer is not full, task execution stalls until the
anticipatory read is completed.

The timing of the initial anticipatory read performed for the
card reader is different from that of the interactive terminals;
for other read actions it is the same.

2-38 CZ03-0l

Card Reader

Immediately after the Open is complete, the File System
performs an asynchronous anticipatory read into the system buffer
while the application continues execution. All Open calls are
synchronous.

Interactive Terminal

The anticipatory read allows an application to control input
from more than one interactive terminal, each of which represents
a data entry terminal. By testing the status of the system
buff er before a Read or by checking for the appropriate status
return after a Read, the application will not be stalled if the
terminal operator is not present at the time of the Read
request. Instead, the application can continue to poll other
terminals.

Immediately after the Open is complete, a physical connection I
is made while the application continues execution. Depending
upon the language the application is written in (for example,
FORTRAN or Assembly language), it may be able to check the status
of the Open to see if a Read can be issued without stalling
application execution. The File System issues an asynchronous
anticipatory physical read when the status check following the
physical connect is complete. The file status remains busy until
the physical read is done and the system buff er is full. At this
point, the file status is "not busy" (the anticipatory read is
successfully completed), and the application can issue a Read
with the assurance of receiving data immediately.

If at any point after the Open is issued, the application
issues a Read before the physical connect and anticipatory read
have been completed, the Read is synchronous and further central
processor execution is stalled on the application until the
anticipatory read is complete.

To avoid stalling on a Read or to avoid status check looping
to test the input buffer status, applications should put I
themselves in the wait state, thus making the central processor
available for lower priority tasks.

After the Open, an application written in COBOL must issue
Read requests. The application will be put in the wait state if
it is executing I/O statements in synchronous mode. Otherwise,
the COBOL run-time package performs status checks and returns a
9I status until successful completion. The program can either
loop on the Read or continue other processing.

2-39 CZ03-0l

BUFFERED WRITE OPERATIONS

A buffered write operation to a unit record device works on
behalf of the application program in the same logical manner as a
read operation. The program is permitted to execute in parallel
with the physical I/O transfer to the device. To achieve this
parallel processing, no special operation occurs on an Open call
and no distinction is made between interactive and noninteractive
devices.

Each Write call is completed by moving data from the
application buffer to the File System's buffer (performing any
detabbing, if requested), initiating the transfer, and returning
control to the application program. If the program performs a
second Write while the system buffer is still in use for a
previous transfer, the application is stalled until the buffer is
available and new data is moved into it again. The application
can avoid stalling execution when writing to an interactive
terminal by doing one of the following:

• Checking the status of the system buff er before issuing
the Write to see if the interactive terminal is still in
use.

• Testing for a particular status return after the Write.

If a Write call is issued while data is being entered into
the system buffer (because of a Read), the following sequence of
events takes place:

• The read is allowed t.o complete.
'

• Input data is saved in the system buffer.

• A synchronous write is reissued by the File System.

• Output data is transferred directly from the application
buff er.

Note that tab characters are not expanded into spaces.

If a physical I/O error occurs while data is being
transferred from the system buffer to the device, you must be
aware that the error occurred on the previous write operation.
Furthermore, if any type of error occurs, the application program
may need to have saved (or be able to retrieve) the data record
so that it can be repeated.

2-40 CZ03-0l

Section 3
SYSTEM ACCESS

You can request access to the system to perform a number of
different functions, such as:

• System building - Configuring the system to the needs of
its users.

• System administration - Registering users.

• Operation control - Starting up the system each day,
controlling processing, managing peripheral devices, and
monitoring system status.

• Program development - Compiling, ,testing, and debugging
programs.

• Application execution - Interacting with a program to
accomplish a particular task.

In a large installation, different individuals will perform
different functions. In a small installation, one person may
perform most or all of the functions.

Access to the system is restricted to authorized users by
means of the registration and login processes. Access to system
files is restricted to specified users through the access control
process (described in Section 2). Access to the various system
facilities is controlled through the menu or command environment.

3-1 CZ03-0l

I

I

I

Before any access to the system can be made, the system must
first be configured.

SYSTEM CONFIGURATION AND DEFINITION

Creation of a system is a two-step procedure, consisting of:

1. Bootstrapping a Honeywell-supplied system startup routine
that provides a limited operating environment for
building the files used in the second step.

2. Specializing the system startup procedure by configuring
a system to correspond to the installed hardware and by
defining the environment in which to prepare and execute
application programs.

The bootstrap operation consists of turning on the power
supply to the hardware, mounting the disk containing the MOD 400
system software, and pressing several keys on the control panel
or System Control Facility device. (The procedure is described
in the System User's Guide.) The bootstrap operation generates
the initial configuration and startup operations. Procedures are
executed to produce a one-user online environment that can be
used to specialize system startup and develop or execute
application programs. (On the DPS 6/22 these procedures produce
an environment that can be used to invoke the Autoconf igurator.)

Once this limited environment has been created, you either
invoke the Autoconf igurator (DPS 6/22 only) or you create a file
(called the CLM USER file) that containing the Configuration Load
Manager (CLM} directives that describe the operating enviroruTient
that will exist at your installation. The CLM USER file is
created automatically by the DPS 6/22 Autoconfigurator. The
configuration directives are described in the System Building and
Administration manual.

To further define the environment, you can modify the
operator commands in the Honeywell-supplied START UP.EC file that
is immediately subordinate to the system root directory.
(START_UP.EC files are described later in this section.)

After the CLM USER file is created and the START UP.EC file
is modified, you again bootstrap the system. This time, the
directives in the CLM USER file control the configuration, and
the operator commands-in the system START UP.EC file further
define the operating environment.

USER REGISTRATION

User registration is a process that protects the system from
unauthorized access. Each person who is to be allowed on the
system must be registered by the system administrator. The
administrator uses the Edit Profile command to specify
user-specific information such as: ·

3-2 CZ03-0l

• User id (Identifies the user for system purposes.
Consists of two or three parts: person.account[.mode].
Uppercase and lowercase characters are equivalent;
JONES.ADMIN and Jones.Admin are the same user id.)

• Login id (Identifies the user for login purposes only.
Contains no periods. Uppercase and lowercase characters
are distinct; JONES and Jones are different login ids.)

• Default login line

• Login traits, including:

Single or multiuser profile
Secondary user profile
Login only with default login line

• Whether a password is required to log in

• Whether statistics such as the following are to be kept
for the user:

Number of sessions
Total elapsed time
Accumulated system resource usage.

This information is stored in a profiles file. The profiles file
contains the user profiles for all registered users. The
Listener checks the user profile when monitoring the privileges
and/or limitations of each user.

On the DPS 6/22, the Autoconfigurator creates a default
profiles file that you can customize to meet your special
requirements.

User profiles are made up of sections, each of which
describes a specific interface to some part of the system. A
user profile always contains a registration section (consisting
of the information listed above plus the optional user
statistics, if specified). It can contain the following optional
sections:

• Comments section. Contains any comments the system
administrator has about this user's registration.

• Subsystem sections. Contain user-specific information
meaningful only to individual subsystems. Examples of
subsystem sections are:

The Word Processing (WP) section, which contains
information such as the printer assigned to the word
processing user.

3-3 CZ03-0l

I

I The Menu Subsystem (MS) section, which contains
information such as the name of the menu the user is to
automatically see when he or she logs in.

The List Profile command allows registered system users to
view the contents of their user profiles. It allows a system
administrator to view any registered user's profile.

Ref er to the System Building and Administration manual for
details on user registration.

ACCESSING THE SYSTEM

Access to the system requires:

• A physical connection between your terminal and the
central processor

• A logical connection between you and the Executive.

Connecting to the Central Processor

Two types of terminal connections are possible: a direct
connection and a dialup connection. In a direct connection, the
terminal is connected to the central processor when the
terminal's POWER switch is turned ON and its ONLINE/OFFLINE
switch is set to ONLINE. In a dialup connection, the terminal is
connected to the central processor after a telephone number is
dialed on the terminal's modem.

The same terminal can be used both as an operator terminal
and as a user terminal.

Refer to the System User's Guide for further information on
physical connections.

Connecting to the Executive

You can access a terminal in one of two ways, depending on
whether or not the terminal is configured for login. Terminals
configured for logirr are reserved for access to the system
through a system component called the Listener. Such terminals
cannot be directly reserved by system applications. Terminals
not configured for login are not monitored by the Listener and
can be directly reserved by system applications. (Refer to the
System Building and Administration manual for details on
configuring the Listener and Listener terminals.)

Systems are more secure when all terminals are monitored by
the Listener.

3-4 CZ03-0l

LOG IN TERMINALS

When a terminal is monitored by the Listener, either a banner
line or a login form is displayed when the connection to the
central processor is made. You, can connect to the Executive
through one of the following login methods:

• Full login. Type the Login command and, if required,
enter the designated password.

• Forms login. Fill out the login form and, if required,
enter the designated password.

• Abbreviated login. Type the 1-character login
abbreviation and, if required, enter the designated
password.

Another login method, direct login, requires no action on
your part beyond turning on the terminal.

The system builder defines those terminals that are to be
monitored by the Listener through entries in a file called the
terminals file. (On the DPS 6/22, the Autoconf igurator builds a
terminals file that you can modify for special requirements.)
The terminals file is used to specify the following information:

• Maximum number of concurrently logged-in users to be
allowed on the system.

• Name of each terminal that can be used as a login terminal
(plus, for direct login terminals, the login line to be
used when the terminal is turned on.)

• Each 1-character login abbreviation and its associated
login line.

• Other information about the system and specific terminals.

NON-LOGIN TERMINALS

An application can be activated with a terminal designated
for the input of the commands and/or data required by the
application. When this terminal is physically connected to the
system, no banner or form is displayed. In most cases, you can
start entering data immediately. The screen display and your
response depend on the application.

A login terminal can be changed to a non-login terminal (and
back again) by the Set Listen command.

3-5 CZ03-0l

I

I

Activated Lead Task

When you gain access to the system, the executable code for
the lead task (the controlling task of the application) is loaded
and activated. The lead task can be designated to be the Command
Processor, the Menu Processor (part of the User Productivity
Facility, or UPF), or an application. When the Command Processor
is the lead task, you can control execution by issuing any user
command described in the Commands manual. When the Menu
Processor is the lead task, you can control execution by filling
out screen forms. When an application is the lead task, neither
the Command Processor nor the Menu Processor is part of the task
group.

MENU ENVIRONMENT (UPF}

The UPF (also referred to as the menu subsystem) provides an
easy-to-use interface to MOD 400. Instead of typing command
lines, you fill in Honeywell-supplied online menus and forms.
You select system commands by choosing options listed on these
menus and then filling in the fields on one or more forms. When
all appropriate fields have been filled in, the command is
generated and executed.

The UPF has a menu that allows you to enter any line-oriented
command on the screen.

Menu Processor

The Menu Processor is the system software component that
reads the Honeywell-supplied menus and forms you fill in. After
reading a fo~m (or command line), the Menu Processor loads and
executes a bound unit that fulfills the request represented by
the form.

The essential parts of the menu
Processor and the command-in file.
involved with, but not limited to,
are the user-in file, the user-out
The files associated with the Menu
as the standard I/O files.

COMMAND-IN FILE

environment are the Menu
Three other files are

the menu environment. These
file, and the error-out file.
Processor are also referred to

The command-in file is the file on which the
Honeywell-supplied forms are filled in and from which the
generated or directly specified command lines are read.

3-6 CZ03-0l

USER-IN FILE

The user-in file is the file from which a command, during its
execution, reads its own input. When a task group request has
been processed, and as long as no alternate user-in file is
specified as an argument in the subsequent command, the user-in
file remains the same as the command-in file. At the termination
of a command that names an alternate user-inf ile, the user-in
file reverts to its initial assignment.

For example, the directives submitted to the line editor
following the entry of the Editor command are submitted through
the user-inf ile. No specific action is required on your part to
activate or connect to the user-in file unless the directives are
to be read from a previously created disk file. You simply
invoke the line editor and begin entering line editor directives
through the same terminal. The attaching of the terminal to the
user-in file is invisible to you.

USER-OUT FILE

The user-out file is the file to which a task group normally
writes its output. However, certain system components (for
example, compilers) also write to list files (path.L) or to the
output file defined in the -COOT argument of the command that
invokes the compiler. The user-out file is initially established
by the -OUT argument of the Enter Group Request or Spawn Group
command. Originally, it is the same device as the error-out file
device. It can be reassigned to a file or another device by use
of the File Out command or New-User Out system service
macrocall. Such a reassignment remains in effect for the task
group until another reassignment occurs.

Again using the line editor as an example, any responses from
the line editor, such as the printing of a line of the file being
edited, are issued through the user-out file. As in the case of
the user-in file, you need not perform any special action to
attach your terminal to the user-out file. The only time such
action would be required is if you wanted to direct the output
from the command to some device other than the terminal.

ERROR-OUT FILE

The error-out file is used by the system to communicate any
error condition that may be detected during the filling out of a
form or during command execution. Such a condition could be an
incorrectly specified field (reported by the Menu Processor) or a
file-not-found condition (reported by the generated command).
The error-out file is originally the same as the original
user-out file; it can be reassigned to a file or another device
by use of the File Out command.

3-7 CZ03-0l

Menu Level

When the system is in a state in which it is capable of
displaying a menu, it is said to be at menu level.

ACHIEVING MENU LEVEL

The Listener can spawn task groups whose lead tasks are the
Menu Processor. Note that the system is delivered with a
Honeywell-supplied user task group ($H) whose lead task is the
Command Processor (described later in this section).

The system indicates it is at menu level by displaying a
menu.

When executing a function, you can return to menu level in
any of the following ways:

• Normal termination. At normal termination of a generated
command function, the task group returns to the previous
menu.

• Command interruption. You can interrupt the execution of
an invoked command by pressing the Break key (which may be
labeled with BREAK or BRK) on the terminal. The system
responds to this action with the break message **BREAK**
and displays the previous menu.

MENU LEVEL PROCESSING

When you fill out a Honeywell-supplied form and press the
Execute key, the system performs the following steps:

1. Spawns a task naming the requested bound unit (the bound
unit named by the generated command). Task spawning
implies task creation, which consists of the allocation
and initialization of any control structures and data
areas required for task control.

2. Calls the Loader to load the requested bound unit.

3. Places a request for the execution of the bound unit
against the created task. The Menu Processor enters the
wait state to await completion of the requested task
(command). At this point, the system leaves menu level,
which can be returned to only by completion of command
execution or by the pressing of the Break key.

4. If the command is Enter Group Request, places a group
request against an application task group. The Enter
Group Request command terminates. The request is queued
if there are other outstanding requests against the
application task group from previous Enter Group Request
commands.

3-8 CZ03-0l

5. Deletes the spawned task when the command terminates.
Optionally issues a ready message to indicate a return to
menu level.

Menu Format

Each selection on a Honeywell-supplied menu and each form
field that may be filled in has an associated help message. To
obtain help in selecting an option on a menu or in filling in a
field on a form, press the key designated as the help key for I
your terminal. When the help key is pressed, a help message is
displayed below the menu or form. If you make a mistake in
filling in a field, the system provides expanded error messages
that list causes and corrective actions to aid in resolving the
problem.

You can modify the UPF menus, forms, help messages, and error
messages by using the same tools that Honeywell used to create
them. You can add, delete, modify, and reword any of the UPF
elements through the following tools:

• Menu Builder to create, modify, or delete menus

• Forms Developer (VISION) to create, modify, or delete
forms

• Generalized Forms Processor (DFC) to process standard
forms

• Add/Delete Message Utility to update a message library.

• Table Maintenance Utility to build or modify tables used
to process forms.

For detailed information about using and maintaining UPF,
refer to the Menu System User's Guide.

Subsystem Switcher

The UPF provides visibility to the Subsystem Switcher that
allows a logged-in user to switch from one subsystem to another
without having to log out and back in again. (A subsystem is an
application-oriented facility that supports one primary user or
multiple secondary users.) If you are registered as a subsystem
switcher user, when you finish work under one subsystem and want
to work under another, you exit the subsystem according to its
rules. For example, if you were working in command mode, you
would enter the Bye command. Rather than being logged out, you
would be presented with the menu that was displayed when you
logged in. You would then make a selection from that menu.

3-9 CZ03-0l

COMMAND ENVIRONMENT

The command environment is that environment in which you
communicate with the Executive through command lines entered at a
terminal or read from a command file.

Command Processor

The Command Processor is the system software component that
reads your command lines. After reading a command line, the
Command Processor loads and executes a bound unit that fulfills
the request represented by the command line.

The essential parts of the command environment are the
Command Processor and the command-in file. Three other files are
involved with, but not limited to, the command environment.
These are the user-inf ile, the user-out file, and the error-out
file. The four files associated with the Command Processor are
also referred to as the standard I/Of iles.

COMMAND-IN FILE

The command-in file is the file from which the command lines
are read. It can be a terminal device, as in the case of an
interactive user, or a command file residing on a disk, as in the
case of a non-interactive user.

USER-IN FILE

The user-in file is the file from which a command, during its
execution,, reads its own input. When a task group request has
been processed, and as long as no alternate user-in file is
specified as an argument in the subsequent command, the user-in
file remains the same as the command-in file. At the termination
of a command that names an alternate user-in file, the user-in
file reverts to its initial assignment.

For example, the directives submitted to the line editor
following the entry of the Editor command are submitted through
the user-inf ile. No specific action is required on your part to
activate or connect to the user-inf ile unless the directives are
to be read from a previously created disk file. You simply
invoke the line editor and begin entering line editor directives
through the same terminal. The attaching of the terminal to the
user-in file is invisible to you.

3-10 CZ03-0l

USER-OUT FILE

The user-out file is the file to which a task group normally
writes its output. However, certain system components (for
example, compilers) also write to list files (path.L) or to the
output file defined in the -COUT argument of the command that
invokes the compiler. The user-out file is initially established
by the -OUT argument of the Enter Group Request or Spawn Group I
command. Originally, it is the same device as the error-out file
device. It can be reassigned to a file or another device by use
of the File Out command or New User Out system service
macrocall. Such a reassignment remains in effect for the task
group until another reassignment occurs.

Again using the line editor as an example, any responses from
the line editor, such as the printing of a line of the file being
edited, are issued through the user-out file. As in the case of
the user-in file, you need not perform any special action to
attach your terminal to the user-out file. The only time such
action would be required is if you wanted to direct the output
from the command to some device other than the terminal.

ERROR-OUT FILE

The error-out file is used by the system to communicate any
error condition that may be detected during the interpretation of
a command or its subsequent execution. Such a condition could be
a missing command argument (reported by the Command Processor) or
a file-not-found condition (reported by the invoked command).
The error-out file is originally the same as the original
user-out file; it can be reassigned to a file or another device t
by use of the File Out command.

Command Lev el

When the system is in a state in which it is capable of
accepting a command from the command-in file, it is said to be at
command 1 ev el •

ACHIEVING COMMAND LE.VEL

You can achieve command level by creating or spawning a user
task group whose lead task is the Command Processor. The
Listener can also spawn task groups whose lead tasks are the
Command Processor. The system is delivered with a
Honeywell-supplied user task group ($H) whose lead task is the
Command Processor.

3-11 CZ03-0l

The system indicates it is at command level by issuing a
"ready" prompter message at your terminal. (This assumes that
you have not disabled the ready message by issuing a Ready Off
command. If Ready Off has been issued, the system comes to
command level without informing you.) If you are working in the
system task group ($S) at the operator terminal, no ready prompt
message appears unless you issue an EC !CONSOLE command followed
by a Ready On command.

When executing a command function, you can return to command
level in any of the following ways:

• Normal command termination. At normal termination of a
command function, the task group returns to command level
and awaits the entry of another command. (If your
terminal is not monitored by the Listener, you should not
enter the Bye command.)

• Command interruption. You can interrupt the execution of
an invoked command by pressing the Break key (which may be
labeled with BREAK or BRK) on the terminal. The system
responds to this action with the break message **BREAK**·
At this point, you can enter other commands or can enter
the Start command to resume processing at the point of
interruption. (Refer to the Commands manual for details.)

COMMAND LEVEL PROCESSING

When a command such as Copy, Change Working Directory, or
Enter Group Request is read by the Command Processor, the system
performs the following steps:

1. Spawns a task naming the requested bound unit (the
command name). Task spawning implies task creation,
which consists of the allocation and initialization of
any control structures and data areas required for task
control.

2. Calls the Loader to load the requested bound unit.

3. Places a request for the execution of the bound unit
against the created task. The Command Processor enters
the wait state to await completion of the requested task
(command). At this point, the system leaves command
level, which can be returned to only by completion of
command execution or by the pressing of the Break key.

4. If the command is Enter Group Request, places a group
request against an application task group. The Enter
Group Request command terminates. The request is queued
if there are other outstanding requests against the
application task group from previous Enter Group Request
commands.

3-12 CZ03-0l

5. Deletes the spawned task when the command terminates.
Optionally issues a ready message to indicate a return to
command level.

Command Format

A command line is a string of up to 252 ASCII characters in I
the form:

command name [argl ••• argnl ;command_name [argl ••• argnl •••

where command name is the pathname of the bound unit that
performs the command's function. Arguments, designated by arg,
are described below.

A command line can span one or more physical lines. A
command line is concatenated with the next line by ending it with
an ampersand (&). A command line consisting of two or more
concatenated lines can be canceled by entering a single ampersand
on the next physical line.

More than one command can be included in a command line by
ending each command {except the last) with a semicolon (;). If
any command in the command line is prematurely terminated
(interrupt or error), the remaining commands are not processed.
Note that only one operator command can appear on a line.

ARGUMENTS

An argument of a command is an individual item of data passed
to the task of the named command. Some commands require no
arguments; others accept one or more arguments as indicated in
the syntax of each command description. The types of arguments
used are:

• Positional argument: An argument whose position in the
command line indicates to which variable the item of data
is applied. The argument can occur in a command line
immediately after the command name or as the last argument
following the control arguments, as in the List Names
command.

• Control argument: A keyword whose value specifies a
command option. A keyword is a fixed-form character
string preceded by a hyphen (for example, -ECL). It can
be alone, as in -WAIT, or it can be followed by a value,
as in -FROM xx.

Except for -ARG, or when the last argument of a command line
is a positional argument, keywords of control arguments can be
entered in any order in the line, following the initial
positional arguments. The keyword -ARG must be the last argument
of the command line. The arguments following -ARG are passed to
the activated (application) task.

3-13 CZ03-0l

PARAMETERS

Arguments are the user-selected items of data passed to a
task. In the activated task, which is written in a generalized
manner to handle any set of data passed to it, these data items
are known as parameters. If the activated task expects
positional parameters, the command line arguments passed to it
must be in the same order as the task's positional parameters.

SPACES IN COMMAND LINES

Arguments in command lines are separated from each other by
spaces. Unless otherwise indicated, a space in command line
syntax represents one or more space characters, one or more
horizontal tab characters, or a combination of space and
horizontal tab characters. You can embed spaces within an
argument by enclosing the argument in apostrophe(') or quotation
mark (") characters. Note that a file name supplied in an
argument can be shown to have a trailing space if the argument is
bounded by quotation marks.

PROTECTED STRINGS

Special significance is attached to the following reserved
characters:

• Space (blank)
• Horizontal tab
• Quotation mark (")
• Apo strophe (')
• Semi col on (;)
• Ampersand {&)
• vertical bar (I)
• Left bracket and right bracket ([])

It is occasionally necessary to use a reserved character
without its special meaning (for example, a blank could be used
in a command argument). The protected string designators
(apostrophe and quotation mark) are reserved for this purpose.
Reserved characters within a protected string (one surrounded by
protected string designators) are treated as ordinary
characters. For example, in the argument:

-ARG "ALPHA 2" ALPHA

the space in ALPHA 2 is treated as part of the name.

Unless the Uppercase command specified that uppercase was
off, lowercase characters that are not protected by quotation
marks are interpreted as upper case characters. For example, if
uppercase is off, the string abed will be passed to a command as
ABCD and the string "abed" will be passed as abed.

3-14 CZ03-0l

Use of the protected string designators may also be required
when the & character is followed by a number in a command-in
file. If &l does not represent a substitutable parameter, it
must be written as &'l' or &"l" (not "&l"). Substitutable
parameters are discussed in the Commands manual and in the System
User's Guide.

Also, since the protected string designators themselves are
reserved characters, it may be desirable at times to suppress
their special meaning. To do this, you must enclose the string
containing the reserved character in quotation marks or
apostrophes. If the reserved character to be protected is the
same as the characters enclosing the string, it must be entered
twice. For example, to pass the string A"B to a command, you can
enter either of the following:

"An "B n
I A "BI

To pass the string A'B to a command, you can enter one of the
following:

'A' 'B'
"A'B"

ACTIVE STRINGS AND ACTIVE FUNCTIONS

An active string is a part of a command and is evaluated
(executed) immediately by the Command Processor. The resulting
value is then substituted for the active string characters in the
command line. Any command can be used within an active string.
Commands explicitly designed to be used within active strings are
called active functions. Active strings and active functions are
delimited by left and right brackets.

An example of an active function is [EQUAL ab], which
returns TRUE if a is equal to b and FALSE if a is not equal to
b. Another example is [LHD], which returns the full pathname of
your home directory. If you issued the command:

MENU_PR [LHD]>MENUCAT.EN -LC

the system would list all the menus in the menu catalog in your
home directory.

Active functions can have arguments of their own, and active
strings can be nested. For example, the TIME active function
(which returns the current time as hour and minute) can be nested
in the SUBSTR function (which returns a substring of characters
beginning at a specified position and including a specified
number of contiguous characters). If TIME returns 10:15, the
active string:

3-15 CZ03-0l

[SUBSTR [TIME] 4 2]

returns the substring 15 (begin at fourth character and return a
substring of two characters).

An active string can consist of any number of valid active
functions separated by semicolons. The value of the active
string is the concatenation of the values of the active
functions. For example, if the active string [act fncl x]
returns the value TURN, and the active string [act-fnc2 yz]
returns the value OUT, the active string: -

[act_funl x; act_fnc2 yz]

returns the value TURNOUT.

Active strings and active functions are described in detail
in the Commands manual.

COMMAND ABBREVIATIONS

The abbreviation processor provides a way of relating a
short, user-defined character string to another string of
arbitrary length. Suppose, for example, that a program existed
in a directory other than your working directory and had several
entry points (called ALPHA, BETA, and OMEGA) that performed
different functions. Entering the full pathname of the program
and its entry point would require you to type an involved command
line such as:

>PROJECTA>SMITH>SUB DIR>WIDGET?ALPHA

each time you wished to invoke function ALPHA in program WIDGET
in di rectory >PROJ ECTA>SMITH>SUB DIR. The abbreviation processor
allows you to define a simple name such as ALPHA and equate it to
the full command pathname. Similar abbreviations can be defined
for functions BETA and OMEGA.

You can create and maintain your own standard sequential file
of abbreviations for commonly used commands, control arguments,
and pathnames. When the abbreviation processor has been
activated by the Abbreviation command, it intercepts a command
line, uses your abbreviation file to expand any abbreviations in
the command line to their predefined character strings, and then
passes the full command line to the command processor.

3-16 CZ03-0l

COMMAND ACCOUNTING

Command accounting is an optional facility
commands entered through the command language,
Process Command Line system service macrocall.
from system groups (those whose first group id
are not logged.

that logs all user
menus, and the

Commands entered
character is $)

The system records the command's elapsed time and resource
usage as well as the group id and user id of the issuer. Refer
to the System Building and Administration manual for information
on requesting commana accounting and obtaining command accounting
reports.

COMMAND BEAMING

Command beaming allows you to execute commands in another
computer node. (A task group capable of processing the commands
you enter must exist in the remote node.) When you issue a Beam
command, the system's remote file access facility (described in
section 2) reads your command-in and user-in files and sends the
data to the node specified in the Beam command. The output
generated at this node is written to your user-out and error-out
files. All subsequent commands you issue will be executed at the
specified node until you issue another Beam command to return to
your node.

All memory space, processor time, and disk space required to
execute the commands are distributed to the remote node.

Since command beaming allows you into another computer, you
can enter commands to find out the status of users, applications,
devices, and so forth on that node. You can queue requests, send
messages to local users, and update the node's remote file
catalog.

EC AND START_UP.EC FILES

The Command Processor is able to read commands from a source
other than an interactive user terminal. One example is an
Execute Command (EC) file that you construct through an editor.
An EC file is a text file that contains command lines (for input I
to the Command Processor) and/or Execute command directives. An
EC file is read by the Command Processor when:

• The Command Processor is invoked by an Execute command.

• A task group is activated with the Command Processor as
its lead task and the EC file is specified as the task
group's user-in file.

When you enter a request to have a task run in absentee mode, I
you specify an EC file that is to be read by the Command
Processor (refer to the System User's Guide for further details).

3-17 CZ03-0l

EC Files

An EC file might contain a series of commands that you
execute on a frequent basis, such as commands to execute a set of
application programs that run at the end of the month to
summarize inventory, sales, and accounts receivable. EC files
can range from simple to complex. An example of a simple EC file
is:

ED -PT
FORTRANA AREA -LE
LINKER AREA -IN LNKDR
DPRINT AREA.M
AREA

This EC file is made up of commands that are most often used
in developing a FORTRAN program called AREA. The ED command
invokes the line editor, FORTRANA invokes the the FORTRAN
compiler, LINKER invokes the Linker, DPRINT prints the link map,
and AREA executes the program.

A more complex EC file uses active functions and
substitutable parameters. The following file could be used to
create, compile, and link any program. (The lines beginning with
the & character are Execute command directives.)

.& CREATE, COMPILE, AND LINK A &l PROGRAM
&P BEGIN EDITOR SESSION
ED -PT
&l &2
&P COMPILATION BEGINS
&IF [EQUAL [RETCODE] 0000] &THEN $ELSE &G ERROR!
&P LINKER SESSION BEGINS
&A
LINKER &2
LINK &2
QT
&IF [EQUAL [RETCODE] 0000] &THEN $ELSE &G ERRORl
&P LINK COMPLETE
&G FINISH
&L ERRORl
&P ERROR ENCOUNTERED IN DEVELOPMENT SEQUENCE
&P EC TERMINATED
&D
&Q
&L FINISH
&D
&Q

You could execute this EC file for a COBOL program
development session by entering:

EC PROG DEV COBOLA PAYROLL

3-18 CZ03-0l

The pathname PROG DEV is substituted for all occurrences of &O
(none in this example), COBOLA is substituted for all occurrences
of &l, and PAYROLL is substituted for all occurrences of &2.

EC files are discussed in detail in the System User's Guide
and the Application Developer's Guide.

START_UP.EC Files

A special application of EC files is their use at system
initialization and at task group activation.

SYSTEM START UP.EC FILE

After configuration (after the CLM USER file of configuration
directives is executed), the system searches for a user-written
command file named START UP.EC in the system root directory. If
this START UP.EC file is-present, it is executed. A typical
system START UP.EC file might contain operator commands used to
establish an-application environment for the installation. An
example of such a START UP.EC file is:

CBP BUFF! -NBF 10 -CISZ 1024
CBP BUFF2 -NBF 5 -CISZ 512
CBP BUFF3 -NBF 5 -CISZ 256
CBP BUFF4 -NBF 20 -DIR
START MAIL
&Q

This START UP.EC file creates several buffer pools of various
common sizes and activates the local mail/message facility.

USER START UP.EC FILE

When a task group whose lead task is the Command Processor is
activated, the Command Processor searches for an EC file named
working directory>START UP.EC. If such a file is present, the
Command-Processor executes it before performing any other
action. This file could contain commands to direct the execution
of the tasks of the job and/or perform certain housekeeping
tasks. An example of a user START UP.EC file is:

AMM -OFF
ST 2 -EFN PROGA
ST 3 -EFN PROGB
ST 4 -EFN PROGC

This START UP.EC file causes three tasks to be activated and
specifies that-the user does not want to receive local messages.

3-19 CZ03-0l

Section4
EXECUTION

ENVIRONMENT

System control of user applications and system functions is
accomplished within the framework of the task group. A task
group consist~ of a set of related tasks. The most simple case
of a task is the execution of code produced by one compilation or
assembly of a source program (after the code is linked and
loaded).

TASK GROUPS AND TASKS

MOD 400 allows you to configure a system dedicated to
interactive applications or to a combination of interactive and
absentee applications. This flexibility of configuration is I
based on the concept of the task group as the owner of the system
resources it requires for execution.

By defining more than one application task group to run
concurrently, you are utilizing multiprogramming. You can step
through an application in sequence by causing tasks in the group
to be executed one at a time, or you can multitask an application
by causing tasks within the group to be executed concurrently.

4-1 CZ03-01

I

Since multiple applications can be loaded in memory at the
same time, contending for system resources, the system builder
must define an environment for each application so that the
application knows the limits of its resources. This defined
environment is called a task group, and its domain includes one
or more tasks, a memory pool, files, peripheral devices, and
priority levels. By defining the total system environment to
consist of more than one task group, the system builder divides
up the resources so that more than one application can run
concurrently. To do this the system builder divides the memory
not occupied by the Executive into one or more user memory pools.
Users assign task groups to memory pools at group creation time.
Task code of a task group is loaded only into that task group's
pool; the task obtains dynamic memory from that pool.

By using the resources of one task group repetitively, you
can run an application as a sequence of job or program steps. To
do this, invoke the Spawn Group command to create a task group
that uses the Command Processor (whose function is to process
system-level commands). You can enter commands through task
groups whose lead task is the Menu Processor or the Command
Processor.

One method of sequencing application steps is to have this
spawned group issue a Spawn Task command for each task to be
executed. This command causes a task to be loaded, executed, and
then deleted. Provided the Command Processor is instructed to
wait for completion of each spawned task, the tasks in the group
can be executed in sequence. For example;

ST 1 -EFN REP DATA ~WAIT (Spawn task to gather
report data and wait for it
to complete)

ST 1 -EFN PR RPT -WAIT (Spawn task to print report
and wait for it to complete)

A variation of this procedure can be used to attain
multitasking within one task group. Consider the situation in
which the Command Processor is the lead task and reads a file
containing Spawn Task commands. The Command Processor does not
wait for the execution of the individual tasks; rather it
continues to spawn tasks until it reads an end-of-file or &Q
directive. The spawned tasks are loaded and run concurrently in
this task group, contending among themselves for the resources
belonging to the group. For example:

ST 1 -EFN REP DATA
ST 1 -EFN PR RPT

(Spawn task to gather report data)
(Spawn task to print report)

4-2 CZ03-0l

This method can be used only if a synchronization mechanism such
as a semaphore is employed to ensure that PR RPT does not run
until REP DATA has finished (refer to "Semaphores" in Section 5
for further information). In a multiprocessor system it is
possible that the PR RPT program will be started before REP DATA
has finished gathering its data. In any system, each task Is
given a certain amount of time to execute, after which it must
wait for some event. If the task exceeds this amount of time,
the system schedules it to resume after other tasks. It is
possible that REP DATA could be stopped before it has finished
collecting the da~a and that PR RPT could be started. For
reasons such as these, a synchronization mechanism is a
necessity.

The Command Processor must be the lead task of an absentee
task group so that it can read the EC file containing the desired
commands. However, the Command Processor does not have to be the
lead task of an interactive task group. An application
consisting of one task could execute in a task group whose lead
task is the application task. If the application requires step
control or multitasking and you do not need to use commands for
control, you can generate a task group whose lead task contains
the Assembly language system service macrocalls whose functions
are analogous to the Create Group, Create Task, Spawn Group, and
Spawn Task commands.

These situations are illustrative and do not exhaust the
various ways in which you can control program execution.

To summarize, a task group is both the owner of system
resources and the context in which system control of tasking is
accomplished. A task can be characterized as the execution of a
sequence of instructions that has a starting point and an ending
point, and performs some identifiable function. It is the unit
of execution of the Executive, and its execution must be
requested through the Executive software.

The source language from which task code is derived can be
any of the languages supported by the Executive. Source code is
compiled (or assembled) and linked to form bound units consisting
of a root and zero or more overlays. (Refer to "Bound Units"
later in this section for more information.)

Application Design Benefits of Task Group Use

Designing an application around a task group provides
intertask communication and Executive control of multiple
unrelated task groups.

INTERTASK COMMUNICATION

The tasks in a task group execute asynchronously under
control of the Executive. Tasks within a group can communicate I
through control structures supplied with each task request for
inter-task communication.

4-3 CZ03-0l

I

I

I

I

I

Asynchronous tasks provide effective software response to
information received from real-time external sources, such as
communications or process control systems. Usually, the task (a
line protocol handler) that is activated to handle the interrupt
from the external source has a higher priority and a shorter
execution time than the task that processes the information. The
task that responds to the interrupt will use the Executive to
request the execution of the processing task, supplying along
with the request a control structure containing a pointer to the
new information to be processed •. The Executive responds to the
request by activating the requested task or by queuing the
request if other requests for the execution of the task are still
pending.

Communications applications can use a high priority task to
respond to data interrupts and determine which processing task
should handle the data. This higher priority task uses the
system to queue requests for the processing task, thereby
accommodating peak-load conditions in which data is received
faster than it can be processed.

In a process control system, the real-time clock might
provide the interrupt that causes the higher priority task to
scan and update temperature, thickness, or raw material level
sensors that monitor the physical status of the process. This
information is passed to a processing task with a lower priority
that determines the necessary adjustments based on the new data.
A third task, having a priority between the other two, could be
requested to make whatever changes are required (for example, to
change the f.l.ow rate of material entering the process by closing
a val•1e).

These two brief examples illustrate the value of priority
assignments and communication facilities between tasks.

SYSTEM CONTROL OF TASK GROUPS

System control of an application based on the use of multiple
task groups is important for several reasons. First, these
applications can be thought of as consisting of multiple
unrelated "jobs" (task groups) made up of one or more "job steps"
(tasks). The sequence of task execution can be controlled by the
system (Command Processor) as it processes synchronously supplied
commands instead of responding only to externally supplied
interrupts. The next "step" is started only when the previous
step terminates. {You must ensure that the steps will be carried
out in order.)

If any one set of tasks does not fully use the available
processing time, the system can make more efficient use of
resources by rotating their use on the basis of interrupts and
priority level assignments.

4-4 CZ03-0l

The use of independent task groups that are subject to system
control prevents one task group from adversely affecting
another. If an error occurs in one task group, this group can be
aborted while the others continue to execute.

To summarize, system control of multiple task groups provides
the following advantages:

• Job and step execution sequencing
• Efficient system resource use
• Job independence.

Generating Task Groups and Tasks

The system provides tasking facilities regardless of the
source code in which the application is written. Once generated,
all tasks are subject to the same system controls, whether I
written in COBOL, FORTRAN, BASIC, Pascal, C, Ada, or Assembly
language. Some languages (such as COBOL and BASIC) do not
provide for tasking as part of the programming language's
capabilities. In these cases, the generation of tasks consisting
of code written in those languages is done through commands.
Although tasks written in languages such as Assembly language and
FORTRAN can be generated at the control language level, these
languages have a facility for generating task grour:·.: ;;nd tasks
without recourse to commands. Assembly language programs use
system service macrocalls; FORTRAN programs use tasking routines.

From the overall system viewpoint, the actions of the control
language in the generation of task groups and tasks are much more
visible than the same capabilities in Assembly language and will
be considered next.

As shown in Table 4-1, commands submitted by the operator and
commands submitted by other users share some of the task group
generation functions and also perform unique functions. The
control commands are divided into three groups:

1. Commands that perform the same function whether submitted
by the operator or another user. *

2. Commands that can be entered only by the operator.

3. Commands contained within the content of an existing task
group request.

4-5 CZ03-0l

I

I

I
*

I

Table 4-1. Task Group and Task Functions Possible
from Interactive and Absentee Modes

user Commands Operator Commands
Function Interactive Absentee Interactive Absentee

Create Group Yes No Yes Yes

Enter Group Request Yes Yes Yes Yes

Delete Group Yes No Yes Yes

Abort Group Yes No Yes Yes

Spawn Group Yes No Yes Yes

Bye Yes Yes No No

Suspend Group Only operator Yes Yes
commands exist

Activate Group for these Yes Yes
functions.

Abort Group Request Yes Yes

Create Group Request Yes Yes
Queue

Create Task Yes Yes Only user
commands exist

Delete Task Yes Yes for these
functions.

Enter Task Request Yes Yes

Spawn Task Yes Yes

NOTE

The Command Processor executes in both interactive
and/or absentee mode.

Characteristics of Task Groups and Tasks

Task groups and individual tasks can be originated in either
of two ways: by creation or by spawning. The choice depends on
application design considerations as well as the intended
functions.

4-6 CZ03-0l

There are important differences between tasks (and task
groups) that are generated by a create function and those
originated by a spawn function. Created task groups and tasks
are permanent; they remain available in memory until explicitly
removed. Spawned task groups and tasks are transitory; they
perform a function and disappear.

Created task groups and tasks are passive; they must be
explicitly requested to execute in order to perform their
intended function. Spawned task groups and tasks cannot be
requested. The spawning of a task group or task is equivalent to
a create-request-delete sequence of control language commands.
In a spawn operation, the task group or task is defined, provided
with system resources and control structures, executes,
terminates, and has its resources deallocated, all in one
continuous process.

FORTRAN or Assembly task code may cause extensive action in
its own behalf, as when application task code requests a system
service or the execution of another task while awaiting the
completion of the requested task. Each task that requests
another supplies the address of a control structure through which
the issuing task and the requested task can communicate, and
which the Executive uses to coordinate task processing.

Task Group Identification

Each task group has a unique identifier. Honeywell-supplied
system task group identifiers begin with a $ as shown in
Table 4-2 below:

Table 4-2. System Task Group Identifiers

Task
Group ID Function

$D Debug
$L Listener
$P Def erred Print
$S System

NOTE

The Multiuser Debugger does
not require the dedicated
system task group $D.

4-7 CZ03-0l

*

I

I

The identifier for a user task group in the Create Group or
Spawn Group command is a 2-character name that should not have
the dollar sign ($) as its first character. The identifier (or
group-id) can be indicated or implied in commands to designate
what task group is to be acted upon. The operator can include
the task group identifier when responding to messages from the
task group.

MEMORY MANAGEMENT AND PROTECTION

The system (hardware and software) provides a memory
management and protection facility that performs the following
functions:

• Allocates memory to guarantee each task group (user) its
own address space.

• Protects multiple users from each other and the system
from the users.

The hardware used to provide memory management and protection
is called a memory management unit. The type of memory
management unit varies according to the kind of processor. DPS 6
systems use either the Basic Memory Management Unit (BMMU) or the
Extended Memory Management Unit (EMMU). Each of these memory
management units is based on the concept of segmentation.

Segmentation

The memory management unit maps a segmented address space
onto physical memory. The unit of memory allocation is a
segment. A segment is a variably sized area of memory that
usually consists of a logical entity such as a procedure. The
system memory management and protection facility treats all
addresses generated by the central processor as segment-relative
addresses. It maps the segment-relative addresses through the
memory management unit to absolute physical addresses. No
segment can be less than 512 bytes in length. Segment size is
always a multiple of 512 bytes.

SEGMENTATION WITH BASIC MEMORY MANAGEMENT UNIT

The BMMU supports up to 31 segments, 16 of which can be up to
8K bytes (K=l024) in size and 15 of which can be up to 128K bytes
in size. The segments that can be up to 8K bytes are called
"small segments"; those that can be up 128K bytes are called
"large segments." The 16 small segments are numbered from o.o
through O.F; the 15 large segments are numbered from 1 through
F. All small segments, and often some large segments, are
reserved for system use; the actual number reserved is
established at system generation.

The BMMU provides a total of 2 million bytes of segmented
address space for each task.

4-8 CZ03-0l

Each segment is described by a 4-byte segment descriptor that
contains the segment's starting physical address, its length (in
units of 512 bytes), and its access rights for each ring (refer
to "Segment Ring Protection" below).

Al though you can assign any of the large segments to a bound
unit when it is linked, the availability of a segment depends on
the system configuration. Therefore, most applications simply
let the system assign segment numbers. The identity of the I
segments available to you should be obtained from the system
administrator.

SEGMENTATION WITH EXTENDED MEMORY MANAGEMENT UNIT

The EMMU supports up to 256 segments, each of which can be up
to 128K bytes in size. The segments are numbered from 00 through
FF. Segments 00 through 7F are reserved for system use1 segments
80 through FF are available for user tasks.

The EMMU provides a total of 32 million bytes of segmented
address space for each task.

Each segment is described by a 2-byte segment descriptor that
contains the segment's starting physical address, its length (in
units of 512 bytes), and its access rights for each ring (refer
to "Segment Ring Protection" below).

Segment Ring Protection

Access to memory segments is controlled through the memory
management unit. The memory management unit assigns each
executing task to a ring of privilege. (Rings may be thought of
as concentric circles, like a target. The innermost circle, ring
O, has the most privilege.) During the linking of a bound unit,
you can assign access attributes to each bound unit to indicate
whether a task executing in a particular ring of privilege can
read, write, and/or execute in the code or data segment of the
bound unit. However, it is recommended that you use the system
defaults.

System tasks execute in ring 0 (privileged state). User
tasks can execute in rings 1, 2, and 3. Ring 0 is most
privileged, and ring 3 is least privileged. The ring in which a I
user task executes is defined by the type of memory pool to which
the task has been assigned (refer to "Ring Access Rights" later
in this section).

Every attempted access to a segment is checked for access
rights in the executing task's ring of privilege. The system
compares the ring number of the executing task with the access
attributes of the segment to be accessed. An access violation I
trap occurs if a user application attempts to access one of its
segments without having the proper segment access rights.

4-9 CZ03-01

I

MEMORY POOLS

At system startup the Configuration Load Manager (CLM) reads
a file of directives, sets up memory pools from the supplied
specifications, and indicates to the Loader what system and
user-written software is to be resident for the life of the
system. On the DPS 6/22, the Autoconf igurator creates the file.
On other systems, the system builder can use the line editor to
create the file.

After the system has been in operation for a while,
experience may show the desirability of reconfiguring the pool
sizes so that they meet user requirements more precisely. The
system builder can hand-tailor the MEMPOOL and SWAPPOOL
directives in the CLM file using the line editor. Refer to the
System Building and Adrn~nistration manual for information on the
CLM directives.

MOD 400 supports the following types of memory pools:

• System pool - Contains the system task group and all
globally shared elements. There is only one system pool
per sy stern.

• Swap pool - Provides an environment in which segments can
be swapped out to disk to make room for competing users,
and in which the memory requirements of individual users
do not have to be predetermined. Systems with EMMUs
should have all of user memory as one swap pool. Systems
with BMMU s should have all of user memory as rnul ti pl e swap
pools.

• Independent pool - Provides an environment suitable for
applications with well-defined memory requirements, all of
whose tasks must must be in memory at the same time.
There can be multiple independent pools in the system.

swap and independent pools allow applications running on
systems with a BMMU to access more than 2 million bytes of
physical memory.

If multiple swap or independent pools are configured,
Listener can optionally ensure an even distribution of task
groups among memory pools by assigning each new user to the
memory pool with the fewest task groups.

Sharing Memory Pools

Swap and independent pools will be shared if users assign
more than one task group to the same pool. As the tasks execute,
they contend for the same memory space. Tasks running in an
independent pool should be designed so that they can be suspended
or take some alternative action when no additional memory is
available.

4-10 CZ03-0l

Memory Pool Attributes

Memory pools can have one or more of the following
attributes: protection, containment, privilege, serial-usage,
and ring access rights.

PROTECTION

When a memory pool has the protection attribute, it cannot be
written into by a task running in another pool. The Executive
uses the memory management unit to prevent all write intrusions
by foreign tasks. A task attempting to write into a protected
pool receives an error notification from the Executive.

Protection applies to memory pools and not to task groups.
Groups sharing a a memory pool are protected from each other only
in the swap pool. Tasks within a group are not protected from
each other.

All pools are automatically generated as protected; this
attribute cannot be changed.

CONTAINMENT

When a memory pool has the containment attribute, tasks
running in the pool cannot write outside the pool area. The
Executive uses the memory management unit to prevent all tasks
from writing outside the pool. A task attempting to write
outside of a contained pool receives an error notification from
the Executive.

The system pool cannot be contained. Swap and independent
pools are automatically generated as contained; this attribute
cannot be changed.

PRIVILEGE

When a memory pool has the privilege attribute, any task
running in that pool can execute privileged instructions. The
following Assembly language instructions are privileged:

ASD
CNFG
HLT

IO
!OH
!OLD

L~
RTCF
RTCN

WDTF
WDTN

If the pool does not have the privilege attribute, any task
attempting to execute one of the above instructions will trap.

The system pool is always privileged; this attribute cannot
be changed. Swap and independent pools are unprivileged; this
attribute can be changed in the CLM MEMPOOL directive.

4-11 CZ03-0l

I

*

*

I
*

SERIAL USAGE

When a memory pool has the serial-usage attribute, it can be
used by only one task group at a time.

The system and swap pools are generated without the
serial-usage attribute7 this specification cannot be changed.
Independent pools can be specified in the CLM MEMPOOL directive
as having the serial usage attribute.

RING ACCESS RIGHTS

Each type of memory pool is automatically assigned a ring
access designation. There are four rings, numbered O through 3.
Rings O and 1 are privileged rings1 rings 2 and 3 are
unprivileged. Tasks acquire the ring attribute of the pool to
which their task group is assigned. The pools and their
associated rings are:

Pool

System
swap
Independent

0
3
1 or 2

Independent pools have ring 1 access if they are privileged and
ring 2 access if they are not privile_ged.

Ring access is used with segment ring protection to determine
the ability of a task to access memory (refer to "Segment Ring
Protection" earlier in this section). A task whose ring access
is 3 can only access memory protected at ring 3. A task whose
ring access is 2 can only access memory protected at rings 2 and
3. A task whose ring access is 1 can access memory protected at
rings 1, 2, and 3. A task whose ring access is 0 can access
memory protected at rings O, 1, 2, and 3.

The following paragraphs describe each type of memory pool in
greater detail.

System Pool

The system pool contains the system task group ($S), certain
file control structures, and system elements that are to be
shared. Its maximum size is 4 million bytes. The system pool is
protected, privileged, and not contained. Tasks running in this
pool have ring 0 access.

User task groups cannot be created in the system pool. User
tasks cannot execute in the system pool with ring O access.

4-12 CZ03-0l

The system task group cannot be aborted or suspended. Since
it never terminates, it cannot be requested. The system group
always has read and write access to all of memory. It handles I
all system dialog (including operator commands) through the
CLM-designated operator terminal.

The file control structures in the system pool are the File
Description Blocks (FDBs) and the buffers for sharable files.
Other system elements in this pool include:

• Current function invoked by an operator command.

• Extended Trap Save Areas (TSAs) needed during processing.

• Control blocks for all tasks (TCBs) and task groups
(GCBs) •

• Globally sharable bound units.

• File System directory and file definition blocks.

• Public buffer pools.

• Memory control blocks for swap pool segments.

Swap Pools

A swap pool is a privileged, protected, and contained pool in I
which segments can be swapped out to disk in order to make
physical memory available to competing users. Swap pool memory
management can move segments to physical memory in order to
eliminate fragmentation and consolidate available memory space.

swap pools support both interactive and absentee processing.

The size of a swap pool, plus the size of the Executive and
its structures, cannot exceed 2 million bytes in a system having
a BMMU and 16 million bytes in a system having an EMMU. On
systems with a BMMU, the system builder can configure multiple
swap pools. On systems with an EMMU, all of user memory should
be one swap pool.

A swap pool is a separate virtual view of the system. That
is, each task in a swap pool can view that portion of the pool
relating to itself and can view all of the global system space.
Tasks running in the swap pool have ring 3 access.

4-13 CZ03-0l

I

The system acquires space for a given segment from whatever
portion of free swap pool memory is available. If not enough
space is available for the needed segment, the system attempts to
obtain memory by swapping out lower priority tasks in the same
pool that are waiting on an event, If this action does not
produce enough memory, the requesting task is swapped out until
sufficient space becomes available. A task is swapped out under
one of the following conditions:

• If it is waiting on an event that is of potentially long
duration and swap pool memory is required by a competing
task.

• If memory is required to roll in a higher priority task.

• If the task has been suspended by the operator.

A task is swapped back in when the swap pool memory is
available. The task may be swapped in immediately, it may be
swapped in after tasks waiting on events of long duration are
swapped out, or it may be swapped in after lower priority tasks
are swapped out. A task is swapped back in when any event on
which it was waiting has completed or when it is reactivated by
an operator.

The entire context of a task in the task group must be in
memory for the task to execute. Other tasks in the task group
need not be in memory. However, thrashing may occur if too many
users are assigned to too small a swap pool.

A task in a swap pool can overwrite shared data designated
for writing. A task cannot overwrite another task, another
task's data, or sharable read-only data. Further, tasks in a
swap pool can only read (not write) system structures.

Tasks running in a swap pool have logical elements (for
example, bound units) equated with segments. The Executive
aligns the logical elements on segment boundaries. This
configuration is represented in Figure 4-1.

SEGMENTS

•. ·~11~.o~~+l-2_._o~t---3_._o~ ____ 4_._o~---~s_.o~~~6_._o~--~

SYSTEM I I GROUP DATA GROUP WORK BOUND I
--~P~O~O~L----1-GAP~--'--'-s-PA __ C_E--~--+------S-PA~C-E-----t---~U-N--I~T

Figure 4-1. Sample Swap Pool Group Segment Assignments

4-14 CZ03-0l

Each task group in the swap pool has group global space that I
cannot be accessed by any other group. Each task in a swap pool
group can have task private space that cannot be accessed by any
other task. For further information refer to "Swap Pool Task
Address Space" later in this section.

Independent Pools

An independent pool is protected and contained; it can be
privileged or not and serial-usage or not. Tasks running in an
independent pool have ring 2 access if the pool is unprivileged
and ring 1 access if it is privileged.

Independent pools support both interactive and absentee
processing.

The size of an independent pool, plus the size of the
Executive and its structures, cannot exceed 2 million bytes in a
system having a BMMU and 16 million bytes in a system having an
EMMU. On larger systems, multiple independent pools can be
configured.

It is important that the memory requirements of the group(s)
using an independent pool be estimated carefully because the
entire context of a task group must be in memory for a task in
the group to execute. It is possible that task group memory
requirements may exceed the size of the memory pool because of
memory fragmentation.

Note that even with protection and containment, a task in an
independent memory pool can accidentally overwrite code or data
belonging to its own or another group in the pool.

Each independent pool is a separate virtual view of the
system. That is, each task in an independent pool can view that
portion of the pool relating to itself and can view all of the
global system space. Thus, a task in an independent pool can
reference a memory location in that pool and in system global
space.

Independent pools are designed for applications that you may
not want to execute in a swap pool.

The system aligns user memory pools on segment boundaries
(multiples of 512 bytes). This configuration is shown in Figure
4-2.

4-15 CZ03-0l

SEGMENTS

.. ·~I --'-1~._o-+~2~.o~-+~~3~.o"'---+--4~·~0~-+-l~s~.o"--~---1

SYSTEM I
--p""'"o'"""o"'"'"L----11 GAP

INDEPENDENT
POOL GAP

INDEPENDENT
POOL

Figure 4-2. Sample Independent Pool Group Segment Assignments

Selecting Memory Pool 'fypes

The different types of memory pools provide you with the
means to respond to the unique demands of multiple application
programs. Through the use of memory pools, you can exercise
control over memory usage and, at the same time, provide
individual task groups with specialized protection.

The degree to which the system can efficiently and
effectively handle the concurrent execution of multiple task
groups depends on the number and type of memory pools available
for use. The following points should be kept in mind:

• All systems must have a system pool.

• In systems with a BMMU, all user memory should be devoted
to multiple swap pools.

• In systems with an EMMU, all user memory should be one
large swap pool.

• One or more independent pools can be selected for
applications that you do not want to run in a swap pool.

If you do not configure any memory pools, you will be
provided with one swap pool whose size is all of memory, less the
amount of memory occupied by the system pool.

Memory Pool Layout

To obtain efficient use of memory and of the memory
management unit, the CLM sorts the memory pools specified in a
configuration as follows:

1. The system pool is configured in the first available
memory after the system data structures. The system pool
cannot exceed 4 million bytes.

2. If swap pools are configured, they follow the system
pool.

3. Independent pools are configured after all swap pools.

4-16 CZ03-0l

Fixed System Area

After the configuration process is complete, the following
software components and data structures are located in the fixed
system area of memory:

• Basic Executive plus resident overlays

• User-written or vendor-supplied extensions to the
Executive

• Device drivers

• Intermediate request blocks needed for task groups

• Trap save areas

• Overlay area(s) for system software

• File control structures.

The fixed system area is static. Unlike the other memory
areas whose contents can vary dynamically, its structure remains
the same for the life of the system. Almost all code loaded into
this area is reentrant so that a single copy of the code is
available to multiple users, thus minimizing memory requirements.

BOUND UNIT CHARACTERISTICS

Task code is derived from programs written in a source
language and compiled or assembled to form object units (also
called compilation units). One or more object units are linked
to form a bound unit that is placed on a file. The bound unit is
an executable program that can be loaded into memory. A task
represents the execution of a bound unit.

General Bound Unit Characteristics

Bound units have the following general characteristics:

• Each bound unit consists of a root segment and any related
overlays.

• A load element is composed of one or more object units.

• The initial load element is called the root; it must be
resident when the bound unit is being executed.

• A load element that replaces another load element when
loaded into memory is called an overlay.

4-17 CZ03-0l

You can direct the Linker to perform the following actions on
bound units:

• Map the code and data into the same load element or into
separate elements. If the bound unit is to be reentrant,
the code and data must be in separate load elements.

• Specify ring access rights. If the bound unit is to be
reentrant, the default access attributes are ring 3 read
and execute access for both code and data, ring 0 write
access for the code segment, and ring 3 write access for
the data segment.

• Associate a specific segment number or numbers with a
bound unit. Normally, the Linker assigns default segment
numbers. If you assign segment numbers at link time, you
must be careful to avoid segment conflicts in the
configuration and application environment in which the
bound unit is to run so as to avoid inefficient loading.

Your physical address space is not necessarily contiguous.
Memory requirements are satisfied on a segment basis rather than
on a user basis.

I Note that for systems with a BMMU, you have a maximum of 11
large segments available when constructing a task's address
space. Frequently, fewer large segments will be available,
depending on the system configuration.

Sharable Bound Units

The use of sharable bound units is a way of minimizing
application task group memory requirements while making reentrant
code available to multiple tasks. Unlike permanently resident
bound units that are loaded during system configuration, sharable
bound units are transient in memory and are loaded during
processing. A usage counter is incremented each time a request
is made for the bound unit, and decremented each time a request
is completed. The unit remains in memory as long as a task is
using the code. As soon as the usage counter is decremented to
zero, the space occupied by the bound unit is returned to
av ail able status.

SHARABLE BOUND UNITS IN SWAP POOLS

If a bound unit is sharable only within a swap pool, its root
segment descriptor is placed in a portion of memory where it is
accessible to all tasks in that pool. The bound unit should have
no fixed overlays; floatable overlays can be shared if an OAT is
used. (See "Bound Unit Overlays" later in this section.) To be
recognized as sharable by the Loader, and to be loaded into a
user memory area, the bound unit must have been linked using the
SHARE directive.

4-18 CZ03-0l

Additionally, task private segments are shared if the task
forks. (A task forks if it issues a Create Task or Spawn Task
command with an entry point address rather than a pathname
definition.) Forked tasks share the same segments7 they have the
same access to and copy of the forked segments until one task
modifies its address space. (Address space defines a task's
boundaries in a swap pool. Ref er to "swap Pool Task Address
Space" later in this section.)

SHARABLE BOUND UNITS IN INDEPENDENT POOLS

In an independent pool, bound uni ts can be sharable by tasks
within a task group or can be sharable by all task groups.
Sharability is established when the bound unit is linked. To be
sharable by tasks and task groups within a pool, the bound unit
must be linked with the SHARE directive. Bound units linked with
the SHARE directive are loaded into the requesting task group's
memory pool.

GLOBALLY SHARABLE BOUND UNITS

To be sharable by task groups in other pools (globally
sharable), the bound unit must be linked with the GSHARE
directive. Bound units linked with the GSHARE directive are
loaded into the system pool. Since system pool memory is a
critical resource, the use of globally sharable bound units
requires careful planning and control. If all of user memory is
one large swap pool, the SHARE directive has the same effect as
the GSHARE directive, and does not clutter up the system pool.

Operator commands can be used to load and unload globally
sharable bound units.

SHARABLE BOUND UNITS AND EXECUTIVE EXTENSIONS

Sharable bound units and the Executive extensions that are
loaded through LDBU directives when the system is configured
differ in one major respect. Executive extensions can be
accessed symbolically by any task, but a sharable bound unit must
be accessed as a bound unit.

When an Executive extension is loaded during system
configuration and is made permanently resident by an LDBU I
directive, its symbols are included in the system symbol table.
Since a sharable bound unit is transient and is loaded after the
system has been configured, no entry is made for it in the system
symbol table. For this reason, it must be accessed as a bound
unit. Table 4-3 compares permanently resident Executive
extensions and transient sharable bound units.

4-19 CZ03-0l

I
I

Table 4-3. Comparison of Executive Extensions
and Sharable Bound Units

Sharable
Executive Bound

Characteristics Extension Units

Multiple users

Permanently resident (fixed area)

Temporarily resident (dynamic area)

Symbols in system table

Accessed symbolically

Have overlays

Called by bound unit name

NOTES

Yes

Yes

No

Yes

Yes

No

No

1. If the extension is an Assembly language bound
unit, it may have within it sections of code
or control structures controlled by semaphores
that would be accessible to other Assembly
language tasks (refer to "Semaphores" in
Section 5 for further information).

2. Overlays are not sharable unless Overlay Area
Tables (OATs) are used (refer to "Bound Unit
overlays" below) •

3. The Executive does not "remember" extensions
by their names. A request for an extension by
name results in another copy being brought
into memory.

Bound Unit Search Rules

Yes

No

Yes

No

No

Yes

Yes

The Loader uses search rules to locate a bound unit to be
loaded. The Loader starts the search in response to a command
containing an argument naming the bound unit to be loaded.

The rules that regulate the search process define three
directory pathnames and the sequence in which they are used
during a search. The pathname sequence is as follows:

1. User task group working directory.

4-20 CZ03-0l

2. System directory -LIBl argument of the Change System
Directory command.

3. System directory -LIB2 argument of the Change System
Directory command.

The Change System Directory command can be used to change
pathnames associated with system directory arguments -LIBl and
-LIB2. The pathname of a user's working directory is established
through a Change Working Directory command or through the -WD
argument of the Enter Group Request or Spawn Group command. For I
login users, the -WD argument of the Spawn Group command issued
by the Listener is taken from the -HD argument in the Login
command line.

Bound Unit Overlays

In smaller systems, you may need to minimize the amount of
memory required to execute a bound unit containing application
code. You can accomplish this by directing the Linker to create
the bound unit as a series of overlays (separately loadable
pieces) so that the entire bound unit does not have to be
resident at one time. Each bound unit consists of a root and,
optionally, one or more related overlays. The system loads the
bound unit root automatically when the bound unit is invoked.
Overlay loading is controlled by the application itself. The
maximum number of overlays is 65,536. The use of overlays
requires careful planning so that required code is not lost or
repetitively loaded.

Two types of overlays are available for your use:
nonfloatable and floatable. In addition, you can use overlay
areas to control the placement of floatable overlays.

NONFLOATABLE AND FLOATABLE OVERLAYS

overlays can be loaded at a fixed displacement from the base
of the root (nonfloatable overlay) or into a block of memory
allocated explicitly by you or implicitly by the system
(floatable overlay).

Nonfloatable Overlays

A nonfloatable overlay is loaded into the same memory
location relative to the root each time it is requested. Object
units whose code is to be loaded as nonfloatable overlays must be
defined as fixed overlays by the Linker OVLY directive. When the
root of a bound unit having fixed overlays is loaded, the Loader
allocates a container (segment or memory block) large enough to
hold the root and all of its fixed overlays.

4-21 CZ03-0l

I

I

*

I
I
I

Assembly language programs can use system service macro calls
to load and execute nonfloatable overlays. COBOL programs can
use CALL/CANCEL statements to control nonfloatable overlays.
FORTRANA and Pascal provide overlay handlers as part of the
run-time libraries. BASIC programs must link a user-written
Assembly language overlay manager with the application program,
since the BASIC language does not supply this functionality.

Floatable Overlays

A floatable overlay is linked without having a fixed relative
location to the base of the root. It can be loaded into any
available memory location. Floatable overlays must meet the
following criteria:

1. The overlay must not contain external definitions
referenced by the root or another overlay.

2. The overlay must not make displacement references to the
root or any other overlay.

3. The overlay must not contain external displacement
references that are not resolved by the Linker.

The application program can use one or more areas of
available memory for the placement of floatable overlays. The
program can deal with memory management in one of the following
ways:

1. Allow ·the system to place the overlay in an available
memory block allocated from the user's independent memory
pool or, if loaded in a swap pool, from group work
space. (Group work space is a segment common to all
tasks in a group. Ref er to "Swap Pool Task Address
Space" later in this section.)

2. Create a set of overlay areas using system service
macrocalls, and allow the system to manage the areas and
locate the requested overlays. In an independent memory
pool, the overlay areas are created from a memory block
in the pool. In a swap pool, the segment(s) allocated
for the root are expanded to contain the created overlay
area.

3. Perform its own memory management by linking a
user-written Assembly language overlay manager with the
root of the bound unit. In an independent memory pool,
you may choose to have the overlay occupy part or all of
a memory block. In a swap pool, you may choose to have
the overlay occupy part or all of a segment.

4-22 CZ03-0l

Linking Floatable and Nonfloatable overlays

Floatable and nonfloatable overlays are defined through the
Linker. When using the Linker, forward references can be made to
symbols defined in object units to be linked later (the rules for I
floatable overlays must be observed). Backward references can be
made to symbols previously defined, provided the defined symbols
were not purged from the Linker symbol table by a Linker BASE or
PURGE directive. Since the specification of the BASE directive
removes from the Linker symbol table all previously defined and
unprotected symbols that are at locations equal to or greater
than the location designated in the BASE directive, you must take
one of the following actions:

• Define all symbols that are to be preserved in a part of
the root that is not overlaid.

• Protect the symbols to be preserved by using the Linker
PROTECT directive.

A floatable overlay can refer to fixed addresses in the root, I
in a nonfloatable overlay, or in itself, but cannot refer to
addresses in another floatable overlay.

When a root or overlay of a bound unit is loaded, the Loader
examines the attribute tables associated with the bound unit if
an alternate entry point is specified. The Loader tries to
resolve any references to symbols that remain unresolved by
searching the system symbol table (that is, the resident bound
unit attribute table). The Loader cannot resolve any references
to symbols that do not exist in the symbol table. (Linker symbol
tables do not exist at load time.)

Figure 4-3 shows the relative location in memory of memory
pool AA. Figure 4-4 is the layout of overlays in memory pool AA.
When the root is loaded, the largest contiguous amount of memory
necessary to accommodate the root and all nonfloatable overlays
is allocated. Except for space for any floatable overlays, no
other memory requests need be made. In Figure 4-4, this memory
area begins at the base of the root and continues to the end of I
object unit OBJD. The root consists of object units OBJl and
OBJ2. When loaded, OBJS of overlay ABLE will replace the
previously loaded OBJ2 code of the root. Similarly, the overlay
locations were specified so that OBJC of overlay ZEBRA will
replace part of OBJB.

4-23 CZ03-0l

ROO

REMOTE
OF ROOT

T

HIGH MEMORY

ADDITIONAL TASK
GROUP INFORMATION

1-- ----- --- ----

ROOT AND OVERLAY AR EA)
MEMORY POOL
AB(TASK
GROUPA2
WILL USE
THIS AREA}

RELATIVE 0 OF ROOT !----------------
TASK GROUP CONTROL
STRUCTURES

I~
ADDITIONAL TASK
GROUP INFORMATION

1----------- -----"
ROOT AND OVERLAY AREA

)
RELATIVE 0 OF ROOT 1----- -------- ---

MEMORY POOL
AA(TASK
GROUP Al
.WILL USE

Figure 4-3.

ADDITIONAL
TASK GROUP
INFORMATION

OBJ2.0

OBJ1.0

TASK GROUP
CONTROL
STRUCTURES

OVERLAY
FOX

OVERLAY
ABLE

TASK GROUP CONTROL THIS AREA}

STRUCTURES

SYSTEM POOL

~----------- --- -
OPERATING SYSTEM

LOW MEMORY
86-021

Relative Location in Memory of
Memory Pool AA

ADDITIONAL
TASK GROUP
INFORMATION

OBJB.O

OVERLAY{ ZEBRA

OBJA.O

OBJ6.0

OBJ5.0

OBJ1.0

TASK GROUP
CONTROL
STRUCTURES

ADDITIONAL
TASK GROUP
INFORMATION

OBJD.O

OBJC.O

OBJA.O

OBJ6.0

OBJ5.0

OBJ1.0

TASK GROUP
CONTROL
STRUCTURES

OVERLAY{
FLOAT

ADDITIONAL
TASK GROUP
INFORMATION

OBJE.O

OBJD.O

OBJC.O

OBJA.O

OBJ6.0

OBJ5.0

OBJ1.0

TASK GROUP
CONTROL
STRUCTURES

86-022

Figure 4-4. overlays in Memory Pool AA

4-24 CZ03-0l

OVERLAY AREAS

Only floatable overlays can be associated with overlay
areas. overlay areas are a mechanism that allows you to control
the placement of floatable overlays without being required to
write your own overlay manager.

overlay areas are fixed size areas of memory whose use is
controlled through an overlay Area Table (OAT). If the bound *
unit is sharable, the overlays can be shared with other tasks in
the task group or with tasks in other task groups. overlays can
also be shared if the bound unit is replicated through the -SHARE
argument of the Create Task command.

You create an OAT through the Create overlay.Area Table
system service macrocall. You reserve an overlay area and
execute the overlay through an Overlay Reserve and Execute
macrocall. You exit from the overlay through an overlay Release
macrocall.

As an example of overlay area use, assume that you desire to
share both the root and the overlays of a sharable bound unit
whose structure is shown in Figure 4-5.

ROOT

- -- - - - I; - - -- -
l J_ j_ 1

OVERLAY OVERLAY OVERLAY OVERLAY
A B c 0

86-027

Figure 4-5. Sample Bound Unit Structure for overlay Area Use

Assume further that tasks 1, 2, and 3 (of the same or another
task group) are executing the sharable bound unit and that task 1
has encountered a create OAT function while executing the root.

4-25 CZ03-0l

I

I

When the create OAT function is encountered, an overlay area
(controlled by the OAT) is created for the task group. In this
example, the overlay area has three entries, each entry being 512
bytes long. There is no direct relationship between the number
of overlays to be shared and the number of entries in the overlay
area. The entries in an overlay area are of equal size. You
must create overlay areas large enough to contain the largest
overlay (overlay D in this example). The overlay area reserved
is depicted below.

ENTRY 1

512
BYTES

ENTRY 2

512
BYTES

ENTRY 3

512
BYTES

When task 2 (or task 3) executes the same create OAT request
(that is, when it executes the root), the task is given the
address of the OAT already existing in memory.

Assume that task 1 issues an Overlay Reserve macrocall to
reserve an overlay area defined by the OAT and to load overlay A
in that area. The code and/or data composing overlay A will be
loaded in the first free overlay area, and task 1 will be given
access to this area. At this instant the status of the overlay
area is as follows:

ENTRY l

I OVERLAY A I USAGE = 1

TASK 1

ENTRY 2 ENTRY 3

USAGE = 0 USAGE = 0

When tasks 2 and 3 now perform the request for overlay A,
they will be given access to the existing copy of the overlay.
At this instant, the status of the overlay area is as follows:

ENTRY 1

OVERLAY A
USAGE = 3

TASKS 1,2,3

ENTRY 2

USAGE = 0

4-26

ENTRY 3

USAGE = 0

CZ03-0l

Task 2 now requests overlay D.
than one overlay in an overlay area
explicitly release overlay A before
overlay D. The result of releasing
overlay D is as follows:

ENTRY 1 ENTRY 2

OVERLAY A OVERLAY D
USAGE = 2 USAGE = 1

TASKS 1,3 TASK 2

Since a task cannot have more
at any time, task 2 must
requesting the loading of
overlay A and requesting

ENTRY 3

USAGE = 0

A request by task 3 for overlay C will result in the
following si tua ti on:

ENTRY 1 ENTRY 2 ENTRY 3

OVERLAY A OVERLAY D OVERLAY c
USAGE = 1 USAGE = 1 USAGE = 1

TASK 1 TASK 2 TASK 3

If there were another task in the group (for example,
task 4), and the task were to request overlay B, it would have to
wait until one of the overlay areas was freed (by an Overlay
Release macrocall). If task 4 requested overlay A, c, or D, the
task would be given access to the loaded copy of the overlay.

Note that at any given instant several OATs, controlling
several different overlay areas, may exist. Even if a task is
sharing overlays in different overlay areas, it cannot reference
more than one overlay area at any given time. The task must
release an overlay in an OAT prior to requesting an area for
another.

You use an Overlay Area Release macrocall to exit from an
overlay. When this call is executed, the count of the number of
users of the overlay is decremented in the defining OAT. When
the count drops to zero, the overlay area is marked as available
and can be reused by an Overlay Reserve and Execute function.

4-27 CZ03-0l

I Bound Unit Allocation

I

I

*

Each task is associated with at least one bound unit. The
initial bound unit with which a task is associated is specified
at the time the task is created or spawned. At this time, the
segment is created/allocated in memory, and the root is loaded in
this segment.

If the bound unit was designated as sharable at link
is currently residing in memory, no loading takes place.
requesting task shares the bound unit already in memory,
bound unit user count is increased by one. If the bound
not in memory, it is loaded.

time and
The

and the
unit is

Execution of a task begins with the specified bound unit.
During the execution of this bound unit, the Assembly language
user can employ system service macrocalls to load or attach
another bound unit. Loading or attaching a bound unit causes the
allocation and loading of the segment containing the root of the
requested bound unit. (The difference between loading and
attaching is that loading returns the entry point of the root
segment to the issuing task, while attaching starts the execution
of the bound unit root segment at the entry point.) Up to eight
bound unit units can be attached. In BMMU systems, the
availability of segment descriptors may limit you to fewer than
eight attached bound units.

During its execution, a task can issue a system service
macrocall to request the creation of a segment to be associated
with the task's initial bound unit or any other of its
attached/loaded bound units. The macrocall can either specify a
segment number or allow the system to select the number in
accordance with the specified size.

The allocation of memory for a bound unit depends on·whether
the bound unit is nonsharable or sharable.

For a nonsharable bound unit, each logical segment is
uniquely mapped to a physical segment in memory. Unless the task
is forked or the segment is in an OAT, two or more tasks wishing
to concurrently use a nonsharable bound unit each receive a copy
of the bound unit.

If more than one task is executing a pool-sharable bound
unit, only one copy of the segment containing the root is
allocated in the pool. All tasks use this single copy. overlays
of the bound unit can be shared if an OAT is used. If the bound
unit was separated into a code element and a data element, only
the code element is shared. Except for forked tasks, each user
has a separate copy of the data element.

4-28 CZ03-0l

The Memory Manager assigns a segment number (or numbers)
based on the segment descriptors available to the task that
initially loads the bound unit. Concurrent users must access the
bound unit under the same segment numbers. If the segment
utilization of the second and subsequent tasks that attempt to
load the sharable bound unit conflicts with its segment number or
assignment, an error is returned when the tasks attempt to load
the bound unit. In this case, the tasks are not given
addressability to the sharable bound unit.

Memory Deallocation

Assembly language users can explicitly deallocate a
user-created segment by issuing a Delete Segment macrocall.
Users can deallocate bound units by issuing a Detach Bound Unit
macrocall for any but the initially assigned bound unit. A
segment can be implicitly deallocated from physical memory as the
result of the task being deleted or swapped out. It is
reallocated when the task is swapped back in.

*

I
overlay areas and defining OATS are deallocated when the last I

usage of a sharable bound unit has terminated.

SWAP POOL TASK ADDRESS SPACE

Task address space defines a task's boundaries in the swap
pool; that is, its visibility within the collection of tasks
executing in the pool. The following elements constitute a
task's address space:

• Bound unit
• User stack area
• Dynamically created segments
• Group work space
• Group system s.pace
• System global space.

Bound Unit

During its execution life, a task executes one or more bound
units. The initial bound unit to be executed is the one
specified when the task is created or spawned. In Assembly
language programs, other bound units (if any) can be attached or
loaded through the Bound Unit Attach or Bound Unit Load
macrocall s.

User Stack Area

The user stack area is available to users as a work area
through the hardware stack instructions.

4-29 CZ03-0l

I

* I
*

I

I

I

*

I

I

Dynamically Created Segments

During execution, a task can extend its address space by
creating segments. Assembly language programs use the Create
Segment macrocall for this purpose. These dynamically created
segments become part of the issuing task's address space.

Group Work Space

The group work space is common to all tasks in a given task
group. Assembly language programs can obtain blocks of memory
from the group work space when they issue Get Memory macrocalls.
All tasks in the task group have read, write, and execute access
to the group work space.

The group work space can occupy up to two 128K-byte
segments. The group work space grows dynamically, as requests
for memory are issued. In both BMMU and EMMU systems, the
maximum size is 256K bytes. However, this maximum is reduced to
128K bytes if the adjacent segment descriptor has been allocated.

Group System Space

One group system space is provided for each task group. The
system control structures used to support a task group and its
member tasks (for example, file control blocks, bound unit
descriptors for nonsharable bound units, logical file tables, and
logical resource tables) are allocated from the group system
space.

The group system space can occupy up to two 128K-byte
segments. The group system space grows dynamically, as requests
for memory are issued. In both BMMU and EMMU systems, the
maximum size is 256K bytes. However, this maximum is reduced to
128K bytes if the adjacent segment descriptor has been allocated.

5ystem Global Space

System global space consists of the fixed system area
(permanently configured memory) and the system memory pool. A
task's address space includes the segments required for system
global space. System code and data are distributed in the task
address space.

5ystem Representation of Task Address Space

Figures 4-6 and 4-7 are examples of the mechanism used by the
system to represent a task's address space. Figure 4-6 is an
example of a system having a BMMU; Figure 4-7 is an example of a
system having an EMMU.

4..;.30 CZ03-0l

TASK ADDRESS SPACE IN SYSTEM WITH BASIC MEMORY MANAGEMENT UNIT

The following points should be noted when using Figure 4-6.

1. The layout of memory is logical, not physical.

2. The layout applies only to this example; it is possible
to generate systems whose layout is different from that
shown in Figure 4-6.

3. The segments available to you for your bound units are 6
through F. If the group system space requirements are
less than or equal to 128K-bytes, segment 3 can be used. 1·
If the group work space requirement is less than or equal
to 128K bytes, segment 5 may be used.

4. One copy of segments o.o through 1 exists in the system
in this example. These segments contain the system
global space. All tasks in the system can access these
segments.

5. Segments 6 through F are unique to the task unless they
are being shared. If one of these segments is being
shared, each task sharing the segment accesses the same
copy of the segment. When a segment number is assigned
by the Memory Manager, the lowest available segment (or
segments for objects of size greater than 128K bytes) I
beginning with the group work space segment (GWS) plus 2
(segment 6 in this example) will be used. If all
segments from GWS+2 through large segment F have been
used, the segments GWS+l (segment 5 in this example) and
GSS+l (segment 3 in this example) are allocated in that
order, if available.

6. Only one copy of the group work space segment (segment 4
in this example) exists per task group. All tasks in the
task group have unlimited access to this segment. Only
one copy of the segment that contains group system space
(segment 2 in this example) exists per task group. All
tasks in the task group have read and execute access to
this segment. Both the group work space and the group
system space segments are dynamically expanded as demands
are made on them. Each space can grow to a maximum of
256K bytes if the adjacent ascending segment descriptor I
(segment 3 for .the group system space and segment 5 for
the group work space in this example) has not previously
been allocated to contain a task private segment.

4-31 CZ03-0l

SEX3MENT
NUMBER

o.o
0.1
0.2
0.3
0.4
o.s
0.6
0.7
0.8
0.9
O.A
O.B
o.c
O.D
O.E

1
2
3
4
5
6
7
8
9
A
B
c
D
E
F

MAIN MEMORY
(LOGICAL REPRESENTATION)

EXECUTIVE
CODE AND
DATA

1--- -- ---- ---- -- - --

PERMANENTLY
CONFIGURED
CODE AND DATA

SYSTEM
POOL

GROUP SYSTEM SPACE (GSS)
RESERVED FOR GSS EXPANSIONa
GROUP WORK SPACE (GWS)
RESERVED FOR GWS EXPANSIONa
USER BOUND UNIT DATA
USER BOUND UNIT CODE

acan be used by user tasks if GSS/GWS
never exceeds 128K bytes.

Figure 4-6. Task Address Space in BMMU System

4-32 CZ03-0l

TASK ADDRESS SPACE IN SYSTEM WITH EXTENDED MEMORY MANAGEMENT UNIT

The following points should be noted when using Figure 4-7.

1. The layout of memory is logical, not physical.

2. The layout applies only to this example: it is possible
to generate systems whose layout is different from that
shown in Figure 4-7.

3. The segments available to you for your bound units are 80
through FF.

4. One copy of segments 00 through 7F exists in the system
in this example. These segments contain the system
global space. All tasks in the system can access these
segments.

5. Segments 80 through FF are unique to the task unless they
are being shared. If one of these segments is being
shared, each task sharing the segment accesses the same
copy of the segment. When a segment number is assigned
by the Memory Manager, the lowest available segment (or
segments for objects of size greater than 128K bytes)
beginning with segment 80 will be used.

6. Only one copy of the group work space segment (segment 46
in this example) exists per task group. All tasks in the
task group have ·unlimited access to this segment. Only
one copy of the segment that contains group system space
(segment 44 in this example) exists per task group. All
tasks in the task group have read and execute access to
this segment. Both the group work space and the group
system space segments are dynamically expanded as demands
are made on them. Each space can grow to a maximum of
256K bytes if the adjacent ascending segment descriptor
has not been previously allocated to contain a task
private segment.

4-33 CZ03-0l

I

SEGMENT
NUMBER

00
01

02
03
04

05
06
07

44
45
46
47

80
81

•
FF

MAIN MEMORY
(LOGICAL REPRESENTATION)

EXE CUT IVE CODE
AND DATA

1--- - ----- -- -- ---
PERMANENTLY
CONFIGURED
CODE AND DATA

SYSTEM
POOL

GROUP SYSTEM SPACE (GSS)
RESERVED FOR GSS EXPANSIONa
GROUP WORK SPACE (GWS)
RESERVED FOR GWS EXPANSIONa

USER-DEFINED
SEGMENTS

acan be used by user tasks if GSS/GWS
never exceeds 128K bytes.

Figure 4-7. Task Address Space in EMMU System

4-34 CZ03-0l

Section 5
TASK EXECUTION

A task can be characterized as the execution of a sequence of
instructions that has a starting point and an ending point, and
performs some identifiable function. A task can initiate another I
task for execution or terminate itself by calling the task
management commands or macrocalls. Multiple tasks can operate
independently of and asynchronously to each other.

Each application, system, or device driver task operates at
an interrupt priority level, one of the 64 priority levels
provided for each central processor by the hardware and
firmware. This section describes the processing of priority
levels, including context saving of interrupted tasks and the
assignment of priority levels and logical resource numbers to
tasks. This section also describes task communication and
coordination as well as deferred processing.

CENTRAL PROCESSOR INTERRUPT PRIORITY LEVELS

All system tasks, device drivers, and application tasks are
assigned interrupt priority levels that indicate the order of
their execution. This order of execution may be changed due to
timeslicing (see below) or because this is a multiprocessor
system.

Control of the central processor is given to the highest
active interrupt level. However, in multiprocessor systems, a
task at the higher priority may execute at the same time as a
task of the lower priority since each task is executing on a
different central processor.

5-1 CZ03-01

I

I

I

I

I

I

I

Each central processor provides 64 potential interrupt
priority levels that are used by the hardware to order the
processing of events. These levels are numbered from the highest
priority (level 0) to the lowest priority (level 63). Levels 0
through 5 are reserved. Level 63 is the "system idle" level.
The intervening levels (6 through 62) are assigned to logical
resources (that is, devices and tasks).

The determination of which priority level is to receive
central processor time is based on a linear scan of the level
activity indicators. The level activity indicators are
maintained by the hardware in four contiguous dedicated memory
locations in each central processor {see Figure 5-1). Each bit
that is "on" denotes an active priority level; each bit that is
"off" denotes an inactive level.

Bits can be set "on" by software or by hardware events
(interrupts). Most interrupting hardware devices are associated
with priority levels during system configuration (by directives
in the CLM USER file). The three highest priority levels have
dedicated assignments Of special hardware/firmware functions such
as incipient power failure, watchdog timer runout, and trap save
area overflow. Priority level 3 is reserved as an inhibit level,
level 4 is reserved for internal system use, and level 5 is
dedicated to the real-time clock. Succeeding levels are
user-configurable as device levels. Following these are two
levels reserved for system use. Except for level 63, the
remaining levels can be used for application tasks. Level 63 is
reserved for an always active software idle loop or, in
multiprocessor systems, for the task dispatcher.

MEMORY
LOCATION BIT
(HEXADECIMAL) 0 1 2 3 4 5 6 7 8 9 10 11 12

CPU O CPU 1
0020 0120 a

0021 0121 16

0022 0122 32

0023 0123 48

NOTE: IF THE BH CORRESPONDING TO AN INDIVIDUAL
LEVEL IS "ON", THAT LEVEL IS ACTIVE. IF THE
BIT IS "OFF", THE LEVEL IS SUSPENDED.

13 14 15

15

-31 } """u"'"o"" LEVEL NUMBER
47

63

86-023

Figure 5-1. Format of Level Activity Indicators
for each Central Processor

5-2 CZ03-01

When a given priority level is the highest active level, it
receives all available central processor time until it is
interrupted by a higher priority level or until it relinquishes
control by suspending itself (setting its level activity
indicator off). If a priority level is interrupted by a higher
priority level, its level activity indicator remains on and it
will resume execution of the interrupted logical resource when it
again becomes the highest priority level. Each time a priority
level change occurs, the hardware/firmware saves the central
processor context of the task running at the previously highest
active level and restores the central processor context of the
task running at the new highest active level. Interrupting a
task, saving the context of a task, selecting and starting the
highest priority level task, and restoring the context of a task
are done without software involvement.

INTERRUPT SAVE AREA

The context of a level (task) can include the contents of the I
program counter, s-register, B-registers, I-register,
K-registers, R-registers, M-registers, SIP registers, and CIP
registers. The context is stored for each central processor in a I
block of memory known as an Interrupt Save Area (ISA). The
hardware/firmware context save/restore function finds the
appropriate ISA through a pointer supplied in the interrupt
vector for that level. The interrupt vectors are a set of
contiguous memory locations containing an entry for each
potentially active priority level and ordered by ascending
priority level number. Figure 5-2 illustrates the order of the
priority levels, their corresponding interrupt vectors, and the
format of an ISA. *
TASK DISPATCHING

The way in which a task receives central processor time
depends on whether the system has one or more than one central
processor.

In a monoprocessor system, tasks are dispatched according to
their priority level. The task at the highest priority level
receives all available central processor time until it is
interrupted by a task with a higher priority level or until it
suspends itself. In a multiprocessor system, all tasks are
dispatched from a general ready queue. The tasks are placed in
the queue according to their priority level, with higher priority
tasks at the top of the queue. The level at which a task
executes stays the same, but the central processor in which it
executes may vary.

5-3 CZ03-01

I

I
I

Figure 5-2.

FUNCTIONS PRIORITY
LEVEL

POWER FAILURE .Q

WATCHDOG TIMER RUNOUT

TRAP SAVE AREA OVERFLOW

INHIBIT LEVEL

RESERVED

REAL TIME CLOCK 5

SYSTEM BOOTSTRAP DEVICE 6

RESERVED

RESERVED

APPLICATION TASKS

IDLE LEVEL 63

INTERRUPT
VECTORS

ADDESS ISA 0

ADDA ESS ISA 1

ADDRESS ISA 2

SEE NOTE

ADDA ESS !SA 4

ADDRESS !SA 5

ADDRESS !SA 6

ADDA ESS ISA 63

~

I-'

INTERRUPT
SAVE AREA
FOR PRIORITY
LEVEL 6

TSA POINTER

INTERRUPT DEVICE ID

INTERRUPT SAVE MSK

INTERRUPT SAVE MSK

INTERRUPT SAVE MSK

PROGRAM COUNTER

S-REGISTER

87-REGISTER

86-REGISTER

Bl-REGISTER

I-REGISTER

R7-REGISTER

R 1 ·REGISTER

Ml-REGISTER

Ml-REGISTER

SIP CONTEXT

CIP CONTEXT

NOTE ThP. "inh1b1t" level (priority level 3) does not have its own ISA; ll points to the ISA
of the pnor1t'{ level from which 11 was enterttd 86-024

Order of Interrupt vectors and Format of Interrupt
Save Areas for Each Central Processor

Monoprocessor Task Dispatching

When a task in a monoprocessor system is at the highest
active priority 1 evel, it receives all available central
processor time until it is interrupted by a task at a higher
priority level, until it relinquishes control by suspending
itself, or until it has control taken away from it due to
timeslicing (see below). If a task is interrupted by a higher
priority task, it will resume execution when it again becomes
the task at the highest priority level.

When more than one task is assigned the same priority level,
a system software task at a higher level regulates in round-robin
fashion the sharing of the level between tasks. (Timeslicing may
put the task at the end of the round robin queue or demote it to
a lower priority.) Thus a task does not block a level when the
task is put in a waiting state after a request to wait, wait on
list, request semaphore, or terminate, or after a system service
macrocall that does a wait for a data transfer. The context of
another task on the same level will be linked to the level
interrupt vector instead (ref er to "Timeslicing" below).

5-4 CZ03-0l

Multiprocessor Task Dispatching

In a multiprocessor system, the Executive maintains a queue
of ready tasks ordered by priority level. This queue is called
the general ready queue. The Executive dispatches the task at
the top of the queue whenever a central processor becomes free to
provide service. A dispatcher task runs at level 63 in each
central processor and dispatches a task whenever it receives
central processor time.

The dispatcher tasks attempt to balance the load so that high
priority tasks are serviced before low priority tasks and all
processors are used as fully as possible.

TIMESLICING

The technique of timeslicing m1n1m1zes the ability of user
tasks that use large amounts of central processor time to
interfere with interactive users of the system. In DPS 6
systems, timeslicing uses the Real-Time Clock Interrupt Servicing
task (which executes at level 5) to check all tasks at a
configured user level and below. Configuration of timeslicing is I
automatic. All user levels execute in a timesliced manner.
Timeslicing options are discussed in the System Building and
Administration manual.

The way timeslicing operates differs according to whether
system is monoprocessor or multiprocessor.

Monoprocessor Timeslicing

At each clock interrupt, a check is made to see if the task
at the highest active user level has exceeded the configured
value for a timeslice. (The system builder may specify the I
length of a timeslice in milliseconds or may accept the system
default.) If the execution of that task has exceeded the
timeslice value without waiting for some event, the task is
removed from the front of the queue for its priority level and is
placed at the end of that queue.

If a configured number of timeslices occur without the task
waiting on any event, the task is demoted one priority level
(that is, the task's priority level is increased by one). The
task can be demoted again and again until it has been demoted the
configured number of levels or has reached priority level 62.

Each time a task that was demoted waits for some event, it is
promoted one level (that is, its priority level is decreased by
one). The task can be promoted again and again until it reaches
its assigned priority level.

5-5 CZ03-0l

I

Multiprocessor Timeslicing

At each clock interrupt, a check is made to see if the task
at the highest active user level has exceeded the configured
value for a timeslice. (The system builder may specify the
length of a timeslice in milliseconds or may accept the system
default.) If the execution of that task has exceeded the
timeslice value without waiting for some event, the task is
placed on the general ready queue as the last entry among tasks
of its priority.

If a configured number of timeslices occur without the task
waiting on any event, the task is placed on the ready queue and
demoted one priority level (that is, the task's priority level is
increased by one). The task can be demoted again and again until
it has been demoted the configured number of levels or has
reached priority level 62.

Each time a task that was demoted waits for some event, it is
placed on the ready queue and promoted one level (that is, its
priority level is decreased by one). The task can be promoted
again and again until it reaches its originally assigned priority
1 evel.

TRAP HANDLING

The hardware provides a means by which certain events that
occur during the execution of a task can be "trapped", with
control being passed to software routines designed specifically
to cover the condition causing the trap. Events such as the
execution of a MOD 400 monitor call, or the detection of a
program error, hardware error, arithmetic overflow, or
uninstalled optional instruction cause traps (control transfers
to designated software routines) to occur.

Traps are divided into two classes: (1) standard system
traps, for which routines are supplied with the system, and (2)
user-specific traps, for which users supply their own handlers.

An application program can designate which traps are to be
handled by using the enable/disable user trap macrocalls (refer
to the s{stem Programmer's Guide - Volume II for details). If an
enabled rap occurs in the user program, the Trap Manager
transfers control to the connected trap handler for the condition
causing the trap. A trap that is enabled is local to a task.
Such a trap neither affects nor is affected by the handling of
the same trap in another task, even within the same task group.

Any trap that occurs when its handler is not enabled, or that
does not have a handler to process it, causes the executing task
to be aborted.

5-6 CZ03-0l

SYSTEM FEATURES AFFECTING TASK EXECUTION

While MOD 400 does monitor resource use within a task group I
and among task groups, tasks and task groups must cooperate in
their use of system resources to ensure smooth operation of the
appl ica ti on.

Priority Level Assignments

Priority levels 6 through 62 are available for assignment to
system, device driver, and application tasks. The system builder I
establishes the priorities of system tasks and driver tasks
during configuration. (On the DPS 6/22, the Autoconfigurator
establishes these priorities.) You assign the priorities of
application tasks when you create task groups. Priority levels
with low numeric values have higher priority than those with high
numeric values. The procedures for establishing priorities are
described below.

ASSIGNING PRIORITY LEVELS TO DEVICES AND SYSTEM TASKS

The system builder specifies hardware interrupt priority
levels through an argument of the Configuration Load Manager I
{CLM) DEVICE directive. (The Autoconfigurator is used on the DPS
6/22.) When the system builder specifies a particular type of
device, the appropriate Honeywell-written device driver is loaded
as part of the system. The two priority levels following the
last one assigned to a configured device are used by system tasks
and cannot be assigned to application tasks.

One example of priority level assignment is shown in Table
5-1. Levels O through 5 are assigned by the system and are not
available to any user. The operator terminal is assigned to
level 8; however, the system builder can assign any appropriate
level to the operator terminal through a DEVICE directive. {If
the operator terminal is connected to the system through a
communications controller, it must be at a lower {numerically
higher) level than the Communications Supervisor.) At
initialization, the system bootstrap device is assigned to level
6. This assignment remains in effect unless changed by a DEVICE
directive.

Peripheral devices may be assigned to levels on both central I
processors in a multiprocessor system. This assignment is done
automatically by the system.

5-7 CZ03-0l

I
I

Table 5-1 indicates Input/Output (I/O) devices, and not
device drivers, to stress that each peripheral device must have
at least one level assigned to it. Except for communications
devices, peripheral devices cannot share a level. If there are
two printers, each must be assigned a unique level even though
there is only one copy of the associated I/O driver.
Communications configurations require at least one nonsharable
level dedicated to processing communications interrupts. This
level must be higher than any level assigned to a communications
device.

Communications devices can share a level. For example, four
teleprinters (TTYs) and one Visual Information Projection (VIP)
terminal can be configured to share one level or to use up to
five levels. The priorities in Table 5-1 provide maximum
throughput because devices with high transfer rates are assigned
higher priorities than devices with low transfer rates.

Theoretically, the system builder could assign a level number
as high as 59 to a device. In this case, levels 60 and 61 would
be used by the system and only level 62 would be available for
user task groups. In practice, however, the system builder would
want to reserve more than one level for user task groups,
especially for :.t system with a large number of devices. If
priority level 6 and 7 are assigned as shown in Table 5-1, the
theoretical range of levels assignable through CLM COMM
directives is 8 through 58. For a device associated with a COMM
directive, the range is 9 through 59.

Table 5-1. Sample Priority Level Assignments for Tasks
and Devices

Physical Base
Priority Priority
Level Level Use Comments

0 N/A Power failure handler Levels O through 5
1 N/A Watchdog timer run out are automatically
2 N/A TSA overflow assigned by the
3 N/A Inhibit interrupts system.
4 N/A Reserved
5 N/A Real-time clock

6 N/A System bootstrap Set to 1 evel 6 at
device system initial iz a-

tion but can be
changed.

7 N/A Comm uni cations Must be higher
Supervisor level than any

communications
device.

5-8 CZ03-0l

Table 5-1 (cont). Sample Priority Level Assignments
for Tasks and Devices

Physical Base
Priority Priority
Level Level Use Comments

8 N/A Operator terminal Can be assigned
any available
1 evel.

9 N/A TTY device Communications
9 N/A TTY device devices can share
9 N/A TTY device priority 1 ev el s.

10 N/A Removable cartridge disk The priority level
10 N/A Fixed cartridge disk for a pair of

fixed/removable
disks must be the
same.

11 N/A Diskette
12 N/A Diskette
13 N/A Diskette

14 N/A Line printer
15 N/A Card reader

16 N/A Reserved by sy stern The two levels
17 N/A Reserved by sy stern fallowing the last

device-assigned
level are used by
the system.

18 0 Task group A
19 1 Task group B
• . •
• • •
• . •

10 Task group n

.
•
•

63 N/A System idle loop or Always active.
task displatcher

5-9 CZ03-01

I

I

I

I

I

I

I

I

ASSIGNING PRIORITIES TO APPLICATION TASKS

You assign priorities to user task groups and tasks when you
create or spawn them. The command to generate a task group
contains an argument that specifies the base priority level for
the task group. The base priority level is relative to the
highest number priority level assigned to a configured device.
When a task group is assigned a base priority level of zero, the
lead task of the group executes at the physical interrupt
priority level that is three level numbers above the highest
level number assigned to a configured device. When other tasks
in the same task group are created or spawned, they are given
level numbers relative to the base priority level assigned to the
task group. The physical interrupt level at which a task
executes is the sum of the following:

1. The highest level number assigned to a configured device
plus 3

2. The base priority level number of the task group

3. The relative priority level of the task within that
group.

This sum must not exceed 62.

Interactive user tasks are usually given higher priorities
(lower level numbers) than absentee user tasks. Tasks that are
I/O bound should be run at a higher priority than tasks that are
central processor (CP) bound. This permits I/0-bound tasks,
which run in short bursts, to issue I/O data transfer orders as
needed, wait for I/O completion and, while in the wait state,
relinquish control of the central processor to CP-bound tasks.
Otherwise, if the CP-bound tasks have a higher priority, the I/O
devices would be idle while I/0-bound tasks waited to receive
central processor time. (Timeslicing minimizes the ability of
CP-bound tasks to interfere with interactive and I/O bound
tasks.)

Logical Resource Number

A logical resource number (LRN) is an internal identifier
used to refer to task code and devices independently of their
physical priority levels. Use of LRNs makes Assembly language
application task code independent of priority levels so that, if
circumstances require a change in priority levels, the task code
does not have to be reassembled.

DEVICE LRNs

The system uses DEVICE directives to assign LRN values.
Device LRNs may have values from 0 through 252, and from 256
through 4095. Figure 5-3 is an example of LRN and priority level
assignments for devices and system tasks.

5-10 CZ03-0l

LRN Level Use

0
1
2
3 Inhibit interrupts
4
5 Real-time clock

0 6 Operator terminal
1 7 Disk
3 8 Line printer
4 9 Serial printer
5 10 Card reader

Figure 5-3. Example of LRN and Priority Level
Assignments for System Tasks and Devices

APPLICATION TASK LRNs

LRN assignments to application program tasks within each task
group are not dependent on the system configuration on which the
application task group is running. You can assign LRNs or have
the system select the highest numbered LRN available at task
creation. LRNs are assigned to task code within an Assembly
language application program through specification of the Create
Group and Create Task macrocalls as well as the macrocalls that
build data structures (.$IORB, $TRB, and so forth). LRNs can be
assigned at the control language level through the commands for
the creation of task groups and tasks. An LRN for an application
task can have any value from 0 through 4095. Within a task I
group, the LRN for each task must be unique. More than one LRN
can be associated with the same priority level (for example, two
tasks at level 23 can have LRNs of 28 and 29, respectively).

Two kinds of tasks do not have LRNs:

• The lead task of any task group
• Any spawned task.

Logical File Numbers

Logical file numbers (LFNs) are internal file identifiers
associated with file pathnames at the source language program
level or at command level. LFNs can be associated with file
pathnames in Assembly language or COBOL programs, or through
Create File, Get File, and Associate commands. LFNs can be used
to reduce program dependence on actual file pa thnarnes (which are I
likely to vary). An LFN can have any value from 0 through 4095.

5-11 CZ03-0l

I

I

I

Task and Resource Coordination

Tasks can be coordinated in either of two ways:

• Through the use of tasking requests
• Through the use of semaphores.

TASK REQUESTS

One task can request another to execute asynchronously with
it, or the requesting task can later wait for the completion of
the requested task. Both tasks have access to the request block
provided by the requesting task, and can use it to pass arguments
between them.

SEMAPHORES

Semaphores support an application-designed agreement among •
tasks to coordinate the use of a resource such as task code or a
file. A semaphore is defined by a task within a task group and
is available only to the tasks within that group. Use of
semaphores in an application is essential if the application has
multiple tasks and is sharing data in memory.

For each resource to be controlled, you define a semaphore
and give it a 2-character (ASCII) name. The semaphore name is a
system symbol recognized by the system control software1 it is
not a program symbol that needs Linker resolution. The agreement
is that each requester of a resource whose use must be
coordinated issues appropriate system service macrocalls to the
named semaphore to request or release the resource. The task
that defines the semaphore assigns the semaphore's initial
value. The system control software maintains the cur rent value
of the semaphore so as to coordinate requesters of the resource
being controlled. A requester obtains use of a resource if the
semaphore value is greater than zero at the time of the request.
If the value is zero or negative, the requester is either
suspended (waiting for the resource) or notified that no resource
is available, depending on how the request was made.

System service macrocalls are used to:

• Define a semaphore and give an initial value ($DFSM).

• Reserve a semaphore-controlled resource ($RSVSM). This
macrocall subtracts a resource or queues a waiter for the
resource (that is, it decrements the current-value
counter). $RSVSM suspends the requesting task until the
resource is ready.

• Release a semaphore-controlled resource ($RLSM). This'
macrocall adds a resource or activates the first waiter on
the semaphore queue (that is, it increments the
current-value counter") •

5-12 CZ03-0l

• Request the reservation of a semaphore-controlled resource
($RQSM). This macrocall queues a request block (SRB) if
the resource is not available (that is, it decrements the
current-value counter). The requesting task must test the I
queued SRB subsequent to the request in order to determine
when the resource is granted. The requesting task
continues excuting until it executes a $RSVSM macrocall;
then it waits.

• Delete a semaphore ($DLSM}.

A semaphore is a gating mechanism. The initial value you
give to it depends on the type of control you want to exercise.
For example, assume that you want to restrict access to a
particular resource to a one user at a time. The mechanism would
work in the following way:

1. Task A defines a semaphore by issuing the macrocall~

$DFSM ZZ

Omission of the value argument causes the initial value
to be set at 1.

2. Task B now issues a $RSVSM macrocall. The counter is
decremented to o. Task B gets the resource for itself,
knowing that no other task using the semaphore mechanism
is now using or can obtain the resource.

3. Task C issues a $RSVSM macrocall. The counter is
decremented to -1. Task C is suspended and put on the
semaphore queue in first-in/first-out order (because Task
Bis still using the resource}.

4. Task B issues a $RLSM macrocall when it finishes with the
resource. The counter is incremented to O. Task C now
gets the resource. After Task C issues the $RLSM
macrocall, the value again becomes 1.

Use of resources by more than one user at a time can be
arranged by adjusting the initial value of the semaphore. For
example, an initial value of 2 allows two users, a value of 4
allows four users, and so on. The value chosen as the initial
value of the semaphore depends on the nature of the resource and
its intended use.

If it is undesirable for a task to be suspended while a
resource is in use, the $RQSM macrocall can be used instead of
$RSVSM to reserve a resource. $RQSM is an asynchronous
reservation request ($RSVSM is a synchronous request) that causes
a request block to be queued for the resource so that the issuing
task can do other processing before the needed resource is
available.

5-13 CZ03-0l

I
I

I
I

I

TASK HANDLING

More than one task can be concurrently active under MOD 400.
In a multiprogramming environment, a task in each of several task
groups can be active and compete for system resources. Another
possibility is a multi tasking application where several tasks
executing under one task group can be active to compete for
system resources among themselves and with tasks from other task
groups. A FORTRAN or Assembly language program can include
requests to activate several tasks and synchronize their
execution1 these requested tasks .can execute concurrently. A
COBOL, BASIC, c, Pascal, or Ada program executes as a single
task, but can include commands to activate other tasks.

For the system to sequence the execution of tasks, each task
must be assigned to a priority level. In monoprocessor systems,
task competition for the central processor resource is governed
by the hardware/firmware linear priority scan of level activity
indicators. Tasks on the same priority level execute serially in
the order in which they are requested. In multiprocessor
systems, tasks are ordered in a software queue according to their
priority levels. The task at the top of the queue is dispatched
when a processor becomes free. When it is assigned to a
processor, the task excutes at the same priority level as it
would on a monoprocessor system.

The highest priority active task receives all available
central processor time until it waits, exceeds the timeslice
value, terminates, or is placed in hold. In both monoprocessor
and multiprocessor systems, the task could be interrupted by a
higher priority task.

It should be noted that all device drivers are considered to
be tasks in the above sense. Using the File System, buffered
device drivers can execute concurrently with tasks. Drivers
execute on the central processor priority levels assigned to
individual devices and thus have their own contexts. The device
drivers provided in the system are written in reentrant code, are
capable of servicing multiple devices, and execute on any central
processor in a multiprocessor system.

A user task becomes active when a Spawn Task or Enter Task
Request command is issued for it. The Spawn Task command can
request that the invocation of the task be delayed until a
specified time interval has elapsed. FORTRAN programs can cause
a task to become active through the START and TRNON statements.
Assembly language programs can issue a $RQTSK OR $SPTSK macrocall
to activate a user task. Any application program can issue a
command to spawn or request a task by calling the ZXEXCL run-time
routine.

5-14 CZ03-0l

To terminate, tasks of Assembly language programs must
contain a Request to Terminate ($TRMRQ) macrocall. Compilers
provide this call in the object text. $TRMRQ is executed after
the task completes execution.

When you want more than one task to execute concurrently, you
must specify each task in a Create Task or Spawn Task command (or
system service macrocall).

The procedural code for a requested task is either in a
unique bound unit or in a bound unit shared with a task that was
previously created. When a task is requested, the system
searches for its identifying LRN in the table of LRNs associated
with the task group under which the task is executing. The
system activates the task if it is not already active.

TASK STATES

Tasks can exist in any of the following logical states:

• Dormant. There is no current request for the task. A
task enters the dormant state if it is created but never
requested or a terminate request is issued against it. A
task remains dormant until a request is placed against it
or it is deleted. If deleted, it is erased, memory is
reused, and the task cannot be reactivated.

• Active. A task is executing or ready to execute when its
priority level becomes the highest active level in the
central processor. A task remains active until it waits,
terminates, or is suspended. Tasks in the general ready
queue are active.

• Wait. A task is not executing because it may have caused
its own execution to be interrupted until the completion
of an event such as the completion of a requested task, or
until a timer request is satisfied, or until a task
releases a semaphore. A waiting task loses its position
in the priority level round-robin queue.

I

An I/0 order to disk, magnetic tape, the operator
terminal, or an unbuffered card reader usually results in I
a wait condition. Task code written in FORTRAN or
Assembly language will also wait in the following
circumstances: (1) a write order is issued to an
interactive terminal or to a printer when a previous write
has not completed, (2) a read order is issued before the
transfer of the current message from an interactive
terminal is complete (the RETURN key is not pressed). In
COBOL, these circumstances result in a wait if the program
is executing its I/O statements in synchronous mode;
otherwise, if in asynchronous mode, a status code value of
9I is returned with no waiting.

5-15 CZ03-0l

I

• Suspend. A task is removed from execution by an external
human action (for example, the operator entering a Suspend
Group command or a user interrupting a program with a
Break action) • The task is activated through another
human action (for example, the operator enters an Activate
Group command or a user enters a command after the Break
action).

EXAMPLE OF SYSTEM INTERACTION WITH USER TASKS

Figure 5-4 illustrates a typical interaction between the
system control software and two tasks within a group. In this
example, Task A has an absolute priority level of 13 and Task B
has an absolute priority level of 12. The absolute priority
level is obtained by adding a task's relative priority level, the
task group's base priority level, and the highest system physical
priority level plus three.

Figure 5-4 indicates the priority levels at which the central
processor runs as the sequence of events occurs. The diagram
also indicates the consecutive activity of user tasks, the system
control software, and the hardware and firmware. The numbers in
the diagram correspond to the numbers in the sequence of events
and are explained in order in the text.

Note that if this were a multiprocessor system, Task B might
have been dispatched to a processor other than the one on which
Task A was running.

OPERATOR TERMINAL I/O LOGGING

If desired, you can create a disk-based log that captures all
traffic involving the operator terminal. Each message sent from
or received at the operator terminal is recorded in this log with
a time stamp as a separate log record. The logging mechanism
maintains two files and, when one is filled, automatically
switches to the other. For more information, refer to the System
User's Guide.

5-16 CZ03-01

HARDWARE
PRIORITY LEVEL
PRIORITY LEVEL 4
(CLOCK MANAGER)

PRIORITY LEVEL 12
(TASK B)

LEVEL OF HARDWARE OPERATION

4 5 6
·- - -1----1- -

9 ·- -.
: 9 10 11
•----1-- -. . PRIORITY LEVEL 13 2 3 :

(_T_A_S_K_A_)----·+------1.J- ____ .: : 7 8
·-----t-1---

: 12 13 14 15 16 17
----r---~--4---:

PRIORITY LEVEL 63
(IDLE LEVEL)

----INDICATES USER TASK EXECUTION
- - - - - • INDICATES SYSTEM CONTROL SOFTWARE EXECUTION
••••••• .. INDICATES HARDWARE/FIRMWARE ACTION

User Task Execution

1. Task A is running; task B is requested by task
A, or entered or spawned through a command.

2. Task A does not issue a wait.

5. Task B begins execution because its priority
level is higher than that of task A.

6. Task B issues a call to the clock manager and
issues a wait function to wait for clock time
out. Task B is suspended.

8. Task A resumes execution.

9. Task B's clock-related wait times out. The clock
manager interrupts task A. Task B's priority
level is activated.

12. Task A resumes execution because its priority
level is now the highest active level.

13. In a multitasking program, task A could issue
a wait call to wait for completion of task B.

15. Task A continues to completion and
issues a terminate call.

System Control Software Execution

3. Places the request in the request queue for task
B. (Assume that there are no other requests in
this request queue.) Activates priority level 12.

4. Examines the request and ascertains task B's
starting address from start address data ac
companying the request.

7. Now operating at the priority level of task A, the
highest active priority level, returns control to
task A.

10. Task B resumes execution and
continues to completion, then
issues a terminate call.

11. Removes the request from the request queue
for task B. Suspends priority level 12.

14. Detects that task B's request is marked as
terminated. Control is immediately returned
to task A.

16. Removes the first request from the request
queue for task A. If there are no additional
requests in this request queue, suspends priority
level 13. If there are no remaining active priority
levels, idles at priority level 6 3.

86-025

Figure 5-4. System Interaction with User Tasks
in a Monoprocessor System

.

.
•

5-17 CZ03-0l

I

I

I

I

INTERTASK AND INTRATASK GROUP COMMUNICATION

Information can be passed among task groups and tasks by
means of request blocks, common files, and the message facility.

Request Blocks

Task code written in Assembly language can pass information
to other Assembly language tasks in the same task group by using
variable-length request blocks. The request blocks can contain
data or pointers to information structures. All request blocks
must be in common address space so that they can be shared by the
tasks. (Refer to the System Programmer's Guide for details on
building request blocks.) Higher level languages cannot use
request blocks directly7 they require called subroutines written
in Assembly language.

Common Files

Tasks within the same task group and tasks within different
task groups can communicate through disk files. The concurrency
status must be the same for all tasks using the files. The
requesting tasks must have access rights to the files.

A pipe is a special type of sequential file that also
provides synchronization and queuing facilities to cooperating
tasks. Pipes are used by tasks in different task groups
(applications) or in the same task group to communicate with each
other.

Message Faciliti

The message facility allows two or more task groups (users)
or two or more tasks within a task group to communicate with one
another. This communication is done through containers called
"mailboxes." Messages (requests) sent to a task or task group
are queued in a mailbox and are dequeued when received.

To control the sending and receiving of messages, the message
facility provides a number of macrocalls and commands. One set
of macrocalls (Initiate, Send, and Terminate Message Group)
allows a message (a request) to be sent to a mailbox7 another set
of macrocalls (Accept, Receive, and Terminate Message Group)
allows a message to be received from a mailbox. Commands are
provided to allow you to send, receive, list, and cancel messages
(requests). The Mail command is provided to allow you to send
messages (mail) to another user's mailbox and to display mail in
your own mailbox.

Def erred processing of print and task group requests is
carried out through the use of the message facility. Deferred
processing is described later in this section.

5-18 CZ03-0l

Before the message facility commands or macrocalls can be
used, and before the def erred processing of print and task group
requests can be initiated, you (or the operator) must create the
mailboxes and activate the message facility task.

The paragraphs below describe mailbox creation, the
activation of the message facility task, and the command and
macrocall interfaces.

CREATING MAILBOXES

Three steps are involved in the construction of a mailbox.
You must create the mailbox root directory, create the mailboxes,
and set access controls on the created mailboxes. (Ref er to the
Commands manual for details.)

The mailbox root directory is the directory that is to
contain the simple names of the mailboxes.

The system assumes that the mailbox root directory is in the
MDD directory. (An MDD directory is supplied on the system root
volume.) You, however, are free to create your own mailbox root
directory through the Create Directory command.

Each mailbox is created through the Create Mailbox command.
This command creates a directory corresponding to the mailbox
name and a file ($MBX) within that directory defining the mailbox
attributes.

To prevent unauthorized use of the message queues, you should
set access controls as follows:

• Senders must be given list access on the directory
defining the mailbox.

• Receivers must be given read access on the $MBX file for a
given mailbox.

Individual mailboxes can be deleted through Delete Mailbox
commands.

ACTIVATING MESSAGE FACILITY TASK

The Start Mail operator command activates the message

I

facility. This command contains an optional argument used to set
the name of the mailbox root directory to other than the default I
directory pathname (>>MDD).

MESSAGE FACILITY COMMAND INTERFACE

The commands that can be used to send/receive messages (mail)
are Mail (MAIL), Send Message Mailbox (SMM), and Accept Message
Mailbox (AMM). Commands are also provided to list and delete
messages.

5-19 CZ03-0l

I

I

I

I

I

Mail Command

The Mail command (also referred to as the local mail
facility) is used to send and receive multiline messages to/from
the mailbox whose name (id) is the same as the person id of the
receiving user. A message sent by a Mail command is queued in
the mailbox and displayed only if the receiving user issues a
Mail command.

To send a mail message, you issue the Mail command,
specifying the mailbox id (person id) of the user to receive the
messages. The message to be sent can be located in a file (named
by an argument of the command) or it can be entered after the
Mail command has been executed.

To receive mail messages, you issue the Mail command without
arguments. The contents of your mailbox are displayed when the
command is executed. If you r_equest deletion of the messages,
they are deleted from the mailbox after being displayed.
Otherwise, the messages remain in the mailbox.

Send Message Mailbox and Accept Message Mailbox Commands

The SMM and AMM commands (also referred to as the local
message facility) are used for single-line messages that must be
viewed immediately or at a specified time. The AMM command is
used to specify that messages sent by the SMM command be
displayed when received or at the time specified in the SMM
command.

To send a message, you issue the SMM command, specifying the
person id (mailbox) to which the message is to be sent. The
message is included in the command line. You can include the
-TIME argument to specify a delivery time for the message. You
can send a broadcast message by specifying * in place of the
mailbox in the SMM command. The message will be sent to all
logged-on users who have issued an AMM command indicating their
willingness to accept messages.

To receive messages, you issue the
already in your mailbox are displayed.
displayed when placed in your mailbox.
time for display have not been reached
Messages are deleted from your mailbox
displayed.

AMM command. Messages
Subsequent messages are
Messages whose date and

are not displayed.
as soon as they are

Senders can use both the Mail and SMM commands. A receiving
user who issues a Mail command receives both types of messages.
If you issue an AMM command, you receive only messages sent by
the SMM command unless you specified the -IMBX * argument. Only
when this argument is specified will you receive both types of
messages.

5-20 CZ03-0l

The -IMBX argument also allows you to specify by name the
sending user from whom you will accept messages for immediate
display. Messages sent by other senders are stored in your
mailbox. The -AMBX argument allows you to obtain messages from
mailboxes other than the one associated with your person id. I
MESSAGE FACILITY MACROCALL INTERFACE

You can use the message facility on the Assembly language
level by using the macrocall interface. To permit the sending
and receiving of messages, the message facility provides the
following macrocalls:

• Initiate Message Group ($MINIT)
e Send ($MSEND)
• Accept Message Group ($MACPT)
• Receive ($MRECV)
• Terminate Message Group ($MTMG)
• Count Message Group ($MCMG)
• Cancel Enclosure Level ($MCME).

The information associated with these macrocalls can be passed by
means of request blocks.

A task group that wishes to send a message to a mailbox must
issue a $MINIT macrocall to open the send-message session. The
.mailbox is identified by a name entered in the request block. As
a result of this macrocall, the message facility returns a
message id, unique to the task group, to identify the message to
the other macrocalls (that is, the send). The task group then
issues one or more $MSEND macrocalls to send message data. The
send-message session is closed by the $MTMG macrocall or,
alternatively, by the $MSEND macrocall. The sending task group
can issue the $MCME macrocall to delete the last record of an
incomplete quarantine unit or the entire incomplete quarantine
unit. (A quarantine unit is the smallest amount of transmitted I
data available to a receiving task group.) Receipt of the
message can be deferred by the sender.

A task group wishing to receive a message from a mailbox
issues a $MACPT macrocall to open the receive-message session.
The mailbox is identified as described above for the $MINIT
macrocall, and the message facility returns a message id to be
used by the $MRECV and $MTMG macrocalls.

The task group then issues one or more $MRECV macrocalls to
receive message data. The receive-message session must be closed
with a $MTMG macrocall.

5-21 CZ03-01

I

I

The message may be accepted on the following selection
criteria:

• First available message
• Sequence number
• Submitter name
• Submitter name and sequence number.

The receiving task group can request the message in record
sizes other than those in which the message was sent. The
receiving task group delimits the amount of received data by
range or enclosure level.

The message facility can be used most effectively by two task
groups wishing to communicate if they both simultaneously send
and receive a message. To accomplish this, each of the task
groups should issue the $MINIT macrocall to open the send-message
session and the $MACPT macrocall to open the receive-message
session. In this case, the quarantine unit is the vehicle used
to exchange data between the two task groups.

DEFERRED PROCESSING FACILITIES

The MOD 400 def erred processing facilities are supported by
the message facility (refer to "Message Facility" above). In
def erred processing, the messages are requests.

Def erring the execution of interactive and absentee task
group requests makes it possible for you to gain greater control
over the processing sequence. Deferring print requests allows
you to obtain program independence from the availability of print
devices. Queuing and later transcribing reports provides a
spooling capability that places printing and punching outside of
program context.

Def erring Task Group Reguests

When placing an interactive or absentee task group request,
you can have the request entered in a disk queue and can postpone
any action being taken on the request until a specified time.
When the request queue structures are on disk, memory space is
conserved and the data in the queues can be recovered in the
event of a system failure (refer to Section 6).

Assuming that an interactive and/or absentee task. group has
been created, two steps are required to def er group requests.
The operator must create the request queues (mailboxes), and you
must issue task group requests with optional arguments specifying
the time each request is to be activated.

5-22 CZ03-0l

CREATING TASK GROUP REQUEST QUEUES

The operator uses the Create Group Request Queue command to
create queue structures in which requests issued to a given task
group will be stored. The operator must also issue a Start Mail
command if one had not been previously issued. These procedures
are described in the System User's Guide.

QUEUING TASK GROUP REQUESTS

You queue task group requests by issuing an Enter Group
Request command. You can postpone action being taken on a
request by specifying the -DFR (defer for interval) or -TIME
(defer until date/time) arguments.

Once the operator has issued a Create Group Request Queue
command for a task group, all further requests for that group are
queued whether or not the requests are being def erred.

If the operator does not issue a Create Group Request Queue
command, you can still submit group requests but will not be able
to def er the requests.

Def erring Print Requests

The system provides a deferred printing capability under
which your requests for printing specified files are queued in
memory or disk mailboxes. The actual transcription of the files
is done at a later time under the control of an operator-created
system task group called a daemon.

After you submit a deferred print request, you can resume
normal activities, log off, or reboot the system without losing
the request.

The three steps involved in deferred print processing are
creating the mailboxes, activating the daemon, and queuing the
print requests. The information in the following paragraphs is
conceptual. Detailed procedures for def erred printing are given
in the System User's Guide.

CREATING PRINT REQUEST MAILBOXES

The operator establishes the mailboxes that are to contain
the queued print requests. The mailboxes can be in memory or on
disk. The mailbox names must be in the form $PR.Qn {n is an
integer from 1 through 9 that identifies the relative priority of
the queue, with 1 being the highest priority and 9 the lowest).

5-23 CZ03-0l

CREATING THE PRINT DAEMON

The operator is responsible for defining and activating the
daemon to process the print requests. (The supplied START UP.EC
file creates a standard daemon task group at system startup. The
operator can accept this daemon, modify it, or create his/her
own.)

To create a daemon task group, the operator issues a Start
Mail command (if one was not already issued), a Create Group
command naming the daemon to be created, and an Enter Group
Request command identifying the mailboxes to be used for queuing
the requests and the devices to be used for printing.

Multiple daemon task groups can be run concurrently using
common or separate sets of mailboxes and printers.

QUEUING PRINT REQUESTS

Once the daemon task group is active, you can queue print or
punch requests by issuing Def erred Print commands. You can
employ the -TIME argument to defer the printing of a file until a
specified date and time.

Queuing and Transcribing ReEorts

Any file in print or punch format (i.e., any report file) can
be queued and subsequently transcribed to an available printer or
card punch. Report queuing and transcription is a spooling
capability that provides automatic and manual report
transcription, time-of-day printing or punching, and an automatic
setup function that includes a sample transcription file
(template).

The report queuing and transcription facilities control
report transcription outside the context of the program.
Reporting procedures for identical software can be totally
different in different situations without requiring
reprogramming.

Report queuing and transcription have three major aspects:
creating a report queue, queuing a transcription request, and
transcribing a report.

CREATING REPORT QUEUES

A report queue is a directory that allows you to place a
report in a queue and subsequently transcribe the report. Report
queues are created, modified, and deleted through Report Queue
Maintenance (RQM) commands. The characteristics of the report
queues are determined when the queue is created; the contents are
determined when a report is placed in the queue for later
transcription.

5-24 CZ03-0l

When the report queue is created, a report queue profile file
is built. The report queue profile file designates the
characteristics of reports that will be entered in the report
queue and printed or punched at a later time. The report
characteristics include:

• Name of form descriptor
• Format of reports to be queued (print or punch)
• Transcription mode (automatic or manual)
• Column number at which printing is to begin
• Line at which printing is to begin (head of form)
• Number of print lines per inch
• Number of copies of report
• Time at which report is to be transcribed
• Heading line
• Destination line.

The report queue profile file is complete when the report
queue is created; however, various aspects of the profile can be
overridden when the report is queued.

QUEUIN:l REPORT REQUESTS

The name of a report to be subsequently printed or punched is
placed in a report queue through the Queue Report (QRPT)
command. This command also associates with the report a
specialized report queue profile file that governs the details of
the report transcription. Once a request has been queued, it
remains queued until the file has been transcribed or the request
pathname has been deleted through a report queue maintenance
renew or delete function.

TRANSCRIBING REPORTS

Previously queued reports are written to a printer or card
punch through the Unspool (UNSP) command. A single UNSP command
can unspool all current and future reports. The printing or
punching characteristics are determined by the report queue
profile file created through the RQM command, the specialized
report queue profile file created by the QRPT command, the user's
activities, and the arguments specified in the UNSP command.

The UNSP command defines the report queue and the hard copy
device to be used. After the command is executed, the
specialized report file (if any) is deleted from the report
queue. All reports whose profile matches the specified profile
are unspooled in a single invocation of UNSP.

The report queue profile file can specify that the report is
to be transcribed automatically or manually.

5-25 CZ03-0l

Automatic transcription is used when constant monitoring of a
report queue is desired. When there is no transcription activity
in progress, the unspool routine suspends itself for 1-minute
intervals. When transcription of the queue is activated, each
report in the queue is printed immediately unless one of the
following is true:

• Manual mode was specified in the controlling profile.

• The specified time of day for report transcription has not
been reached (or exceeded).

Manual mode is used to print reports in a nonautomated
fashion. When the reports are required, the UNSP command is
issued. All reports on the queue are transcribed immediately,
regardless of time or mode. When the print queue is empty, UNSP
terminates.

5-26 CZ03-0l

Section 6
BACKUP AND RECOVERY

MOD 400 provides facilities that enable you to backup and
reorganize disk files, preserve the execution environment during
a power failure, perform file recovery at the record level, and
restart a program from a previously established point.

The file backup and reorganization facility consists of the I
save and restore functions. These functions provide you with a
means of:

• Backing up disk files or volumes on 1/2-inch or 1/4-inch
magnetic tapes or other media so that a copy of the files
is available should the original files become corrupted.

• Consolidating (concatenating) files that have become
fragmented through continuous updating.

The power resumption facility uses the memory save and
autorestart unit to preserve the memory image through a power
failure lasting up to 2 hours. If power is restored during this
time, the power resumption facility reconnects the previously
online peripheral and communication devices and restarts the
tasks that were running when the power failure occurred. If the
power failure lasts more than 2 hours, the memory image is
destroyed and the power resumption facility disabled. When power
is restored, you can reinitialize the system and use the file
recovery and checkpoint facilities to restart the system from a
previously established restart point.

6-1 CZ03-0l

I

File recovery enables you to dynamically save record images
before they are updated and, if necessary, later write the images
back to the file, thereby returning the file to its unaltered
state. File recovery provides file integrity in the event of a
system failure. MOD 400 supports file recovery through three
distinct functions:

• Before-image recording - Preserves a record prior to its
being updated.

o Cleanpoint or checkpoint declarations - Issued in your
program to define a point at which a multirecord or
multif ile update transaction is complete. When an update
transaction is complete, the associated before images are
destroyed.

• Rollback, recovery, or restart functions - Returns the
files to their unaltered state by applying all before
images that have been recorded since the last cleanpoint.

File restoration procedures enable you to reconstruct disk
files and/or volumes that are damaged as a result of a device
failure. File restoration is provided through two distinct
functions:

• After-image recording - Preserves a record of the updates
made to files.

• Roll Forward utility - Reapplies updates (after images) to
files to bring them up to their most recent consistent
state before the device failure.

After images are used in conjunction with the Save, Restore,
and Roll Forward utilities to return files to a known state if
data in the files is destroyed as a result of a device failure.

The cleanpoint, rollback, and recovery functions should be
used to provide file recovery in a transaction-oriented
environment. They are best suited for applications in which a
single transaction causes a number of record updates. In an

I absentee processing environment, the checkpoint and restart
procedures should be used for file recovery and program restart.

The checkpoint restart facility enables you to establish a
point in your program to which you can return at a later time and
continue processing. The return point (checkpoint) is used to
save the current status of the task group. You issue a
checkpoint call in your program when you reach a point in your
processing at which the program could be restarted. A restart
can be performed at the most recently completed checkpoint at any
time during processing. If the task group is abnormally
terminated for any reason, it can be restarted at the most recent
valid checkpoint.

6-2 CZ03-01

FILE BACKUP AND REORGANIZATION

File backup and reorganization is implemented through the
save and Restore utilities. The Save utility transfers disk
files and directories to 1/2-inch or 1/4-inch magnetic tape or
another specified storage medium. The Restore utility
reconstructs the saved files and directories and puts them back
on disk. Any file that has been saved and restored is
automatically reorganized for disk space and record access
efficiency.

Since file access time efficiency may be lessened after a
file has been in use for some time, it is recommended that disk
volumes be periodically saved and restored. The files on the
restored volume will be be compacted, resulting in optimal space
allocation and improvements in the time required to search
directories and check access rights.

Saving Files and Directories

The Save utility enables you to save an entire disk volume, a
directory and all its subdirectories and files, or a specified
file. If you are saving a directory, you can specify the number
of levels of subdirectories (with their associated files) to be
saved. Any access control lists associated with the saved files
and directories are also saved, unless you specify otherwise.

The saved data, whether a whole volume, a file, or
directories and files, is stored in a save file. The save file
can be a magnetic tape or disk file, or an output device such as
a card punch. When the Save utility processes the files and
directories to be saved, it adds information that is meaningful
only to the Restore utility. The saved files and directories are
not just copies of the originals.

The Save utility can be executed while the files being saved
are in use. Used with a journal file {refer to "File
Restoration" later in this section) , this type of save opera ti on
provides a dynamic and concurrent backup facility for high volume
systems that cannot afford periodic shutdown to perform static
file saves.

Restoring Files and Directories

You can restore from a save file all or part of the data you
saved on that file. You can restore an entire volume (if you
saved an entire volume), a directory and its associated
subdirectories, or a specified file. Whatever you restore, you
can return to the place from which you saved it, or you can place
it in another directory or another volume.

6-3 CZ03-01

Data saved from one type of disk can be restored to another
type, provided the new disk has the required capacity. For
example, you can restore a diskette volume onto a cartridge disk
volume, or a partially filled mass storage device volume to a
cartridge module disk volume.

POWER RESUMPTION

Power resumption is an optional facility that allows the
system execution environment to be automatically restarted after
a power interruption. The central processor must have the memory
save and autorestart unit. This unit can preserve the memory
image through a power failure lasting up to 2 hours. (It cannot,
however, preserve the state of the I/O controllers nor can it
ensure that no operational changes have been made to the mounted
volumes.)

If fewer than 2 hours have elapsed when power is returned to
the central processor, the power resumption facility will perform
the following functions:

• Reinitialize the system software.

• Reconnect peripheral devices.

• Reconnect communication devices serviced by the
Asynchronous Terminal Driver {ATD) line protocol handler
or the Teleprinter {TTY*) line protocol handler. {Refer
to the System Buildin~ and Administration manual and the
511stem Programmer's Guide - vol. I for information about
t ese line protocol handlers.)

• Restart certain application tasks that were active at the
time of the failure. Application tasks that are capable
of being restarted are those using the display formatting
and control facility and those containing user-written
code to handle power failure and power resumption.

Implementing the Power Resumption Facility

The power resumption facility must be included in the MOD 400
Executive at system building. The central processor must contain
a memory save and autorestart unit that has been activated by the
operator {refer to the System User's Guide for activation
procedures) •

When power resumption is specified in the system building
dialog, all peripheral devices and all communication devices
associated with the ATD and TTY* line protocol handlers are
designated as reconnectable and will be automatically reconnected
when power is restored. If any ADT or TTY*-associated device is
not to be automatically reconnected, the Set Terminal
Characteristics {STTY) directive associated with the device must
not contain the -RECONNECT argument.

6-4 CZ03-01

Power Resumption Functions

The power resumption facility automatically performs the
following functions:

• Restarts the device drivers, clock, communications
subsystem, and display formatting and control facility.

• Reconnects all peripheral devices that were online at the
time of the failure.

• Reconnects ATD- or TTY*-associated communication devices
that were online at the time of the failure, except for
those devices designated as not reconnectable.

• Restores the screen forms on reconnected terminals
controlled by the display formatting and control facility.

• Resets the system date and time if the date/time clock has
a separate battery backup unit.

• Reloads the memory management unit.

• Reestablishes the integrity of mounted volumes.

• Restarts application tasks that were active when the power
failure occurred, provided the tasks used the display
formatting and control facility or contained user-written
code to handle power failure and power resumption.

If an application task is to be notified when a power
resumption has occurred, it must be written to check Trap 53 when
the task becomes active and is issuing its own instructions (not
executing Executive instructions). (Refer to "Trap Handling" in
Section 5.)

After a power resumption has occurred, peripheral devices and
reconnectable ATD- or TTY*-associated devices that were online at
the time of the failure are again brought online. The operator
may be required to initialize certain peripheral devices. A
terminal user may be required to reenter the input line if he/she
had not pressed the RETURN or XMIT key when the failure
occurred. (Refer to the System User's Guide for details.)

6-5 CZ03-0l

I

I

I

FILE RECOVERY

The file recovery facility enables you to save record images
from a file before it is updated and to later write these images
back to the file, eliminating the alterations made during the
updating. Every time a record is updated, a copy of the record,
as it exists before the update, is written to a system-created
file. The system-created file is called a recovery file; the
records it contains are called before images. The system uses
recovery files to bring your data files to a consistent state
following a software failure or a system failure such as that
caused by a loss of power. When the before images are applied in
reverse chronological order to your data files, the data files
are rolled back to a previously established state.

Designating Recoverable Files

File recovery is optional. You designate a file as
recoverable through the -RECOVER argument of the Create File
command. Files not created as recoverable can be made
recoverable by specification of the -RECOVER argument of the
Modify File Attribute (MFA) command. Also, you can designate all
files in a directory or volume to be recoverable through the
Modify Directory Attributes (MDA) command. Recoverable files can
be made nonrecoverable through the specification of the
-NORECOVER argument in the MFA or MDA command.

Recover~ File Creation

Each task group (or task in some cases) having a data file
designated as recoverable has associated with it a recovery
file. The recovery file is created by the system when the first
before image for a recoverable file is about to be written.

All recovery files are created subordinate to your working
directory, unless you specified otherwise by the Assign Recovery
File command. (The names of the files are recorded in the
$$CATALOG directory, which is positioned under the root directory
of the system volume. This directory is maintained by the
system.) Each recovery file is assigned a name of the form:

$$REC.nnggtt

where nn is the node identifier, gg is the group identifier, and
tt is the task identifier.

File Recovery Process

The system recovers a data file (erases the updates made to
it) by writing the before images back to the file. You declare
points in your task group processing (called cleanpoints) at
which all file updates are considered valid. When a cleanpoint
is declared, all before images taken up to that point are
invalidated. New before images are written when you again begin
to update the file. t

6-6 CZ03-0l

You can perform a rollback at any time during processing.
When a rollback is requested, the before images are written to
the file, wiping out updates made since the last cleanpoint.

use of the cleanpoint and rollback task group functions is I
recommended in a transaction-oriented environment.

TAKING CLEANPOINTS

When you consider the data in your task group's file(s) to be I
consistent and valid, declare a cleanpoint in your task group.
Cleanpoints are established by $CLPNT macrocalls in Assembly
language programs and by the ZCLEAN utility in programs written
in higher-level languages (for example CALL "ZCLEAN" in COBOL).
When a cleanpoint is declared, the system performs the following
actions:

• Writes all buffers modified by the task group to disk.

• Updates all directory records for files modified by the
task group.

• Invalidates the recovery file before images that have been
taken for data files used by the task group.

• Unlocks all previously locked records belonging to the
task group. (Tasks waiting for these records are
activated.)

The File System automatically performs a cleanpoint when a
recoverable file is closed.

REQUESTING ROLLBACK

Rollback initiates the recovery of your task group's files to I
the condition in which they were at the last cleanpoint. If
programming in Assembly language, request a rollback by coding a
$ROLBK macrocall. If programming in a higher-level language,
request a rollback by using the ZCROLL utility (for example, in
COBOL use a CALL "ZCROLL" statement). When you request a
rollback, the system performs the following actions:

• Takes before images from the recovery file and writes them
to the data files used by the task group, thereby wiping
out updates made since the last cleanpoint.

• Invalidates the before images for the task group's data
files on the recovery file.

• Unlocks all previously locked records belonging to the
task group. (Tasks waiting for these records are
activated.)

The File System automatically performs a rollback when a task
group terminates abnormally.

6-7 CZ03-01

I

I

RECOVERING AFTER SYSTEM FAILURE

If recovery files exist, the operator should issue the
Recover command so that the system will perform a rollback of all
recoverable data files. (Refer to the System User's Guide for
details.)

FILE RESTORATION

File restoration provides the ability to preserve updates
that have been made to files and to apply these updates to saved
versions of the files if the original versions become corrupted.
You cause images of records that have been modified (after
images) to be recorded in a journal (after image) file. You can
then use the journal file in conjunction with the Save, Restore,
and Roll Forward commands to restore files to a known state if
data in the files is destroyed as a result of a device failure
(if I/O errors indicate any damaged files and/or volumes, file
restoration procedures are recommended).

Designating Restorable Files

You designate files as restorable by specifying tpe -RESTORE
argument of the Create File command. Files not created as
restorable can be made restorable by specifying the -RESTORE
argument of the Modify File Attribute (MFA) command. Also, you
can designate all files in a directory or volume to be restorable
through the Modify Directory Attributes (MDA) command.
Restorable files can be made nonrestorable by specifying the
-NORESTORE argument of the MFA or MDA command.

It is recommended that files designated as restorable also be
designated as recoverable (having the -RECOVER attribute) to
provide for complete file integrity if a device or system failure
occurs.

Journal File Creation

The journal file is created and maintained by the operator
through the Open Journal, Close Journal, Display Journal, and
Swap Journal commands. One system-wide journal file, on tape or
disk, records updates made to all restorable disk files. A
system-created journal history file contains the name of the
current journal file and a history of all previous journal files,
including the date and time they were created.

Each time a record in a restorable file is updated, the
system records on the journal file the image ~f the record as it
exists after the modification (the after image). The after image
of the updated record is written to the journal file at the time
the record in the file is physically updated. If the operator
specifies the -BEFORE argument in the Open Journal command, the
system will also record on the journal file the image of the
record as it exists before the modification (the before image).
You might want to record before images for audit purposes.

6-8 CZ03-0l

The journal file contains a running summary of all changes
made to restorable files (for example, if a restorable file is
renamed or modified, appropriate entries are added to the journal
file to reflect these changes). Restorable disk files cannot be
modified in any way unless the journal file has been previously
opened by the operator.

File Restoration Process

For each file that is corrupted, the restoration process
involves mounting a known valid version of the file,
reconstructed from data preserved during a previous save
operation. The save operation involves preserving the data
contents and selected attributes of the uncorrupted file (by
means of the Save command) before any catastrophe occurs, then
restoring the file structures of the saved file (using the
Restore command) after the file has been corrupted. Following
these actions, you cause after images from the journal file to be
applied to the restored file by using the Roll Forward command.
The restored file now incorporates the changes or updates stored
in the journal file since you last invoked the Save command.

File restoration offers more extensive procedures if files
are corrupted following a device failure and file recovery
procedures fail to return files to a consistent state.

For example, the operator opens the journal file and enters
the Recover command. If the Recover command executes
successfully, you can log in and continue processing. If the
Recover command fails to execute successfully, the operator must
close the journal file, mount saved versions of all files, and
use the Restore command to reinstall the saved versions. The
Roll Forward command is then entered. This command applies
journal file images to all restored files, thereby updating the
files to reflect modifications made after Save commands were
entered for those files. File restoration is then complete and
users can log in and continue processing.

CHECKPOINT RESTART

I

The checkpoint restart facility allows you to provide a task I
group file recovery and program restart capability in an absentee
processing environment. Through checkpoint restart, you can
establish a point in your program to which you can return at any
time and continue processing. This return point (called a
checkpoint) is used to save the current status of the task group
request. You can perform a restart to the most recently
completed checkpoint after the abnormal termination of the task
group request or at any point during the processing of the task
group request. A restart cannot be performed from an earlier
checkpoint, nor can it be performed after the normal termination
of a task group request.

Checkpoint restart does not support the use of the Listener
secondary login facility.

6-9 CZ03-0l

I

Checkpoint

When a task requests a checkpoint, the system records the
current contents of the task group's memory and the current state
of tasks, files, and screen forms onto a checkpoint file you have
previously assigned. The system then takes a cleanpoint for that
task group so that recoverable files are synchronized with that
checkpoint. (Ref er to "File Recovery" earlier in this section
for a description of recoverable files and cleanpoints.)

The system supports one checkpoint task and any number of
other tasks that are dormant or waiting on requests placed
against other tasks in the task group. (Thus, a single active
command executing under the Command Processor and/or any number
of nested EC files can be checkpointed.)

CHECKPOINT FILE ASSIGNMENT

You enable the checkpoint restart facility for your task
group and designate where its checkpoint images are to be
recorded by issuing the Checkpoint File Assignment command.

Checkpoints are written alternately to each of a pair of
checkpoint files. This technique ensures the availability of the
previous valid checkpoint if a failure occurs during the process
of taking a checkpoint. The system locates and uses only the
most recently completed successful checkpoint from the pair of
checkpoint files that you specified.

When designating the checkpoint file, specify a single
pathname (the last element of which can be a maximum of 10
characters). The system appends the suffixes .1 and .2 as
appropriate. If the system cannot find one or both of the
specified checkpoint files, it creates it (them).

TAKING A CHECKPOINT

When a checkpoint is taken, the system writes a checkpoint
image and performs a cleanpoint for all recoverable files being
used by the task group. If programming in Assembly language,
request a checkpoint by coding a $CKPT macrocall. If programming
in a higher-level language, request a checkpoint through the
ZXCKPT utility (in COBOL you can use a CALL "ZXCKPT" statement or
the RERUN clause in the I-0-CONTROL paragraph) •

Your task group must be in a state that allows the system to
take checkpoints. To be in a checkpointable state, tasks in the
group can have no outstanding requests against tasks outside the
group. Specifically, a task group is in a checkpointable state
when each task that is part of the group has requested a
checkpoint, is waiting on a request issued to another task in the
task group, or is dormant (no current requests exist for the
task).

6-10 CZ03-0l

Once a checkpoint is recorded by a task group, it remains
available as a restart point until the next checkpoint request is
completed, the current checkpoint file is disassigned (by the
-DISASSIGN argument of the Checkpoint File Assignment command) ,
or the task group request is terminated normally.

You can use the Def er Checkpoint macrocall to prevent or I
allow the taking of checkpoints by tasks within the task group.
If you wanted to protect a procedure from being checkpointed, you
would disable checkpoints at the beginning of the procedure and
enable them at the end of the procedure.

The lead task of the group may be waiting on both another
task that is a member of the group and a "break" request.

CHECKPOINT PROCESSING

When a task group takes a valid checkpoint, the system
records the following information on the current checkpoint file
established for that group:

1. Executive information including data structures, user
pool memory blocks obtained by get memory operations,
data segments of bound units linked with separate code
and data, nonsharable bound units, and floatable
overlays.

2. Status and pathnames of the standard I/O files.

3. Memory locations and pathnames of sharable bound units.

4. Current state of screen forms for terminals operating
under the display formatting and control facility.

5. Status and position of all active user files (files that
have been associated, reserved, or opened).

When your file information has been recorded, the checkpoint
image is completed and a cleanpoint is taken. You must ensure
that files to be synchronized with the checkpoint restart process
have been designated as recoverable. Since the File System
performs a cleanpoint when a recoverable file is closed, you may
have to take a checkpoint prior to closing the file to keep
checkpoint restart synchronized with the state of the recoverable
file. (Temporary files cannot be designated as recoverable.)

Checkpoints cannot be taken while an active local mail
message group exists. In other words, a checkpoint cannot be
taken in the period between message initiation or acceptance and
message termination; refer to "Message Facility Macrocall
Interface" in Section 5.

6-11 CZ03-0l

I

Checkpoints are not made automatically obsolete by the normal
termination of the task under which they were issued. To
invalidate a previous checkpoint (taken during the execution of
one command) before processing a new command, you must take a
checkpoint immediately prior to the termination of that command.

Restart

You can perform a restart at the following times:

• During the processing of the task group request that
issued the checkpoint request.

• During the processing of a task group request that was
scheduled after the abnormal termination of the task group
request in which the checkpoint was taken.

• When the system is reinitialized following a system
failure.

When a restart request is issued, the task group issuing the
request is terminated abnormally and the task group request
recorded on the checkpoint file is again put into effect.

The system locates the most recently completed checkpoint and
reads the checkpoint image from the file, rebuilding the
Executive data structures and memory blocks, reloading bound
units, and repositioning active user files.

Procedural code and workspace must occupy the same physical
memory locations that were used when the checkpoint was taken.
In general, task groups that are to be restarted must be the sole
users of memory pools. Sharable bound units referred to by these
groups must be permanently loaded (through the Load command in
the system startup EC file). The configuration under which the
restart is performed must be identical to that which existed when
the checkpoint was taken.

REQUESTING A RESTART

To restart from the last completed checkpoint (and to abort
the current task group request if restcrting during the session),
issue the Restart command. The operator can restart an existing
task group that has a valid checkpoint by using the -GROUP
argument of the Restart command. If the memory blocks required
to effect the restart are not available, the restart is aborted.
Specification of the -WTMEM argument of the Restart command
causes the system to wait until the specific memory blocks
required to perform the restart become available.

If this is a restart following a system failure, the Recover
command must have been issued by the operator or through an EC
file to perform a system-wide rollback of all recoverable files.

6-12 CZ03-0l

If a restart is performed during a session, the abort
(termination) of the group request causes a rollback of all
recoverable files in your task group. The abnormal termination
of the group request causes the last completed checkpoint image
to be retained as a valid checkpoint. The Abort Group and Abort
Group Request commands force an abnormal termination1 the Bye
command causes a normal termination. (The normal termination of
the Command Processor with a nonzero value in the $R2 register is
treated as an abnormal termination for checkpoint file purposes.)

The Validate Checkpoint command or active function can be
used to ascertain whether the specified checkpoint file pair
contains a valid restartable checkpoint.

RESTART PROCESSING

When you issue the Restart command, the system performs the
foll owing steps:

1. Locates the most recently completed checkpoint.

2. Validates that the restart is being performed under the
same user id as that used when the checkpoint was taken.

3. Rebuilds Executive data structures.

4. Reads nonsharable bound units, data segments, floatable
overlays, and memory blocks that were obtained by get
memory operations from the checkpoint image into the same
memory locations they occupied at the time the checkpoint
was taken.

s. Reloads sharable bound units in the system memory pool.
Only the code segment is reloaded if the bound unit was
linked with separate code and data. Unless it was linked
with the restart relocatable attribute (Linker RR
directive), the code segment is reloaded at the same
system pool memory 19cations occupied when the checkpoint
was taken. ·

6. Associates, gets, opens, and positions active user files
recorded on the checkpoint image. Rollback should have
been performed already (refer to "Requesting a Restart"
above).

7. Restores the screen content of terminals that were
operating under the display formatting and control
facility and were active at the time of the checkpoint.

8. Reissues the break request if such a request had been
issued by the lead task at the time of the checkpoint.

9. Turns on the task that issued the checkpoint request at
the next sequential instruction after the checkpoint.

6-13 CZ03-0l

The checkpointed state of the standard I/O files (user-in,
user-out, command-in, and error-out) is reestablished at restart
time. Modifications made to files (for example, EC files)
between the checkpoint and the restart must be restricted to
those that do not invalidate the repositioning of the files. A
command being restarted must remain in the same position in the
f ile1 only those commands that follow the restarted command have
any effect on the restarted task group request.

Sharable bound units being used by a checkpointed task group
are reloaded and not restored from a checkpointed memory image
(except for the data segments of bound units linked with separate
code and data). Thus, all such bound units should contain· only
code. All sharable bound units in use by a restarting task group
must be identical to the versions that existed at the
checkpoint. They cannot be relinked. If an Overlay Area Table
(OAT) is in use for such a bound unit, no overlay area can be
reserved at the time the checkpoint is taken.

If you have application programs that issue physical I/O
orders for communication devices, you must reissue connects to
those devices before issuing read and write orders to them.

6-14 CZ03-01

GLOSSARY

HT (Horizontal Tab)

Command Processor: Reserved character.

(space or blank)

Command Processor and Utilities: Reserved character;
separates arguments and commands. Operator Interface
Manager: At the beginning of a line, interrupts output.

(exclamation point)

File Slstem: A pref ix indicating a physical device (sympd)
name (or example, !LPTOO). Line Editor: Escape character
(for example, !F).

n (quotation mark)

Command Processor: Reserved character delimiting strings
that contain embedded blanks (for example, "D. COOK"). See '
(apostrophe) •

i (number sign)

Line Editor: Signifies condition in If Data, If Range, and
If Line directives. Linker: Specifies the current address.

g-1 CZ03-0l

$ (dollar sign)

Line Editor: In an address expression, represents the last
line of the buffer (for example, $P). In any other Line
Editor expression, represents the end of a line (for example,
/DIVISION.$/). Linker: Specifies the next location (for
example, BASE$). File System: First character of a
macrocall name or mailbox (for example, $GTFIL).

% (percent sign)

Linker: Address argument representing the location two bytes
greater than the highest address previously used in a linked
root or overlay (for example, LDEF XTAG,%). Copy, Compare,
Compare ASCII, and Rename Commands: Represents the character
in the corresponding component and letter position of the
entry name (for example, START_U%.EC).

& (ampersand)

Line Editor: Used in the string expression of the Substitute
directive to indicate that the current expression is to be
repeated (for example, S/TO BE/& OR NOT &/). Multi-User
Debugger ~numeric) and $D Debug: Address symbol,
representing the next address beyond the address used in the
previous debug directive. Command Processor: Reserved
character. Indicates continuation of a command on more than
one line. Execute Command: Indicates EC directives and
comment 1 ines (for example, &P BEG IN LINK) • TCL Com;eil er:
Indicates continuation of a statement on more than one line.

' (apostrophe)

Command Processor: Reserved character. See " (quotation
mark).

() (parentheses)

Command Processor: Delimits components of an iteration set
(for example, PRINT (FILEA FILEB)). Multi-User Debugger
(Numeric) and $D Debu9: Delimits action lines to be stored
for later use. Line Editor: Delimits multicharacter buffer
name; optionally, delimits single-character buffer name (for
example, B(EXEC)). TCL Compiler: Indicates insertion of
field value.

* (asterisk)

Line Editor, CLM, TCL ComEiler: Designates an expression.
Patch: Comment directive. File system: Represents one
component of a file name (for example, COBPRG.*). In
relation to Access Control Lists (ACLs) and Common Access
Control Lists (CACLs), represents any person, account, and/or
mode (for example, COOK.*.INT). List Profile Util~
Multi-User Debugger ~Bumeric) and $D Deb1:!_9: Signifies "all."

g-2 CZ03-0l

+ (plus sign)

Line Editor: Indicates unary addition of an address (for
example, +2P, 2+3). Multi-User Debugger (Numeric) and $D
Debug: Performs addition.

, (comma)

Line Editor: Separates two addresses to be referenced
inclusively {for example, l,SP). CLM, Linker, Sort, and
Merge: Separates arguments within directives.

- (minus sign)

Command Processor: Immediately precedes an argument (for
example, -ECL). Line Editor: Indicates unary subtraction of
an address (for example, -2P). Multi-User Debusger (Numeric)
and $D Debug: Performs subtraction.

• (period, decimal point)

File System: (1) Separates an entry name into components
(for example, COBPRG.C). (2) Used as a single element at the
beginning of a pathname to indicate the working directory
(for example, • >FILE DUMP) • Line Edi tor: (1) In an address,
represents the current line of the buffer (for example, .P).
(2) In an expression, requests a string containing any
character (for example, /FROG.AM/). Multi-User Debu9ger and
$D Debug: Address symbol, representing the same starting
address used in the previous debug directive. TCL Compiler:
Indicates the end of a statement. ·

I (slash)

File System: If first character of a star name, negates the
meaning of the star name (for example, /*.WORK). See*
(asterisk). Line Editor: Delimits strings in Expressions
and Substitute directive (for example, S/OLD/NEW/). Patch
and File Change: Immediately precedes a relative location or
offset. Multi-User Debu9ser: Separates location from
repetition value. $D Debug: Separates directive from the
LRN of the output device and the location from the repetition
value. Linker: Precedes a comment in a Linker directive
file (for example, /SECOND OVERLAY).

: (colon)

Line Editor: Indicates label definition (for example, :7).

g-3 CZ03-0l

; (semicolon)

Line Editor: Separates two addresses; the first address
becomes the current line, after which the value of the second
address is calculated (for example, 2;.3P). Patch:
Separates arguments in Patch directives. Sort and Mer~e:
Separates directives. Linker: Separates Linker direct1ves
on one line. Command Processor: Reserved character.
Separates commands. Multi-Us~r Debugger and $D Debug:
Separates directives.

< (less-than)

File System: Indicates movement in the storage hierarchy
toward the root and a change in one level in that direction
(for example, <LIBRARY). Assembler and Patch: Immediately
precedes a relocatable address. Multi-User D.ebu<J'9er and $D
Debug: Specifies the condition to be satisfied in an IF
directive for conditional processing of the directive line.

= (equal)

Line Editor: Print Line Number directive. Multi-User
Debugger (Numeric) and $D Debug: Expresses equality for an
IF directive. Linker: Address argument, specifying the base
address associated with the object unit identified by an
associated label (for example, BASE =OPNCRD). Copy, Com2are,
Compare ASCII, and Rename comm~nds: Represents the
corresponding component of a file name (for example, COPY
FILE.A =.B).

> (greater-than)

File system: (1) Used at the beginning of a pathname to
indicate a file or directory under the User Root Directory
(URD) (for example, >SYSLIB2) and (2) Within a pathname,
indicates movement in the storage hierarchy away from the
root; connects two directory names or a directory name and a
file name (for example, ~MYVOL>MYDIR>MYFILE). Line Editor:
Go To directive (for example, >l) • Multi-User Debugger and
$D Debug: Specifies the condition to be satisfied in an IF
directive for conditional processing of the directive line.
Assembler and Patch: Indicates short displacement address.

>> (two consecutive greater-than signs)

File System: Used at the beginning of a pathname to indicate
a file or directory under the System Root Directory (SRD)
(for example, >>SID).

g-4 CZ03-0l

? (question mark)

Line Editor: Address pref ix directive. Copy, Comeare!
Compare ASCII, and Rename Commands: Represents any character
appearing in the corresponding component and letter position
of a file name (for example, START ?P.EC). (See%.) File
5ystem and Command Processor: Immediately precedes a ~~
symbolic start address (entry point) in a bound unit name
(for example, Nav?TIME). In some commands, requests help
(for example, EP (Edit Profile)) •

@ (at-sign)

Command Processor: Delete the previously typed character
(for example, TIMM@E).

[] (brackets)

Command Processor and TCL Compiler: Delimits active
functions (for example, (&P THE TIME IS [TIME]). Multi-User
Debugger (Numeric) and $D Debug: Signifies the contents of
the location defined by the expression within the brackets.

" (circumflex)

File System: (1) Indicates a ~oot directory, and must
immediately precede a root directory name (for example,
"SYSRES) and (2) Used as a single element at the beginning of
a pathname to indicate the root of the working directory (for
example, ">MYDIR). Line Editor: (1) When designated as the
first character of a string, requests lines beginning with
the string, excluding the circumflex (for example,
/"IDENTIFICATION/) and (2) Indicates negation in certain
directives. Multi-User Debugger (Numeric) and $D Debug:
Indicates negation as part of an IF directive.

(underscore)

File System: Joins two or more words in a file or directory
name that the system is to interpret as one word (for
example, LIST_PROG) •

(vertical bar)

command Processor: Suppresses rescanning for returned active
strings.

abbrev, login

See login abbreviation

g-5 CZ03-0l

I

I

abbreviation file

A file containing user-defined abbreviations and the
character strings they represent.

abbreviation, login

See login abbreviation.

abbreviation processor

A system component that expands abbreviated commands and
passes them to the Command Processor.

abort

An operator action resulting in the immediate cessation of
operation of a task group or the operation of the currently
executing request in a task group. All resources are
returned to the Executive. The bound unit of the lead task
of an aborted request may be retained.

absentee

A processing mode characterized by the absence of interaction
between you and the system during execution of your program.

Access Control List (ACL)

ACL

A list specifying which user(s) can use the r~source with
which the list is associated.

See Access Control List.

activate

An operator action resulting in the resumption of a
previously suspended task group. (See Suspend.)

active

A task is in the active state when it is executing or ready
to execute, when its priority level becomes the highest
active one in the central processor.

active function

A form of a command whose output string is placed in the
command line before the rest of the line is processed.

CZ03-0l

active level

The priority level currently in effect.

address, absolute

A reference to a storage location that has a fixed
displacement from absolute memory location zero.

address, relocatable

A reference to a storage location that has a fixed
displacement from the program origin, but whose displacement
from absolute memory location zero depends upon the loading
address of the program.

administrator, system

Person responsible for registering users so that they can I
access the MOD 400 system.

after image

The image of a record in a restorable disk file as it exists
after alteration. Written to a system journal file.

algorithm

A set of well defined rules for the solution of a problem.

alternate index organization

Alternate indexes are used to view a file ordered with a
different key. The same datafile can be ordered in many
different ways by having more than one alternate index.

application program

area

A user-written program for the solution of a business,
industrial, or scientific problem.

A DM6 I-D-S/II integrated file.

argument

User-selected items of data that are passed to a procedure
(for example, system service macrocall arguments that are
passed to the called system service, or command arguments
passed to the invoked task). Synonymous with arg. (See
parameter.)

g-7 CZ03-0l

*

argument, control

A keyword whose value specifies a command option. {See
keyword.)

argument, positional

An argument whose position in the command line indicates to
which variable the item of data is applied.

ASCII (American Standard Code for Information Interchange)

The interchange code established as standard by the American
Standards Association.

asynchronous

Without regular time relationships. As applied to program
execution, unpredictable with respect to time or instruction
sequence.

attribute, file

Any of a set of disk file characteristics established when
the file is created or modified to include such integrity
features as recovery, restoration, and record locking.

base level

(See priority level, base.)

BCB

(See Buffer Control Block.)

BCD

Binary-Coded Decimal notation.

before image

A copy of a record from a recoverable disk file, as it exists
just prior to updating, written to a system recovery file.

Binary Synchronous Communications (BSC)

A communications procedure, using a standardized set of
control characters and control character sequences, for the
synchronous transmission of binary-coded data.

g-8 CZ03-0l

block

The logical unit of transfer between main memory and a tape
file. The size of a block may be variable depending on the
number of records and whether they are fixed or variable in
length.

BMMU

(See MMU.)

bootstrap loader

(See loader, bootstrap.)

boot·strap routine

A routine, contained in a single record that is read into
memory by a Read-Only Memory (ROM) bootstrap loader, which
reads the operating system into memory. (See ROM bootstrap
loader.)

bound unit

I

The output of one Linker execution that is placed in one
file. A bound unit is an executable program consisting of a I
root and zero or more related overlays. The root and each
overlay is also a load unit.

Bound Unit Descriptor (BUD) block

A system control structure containing information provided by
the Linker to describe a bound unit.

break

A user action, initiated by pressing the break or interrupt
key, that interrupts a running task so that commands can be
entered. After the break, the interrupted task can be
restarted or terminated.

breakpoint, bound unit

A point set in a debugging program where instructions are
inserted to monitor the Executive loading process.

g-9 CZ03-0l

breakpoint, quick

A point in a program where a 02 instruction is inserted to
monitor time-dependent tasks.

breakpoint, true

A point in a program where a 02 instruction is inserted to
interrupt execution and activate a debugging program to
monitor task execution.

broadcast

BSC

BUD

A message sent to all logged-on users through the Send
Message Mailbox (SMM) command.

(See Binary Synchronous Communications.)

(See Bound Unit Descriptor (BUD) block).

Buff er Control Block (BCB)

A control structure, contained in the system pool area, which
describes the characteristics of the buffer.

buffer, Input/Output (I/O)

A storage area used to compensate for the differences in the
flow rates of data transmitted between peripheral devices and
memory.

buff er pool

A collection of storage areas to which the File System
assigns disk files when they are opened. Shared files are
assigned to public pools in system memory. Exclusive files
are assigned to private pools in task group memory (or to
public pools if no private pools exist).

building, system

(See system building.)

bus

(See Megabus.)

g-10 CZ03-0l

byte

CACL

A sequence of eight consecutive binary digits operated upon
as a unit.

(See Common Access Control List.)

calling sequence

CCP

A standard code sequence by which system services or external
procedures are invoked.

(See Channel Control Program.)

channel

A path along which communications can be sent.

Channel Control Program (CCP)

A microcoded program that resides in the Communications
Processor; the CCP processes data characters, protocol
headers, and framing characters.

checkpoint

A point in your program to which control can be returned and
processing resumed following a task group abort. When you
take a checkpoint, the system records the current contents of
your memory area and the current status of tasks, files, and
screen forms on a checkpoint file. (See restart.)

checkpoint file

CI

CIP

A file on which the system records the current status of the
task group request when a checkpoint is taken. Checkpoint
files are created in pairs and checkpoints are written
alternately to each file.

(See Control Interval.)

(See Commercial Instruction Processor.)

v

g-11 CZ03-0l

cleanpoint

CLM

A point in your processing at which all file updates are
considered to be valid. (See also rollback.)

(See Configuration Load Manager.)

clock frequency

The line frequency, in cycles per second, that is the basis
(coupled with the scan cycle) for calculating the interval
between real-time clock-generated interrupts.

Clock Manager

A monitor component that handles timesl icing· as well as
requests to control tasks based on real-time considerations,
and requests for the time of day and date in ASCII format.

Clock Request Block (CRB)

A control structure supplied by a task to request a service
from the Clock Manager.

clock scan cycle

The time in milliseconds between clock-generated interrupts.

clock timer block

The control structure used by the Clock Manager to control
the clock-related processing of tasks.

code, object

The code produced by a compiler or the Assembler. The object
code requires further processing by the Linker to produce a
bound unit. (See also object unit.)

code, source

The code or language used by the programmer when the program
was written. Code that must be processed by a compiler or
the Assembler and the Linker before it can be executed.

cold restart

Restart after system failure.

g-12 CZ03-0l

command

An order that is processed by the Command Processor.

command accounting

A software component used to collect command-usage data and
generate a report.

command-in

Any file or device from which commands to the Command
Processor are read.

command language

The set of commands that you can issue to control the
execution of your task.

command 1 ev el

The state of the Command Processor, when it is capable of
accepting commands, optionally indicated by the display of
the RDY (ready) message.

command line

A string of up to 252 ASCII characters in the form:
command name 1 [arg l ••• arg n];command name 2 [arg l ••• arg k]
••• , where command name i is the pathname(sf of the bound -
unit(s) that performs tiie command's function. (See argument
for a description of "arg."; see&.)

Command Processor

A software component that interprets commands issued by the
operator or a user, and invokes the required function.

Commercial Instruction Processor (CIP)

A processor that includes an enhanced instruction set
providing native commercial mode instructions.

commercial simulator

A software component that executes a set of business-oriented
instructions.

Common Access Control List (CACL)

A list specifying the access rights to all files or
directories subordinate to the directory in which the list is
established.

g-13 CZ03-0l

communications device

A device that transfers data over communications lines and is
connected through a communications processor. ·

Compile Unit (CU)

A program unit, produced by a single execution of a compiler
or the Assembler, that requires further processing by the
Linker to produce a bound unit. (See object unit.)

concurrency

The read or write file access that the reserving task group
intends for its tasks and the read or write file access that
the reserving task group allows to other task groups.

conf igura ti on

The procedure that involves the use of configuration
directives to define a system that corresponds to actual
installation hardware.

Configuration Load Manager (CLM)

A system component that reads a file of user-supplied
directives and causes the system to be configured according
to the contents of the directives.

control argument

(See argument, control.)

control character

An ASCII character intepreted by a device (such as a VIP) as
having a keyboard control function.

Control Interval (CI)

CRB

The unit of transfer between main memory and the storage
medium (primarily disk devices); comparable to a "block" for
tapes. The size is specified by the user and remains
constant for a file. For disk files, the size of the CI must
be a multiple of 256 bytes. A Unified File Access System
(UFAS) file is composed of Cis that are numbered, starting at
one. The CI also determines the buff er size.

(See Clock Request Block.)

g-14 CZ03-01

CRT

Cathode Ray Tube. (See Visual Information Projection.)

CTB

(See Clock Timer Block.)

cu

(See Compile Unit.)

cumulative file

A third disk file utilized by Level 4 error logging. (See
hold file and raw file.) Statistics contained in the raw
file can be analyzed by examining the contents of the
cumulative file. The cumulative file contains performance
histories for each monitored device or for memory. *

daemon

A system task group that manages queued print requests.

Data Base Control Block (DBCB)

DM6 I-D-S/II working storage associated with a particular run
unit containing record buffers, currencies, and other control
information.

Data Base Control System (DBCS)

The DM6 I-D-S/II run-time package, which interprets Data
Manipulation Language verbs, accesses the data base, and
returns results to the user work area.

Data Description Language (DDL)

A nonprocedural language used to describe a data base (the
schema description) or a portion of a data base (the
subschema description).

data management

DBCB

DBCS

A File System component that handles the transfer of logical
records.

(See Data Base Control Block.)

(See Data Base Control System.)

g-15 CZ03-0l

I

I

DDL

(See Data Description Language.)

device driver

A software component that controls all data transfers to or
from a peripheral or communications device. (See line
protocol handler.)

Device Media Control Language (DMCL)

A nonprocedural language that describes the physical
characteristics of a DM6 I-D-S/II data base including CI
size, area size, data base size, and CALC header frequency.

device-pac

The adapter between a Mass Storage Controller (MSC) or
Multiple Device Controller (MDC) and peripheral device (for
example, printer, diskette drive).

direct access

The method for reading or writing a record in a file by
supplying its key value.

direct address

The method for reading or writing a record in any Unified
File Access System (UFAS) file by supplying its simple key
(control interval and line number).

directive

A secondary level order read through the user-inf ile to a
secondary processor (for example, Line Editor, Linker, Patch,
Debug, and CLM (configuration) directives.)

direct login

A login that Listener performs on a terminal as soon as that
terminal comes online. The login is controlled by the
terminal's T-record in the Terminals File. Compare manual
login.

directory

disk

A special file containing a description of other files and/or
subordinate directories.

A generic name for mass storage devices such as diskette,
cartridge disk, fixed (sealed) disk, and storage module.

g-16 CZ03-0l

disk cache processor

A separate processor with dedicated buffer memory that allows
disk read requests to be processed at memory access speeds.

display processing

A method for developing, displaying, maintaining, and
utilizing terminal display forms. (See VDAM and VISION.)

DM6 I-D-S/II

DM 6 Integrated-Data-Store/II. A CODASYL-based data base
management system. (See also integrated file.)

DMCL.

(See Device Media Control Language.)

dope vector

A structure for passing data items not aligned on word
boundaries between programs.

dormant state

The state of a task when there is no current request for that
task.

Dual-Line Communications Processor (DLCP)

A programmable interface between a central processor and
communications device(s) consisting of two lines.

dynamic file organization

A file whose records are organized to be accessed
sequentially or directly by their record position. The main
purpose of this organization is to provide efficient storage
for records to be accessed through alternate indexes.

EBCDIC

Extended Binary-Coded Decimal Interchange Code.

EC file

A file containing commands and (optionally) directives. In
interactive mode, an EC file typically contains frequently
used command sequences. In absentee mode, an EC file must
contain all commands, directives, and anticipated user
responses to program messages that will be needed for a
session.

g-17 CZ03-0l

I

I

*

Edit Profile utility

EFN

An interactive program that allows the system administrator
to register new users and/or to delete, list, enhance, and
change the profiles of registered users.

(See External File Name.)

EMMU

(See MMU.)

entry point

A start address within the root segment of a bound unit. By
default, an entry point is the beginning of a procedure; you
can specify alternate entry point by symbolic address when
you invoke a bound unit.

equal name convention

A special pathname convention that can be used with certain
commands to automatically construct the output pathname entry
name when the input pathname entry name has been resolved.

error logging

The collecting of memory and/or hardware-related error
statistics for selected peripheral devices.

error-out

The file or directive by which the system communicates error
information to the user or operator; established when a group
request is entered.

extent

A group of contiguous allocated sectors on a disk.

External File Name (EFN)

The absolute pathname of any file within the system. It must
start with the A or > character. It has the form Avol id>
dir l> ••• >dir n>filename for files on logically dismountable
vollimes and tne form (>)>dir l> ••• >dir n>filename for files
on the system volume. Devices can be referred to by the
sequence lsympd. (See sympd.)

external procedure

A routine that is assembled or compiled separately from the
program that calls it.

g-18 CZ03-0l

FCB

(See File Control Block.)

FDB

(See File Description Block.)

FIB

(See File Information Block.)

field

file

A specific area of a record used for a particular category of
data.

A named collection of one or more records.

File Control Block (FCB)

A File System data structure that controls a user's access to
a file. An FCB is pointed to by an entry in the logical file
table and, in turn, points to an FCB. There is one FCB per
user Logical File Number (LFN) associated with a file.

File Description Block (FDB)

A File System data structure that describes a file or
directory. An FDB is pointed to by an FCB for a particular
file. There is one FDB per file or directory currently known
(reserved) in the File System.

File Information Block (FIB)

A user-created data structure containing required information
for file processing.

file management

A File System component that handles the creation, deletion,
reservation, opening, and closing of files.

file name

A 1- to 12-character name assigned to a collection of related
data records, or to a peripheral or communications device.
For a file on disk, this name is assigned when the file is
created. For devices, the name is assigned at system
configuration. (See pathname.)

g-19 CZ03-01

file organization

A method that establishes a relationship between a record and
its lo ca ti on in a file. (See indexed, relative, random,
dynamic disk, or sequential file organization.)

file recovery

Ability to bring an uncorrupted disk file to a consistent
condition after a software malfunction or system failure.

file restoration

Ability to reconstruct a disk file that has been corrupted
due to device fault.

file set

A number of tape volumes used to contain one· or more files.
There are four types of tape volumes:

1. Monof ile Volume - Contains only one file

2. Multivolume File - Contains one file on two or more tape
volumes

3. Multif ile Volume - Contains more than one file on one
volume

4. Multivolume Multifile - Contains more than one file with
any file spanning more than one volume.

File System

System software consisting of file, data, and storage
management components that handles Input/Output (I/O)
functions of the supported I/O devices.

First-In/First-Out (FIFO)

An execution or scheduling algorithm in which the first item
received is the first item processed.

fixed-length record

A record stored in a file in which all of the records are the
same length.

floatable overlay

An overlay that can be loaded into any available memory
location within a task group's memory pool.

g-20 CZ03-0l

form

A display terminal screen that provides areas (fields) into
which you enter information that defines a function to be
carried out.

full duplex

Simultaneous independent transmission of data in both
directions.

full pathname

An absolute pathname which, when specified, begins with a
circumflex (") (for example, the root directory.)

function

A procedure that returns a single value to its caller. (See
subroutine.)

globally sharable bound unit

A bound unit containing reentrant code and linked with the
GSHARE directive. A globally sharable bound unit is loaded
in the system pool and can be used by any task in the system.

group control block

A system structure describing attributes of a task group.

group_id

(See task group identification.)

group system space

An area of memory (segment) that contains the system control
structures used to support a task group and its tasks in a
swap pool.

group work space

GRTS

An area of memory (segment) from which tasks in a swap pool
obtain blocks of memory.

General Remote Terminal Supervisor.

half duplex

Transmission of data in one direction at a time.

g-21 CZ03-0l

*

High Memory Address (HMA)

HMA

The address of the highest physical memory location in the
central processor.

See High Memory Address.

hold file

A file that contains a copy of the Level 2 or Level 4 error
logging statistics that are stored in memory. The hold file
can be retrieved after system shutdown or crash.

home directory

Your initial working directory after logging in.

hot restart

Restart during a session.

I pool

(See independent memory pool.)

IMA

(See Immediate Memory Addressing.)

Immediate Memory Addressing (IMA)

A form of addressing a location in main memory by referencing
the location directly, indirectly, or through direct or
indirect indexing.

independent memory pool

A fixed partition memory pool. All tasks executing in a
specific independent memory pool share a common virtual view
consisting of all memory assigned to that pool and system
global memory.

indexed file organization

A disk file whose records are organized to be accessed
sequentially in key sequence or directly by key value.

indirect extent

The group of contiguous allocated disk sectors that holds the
relative volume number that contains the succeeding set of
extents.

g-22 CZ03-01

Indirect Request Block (IRB)

(See Intermediate Request Block.)

Input/Output (I/O) device

A peripheral or communications device.

Input/Output Request Block (!ORB)

A control structure used for communication between a program
and an I/O driver outside of the File System.

integrated file

A data base disk file whose records are accessed directly or
sequentially using CALC keys and key values.

interactive

A processing mode characterized by a dialog between you and
the system during execution of your program.

interactive task

A task, which, when invoked, is under real-time control of
user-specified directives.

Intermediate Request Block

A control structure used by the system to queue and record
status and control information developed from user request
blocks; also known as Indirect Request Blocks.

international graphics

ASCII characters whose hexadecimal equivalents are CO through I
FF.

interrupt

The initiation, by hardware, of a routine intended to respond
to an external (device-originated) or internal
(software-originated) event that is either unrelated, or
asynchronous with, the executing program.

Interrupt Save Area (ISA)

An area used to store the context of an interrupted task.
There is one ISA for each task in memory.

g-23 CZ03-01

interrupt vector

A pointer to a priority-level-specific memory area called an
ISA. There is one vector for each priority level, each
having a dedicated memory location.

Intersystem Link (ISL)

IORB

ISA

ISL

A hardware element interconnecting two buses, thereby
permitting the same functions between two units on different
buses as between two units on the same bus.

(See Input/Output Request Block.)

(See Interrupt Save Area.)

(See Intersystem Link.)

journal file

key

A system file that contains a running summary of all changes
made to all disk files designated as restorable.

An identifier for a specific record within a disk file.

keyword

KSR

A fixed-form character string preceded by a hyphen (for
example, -ECL). It can stand alone (for example, -WAIT) or
can be followed by a value (for example, -FROM n).

A Keyboard Send-Receive teleprinter.

KSR-like terminal

A KSR teleprinter, CRT keyboard, or Visual Information
Projection (VIP) terminal, which supports the Teleprinter
(TTY*) protocol and is connected to the MDC, MLCP, or DLCP.

g-24 CZ03-0l

language key

A two-ASCII-character identifier used as a file name suffix
to provide multiple national language support. The system
default language key is specified at CLM time with the system
default message library pathname. *

lead task

LFN

LFT

line

The controlling task of a task group. The lead task can
invoke other tasks to perform functions on its behalf (for
example, system services).

(See Logical File Number.)

(See Logical File Table.)

A record stored in a Series 60-compatible file.

line number

The relative position of a logical record within a control
interval (CI). Line numbers start at zero for each CI.

Line Protocol Handler (LPH)

link

A communications program that processes messages, interrupts,
and timeouts; handles protocol acknowledgment and error
recovery; initializes the channel control program.

(1) A process by which the Linker program combines separately
compiled object units to produce a bound unit. (2) A
communications channel between two modems. (3) A name that
refers to a File System entity. A link establishes an
additional pathname to a file, directory, or index in another
volume or directory so that it can be referenced as if it
were contained in the specified directory.

Linker

A utility program that links one or more object units into a I
single machine language relocatable unit.

g-25 CZ03-0l

I

Listener

A system control component that allows you to· access the
system through a selected set of terminals by means of Login
commands.

load unit

A discrete program unit that has been compiled or assembled
and linked. It is in machine language and is directly
loadable by the Executive. See bound unit.

Loader

A system control software component that dynamically loads
from disk the root and overlays of a bound unit.

Loader, bootstrap

A utility program, usually permanently resident in main
memory, that enables other programs to load themselves.

Logical File Number (LFN)

An internal identifier that becomes associated with a file
when it is reserved. LFNs are used in all file references
until the file is removed.

Logical File Table (LFT)

A data structure for use by the File System. It contains an
entry for each LFT.

Logical Resource Number (LRN)

An internal identifier used to refer to tasks or devices.

Logical Resource Table (LRT)

A data structure within a task group containing an entry for
each LRN used in an application, or a data structure within a
system task group containing an entry for each LRN
representing a device. Each entry is a pointer to the
Resource Control Table (RCT).

Login

A command entered at a terminal monitored by Listener that is
used to gain access to the system. The Login command spawns
a task group to be associated with your terminal for a
primary login or passes you to an existing task group for a
secondary login.

g-26 CZ03-0l

login abbreviation

A one-character type-in that is def in~d in the terminals file
as an abbreviation for a complete login line. A login
abbreviation may apply only to a specific terminal or may be
used at all terminals in the system.

login identification (login id)

A string that identifies a registered user of the system for I
purposes of login only. It contains no periods (.);
uppercase and lowercase characters are distinct (JONES and
Jones are different login ids).

login parameters, default

LRN

LRT

mail

Login line parameters stored in your user profile. When you
log in, these parameters are combined with arguments from the
terminals file and/or arguments entered manually at login
time to form the actual login line.

(See Line Protocol Handler.)

(See Logical Resource Number.)

(See Logical Resource Table.)

Data that is accompanied by routing information and is
contained in a mailbox.

mailbox

A special file that may contain data to be communicated to
another task group (user).

manual login

MBZ

The procedure by which you enter a login line or fill out a
login form in order to log in at a terminal. Compare direct
login.

Must Be zero.

g-27 CZ03-0l

I

MDC

Multiple Device Controller for peripheral devices other than
cartridge disk, storage module, and magnetic tape.

Meg ab us

A set of parallel conducting paths connecting various
hardware units of a computer.

memory dump

The representation of the contents of memory.

Memory Management Unit (MMU)

A hardware feature that intercepts all addresses generated by
the Central Processor Unit (virtual addresses) and transforms
them to real memory addresses via its mapping array. There
are two types of memory management units, the basic memory
management unit (BMMU) and the extended memory management
unit (EMMU).

Memory Manager

A system control software component that controls dynamic
requests to obtain/return memory from/to a memory pool.

memory pool

A block of central processor memory from which a task group
obtains memory as required for executable code, control
structures, and I/0 buffers. (See swap, independent, or
system pool.)

memory save and autorestart unit

menu

A hardware feature that can preserve the memory image through
a power failure lasting up to 2 hours.

A display on a terminal screen that lists two or more
selections from which you can make a choice.

Menu Processor

A software component that interprets commands issued through
the User Productivity Facility, and invokes the required
function.

g-28 CZ03-0l

menu subsystem

A system component known as the User Productivity Facility
that enables you to communicate with the Executive through
menus and forms.

message

A communication of text that is to be displayed immediately
at the receiving user's terminal.

message facility

A system component that provides a means for intertask and
intergroup communications.

message reporter

A system component that extracts messages from the message
library, formats them, and delivers them to a user task.

MLCP

MMU

MSC

MTC

(See Multiline Communications Processor.)

(See Memory Management Unit.)

Mass Storage Controller for cartridge disks or storage
modules.

Magnetic Tape Controller for magnetic tapes.

Multiline Communications Processor (MLCP)

A programmable interface between a central processor and one
or more communications devices. Can be programmed to handle
specific communications devices.

multiprogramming

An operating system capability that allows the concurrent
execution of tasks from more than one task group.

multi tasking

An operating system capability that allows the concurrent
execution of more than one task in one or more task groups.

g-29 CZ03-0l

*

*

*

*

multi volume set

A number of disk volumes that contain one or more files. An
online multivolume set allows data for a single file to be
distributed over many volumes. It requires that all volumes
be mounted and available for the file to be used. A serial
multi volume set permits sequential files to extend onto other
volumes. The volumes can be mounted one at a time and can be
used for very large sequential files.

NAT SAP

Next Available Trap Save Area Pointer.

nonfloatable overlay

OAT

An overlay that is loaded into the same memory location
relative to the root each time that it is 1 oaded.

(See Overlay Area Table.)

object unit

OIM

A relocatable program unit produced by a single execution of
a language compiler, or by the Assembler, and requiring
further processing by the Linker to produce a bound unit.

(See Operator Interface Manager.)

OIM log

A system facility that is used to capture all traffic on the
operator's console.

online

An execution environment intended for use by application
programs, including those operating in real time.

online task group

A task group that executes in the online dimension; its
resources are a memory pool and the peripheral devices it
requests.

operating system area

The memory area containing operating system software,
user-written extensions to the operating system, and device
drivers.

g-30 CZ03-0l

operator

Person who starts up the system each day, controls
processing, manages peripheral devices, monitors system
states, and regulates absentee jobs.

operator commands

The set of commands that can be issued by the operator to
control execution. I

Operator Interface Manager (OIM)

A system control software component that manages all messages
sent simultaneously by multiple task groups to the operator
terminal or from the operator terminal to a task group.

operator-out

The file or device by which an interactive command
communicates with the system operator; established at system
initialization or when a File Out command is issued.

operator terminal

A terminal specified for use in interactive communications
between the operator and vendor-supplied and user-written
application programs.

overlay

A section of a program that can be loaded during execution to
overlay another section of the program. used when there is
insufficient memory to accommodate all the code of a
program. (See floatable overlay and nonfloatable overlay.)

overlay area

An area of specified size into which floatable overlays are
loaded.

overlay Area Table (OAT)

A data structure containing parameters that control the use
of overlay areas.

pacing rate

The frequency at which each new output line appears on an
output display.

g-31 CZ03-0l

parameter

The data received by a procedure that is written in a
generalized form to handle any data passed to it. See
argument.

password

I A unique combination of characters that identifies you to the
system. A system control component verifies the password
before granting access to the system.

patch

A portion of code used to modify an existing object or load
unit on disk or in memory.

pathname

A character string by which a file, directory, or device is
known in the File System.

pathname, absolute

A pathname that begins with a greater-than sign (>) or a
circumflex (A). In the former case, it is a partial pathname
and is appended to the root directory name of the system
volume to form a full pathname; in the latter case, it is a
full pathname and is used without modification.

pathname, device

A pathname by which reference is made to a peripheral
device. Device pathnames have the general form !device id.

pathname, relative

A pathname that does not begin with a greater-than sign (>)
or a circumflex (A). It is a partial pathname consisting of
one or more directory names and/or a file name, and is
appended to the working directory pathname to form a full
pathname.

pathname, simple

A special form of a relative pathname consisting of a single
directory name or file name. It is appended to the working
directory name to form the full pathname.

peripheral device

A device connected through the MDC, MSC, or MTC (for example,
a card reader, disk, or tape).

g-32 CZ03-0l

Physical Input/Output (PIO)

PIO

pipe

Physical Input/Output, or physical I/O, that is initiated
through a request I/O macrocall, outside of the File System,
using IORBs.

(See Physical Input/Output.)

A special kind of sequential file used for synchronizing and
passing information among multiple cooperating tasks.

pool identifier

A two-character name, established a system configuration, by
which a memory pool is identified, and by which a task group
is assigned a memory pool when the task group is created.

positional argument

(See argument, positional.)

power resumption

A system facility that controls the restarting of the
execution environment following a power failure.

primary login

The form of login that requests Listener to spawn a task
group that has the terminal from which the login originated
as its primary system file (the terminal will be the initial
user-in, command-in, error-out, and user-out files).

priority level

A numeric value that can be assigned to a task or device for
purposes of controlling processing. Values range from O to
63. The lowest values (highest priorities) are reserved for
system tasks; level 63 is the system idle level.
Intermediate levels are available for user assignment to
tasks and devices. The physical level at which a task
executes is the sum of the highest level number assigned to a
configured device plus three, the base level of the task
group, and the relative level of the task within the group.

priority 1 evel, base

The priority level, relative to the system priority level, at
which all tasks in a task group execute. A base level of O
is the next higher level above the last (highest} system
priority level.

g-33 CZ03-0l

priority level, hardware

A numeric value from 0 through 63 that can be assigned to a
task or device to control processing. The 1 owe st values
(highest priorities) are reserved for certain system tasks.
Level 62 is reserved for user tasks. Level 63 is the system
halt level.

priority level, physical

(See priority level.)

priority 1 evel, relative

The priority level, relative to the base level, at which a
user task within a task group executes. Relative Level O is
the base 1 evel.

priority level, system

The priority level assigned to system devices and tasks.

profile

(See report queue profile file or user profile.)

program name suffixes

A "point-letter" character string such as ".O" for object
units or ".A" for Assembly language source units appended to
a file name to identify it as a source, object, or list unit.

protected string

A character string containing reserved characters that is
enclosed by protected string designators. (See reserved
character and protected string designator.)

protected string designator

PVE

A pair of quotation marks or apostrophes that enclose a
character string containing reserved characters. (See
reserved character.)

Polled Visual Information Projection (VIP) Emulator.

quarantine unit

A unit of message text; the smallest amount of transmitted
data that is available to the receiver.

g-34 CZ03-0l

query

A collection of command statements that causes a query
processor to examine a file (or data base) and produce a
written report.

random file organization

A disk file whose records are accessed directly or
sequentially through CALC keys and key values.

range

The number of bytes transferred during an I/O operation.

raw file

A second disk file utilized by Level 4 error logging. The I
raw file maintains a cumulative performance record for memory
and/or each device being monitored.

record

A user-created collection of logically related data fields.
Records are treated as units and can be fixed or variable in
length.

record locking

A file access feature that controls contention for records
within disk files shared by two or more task groups.

recoverable file

A disk file that has been identified as one that can be
brought back to a previously established state in the event
of a software malfunction or system failure. (See before
image and file recovery.)

recovery file

A system-created file used to contain before images. (See
before image.)

reentrant routine

A routine that does not alter itself during execution; a
reentrant routine can be entered and reused at any time by
any number of callers.

registration

Process by which the system administrator introduces users
into the system.

g-35 CZ03-01

I

relative file organization

A file whose records are organized to be accessed
sequentially or directly by their record position relative to
the beginning of the file.

relative 1 evel

(See priority level, relative.)

relative record number

A number representing the position of a record relative to
the beginning of the file. The initial record is relative
record number 1.

remote file access

A File System facility that allows applications to access
remote data as if it were local.

report queue

A directory used to contain the pathnames of files queued for
later transcription.

report queue profile file

A file that designates the characteristics of reports that
will be entered in a report queue and printed or punched at a
later time.

report spooling

The queuing and subsequent transcription of reports.

request block

(See Input/Output Request Block (!ORB), Task Request Block
(TRB), Clock Request Block (CRB), and Semaphore Request Block
(SRB) .)

request I/O

The macrocall, issued to a driver, that performs Physical I/O
(PIO).

request queue

A threaded list of request blocks.

g-36 CZ03-0l

reserved character

An ASCII character to which special significance is
attached. These characters are: space (blank), horizontal
tab, quotation mark ("), apostrophe ('), semicolon (i),
ampersand (&),vertical bar (I), left bracket ([),and right
bracket (]).

resident bound unit

A bound unit that is permanently configured in memory as an
extension to the operating system.

residual range

The difference between the number of bytes requested and the
number of bytes transferred during an I/O operation.

Resource Control Table (RCT)

A system structure that controls task processing.

restart

A user-initiated process in which the system locates the most
recently completed checkpoint on the checkpoint file and
reads the checkpoint image, rebuilding the Executive data
structures and memory blocks, reloading bound units, and
repositioning active user files. (See checkpoint.)

restorable file

A disk file that has been identified as one that can be
reconstructed to its latest state following a device fault.
(See after image and file restoration.)

return address

RFU

ring

The address of the instruction in a program to which control
is returned after a call to a subroutine. By convention,
this address is usually stored in register BS.

Reserved for Future Use.

A mechanism used to establish access rights to a segment.
Also an attribute of a memory pool.

g-37 CZ03-0l

I

I

rollback

The process by which before images stored on a recovery file
are written to a recoverable file, negating updates made
since the last cleanpoint. This action restores the file to
the state it was in when the clean point was taken. Al so see
cleanpoint, before image, file recovery, and recoverable
file.

ROM bootstrap loader

A firmware routine (activated by pushing the Load key on the
control panel) that reads the first record from a designated
disk into memory.

root directory

The primary directory on a mass storage volume; it is pointed
to by the root directory pointer in the volume label. The
name of the root directory is the same as the vol_id. MOD
400 supports a User Root Directory (URD) and a System Root
Directory (SRD), which may reside on different volumes.

root segment

ROP

RSU

The controlling segment of a program. It is resident in
memory during the entire execution of the program and can
call overlay segments.

Receive-Only Printer.

Reserved for System Use.

Scientific Instruction Processor (SIP)

A processor that executes a set of scientific instructions.

search rules

An ordered list of directories searched by the system when a
bound unit is to be located and loaded or executed.

secondary login

The form of login that requests the Listener to transfer
control of your terminal to a specified task group. The
specified task group must already exist and have an
outstanding Request Terminal monitor call ($RQTML) for the
secondary login to satisfy.

g-38 CZ03-0l

secondary user

A user whose login line contains a destination, which is the
identification (usually by group-id) of a subsystem that has
requested a secondary terminal. The user is attached to the
subsystem until released by it.

sector

A 128-byte portion of a diskette track, or a 256-byte portion
of a diskette, cartridge disk, cartridge module disk, or
storage module track.

security

µimitation and control of the type of access a user has to
directories, files, and the system itself.

segment

I

A logical entity containing a bound unit root and zero or I
more additional load elements, or containing one or more
overlays.

semaphore

A software counter mechanism, available to Assembly language
programs, and used to coordinate the use of task code or
other resources such as files.

Semaphore Request Block (SRB)

A data structure used to control semaphore processing.

sequence number

The internal identification number assigned to a request in a
task group request queue.

sequential access

The method of reading or writing a record in a file by
requesting the next record in sequence.

sequential file organization

A file on disk or magnetic tape whose records are organized
to be accessed in consecutive order.

sharable bound unit

A transient bound unit consisting of reentrant code linked
with the share directive. A sharable bound unit is available
for execution by any task assigned to the same memory pool.

g-39 CZ03-0l

I

sharable file

Any file that is usable by more than one task concurrently.

SIP

(See Scientific Instruction Processor.)

SIP Simulator

A software component that provides the same functionality as
the SIP.

source unit

A program written in source language for processing by a
compiler or an assembler. Source units are stored as
variable sequential data files.

spanned record

A record that spans a control interval or block.

spawn

To create, request the execution of, and then delete a task
or task group.

spooling

SRB

The technique for storing output on disk files for subsequent
printing or punching.

(See Semaphore Request Block.)

standard I/Of iles

The command-in, user-in, user-out, operator-out, and
error-out files.

star name convention

A special pathname convention that can be used with certain
commands to perform an operation on a group of files, thereby
eliminating the need for separate commands for each file.

startup

The procedure that bootstraps a vendor-supplied,
preconfigured system from disk to provide a minimum operating
environment.

g-40 CZ03-0l

startup EC file

An EC file whose commands are executed at system startup or
when a task group is activated.

states (task)

A task can be in the following states: Dormant, Active,
Wait, and Suspend.

storage management

The File System component that handles the transfer of blocks
and control intervals between main memory and secondary
storage (for example, disks, tapes, etc.).

subroutine

Any procedure that alters data in an area common to both the
subroutine and its caller. Contrast with "function".

subsystem

A general purpose application-oriented facility that provides
interactive users with their interactive capabilities and
view of the system. A subsystem is generally identified
directly with the lead task of a task group. A subsystem can
either be primary-user oriented (supporting one interactive
user per task group) or secondary-user oriented (supporting
multiple interactive secondary users per task group).

subsystem switcher

A menu-oriented component of the user productivity facility
that allows a logged in user to switch from one subsystem to
another without having to log out and back in again.

suspend

An operator action resulting in the temporary cessation of
execution of a task group; all resources are retained by the
task group. (See activate.)

swap pool

A memory pool in which segmented memory management is used.
Tasks assigned to a swap pool can be swapped to backing
storage in order to make memory available to competing
tasks. Each task executing in a swap pool has its own
virtual view. The system allows multiple swap pools to be
assigned.

g-41 CZ03-0l

I
Swapper

A system component that controls the allocation of swap pool
memory and swap file space.

symbolic start address

Bound unit entry point.

sympd

A name assigned to each peripheral device when the system is
built. The acronym sympd stands for "symbolic peripheral
device."

system building

The process of specifying system variables, identifying the
peripheral devices and (optional) communications environment
to the system, and tailoring main memory to suit system and
user needs.

system console

(See operator terminal.)

system directory

One of the directories that the system uses in its search for
a bound unit to be loaded for execution.

I system global space

The memory of the fixed system area and the system. This
memory is in the virtual view of all tasks, regardless of
their specific memory pool assignments.

system pool

The memory area from which the system task group (GCB and
TCB) and system global structures (for example, BCB and FDB)
are allocated, and the area where globally sharable bound
units reside.

system service macrocalls

Macrocalls available to Assembly language programs to perform
a wide variety of system control and File System service
functions.

system task group

The task group in which all drivers, the clock, the Command
Processor, and OIM execute.

g-42 CZ03-0l

task

A sequence of instructions that has a starting point, an
ending point, and performs some identifiable function.

task address space

The boundaries of a task in a swap pool. Consists of bound
units, user stack segment, dynamically created segments,
group work space, group system space, and system global
space.

Task Control Block (TCB)

The system control structure that describes the task's
characteristics, including the contents of the hardware
Interrupt Save Area (ISA).

task group

A named set of one or more tasks with a common set of
resources; the framework within which every user and system
function operates.

task group identification

A two-character name by which a task group is known to the
system.

task group resource

One of a set of elements associated with a task group that
enables it to perform its function. A resource can be a
task, a central processor priority level, central processor
memory, or a peripheral or communications device.

Task Manager

A system component that handles task requests to activate,
wait, or terminate tasks.

Task Request Block (TRB)

TCB

A data structure used by one task to request another task and
communicate with it.

(See Task Control Block.)

terminal

An I/O device.

g-43 CZ03-0l

terminals file

A sequential file that names the terminals monitored by
Listener, defines terminal-specific access constraints, and
defines system-wide and terminal-specific abbreviations for
login lines.

terminate

A system service macrocall request issued by the currently
executing task at the end of its normal processing.

terminated

A task state in which there is no current request for the
task.

timesl icing

An optional feature that minimizes the ability of tasks that
use large amounts of central processor time to interfere with
interactive users.

transaction

An event that is entered, recorded, and processed by the
system.

transaction processing

Online data processing in which individual transactions are
entered from terminals, validated, and processed through all
relevant procedures.

transient bound unit

A bound unit that resides in memory as long as there is a
request for it.

transparent mode transmission

A data transmision mode that allows data consisting of bytes
having any bit configuration to be transmitted over
communications lines. Thus, control characters can be
transmitted as data.

trap

A control transfer caused by an executing program. The
transfer is made to a predefined location in response to an
event that occurs during processing.

g-44 CZ03-0l

trap handler

A routine designed to take a particular action in response to
a specific trap condition.

Trap Manager

A system control software component that handles an executing
program's transfer of execution control to a predefined trap
location.

Trap Save Area (TSA)

An area in memory in which certain information is stored when
a trap occurs.

trap vector

TRB

TSA

UFAS

A pointer to a trap handler. There is one vector for each
possible trap condition, in dedicated memory locations.

(See Task Request Block.)

(See Trap Save Area.)

(See Unified File Access System.)

Unified File Access System (UFAS)

A file organization developed to provide a predictable
relationship between records and their location in the file.
UFAS files are transportable across all levels of Series 60
software.

unit control character

user

(See control character.)

An entity that can make demands upon the system1 can be a
logged-in person, a system routine such as a daemon, etc. A
person logged in under two accounts is considered to b.e two
users for system loading purposes.

g-45 CZ03-0l

I

I

user identification (user id)

A string that identifies the current user of a task group.
It consists of two or three parts: person.account[.mode].
Uppercase and lowercase letters are treated the same
(JONES.ADMIN and Jones.Admin are treated the same).

user-in

The file or device from which a command function requiring
directives (for example, the Line Editor) reads its input; it
is established when the group request is made. User programs
can also read from this file.

user-out

The file or device by which an interactive command
communicates with the user; established when a group request
is made, or a File Out command is issued. User programs can
also write to this file.

user productivity facility

A MOD 400 interface that allows you to communicate with
Executive through menus and forms instead of commands.
select a function from a menu and fill in the resulting
to accomplish a specific function.

user profile

the
You
form

The user's registration information as maintained by the
system administrator using the Edit Profile utility. The
user profile establishes a login id and a unique password
capability for each user, as well as other privileges and/or
limitations granted to specific users.

user registration

A mode of MOD 400 operation that maintains a file of
registered users that specifies their login defaults and
individual access rights. For definitions of terms related
to user registration, see the Glossary in the System Building
and Administration manual.

user stack segment

A work area available through hardware stack instructions.

variable-length record

A record stored in a file in which records have different
lengths.

g-46 CZ03-0l

VDAM

A system component that allows you to display and use forms.

VIP

(See Visual Information Projection.)

virtual view

A virtual view consists of al 1 of the memory pools to which a
task executing within the view has access. A virtual view
consists of one of the following combinations of memory
pools:

• The system pool and an independent pool.

• The system pool and a swap pool.

VISION

A system component that allows you to develop and maintain
forms.

Visual Information Projection (VIP)

VIP devices consist of a screen (CRT) and keyboard.
Hard-copy receive-only printers can be added to some models.

vol id

(See volume identifier.)

volume

A fixed or removable storage unit (for example, storage
modules, diskettes, cartridges, tapes) that may contain one
or more files.

volume header

A unique record at the beginning of every disk or magnetic
tape volume that carries information about the volume.

volume identifier (vol_id)

The unique name for a disk or magnetic tape volume that is
contained in the volume header.

volume name

(See root directory.)

g-47 CZ03-01

I

I

volume set

A number of disk volumes that contain one or more files.
Online volume sets require that all volumes are mounted and
are available for use. Serial volume sets can be mounted one
volume at a time.

wait

word

A task is in the wait state when it causes its own execution
to be interrupted until a time request is satisfied, until
another task releases a semaphore, until another task
terminates, or until an I/O operation terminates.

A sequence of 16 consecutive binary digits operated upon as a
unit; two consecutive bytes.

working directory

A disk directory pathname associated with a task group. It
begins with a root directory name and contains zero or more
intermediate directory names. It is used by the File System
software to construct a full pathname whenever a task group
refers to a relative or simple pathname.

g-48 CZ03-0l

INDEX

$

%

&

*

<

=

>

>>

?

@

[]

! (Exclamation Point), g-1

(Number Sign} , g-1

$ (Dollar Sign) , g-2

% (Percent Sign), g-2

& (Ampersand) , g-2

* (Asterisk), g-2

< (Less-than) , 2-8, g-4

= (Equal) , g-4

> (Greater-than Sign), 2-7,
g-4

>> (Two Consecutive
Greater-than Signs), 2-8,
g-4

? (Question Mark), g-5

@ (At-sign) , g-5

[] (Brackets) , g-5

~ (Circumflex), 2-7, g-5

A> (Circumflex Preceding
Greater-Than Sign), 2-7

Abbreviation
File, g-6
Login, g-27
Processor, 3-16, g-6

i-1

Abort, g-6

Absentee, 4-6, g-6

Access
Direct, g-16
Levels, 2-33
Memory Pool Attribute, 4-12
Remote File, 2-25, g-36
Ring, 4-12
Sequential, g-39
Unified File Access System

(UFAS}, g-45

Access Control, 2-16, 2-17
ACL, 2-17, 2-18, 2-28
CACL, 2-17
Concurrency Control
Relationship, 2-21

Rights, 2-19
Types, 2-17
User Id Relationship, 2-17

Accounting

ACL

Command Accounting, 3-17,
g-13

See Access Control

Address
Absolute, g-7
Direct, g-16
High Memory (HMA), g-22
Relocatable, g-7
Return, g-37
Space (Task}, 4-29
Symbolic Start, g-42

Addressing
Immediate Memory (IMA),
g-22

Administrator
System, g-7

After Image, 6-8

Algorithm, g-7

CZ03-0l

Ampersand
& (Ampersand), g-2

Apostrophe
' (Apostrophe), g-2

Area, g-7
Fixed System, 4-17
Interrupt Save, 5-3
Operating System, g-30
overlay, 4-25
Trap Save, g-45
User Stack, 4-29

Argument, g-7
Control, 3-13, g-14
Positional, 3-13, g-33

ASCII
American Standard Code for

Information Interchange,
g-8

Asterisk
* (Asterisk), g-2

At-sign
@ (At-sign) , g-5

Autoconfigurator, 3-2

Autorestart
Memory Save and Autorestart
Unit, 6-4, g-28

Backup

Bar

File Backup and
Reorganization, 6-3

I (Vertical Bar), g-5

Before Images, 6-6

Binary
Binary Synchronous

Communications (BSC) , g-8

INDEX

i-2

Block, g-9
Bound Unit Descriptor

(BUD), g-9
Buff er Control (BCB) ., g-10
Clock Request (CRB), g-12
Clock Timer (CTB), g-12
Data Base Control (DBCB),

g-15
File Control (FCB), g-19
File Description (FDB),

g-19
File Information (FIB) ,

g-19
Group Control (GCB), g-21
Indirect Request (IRB),
g-23

Input/Output Request
(IORB), g-23

Intermediate Request (IRB),
g-23

Request (RB), 5-18, g-36
Semaphore Request (SRB),
g-39

Task Control (TCB), g-43
Task Request (TRB) , g-43

Bootstrap, 3-2
Loader, g-9
ROM Loader, g-38
Routine, g-9

Bound Unit, 4-17
Allocation, 4-28
Breakpoint, g-9
Characteristics, 4-17
Descriptor (BUD) Block, g-9
Globally Sharable, 4-19
overlays, 4-21
Search Rules, 4-20
Resident, g-37
Sharable, 4-18
Transient, g-44

Brackets
[] (Brackets), g-5

Break, g-:-9

CZ03-0l

Breakpoint
Bound Unit, g-9
Quick, g-10
True, g-10

Broadcast, g-10

Buffer
Control Block {BCB) , g-10
Input/Output, g-10
Pool, 2-34

Bus, g-10

Byte, g-11

Cache
Disk Cache Processor, g-17

CACL
See Access Control

CALC Keys, 2-14

catalog
Remote File Catalog, 2-26

Central Processor
Connecting to, 3-4
Interrupt Priority Levels,
5-1

Channel, g-11
Control Program (CCP), g-11

Character
Control, g-14
Extended Set, 2-6, 2-36
Reserved, g-37
Unit Control, g-45

Checkpoint, 6-10
File, 6-10
Processing, 6-11
Restart, 6-9
Taking of, 6-10

Circumflex
~ (Circumflex), g-5

INDEX

i-3

Cleanpoint, 6-7, g-12

CLM
see Configuration

Clock
Frequency, g-12
Manager, 1-2, g-12
Request Block (CRB) , g-12
Scan Cycle, g-12
Timer Block, g-12

Colon
: (Colon), g-3

Comma
, (Comma) , g-3

Command
Abbreviations, 3-16
Accounting, 3-17, g-13
Beaming, 3-17
Environment, 3-10
Format, 3-13
Language, g-13
Level, 3-11, g-13
Line, g-13
Message Facility Interface,

5-19
Operator Initiated, g-31
Processor, 1-3, 3-10, g-13
Spaces in Lines, 3-14

Command-in File, 3-6, 3-10

Commercial Instruction
Processor (CIP), g-13

Commitment
Data Commitment, 2-29

Communications
Binary Synchronous (BSC),
g-8

Device, g-14
Intertask, 4-3
Intertask and Intratask
Group, 5-18

Processor, g-17, g-29
Software, 1-4

CZ03-0l

Compile Unit (CU), g-14

Concurrency, g-14
File Concurrency Control,

2-20

Conf igura ti on, g-14
Load Manager (CLM), g-14
System, 3-2

Containment, 4-11
Memory Pool Attribute, 4-11

Control Argument, 3-13

Control Character, g-14
Unit Control Character,

g-45

Daemon
Print Daemon, 5-24

Deadlock, 2-22

Def erred Processing
Facilities, 5-22

Device
Communications, g-14
Driver, g-16
Input/Output, g-23
Logical Resource Number,

5-10
Pathname Construction,

2-12, 2-37, 2-38
Priority Levels, 5-7, 5-8,
5-11

Unit Record Buffering, 2-38

Dialup Connection, 3-4

Direct Access, g-16

Direct Connection, 3-4

Direct Login, 3-5

INDEX

Directory, 2-2
Access Control List, 2-18
Common Access Control List,

2-18
Example of Structure (Fig) ,
2-3i 2-4

Home, g-22
Intermediate, 2-4
Locations, 2-5
Mailbox Root, 5-19
Name Length, 2-6
Naming Conventions, 2-5
Root, 2-2, g-38
Restoring of, 6-3
Saving of, 6-3
System Root~ 2-3
User Root, 2-3
Working, 2-5, g-48

Dispatcher, 5-5

Dollar Sign
$ (Dollar Sign), g-2

Dope vector, g-17

Driver
Device Driver, g-16

Duplex
Full, g-21
Half, g-21

EBCDIC, g-17

EC File, 3-18
EC and START_UP.EC, 3-17

Equal
= (Equal), g-4
Equal Name Convention, g-18

Error Logging Facility, 1-3

Error-out File, 3-7, 3-11

Exclamation Point
Directive, g-16 1 (Exclamation Point), g-1

i-4 CZ03-0l

Executive
Connecting to, 3-4
Extensions, 4-19

Extent, g-18
Indirect Extent, g-22

Field, g-19

File, 2-1
Abbreviation, g-6
Access Control List, 2-18
Access Levels, 2-33
Attributes, g-8
Backup, 6-3
Buffering, 2-33
Checkpoint, 6-10
CLM USER, 3-2
Command-in, 3-6, 3-10
Common, 5-18
Common Access Control List,

2-18
Concurrency Control, 2-20
Control Block (FCB), g-19
Cumulative, g-15
Description Block (FDB) ,

g-19
Dynamic Organization, 2-14
EC, 3-17
Error-out, 3-7, 3-11
External Name (EFN) , g-18
Fixed Relative
Organization, 2-15

Hold, g-22
Indexed Organization, 2-14
Information Block (FIB),
g-19

Integrated, g-23
Journal, g-24
Locations, 2-5
Logical Number (LFN) , 5-11
Logical Table (LFT), g-26
Management, g-19
Multi volume, 2-3 0
Name Length, 2-6, 2-37
Naming Conventions, 2-5,

2-36
Online Multivolume, 2-31
Organization, 2-13, 2-36
Protection, 2-16
Random Organization, 2-14

INDEX

i-5

File (cont)
Raw, g-35
Record Locking, 2-21
Recoverable, 6-6
Recovery, 6-6, g-35
Relative Organization,
2-13, 2-14

Remote Access, 2-25, g-36
Remote Catalog, 2-26
Reorganization, 6-34
Report Queue Profile, g-36
Restorable, 6-8
Restoring of, 6-3
Saving of, 6-3
Sequential Organization,

2-13
Serial Mul tivolume, 2-32
Sharable, g-40
Specific Buffer Pools, 2-35
Standard I/O, g-40
START UP.EC, 3-19
String Relative, 2-15
System Software, 1-4
Terminals, 3-5, g-44
Unified Access System

(UFAS), g-45
Unit Record Conventions,

2-38
user-in, 3-7, 3-10
User-out, 3-7, 3-11

Form, g-21

General Ready Queue, 5-5

Greater-than Sign
> (One) , 2-7
>> (Two Consecutive) , 2-8
A> (Following Circumflex) ,
2-7

Group

Id

See Task Group

Group, g-21
Login, 3-3
Pool, g-33
System Task Group, 4-7
User, 2-7, 2-17, 3-3
Volume, 2-6

CZ03-0l

Index
Alternate Index, 2-15

Interrupt
Priority Levels, 5-2
Save Area, 5=3
vector, 5-3, g-24

Journal File, 6-6

Key, g-24
Language Key, g-25

Keyword, g-24

Less-than
< (Less-than), 2-8, g-4

Linker, g-25

Links, 2-12

Listener, 1-3

Load Element, 4-17

Loader, 1-3, g-26, g-38

Logical
File Number (LFN) , 5-11
File Table (LFT), g-26
Resource Number (LRN), 5-10
Resource Table (LRT), g-26

Login
Abbreviated, 3-5
Direct, 3-5, g-16
Forms, 3-5
Full, 3-5
Identification, 3-3
Manual, g-27
Parameters, g-27
Primary, g-3 3
Secondary, g-38
Terminals, 3-5

Macrocall
Message Facility Interface,

5-21
System Service, g-42

INDEX

i-6

Mail
Local, 5-20

Mailbox, g-27
Creation, 5-19
Print Request, ~-~~
Root Directory, 5-19

Manager
Clock, 1-2, g-12
Configuration Load (CLM),
g-14

Memory, 1-3, g-28
Operator Interface, 1-3
Task, 1-2, g-43
Trap, 1-3, g-45

Megabus, g-28

Memory
Deallocation, 4-29
Dump, g-28
High Address (HMA), g-22
Immediate Addressing (IMA),
g-22

Independent Pool, g-22
Management Unit, g-28
Manager, 1-3, g-28
Pool, 4-10
Pool Attributes, 4-11
Pool Layout, 4-16
Pool Selection, 4-16
Pool Sharing, 4-10
Protection, 4-8
Save and Autorestart Unit,
6-4, g-28

Segmentation, 4-8, 4-9

Menu
Environment (UPF), 3-6
Format, 3-9
Level, 3-8
Processor, 3-6, g-28
Subsystem, 1-3, 3-6, g-29

Message
Local Facility, 5-20
Facility, 1-3, 5-18, g-29

CZ03-0l

Message (cont)
Facility Command Interface,

5-19
Facility Macrocall

Interface, 5-21
Reporter, 1-3, g-29

Multiprogramming, g-29

Multitasking, g-29

Multi volume
Files and Sets, 2-30
Online File, 2-31
Online Set, 2-31
Seri al File , 2 - 3 2
Seri al Set, 2-3 2

Office Automation
Off ice Automation Software,
1-5

Operator, g-31
Commands, g-31
Interface Manager, 1-3
Terminal, g-31
Terminal I/O Logging, 5-16

Organization (File)
Alternate Index, g-7
Disk File, 2-13
Non-UFAS Relative, 2-14
Tape File, 2-36
UFAS Dynamic, 2-14
UFAS Indexed, 2-14
UFAS Random, 2-14
U FAS Relative, 2-13
UFAS Sequential, 2-13

Overlay
Area, 4-25
Ar ea Table, 4-25
Bound Unit, 4-21
Floatable, 4-22
Nonfloatable, 4-21

Pacing Rate, g-31

Parameters, 3-14

INDEX

i-7

Parentheses
() (Parentheses) , g-2

Password, g-3 2

Patch, g-32

Pathname
Absolute, 2-9
Construction, 2-12, 2-37,
2-38

Full, g-21
Relative, 2-10
Simple, 2-10
Symbols, 2-7

Percent
% (Percent Sign), g-2

Period
• (Period, Decimal Point),
g-3

Pipe, 2-15, 5-18

Pool
Buffer, 2-34
Memory, 4-10, 4-13, 4-15
Identifier, g-33
Sharable Bound Units in

Memory, 4-18, 4-19
Sharing of Memory, 4-10

Power Resumption, 6-4

Print
Daemon, 5-24
Request Mailboxes, 5-23
Requests, 5-23, 5-24

Priority
Application Tasks, 5-10
Devices and System Tasks,

5-7
Interrupt Levels, 5-1, 5-2

Privilege
Memory Pool Privilege
Attribute, 4-11

CZ03-0l

Processor
Abbreviation, 3-16
Central, Connecting to, 3-4
Central, Interrupt Priority
Levels, 5-1

Command, 1-3, 3-10
Commercial Instruction

(CIP) , g-13
Disk Cache, g-17
Dual-line Communications

(DLCP) , g-17
Menu, 3-6
Multiline Communications

(MLCP), g-29
Scientific Instruction

(SIP), g-38

Profile
Edit Utility, 3-3
File, 3-3
Report Queue, 5-25
User, 3-3

Protection
Disk File, 2-16
Memory, 4-8
Segment Ring, , 4-9
Shared File, 2-21

Protocol
Line Protocol Handler

(LPH) , g-25

Quarantine Unit, g-34

Query, g-35

Question Mark
? (Question Mark), g-5

Queue
Ready, 5-5
Report, 5-24, 5-25
Request, 5-23

Quotation Mark
" (Quotation Mark), g-1

Record
Fixed-length, g-20
Locking, 2-21, 2-29, g-35
Relative Number, g-36
Spanned, g-40

INDEX

i-8

Record (cont)
Unit Device, 2-38
variable-length, g-46

Recovery File, 6-6

Reentrant Routine, g-35

Registration
User Registration, 3-2,
'g-46

Remote File Access
catalog, 2-26
Object, 2-26
Operations~ 2-28
Security, 2-2 8

Report
Profile, 5-25
Queues, 5-24
Requests, 5-25
Spooling, g-3 6
Transcription, 5-25

Resource
Control Table (RCT), g-37
Coordination, 5-12
Logical Number (LRN) , 5-10
Logical Table (LRT), g-26

Restart
Checkpoint, 6-9
Cold, g-12
Hot, g-22
Processing, 6-13
Request, 6-12

Ring
Access Rights, 4-12
Segment Protection, 4-9

Rollback, 6-7

ROM Bootstrap Loader, g-38

Root
Directory, 2-2, g-38
Mailbox Directory, 5-19
Segment, g-3 8
System Directory, 2-3
User Directory, 2-3

CZ03-0l

Scientific Instruction
Processor (SIP), g-38

Sector, g-39

Segment
Assignments (Fig), 4-14,

4-16
Dynamically Created, 4-30
Ring Protection, 4-9
Root, g-3 8
With Basic Memory

Management Unit, 4-8
With Extended Memory

Management Unit, 4-9

Semaphore, 5-12

Semicolon
; (Semicolon), g-4

Simulator
Commercial, g-13
Scientific, g-40

Slash
I (Slash) , g-3

Space
Group System, 4-30, g-21
Group Work, 4-30, g-21
swap Pool Task Address,

4-29
System Global, 4-30, g-42
Task Address, 4-31, 4-33

Spooling, 5-24

Stack
User Stack Area, 4-29

Star
Star Name Convention, g-40

START UP.EC File
System, 3-19
User, 3-19

INDEX

i-9

Storage Management, g-41

String
Active, 3-15
Protected, 3-14
Relative Disk File, 2-15

Subroutine, g-41

Suffix
Program Name Suffix, g-34

swap Pool, 4-13
Group Segment Assignments

(Fig), 4-14
Sharable Bound Units in,

4-18
Task Address Space, 4-29

swapper, 1-3

switcher
Subsystem Switcher, 3-9

Synchronous

Tab

Binary Synchronous
Communications (BSC), g-8

Horizontal, g-1
Stops, 2-38

Task
Active State, 5-15
Address Space, 4-31, 4-33
Application LRNs, 5-11
Characteristics, 4-6
Coordination, 5-12
Control Block {TCB), g-43
Dispatching, 5-4, 5-5
Dormant State, 5-15
Functions in Interactive

and Absentee Modes (Tbl),
4-6

Generation, 4-5
Handling, 5-14
Interactive, g-23

CZ03-0l

Task (cont)
Lead, 3-6
Manager, 1-2
Message Facility, 5-19
Priorities, 5-7, 5-10
Request Block (TRB) , g-43
Requests, 5-12
suspend State, 5-16
swap Pool Address Space,
4-29

System Features Affecting
Execution, 5-7

System Interaction With,
5-16

System Representation of
Address Space, 4-30

Wait State, 5-15

Task Group
Benefits, 4-3
Characteristics, 4-6
Communication, 5-18
Control Block, g-21
Def erred Requests, 5-22
Functions in Interactive
and Absentee Modes (Tbl),
4-6

Generation, 4-5
Id, 4-7, g-21
Request Queues, 5-23
Resource, g-43
Segment Assignments (Fig),
4-14, 4-16

System Control of, 4-4
System Space, 4-30, g-21
work Space, 4-30, g-21

Terminal
File, 3-5, g-44
Interactive, 2-39
Login, 3-5
Non-login, 3-5
Operator, g-31
Operator I/O Logging, 5-16

Time slicing
Monoprocessor, 5-5
Multiprocessor, 5-6

Transaction Processing, g-44
Transparent Mode Transmission,

g-44

INDEX

i-10

Trap, 5-6
Trap Manager, 1-3

UFAS
Dynamic File Organization,

2-14
Indexed File Organization,

2-14
Random File Organization,

2-14
Relative File Organization,

2-13
Sequential File

Organization, 2-13
Unified File Access System

(UFAS), g-45

User Id, 2-17, 3-3

User-in File, 3-7, 3-10

User-out File, 3-7, 3-11

User Productivity Facility
(Menu Subsystem), 1-3

VDAM, g-47

Vector
Dope, g-17
Interrupt, 5-3, g-24
Trap, g-45

Vertical
I (Vertical Bar), g-5

VISION, g-47

Visual
Visual Information

Projection (VIP), g-47

Volume, 2-1
Automatic Recognition,

2-13, 2-37
Name, 2-6, 2-36
Name Length, 2-6, 2-37
Header, g-47
Identification, 2-26
Set, g-48

CZ03-0l

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

TITLE
DPS6
GCOS 6 MOD 400
SYSTEM CONCEPTS

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be investigated by appropriate technical personnel
and action will be taken as required. Receipt of all forms will be
acknowledged; however, if you require a detailed reply, check here. D

FROM: NAME---------------------------------

TITLE --------------------------

COMPANY----------·

ADDRESS---------------------------------~

ORDERNO. ~'-c_z_o_a-0_1 ____ __.

DATED I MARCH 1986

DATE

PLEASE FOLD AND TAPE-
NOTE: U.S. Postal Service will not deliver stapled forms

111111

BUSINESS REPL V MAIL
FIRST CLASS PERMIT NO. 39531 WALTHAM. MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

Honeywell

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

TITLE
DPS6
GCOS 6 MOD 400
SYSTEM CONCEPTS

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be investigated by appropriate technical personnel
and action will be taken as required. Receipt of all forms will be
acknowledged; however, if you require a detailed reply, check here. 0

FROM: NAME---------------------~

TITLE----------------------
COMPANY--------

ADDRESS--------------------~

ORDER NO. , CZ03-01

DATED I MARCH 1986

DATE

PLEASE FOLD AND TAPE-
NOTE: U.S. Postal Service will not deliver stapled forms

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WAL THAM, MA 02154

ATTN: PUBLICATIONS, MS486

Honeywell

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

TITLE
DPS6
GCOS 6 MOD 400
SYSTEM CONCEPTS

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be investigated by appropriate technical personnel
and action will be taken as required. Receipt of all forms will be
acknowledged; however, if you require a detailed reply, check here. 0

FROM: NAME----------------------~

TITLE ~------------------------
COMPANY --------

ADDRESS---------------------~

OROER NO. CZ03-01

DATED MARCH 1986

DATE

PLEASE FOLD AND TAPE-
NOTE: U.S. Postal Service will not deliver stapled forms

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

Honeywell

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Together. we can find the answers.

Honeywell
Honeywell Information Systems

U.S.A.: 200 Smith St., MS 486, Waltham, MA 02154
Canada: 155 Gordon Baker Rd., Willowdale, ON M2H 3N7

U.K.: Great West Rd., Brentford, Middlesex TW8 9DH Italy: 32 Via Pirelli, 20124 Milano
Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F. Japan: 2·2 Kanda Jimbo-cho Chiyoda-ku, Tokyo

Australia: 124 Walker St., North Sydney, N.S.W. 2060 S.E. Asia: Mandarin Plaza, Tsimshatsui East, H.K.

44347, 186, Printed in U.S.A. CZ03·01

SUBJECT

Additions and Changes to the Manual

SPECIAL INSTRUCTIONS

DPS6
GCOS 6 MOD 400

SYSTEM CONCEPTS
ADDENDUM A

This is the first addendum to CZ03-0l, dated March 1986. Insert the attached pages
into the manual according to the collating instructions on the back of this sheet
Change bars in the margin indicate new or changed information; asterisks indicate
deletions.

Note:
Insert this cover sheet behind the front cover to indicate the updating of the
document with Addendum A.

SOFTWARE SUPPORTED

This document supports Release 4.0 of the MOD 400 Executive.

ORDER NUMBER

CZ03-01A September 1986

Honeywell

COLLATING INSTRUCTIONS

To update this manual, remove old pages and insert new pages as follows:

Remove

iii through xiv

xv, blank
1-5, blank
2-5, 2-6
2-35 through 2-40
3-1, 3-2

3-17,3-18
3-19, blank
4-7, 4-8
5-1, 5-2
5-5 through 5-10
5-23, 5-24
6-3, 6-4
g-1 through g-8
g-21, g-22
g-33, g-34

Insert

iii, blank
v through x
xi, blank

1-5, blank
2-5, 2-6
2-35 through 2-40
3-1, 3-2
3-2.1, blank
3-17,3-18
3-19, blank
4-7, 4-8
5-1, 5-2
5-5 through 5-10
5-23, 5-24
6-3, 6-4
g-1 through g-8
g-21, g-22
g-33, g-34
h-1, blank

USER COMMENTS FORMS are included at the back of this manual. These forms are to be used to record
any corrections, changes, or additions that will make this manual more useful.

Honeywell disclaims the implied warranties of merchantability and fitness for a particular
purpose and makes no express warranties except as may be stated in its written agreement
with and for its customer.

In no event is Honeywell liable to anyone for any indirect, special or consequential damages.
The information and specifications in this document are subject to change without notice.
Consult your Honeywell Marketing Representative for product or service availability.

• Backup and recovery facilities, including the backup and
restoration of disk files, the preservation of the
execution environment during a power failure, the recovery
of files at the record level, and the recovery and restart
of task groups.

Although no manual is prerequisite to this manual, you may
find it convenient to have read the Guide to Software
Documentation.

Each section/appendix of this document is structured
according to the heading hierarchy shown below. Each heading
indicates the relative level of the text that follows it.

Level

1 (highest)

2

3

4

Heading Format

ALL CAPITAL LETTERS, UNDERLINED

Initial Capital Letters, underlined

ALL CAPITAL LETTERS, NOT UNDERLINED

Initial Capital Letters, not underlined

iii
09/86
CZ03-01A

I

CONTENTS

SECTION 1 SYSTEM CHARACTERISTICS •••••••••••••••••••••••••

Operating Facilities ••••••••••••••••••••••••••••••••••••••
Software Facilities •••••••••••••••••••••••••••••••••••••••

System Control Software •••••••••••••••••••••••••••••••••
File System Software ••••••••••••••••••••••••••••••••••••
Utility Software ••
Program Development Software ••••••••••••••••••••••••••••
Data Communications Software ••••••••••••••••••••••••••••
Distributed Systems Software ••••••••••••••••••••••••••••
Data Management Software ••••••••••••••••••••••••••••••••
Data Entry Software •••••••••••••••••••••••••••••••••••••
Office Automation Software ••••••••••••••••••••••••••••••

SECTION 2 FILE CONCEPTS •..••••.•••••••.•••.••••..•••••.••

Disk File Conventions •••••••••••••••••••••••••••••••••••••
Directories •••

Root Directory ••
System Root Directory •••••••••••••••••••••••••••••••••
User Root Directory ••••••••• ~··•••••••••••••••••••••••
Intermediate Directories ••••••••••••••••••••••••••••••
Working Directory•••••••••••••••••••••••••••••••••••••

Disk Directory and File Locations •••••••••••••••••••••••
Disk Directory and File Naming Conventions ••••••••••••••

Maximum Name Length •••••••••••••••••••••••••••••••••••
Uniqueness of Names •••••••••••••••••••••••••••••••••••

Pathnames •••
Symbols Used in Pathnames •••••••••••••••••••••••••••••
Absolute and Relative Pathnames •••••••••••••••••••••••

Absolute Pathname •••••••••••••••••••••••••••••••••••
Relative Pathname •••••••••••••••••••••••••••••••••••

Disk Device Pathname Construction •••••••••••••••••••••
Links •••

Automatic Disk Volume Recognition •••••••••••••••••••••••
Disk File Organization ••••••••••••••••••••••••••••••••••

UFAS Sequential Disk File Organization ••••••••••••••••
UFAS Relative Disk File Organization ••••••••••••••••••
UFAS Indexed Disk File Organization •••••••••••••••••••
UFAS Random Disk File Organization ••••••••••••••••••••
UFAS Dynamic Disk File Organization •••••••••••••••••••
Non-UFAS Relative Disk File Organizations •••••••••••••

Page

1-1

1-1
1-2
1-2
1-4
1-4
1-4
1-4
1-4
1-5
1-5

. 1-5

2-1

2-2
2-2
2-2
2-3
2-3
2-4
2-5
2-5
2-5
2-6
2-6
2-7
2-7
2-9
2-9
2-10
2-12
2-12
2-13
2-13
2-13
2-13
2-14
2-14
2-14
2-14

v
09/86
CZ03-01A

I

CONTENTS

Pipes ••.••••.•.•......•.•.............•...••.•..••..•...
Alternate Indexes •••••••••••••••••••••••••••••••••••••••
Disk File Protection ••••••••••••••••••••••••••••••••••••

Access Control ••
Access Types • •••••••••••••••••••••• · •••••••••••••••••
Access Control/User Id Relationship •••••••••••••••••
Access Control Lists ••••••••••••••••••••••••••••••••
Checking Access Rights ••••••••••••••••••••••••••••••

File Concurrency Control ••••••••••••••••••••••••••••••
Access Control/Concurrency Control Relationship •••••••
Shared File Protection (Record Locking) •••••••••••••••

Record Locking Implementation •••••••••••••••••••••••
Setting Record Locking ••••••••••••••••••••••••••••••
Record Locking Considerations •••••••••••••••••••••••

Remote File Access ••••••••••••••••••••••••••••••••••••••
Remote File Catalog •••••••••••••••••••••••••••••••••••

Remote Object Information •••••••••••••••••••••••••••
Local Object Information ••••••••••••••••••••••••••••
Volume Identification •••••••••••••••••••••••••••••••
Establishing Remote File Catalogs •••••••••••••••••••

Initiating Remote File Access Operations ••••••••••••••
Remote File Access Security •••••••••••••••••••••••••••

Access Control Lists ••••••••••••••••••••••••••••••••
Record Locking ••••••••••••••••••••••••••••••••••••••
Data Commitment •••••••••••••••••••••••••••••••••••••

Multivolume Disk Files ••••••••••••••••••••••••••••••••••
Multivolume Sets ••••••••••••••••••••.•••••••••••••••••

Online Multivolume Set ••••••••••••••••••••••••••••••
Online Multivolume File •••••••••••••••••••••••••••••
Serial Multivolume Set ••••••••••••••••••••••••••••••
Serial Multivolume File •••••••••••••••••••••••••••••

Disk File Buffering •••••••••••••••••••••••••••••••••••••
File Access Levels ••••••••••••••••••••••••••••••••••••
Buffer Pools ••

Types of Buffer Pools •••••••••••••••••••••••••••••••
Buffer Pool Optimization ••••••••••••••••••••••••••••

Magnetic Tape File Conventions ••••••••••••••••••••••••••••
Tape File Organization ••••••••••••••••••••••••••••••••••
Magnetic Tape File and Volume Names •••••••••••••••••••••
Magnetic Tape Device Pathname Construction ••••••••••••••

Unlabeled Tape Pathname •••••••••••••••••••••••••••••••
Labeled Tape Pathname •••••••••••••••••••••••••••••••••

Automatic Tape Volume Recognition •••••••••••••••••••••••
Magnetic Tape Buffering •••••••••••••••••••••••••••••••••

Unit Record Device File Conventions •••••••••••••••••••••••
Unit Record Device Pathname Construction ••••••••••••••••
Unit Record Device Buffering ••••••••••••••••••••••••••••

Unit Record Read Operations •••••••••••••••••••••••••••

Page

2-15
2-15
2-16
2-16
2-17
2-17
2-18
2-19
2-20
2-21
2-21
2-22
2-23
2-24
2-25
2-26
2-26

. 2-26
2-26
2-27
2-28
2-28
2-28
2-29
2-29
2-30
2-30
2-31
2-31
2-32
2-32
2-33
2-33
2-33
2-34
2-34
2-36
2-36
2-36
2-37
2-37
2-37
2-37
2-38
2-38
2-38
2-38
2-38

vi
09/86
CZ03-01A

CONTENTS

Card Reader ••••••••••••••••••••••••
Interactive Terminal ••••••••

Buffered Write Operations ••• ...
SECTION 3 SYSTEM ACCESS ••••••••• .
System Configuration and Definition.
user Registration ••••••••••••••••••••••••••
Accessing the System ••••••• • • • .

Connecting to the Central Processor •••••••••••••••••••••
Connecting to the Executive •••••••••••••••••••••••

Login Terminals •••••••
Non-Login Terminals ••••••••••••••••••••

Activated Lead Task ••••••••••••••••••••••
.

Menu Environment (UPF) •••• . Menu Processor •••••••
Command-In File ••••••••• ••
user-In File ••
user-Out File ••
Error-Out File.

. Menu Level •••••••
Achieving Menu Level ••
Menu Level Processing.

.
Menu Format ••••••••• .
Subsystem Switcher ••••••••••••••••••••••••••••••••••

Command Environment ••••••• .. Command Processor ••••
Command-In File ••••
User-In File ••••
User-Out File ••
Error-Out File ••

.
Command Level •••• . . .

Achieving Command Level ••
Command Level Processing.

.
Command Format.

Arguments •••• .
Parameters •••••••••••••••••••••••
Spaces in Command Lines.
Protected Strings ••••••••••••••••••••••
Active Strings and Active Functions •••••••••••••••••••
Command Abbreviations •••

Command Accounting ••••••••
Command Beaming ••••••••••••
EC and START UP.EC Files.

EC Files •• ~ •••••••••• . . .
START UP.EC Files.

. . .

System START UP.EC File.
User START UP.EC File ••••

..
. "" •••• Ii

Page

2-39
2-39
2-40

3-1

3-2
3-2.1
3-4
3-4
3-4
3-5
3-5
3-6
3-6
3-6
3-6
3-7
3-7
3-7
3-8
3-8
3-8
3-9
3-9
3-10
3-10
3-10
3-10
3-11
3-11
3-11
3-11
3-12
3-13
3-13
3-14
3-14
3-14
3-15
3-16
3-17
3-17
3-17
3-18
3-19
3-19
3-19

vii
09/86
CZ03-01A

CONTENTS

SECTION 4 EXECUTION ENVIRONMENT •••••••
Task Groups and Tasks •••••••••••••••••••••••••••••••••••••

Application Design Benefits of Task Group Use •••••••••••
Intertask Communication •••••••••••••••••••••••••••••••
System Control of Task Groups •••••••••••••••••••••••••

Generating Task Groups and Tasks ••••••••••••••••••••••••
Characteristics of Task Groups and Tasks ••••••••••••••••
Task Group Identification •••••••••••••••••••••••••••••••

Memory Management and Protection ••••••••••••••••••••••••••
Segmentation ..••..............••.......•.....•..•.•..•..

Segmentation With Basic Memory Management Unit ••••••••
Segmentation With Extended Memory Management Unit •••••

Segment Ring Protection •••••••••••••••••••••••••••••••••
Memory Pools • ••••• ~ •••••••••••••••••••••••••••••••••••••••

Sharing Memory Pools ••••••••••••••••••••••••••••••••••••
Memory Pool Attributes ••••••••••••••••••••••••••••••••••

Protection
Containment•.......................•.........•..•
Privilege •••
Serial Usage ••
Ring Access Rights ••••••••••••••••••••••••••••••••••••

Sys tern Pool . ..•..•....•.........•.••................•..•
Swap Pools . •...•.•...•.••.••••.•.•.•.....•........•.•...
Independent Pools •••••••••••••••••••.•••••••••••••••••••
Selecting Memory Pool Types •••••••••••••••••••••••••••••
Memory Pool Layout ••••••••••••••••••••••••••••••••••••••
Fixed System Area •••••••••••••••••••••••••••••••••••••••

Bound Unit Characteristics ••••••••••••••••••••••••••••••••
General Bound Unit Characteristics ••••••••••••••••••••••
Sharable Bound Units ••••••••••••••••••••••••••••••••••••

Sharable Bound Units in Swap Pools ••••••••••••••••••••
Sharable Bound Units in Independent Pools •••••••••••••
Globally Sharable Bound Units •••••••••••••••••••••••••
Sharable Bound Units and Executive Extensions •••••••••

Bound Unit Search Rules •••••••••••••••••••••••••••••••••
Bound Unit Over_lays •••••••••••••••••••••••••••••••••••••

Nonfloatable and Floatable overlays •••••••••••••••••••
Nonfloatable Overlays •••••••••••••••••••••••••••••••
Floatable Overlays ••••••••••••••••••••••••••••••••••
Linking Floatable and Nonfloatable Overlays •••••••••

Overlay Areas ••••••• ·- •••••••••••••••••••••••••••••••••
Bound Unit Allocation •••••••••••••••••••••••••••••••••••
Memory Deallocation •••••••••••••••••••••••••••••••••••••

Swap Pool Task Address Space••••••••••••••••••••••••••••••
Bound Unit • •••••••••••.••••.•..•••.••••••..••••••..••••.
user Stack Area •••

Page

4-1

4-1
4-3
4-3
4-4
4-5
4-6
4-7
4-8
4-8
4-8
4-9
4-9
4-10
4-10
4-11
4-11
4-11
4-11
4-12
4-12
4-12
4-13
4-15
4-16
4-16
4-17
4-17
4-17
4-18
4-18
4-19
4-19
4-19
4-20
4-21
4-21
4-21
4-22
4-23
4-25
4-28
4-29
4-29
4-29
4-29

viii
09/86
CZ03-01A

CONTENTS

Dynamically Created Segments ••••••••••••••••••••••••••••
Group Work Space••
Group System Space ••••••••••••••••••••••••••••••••••••••
System Global Space •••••••••••••••••••••••••••••••••••••
System Representation of Task Address Space •••••••••••••

Task Address Space in System With Basic Memory
Management Unit •••••••••••••••••••••••••••••••••••••••
Task Address Space in System With Extended Memory
Management Unit •••••••••••••••••••••••••••••••••••••••

SECTION 5 TASK EXECUTION ••••••••••• .
Central Processor Interrupt Priority Levels •••••••••••••••
Interrupt Save Area•....••...•......
Task Dispatching ••

Monoprocessor Task Dispatching ••••••••••••••••••••••••••
Multiprocessor Task Dispatching •••••••••••••••••••••••••

Timeslicing •••
Monoprocessor Timeslicing •••••••••••••••••••••••••••••••
Multiprocessor Timeslicing ••••••••••••••••••••••••••••••

Trap Handling •••
System Features Affecting Task Execution ••••••••••••••••••

Priority Level Assignments ••••••••••••••••••••••••••••••
Assigning Priority Levels to Devices and System Tasks.
Assigning Priorities to Application Tasks •••••••••••••

Logical Resource Number •••••••••••••••••••••••••••••••••
Device LRNs ••••••••••••••••••••••••••••••••••••••• ••••
Application Task LRNs •••••••••••••••••••••••••••••

Logical File Numbers ••••••••••••••••••••••••••••••••
Task and Resource Coordination ••••••••••••••••••••••

. . . .

. . . .
Task Requests •••
Semaphores ••

Task Handling •••
Task states •••
Example of System Interaction With User Tasks •••••••••
Operator Terminal I/O Logging •••••••••••••••••••••••••••••
Intertask and Intratask Group Communication •••••••••••

Request Blocks..................
Common Files ••••••••.••••••••••••••••••••••••••••••••
Message Facility ••

Creating Mailboxes ••••••••••••••••••••••••••••••••••••
Activating Message Facility Task ••••••••••••••••••••••
Message Facility Command Interface ••••••••••••••••••••

Mail Command • •••••••••••••••••••••••••••••••••••••••
Send Message Mailbox and Accept Message Mailbox
Commands • •••

Message Facility Macrocall Interface ••••••••••

Page

4-30
4-30
4-30
4-30
4-30

4-31

4-33

5-1

5-1
5-3
5-3
5-4
5-5
5-5
5-5
5-6
5-6
5-7
5-7
5-7
5-10
5-10
5-10
5-11
5-11
5-12
5-12
5-12
5-14
5-15
5-16
5-16
5-18
5-18
5-18
5-18
5-19
5-19
5-19
5-20

5-20
5-21

ix
09/86
CZ03-01A

I

CONTENTS

Deferred Processing Facilities ••••••••••••••••••••••••••••
Deferring Task Group Requests •••••••••••••••••••••••••••

Creating Task Group Request Queues ••••••••• ~··········
Queuing Task Group Requests •••••••••••••••••••••••••••

Deferring Print Requests ••••••••••••••••••••••••••••••••
Creating Print Request Mailboxes ••••••••••••••••••••••
Creating the Print Daemon •••••••••••••••••••••••••••••
Queuing Print Requests ••••••••••••••••••••••••••••••••

Queuing and Transcribing Reports ••••••••••••••••••••••••
Creating Report Queues ••••••••••••••••••••••••••••••••
Queuing Report Requests •••••••••••••••••••••••••••••••
Transcribing Reports ••••••••••••••••••••••••••••••••••

SECTION 6 BACKUP AND RECOVERY••••••••••••••••••••••••••••

File Backup and Reorganization ••• ~·•••••••••••••••••••••••
Saving Files and Directories ••••••••••••••••••••••••••••
Restoring Files and Directories •••••••••••••••••••••••••

Power Resumption ••
Implementing the Power Resumption Facility ••••••••••••••
Power Resumption Functions ••••••••••••••••••••••••••••••

File Recovery •••
Designating Recoverable Files •••••••••••••••••••••••••••
Recovery File Creation ••••••••••••••••••••••••••••••••••
File Recovery Process •••••••••••••••••••••••••••••••••••

Taking Cleanpoints •••••••••••••.•••••••••••••••••••••••
Requesting Rollback •••••••••••••••••••••••••••••••••••
Recovering After System Failure •••••••••••••••••••••••

File Restoration ...•.••.••... . c

· Designating Restorable Files ••••••••••••••••••••••••••••
Journal File Creation •••••••••••••••••••••••••••••••••••
File Restoration Process ••••••••••••••••••••••••••••••••

Checkpoint Restart ••
Checkpoint • .••.•.•••..•.••.•• • .••.•.••.••••............•.

Checkpoint File Assignment ••••••••••••••••••••••••••••
Taking a Checkpoint •••••••••••••••••••••••••••••••••••
Checkpoint Processing •••••••••••••••••••••••••••••••••

Restart •••••• -•••••••••••••.••••••••••••.••••••••••••••••••
Requesting a Restart ••••••••••••••••••• ~ ••••••••••••••
Restart Processing ••••••••••••••••••••••••••••••••••••

GLOSSARY • •••••••••••••••••••••.••••••••••••••••••••••••••••

MANUAL DIRECTORY ••• ~ •• ••••••••••••••••••••••••••••••••••••

I!tI>E:JC. • • • ·• •·• • • •.• • •

Page

5-22
·5-22
5-23
5-23
5-23
5-23
5-24
5-24
5-24
5-24
5-25
5-25

6-1

6-3
6-3
6-3
6-4
6-4
6-5
6-6
6-6
6-6
6-6
6-7
6-7
6-8
6-8
6-8
6-8
6-9
6-9
6-10
6-10
6-10
6-11
6-12
6-12
6-13

g-1

h-1

i-1

x
09/86
CZ03-01A

Figure

2-1
2-2
2-3
2-4
2-5

4-1
4-2
4-3
4-4
4-5
4-6
4-7

ILLUSTRATIONS

Example of Disk Directory Structure •••••••••••••••••
Sample Directory Structure ••••••••••••••••••••••••••
Sample Pathnames ••••••••••••••••••••••••••••••••••••
Example of Online Multivolume Files •••••••••••••••••
Example of Serial Multivolume Files •••••••••••••••••

Sample Swap Pool Group Segment Assignments ••••••••••
Sample Independent Pool Group Segment Assignments •••
Relative Location in Memory of Memory Pool AA •••••••
Overlays in Memory Pool AA ••••••••••••••••••••••••••
Sample Bound Unit Structure for Overlay Area Use ••••
Task Address Space in BMMU System •••••••••••••••••••
Task Address Space in EMMU System •••••••••••••••••••

Page

2-3
2-4
2-11
2-31
2-33

4-14
4-16
4-24
4-24
4-25
4-32
4-34

5-1 Format of Level Activity Indicators for Each
Central Processor ••••••••••••••••••••••••••••••••••• 5-2

5-2 Order of Interrupt Vectors and Format of Interrupt
save Areas for Each Central Processor •••••••••••••••. 5-4

5-3 Example of LRN and Priority Level Assignments
for System Tasks and Devices •••••••••••••••••••••••• 5-11

5-4 System Interaction with user Tasks in a
Monoprocessor System •••••••••••••••••••••••••••••••• 5-17

TABLES

Table Page

2-1 Disk File Concurrency Control ••••••••••••••••••••••• 2-20
2-2 Access Control/Concurrency Control Relationship ••••• 2-21

4-1 Task Group and Task Functions Possible From
Interactive and Absentee Modes •••••••••••••••••••••• 4-6

4-2 System Task Group Identifiers ••••••••••••••••••••••• 4-7
4-3 Comparison of Executive Extensions

and Sharable Bound Units •••••••••••••••••••••••••••• 4-20

5-1 Sample Priority Level Assignments for Tasks
and Devices ••• 5-8

xi
09/86
CZ03-01A

The Distributed Systems Architecture 6 (DSA6) package follows
the layered structure of the Open Systems Interconnection (OSI}
defined by the International Standards Organization. DSA6 is a
set of networking products that includes a transport facility, a
network terminal manager, a unified file transfer facility, a
remote file facility, a remote batch facility, and an application
interface facility. DSA6 also supports system to system Local
Area Network (LAN) connections. In addition, DSA6 provides I
terminal access to IBM-hosted applications through the DSA/SNA
gateway.

The Systems Network Architecture 6 (SNA6) package emulates
most operations of standard IBM devices so that DPS 6 systems can
interface with an IBM SNA network. SNA6 provides a remote job
entry facility, a file transmission facility, an interactive
terminal facility, and an application interface facility.

Data Management Software

MOD 400 supports data base management, query and report
writing, and transaction processing software packages. Data base
management packages are available for relational and network data
bases. Query and report writing packages allow you to retrieve
information from all supported data bases. Transaction
processing packages support standalone systems as well as
applications connecting to remote host processors through the
Distributed Systems software.

Data Entry Software

MOD 400 supports a multistation, forms-oriented source data
collection capability. The Data Entry Facility-II (DEF-II)
package embodies established data entry concepts in a menu-driven
approach, making it easy to specialize and run procedures. Data
collected and validated by DEF-II can be organized into a file
and transferred to another system through the Distributed Systems
software.

Off ice Automation Software

MOD 400 supports the Off ice Automation System (OAS)
facility. OAS offers a wide range of office processing functions
including document processing, electronic mail, document
transfer, records processing, spreadsheets, communications, and
file management.

1-5
09/86
CZ03-01A

WORKING DIRECTORY

The File System always starts at a root directory when it
searches for a disk file or a directory. At times the search for
an element residing on a disk volume may traverse a number of
intermediate directory levels before the desired element is
located, and the File System must be supplied with the names of
all the directories it must pass on the way. Frequently all
files of interest to a user doing work on the system are
contained in a single directory that is three or four levels deep
in the hierarchy. It is convenient to be able to refer to files
in relation to a directory at some arbitrary level in the
hierarchy rather than in relation to the root directory. The
File System allows this to be done by recognizing a special kind
of directory known as a working directory.

A working directory establishes a reference point that
enables you to specify the name of a file or another directory in
terms of its position relative to the working directory. If the
access path of the working directory is made known to the File
System, and if the desired element is contained in that
directory, the element can be specified by just its name. The
File System concatenates this name with the names of the elements
of the working directory's access path to form the complete
access path to the element.

Disk Directory and File Locations

The File System has total control over the physical location
of space allocated to directories and files. You need never be
concerned about where a directory or file resides on a volume.
When a volume is first initialized, space is allocated to
elements in essentially the order in which they are created.
But, after the volume has been in use for some time, elements may
have been deleted and the space they occupied made reusable.
Then, when a new element is created, it is allocated the first
available space. If more space is needed, it is obtained from
the next free area.

Disk Directory and File Naming Conventions

Each disk directory and file name in the File System can
consist of the following American Standard Code for Information
Interchange (ASCII) characters:

• Uppercase and lowercase primary character set alphabetics I
(A-Z, a-z)

• Digits (0-9)

• Underscore (_)

• Hyphen (-)

2-5 CZ03-0l

I

• Period (.)

• Apostrophe (')

• Uppercase and lowercase characters whose hexadecimal
equivalents are from CO-FE (Western European Latin
alphabet, also called the extended character set).

The characters in the extended character set cannot be used
in volume identifiers.

NOTE

If the terminal is not capable of processing 8-bit
data, characters from the extended character set
are displayed as periods or as their 7-bit
equivalents.

When volumes, files, and directories are created, their
identifiers are stored on disk exactly as entered, in uppercase
and lowercase characters. For both the primary and extended
character sets, MOD 400 considers uppercase and lowercase
characters to be equivalent (for example, "DATA", "Data", and
"data" all refer to the same file).

The first character of any name must not be the character FF
(hexadecimal). The underscore character can be used to join two
or more words that are to be interpreted as a single name (for
example, DATE TIME). The period character and one or more
following alphabetic or numeric characters are normally
interpreted as a suffix to a file name. This convention is
followed, for example, by a compiler when it generates a file
that is to be listed. The compiler identifies this file by
creating a name of the form FILEA.L.

MAXIMUM NAME LENGTH

The name of a root directory (the volume identifier) can be
from one through six characters in length. The names of other
directories and files can be from 1 through 12 characters in
length. The length of a file name must be such that any
system-supplied suffix does not result in a name containing more
than 12 characters.

UNIQUENESS OF NAMES

Within the system at any given time, the access path to every
element must be unique. This requirement leads to the following
rules for naming files:

2-6
09/86
CZOJ-OlA

If the system volume is associated with the disk cache I
processor, heavily used directories, as well as files that
are read sequentially, are likely to be resident in the
disk cache buffer. Buffer pools for these directories and
files may not be needed.

• Private buffer pools - Private buffer pools can be created
by each user. Private buffer pools reside in the task
group's memory space and are available only for disk files
reserved exclusively by that task group. A disk file is
assigned to a private pool if the file is reserved for
exclusive use and its control interval size (specified in
the command that creates the file) matches the pool's
buffer size. Private buffer pools should be created only
if necessary to meet specific buffering needs. Public
buffer pools should be sufficient in most cases.

• File-specific buffer pools - When you reserve a disk file
with the Get File command, you can specify the number of
buffers {using the -NBF argument) to be used when
accessing the file. When the file is opened, a buffer
pool is automatically created for use only by that file.
This file specific pool is created in the task group's
memory if the file is reserved exclusively, or in system
memory if the file is reserved as sharable. The -NBF I
argument should be used carefully since it prevents a file
from being assigned to a public or private buffer pool.

Buffer Pool Optimization

The File System collects a set of statistics on the use of
each buffer pool. The installation can use this information to
optimize disk I/O operations. Buffer pool statistics are
obtained through the Buff er Pool Status and Buff er Pool
Information commands. The Buffer Pool Status command provides a
summary of the public or private buffer pool status. The Buffer
Pool Information command provides a detailed status report on a
particular buffer pool.

The installation should analyze applications and their
associated file usage to fully utilize the advantages offered by
buffer pools. Only a limited number of control interval sizes
should be allowed for user files. In general, buffer and control
interval sizes should be chosen to evenly distribute high and low
activity files over the various buffer pools, thus reducing the
amount of contention in the pools. The initial determinations
will provide an acceptable level of performance and provide the
basis for further analysis.

The Adjust Buffer Pool command can be used to temporarily
alter the number of buffers in a private buffer pool. Once the
most efficient buffer pool size has been established, it should
be permanently fixed through the Create Buff er Pool and Delete
Buffer Pool commands.

2-35 CZ03-0l

MAGNETIC TAPE FILE CONVENTIONS

The magnetic tape file conventions discussed in the following
paragraphs include file organization, naming conventions,
pathnames, and buffering operations.

Tape File Organization

The following information applies only to 1/2-inch, 9-track
magnetic tapes.

Magnetic tape supports only the sequential file
organization. Fixed- or variable-length records can be used.
Records cannot be inserted, deleted, or modified, but they can be
appended to the end of the file. The tape can be positioned
forward or backward any number of records.

The unit of transfer between memory and a tape file is a
block. Block size varies depending on the number of records and
whether the records are fixed or variable in length.

A block can be treated as one logical record called an
0 undefined" record. An undefined record is read or written
without being blocked, unblocked, or otherwise altered by data
management. Spanned records (those that span across two or more
blocks) are supported. No record positioning is allowed with
spanned records.

A labeled tape is one that conforms to the current tape
standard for volume and file labels issued by the American
National Standard Institute (ANSI). The following types of
labeled tapes are supported:

• Single-volume, single-file
• Multivolume, single-file
• Single-volume, multifile
• Multivolume, multifile.

The following types of unlabeled tapes are supported:

• Single-volume, single-file
• Single-volume, multifile.

Magnetic Tape File and Volume Names

Each tape file and volume name in the File System can consist
of the following ASCII characters: Uppercase alphabetics (A
through Z), lowercase alphabetics (a through z), digits (O
through 9), exclamation point (1), double quotation marks ("),
dollar sign ($),percent sign(%), ampersand (&),apostrophe ('),
left parenthesis ((), right parenthesis O), asterisk (*), plus
sign(+), comma (,), hyphen (-), period (.), slash(/), colon
{:),semicolon (J)r less-than sign (<),equal sign (=),question * mark (?),and underscore (_).

2-36
09/86
CZ03-01A

The underscore character can be used as a substitute for a *
space. If a lowercase alphabetic character is used, it is
converted to its uppercase counterpart ("DATA", "Data" and "data"
all refer to the same file).

Any of the characters defined above can be used as the first
character of a file or volume name.

The name of a tape volume can be from 1 through 6 characters
in length. Tape file names can be from 1 through 17 characters.

Magnetic Tape Device Pathname Construction

Magnetic tape volumes can be labeled or unlabeled (refer to
"Tape File Organizations" above).

UNLABELED TAPE PATHNAME

You must use a device pathname when referring to an unlabeled
tape. The general form of a tape device file pathname is:

!dev name

where dev name is the symbolic name defined for the tape device
at system-building time.

LABELED TAPE PATHNAME

You can refer to labeled tapes either by the tape device file
pathname convention or by the tape volume id convention.

The tape device file pathname convention is:

!dev_name>vol_id[>filename]

where dev name is the name of the tape device as specified at
system building time, vol_id is the name of the tape volume, and
filename is the name of the file on the volume. This convention
requires that the volume be mounted on the specified device.

The tape volume id convention is:

-vol_id[>filename]

where vol_id is the name of the tape volume and filename is the
name of the file on the volume. This convention allows the
volume to be mounted on any available tape device.

~utomatic Tape Volume Recognition

Automatic volume recognition dynamically notes the mounting
of a tape volume. This feature allows the File System to record
the volume identification in a device table, thus making every
tape volume accessible to the File System software.

2-37
09/86
CZ03-01A

Magnetic Tape Buffering

The -NBF argument of the Get File command can be used with
magnetic tape files to reserve one or two buffers. If -NBF is
not used, the File System attempts to allocate two buffers. If
two buffers are allocated, the File System does "double
buffering." When the tape file is being read, the File System
unblocks one buff er while an anticipatory read is done into the
other buffer. Similarly, when the tape file is being written,
the File System blocks records into one buffer while a previously
filled block is written out of the other buffer. This allows
application code to execute in parallel with I/O transfers.

UNIT RECORD DEVICE FILE CONVENTIONS

Unit record devices (card readers, card punches, printers,
terminals, and paper tape reader/punches) are used only for
reading and writing data. They are not used for storing data,
and thus do not require conventions for file identification and
location.

Unit Record Device Pathname Construction

The pathname of a unit record device consists of the symbolic
device name defined at system building preceded by an exclamation
point (1). The pathname format is:

ldev name

where dev name is the symbolic device name of the unit record
device.

Unit Record Device Bufferi.!!.9.

All printers and most interactive terminals are provided with
one File System buffer. (The operator terminal cannot be
buffered.) By providing a File System buffer, application code
can execute in parallel with I/O transfers.

All printers and all terminals (except the operator terminal)
have a tabbing capability through software that converts the tab
into spaces. Default tabulation stops are set at position 11 and
at every tenth position thereafter for the line length of the
device.

UNIT RECORD READ OPERATIONS

When an application task issues a logical read to a File
Syst~m buffered device, one of the following actions occurs:

i,~·

• If the buffer is full from a prior anticipatory read, the
data in the buffer is transferred into the application
task's area and a physical I/O transfer (an anticipatory
read) is performed in parallel with continued execution.

2-38
09/86
CZ03-0lA

• If the buffer is not full, task execution stalls until the
anticipatory read is completed.

The timing of the initial anticipatory read performed for the
card reader is different from that of the interactive terminals1
for other read actions it is the same.

Card Reader

Immediately after the Open is complete, the File System
performs an asynchronous anticipatory read into the system buffer
while the application continues execution. All Open calls are
synchronous.

Interactive Terminal

The anticipatory read allows an application to control input
from more than one interactive terminal, each of which represents
a data entry terminal. By testing the status of the system
buffer before a Read or by checking for the appropriate status
return after a Read, the application will not be stalled if the
terminal operator is not present at the time of the Read
request~ Instead, the application can continue to poll other
terminals.

Immediately after the Open is complete, a physical connection
is made while the application continues execution. Depending
upon the language the application is written in (for example,
FORTRAN or Assembly language), it may be able to check the status
of the Open to see if a Read can be issued without stalling
application execution. The File System issues an asynchronous
anticipatory physical read when the status check following the
physical connect is complete. The file status remains busy until
the physical read is done and the system buffer is full. At this
point, the file status is "not busy" (the anticipatory read is
successfully completed), and the application can issue a Read
with the assurance of receiving data immediately.

If at any point after the Open is issued, the application
issues a Read before the physical connect and anticipatory read
have been completed, the Read is synchronous and further central
processor execution is stalled on the application until the
anticipatory read is complete.

To avoid stalling on a Read or to avoid status check looping
to test the input buffer status, applications should put
themselves in the wait state, thus making the central processor
available for lower priority tasks.

~fter the Open, an application written in COBOL must issue
Read requests. The application will be put in the wait state if
it is executing I/O statements in synchronous mode. Otherwise,
the COBOL run-time package performs status checks and returns a
91 status until successful completion. The program can either
loop on the Read or continue other processing.

2-39
09/86
CZ03-01A

BUFFERED WRITE OPERATIONS

A buffered write operation to a unit record device works on
behalf of the application program in the same logical manner as a
read operation. ·The program is permitted.to execute in parallel
with the physical I/O transfer to the device. To achieve this
parallel processing, no special operation occurs on an Open call
and no distinction is made between interactive and noninteractive
devices.

Each Write call is completed by moving data from the
application buffer to the File System's buffer (performing any
detabbing, if requested), initiating the transfer, and returning·
control to the application program. If the program performs a
second Write while the system buffer is still in use for a
previous transfer, the application is stalled until the buffer is
available and new data is moved into it again. The application
can avoid stalling execution when writing to an interactive
terminal by doing one of the following:

• Checking the status of the system buffer before issuing
the Write to see if the interactive terminal is still in
use.

• ~esting for a particular status return after the Write.

If a Write call is issued while data is being entered into
the system buffer (because of a Read), the following sequence of
events takes place:

• The read is allowed to complete.

• Input data is saved in the system buffer.

• A synchronous write is reissued by the File System.

• Output data is transferred directly from the application
buffer.

Note that tab characters are not expanded into spaces.

If a physical I/O error occurs while data is being
transferred from the system buffer to the device, you must be
aware that the error occurred on the previous write operation.
Furthermore, if any type of error occurs, the application program
may need to have saved (or be able to retrieve) the data record
so that it can be repeated.

2-40 CZ03-0l

&ction3
SYSTEM ACCESS

You can request access to the system to perform a number of
different functions, such as:

• System building - Configuring the system to the needs of
its users.

• System administration - Registering users.

• Operation control - Starting up the system each day,
controlling processing, managing peripheral devices, and
monitoring system status.

• Program development - Compiling, testing, and debugging
programs.

• Application execution - Interacting with a program to
accomplish a particular task.

In a large installation, different individuals will perform
different functions. In a small installation, one person may
perform most or all of the functions.

Access to the system is restricted to authorized users by
means of the registration and login processes. Access to system
files is restricted to specified users through the access control
process (described in Section 2). Access to the various system
facilities is controlled through the menu or command environment.

3-1 CZ03-0l

Before any other access to the system can be made, the system
must first be configured.

Creation of a system is a four-step procedure, consisting of:

1. Installing the operating system and application software
onto your system disk. Note that this step is not
necessary if you receive a disk with the operating system
and application software already installed.

2. Bootstrapping a Honeywell-supplied system startup routine
that provides a limited operating environment for
building the files used in the third step.

3. Specializing the system startup procedure by configuring
a system to correspond to the installed hardware and by
defining the environment in which to prepare and execute
application programs.

4. Making a backup copy of the disk containing your
specialized system.

Honeywell delivers to you one of the following:

1. A disk containing an installed operating system and
requested application software. You use this disk to
bootstrap the startup routine.

2. A LOAD/SAVE Diskette and a disk or tape containing the
operating system and other application software you
ordered. The LOAD/SAVE software guides you in installing
the operating system onto your system disk. The
installation process is described in detail in the
Software Installation Guide. Once the operating system
softwareresides--on-your-system disk, you bootstrap the
startup routine.

The bootstrap operation consists of turning on the power
supply to the hardware, mounting the disk containing the MOD 400
system software, and pressing several keys on the control panel
or System Control Facility device. (The procedure is described
in the System ~~er~Guide.) The bootstrap operation generates
the initial configuration and startup operations. The resulting
limited, one-user, on-line environment permits you to specialize
system startup so that subsequent bootstraps will produce a
multi-user environment that is adapted to your site's software
requirements. This initial configuration may also be used to
develop or execute application programs; however, the standard
procedure is to generate a site-specific configuration first.

3-2
09/86
CZ03-01A

To generate a site-specific configuration, you either invoke I
the Autoconf igurator (DPS 6/22 only) or you create a file (called
the CLM USER file) containing the Configuration Load Manager
(CLM) directives that describe the operating environment that
will exist at your installation. The CLM USER file is created
automatically by the DPS 6/22 Autoconf igurator. The
configuration directives are described in the System Building and
Administration manual.

To further define the environment, you can create a
START UP.EC file (>>START UP.EC) containing the operator commands
that perform installation=specif ic functions such creating buffer
pools. A >>START_UP.EC file is created automatically by the
DPS 6/22 Autoconfigurator. {START UP.EC files are described
later in this section.) -

After the CLM USER file and the system START UP.EC file are
created, you again bootstrap the system. This time, the
directives in the CLM USER file control the configuration, and
the operator commands-in the system START UP.EC file further
define the operating environment.

It is important that you make a backup copy of the
specialized system disk.

USER REGISTRATION

User registration is a process that protects the system from
unauthorized access. Each person who is to be allowed on the
system must be registered by the system administrator. The
administrator uses the Edit Profile command to specify
user-specific information such as:

3-2.l
09/86
CZ03-01A

I

COMMAND ACCOUNTING

Command accounting is an optional facility
commands entered through the command language,
Process Command Line system service macrocall.
from system groups (those whose first group id
are not logged.

that logs all user
menus, and the

Commands entered
character is $)

The system records the command's elapsed time and resource
usage as well as the group id and user id of the issuer. Refer
to the System Building and Administration manual for information
on requesting command accounting and obtaining command accounting
reports.

COMMAND BEAMING

Command beaming allows you to execute commands in another
computer node. (A task group capable of processing the commands I
you enter is automatically created in the remote node.) When you
issue a Beam command, the system's remote file access facility
(described in Section 2) reads your command-in and user-in files
and sends the data to the node specified in the Beam command.
The output generated at this node is written to your user-out and
error-out files. All subsequent commands you issue will be
executed at the specified node until you issue another Beam
command to return to your node.

All memory space, processor time, and disk space required to
execute the commands are distributed to the remote node.

Since command beaming allows you into another computer, you
can enter commands to find out the status of users, applications,
devices, and so forth on that node. You can queue requests, send
messages to local users, and update the node's remote file
catalog.

EC AND START UP.EC FILES

The Command Processor is able to read commands from a source
other than an interactive user terminal. One example is an
Execute Command (EC) file that you construct through an editor.
An EC file is a text file that contains command lines (for input
to the Command Processor) and/or Execute command directives. An
EC file is read by the Command Processor when:

• The Command Processor is invoked by an Execute command.

• A task group is activated with the Command Processor as
its lead task and the EC file is specified as the task
group's user-in file.

When you enter a request to have a task run in absentee mode,
you specify an EC file that is to be read by the Command
Processor (refer to the System User's Guide for further details).

3-17
09/86
CZ03-01A

I

I

EC Files

An EC file might contain a series of commands that you
execute on a frequent basis, such as commands to execute a set of
application programs that run at the end of the month to
summarize inventory, sales, and accounts receivable. EC files
can range from simple to complex. An example of a simple EC file
is:

ED -P'l.1
FORTRANA AREA -LE
LINKER AREA -IN LNKDR
DPRINT AREA.M
AREA

This EC file is made up of commands that are most often used
in developing a FORTRAN program called AREA. The ED command
invokes the line editor, FORTRANA invokes the the FORTRAN
compiler, LINKER invokes the Linker, DPRINT prints the link map,
and AREA executes the program.

A more complex EC file uses active functions and
substitutable parameters. The following file could be used to
create, compile, and link any program. (The lines beginning with
the & character are Execute command directives.)

& CREATE, COMPILE, AND LINK A &l PROGRAM
&P BEGIN EDITOR SESSION
ED -PT
&P COMPILATION BEGINS
&l &2
&IF [EQUAL {RETCODE] 0000] &THEN &ELSE &> ERROR!
&P LINKER SESSION BEGINS
&A
LINKER &2
LINK &2
QT
&D
&IF {EQUAL [RETCODE] 0000] &THEN &ELSE &> ERRORl
&P LINK COMPLETE
&G FINISH
&L ERROR!
&P ERROR ENCOUNTERED IN DEVELOPMENT SEQUENCE
&P EC TERMINATED
&Q
&L FINISH
&Q

Assuming that the file is named PROG_DEV.EC, you could
execute it file for a COBOL program development session by
entering:

EC PROG DEV COBOLA PAYROLL

3-18
09/86
CZ03-01A

The pathname PROG_DEV is substituted for all occurrences of &O
(none in this example), COBOLA is substituted for all occurrences
of &l, and PAYROLL is substituted for all occurrences of &2.

EC files are discussed in detail in the System User's Guide
and the Application Developer's Guide.

START UP.EC Files

A special application of EC files is their use at system
initialization and at task group activation.

SYSTEM START UP.EC FILE

After configuration (after the CLM USER file of configuration
directives is executed), the system searches for a user-written
command file named START UP.EC in the system root directory. If
this START UP.EC file is-present, it is executed. A typical
system START UP.EC file might contain operator commands used to
establish an-application environment for the installation. An
example of such a START UP.EC file is:

CBP BUFF! -NBF 10 -CISZ 1024
CBP BUFF2 -NBF 5 -CISZ 512
CBP BUFF3 -NBF 5 -CISZ 256
CBP BUFF4 -NBF 20 -DIR
START MAIL
EC >>GROUP$L
&Q

This START UP.EC file creates several buffer pools of various
common sizes, activates the local mail/message facility, and
activates Listener monitoring of terminals.

USER START UP.EC FILE

I

I
When a task group whose lead task is the Command Processor is

activated, the Command Processor searches for an EC file named
home_directory>START_UP.EC. (Home_directory is the pathname I
specified in the -HD argument of the user registration or the -WD
argument of the Spawn Group command.) If such a file is present,
the Command Processor executes it before performing any other
action. This file could contain commands to direct the execution
of the tasks of the job and/or perform certain housekeeping
tasks. An example of a user START UP.EC file is:

AMM -OFF
ST 2 -EFN PROGA
ST 3 -EFN PROGB
ST 4 -EFN PROGC

This START UP.EC file causes three tasks to be activated and
specifies that-the user does not want to receive local messages.

\-19
09/86
CZ03-01A

There are important differences between tasks (and task
groups) that are generated by a create function and those
originated by a spawn function. Created task groups and tasks
are permanent; they remain available in memory until explicitly
removed. Spawned task groups and tasks are transitory; they
perform a function and disappear.

Created task groups and tasks are passive; they must be
explicitly requested to execute in order.to perform their
intended function. Spawned task groups and tasks cannot be
requested. The spawning of a task group or task is equivalent to
a create-request-delete sequence of control language commands.
In a spawn operation, the task group or task is defined, provided
with system resources and control structures, executes,
terminates, and has its resources deallocated, all in one
continuous process.

FORTRAN or Assembly task code may cause extensive action in
its own behalf, as when application task code requests a system
service or the execution of another task while awaiting the
completion of the requested task. Each task that requests
another supplies the address of a control structure through which
the issuing task and the requested task can communicate, and
which the Executive uses to coordinate task processing.

Task Group Identification

Each task group has a unique identifier. Honeywell-supplied
system task group identifiers begin with a $ as shown in
Table 4-2 below:

Table 4-2. System Task Group Identifiers

Task
Group ID Function

I

$H Honeywell-supplied user task group
$L Listener
$P Deferred print 1
$S System task group'··

.j

4-7
09/86
CZ03-01A

I

I

*

I

The identifier for a user task group in the Create Group or
Spawn Group command is a 2-character name that should not have
the dollar sign ($) as its first character. The identifier (or
group-id) can be indicated or implied in commands to designate
what task group is to be acted upon. The operator can include
the task group identifier when responding to operator terminal
messages from the task group.

MEMORY MANAGEMENT AND PROTECTION

The system (hardware and software) provides a memory
management and protection facility that performs the following
functions:

• Allocates memory to guarantee each task group (user) its
own address space.

• Protects multiple users from each other and the system
from the users.

The hardware used to provide memory management and protection
is called a memory management unit. The type of memory
management unit varies according to the kind of processor. DPS 6
systems use either the Basic Memory Management Unit (BMMU) or the
Extended Memory Management Unit (EMMU). Each of these memory
management units is based on the concept of segmentation.

Segmentation

The memory management unit maps a segmented address space
onto physical memory. The unit of memory allocation is a
segment. A segment is a variably sized area of memory that
usually consists of a logical entity such as a procedure. The
system memory management and protection facility treats all
addresses generated by the central processor as segment-relative
addresses. It maps the segment-relative addresses through the
memory management unit to absolute physical addresses. No
segment can be less than 512 bytes in length. Segment size is
always a multiple of 512 bytes.

SEGMENTATION WITH BASIC MEMORY MANAGEMENT UNIT

The BMMU supports up to 31 segments, 16 of which can be up to
BK bytes (K=l024) in size and 15 of which can be up to 12BK bytes
in size. The segments that can be up to BK bytes are called
nsmall segmentsn; those that can be up 12BK bytes are called
n1arge segments.n The 16 small segments are numbered from 0.0
through O.F; the 15 large segments are numbered from 1 through
F. All small segments, and often some large segments, are
reserved for system use; the actual number reserved is
established at system generation.

The BMMU provides a total of 2 million bytes of segmented
address space for each task.

4-8 CZ03-0l

Section5
TASK EXECUTION

A task can be characterized as the execution of a sequence of
instructions that has a starting point and an ending point, and
performs some identifiable function. A task can initiate another
task for execution or terminate itself by calling the task
management commands or macrocalls. Multiple tasks can operate
independently of and asynchronously to each other.

Each application, system, or device driver task operates at
an interrupt priority level, one of the 64 priority levels
provided for each central processor by the hardware and
firmware. This section describes the processing of priority
levels, including context saving of interrupted tasks and the
assignment of priority levels and logical resource numbers to
tasks. This section also describes task communication and
coordination as well as deferred processing.

CENTRAL PROCESSOR INTERRUPT PRIORITY LEVELS

All system tasks, device drivers, and application tasks are
assigned interrupt priority levels that indicate the order of
their execution. This order of execution may be changed due to
timeslicing (see below) or because this is a multiprocessor
system.

Control of the central processor is given to the highest
active interrupt level. However, in multiprocessor systems, a
task at the higher priority may execute at the same time as a
task of the lower priority since each task is executing on a
different central processor.

5-1 CZ03-0l

Each central processor provides 64 potential interrupt
priority levels that are used by the hardware to order the
processing of events. These levels are numbered from the highest
priority (level 0) to the lowest priority (level 63). Levels 0

I through 5, 62, and 63 are reserved. The intervening levels (6
through 61) are assigned to logical resources (that is, devices
and tasks).

I

The determination of which priority level is to receive
central processor time is based on a linear scan of the level
activit~ indicators. The level activity indicators are
maintained _by the hardware in four contiguous dedicated memory
locations in each central processor (see Figure 5-1). Each bit
that is "on" denotes an active priority level; each bit that is
"off" denotes an inactive level.

Bits can be set "on" by software or by hardware events
(interrupts). Most interrupting hardware devices are associated
with priority levels during system configuration (by directives
in the CLM USER file). The three highest priority levels have
dedicated assignments Of special hardware/firmware functions such
as incipient power failure, watchdog timer runout, and trap save
area overflow. Priority level 3 is reserved as an inhibit level,
level 4 is reserved for internal system use, and level 5 is
dedicated to the real-time clock. Succeeding levels are
user-configurable as device levels. Following these are three
levels reserved for system use. Except for levels 62 and 63, the
remaining levels can be used for application tasks. Level 62 is
reserved for system use. Level 63 is reserved for an always
active software idle loop or, in multiprocessor systems, for the
task dispatcher.

MEMORY
LOCATION BIT
(HEXADECIMAL) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0020 0120 0-------------15

0021 0121 16-------------31 INTERAUPTPRIORITY

CPU 0 CPU 1 _ _L_ 1·

0022 0122 32-------------47

0023 0123 48-~--,-~~-------63

NOTE: IF THE BIT CORRESPONDING TO AN INDIVIDUAL
LEVE:.L IS "ON", THAT LEVEL IS ACTIVE. IF THE
BIT IS "OFF", THE LEVEL IS SUSPENDED.

LEVEL NUMBER

86-023

Figure 5-1. Format of Level Activity Indicators
for each Central Processor

5-2
09/86
CZ03-01A

Multiprocessor Task Dispatching

In a multiprocessor system, the Executive maintains a queue
of ready tasks ordered by priority level. This queue is called
the general ready queue. The Executive dispatches the task at
the top of the queue whenever a central processor becomes free to
provide service. A dispatcher task runs at level 63 in each
central processor and dispatches a task whenever it receives
central processor time.

The dispatcher tasks attempt to balance the load so that high
priority tasks are serviced before low priority tasks and all
processors are used as fully as possible.

TIME SLICING

The technique of timeslicing min1m1zes the ability of user
tasks that use large amounts of central processor time to
interfere with interactive users of the system. In DPS 6
systems, timeslicing uses the Real-Time Clock Interrupt Servicing
task (which executes at level 5} to check all tasks at a
configured user level and below. Configuration of timeslicing is
automatic. All user levels execute in a timesliced manner.
Timeslicing options are discussed in the System Building and
Administration manual.

The way timeslicing operates differs according to whether the
system is monoprocessor or multiprocessor.

Monoprocessor Timeslicing

At each clock interrupt, a check is made to see if the task
at the highest active user level has exceeded the configured
value for a timeslice. (The system builder may specify the
length of a timeslice in milliseconds or may accept the system
default.} If the execution of that task has exceeded the
timeslice value without waiting for some event, the task is
removed from the front of the queue for its priority level and is
placed at the end of that queue.

If a configured number of timeslices occur without the task
waiting on any event, the task is demoted one priority level
(that is, the task's priority level is increased by one). The
task can be demoted again and again until it has been demoted the I
configured number of levels or has reached priority level 61.

Each time a task that was demoted waits for some event, it is
promoted one level (that is, its priority level is decreased by
one). The task can be promoted again and again until it reaches
its assigned priority level.

09/86
5-5 CZ03-0l

I

Multiprocessor Timeslicing

At each clock interrupt, a check is made to see if the task
at the highest active user level has exceeded the configured
value for a timeslice. (The system builder may specify the
length of a timeslice in milliseconds or may accept the system
default.) If the execution of that task has exceeded the
timeslice value without waiting for some event, the task is
placed on the general ready queue as the last entry among tasks
of its priority.

If a configured number of timeslices occur without the task
waiting on any event, the task is placed on the ready queue and
demoted one priority level (that is, the task's priority level is
increased by one). The task can be demoted again and again until
it has been demoted the configured number of levels or has
reached priority level 61.

Each time a task that was demoted waits for some event, it is
placed on the ready queue and promoted one level (that is, its
priority level is decreased by one). The task can be promoted
again and again until it reaches its originally assigned priority
level.

TRAP HANDLING

The hardware provides a means by which certain events that
occur during the execution of a task can be "trapped", with
control being passed to software routines designed specifically
to cover the condition causing the trap. Events such as the
execution of a MOD 400 monitor call, or the detection of a
program error, hardware error, arithmetic overflow, or
uninstalled optional instruction cause traps (control transfers

·to designated software routines) to occur.

Traps are divided into two classes: (1) standard system
traps, for which routines are supplied with the system, and (2)
user-specific traps, for which users supply their own handlers.

An application program can designate which traps are to be
handled by using the enable/disable user trap macrocalls {refer
to the System Programmer's Guide - Volume II for details). If an
enabled trap occurs in the user program, the Trap Manager
transfers control to the connected trap handler for the condition
causing the trap. A trap that is enabled is local to a task.
such a trap neither affects nor is affected by the handling of
the same trap in another task, even within the same task group.

Any trap that occurs when its handler is not enabled, or that
does not have a handler to process it, causes the executing task
to be aborted.

5-6
09/86
CZ03-01A

SYSTEM FEATURES AFFECTING TASK EXECUTION

While MOD 400 does monitor resource use within a task group
and among task groups, tasks and task groups must cooperate in
their use of system resources to ensure smooth operation of the
application.

Priority Level Assignments

Priority levels 6 through 61 are available for assignment to I
system, device driver, and application tasks. The system builder
establishes the priorities of system tasks and driver tasks
during configuration. (On the DPS 6/22, the Autoconfigurator
establishes these priorities.) You assign the priorities of
application tasks when you create task groups. Priority levels
with low numeric values have higher priority than those with high
numeric values. The procedures for establishing priorities are
described below.

ASSIGNING PRIORITY LEVELS TO DEVICES AND SYSTEM TASKS

The system builder specifies hardware interrupt priority
levels through an argument of the DEVICE directive in the
CLM USER file. (The Autoconfigurator is used on the DPS 6/22.) I
When the system builder specifies a particular type of device,
the appropriate Honeywell-written device driver is loaded as part
of the system. The three priority levels following the last one
assigned to a configured device are used by system tasks and
cannot be assigned to application tasks.

One example of priority level assignment is shown in Table
5-1. Levels 0 through 5 are assigned by the system and are not
available to any user. The operator terminal is assigned to
level 81 however, the system builder can assign any appropriate
level to the operator terminal through a DEVICE directive. (The I
operator terminal must be at a lower (numerically higher) level
than the Communications supervisor.) At initialization, the
system bootstrap device is assigned to level 6. This assignment
remains in effect unless changed by a DEVICE directive.

Peripheral devices may be assigned to levels on both central
processors in a multiprocessor system. This assignment is done
automatically by the system.

5-7
09/86
CZ03-01A

Table 5-1 indicates Input/Output (I/O) devices, and not
device drivers, to stress that each peripheral device must have
at least one level assigned to it. Except for communications
devices, peripheral devices cannot share a level. If there are
two printers, each must be assigned a unique level even though
there is only one copy of the associated I/O driver.
Communications configurations require at least one nonsharable
level dedicated to processing communications interrupts. This
level must be higher than any level assigned to a communications
device.

Communications devices can share a level. For example, four
teleprinters (TTYs) and one Visual Information Projection (VIP)
terminal can be configured to share one level or to use up to
five levels. The priorities in Table 5-1 provide maximum
throughput because devices with high transfer rates are assigned
higher priorities than devices with low transfer rates.

Theoretically, the system builder could assign a level number I as high as 58 to a device. In this case, levels 59 and 60 would
be used by the system and only level 61 would be available for
user task groups. In practice, however, the system builder would
want to reserve more than one level for user task groups,
especially for a system with a large number of devices. If
priority levels 6 and 7 are assigned as shown in Table 5-1,. the
theoretical range of levels assignable through CLM COMM
directives is 8 through 58. For a device associated with a COMM

I directive, the range is 9 through 58.

Table 5-1. Sample Priority Level Assignments for Tasks
and Devices

Physical Base
Priority Priority
Level Level

0 N/A
1 N/A
2 N/A
3 N/A
4 N/A
5 N/A

6 N/A

7 N/A

Use

Power failure handler
watchdog timer runout
TSA overflow
Inhibit interrupts
Reserved
Real-time clock

System bootstrap
device

Communications
Supervisor

5-8

Comments

Levels 0 through 5
are automatically
assigned by the
system.

Set to level 6 at
system initializa-
tion but can be
changed.

Must be higher
level than any
communications
device.

09/86
CZ03-01A

Table 5-1 (cont). Sample Priority Level Assignments
for Tasks and Devices

Physical Base
Priority Priority
Level Level

8 N/A

9 N/A
9 N/A
9 N/A

10 N/A
10 N/A

11 N/A
12 N/A
13 N/A

14 N/A
15 N/A

16 N/A
17 N/A
18 N/A

19 0
20 1
• •
• .
• •

10

•
•
•

62 N/A
63 N/A

Use

Operator terminal

TTY device
TTY device
TTY device

Removable cartridge disk
Fixed cartridge disk

Diskette
Diskette
Diskette

Line printer
Card reader

Reserved by system
Reserved by system
Reserved by system

Task group A
Task group B

•
• .

Task group n

Reserved by system
System idle loop or
task dispatcher

5-9

Comments

Can be assigned
any available
level.

Communications
devices can share
priority levels.

The priority level
for a pair of
fixed/removable
disks must be the
same.

The three levels
following the last
device-assigned
level are used by
the system.

Always active.

09/86
CZ03-01A

I

I

I

ASSIGNING PRIORITIES TO APPLICATION TASKS

You assign priorities to user task groups and tasks when you
create or spawn them. The command to generate a task group
contains an argument that specifies the base priority level for
the task group. The base priority level is relative to the
highest number priority level assigned to a configured device.
When a task group is assigned a base priority level of zero, the
lead task of the group executes at the physical interrupt
priority level that is three level numbers above the highest
level number assigned to a configured device. When other tasks
in the same task group are created or spawned, they are given
level numbers relative to the base priority level assigned to the
task group. The physical interrupt level at which a task
executes is the sum of the following:

1. The highest level number assigned to a configured device
plus 4

2. The base priority level number of the task group

3. The relative priority level of the task within that
group.

I This sum must not exceed 61.

Interactive user tasks are usually given higher priorities
(lower level numbers) than absentee user tasks. Tasks that are
I/O bound should be run at a higher priority than tasks that are
central processor (CP) bound. This permits I/0-bound tasks,
which run in short bursts, to issue I/O data transfer orders as
needed, wait for I/O completion and, while in the wait state,
relinquish control of the central processor to CP-bound tasks.
Otherwise, if the CP-bound tasks have a higher priority, the I/O
devices would be idle while I/O-bound tasks waited to receive
central processor time. (Timeslicing minimizes the ability of
CP-bound tasks to interfere with interactive and I/O bound
tasks.)

Logical Resource Number

A logical resource number (LRN) is an internal identifier
used to refer to task code and devices independently of their
physical priority levels. Use of LRNs makes Assembly language
application task code independent of priority levels so that, if
circumstances require a change in priority levels, the task code
does not have to be reassembled.

DEVICE LRNs

The system uses DEVICE directives to assign LRN values. I Device LRNs may have values from 2 through 252, and from 256
through 4002. Figure 5-3 is an example of LRN and priority level
assignments for devices and system tasks.

5-10
09/86
CZ03-01A

CREATING TASK GROUP REQUEST QUEUES

The operator uses the Create Group Request Queue command to
create queue structures in which requests issued to a given task
group will be stored. The operator must also issue a Start Mail
command if one had not been previously issued. These procedures
are described in the System user's Guide.

QUEUING TASK GROUP REQUESTS

You queue task group requests by issuing an Enter Group
Request command. You can postpone action being taken on a
request by specifying the -DFR (defer for interval) or -TIME
(defer until date/time) arguments.

Once the operator has issued a Create Group Request Queue
command for a task group, all further requests for that group are
queued whether or not the requests are being def erred.

If the operator does not issue a Create Group Request Queue
command, you can still submit group requests but will not be able
to def er the requests.

Def erring Print Requests

The system provides a deferred printing capability under
which your requests for printing specified files are queued in
memory or disk mailboxes. The actual transcription of the files
is done at a later time under the control of an operator-created
system task group called a daemon.

After you submit a deferred print request, you can resume
normal activities, log off, or reboot the system without losing
the request.

The three steps involved in deferred print processing are
creating the mailboxes, activating the daemon, and queuing the
print requests. The information in the following paragraphs is
conceptual. Detailed procedures for deferred printing are given
in the System User's Guide.

CREATING PRINT REQUEST MAILBOXES

The operator establishes the mailboxes that are to contain
the queued print requests. The mailboxes can be in memory or on
disk. The mailbox names must be in the form $PR.Qn (n is an
integer from l through 9 that identifies the relative priority of
the queue, with l being the highest priority and 9 the lowest).

5-23 CZ03-0l

CREATING THE PRINT DAEMON

The operator is responsible for defining and activating the * daemon to process the print requests.

To create a daemon task group, the operator issues a Start
Mail comm~nd (if one was not already issued), a Create Group
command naming the daemon to be created, and an Enter Group
Request command identifying the mailboxes to be used for queuing
the requests and the devices to be used for printing.

Multiple daemon task groups can be run concurrently using
common or separate sets of mailboxes and printers.

QUEUING PRINT REQUESTS

Once the daemon task group is active, you can queue print or
punch requests by issuing Deferred Print commands. You can
employ the -TIME argument to defer the printing of a file until a
specified date and time.

Queuing and Transcribing Reports

Any file in print or punch format (i.e., any report file) can
be queued and subsequently transcribed to an available printer or
card punch. Report queuing and transcription is a spooling
capability that provides automatic and manual report
transcription, time-of-day printing or punching, and an automatic
setup function that includes a sample transcription file
(template).

The report queuing and transcription facilities control
report transcription outside the context of the program.
Reporting procedures for identical software can be totally
different in different situations without requiring
reprogramming.

Report queuing and transcription have three major aspects:
creating a report queue, queuing a transcription request, and
transcribing a report.

CREATING REPORT QUEUES

A report queue is a directory that allows you to place a
report in a queue and subsequently transcribe the report. Report
queues are created, modified, and deleted through Report Queue
Maintenance (RQM) commands. The characteristics of the report
queues are determined when the queue is created; the contents are
determined when a report is placed in the queue for later
transcription.

5-24
09/86
CZ03-01A

FILE BACKUP AND REORGANIZATION

File backup and reorganization is implemented through the
Save and Restore utilities. The Save utility transfers disk
files and directories to 1/2-inch or 1/4-inch magnetic tape or
another specified storage medium. The Restore utility
reconstructs the saved files and directories and puts them back
on disk. Any file that has been saved and restored is
automatically reorganized for disk space efficiency. I

Since file access time efficiency may be lessened after a
file has been in use for some time, it is recommended that disk
volumes be periodically saved and restored. The files on the
restored volume will be be compacted, resulting in optimal space
allocation and improvements in the time required to search
directories and check access rights.

Saving Files and Directories

The Save utility enables you to save an entire disk volume, a
directory and all its subdirectories and files, or a specified
file. If you are saving a directory, you can specify the number
of levels of subdirectories (with their associated files) to be
saved. Any access control lists associated with the saved files
and directories are also saved, unless you specify otherwise.

The saved data, whether a whole volume, a file, or
directories and files, is stored in a save file. The save file
can be a magnetic tape or disk file, or an output device such as
a card punch. When the Save utility processes the files and
directories to be saved, it adds information that is meaningful
only to the Restore utility. The saved files and directories are
not just copies of the originals.

The Save utility can be executed while the files being saved
are in use. Used with a journal file (refer to "File
Restoration" later in this section), this type of save operation
provides a dynamic and concurrent backup facility for high volume
systems that cannot afford periodic shutdown to perform static
file saves.

Restoring Files and Directories

You can restore from a save file all or part of the data you
saved on that file. You can restore an entire volume (if you
saved an entire volume}, a directory and its associated
subdirectories, or a specified file. Whatever you restore, you
can return to the place from which you saved it, or you can place
it in another directory or another volume.

6-3
09/86
CZ03-01A

Data saved from one type of disk can be restored to another
type, provided the new disk has the required capacity. For
example, you can restore a diskette volume onto a cartridge disk
volume, or a partially filled mass storage device volume to a
cartridge module disk volume.

POWER RESUMPTION

Power resumption is an optional facility that allows the
system execution environment to be automatically restarted after
a power interruption. The central processor must have the memory
save and autorestart unit. This unit can preserve the memory
image through a power failure lasting up to 2 hours. (It cannot,
however, preserve the state of the I/O controllers nor can it
ensure that no operational changes have been made to the mounted
volumes.)

If fewer than 2 hours have elapsed when power is returned to
the central processor, the power resumption facility will perform
the following functions:

• Reinitialize the system software.

• Reconnect peripheral devices.

• Reconnect communication devices serviced by the
Asynchronous Terminal Driver (ATD) line protocol handler
or the Teleprinter (TTY*} line protocol handler. (Refer
to the System Building and Administration manual and the
System Programmer's Guide - Vol. I for information about
these line protocol handlers.)

• Restart certain application tasks that were active at the
time of the failure. Application tasks that are capable
of being restarted are those using the display formatting
and control facility and those containing user-written
code to handle power failure and power resumption.

Implementing the Power Resumption Facility

The power resumption facility must be included in the MOD 400
Executive at system building. The central processor must contain
a memory save and autorestart unit that has been activated by the
operator (refer to the System User's Guide for activation
procedures) •

When power resumption is specified in the system building
dialog, all peripheral devices and all communication devices
associated with the ATD and TTY* line protocol handlers are
designated as reconnectable and will be automatically reconnected
when power is restored. If any ADT or TTY*-associated device is
not to be automatically reconnected, the Set Terminal
Characteristics (STTY) directive associated with the device must
not contain the -RECONNECT argument.

6-4 CZ03-0l

GWSSARY

HT {Horizontal Tab)

Command Processor: Reserved character.

A (space or blank)

Command Processor and Utilities: Reserved character;
separates arguments and commands. Operator Interface
Manager: At the beginning of a line, interrupts output.

1 (exclamation point)

File System: A pref ix indicating a physical device {sympd)
name {for example, !LPTOO). Line Editor: Escape character
(for example, !F).

" (quotation mark)

Command Processor: Reserved character delimiting strings
that contain embedded blanks (for example, "D. COOK"). see'
(apostrophe) •

i (number sign)

Line Editor: Signifies condition in If Data, If Range, and
If Line directives. Linker: Specifies the current address.

g-1 CZ03-0l

I

$ (dollar sign)

Line Editor: In an address expression, represents the last
line of the buffer (for example, $P). In any other Line
Editor expression, represents the end of a line (for example,
/DIVISION.$/). Linker: Specifies the next location (for
example, BASE$). File System: First character of a
macrocall name or mailbox (for example, $GTFIL).

% (perceint sign)

Linker: Address argument representing the location two bytes
greater than the highest address previously used in a linked
root or overlay {for example, LDEF XTAG,%). CopY, Compare 1
Compare ASCII 1 and Rename Commands: Represents the character
in the corresponding component and letter position of the
entry name (for example, START_U%.EC).

& (ampersand)

Line Editor: used in the string expression of the Substitute
directive to indicate that the current expression is to be
repeated (for example, S/TO BE/& OR NOT &/) • Multi-User
Debugger (numeric~: Address symbol, representing the next
address beyond the address used in the previous debug ,
directive. Command Processor: Reserved character.
Indicates continuation of a command on more than one line.
Execute Command: Indicates EC directives and comment lines
(for example, &P BEGIN LINK). TCL Compiler: Indicates
continuation of a statement on more than one line.

' (apostrophe)

Command Processor: Reserved character. See " {quotation
mark).

{) (parentheses)

* Multi-User Debugger (Numeric): Delimits action lines to be
stored for later use. Line Editor: Delimits multicharacter
buffer name7 optionally, delimits single-character buffer
name (for example, B(EXEC)). TCL Compiler: Indicates
insertion of field value.

I

I

* (asterisk)

Line Editor: In a regular expression any number of the
preceding character. In a search directive, conditionality.
CLM, TCL Compiler, Patch: Comment directive (for example,
*SYSTEM DATA). File system: Represents one component of a
file name (for example, COBPRG.*). In relation to Access
Control Lists (Acts) and Common Access Control Lists (CACLs) ,
represents any person, account, and/or mode (for example,
COOK.*.INT). List Profile Utility 1 Multi-User Debugger
(Numeric): Signifies "all."

g-2
09/86
CZ03-01A

+ (plus sign)

Line Editor: Indicates addition to an address {for example,
.+2P, /NEW/+3). Multi-User Debugger (Numeric): Performs I
addition.

, (comma)

Line Editor: Separates two addresses to be referenced
inclusively (for example, l,SP}. CLM, Linker, Sort, and
Merge: Separates arguments within directives.

- (minus sign)

Command Processor: Immediately precedes a control argument
(for example, -ECL). Line Editor: Indicates subtraction from I
an address (for example, .-2P). Multi-User Debugger
(Numeric): Performs subtraction.

• (period, decimal point)

File System: (1) Separates an entry name into components
(for example, COBPRG.C). (2) Used as a single element at the
beginning of a pathname to indicate the working directory
(for example, .>FILE DUMP). Line Editor: (1) In an add~ess,
represents the current line of the buffer (for example, .P).
(2) In a regular expression, designates any character (for I
example, /PROG.AM/). Multi-User Debugger: Address symbol,
representing the same starting address used in the previous
debug directive. TCL Compiler: Indicates the end of a
statement.

I (slash)

File System: If first character of a star name, negates the
meaning of the star name (for example, /*.WORK). See*
(asterisk). Line Editor: Delimits strings in Expressions
and Substitute directive (for example, S/OLD/NEW/). Patch
and File Change: Immediately precedes a relative location or
offset. Multi-User Debugger: Separates location from
repetition value. Linker: Precedes a comment in a Linker
directive file (for example, /SECOND OVERLAY).

: (colon)

Line Editor: Indicates label definition (for example, :7).

g-3
09/86
CZ03-01A

*

I

I

; (semicolon)

Line Editor: Sepa.rates two addresses; the first address becomes
the current line, after which the value of the second address is
calculated (for example, 2;. 3P) • Patch: Separates arguments ir
Patch directives. Sort and Merge: Separates directives.
Linker: Separates Linker directives on one line. Command
Processor: Reserved character. Separates commands. Multi-Osei
Debugger: Separates directives.

< (less-than)

File System: Indicates movement in the storage hierarchy
toward the root and a change in one level in that direction
(for example, <LIBRARY). Assembler and Patch: Immediately
precedes a relocatable address. Multi-User Debugger:
Specifies the condition to be satisfied in an IF directive
for conditional processing of the directive line.

= (equal)

Line Editor: Print Line Number directive. Multi-User
I Debugger (Numeric): Expresses equality for an IF directive.

I

I

Linker: Address argument, specifying the base address
associated with the object unit identified by an associated
label (for example, BASE =OPNCRD). Copy, Compare, Compare
ASCII, and Rename commands: Represents the corresponding
component of a file name (for example, COPY FILE.A =.B).

> (greater-than)

File System: (1) Used at the beginning of a pathname to
indicate a file or directory under the User Root Directory
(ORD) (for example, >SYSLIB2) and (2) Within a pathname,
indicates movement in the storage hierarchy away from the
root; connects two directory names or a directory name and a
file name (for example, AMYVOL>MYDIR>MYFILE). Line Editor:
Go To directive (for example, >l). Multi-User Debugger:
Specifies the condition to be satisfied in an IF directive
for conditional processing of the directive line. Assembler
and Patch: Indicates short displacement address. Execute
Command: In a &> directive, go to first occurrence of the
label following the current line.

>> (two consecutive greater-than signs)

File System: Used at the beginning of a pathname to indicate
a file or directory under the System Root Directory (SRD)
(for example, >>SID).

- (tilda)

File System: Indicates the name of a magnetic tape volume.
Allows a labeled tape volume to be referenced without
specifying the name of a tape device.

g-4
09/86
CZ03-01A

? (question mark)

Line Editor: Address Prefix directive. Copy, Compare,
Compare ASCII, and Rename Commands: Represents any character
appearing in the corresponding component and letter position
of a file name (for example, START_?P.EC). (See%.) File
System and Command Processor: Immediately precedes a
symbolic start address (entry point) in a bound unit name
(for example, NOW?TIME). In some commands, requests help
(for example, EP (Edit Profile)).

@ (at-sign)

TTY Terminal Driver: Delete the previously typed character I
(for example, TIMM@E) •

[] (brackets)

Command Processor and TCL Compiler: Delimits active I
functions (for example, (CWD [USER NAME]). Multi-User
Debugger (Numeric): Signifies the contents of the location
defined by the expression within the brackets.

" (circumflex)

File System: (1) Indicates a root directory, and must
immediately precede a root directory name (for example,
"SYSRES) and (2) Used as a single element at the beginning of
a pathname to indicate the root of the working directory (for
example, ">MYDIR). Line Editor: (1) When designated as the
first character of a string, requests lines beginning with
the string, excluding the circumflex (for example,
/"IDENTIFICATION/) and (2) Indicates negation in certain
directives. Multi-User Debugger (Numeric}: Indicates I
negation as part of an IF directive.

(underscore)

File System: Joins two or more words in a file or directory
name that the system is to interpret as one word (for
example, LIST_PROG).

t (pound sign)

Line Editor: If Data directive.

abbrev, login

See login abbreviation

g-5
09/86
CZ03-01A

I

I. abbreviation file

A file containing user-defined abbreviations and the
character strings they represent.

abbreviation, login

See login abbreviation.

I abbreviation processor

A system component that expands abbreviated commands and
passes them to the Command Processor.

abort

An operator action resulting in the immediate cessation of
operation of a task group or the operation of the currently
executing request in a task group. All resources are
returned to the Executive. The bound unit of the lead task
of an aborted request may be retained.

absentee

A processing mode characterized by the absence of interaction
between you and the system during execution of your program.

Access Control List (ACL)

ACL

A list specifying which user(s) can use the resource with
which the list is associated.

See Access Control List.

activate

An operator action resulting in the resumption of a
previously suspended task group. (See suspend.)

active

A task is in the active state when it is executing or ready
to execute, when its priority level becomes the highest
active one in the central processor.

active function

A form of a command whose output string is placed in the
command line before the rest of the line is processed.

CZ03-0l

active level

The priority level currently in effect.

address, absolute

A reference to a storage location that has a fixed
displacement from absolute memory location zero.

address, relocatable

A reference to a storage location that has a fixed
displacement from the program origin, but whose displacement
from absolute memory location zero depends upon the loading
address of the program.

administrator, system

Person responsible for registering users so that they can
access the MOD 400 system.

after image

The image of a record in a restorable disk file as it exists
after alteration. Written to a system journal file.

algorithm

A set of well defined rules for the solution of a problem.

alternate index organization

Alternate indexes are used to view a file ordered with a
different key. The same data file can be ordered in many
different ways by having more than one alternate index.

application program

area

A user-written program for the solution of a business,
industrial, or scientific problem.

A DM6 r~o-s/II integrated file.

argument

User-selected items of data that are passed to a procedure
(for example, system service macrocall arguments that are
passed to the called system service, or command arguments
passed to the invoked task). Synonymous with arg. (See
parameter.)

g-7 CZ03-0l

argument, control

A keyword whose value specifies a command option. (See
keyword.)

argument, positional

An argument whose position in the command line indicates to
which variable the item of data is applied.

ASCII (American Standard Code for Information Interchange)

The interchange code established as standard by the American
Standards Association.

asynchronous

Without regular time relationships. As applied to program
execution, unpredictable with respect to time or instruction
sequence.

attribute, file

Any of a set of disk file characteristics established when
the file is created or modified to include such integrity
features as recovery, restoration, and record locking.

I Autoconf igurator

The DPS 6/22 system configuration utility.

base level

(See priority level, base.)

B~

(See Buffer Control Block.)

B~

Binary-Coded Decimal notation.

before image

A copy of a record from a recoverable disk file, as it exists
just prior to updating, written to a system recovery file.

Binary Synchronous Communications (BSC)

A communications procedure, using a standardized set of
control characters and control character sequences, for the
synchronous transmission of binary-coded data.

g-8
09/86
CZ03-01A

form

A display terminal screen that provides areas (fields) into
which you enter information that defines a function to be
carried out.

full duplex

Simultaneous independent transmission of data in both
directions.

full pathname

An absolute pathname which, when specified, begins with a
circumflex (~) (for example, the root directory.)

function

A procedure that returns a single value to its caller. (See
subroutine.)

globally sharable bound unit

A bound unit containing reentrant code and linked with the
GSHARE directive. A globally sharable bound unit is loaded
in the system pool and can be used by any task in the system.

group control block

A system structure describing attributes of a task group.

group_id

(See task group identification.)

group system space

An area of memory (segment) that contains the system control
structures used to support a task group and its tasks in a
swap pool.

group work space

GRTS

An area .of memory (segment) from which tasks in a swap pool
obtain blocks of memory.

General Remote Terminal Supervisor.

half duplex

Transmission of data in one direction at a time.

g-21 CZ03-0l

High Memory Address (HMA)

HMA

The address of the highest physical memory location in the
central processor.

See High Memory Address.

hold file

A file that contains a copy of the Level 2 or Level 4 error
logging statistics that are stored in memory. The hold file
can be retrieved after system shutdown or crash.

home directory

Your initial working directory after logging in.

hot restart

Restart during a session.

I pool

(See independent memory pool.)

IMA

(See Immediate Memory Addressing.)

Immediate Memory Addressing (IMA)

A form of addressing a location in main memory by referencing
the location directly, indirectly, or through direct or
indirect indexing.

independent memory pool

A fixed partition memory pool. All tasks executing in a
specific independent memory pool share a common virtual view
consisting of all memory assigned to that pool and system
global memory.

indexed file organization

A disk file whose records are organized to be accessed
sequentially in key sequence or directly by key value.

indirect extent

I The field in a directory record that holds the relative
volume number that contains the succeeding set of extents.

09/86
CZ03-01A

Physical Input/Output (PIO)

PIO

pipe

Physical Input/Output, or physical I/O, that is initiated
through a request I/O macrocall, outside of the File System,
using IORBs.

(See Physical Input/Output.)

A special kind of sequential file used for synchronizing and
passing information among multiple cooperating tasks.

pool identifier

A two-character name, established a system configuration, by
which a memory pool is identified, and by which a task group
is assigned a memory pool when the task group is created.

positional argument

(See argument, positional.)

power resumption

A system facility that controls the restarting of the
execution environment following a power failure.

primary login

The form of login that requests Listener to spawn a task
group that has the terminal from which the login originated
as its primary system file (the terminal will be the initial
user-in, command-in, error-out, and user-out files).

priority level

A numeric value that can be assigned to a task or device for
purposes of controlling processing. Values range from 0 to
63. The lowest values (highest priorities) are reserved for
system tasks; level 63 is the system idle level.
Intermediate levels are available for user assignment to
tasks and devices. The physical level at which a task
executes is the sum of the highest level number assigned to a
configured device plus four, the base level of the task I
group, and the relative level of the task within .the group.

priority level, base

The priority level, relative to the system priority level, at
which all tasks in a task group execute. A base level of O
is the next higher level above the last (highest) system
priority level.

g-33
09/86
CZ03-01A

priority level, hardware

A numeric value from O through 63 that can be assigned to a
task or device to control processing. The lowest va.lues
(highest priorities) are reserved for certain system tasks.
Level 62 is reserved for user tasks. Level 63 is the system
halt level.

priority level, physical

(See priority level.)

priority level, relative

The priority level, relative to the base level, at which a
user task within a task group executes. Relative Level 0 is
the base level.

priority level, system

The priority level assigned to system devices and tasks.

profile

(See report queue profile file or user profile.)

program name suffixes

A •point-letter" character string such as ".O" for object
units or ".A" for Assembly language source units appended to
a file name to identify it as a source, object, or list unit.

protected string

A character string containing reserved characters that is
enclosed by protected string designators. (See reserved
character and protected string designator.)

protected string designator

PVE

A pair of quotation marks or apostrophes that enclose a
character string containing reserved characters. (See
reserved character.) ·

Polled Visual Information Projection (VIP) Emulator.

quarantine unit

A unit of message text; the smallest amount of transmitted
data that is available to the receiver.

g-34 CZ03-0l

MANUAL DmECTORY

MOD 400 OPERATING SYSTEM MANUALS

Base
Publication

Number

HEOl

CZ02

CZ03
CZ04
czos

CZ06

CZ07
CZ09

CZlO
CZll
CZ15
CZ16
CZ17
CZ18
CZ19
CZ20

CZ21
CZ22
GZ13
HCOl

Manual Title

ONE PLUS Guide to Software
Documentation

GCOS 6 MOD 400 System Building and
Administration

GCOS 6 MOD 400 System Concepts
GCOS 6 MOD 400 System User's Guide
GCOS 6 MOD 400 System Programmer's Guide.

Volume I
GCOS 6 MOD 400 system Programmer's Guide -

Volume II
GCOS 6 MOD 400 Programmer's Pocket Guide
GCOS 6 MOD 400 System Maintenance Facility

Administrator's Guide
GCOS 6 MOD 400 Menu System User's Guide
GCOS 6 MOD 400 Software Installation Guide
GCOS 6 MOD 400 Application Developer's Guide
GCOS 6 MOD 400 System Messages
GCOS 6 MOD 400 Commands
GCOS 6 Sort/Merge
GCOS 6 Data File Organizations and Formats
GCOS 6 MOD 400 Transaction Control Language

Facility
GCOS 6 MOD 400 Display Formatting and Control
GCOS 6 VISION Reference Manual
GCOS 6 MOD 400 R3.l to R4.0 Migrataion Guide
GCOS 6 MOD 400 Application Development

Overview

h-1
09/86
CZ03-01A

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

TITLE
DPS&
GCOS 6 MOD 400
SYSTEM CONCEPTS
ADDENDUM A

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be investigated by appropriate technical personnel
and action will be taken as required. Receipt of all forms will be
acknowledged; however, if you require a detailed reply, check here. D

FROM: NAME-----------------------

TITLE ---------------·--------~
COMPANY--------
ADDRESS ____________________ _

ORDER N0.1. CZ03-01A

DATED I September 1986

PLEASE FOLD AND TAPE-
NOTE: U.S. Postal Service will not deliver stapled forms

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 39531 WAL THAM, MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

Honeywell

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

TITLE
DPS&
GCOS 6 MOD 400
SYSTEM CONCEPTS
ADDENDUM A

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be investigated by appropriate technical personnel
and action will be taken as required. Receipt of all forms will be
acknowl.edged; however, if you require a detaUed reply, check here. D

FROM: NAME------~-----------------

TITLE ------------------~---
COMPANY --------·

ADDRESS---------------------

ORDER N0.1. CZ03-01A

DATED I September 1986

DATE

PLEASE FOLD AND TAPE-
NOTE: U.S. Postal Service will not deliver stapled forms

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 39531 WAL THAM, MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WAL THAM, MA 02154

ATTN: PUBLICATIONS, MS486

Honeywell

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

