HONEYWELL

DPS 6
GCOS 6 MOD 400
SYSTEM CONCEPTS

SOFTWARE

DPS 6
GCOS 6 MOD 400
SYSTEM CONCEPTS

SUBJECT
System Concepts for GCOS 6 MOD 400

SPECIAL INSTRUCTIONS

This manual supersedes DPS 6 GCOS 6 MOD 400 System Concepts (Order No.
CZ03-00),dated December 1982. Sections 4 and 5 have beenrestructured. The infor-
mation that formerly resided in Section 6 has been made part of Section 5. Former
Section 7 has beenrenumbered as Section 6. Wherever possible, change bars are used

to indicate new and changed information, and asterisks are used to denote
deletions.

SOFTWARE SUPPORTED
This manual supports Release 4.0 of the MOD 400 Executive.

ORDER NUMBER
CZ03-01 March 1986

Honeywell

PREFACE

This manual is written for all users of the MOD 400 operating
sy stem,

It will prove particularly informative to those responsible
for building MOD 400 systems and those who design application

programs and/or system functionality other than that supplied by
Honeywell.

This manual contains a general description of the way in
which processing is performed on MOD 400 systems. It presents a
discussion of the MOD 400 Executive in terms of its design
concepts and processing functionality. Not discussed are such
topics as equipment lists, available software, and supporting
manuals. No detailed procedural information is discussed;
several procedures are, however, outlined.

The major topics discussed are:

e File system, including file and pathname concepts, file
protection, and buffering operations.

e System access path including login, user registration, and
the command environment.

e Execution enviromment, including a description of tasks,
task groups, memory usage, and bound units.

e Task execution, including priority levels, logical
resource numbers, and deferred processsing facilities.

USER COMMENTS FORMS are included at the back of this manual. These forms are to be used to record
any corrections, changes, or additions that will make this manual more useful.

Honeywell disclaims the implied warranties of merchantability and fitness for a particular
purpose and makes no express warranties except as may be stated in its written agreement
with and for its customer.

In no event is Honeywell liable to anyone for any indirect, special or tial damages.
The information and specifications in this document are subject to change without notice.
Consult your Honeywell Marketing Representative for product or service availability.

©Honeywell Information Systems Inc., 1986 File No.: 1R13, 1813 CZ03-01

e Backup and recovery facilities, including the backup and
restoration of disk files, the preservation of the
execution environment during a power failure, the recovery
of files at the record level, and the recovery and restart
of task groups.

Although no manual is prerequisite to this manual, you may
find it convenient to have read the Software and Documentation

Directory.

Each section/appendix of this document is structured
according to the heading hierarchy shown below. Each heading
indicates the relative level of the text that follows it.

Level Heading Format

1 (highest) ALL CAPITAL LETTERS, UNDERLINED

2 Initial Capital Letters, underlined
3 ALL CAPITAL LETTERS, NOT UNDERLINED
4 Initial Capital Letters, not underlined

iii Cz03-01

MANUAL DIRECTORY

The following publications constitute the GCOS 6 MOD 400
manual set. See the "Software/Manual Matrix" of the Guide to
Sof tware Documentation for the current revision number and
addenda (1f any) of the manuals.

Manuals are obtained by submittingia Honeywell Publications
Order Form to the following address:

Honeywell Information Systems Inc.
47 Harvard Street

Westwood, MA 02090

Attn: Publications Services

Honeywell software reference manuals are periodically updated
to support enhancements and improvements to the software. Before
ordering any manual listed below, the customer should refer to
the Guide to Software Documentation to obtain information
concerning the specific edition of the manual that supports the
software currently in use at the installation., When specifying
manuals on the Publications Order Form, a customer using the
4-digit base publication number listed below will obtain the
latest edition of the manual currently in stock. The
Publications Distribution Center can provide specific editions of
a publication only when supplied with the 7- or 8-character order
number described in the Guide to Software Documentation.

Honeywell applications software packages - such as INFO, the
Honeywell Manufacturing System (HMS), and TPS 6 - provide
specialized services. See your Honeywell representative for
information concerning the availability of applications software
and supporting documentation,

iv Cz03-01

Base
Publication

Number Manual Title

CW35 GCOS 6 C User's Guide

Cz01 GCOS 6 MOD 400 Guide to Software
Documentation

Cz02 GCOS 6 MOD 400 System Building and
Administration

Cz03 GCOS 6 MOD 400 System Concepts

Cz04 GCOS 6 MOD 400 System User's Guide

Cz05 GCOS 6 MOD 400 System Programmer's Guide -
Volume I

Cz06 GCOS 6 MOD 400 System Programmer's Guide -
Volume II

Cz07 GCOS 6 MOD 400 Programmer's Pocket Guide

CZ09 GCOS 6 MOD 400 System Maintenance Facility
Administrator's Guide

Czlo0 GCOS 6 MOD 400 Menu System User's Guide

Cz11 GCOS 6 MOD 400 Software Installation Guide

CZ15 GCOS 6 MOD 400 Application Developer's Guide

Czlé6 GCOS 6 MOD 400 System Messages

Cz17 GCOS 6 MOD 400 Commands

Cz18 GCOS 6 Sort/Merge

Cz19 GCOS 6 Data File Organizations and Formats

Cz20 GCOS 6 MOD 400 Transaction Control Language
Facility

Cz21 GCOS 6 MOD 400 Display Formatting and Control

Cz22 GCOS 6 VISION Reference Manual

Cz23 DM6 AZ7 Reference Card

Cz24 Introduction to DM6 AZ7 Query Writing

CZ25 DM6 AZ7 Reference Manual

Cz29 GCOS 6 VISION Reference Card

Cz31 GCOS 6 Advanced COBOL Compiler User's Guide

Cz32 GCOS 6 Multiuser COBOL Compiler Guide

Cz34 GCOS 6 COBOL 74 Language Reference

Cz35 GCOS 6 COBOL Quick Reference Guide

Cz36 GCOS 6 BASIC Reference

cz37 GCOS 6 BASIC Quick Reference Guide

Cz38 GCOS 6 Assembly Language (MAP) Reference

Cz39 GCOS 6 Advanced FORTRAN Reference

Cz40 GCOS 6 Pascal User's Guide

Cz42 GCOS 6 Ada Compiler System User's Guide

Cz52 DM6 I-D-S/II Programmer's Guide

CZ53 DM6 I-D-S/II Data Base Administrator's Guide

Cz54 DM6 I-D-S/II Reference Card

Cz70 Electronic Mail Facility Administrator's Guide

Cz71 DM6 TP Development Reference

Cz72 DM6 TP Application User's Guide

Cz73 DM6 TP Forms Processing

Cz74 GCOS 6 Data Base Augmented Real-Time Tracing
System User's Guide

Cz93 Electronic Mail Facility User's Guide

GzZ1l3 GCOS 6 MOD 400 Release 4.0 Migration Guide

v C203-01

Base
Publication
Number

HCO1
HC12
HC13

Manual Title

MOD 400 Application Development Overview

Disk-Based Data Entry Facility-II User's Guide

Disk-Based Data Entry Facility-II Operator's
Quick Reference Guide

The following manuals describe the MOD 400 distributed
processing software components:

Base
Publication
Number

CB35
CFll

CG90
CZ59

CZ60
Cz61
Cz62
CZ63
Cz64
Cz65
CzZ66
GG19
GG20
GT18

GT19

Manual Title

DPS 6/DPS 7 PVE File Transfer Facility User's
Guide

DPS 6/DPS 7 PVE Remote Batch Facility User's
Guide

Interactive Entry Facility-II User's Guide

Level 6 to Level 6 File Transmission Facility
User's Guide

Level 6 to Level 66 File Transmission Facility
User's Guide

Level 6 to Level 62 File Transmission Facility
User's Guide

BSC Transport Facility User's Guide

2780/3780 Workstation Facility User's Guide

HASP Workstation Facility User's Guide

Programmable Facility/3271 User's Guide

Remote Batch Facility/66 User's Guide

Disk-Based VIP7305 Emulator Facility User's
Guide

Asynchronous Communications Facility User's
Guide

Disk-Based VIP7705 Emulator Facility User's
Guide

Disk-Based VIP7814 Emulator Facility User's
Guide

vi Cz03-01

The following manuals describe the ORACLE data base

management facility:

Base
Publication

Number Manual Title

GS61l GCOS 6 MOD 400 ORACLE Installation Guide

GS62 GCOS 6 MOD 400 ORACLE Data Base Administrator's
Guide

GS63 GCOS 6 MOD 400 ORACLE Interactive Application
Facility (IAF) Terminal Operator's Guide

GS64 GCOS 6 MOD 400 ORACLE Interactive Application
Facility (IAF) Terminal Operator's Reference
Manual

GS65 GCOS 6 MOD 400 ORACLE Interactive Application
Facility (IAF) Designer's Guide

GS66 GCOS 6 MOD 400 ORACLE Interactive Application
Facility (IAF) Designer's Reference Manual

GS67 GCOS 6 MOD 400 ORACLE HLI Precompiler Interface

GS68 GCOS 6 MOD 400 ORACLE Host Language Call
Interface Manual

GS69 GCOS 6 MOD 400 ORACLE RPF Report Text Formatter
User's Guide

GS70 GCOS 6 MOD 400 ORACLE RPT Report Generator
User's Guide

GSs71 GCOS 6 MOD 400 ORACLE SQL/UFI Reference Manual

GS72 GCOS 6 MOD 400 ORACLE Terminal User's Guide

GS73 GCOS 6 MOD 400 ORACLE Utilities Manual

GS74 GCOS 6 MOD 400 ORACLE Error Messages and Codes

In addition,
information:

the following publications provide supplementary

Base
Publication
Number Manual Title
AS22 Level 6 Models 6/34, 6/36, and 6/43 Minicomputer
Handbook
AT97 Level 6 Communications Handbook
CC71 Level 6 Minicomputer Systems Handbook
CD18 Level 6 MOD 400/600 Online Test and Verification
Operator's Guide
FQ41l Writeable Control Store User's Guide

These five manuals are not covered by the Guide to Software
Documentation. See your Honeywell representative for information
concerning the versions of the manuals relevant to your
installation.,

vii CzZ03-01

Users should be aware that a software release bulletin
accompanies each software product ordered from Honeywell, Users
should consult the software release bulletin before using the
sof tware. Users should contact their Honeywell representative if
a copy of the software release bulletin is not available.

viii Cz03-01

CONTENTS

Page
SECTION 1 SYSTEM CHARACTERISTICS:.ceecesocosscssosccssnscsce

[
1
[

Operating FacilitieS.eeeeececessceesccsosscoscssocscsonsss
Software FacillitieSieeseessssesssscsscsssccsossssonsssnnssssns
System Control SOftWarE€...ceeeeessesscscsccscssccscsccssssns
File System SOftWar€.eeeeesesscssscsssosossscsscscsccssccss
Utility SOftwar€eieeeeeesessossecsssassocoscssssscssccscsnsss
Program Development Software....ececececcccccccccccccces
Data Communications SoOftWare€..eieeessessscccssscsssncsss
Distributed Systems SOftWaAr€iueeeeeseoscecsssossosnsosoccns
Data Management SOftWarE...ieecooeccvscvcessssssscssosse
Data Entry SOftWare€..eceeeccccerssosocssscssscscsssccsccsns
Office Automation Software€...seeeeecesscccsssccssccssoccss

[R O W S N S S e
I
U b &_NMDNOH

SECTIONZ FILE CONCEPTS......o.lo'..ooo..'.looo.O...O.Q..

Disk File CONVeNntioONS.seeeessssessscssssssccssssccssscssse
DireCtorieS'......0....'..0...'0....0..O.............'..
ROOt DireCtOLYseeesossoescscsssscesenscssssccscscscsssscsce
System ROOt DirecCtOrY.eesesesssesssssscscsssoossssncsss
User ROOt DirecCtOrY.eeeesssssscessssonscosssssssccnsssss
Intermediate DirectoOri@S...seeesccssccssssccsscocssnnss
WOorking DireCtoOrYeseoseessossscsssccsosssssssscscscssssss
Disk Directory and File LOCAtiONS.eeseeosossoossssossoss
Disk Directory and File Naming ConventionS...eeceecccesss
Maximum Name Lengtheeeeeeesceessceescssssccossscssnnsss
Uniqueness Of NaMEeS.eseesosssccssosossccsccsossssscscscoss
PathnameSeseseceesoscocesososssssosoossosscsscsesccscsssssons
Symbols Used in PathnameS...eeceeccecscccsccccsccescscsns
Absolute and Relative PathnameS.eeeesssessccccsosasssse
Absolute PathnamEeeeessssessoescssssrssccscsssssssss
Relative Pathname.........Q....ll......'.0.0........
Disk Device Pathname CoOnsStruCtiON..ceeeessoseccsscccsos
LinKSeeeoeeeoessoseocsoososssssssososssosnssccncsnossssssscocs
Automatic Disk Volume RecOgnitiONeeeieceoossscssscocccsss
Disk File OrganizatiONeiseeesssoessccsocosssscssssosssnsos
UFAS Sequential Disk File OrganizatioON.eeeececessccoes
UFAS Relative Disk File OrganizatiONeeeecessesccecssses 2=13
UFAS Indexed Disk File OrganizatioONieseeccecsceccsoseseees 2-14
UFAS Random Disk File OrganizatiONieesesscesccccesscess 2-14
UFAS Dynamic DiSk File Organization.........‘.......... 2_14
Non-UFAS Relative Disk File OrganizationS..eeceeeeeeees 2-14

[I T I I |
NMDDNO

NNNNNNNNNNI}JNNNNNNNMNN N
|

HFHEFRFRFRFEHEOONSOOON OO WW DN [
www

ix Cz03-01

CONTENTS
Page

Pipes...l...l..0..'...'....0."'.'...'..0'.'............ 2_15

Alternate INAEXEeS.eseesssoossssossssossscssscsssassssssesse 2—15
DiSk File PrOteCtiOn.................................... 2_16
Access CONtrOlesescococesossossssnsescssasscsncsoscssscsssssse 2—16
ACCESS TYPESeseeeesessosoceccsssosnsssssssssssssssonce 2—17
Access Control/User Id Relationshipeeeescecscseseees 2-17
Access CONtrol LiStSeeeesseseccssssscosssessssssesses 2-18
Checking Access RightS.eeeeeesssessssssssscssssnsess 2-19
File Concurrency ControOl.cecesseessccssscsssssscssssces 2-20
Access Control/Concurrency Control Relationshipeeese.. 2-21
Shared File Protection (Record LocCKing).eeseeeocoeceess 2-21
Record Locking ImplementatiONeeesssceccocooscssssseee 2=22
Setting RecOrd LOCKiNg.eseeessssssossscssncscsnsecoes 2—23
Record Locking ConsideratioOnS.ssecseseessesscsscssees 2—24
Remote File ACCESSiessssesssssssssssosssssossccsssnssssees 2—25
Remote File Cata@lOgeesssseesosocosscssscsssonssssssscee 2—26
Remote Object INformatioON.iseeeecscesosssssscsssscsces 2—26
Local Object InformatioON.essesssessessscsccccssssoss 2-26
Volume IdentificatiONeeececsccescscsscccsscscsscscnses 2-26
Establishing Remote File CatalogS.sesecesssecscccesss 227
Initiating Remote File Access OperationNS.cceesceeceees 2-28
Remote File AcCCeSS SeCULitYeeeeossocsosssssnsssscceses 2-28
ACCGSS ContrOl Lists..0..‘0!0..00.0.'.'.'0..'.'.0'.. 2_28
Record LOCKiNGeeoesossosooecsosososssscsccssssssscsccsssss 2—29
Data Commitment..eeeecececessssssceossssssssssesnccece 2—29
Multivolume DisSk FileSeseeesseoossscsssossscosssccsscsese 2-30°
MultiVOlume SetSooo.ooo.ooon-ooocoooooooo.ot.otoo-oooo 2-30
Online Multivolume Set...eceeececssccssccosssscssssecss 2-31
Online MultiVOlume Fileo'o-oooo-ooooooooooooooono-'o 2_31
Serial Multivolume Set..eeevecesecsssccscscssssccness 2-32
Serial MUltiVOlUme Fileo....'Q.ll...'........0"0... 2-32
Disk File Buffering.ecseeececescsesssssessesscsessssassssness 2—33
File ACCeSS LEeVelSiseeoossoessssesssosssscsssssssssssnee 2-33
Buffer POOlS.. 2—33
TypeS Of Buffer Pools...-oooooo.ooooo.otoooocco‘oooo 2_34
Buffer Pool OptimizatioON.seeesesseseoscssscssecsossss 2—34
Magnetic Tape File CoOnventioONS.seeesscesscssscccssscssssecs 2-36
Tape File OrganizatiON.cececcsossesssssscssssossesessssese 2-36
Magnetic Tape File and Volume NaMeS.eessesesssessossccss 2-36
Magnetic Tape Device Pathname Construction....eceseeeses 2-37
Automatic Tape Volume RecognitioON..eeesesecsscsscsscesee 2-37
Magnetic Tape Bufferingi.cecececscccecoscscccscscscsccnsse 2-37
Unit Record Device File ConventioONS.seeecececssssscscccces 2-38
Unit Record Device Pathname ConstructiON.cecscececscscssss 2-38
Unit Record Device Bufferingeieeseeececcsscccsscccscscees 2-38
Unit Record Read OperationS..ceseseescecscscsscsssscssocces 2—38
Card Reader..................-............-......... 2_39

X Cz03-01

CONTENTS
Page

Interactive Terminalecesscecscoscsessssccscssscscnsss 2—39
Bufferedwrite Operations.....l..‘l...l...'l'l.lll.'.l 2—40

SECTION3 SYSTEMACCESS..Q.."..'.......'........l'.....l

System Configuration and Definition...eeeceeecececceccccnes
User RegistratioON.isssesscsssccssscessssscosssscssssonsssnsnse
Accessing the SysteMesieeesesssssscscessssscsccscssnsscssssss
Connecting to the Central ProCeSSOCeiceceesssssssescscsces
Connecting to the EXeCUtiVe..ieesessessocsssossnseossoncs
LOogin TerminalS.sesessesseossessssssonssossoessnssssscss
Non—Login TerminalS.eeseessssossececssocnssssssssnsscccs
Activated Lead TasKeseeeeeooesossssecsccnsssssassoscascsns
Menu Environment (UPF) .ueeessssscsccsssoccsnssosssasssssascses
Menu PrOCeSSOr.OOOOOQDOOI.’.Q'C.!...ll.'.".l..l'.."...
Command=INn Fil€.sseeeeoessosoasassssssesscssnsncssssassnsss
User—In Fileooooo..l'..t.Ot..'O'l.i..lt.lo‘.'...."...
User—0Uut FilE@.eeeeesesssssoconsseccsvsosvrccssnssscsnnsescs
ErrOr—OUt Fileoocoooooooooooo-'o-o-'oocto-o.oononooono
MeNU LeVel.iiesoesossonsosscssssossssssososscosssnssssosnse
Achieving Menu LevVel..eeeeescescososccscsscososcsonsans
Menu Level ProCesSSiNg.essssssssscsssssssscssssssssssss
Menu FOIMAt.eeeooesosossossssesssososssssosssssossssoessensoes
Subsystem SwitCher...ieseeesoseesossosssosossessessossssnnsns
Command ENvironment.seeesesessoeecesosscsceossoossssscsssosssses
Command PrOCESSOLeesesoessssssssssssssssssssnsocscssssssass
Command=INn Fil@..eeeeeeeesosossosssssossssssssscscossssss
User=In FileE€.eeseseoosseosoosssssssssssssssssscsesssss 3—10
User-0ut Fil@uiseeesssesssossssscossssssssssssossssssssse 3—11
Error-0ut Fil€.seeeeceoossssssssessasssoscssssssssssses 3—11
Comand Level...............-....-.................-.-.. 3_11
Achieving Command LevVel..sesesssscessssssssssssssssnsss 3—11
Command Level ProCesSiNgeesesssssesssssssscccsccessosess 3—-12
Command FOrmMat.eeessssceoosssssssssonsssssssssscsscssssss 3—13
ArgumentSececesoscesscscsssosceccconsoscssosncssssassnencocecs 313
PArameterSeeseceosessossscssosssossscosssscscscnsssssssssee 3—14
Spaces in Command LinNeS.ceeeesesoccessocssocsessscssess 3—14
Protected StriNgSeeeececssesosescessscsssccccssossssss 3—14
Active Strings and Active FunctionS.:.sseesesecessseeces 3-15
Command AbbreviationS.:.essesssesescssosssssssscsscoses 3—16
Command ACCOUNtiNg.sesseseoessssosossssscossscscssssssssseasss 3—=17
Command Beaming.seseessssessessossssvosossossssscsscssasee 3—17
EC and START_UP-EC FileSooc.u.oal-voocuo-oooto..--.'o.oao' 3_17
EC FileSuceosesoessscecvresssossocsocscsscsoscovnssssssssssses 3—18
START UP.EC FileSisseeessesssessosessssscsscsssssssssssseces 3—19
System START UP,EC Fil€usseossosssssssscssssssssscssss 319
User START UP.EC Fil€.ieveecorenrocoososoocossnsensees 3-19

(I U O I T IO O T A | 1
HPRowoooo~NNJdoaoaoaUobds DD M

WWWWWWLwWwWwWwWwWwwLwwwuwuwwww w w
1

I
=
o

xi CzZ03-01

CONTENTS

Page
SECTION 4 EXECUTION ENVIRONMENT::eesecocoosooossscscsoccscse

Task Groups and TasSKS.eeeeceeseoscosscsossosccsssscsnssssssnse
Application Design Benefits of Task Group US€.:eeeseossee
Intertask CommunicatioOn.sessesesoessessosessssossccnscns
System Control Of Task GrOUPS.eeessesssscossscoscsscsss
Generating Task Groups and TasSKS.seeeeeseossscccsocssssns
Characteristics of Task Groups and TaSKSeseoeoeoescsseoes
Task Group IdentificCatiON.ececesseessesssccsossccosssonsssoe
Memory Management and ProtecCtiONe.scesecccccssosssssssccss
Segmentation.eeeeeeeeseososessnsssssssssssosssssosssssossse
Segmentation With Basic Memory Management Unit.ceeeecee
Segmentation With Extended Memory Management Unit.....
Segment Ring ProtectioNi.eesccecsscscssssssosssscsvssocss
MEMOLY POOLlSiteeessrcecoesoassssoscsosssssssscscscsosssscssos
Sharing MemOrY POOlS:coeesscoscoecseossosoenossossssscssscsocss
Memory Pool AttributeS..cceseceesessessossosssscsssosssns
ProteCtioN.ceeecessesosceessncsssosssosssssoosssocnsncess -11
Containmenteceeeeossccossocosssoossonsssnssssssosssosssoens 4—11
Privilege.ceeesecessoscscssssosososssssssosssssssssasess 4-11
Serial US@JC€.cesecoeosssssosoossossosssoncosccssosnnsccne 4—12
Ring Access RightS..eeseceoceossssossososssosossessscses 4-12
System POOLl.ceeesscosoosssoscosssssssosssessssosossssonssoess 4—12
SWap POOlSeiceeeeccecscsosscsosossocossssosscsossssnsosssnssse 4—13
Independent POOlS..eesoecsccscsccsoossssosssoscsssocnsssones 4—15
Selecting Memory POOl TyPESeeesssseocsssssssssssscssscsss 4=16
Memory POOl LayoOUt.eesesseosssccssosssecssssssossssssnes 4—16
Fixed SysStem Are€a..cceeccsssoccsscsscscossosssosccssoses 4—17
Bound Unit CharacteristiCS.ceecececsessosscssccsscsccssoses 4-17
General Bound Unit CharacteristicCS.eeecceesccesscssccescoees 4=17
Sharable Bound UnitSeeecesceesesosssosescsossossssnseses 4—18
Sharable Bound Units in Swap POOlS.:ccceessoosossssnses 4-18
Sharable Bound Units in Independent POOlS.ecoecossessss 4-19
Globally Sharable Bound UnitS.seeesosesssccosssssssses 4-19
Sharable Bound Units and Executive ExtensionS...seceee. 4=19
Bound Unit Search RuUleS.sesceesssosssosssssssssssssssssss 4—20
Bound Unit OVerlay Seeeecoessossssosssosesoscsccssscssssssse 4—21
Nonfloatable and Floatable OverlaySsecssessseeccocsesoes 4=21
Nonfloatable OVerlaySseesseceesseossssescscsossssssssss 4—21
Floatable OverlaYS.oooo.-ooo.oo.ncoo..onoo..ootooo.- 4—22
Linking Floatable and Nonfloatable OverlayS.eseeesess 4-23
Overlay Ar€aASe.ececcessssscsssccscssssssscscscsoscsssssssss 4—=25
BOUl’ld Unit Allocation................................... 4-28
Memory DeallocatiOI’l...........-...-........-......--.... 4"29
Swap Pool Task AdAress SPACEeceececcscssscscsscsesssessosss 4—29
Bound UnNiteseeeeeesossescsosocososssssscsossssssssssssnsncsse 4—29
User StaACK Ar€8.csissessscssscososossssssscessssssssssscncss 4-29

| | I I |
O WOOOE~NAUTE WWH

o

o

b‘?&hh%hﬁhhh&hhhb £
|
ot
-

xii Cz03-01

CONTENTS
Page

Dynamically Created SegmentSececeeescescccsccssscsccesess 4-30
Group WOILK SPACEicessssescssssssessssssssscsssssssssssss 4-30
Group SyStem SPACEeiiecesssscccosssssssosssssssssssscscsss 4-30
System Global SpaCe.ceescscscsscsccscsssscssnssscsssecsss 4=30
System Representation of Task Address SpPaC€icesssssscess 4-30
Task Address Space in System With Basic Memory
Management UnNiteseeeeccesecsccsesosssesscsssossocssonssse 4-31
Task Address Space in System With Extended Memory
Management Unit....................-...----o.o..-..... 4'—33

SECTIONS TASK EXECUTION.".Q....I.......l.'.........l...

(S}
l
=

Central Processor Interrupt Priority LevelS.:eseeeseceosssces
Interrupt SAGvVe ArC€A.secsssosoesosssssssesosscssscssscsssscsss
Task DispatChiNgeeeeseeesocssssessscesssossssssssscsssscnsss
Monoprocessor Task DispatChinNgesseeseesesessocscsscesscs
Multiprocessor Task DispatChinNge.eeeesccsccccccccosscccss
TimesSliCinNgeeesssessossssssssssosescsssscsscscsssossssassccscs
Monoprocessor TimesliCiNgeesseeesososossessscoccccsssccsse
Multiprocessor TimesSliCiNgeeeeeoecessosssccscsccscsosone
Trap Handlingeeseeosoessseosscesssccssssssscsssncssssscsssocns
System Features Affecting Task EXeCUtiON.ceeeeeecocccccoss
Priority Level AssignmentS.sccececsssososossosscscosssscsssns
Assigning Priority Levels to Devices and System Tasks.
Assigning Priorities to Application TaskS.eeeeeeeceees
Logical ResOuUrce NUMDEI.:eoeeoeosscssssosscessossccssccesce
DeviCe LRNS:eeeseeosooscscsosssssossssssssssssscsscssssss
Application Task LRNS.eeeesoeossoessssoscssssssssasssos D11
Logical File NUMDEIS..seseessssescososossossossessnsssess 5O—11
Task and Resource CoordinatiON.cscessssocscsscccssssossss DO—-12
Task ReQUEStSeeeesecesosssscsscoscesssccsssscsossssssssss DOD-12
SEeMAPNOrESecesevsosscsscoscssscossosssrssssssssccsccssssssses O—12
TaSk Handling.....-...........................----..-..... 5_14
Task StateSeeeeeecesosssssossssccscsossosossssscosscssscssses 5=15
Example of System Interaction With User TaskS.eeeeeeseeees 5-16
Operator Terminal I/O LOggiNg.eesecesssesosssscscssssocsess 5-16
Intertask and Intratask Group CommunicatiONesececececcsesssss 5=18
Request BlOCKS.eesoeossoosossesesosssssscscscscssssonsscsss 5O—18
CommON FilleS:eeesoessosssosssssssssssssossssssssssssssssse 5O—18
Message FacCility.eeeesesesescscscosssscssesosscsscccsssses DO-18
Creating MailbOX€S.eeeeeesssoesssosssessscsssssosesssss 5—19
Activating Message Facility TasSKeeeeooeosossoeoceosnesss 5-19
Message Facility Command Interface€..eececessessssesees 5-19
Mail Command.........-.........................-.... 5_20

Send Message Mailbox and Accept Message Mailbox
Commands.......-....--.................-.-.......... 5—20
Message Facility Macrocall Interfac€..eesecesscscecees 5=21

0
0

(S, E, IO, WE, N, W, E,NE, N6, RO, NC, O N,
|
HEHE NN oo s W W

|
=
o

xiii Cz03-01

CONTENTS

Page

Deferred Processing FacilitieS.eeeeessescsosscescsssssosses 5H=22
Deferring Task Group ReqUesStS.eeceessscescssesssosssssss 5H—22
Creating Task Group Request QUEUES.esssesesssesscssses H—23
Queuing Task Group RequUesStS.eeeeeccccsscccsscscscsssss D—=23
Deferring Print ReqUESES.eeeseeecsccscscsoscssssssssssess 5—23
Creating Print Request MailbOX€S.:eeseeseeccescsssssess 5—23
Creating the Print DaAeMON.sscecessssccscccsosssssssccess H—=24
Queuing Print ReqUesStS.ieeecesesesossssssescessssossonses 5—24
Queuing and Transcribing RepPOrtS.esseessscccssscessssssees 5H=24
Creating Report QUEUES.cessoesssessoccssssssssscsscsss OD—24
Queuing Report RequesStSeesseesscrsssccssssocsssssssssses 5H=25
Transcribing RepPOrtS.ceecsscesscesssoccsscsccsscsccsscssss H=25

(o))
I
[

SECTION6 BACKUP ANDRECOVERY....0.00....'..0'.000!0...0.

File Backup and ReorganizatioON.iesssessocesssscosscoscsnsssns
Saving Files and DirectoOrieS.cceecscsccsosccsccsscscccsesnss
Restoring Files and DirectOrieS.ceeseccesssscsssosssnsnse

Power ResSUmMPtiON.ececscecesoscssscssocssocssssssssssssnnsnss
Implementing the Power Resumption Facilityeeeoeoesesoesses
Power Resumption FUNCtiONS.eecessoossessssscsssscsssosnscs

File RECOVEIY eeassssssosssocosscscscsocsososssssssssssssssssss
Designating Recoverable FileS.:eeceessccosscscssscssosonss
Recovery File CreatiON.iceceessesssossesssssssssonssssacss
File RECOVErY PrOCESS.isscessssssossssssssscscssssccssnssass

Taking CleanpOintSeeeeseescescssssossscscssssscssasasse
Requesting ROl11baCKeseeeeessosceosssoosssosssoccssnnsns
Recovering After System FailUr€.seeeececcoosossscccsnnss

File RestoratiONeeesseeecscescoscsccccsssrssscsscsscsscccssoss
Designating Restorable FileS..sesesesscssosscsccssssonses
Journal File CreatiON.iececsessecsssescscsossssocsssscssccssess
File RestoratioOn PrOCESS.cseccessssccssssssssscsccsssssse

Checkpoint Restartececeececcescosccccoscssccccsoscsrssosncnconns
ChecCKkpOint.eeeseecesoscscscsscessssccosssssssssssccnsssssns

Checkpoint File Assignment.cceecscsccesccscoscoscsscns
Taking @ CheckpOint.ceeeeessscossssssoessssscssscssncss
Checkpoint ProCesSSiNgecccecsccsccscscosscsscoscscssosnss
Restart.'..'........l.....'l'..l'.'l.....l.!......l.'.‘.
Requesting @ Restart.sesecccecssscseccccossssssncccsnss
Restart ProCesSiNgeceecscecccccccccccnssssssssssssssnsse 0—13

|
HHFEFWOWWOOOOONNAAAAAOLLI NS WWW

(=)

I B I
o

I
L
N O

[e)We We e We We WeWe We)We)\We) We)We)Ie)Wer e) We e We) We) We) W o) W)W e Y
I

I
=
N

GLOSSARY...l..l.."......l........Q..'l.."'.I............

K
=

Xiv Cz03-01

ILLUSTRATIONS

Figure Page
2-1 Example of Disk Directory Structure...ceecesccssesss 2-3

2-2 Sample Directory StruUCtUr€.ciecseeecsccscsccscsccceses 2-4

2-3 Sample PathnameS..sceeececscesssscssessssosssessosss 2-11
2-4 Example of Online Multivolume Fil€S.eesesoccccccsees 2-31
2-5 Example of Serial Multivolume File€S.eesesesesseseees 2-33
4-1 Sample Swap Pool Group Segment AssignmentS..ceeceeee.. 4-14
4-2 Sample Independent Pool Group Segment Assignments... 4-16
4-3 Relative Location in Memory of Memory Pool AA.eee... 4-24
4-4 Overlays in Memory POOl AA.cesessssccesscossssocssess 424
4-5 Sample Bound Unit Structure for Overlay Area Use.... 4-25
4-6 Task Address Space in BMMU SysSteMeeeeesesoesscessees 4-32
4-7 Task Address Space in EMMU SysteMieeeeeecccosooeceeess 4-34

5-1 Format of Level Activity Indicators for Each

Central ProOCESSOL.eessesssesssosssossscsssossssseasss D=2
5-2 Order of Interrupt Vectors and Format of Interrupt

Save Areas for Each Central ProCesSOfcseccccessesees H—4
5-3 Example of LRN and Priority Level Assignments

for System Tasks and DevViCeSieesseescscssssssssssssese 5H-11
5-4 System Interaction with User Tasks in a

Monoprocessor SySteMiecessssessscsoscsanosssssssssnsss 5S—17

TABLES

Table Page

2_1 DiSk File Concurrency ContrOl................o...... 2-20
2=-2 Access Control/Concurrency Control Relationship..... 2-21

4-1 Task Group and Task Functions Possible From
Interactive and Absentee MoOdeS.eeeeeoevsscscsssscess 46
4-2 System Task Group IdentifierS.eeececccsccccosssscees 4-7
4-3 Comparison of Executive Extensions

and Sharable Bound UnitS.seseessesssccsssossesscccess 4=20

5-1 Sample Priority Level Assignments for Tasks
and Devices..'....l.....'..........0"'...'......-.l 5—8

XV Cz03-01

Section 1

SYSTEM
CHARACTERISTICS

GCOS 6 MOD 400 is a disk-based operating system that supports
multitasking, real-time, or data communications applications in
one or more online streams. 1In addition, program development and
other non-interactive applications can be performed concurrently
in multiple absentee streams.

MOD 400 is a multifunctional system capable of supporting a
variety of processing functions. You can develop and execute
applications software, perform forms data entry, transmit files

to other DPS 6 computers, and enter jobs for execution at remote
sites.,

The system can be configured to process different functional
applications concurrently., For example, you can run your owh
applications, utilize other system functionality such as the data
collection capability, and communicate with a host processor at
the same time,

OPERATING FACILITIES

MOD 400 supports multiprogramming, the concurrent execution
of multiple tasks running under one or more task groups. Each
task group owns the resources necessary for execution of an
application program (one or more related tasks). The task group
runs independently in its own operating environment while it
shares the resources of the system.

1-1 Cz03-01

If you define the environment to run more than one
application task group concurrently, you are multiprogramming.
In this environment you can execute each task in a task group
sequentially, or concurrently (which is multitasking). You can
run multiple online and absentee task groups concurrently.

The number of task groups that can run is limited by the
number of central processors in your system, by central processor
power, and by the amount of memory available., Concurrently
executing task groups can occupy independent dedicated memory
areas, or they can contend for space within a memory pool. When
one task group is deleted, the released memory is available to
other task groups in the same pool. MOD 400 allocates memory
dynamically from pools and can relocate programs at load time.
Once a task group requests execution, its tasks are dispatched
according to their assigned priority levels., 1In a multiprocessor
system, a task is dispatched when a central processor becomes
free. When more than one task shares a priority level, tasks are
serviced in round-robin fashion.

Use of disk files by multiple independent users is
facilitated by the arrangement of File System entries
(directories and files) in a tree-structured hierarchy. Each
directory or file is identified by a pathname that indicates the
path from the root directory of the hierarchical structure of the
containing directory or file, File reference can be simplified
through the use of pathnames relative to a working directory that
indicates a user's current position in the File System
hierarchy. Access to sharable files and devices is controlled by
file attributes and concurrency procedures.

SOFTWARE FACILITIES

MOD 400 offers you a comprehensive set of software components
that perform a wide variety of functions. The following
paragraphs briefly describe these software components,

System Control Software

System control software includes:

e Task Manager: Handles the disposition of tasks within the
system's central processor(s) and responds to requests
placed against tasks. The Task Manager processes requests
to activate tasks; returns control to interrupted tasks;
and synchronizes, suspends, and terminates tasks,

e Clock Manager: Handles all requests to control tasks
based on real-time considerations and responds to requests
for the time of day and date in ASCII format.

1-2 Cz03-01

Swapper: Controls the allocation of swap pool memory and
swap file space. Swaps tasks out when swap pool memory is
required and swaps them back when the memory is available.

Memory Manager: Controls dynamic requests for memory and
the return of memory to group work segments, Also
controls the allocation of all memory in independent
(non-swapped) pools and of task groups assigned to the
swap pool.

Trap Manager: Handles the transfer of execution control
from an executing program to a predefined trap location
when a trap (a special condition such as a hardware error)
occurs. The Trap Manager handles system traps and allows
a task group to connect its own trap routines for specific
traps.

Operator Interface Manager: Manages all messages sent by
task groups to the operator terminal or from the operator i
terminal to task groups.

Loader: Loads the root and overlays of a bound unit into
memory from a disk.

Listener: Monitors a selected set of local and remote
terminals. When you enter a Login command requesting
access to the system at one of the terminals, the Listener
causes a task group to be spawned for you.

Command Processor: Processes all commands. The Command
Processor must be the lead task of an absentee task group
and can be the lead task of any other task group.

User Productivity Facility (Menu Subsystem): Provides you
with a screen-oriented interface to the Executive and to
applications,

Message Facility: Provides a means for sending and
receiving messages between tasks and between task groups.

Message Reporter: Extracts messages from the message
library, formats them, and delivers them to a
user-specified location such as a terminal, a program
buffer, etc.

Error Logging Facility: Provides a mechanism for
accumulating statistics on memory errors and peripheral
devices., Should the error-per-use ratio exceed a
specified threshold, a warning message is sent to the
operator terminal,

1-3 Cz03-01

File System Software

MOD 400 provides software to handle Input/Output (I/O)
functions of each of the supported devices, The File System
sof tware is designed to work in conjunction with the data
management conventions established for each device. The File
System software is available through system commands or, for an
Assembly language program, through system service macrocalls.

Utility Software

The system provides a comprehensive set of utility programs
for performing frequently used programming functions. The system
programs used by MOD 400 for the various utility functions are
invoked by system commands.

Program Development Sof tware

MOD 400 supports a large set of program preparation
components, utilities, and debugging aids for application
development., Programming languages include PASCAL, FORTRAN,
COBOL, C, Ada, BASIC and Assembly language. Display formatting
and control facilities provide the means for developing, using,
and maintaining terminal display forms.

Data Communications Software

MOD 400 supports four levels of communications interface.
Terminals and/or remote host computers can be accessed through
the:

Sequential file interface of the File System software
Display formatting and control software

Physical I/O interface of the system

Various distributed systems facilities,

Specialized software components called Line Protocol Handlers
(LPHs) support the different device classes and the various con-
ventions established for data transfer.

Distributed Systems Software

MOD 400 supports software packages that permit use of DPS 6
in a distributed processing environment., Using the packages
provided by Honeywell, your DPS 6 system can become a node on a
network and can communicate with DPS 6, DPS 7, DPS 8, and other
systems across a variety of links.

1-4 Cz03-01

The Distributed Systems Architecture 6 (DSA6) package follows
the layered structure of the Open Systems Interconnection (OSI)
defined by the International Standards Organization, DSA6 is a
set of networking products that includes a transport facility, a
network terminal manager, a unified file transfer facility, a
remote file facility, a remote batch facility, and an application
interface facility. DSA6 also supports terminal access to
IBM-hosted applications through the DSA/SNA gateway.

The Systems Network Architecture 6 (SNA6) package emulates
most operations of standard IBM devices so that DPS 6 systems can
interface with an IBM SNA network. SNA6 provides a remote job
entry facility, a file transmission facility, an interactive
terminal facility, and an application interface facility.

Data Management Software

MOD 400 supports data base management, query and report
writing, and transaction processing sof tware packages., Data base
management packages are available for relational and network data
bases. Query and report writing packages allow you to retrieve
information from all supported data bases. Transaction
processing packages support standalone systems as well as
applications connecting to remote host processors through the
Distributed Systems software,

Data Entry Software

MOD 400 supports a multistation, forms—-oriented source data
collection capability. The Data Entry Facility-II (DEF-II)
package embodies established data entry concepts in a menu-driven
approach, making it easy to specialize and run procedures., Data
collected and validated by DEF-II can be organized into a file
and transferred to another system through the Distributed Systems
sof tware.

Office Automation Software

MOD 400 supports the Office Automation System (OAS)
facility. OAS offers a wide range of office processing functions
including document processing, electronic mail, document
transfer, records processing, spreadsheets, communications, and
file management.

1-5 ‘ Cz03-01

Section 2
FILE CONCEPTS

A file is a logical unit of data composed of a collection of
records., The principal external devices available for storing
files are:

e Disk devices (for example, diskettes, cartridge disks,
cartridge module disks, fixed (sealed) disks, and mass
storage units)

® Magnetic tape units (for example, 1/2-inch tapes and
1/4-inch cartridge tapes).

These external devices are referred to as volumes (for
example, disk volume, tape volume).

Various conventions have been established to identify and
locate files stored on disk and magnetic tape. These conventions
facilitate the orderly and efficient use of the data stored on
the volumes.

Unit record devices (such as card readers, card punches,
printers, and terminals) also use the file concepts., However,
since unit record devices cannot be used to store files, there is
less need to establish conventions for identification and
location. A unit record file is simply the data that is read or
written at any one time (for example, a line entered at a
terminal).

2-1 Cz03-01

DISK FILE CONVENTIONS

You must be able to specify an access path to any given file
on a disk volume that contains multiple files. Files must
therefore be organized on the volume in some predictable
fashion. The MOD 400 File System provides a set of volume
organization conventions by which the system can locate any
element that resides on the volume.

The principle elements of this organization, aside from the
files themselves, are directories., The access path to any given
element on a volume is known as a pathname,

Directories

Files on disk devices are logically arranged by the File
System in a tree-structured hierarchy. The basic elements of
this hierarchy are special files known as directories, The
directories are used to point to the location of data files,
which are the endpoints of the tree structure.

A directory on a disk volume is an index that contains the
names and starting locations (sector numbers on the volume) of
files or other directories (or both). The elements in the
directory are said to be "contained in" or "subordinate to" the
directory. Therefore, the organization of a disk volume is a
multilevel structure. The complexity of the access path to any
given element in the structure depends on the number of
directories between the root and the desired element.

A sample directory structure is illustrated in Figure 2-1.
The base directory on a volume is termed a root directory. In
Figure 2-1 the root directory is VOLOl. Root directory VOLOl
contains two subordinate directories, DIR1 and DIR2. Directories
DIRl and DIR2, in turn, contain data files FILEA, FILEB, FILEC,
and FILED.

The root directory and other special types of directories are
described in the following paragraphs.

ROOT DIRECTORY

The File System maintains a tree structure for each disk
mounted at any given time., At the base of each tree structure is
a directory known as the root directory. This is the directory
that ultimately contains every element that resides on the
volume, either immediately or indirectly subordinate to it. The
root directory name is the same as the volume identifier of the
volume on which it resides. The directory VOLOl in Figure 2-1 is
the root directory on the disk volume VOLO1l.

2-2 Cz03-01

VOLO1

DIR1 DIR2
J 11
l]
FILEA FiLee| |Fiecl YeiLep
'84-817

Figure 2-1. Example of Disk Directory Structure

SYSTEM ROOT DIRECTORY

One or more disk root directories can be known to the system
at any time during its operation., One of these, the System Root
Directory (SRD), is required at all times. The access paths of
files in the SRD start with two greater-than signs (>>). The
volume used by the operator to initialize the system establishes
the SRD. The boot volume must contain the SRD; it also normally
contains system programs, commands, and other routinely used
elements., The SRD must contain a number of directories and files
that the system needs to perform its functions, including
>>Z3EXECUTIVEL, >>SID, >>AID, >>HIS, and >>USER REG. For more
information, refer to the System Building and Administration
manual.

USER ROOT DIRECTORY

The File System can recognize one User Root Directory (URD),
which you define through the Change System Directories command
with the -ROOT argument. Files in the URD have access paths that
start with a single greater-than character. The URD contains
items such as UDD, LDD, MDD, FORMS, PROGS, and TRANS. For more
information, refer to the System Building and Administration
manual.

The URD and SRD can reside on different volumes or on the
same volume., The installation can also have user volumes created
to meet the installation's own particular needs. These volumes
may contain user application programs and their associated data
files,, application program source and object code files, listing
files, and anything else a user might want to store temporarily
or permanently.

2-3 Cz03-01

Refer to "Links" later in this section for information on
another way to distribute software (system or user) onto more
than one volume.

INTERMEDIATE DIRECTORIES

When you first create (format and name) a volume under the
File System, it contains only a root directory. Within this
directory, you can create any additional directories required to
satisfy the needs of the installation., Consider, for example, a
volume that is to contain data used by two application projects,
each of which has several users associated with it. Each user
has one or more files of interest to him or her., The volume has
been initialized and contains a root directory name. Two
directories can be created subordinate to the root directory,
each identified by the project name. Then, subordinate to these
directories, a directory can be created for each user associated
with each project.

The data files are all contained within the personal
directories, This sample directory structure is illustrated in
Figure 2-2,

vOLO1
] 1
1
, APP1 APP2
I TT1]l_‘
| 1
SMITH JONES | |FOSTER EVANS | |BROPHY
FILE A FILEB

84-818

Figure 2-2, Sample Directory Structure

When the need for a user-created directory no longer exists,
the directory can be deleted from the File System (deleted from
the disk). The space it occupies, as well as the space occupied
by its attributes in the immediately superior directory, is then
available for reuse, A directory must be empty before it can be
deleted. All directories and files subordinate to the one to be
deleted must have been previously deleted by explicit commands.

2-4 Cz03-01

WORKING DIRECTORY

The File System always starts at a root directory when it
searches for a disk file or a directory. At times the search for
an element residing on a disk volume may traverse a number of
intermediate directory levels before the desired element is
located, and the File System must be supplied with the names of
all the directories it must pass on the way. Frequently all
files of interest to a user doing work on the system are
contained in a single directory that is three or four levels deep
in the hierarchy. It is convenient to be able to refer to files
in relation to a directory at some arbitrary level in the
hierarchy rather than in relation to the root directory. The
File System allows this to be done by recognizing a special kind
of directory known as a working directory.

A working directory establishes a reference point that
enables you to specify the name of a file or another directory in
terms of its position relative to the working directory. If the
access path of the working directory is made known to the File
System, and if the desired element is contained in that
directory, the element can be specified by just its name. The
File System concatenates this name with the names of the elements
of the working directory's access path to form the complete
access path to the element.

Disk Directory and File Locations

The File System has total control over the physical location
of space allocated to directories and files. You need never be
concerned about where a directory or file resides on a volume,
When a volume is first initialized, space is allocated to
elements in essentially the order in which they are created.

But, after the volume has been in use for some time, elements may
have been deleted and the space they occupied made reusable,
Then, when a new element is created, it is allocated the first
available space. If more space is needed, it is obtained from
the next free area.

Disk Directory and File Naming Conventions

Each disk directory and file name in the File System can
consist of the following American Standard Code for Information
Interchange (ASCII) characters:

e Uppercase and lowercase primary character set alphabetics

e Digits (0-9)
e Underscore (_)

e Hyphen (-)

2-5 Cz03-01

® Period (.)
e Apostrophe (')

® Uppercase and lowercase characters whose hexadecimal
equivalents are from CO-FE (Western European Latin
alphabet, also called the extended character set).

The characters in the extended character set cannot be used
in volume identifiers.,

NOTE

If the terminal is not capable of processing 8-bit
data, characters from the extended character set
are displayed as periods or as their 7-bit
equivalents,

When volumes, files, and directories are created, their
identifiers are stored on disk exactly as entered, in uppercase
and lowercase characters., For both the primary and extended
character sets,. MOD 400 considers uppercase and lowercase
characters to be equivalent (for example, "DATA", "Data", and
"data" all refer to the same file).

The first character of any name must not be character FF.
The underscore character can be used to join two or more words
that are to be interpreted as a single name (for example,
DATE TIME). The period character and one or more following
alphabetic or numeric characters are normally interpreted as a
suffix to a file name, This convention is followed, for example,
by a compiler when it generates a file that is to be listed. The
compiler identifies this file by creating a name of the form
FILEA.L.

MAXIMUM NAME LENGTH

The name of a root directory (the volume identifier) can be
from one through six characters in length. The names of other
directories and files can be from 1 through 12 characters in
length, The length of a file name must be such that any
system-supplied suffix does not result in a name containing more
than 12 characters.

UNIQUENESS OF NAMES
Within the system at any given time, the access path to every

element must be unique, This requirement leads to the following
rules for naming files:

2-6 Cz03-01

e Only one volume with a given volume identifier can be
mounted at any given time. (The system notifies you of an
attempt to mount a volume having the same name as one
already mounted.)

e Within a given directory, every immediately subordinate
directory or file name must be unique. (The Create
Directory and Create File commands notify you of an
attempt to add a duplicate name.)

Note that uppercase/lowercase differences do not constitute
uniqueness. As previously mentioned, "DATA", "Data", and "data"
all refer to the same file,

Pathnames

The access path to any File System entity (directory or file)
begins with a root directory name and proceeds through zero or
more subdirectory levels to the desired entity. The series of
directory names (and a file name if a file is the target entity)
is known as the entity's pathname. The construction of a
pathname is described below.

The total length of any pathname, including all symbols,
cannot exceed 57 characters. A working directory pathname,
however, cannot exceed 44 characters.

The last (or only) element in a pathname is the name of the
entity upon which action is to be taken. This element can be a
device name, directory name, or file name, depending on the
function to be performed. For example, in the Create Directory
command a pathname specifies the name of a directory to be
created. The last element of this pathname is interpreted by the
command as a directory name; any names preceding the final name
are names of superior directories leading to it. An analogous
situation occurs in the Create File command, except that in this
case the final pathname element is the name of a file to be
created.

SYMBOLS USED IN PATHNAMES
The following symbols are used to construct pathnames:
e Circumflex (7). Used at the beginning of a pathname to

identify the name of a disk volume root directory (for
example, "VOLO01l1).

e Circumflex Preceding Greater—-Than Sign (">). Used at the
beginning of a pathname to identify the root directory of
the current working directory (for example, ">DIR1>FILEA
is equivalent to "VOLO11>DIR1>FILEA if the current working
directory is on VOLOll).

e Greater-Than Sign (>). Used at the beginning of a
pathname and between the names in a pathname.

2-17 Cz03-01

- When used at the beginning of a pathname, the element
whose name follows the > symbol is immediately
subordinate to the root directory of the user root
volume (it resides under the URD). Honeywell-supplied
programs assume the URD contains the UDD, LDD, FORMS,
MDD, PROGS, and TRANS directories,

The correct way to refer to a directory in the URD is
to precede the directory name by one greater-than sign
(for example >UDD).

- When used between names in a pathname the > symbol
indicates movement in the hierarchy away from the root
directory. The symbol is used to connect two directory
names or a directory name and a file name. Each
occurrence of the > symbol denotes a change of one
hierarchical level. The element to the right of the
symbol is immediately subordinate to the element on the
left.

Reading a pathname from left to right thus indicates
movement through the tree structure in a direction away
from the root directory. For example, if the root
“VOL0l1l contains a directory named DIRl, the pathname
of DIR1 is "VOLOl1l>DIR1., If the directory named DIR1
in turn contains a file named FILEA, the pathname of
FILEA is "VOLOll>DIR1>FILEA

Two Consecutive Greater—-Than Signs (>>). Used at the
beginning of a pathname to specify entities that are
subordinate to the SRD. Honeywell-supplied programs
assume the SRD contains the Z3EXECUTIVEL, SID, AID, HIS,
and USER_REG directories.

The correct way to refer to a directory in the SRD is to
precede the directory name by two greater-than signs (for
example >>SID).

SYSLIB1 and SYSLIB2 can reside in either the SRD or the
URD,

Less-Than Sign (). Used at the beginning of a pathname
to indicate movement from the working directory toward the
root directory. Consecutive symbols can be used to
indicate changes of more than one level; each occurrence
represents one level change, One or more less-than
symbols may precede only a pathname that assumes a
directory without actually referring to it explicitly.
Such a pathname is called a relative pathname,

ASCII Space Character (Hexadecimal 20). Used to indicate
the end of an encoded pathname in a program. When
represented in memory, a pathname must end with a space
character.,

2-8 Cz03-01

The use of these symbols at the beginning of a pathname can
be summarized as follows:

Symbol Meaning
“volume Any volume or root directory
> Under root of current working directory
volume
> Under URD root
>> Under SRD root
< Movement away from current working directory

toward volume root

ABSOLUTE AND RELATIVE PATHNAMES

A full pathname is one that begins with a circumflex. A full
pathname contains all necessary elements to describe a unique
access path to a File System entity, regardless of the type and
location of the device on which it resides or where your working
or assumed directory is. You use a full pathname to locate
directories and files that reside on a device other than that on
which the system volume (the volume from which the system was
initialized) is mounted.

The File System uses a full pathname when referring to a
directory or file, However, it is frequently unnecessary for you
to specify all of these elements, The File System can supply
some of them when the missing elements are known to it and the
abbreviated pathname is used in the appropriate context. An
understanding of these conditions and contexts requires an
understanding of absolute and relative pathnames,

Absolute Pathname

An absolute pathname is one that begins with a circumflex (%)
or one or more dgreater-than symbols (>).

If an absolute pathname begins with a circumflex, it is a
full pathname,

If an absolute pathname begins with one greater—than symbol,
the first element named in the pathname is assumed to be
immediately subordinate to the URD.

If the pathname begins with two greater—-than symbols, the

first element named in the pathname is assumed to be directly
subordinate to the SRD.

2-9 Cz03-01

Relative Pathname

A relative pathname is a shortened version of the absolute
pathname and assumes the working directory (or a higher directory
in the structure) without explicitly referring to it. A relative
pathname is one that begins either with a file or directory name
or with one or more less—-than symbols,

If the pathname begins with a name (for example, DIR1>FILEA
or FILEA), the elements so identified are immediately subordinate
to the working directory.

If a relative pathname begins with a less—-than symbol (for
example, <FOSTER), the name following the less—than symbol
identifies an element that is immediately subordinate not to the
working directory, but to the directory to which the working
directory is immediately subordinate, If the pathname began with
two less—-than symbols (for example, <<APP2), APP2 is immediately
subordinate to a directory two levels higher than the working
directory.

A relative pathname contains one or more names, If it
contains more than one name, each name except the last must be a
directory name, the first being immediately subordinate to the
current working directory level (or to a higher level, as
specified by one or more less-than symbols), the second
immediately subordinate to the first, and so on. The last or
only name can be a directory name or a file name, depending on
the function being performed.

A simple pathname is a special case of the relative
pathname, A simple pathname consists of only one name: the name
of the desired element that is immediately subordinate to the
working directory.

You can refer to a file or directory that is on the same
volume (but not subordinate to the working directory) by using an
absolute pathname or by using any of the described forms of a
relative pathname.

Figure 2-3 shows some relative pathnames and the full

pathnames they represent when the working directory pathname is
>PROJ1>USERA.

2-10 Cz03-01

BOX NUMBER RELATIVE PATHNAME?

NHWN =

FULL PATHNAME

DELTA ASYS01>PROJ1>USERA>DELTA
OLD>DELTA ASYS01>PROJ1>USERA>QLD>DELTA
<USERB>ALPHA ASYS01>PROJ1>USERB>ALPHA
<<PROJ2>USERA>DELTA ASYS01>PROJ2>USERA>DELTA
< ASYS01:>PROJ1

SYS01
5
PROJA PROJ2
]
|
USERA® USERB USERA

1 3 4

DELTA ALPHA DELTA

oLD

DELTA

8ASSUME CURRENT WORKING DIRECTORY IS "SYS01>PROJ1>USERA.

84-819

Figure 2-3, Sample Pathnames

2-11

Cz03-01

DISK DEVICE PATHNAME CONSTRUCTION

A special pathname convention is used to specify an entire
disk volume. (This pathname convention is typically used in
volume copy, create, and dump requests.) The special pathname
consists of an exclamation point (!) followed by the symbolic
device name and, optionally, the name of the the disk volume.
The general form of the disk device pathname is:

!dev_name[>vol id]

where dev name is the symbolic device name defined for the disk
device at system building, and vol id is the File System name of
the disk volume, without the circumflex (for example:
IMSMOO>VOLO1) .

If the vol id is not supplied, reservation of the disk is
exclusive (meaning that the reserving task group has read and
write access but other users are not allowed to share the
volume). This pathname form is used when a new volume is being
created. If the vol id is specified, reservation is read/share
(meaning that the reserving task group has read access only,
other users may read and write), This pathname form is used when
copying a volume, or when dumping selected portions of a volume
without regard for the hierarchical File System tree structure.

LINKS

Links are names you create through the Link Name command to
refer to files, directories, and indexes in other volumes or
directories as if they were in your working directory (or any
other specified directory). 1Instead of copying a file from one
directory to another, you can link to it. You can also link to
devices or to other links.

For example, once you have established a link between the
name A (in a given directory) and the pathname
“VOLID>MYDIR>MYFILE, you can perform file operations using the
link-name A as if it were the pathname. Instead of having to
issue the command:

MFA "VOLID>MYDIR>MYFILE -RECOVER
you can issue the command:

MFA A -RECOVER

(Assuming you have defined A as a link-name in your current
working directory.)

For additional information concerning the Link Name and
Unlink Name commands, refer to the Commands manual.

2-12 Cz03-01

Automatic Disk Volume Recognition

The automatic volume recognition facility dynamically notes
the mounting of a disk volume. This feature allows the File
System to record the root directory name in a device table, All
references to disk files and directories begin, explicitly or
implicitly, with a root directory name; therefore, every mounted
file is automatically accessible to the File System software.

Disk File Organization

Since no one disk file organization can meet the needs of all
users at all times, MOD 400 supports several different
organizations, each of which is well suited to a particular
application. Most of the supported organizations are based on
the concept of a control interval (a unit of transfer between
memory and disk) and are referred to as Unified File Access
System (UFAS) files. UFAS file organizations provide file
processing compatibility across the GCOS Executives.,

You establish the organization of a data file when you create
the file through the Create File command. You read and write the
file using statements and macrocalls provided by the MOD 400
compilers and Assembler.

The following paragraphs summarize the MOD 400 disk file
organizations. Refer to the Data File Organizations and Formats
manual for detailed descriptions of each organization.

UFAS SEQUENTIAL DISK FILE ORGANIZATION

Logical records are normally read from or written to a
sequential file in consecutive order. Records must be written
sequentially although the file can be positioned for writing
through the use of a simple key. Records can be read, modified,
or deleted directly when you specify their exact control interval
and record address (simple key). Records cannot be inserted;
they can be appended to the end of a file, Fixed- or
variable-length records can be used, If a record is deleted, the
position it occupied cannot be reused.

UFAS RELATIVE DISK FILE ORGANIZATION

A relative disk file can contain fixed- or variable-length
records, If variable-length records are used, they occupy
fixed-length slots (and the size of the largest record must be
specified). Both sequential and direct access are supported; in
direct access, simple and relative keys can be used. A record
can be updated (rewritten), deleted, or appended to the file, If
a record is deleted, the position it occupied can be used for a
new record. A file can be created directly if you specify
relative record numbers in random sequence,

2-13 Cz03-01

UFAS INDEXED DISK FILE ORGANIZATION

In an indexed disk file organization each logical record
contains a fixed-size key field that occupies a fixed position,
Records are logically ordered by key value; they can be accessed
sequentially in key sequence or directly by key value. Fixed- or
variable-length records can be used. Variable-length records
occupy variable-length slots. A record can be updated, deleted,
or inserted in key sequence into available free space., When no
space is available to insert a record in key sequence, the record
is placed in an overflow area, When the file is initially
loaded, the records must be supplied in sequence by key value.

UFAS RANDOM DISK FILE ORGANIZATION

In a random disk file organization records are accessed
directly or sequentially. Variable-length records occupy
variable-length slots. Direct access of records is performed
through CALC keys, which are fixed in size and located within
each record. Records are positioned according to a technique
involving an arithmetic derivation of their CALC keys. This
derivation is called a hashing algorithm (and is carried out by
the system). Insertions, updates, and deletions are handled
according to key value, When the file is initially loaded,
records can be supplied in random key value sequence.

UFAS DYNAMIC DISK FILE ORGANIZATION

A dynamic disk file can contain fixed- or variable-length
records and supports inventory information to describe available
space. The main purpose of this file organization is to provide
an efficient storage organization for records to be accessed
through alternate indexes (explained below). Records are
accessed sequentially or directly. Variable-length records
occupy variable-length slots. Records can be accessed indirectly
through alternate indexes or directly by specifying their exact
control interval and record address (simple key). Records are
inserted into the file according to inventory information on a
"best f£it" basis. When the file is initially loaded, records can
be supplied in random key value sequence,

NON-UFAS RELATIVE DISK FILE ORGANIZATIONS

Non-UFAS relative disk file organizations are specific to the
DPS 6 and are not compatible with other GCOS systems. These file
organizations have fewer functional capabilities than UFAS files
but require little or no space overhead. The non-UFAS file
organizations are fixed relative and string relative,

2-14 CZ03-01

® Fixed relative - A fixed relative disk file can contain
only fixed-length records. All records in the file are
considered active; the file cannot contain deletable
records. A fixed relative file can be accessed directly
or sequentially. New records can be inserted anywhere in
the file.

e String relative — A string relative disk file can contain
variable-length records. All records in the file are
considered active., A string relative file can be accessed
directly or sequentially. The ASCII line feed character
(0A) is automatically appended to the end of each record.

Pipes

A pipe is a special kind of UFAS sequential file that is used
for synchronizing and passing information among multiple
cooperating tasks., Pipes are accessed (reserved, opened, read,
written, closed, and removed) just like any other sequential
file, Pipes provide a synchronization/queuing facility and offer
a convenient way of organizing and distributing work.

One or more tasks write into the pipe while others read from
it, 1If the pipe is empty but open for writing, read requests are
suspended until data (a logical record) is available, A read
implicitly deletes the logical record just read from the pipe.
When the pipe is empty and no longer open for writing, read
actions return the normal end-of-file status.

Alternate Indexes

Alternate indexes allow you to define any number of alternate
record keys to provide any number of different logical orderings
of keyed records within a single disk file, 1In effect, alternate
indexes provide different orderings (views) of the same data.

The same data file can be viewed in many different ways by having
more than one alternate index. For example, an application could
have a UFAS relative file containing employee information with
alternate indexes for employee numbers, employee names, and
social security numbers. You could access such a file as a
relative file, as an indexed file ordered by employee numbers, as
an indexed file ordered by employee names, or as an indexed file
ordered by social security numbers.

2-15 Cz03-01

The alternate index capability exists in addition to the
normal access mode based on type of file. You can establish an
alternate index for any UFAS relative, indexed, random, or
dynamic disk file. A file with more than one index can be
accessed in a number of ways. The manner in which the file is
reserved (through the Get File command) determines how the file
is accessed. If the data file itself is reserved, the file can
be accessed normally (according to file organization) or by a key
that is supported by one of the indexes. When the data file is
reserved through an alternate index, the contents of the file can
be accessed as a standard indexed file. Additionally, if more
than one index exists, the indexes can be used as alternate keys
to refer to the data. When an alternate index is used for file
reservation, that index is used as the primary key and the
remaining indexes can be used as alternate keys. Any index can
be selected as a primary index. When one index is used to access
the file, it and the other indexes are automatically updated as
the file is updated,

UFAS dynamic disk files contain inventory information to
manage available file space. Therefore, in highly volatile file
environments that include many insert and delete operations,
dynamic disk files are the ideal data files to be used with
alternate indexes.

Character string, signed binary, signed unpacked decimal, and
signed or unsigned packed decimal key types can be used. Single
component keys, ordered in ascending or descending sequence, are
supported. Duplicate keys (more than one record in a file with
the same key value) are supported on an index-by-index basis.

An alternate index is created with the Create Index command.
Arguments of this command specify the name of the index and the
name of the data file with which it is to be associated. The
system creates the index on the same directory as the data file
and, unless otherwise specified, with the same control interval
size as that of the data file.

Refer to the Data File Organizations and Formats manual for
further information.

Disk File Protection

The File System provides facilities that enable you to
control the access to files and directories, to control the
concurrent access to files, and to control the contention for
records within shared files,

ACCESS CONTROL
Access control is an optional File System feature that allows
the creator of a file or directory to specify which users (if

any) are to be granted access to the file or directory and what
types of access these users are to be granted.

2-16 Cz03-01

There are two general forms of access control: Access
Control Lists (ACLs) and Common Access Control Lists (CACLS).
ACLs apply directly to a file or directory; CACLs apply equally
to all immediately subordinate entries in a directory. Entries
in the ACLs and CACLs are mahaged through Set Access, Delete
Access, and List Access commands.

Access control is a file or directory attribute. The File
System maintains in each directory a list of users and the type
of access each user is allowed., 1If a directory does not contain
such a list, the items contained within it are not protected and
are accessible to all users. (Access control applies only to
disk files and directories. Tape files and other device-type
files such as terminals and card readers cannot be protected
through the access control facility.)

Access Types

Access types for files are read, write, and execute. Access
types for directories are list, modify, and create. A null
access type applies to both files and directories., Null access
indicates that no access is to be granted.

Access Control/User Id Relationship

Access control assumes that access to the system is
controlled by a login process in which every user has a unique
user id. This user id is composed of three elements that are
specified at login and that remain unchanged during the time the
user is logged in. The three elements are:

person.account, mode
person - Name of individual who may access the system.
account - Name of account to which work is charged.

mode — Further identification of the user (optional). Can
name the mode in which the user is working (for
example, interactive, absentee, or operator).

The elements of the user id can consist only of the ASCII
uppercase and lowercase alphabetic characters (A-Z, a-z), digits
(0-9), underscores (), dollar signs ($), apostrophes (') and the
uppercase and lowercase graphics whose hexadecimal equivalents
are CO-FE (extended character set). Apostrophes and the
characters whose hexadecimal equivalents are CO-FE can be used
only in the person and account elements. For both the primary
and extended character sets, uppercase and lowercase characters
are equivalent (for example, JOHN,MOD400.AB is the same user id
as JohN.moD400,ab) .

2=-17 Cz03-01

The elements are separated with periods (.). When
referencing user ids, you can replace any or all elements by
asterisks (*); for example:

*, account.mode

person,account, *
..*

When an asterisk appears in an element position, it is
interpreted to mean any value that may exist, No test is
performed to match this element of the user id. For example, if
two persons (Smith and Jones) are registered in an account named
FILE SYS, the user id *,FILE_SYS.* matches either person in any
possible mode. (The user id *.FILE SYS.* matches all individuals
registered to use FILE SYS in any mode.)

Access Control Lists

There ére four kinds of access control lists: file ACLs,
directory ACLs, file CACLs, and directory CACLs.

¢ File ACL - A file ACL is a type of access control list
that applies to a specific file and is considered to be a
file attribute. It contains a list of those users who can
access the file and their specific access rights (read,
write, execute).

® Directory ACL - A directory ACL is a type of access
control list that applies to a specific directory and is
considered to be a directory attribute. It contains a
list of those users who can access the directory and their
specific access rights (list, modify, create).

e File CACL - A file CACL is a type of access control list
that applies to all files immediately subordinate to a
directory. A file CACL is considered to be a directory
attribute that applies only to files contained in that
directory. A file CACL contains a list of file users and
their specific access rights (read, write, execute). Use
of file CACLs can save disk space and search time if all
or most files in a directory have the same access
requirements, A file CACL does not override individual
file ACLs set on files in the directory.

® Directory CACL - A directory CACL is a type of access
control list that applies to all directories immediately
subordinate to a directory. A directory CACL is
considered to be a directory attribute that applies only
to immediately subordinate directories, A directory CACL
contains a list of directory users and their specific
access rights (list, modify, create). Use of directory
CACLs can save disk space and search time when all or most
subdirectories have the same access requirements., A
directory CACL does not override individual directory ACLs
set on the subdirectories,

2-18 Cz203-01

The Create Directory command allows a directory CACL to be
established as a global directory attribute. The
directory CACL is automatically passed down to
subsequently created subordinate directories,

Checking Access Rights

When you reserve a file (through the Get File command or
system service macrocall), the File System checks your right to
access that file. You are said to be on the access control list
if your user id matches an entry on the ACL or CACL in any of the
forms noted below.

Universal access (no access restriction) is implied if
neither an ACL nor a CACL exists for the file being reserved. If
either list is present, it is scanned by access control,.

The checking priority is ACL first, CACL second. If a match
is found in the ACL for a fully specified user id (all three
elements explicitly stated), the CACL is not inspected. If a
match is found on a partially specified user id (one or more
elements specified as an asterisk), the CACL is inspected for a
more explicitly stated user id. The following list indicates the
inspection hierarchy of user id formats in order of decreasing
priority. For example, if you are granted access by an ACL entry
in format 3, you can be denied access only by an ACL or CACL
entry in format 1 or 2.

1. person,account.mode
2. person,account,*

. person, *.mode

. person,*, *

. *,account.mode

. *,account,*

. *.* ,mode

® *.*.*

o~ U e W

Access is checked only for the target file or directory; the
access rights set on directories that may be traversed in
reaching the target file are not checked. You may be denied
access at some intermediate directory level and still gain access
to a subordinate directory or file.

Access control lists do not prevent the system operator from

accessing files and directories., It is suggested that physical
access to the operator terminal be restricted.

2-19 Cz03-01

FILE CONCURRENCY CONTROL

Concurrent read or write use of a file among task groups is
established by the task group that first reserves the file.
Concurrency control performs the following functions:

® Establishes how tasks in the reserving task group intend
to access the file (read, write, or execute),

e Establishes what the reserving task group allows other
task groups to do with the file.

If the file is already reserved, a task group's concurrency
request (reservation) is denied if its intended access conflicts
with the access permitted by a prior reserver. The concurrency
request is also denied if what it allows others to do conflicts
with the access already established by another task group. For
example, if a task group reserves the file exclusively, other
task groups are denied access., If a task group permits read-only
access but does not permit write access, other readers are
allowed but writers are denied access.

Concurrency is controlled through the Get File command or
system service macrocall. The possible combinations of access
intended for the reserving task group and sharability permitted
other task groups are given in Table 2-1, Table 2-1 also shows
the Get File command arguments that establish the various
concurrrencies,

Table 2-1., Disk File Concurrency Control

Reserving Other Get File

Task Group Task Groups Arguments

Read only Read only (read share) | =ACCESS R -SHARE R
Read or write —-ACCESS R -SHARE W

(read/write share)

Read or write | No read, no write -ACCESS W —-SHARE N
(exclusive use)

Read only (read share) | —ACCESS W —-SHARE R

Read or write —-ACCESS W —SHARE W
(read/write share)

2-20 Cz03-01

Compiler—-generated programs, commands, sort operations, and
other system software always request exclusive concurrency for
files they reserve for users. Since the operator terminal must
be reserved with read/write shared concurrency to allow
concurrent access by many task groups, it cannot be specified as
the path of the -COUT argument of a command that invokes a
compiler.

The command-in, user-in, user-out, and error-out files are
associated with the MOD 400 Command Processor (refer to "Command
Processor" in Section 3). If the command-in and user-in files
are on disk, they are reserved with read-only shared concurrency;
if assigned to a user terminal, they are reserved with exclusive
concurrency. You can use File Out commands to specify the
concurrency with which the user-out and error-out files are to be
reserved,

ACCESS CONTROL/CONCURRENCY CONTROL RELATIONSHIP

In an environment that employs access control, users must
have certain minimum types of access privilege to obtain the
specific type of concurrency control they specify in Get File
commands or system service macrocalls.

Table 2-2 summarizes the relationship between access control
and concurrency control for disk files, disk directories, and
disk volumes. (Note that access control does not exist for other
types of devices.)

Table 2-2. Access Control/Concurrency Control Relationship

Object Desired Concurrency Minimum Access
Disk files Read Read
Read/write Read/write
Disk directories | Exclusive use List/modify
Nonexclusive use List
Disk volumes Read or read/write Modify access to root
directory

SHARED FILE PROTECTION (RECORD LOCKING)

Record locking is a File System option that provides
interference protection so that co-operating users can share and
update file data. For example, with record locking in effect
there can be many task groups running COBOL applications that
read, write, and update record data in the same file or same set
of files.

2-21 Cz03-01

User applications often employ standard data management
services to lock records as they access them. The purpose of the
locks is to prevent other users from simultaneously getting
access to these records. If other users could access the
records, they might get information that is only partially
updated or, as a result of some programming decision or error
condition, may soon be removed from the file. Also, if there
were no locks, two users could update the same records at the
same time, 1In this situation the second updater would
inadvertently remove any modifications made by the first updater.

For reasons such as these, record locking is a necessary
feature in most file sharing environments, Moreover, in many
file sharing environments it is important that more than one lock
be simultaneously maintained., For example, an "update"
transaction to a parts inventory file may involve multiple record
updates -- subtracting from some records and adding to others,
These multiple record locks may even involve access to multiple
files.

Note that record locking is not necessary to prevent a file
from being physically corrupted by several applications
performing multiple writes, Whether or not record locking is
present, the File System maintains indexes and record chains
properly so that the file structure is consistent. However,
without record locking there is no synchronization, and the file
data can be logically corrupted by two or more users who update
the same data records. Also, without record locking, data can be
viewed in a partially updated or inconsistent state.

Record Locking Implementation

The MOD 400 record locking option provides synchronization
mechanisms to lock out record data as it is accessed, thereby
making the data inaccessible to other applications until it is
explicitly unlocked via a cleanpoint call (a call to the ZCLEAN
utility in higher-level languages, or SCLPNT macrocall in
Assembly language).

The File System locks records by maintaining lists that
describe which file control intervals are locked, who has them
locked, and who is waiting for them to be unlocked. The File
System also provides a mechanism to recognize (and signal)
whenever a deadlock condition occurs. A typical example of a
deadlock is when one user owns (has locked) record A and wants to
lock record B while another user already has record B locked and
is waiting for record A to be unlocked.

2-22 Cz03-01

When record locking is in effect and records are accessed
through standard read-, write-, rewrite—-, and delete-record
calls, records are automatically locked for reading or writing
until explicitly unlocked through a cleanpoint call. Record
locking is performed on a shared-read/exclusive-write basis,
which allows many simultaneous readers but only one writer at a
time. This convention means that readers will wait until a
writer finishes (issues a cleanpoint call) and vice versa.

Normally a reader is determined at open time as a user who
has opened the file for read access only, while a writer is a
user who has opened the file for write or update access.
However, if a file has been designated as recoverable (see "File
Recovery" in Section 6), the determination of reader and writer
is made at each data access request. Read-record operations set
read locks; write-record, rewrite-record, and delete-record
operations set write locks.

NOTE

Since, with recoverable files, the type of lock is
determined dynamically at each access request
rather than once at open time, more readers can
access more file data at the same time.
Designating a file as recoverable will improve
performance if requests commonly involve reading
or searching through large amounts of data. Also,
if two or more readers attempt to update the same
data in a recoverable file, the data can be rolled
back and the program restarted,

Setting Record Locking

You can set record locking as a permanent file attribute when
you create the file or modify its attributes., You can set record
locking temporarily (only while the file is reserved) when you
reserve the file for processing.

To set record locking as a permanent file attribute, you
specify the -LOCK argument of the Create File or Modify File
commands. To set record locking temporarily, you specify the
-LOCK argument of the Get File command., To change from locking
to no locking, you specify the -NOLOCK argument in any of these
commands.

2-23 Cz03-01

A file having the record locking attribute can be reserved
without record locking through the -NOLOCK argument of the Get
File command. This is a special "dirty reader" option that lets
you read data even though the data may be locked or may be in the
process of being updated by some other user. The consistency and
integrity of any data read is not guaranteed. The "dirty reader"
option is available only on a logical file number (LFN) basis.
The associated LFN is read-only, ignores any existing record
locks, and cannot set any locks. (LFNs are internal file
identifiers associated with file pathnames at the command or
source program level; refer to "Logical File Numbers" in Section
5 for further information,)

A file with the record locking attribute can also be reserved
with the no-wait option through the -NOWAIT argument of the Get
File command. If the no-wait option is specified, the File
System returns an error status rather than causing you to wait
for a record to be unlocked. The no-wait option is available
only on an LFN basis.

Record Locking Considerations

When using record locking, you should be aware of the
following points:

e To efficiently use record locking, your applications must
be written to be transaction-oriented so that records are
not locked for a long period of time (for example, while
waiting for terminal I/0) and so that as few records as
possible are locked to satisfy the request,

® You should consider using other file integrity features
(described in Section 6), especially file recovery, which
allows data to be reset (rolled back) to the state it was
in at the start of the transaction. In many situations,
file recovery is a necessary feature to maintain data
integrity in the event of system failure, record deadlock,
application failure, terminal failure, and so forth.

@ To develop an efficient multiuser application that shares
and updates data in standard files, you must examine where
and how the application is accessing file data and design
the file structure carefully., 1In addition, you must pay
careful attention to error conditions involving data
recovery and program or transaction restarts.

e Applications that receive a deadlock notification must be
prepared to back out of the current "transaction" and free
up the locks they concurrrently own. If the file is
recoverable, this is done through the rollback call (a
call to the ZCROLL utility in higher-level languages; a
SROLBK macrocall in Assembly language).

2-24 Cz03-01

e When a record is locked, the entire control interval in
which the record is contained becomes locked. When
defining control interval size, you should consider not
only I/O transfer size and memory buffer usage, but also
the number of records that may be locked out.

e If the no-wait option is selected, central processor time
must be given up so that other users who have the record
locked get a chance to unlock it. You may need to add a
"suspend for time interval" function to applications using
the no-wait option to allow other task groups enough time
to finish their I/0 and unlock records (issue a cleanpoint
call).

e Closing a file, issuing a cleanpoint call, or issuing a
rollback call frees up all records locked by the task
group since the last cleanpoint. If a task group abort
occurs, the system issues a rollback call automatically as
part of the task group cleanup process. Likewise, if a
system failure occurs, the operator will issue the Recover
command after the system is restarted. When this command
is issued, the File System (in effect) performs a rollback
call for all task groups that were active at the time of
the failure.

Remote File Access

Remote file access is a File System facility that allows
applications to access remote data as if it were local. Remote
objects such as files, volumes, magnetic tapes, and printers
physically reside in some other computer node but, through remote
file access, appear to be attached to your system. The remote
file access facility captures references to remote objects and
interfaces with the appropriate networking software (DSA for
example) to get the desired function performed remotely.

When accessing data at another computer node, you may employ
any File System function through macrocalls or higher-level
language I/0O statements. No special naming conventions are
necessary. You supply the same kind of pathname you would to
access local data. The File System checks to see if the object
identified in the pathname is online (located on your node). If
the object is not online, the File System checks a remote file
catalog to see if the object is located at some other computer
node.

The Remote File Catalog command is used to manage catalog
information, This command allows a system operator or
administrator to define, update, and display information about
remote and local objects, nodes, and networking software.

2-25 Cz03-01

The Remote File Access command is used to initiate the remote
file access facility. This command allows the system operator or
administrator to start the facility, retrieve network status
information, and open and close connections between nodes.

REMOTE FILE CATALOG

Each node has its own remote file catalog to identify objects
it can reference through remote file access. The catalog
contains only those objects of interest to the node. A remote
file catalog contains information about both remote and local
objects.,

Remote Object Information

Remote object information consists of a list of remote
volumes and devices along with the node at which they are
currently located. The File System allows you to define your own
names for remote objects. For example, the line printer known as
LPT04 in NODE3 can be cataloged as LPT01l in NODEl. Any reference
to LPT01 in NODEl will result in a search of the catalog and
subsequent use of the printer through the remote file access
services, The catalog can be updated dynamically by an operator
or system administrator to configure new remote devices or to
reconfigure existing ones.

Local Object Information

Local object information consists of a list of your volumes
and devices that can be accessed from other nodes. This
information is used by the other nodes to verify the existence of
what is to them a remote object. It enables the File System to
automatically update the catalog when volumes are moved from one
system to another.

Volume Identification

Disk volumes can be exchanged or moved from one node to
another, The remote file catalog contains enough information to
uniquely identify a remote disk volume and to recognize when it
has moved to another node. This information consists of:

@ A Node of Birth (NOB) field identifying where the volume
was originally cataloged for remote access.

@ A Date of Birth (DOB) field identifying the date and time
the volume was originally cataloged for remote access.

e A Node of Residence (NOR) field identifying the node where
the volume is currently located (cataloged as a local
object).

® A Node Migration Number (NMN) field identifying the number
of times a volume has moved from one node to another.

2-26 Cz03-01

The remote file catalog maintains the relationship between a
local name, its current location (NOR), and the actual name.
When a volume is moved to another node, only its NOR is changed,
no change is made to the local name,

When a node connection is established, the two systems
involved exchange local object information. A node ignores any
volume information received that is out of date with respect to
what it already has in its catalog. If a node has been off-line
for some time, any old information it has will be discarded and
any new information it received will be factored in,

Establishing Remote File Catalogs

Establishing a remote file catalog is usually a one-time
operation. The steps involved in setting up the catalog are as
follows:

1. Create the catalog.

You create the catalog by using the Remote File Catalog
(RFC) command with the -CAT argument., This step is
performed only once.

2., Catalog a node for remote access.

You define the nodes with which you are to communicate by
using the RFC command with the -NODE argument. This step
is repeated once for each node.

3. Catalog a local object to be accessed remotely.

You define a local object that is to be accessed from
other nodes by using the RFC command followed by the
local pathname of the object. This step is repeated once
for each local object to be addressed remotely. Any
device to be cataloged must be configured on your

system. A disk volume to be cataloged must be mounted.

4., Enable the remote file access facility.

You invoke the remote file access facility by using the
Remote File Access (RFA) command with the -STARTUP
argument. This step configures and initializes the
facility for communicating between nodes. It must be
performed at the local node and each remote node whose
objects are to be cataloged.

5. Establish communication with a remote node.
You establish communication with the remote node by using
the RFA command with the -OPEN argument., This step must

also be performed at each remote node whose objects are
to be cataloged.

2-27 Cz03-01

6. Catalog a remote object to be accessed locally.

You define a remote object that is to be accessed from
your node by using the RFC command followed by the local
name to be used to reference the object and the name of
the node at which the object is located., 1If you wish to
define a local name that is different from the name of
the object as it is known at the remote node, you must
use the -ROBJ argument. This step is repeated once for
each remote object to be addressed locally. Note that
communication must have been established with the remote
node through the RFA command.

INITIATING REMOTE FILE ACCESS OPERATIONS

Once a remote file catalog is set up, only two steps must be
performed on a day-to-day basis before you can access remote
devices and data.

1. Enable the remote file access facility.

You and the nodes with which you are to communicate must
issue the RFA command with the -STARTUP argument.

2, Open the remote nodes.

You must issue the RFA command with the —OPEN argument
for each node with which you are to communicate. Those
nodes that are to access objects at your node must also
issue the RFA command with the -OPEN argument,

After you have enabled the remote access facility and opened
the remote nodes, you can perform any operation on the remote
data that you would perform on local data. Whether you use
MOD 400 commands or your own application programs, the data will
appear to be located at your node,

REMOTE FILE ACCESS SECURITY

The following paragraphs describe the way in which the remote
file access facility handles access control, record locking, and
data commitment.,

Access Control Lists

Access control lists define which users have access to data
and what kind of access they have. When files are accessed
remotely, the same level of file protection exists as when files
are accessed locally., If a file is protected by an access
control list, no local or remote user can access the file unless
the user is given permission through the access control list.

2-28 Cz03-01

Record Locking

Record locking prevents other users from simultaneously
getting access to records that you are accessing. In many
applications record locking involves multiple record locks on
multiple files and, in networking environments, may involve locks
to multiple files in multiple nodes.

A typical deadlock condition can occur if one user has locked
some records and is trying to lock others while another user has
these other records locked and is trying to lock the records
‘already locked by the first user., The File System on your
computer node knows about the record locks on local data files
and is able to detect deadlocks. Since the File System does not
know about record locks on remote data files, it prevents
deadlocks from occurring by using a time stamp algorithm.

Users are assigned time stamps when they start to access
remote data. The time stamps are passed to remote nodes by the
remote file access facility. At a remote node, a user may only
wait for records that are held by younger users (users whose time
stamp is later)., If the application attempts to lock a record
that is already locked by an older user (a user whose time stamp
is earlier), it receives a "deadlock has occurred" return
status. The application must then abort, backtrack, or restart,
If a record is held by a user who is local to that node, the
local user is always considered the younger.

Data Commitment

For purposes of data integrity, an application that accesses
and updates remote (and local) data may be structured in phases
known as commitment units. The end of a commitment unit is a
point at which the user is willing to commit changes to the data
base. This type of application is said to be transaction
oriented. It may complete successfully (commit) at a
program—-def ined commitment point or it may fail (abort), in which
case any updated data must be returned to its initial
pre-transaction state. To ensure reliability, the transaction
must either complete in its entirety or not complete at all.

In remote file access, data commitments are performed in two
phases: precommit and commit,

® Precommit - All data is recorded on disk with an indicator
to show that the data is in a precommitted state. This
step is done locally. Remote file access then sends
messages to precommit data at all remote nodes.

e Commit - Once messages have been received from all
affected remote nodes indicating that all data is in the
precommit state, local data is committed (unlocked and
made available to other users). Another round of messages
is then sent via the remote file access facility to commit
data in the remote nodes.

2-29 : Cz03-01

If a system or node failure occurs in any intermediate step,
there is enough information available so that, on restart, a
decision can be made to commit or recover the data. More
detailed information on file recovery is presented in Section 6.

Multivolume Disk Files

In most applications a disk file resides on a single volume.
However, there may be situations in which you want to extend a
file over more than one physical volume., The need for
multivolume files could arise from any of the following:

e You want an endless sequential file capability similar to
that available with magnetic tape.

® You want to define a single file that is too large to be
contained on one volume,

® You want to improve access time to a file by spreading the
file data over several volumes and/or separating the index
portion of an indexed file from the data portion and
placing the portions on separate volumes,

A multivolume file is treated as a collection of file
sections. A file section is that part of the file that is
contained on one volume. A file set is all of the sections
making up the multivolume file,

MULTIVOLUME SETS

A multivolume set is a disk file that resides on more than
one volume, A volume is identified as being part of a
multivolume set when the volume is created through the Create
Volume command.

Each multivolume set has a root volume (in which the set
begins) and a number of additional volumes. All volumes that are
part of the set are called members.

The name of a multivolume set is independent of the names of
the volumes it contains. A volume is established as a member of
a set when the set name and a sequential member number are
specified at volume creation, The root volume is always member
number 1.

There are two types of multivolume sets: online and serial.
Online multivolume sets are used for all nonsequential
multivolume files. They may also be used for sequential
mutivolume files. Serial multivolume sets are an alternative for
large sequential files, They are also used for files that
require an endless sequential capability similar to that of
magnetic tape.

2-30 Cz03-01

The types of multivolume sets and files are described in
detail below.

Online Multivolume Set

A volume is designated as part of an online multivolume set
at volume creation. An online multivolume set has the following
characteristics:

@ All members of the set must be mounted and available while
the set is in use,

e Member volumes, other than the root volume, can be used
independently of other members in the set to contain
single-volume files and directories,

Online Multivolume File

A file is designated an online multivolume file when it is
created under a directory in the root volume of an online
multivolume set. An online multivolume file has the following
characteristics:

® Can have any UFAS file organization.
@ Can be located by any type of pathname.
@ Can skip set members when continuing to another volume.

Figure 2-4 illustrates the combination of files and volumes
used by a sample online multivolume set. Multivolume files
FILEA, FILEB, and FILEC must begin on VOLl. FILEX, FILEY, and
FILEZ are single-volume files because they do not begin on VOLl.
The pathnames used to access the files are shown at the bottom of
the figure.

voL1 VOL2 VOL3 VvOL4
1
|
—
[Fies]
(s]

ROOT VOLUMF MEMBER MEMBER MEMBER

~VOL1>FILEA
~VOL1>FILEB
~VOL1>FILEC
~VOL3>FILEX
~VOL4>FILEY
~VOL4 >FILEZ

86-020
Figure 2-4, Example of Online Multivolume Files

2-31 Cz03-01

Serial Multivolume Set

A volume is designated as part of a serial multivolume set at
volume creation. A serial multivolume set has the following
characteristics:

® No member of the set need be mounted until the data on it
is required for processing.

e Any member of the set, including the root volume, can be
used independently of other members of the set to contain
single-volume files and directories,

Serial Multivolume File

A file is designated as a serial multivolume file when it is
created in the root directory of a volume in a serial multivolume
set. A serial multivolume file has the following
characteristics:

® Must be a UFAS sequential file,

e Must be cataloged in the root directory of the volume on
which it starts. More than one serial multivolume file
can belong to a set, and each such file can begin on a
different volume if desired.

@ Must be located through a pathname of the form
“volid>filename.

@ Must continue serially from one volume to the next.

Figure 2-5 illustrates the combination of files and volumes
used in a sample serial multivolume set., Serial multivolume file
A begins in VOL1l. Serial multivolume file B begins in VOL2,

Both continue in other volumes of the set., Files C, D, and E are
single-volume files., The pathnames by which the files are
located are shown at the bottom of the figure.

2=-32 Cz03-01

voL1 VOL2 VOL3 voL4
Pt
; a 5]
FIRST VOLUME SECOND THIRD FOURTH
OF THE SET MEMBER MEMBER MEMBER
" VOL1>A
VOoL2>B
" VOoL3>C
" VOL4>D
" VOL4>E

86-026

Figure 2-5, Example of Serial Multivolume Files

Disk File Buffering

A buffer is a memory storage area used to compensate for a
difference in the rate of data flow, or time of occurrence of
events, during transmission of data from one device to another.
Buffering is the process of allocating and scheduling the use of
buffers. In some applications, overlap of input operations and
processing can be achieved by anticipatory buffering, where the
next block of data is read into memory before it is needed. The
program can then process records from block n while block n+l is
being read into memory.

FILE ACCESS LEVELS

Disk files can be processed at either block or record level.
In block level access, data is transferred directly between the
file and a buffer in your program. Your program must perform all
buffer management operations. 1In record level access, the system
assigns disk files to buffer pools when your program opens the
files. The system buffering facilities are used to perform all
buffer management operations.

BUFFER POOLS

When a file is opened for read, write, rewrite, or delete
operations, the File System assigns the file to a particular
buffer pool. A buffer pool is a collection of buffers that
provides a method of conserving memory for disk file access.
Buffer pools are designed to:

2-33 , Cz03-01

e Reduce the amount of memory required for buffers by all
users.

® Reduce the number of I/O operations in a random access
environment.,

e Provide more flexibility for shared file applications.

All buffers in a pool are the same size. Any number of files
with matching control interval sizes can be assigned to the same
buffer pool. A particular file, however, can be assigned to only
one pool.

Each buffer in a buffer pool can store a disk control
interval. When an application program issues a read instruction
and the desired record is not in any buffer, the next empty
buffer is filled with the control interval containing the
record. When all buffers are filled, an active buffer is
selected for the next different control interval according to a
least-recent-usage algorithm.

In addition to conserving memory when disk files are
accessed, buffers eliminate the need for each user to define
private buffer areas. One or more system-wide buffer pools
should be created at system startup (through a startup EC file;
see Section 3). Users who have special buffering requirements
can create their own buffer pools for files they reserve
exclusively.

Types of Buffer Pools

Each buffer pool is created as either a public or a private
buffer pool, and can be considered file-specific or general.
Buffer pools are created by the Create Buffer Pool command and
deleted by the Delete Buffer Pool command. When creating a
buffer pool, you specify the number of buffers it is to contain,
the buffer size, and (optionally) the name of the buffer pool.

e Public buffer pools - Public buffer pools are those
created by the operator or the system startup EC file,
Public buffer pools reside in system memory and are
available to all files and task groups. A disk file is
assigned to a public pool if its control interval size
(specified in the command that creates the file) matches
the pool's buffer size,

In many environments, three or four public buffer pools
corresponding to three or four common file control
interval sizes are sufficient for all performance and
buffering needs.

2-34 Cz03-01

If the system volume is associated with the disk cache
processor, heavily used directories, as well as files that
are read sequentially, are likely to be resident in the
disk cache buffer. Buffer pools for these directories and
files may not be needed.

e Private buffer pools - Private buffer pools can be created
by each user. Private buffer pools reside in the task
group's memory space and are available only for disk files
reserved exclusively by that task group. A disk file is
assigned to a private pool if the file is reserved for
exclusive use and its control interval size (specified in
the command that creates the file) matches the pool's
buffer size., Private buffer pools should be created only
if necessary to meet specific buffering needs. Public
buffer pools should be sufficient in most cases.

@ File-specific buffer pools - When you reserve a disk file
with the Get File command, you can specify the number