
(

'·f

DPS6
GCOS 6 MOD 400
APPLICATION
DEVELOPER'S
GUIDE

DPS6
GCOS 6 MOD 400 APPLICATION

DEVELOPER'S GUIDE
ADDENDUMB

SUBJECT

Additions and Changes to the Manual

SPECIAL INSTRUCTIONS

This is the second addendum to CZ15-02, dated March 1986. Insert the attached
pages into the manual according to the collating instructions on the back of this sheet.
Change bars in the margin indicate new or changed information; asterisks indicate
deletions.

Note:
Insert this cover sheet behind the front cover to indicate the updating of the
document with Addendum B.

SOFTWARESUPPORTED

This manual supports Release 4.0 through Update 02 of the MOD 400 Executive. For
later versions of the executive that this manual may support, see the ONE PLUS
Guide to Software Documentation (Order No. HEOl).

ORDER NUMBER

CZ15-02B

46664
0287
Printed in U.S.A

March 1987

Honeywell

COLLATING INSTRUCTIONS

To update this manual, remove old pages and insert new pages as follows:

Remove

V, vi
2-5 through 2-10
2-11, blank
6-11 through 6-14
6-33, 6-34
6-81, 6-82
9-5, 9-6
h·l, blank

Insert

v, vi
2-5 through 2-10

6-11through6-14
6-33, 6-34
6-81, 6-82
9-5, 9-6
h-1, blank

USER COMMENTS FORMS are included at the back of this manuaL These forms are tobe used to record
any corrections, changes, or additions that will make this manual more usefuL

Honeywell disclaim• the implied warranties of merehantability and fitnes• for a partieular
purpo11e and make• no expres• warrantiea exeept a• may be stated In lt& wrltten agreement
with and for it• eustomer.
In no event i• Honeywell liable to anyone for any indireet, speeial or eonsequential damagea.
The Information and speeifieation• in thi• doeument are subjeet to ehange without notiee.
Comult your Honeywell Marketing Representative for produet or serviee availabillty.

©Honeywell lnformation Systems lnc., 1987 File No.: 1Rl3

----·----~---------------------

03/87
CZ15-02B

(DPS6
GCOS 6 MOD 400 APPLICATION

DEVELOPER'S GUIDE
ADDENDUMA

SUBJECT

Additions and Changes to the Manual

SPECIAL INSTRUCTIONS

This is the first addendum to CZ15-02, dated March 1986. Insert the attached pages
into the manual according to the collating instructions on the back of this sheet
Change bars in the margin indicate new or changed information; asterisks indicate
deletions; except in Sections 6, 9, and 10 which have been extensively revised and
change indicators have been omitted.

Note:
Insert this cover sheet behind the front cover to indicate the updating of the
document with Addendum A.

SOFTWARE SUPPORTED

This manual supports Release 4.0 of the MOD 400 Executive.

ORDER NUMBER

CZ15-02A

45989
0986
Printed in U.S.A.

September 1986

Honeywell

COLLATINGINSTRUCTIONS

To update this manual, remove old pages and insert new pages as follows:

Remove

v through viii
ix, blank
xi through xxiv
XXV, blank
2-3 through 2-6
3-11, 3-12
3-15, 3-16
6-1 through 6-104
6-105, blank
7-1, 7~2
7-9 through 7-12
7-19, 7-20
7-25 through 7-28
8-1 through 8-14
8-23, 8-24
8-33, 8-34
8-39, 8-40
8-45, 8-46
8-57 through 8-62

9-1 through 9-56
9-57, blank
10-1 through 10-40
12-1 through 12-28

i-1 through i-14
i-15, blank

Insert

v through xviii
2-3 through 2-6

3-11, 3-12
3-15, 3-16 3-12.1, blank
6-1 through 6-104
6-105, blank
,., "f ,.,, n
1-.L, 1-1:.

7-9 through 7-12
7-19, 7-20
7-25 through 7-26
8-1 through 8-14
8-23, 8-24
8-33, 8-34
8-39, 8-40
8-45, 8-46
8-56.1, 8-56.2
8-57 through 8-62
9-1 through 9-34
10-1 through 10-48

h-1
i-1 through 1-12
i-13, blank

USER COMMENTS FORMS are included at the back of this manual. These forms are tobe used to record
any corrections, changes, or additions that will make this manual more useful.

Honeywell disclaims the implied warranties of merchantability and titness for a particular
purpose and makes no express warranties except as may be stated in its written agreement
with and for its customer.
In no event is Honeywell liable to anyone for any indirect, special or consequential damages.
The information and specilications in this document are subject to change without notice.
ConsuJt your Honeywell Marketing Representative for product or service availabHity.

©Honeywell Information Systems Inc., 1986 File No.: 1R13
09/86
CZ15-02A

(.

'\ (-,,

SUBJECT

DPS6
GCOS 6 MOD 400

APPLICATION DEVELOPER'S GUIDE

MOD 400 System Usage for Application Programmers

SPECIAL INSTRUCTIONS

This manual supersedes the DPS 6 GCOS 6 MOD 400 Application Developer's Guide,
dated July 1984. Since the manual has been extensively revised and reorganized,
change bars are not used.

SOFTWARE SUPPORTED

This manual supports Release 4;0 of the MOD 400 Executive.

ORDER NUMBER

CZ15-02 March 1986

Honeywell

"·-----------------

PREFACE

This manual is written for the applications programmer. Its
purpose is to provide the information needed to write and run
application programs using the GCOS 6 MOD 400 operating system.

The reader should have a basic knowledge of application
development and processing as well as some programming experience
in COBOL, BASIC, or FORTRAN.

The major topics presented in this manual are

• Terminal startup and user access procedures
• File management
• Screen Editor conventions, directives, and user procedures
• Line Editor conventions, directives, and user procedures
• Compile, link, and execute procedures
• Program debug utility user procedures
• Patch utility user pröcedures
• Memory dump interpretation· procedures.

USER COMMENTS FORMS are included at the back of this manual. These forms are tobe used to record
any corrections, changes, or additions that will make this manual more useful

Honeywell disclaims the implied warranties of merchantability and fitness for a particular
purpose and makes no express warranties except as may be stated in its written agreement
wlth and for its customer.
In no event is Honeywell liable to anyone for any indirect, special or consequential damages.
The Information and specifications in this document are subject to change without notice.
Consult your Honeywell Marketing Representative for product or service availability.

©Honeywell Information Systems lnc., 1986 File No.: 1813, 1Rl3 CZ15-02

(

After reading this manual, the applications programmer should
be familiar with the MOD 400 system services and be able to
write, debug, and run application programs.

The notation conventions used in this manual follow. The
f irst set of conventions applies to directive syntax as a whole;
the second set applies to flow chart symbols; the third set
applies to heading hierarchies; and the fourth set applies to
user keyins.

Syntax Convention

UPPERCASE CHARACTERS

lowercase characters

Brackets

Braces

•

Meanin_g

Reserved keyword or symbol. Enter
as shown.

Variable f ield. R.eplace by a user­
supplied value.

Include none or one of the enclosed
options.

Include one of the enclosed
options •

Process--represents perf ormance of
a computer operation.

Online storage--represents
information stored on diskette,
cartridge disk, or storage module.

Printed card--represents card
input.

Document--represents printed
output.

Manual input--terminal input.

Mandatory--indicates that desig­
nated f low of information, type of
processing, or output is required.

iii CZlS-02

-- -----------·~--~------

, Heading J!!.~f~!EEY

The following conventions are used to indicate the relative
levels of topic headings used in this manual.

Level 1 (highest)
Level 2
Level 3
Level 4
Level 5

ALL CAPITALS, UNDERLINED
fnit1~]:::cäefEä1s..1_ unaerii.!l~a
ALL CAPITALS, NOT UNDERLINED
Initial Capitals, Not Underlined

Initial (lfil2i ta.J..§...t„. Und~!~S.2 . .L~4...J..!_nden!~El

Indicates user input to the system.

iv CZlS-02

(

(

CONTENTS

SECTION 1 INTRODUCT ION • ••••••••••••••••••••••••••••••••••

System Facilities •••
Application Development Components ••••.••••••••••••••••••••

SECTION 2 SYSTEM ACCESS••••••••••••••••••••••••••••••••••

User Access Procedures ••••••••••••••••••••••••••••••••••••
Connecting the Terminal to the Central Processor ••••••••••

Direct-Connect Terminal •••••••••••••••••••••••••••••••••
Dialup Terminal •••

Connecting a User to the Executive ••••••••••••••••••••••••
Login Terminal ••

Manual Login Terminal •••••••••••••••••••••••••••••••••
Banner Login ••
Forms Login •••

Direct Login Terminal •••••••••••••••••••••••••••••••••
Non-Login Terminal ••••••••••••••••••••••••••••••••••••••

Procedures and Conventions after Access •••••••••••••••••••
Sending Messages to the Operator ••••••••••••••••••••••••
Interrupting A Task •••••••••••••••••••••••••••••••••••••

SECTION 3 FILE CONVENTIONS •••••••••••••••••••••••••••••••

Overv iew • •••.•••••••••••••••••••••••••••••.•••••.•••••••••
Disk File Conventions •••••••••••••••••••••••••••••••••••••

Directories •••
Root Directory ••
System Root Directory •••••••••••••••••••••••••••••••••
User Root Directories •••••••••••••••••••••••••••••••••
Intermediate Directories ••••••••••••••••••••••••••••••
Working Directory •••••••••••••••••••••••••••••••••••••
Locations of Disk Directories and Files •••••••••••••••

Naming Conventions ••••••••••••••••••••••••••••••••••••••
Uniqueness of Names •••••••••••••••••••••••••••••••••••
Pa thname • •••.••••.•..•••••.••••••••••••••••••.••••••••

Symbols Used in Pathnames •••••••••••••••••••••••••••
Absolute and Relative Pathnames •••••••••••••••••••••

Page

1-1

1-1
1-2

2-1

2-1
2-1
2-2
2-2
2-2
2-2
2-3
2-3
2-4
2-6
2-6
2-8
2-8
2-8

3-1

3-1
3-2
3-2
3-3
3-3
3-3
3-3
3-4
3 ... 5
3-5
3-6
3-6
3-6
3-8

V
03/87
CZ15-02B

*

1

CONTENTS

Magnetic Tape File Conventions ••••••••••••••••••••••••••••
9-Track Magnetic Tape File Organization •••••••••••••••••
Magnetic Tape File and Volume Names •••••••••••••••••••••
Magnetic Tape Device Pathname Construction ••••••••••••••

Unlabeled Tape Pathnames ••••••••••••••••••••••••••••••
Labeled Tape Pathnames ••••••••••••••••••••••••••••••••

Automatie Tape Volume Recognition •••••••••••••••••••••••
Unit-Record Device File Conventions ••.•••.••••••••••••••••
Working with Files ••
Command Processor •••

Standard I/O Files ••••••••••••••••••••••••••••••••••••••
Command Level • ••

Controlling Your Operating Environment ••••••••••••••••••••
Volume Control ..•.•.•••...••••.•.•..•.•••.•..........••.

Creating Volumes •........•.•...•.•.•••.••..•....•.•...
Renaming Disk Volumes •••••••••••••••••••••••••••••••••

Directory Control •••••••••••••••••••••••••••••••••••••••
Changing Your Working Directory •••••••••••••••••••••••
Creating Directories ••••••••••••••••••••••••••••••••••
Renaming Directories ••••••••••••••••••••••••••••••••••
Deleting Directories •••••••••••••••••••••••• ~·········

File Control..................... ••••••••••• • •••
Creating Files ••
Renaming Files ..•••...•.•...••..•••.•.••.•..••........
Deleting Files ••
Copying Files ...•..........................•........•.
Locating Files ••
Listing Files and Directories •••••••••••••••••••••••••

Interrupting Execution ••••••••••••••••••••••••••••••••••
Controlling Output ••••••••••••••••••••••••••••••••••••••

Directing Output to a File ••••••••••••••••••••••••••••
Directing Output to a Printer •••••••••••••••••••••••••
Redirecting Output to Your Terminal •••••••••••••••••••

Printing Control ••
Printing Files at Your Terminal •••••••••••••••••••••••
Deferred Printing •••••••••••••••••••••••••••••••••••••

Program Execution •••••••••••••••••••••••••••••••••••••••
Reserving Files or Devices ••••••••••••••••••••••••••••••
Communicating With Other Users ••••••••••••••••••••••••••

Page

3-11
3-11
3-11
3-12
3-12
3-12
3-12.1
~ _, , ,,, - ""
3-13
3-13
3-13
3-14
3-14
3-15
3-15
3-16
3-16
3-16
3-17
3-19
3-19
3-19
3-19
3-21
3-21
3-21
3-22
3-23
3-23
3-24
3-24
3-24
3-25
3-25
3-25
3-25
3-26
3-28
3-28

SECTION 4 SCREEN EDITOR•••••••••••••••••••••••••••••••••• 4-1

Overview ..•.........••.•..•.•..•.•....•.....•..•...•.•••..
Screen Editor Processing ••••••••••••••••••••••••••••••••
Screen Editor Suffix Conventions ••••••••••••••••••••••••
Loading the Screen Editor •••••••••••••••••••••••••••••••••

Description of the Screen •••••••••••••••••••••••••••••••

4-1
4-2
4-3
4-3
4-5

vi
09/86
CZ15-02A

/

(CONTENTS

Status Region •••
Text Region •.•.•..•.•....•............•........•...•..
Directive Region ••••••••••••••••••••••••••••••••••••••

Creating a Source Unit ••••••••••••••••••••••••••••••••••
Changing an Existing Source Unit ••••••••••••••••••••••••
Interrupting Screen Editor Processing •••••••••••••••••••

Entering Screen Editor Directives •••••••••••••••••••••••••
Screen Editor Directive Format Conventions ••••••••••••••

Designating Lines •••••••• ~····························
Block Description •••.•.•.•.•••.••.••.•••..•••••••...••
Special Characters ••••••••••••••••••••••••••••••••••••

Summary of Screen Editor Directives •••••••••••••••••••••
Screen Editor Directives ••••••••••••••••••••••••••••••••••

BOTTOM LINE (BOTTOM LINE OR BL) •••••••••••••••••••••••••
CHANGE (CHANGE OR C) ••••••••••••••••••••••••••••••••••••
CHANGE ALL (CHANGE ALL OR CA)•••••••••••••••••••••••••••
CHANGE-BLOCK (CHANGE BLOCK OR CB) •••••••••••••••••••••••
DISPLAY ••••••••••••• 7
LANGUAGE TYPE (LANGUAGE TYPE OR LT) •••••••••••••••••••••
LEFT MARGIN (LEFT MARGIN OR LM) •••••••••••••••••••••••••
LOWER CASE (LOWER-CASE OR LC) •••••••••••••••••••••••••••
QUIT (QUIT OR Q) •. :••••••••••••••••••••••••••••••••••••••
READ .(READ OR R) ••
RIGHT MARGIN (RIGHT MARGIN OR RM) •••••••••••••••••••••••
SCROLL CHANGE (SCROLL CHANGE OR SC)•••••••••••••••••••••
SEARCH-(SEARCH OR S) .: ••••••••••••••••••••••••••••••••••
SEARCH BACKWARD (SEARCH BACKWARD OR SB)•••••••••••••••••
SEARCH-FORWARD (SEARCH FORWARD OR SF) •••••••••••••••••••
TOP LINE (TOP LINE OR TL) ••• ·'· ••••••••••••••••••••••••••
TRAILING BLANKS (TRAILING BLANKS OR TB) •••••••••••••••••
UPPER CASE (UPPER CASE OR-UC) •••••••••••••••••••••••••••
VERSION (VERSION OR V)••••••••••••••••••••••••••••••••••
WINDOW WIDTH (WINDOW WIDTH OR WW) •••••••••••••••••••••••
WRITE (WRITE OR W) •• : •••••••••••••••••••••••••••••••••• ~
WRITE BLOCK (WRITE BLOCK OR WB)•••••••••••••••••••••••••

Functioii Keys . ..•..• : ••.....•..•......•..•........••••.••.
APPEND LINE • ••
BACKWARD WORD • ••
13I,,()C::I<. •••
COPY BLOCK • ••.•
DELETE BLOCK • •••
ERASE BLOCK • ••
E'()~l-11\~J) "'1'()Jt1) ••
l40\7E! ~LC>C:IC • •••
WI NDOW DOWN .• •••••••••••••••••••••••••••• • •••••••••••••••
WINDOW LEFT • ••
WINDOW RIGHT ••••••••••• .

Page

4-6
4-6
4-6
4-7
4-7
4-8
4-9
4-9
4-10
4-10
4-13
4-14
4-·15
4-16
4-17
4-19
4-21
4-23
4-24
4-25
4-26
4-27
4-28
4-29
4-30
4-31
4-33
4-35
4-37
4-38
4-39
4-40
4-41
4-42
4-44
4-46
4-49
4-50
4-51
4-53
4-55
4-56
4-57
4-58
4-60
4-61
4-62

vii
09/86
CZ15-02A

CONTENTS

WINDOW UP •••
Labeled Keys • •••

BACKSPACE •••• .
CARRIAGE RETURN • ••
CLEAR/RESET • ••
CTL CLR/T.AB/ SET • ••
CTRL TAB ••••
CURSOR DOWN

.
('1.-) . ~ ~ ~ ~ ~ ~ ~ ~

CURSOR LEFT (-E--) ••
CURSOR RIGHT (~) •••••••••••••••••••••••••••••••••••••••
CURSOR UP (t) .
DEL CHAR ••
DEL LINE •••••

.
ERASE EOL • ••
HOME ••••••
INS CHAR ••
INS LINE ••
LINE FEED.

.
TAB •••••• .
TAB
TAB

CLR ••
SET ••

.

Page

4-63
4-64
4-67
4-68
4-69
4-70
4-71
4-72
4-73
4-74
4-75
4-76
4-77
4-78
4-79
4-80
4-82
4-83
4-84
4-85
4-86

SEtTION 5 LINE EDITOR •••••••••••••••••••••••••••••••••••• 5-1

Overview•.............•...
Line Editor Suffix Conventions ••••••••••••••••••••••••••••
Line Editor Directive Format Conventions ••••••••••••••••••

Methods of Specifying Addresses •••••••••••••••••••••••••
Line Number as

Position of a
Address •••••••••••• an

Line Relative to the
. . . Designating a

Designating the
"Current" Line as an Addr es s • •••••••••••••••••••••••••
Designating Contents of Line as an Address ••••••••••••
Compound Addresses •.•••...•••••••••.••.••••..•••...•••

Referencing a Series of L in es
Loading the Line Editor •••••••••••••••••••••••••••••••••

Summary of Line Editor Directives and Escape Sequences ••••
Creating a Source Unit •.•••..•••••.••.•.••••••..•••••.••••
Changing an Existing Source Unit ••••••••••••••••••••••••••
Input Mode Description and Directives •••••••••••••••••••••

APPEND (A) ••
CHANGE
INSERT

Edit Mode
DELETE

(c) ••
(I) • • • • • • • • • • • • • . • . • . • • • • • • • •
Description and Directives ••••••••••••••••••••••

{D) •
PRINT (P) •••
QUIT (Q OR !Q) .
READ (R) ••

5-1
5-3
5-3
5-5
5-6

5-6
5-7
5-11
5-12
5-14
5-16
5-21
5-22
5-22
5-24
5-27
5-30
5-33
5-35
5-37
5-40
5-41

viii
09/86
CZ15-02A

(

(_/
'·-.

CONTENTS

SUBSTITUTE (S OR ! S) •
WRITE (W) •••

Advanced Functions of
General Advanced Line

the Line Editor •••••••••••••••••••••
Editor Directives •••••••••••••••••••

EXCLUDE (V) •••
EXECUTE (E) •
GLOBAL (G) ••
LINE FEED (L OR 1 L) •••••••••••••••••••••••••••••••••••••
LOWERCA~E (U) •
NEW CURRENT LINE (N} ••••••••••••••••••••••••••••••••••••
PRINT LINE NUMBER (=/!P) ••••••••••••••••••••••••••••••••
PRINT WITH LINE NUMBER (!P}•.....

(! U) • UPPERCASE
COMMENT (") .

Auxiliary Buffer Directives and Escape Sequences ••••••••••
ACCEPT SINGLE LINE FROM A TERMINAL (1 R) •••••••••••••••••
BUFFER STATUS
CHANGE BUFFER

(X) • • • • • • • • • •• „ • •
(Bx) ••••••••••••••••••••••••••••••••••••••

CHANGE ORIGIN OF TEXT DURING EDIT MODE (!B) •••••••••••••
CHANGE ORIGIN OF TEXT DURING INPUT MODE (!B) ••••••••••••
COPY (K) ••
COPY-APPEND (!K} .
DESTROY (AB) ••
MOVE (M) ••
MOVE-APPEND (! M) •

Line Editor Debugging Directives ••••••••••••••••••••••••••
HEXADECIMAL DUMP (ZDUMP) ••••••••••••••••••••••••••••••••
ZREGEXP • ••
ZTRACE • •••

Line Editor Programming Directives ••••••••••••••••••••••••
ADDRESS PREFIX (?) ••••••••••••••••••••••••••••••••••••••
GO TO (>) •••
IF DATA
IF EMPTY

Ci) •••
(At) e e e e e e e e e e e e • e. e

IF LINE (adr#) ••
IF NOT LINE (adr •t) ••••••••••••••••••••••••••••••••••••
IF RANGE (addr (s) #) ••••••••••••••••••••••••••••••••••••
IF NOT RANGE (adrs •t) .
LABEL (:) .
~~~C:li (*) •••••••••••••••••••••••••••••••••••••••••••••• 
SEARCH NOT ( "* ) ••••••••••••••••••••••••••••••••••••••••• 
TYPE (T) •••••••••••••••••••••••••••••••••••••••••••••••• 

Programming Considerations ••••••••••••••••••••••••• ~······ 
Line Editor Procedures ••••••••••••••••••••••••••••• : •••••• 

Initiating a Line Editor Session •••••••••••••••••••••••• 
Creating Work Files ••••••••••••••••••••••••••••••••••• 
Line Editor Modes • •••••••••••••••••••••••••••••••••• • • 

Page 

5-44 
5-48 
5-50 
5-50 
5-51 
5.:..53 
5-54 
5-56 
5-57 
5-58 
5-59 
5-61 
5-63 
5-64 
5-65 
5-67 
5-68 
5-70 
5-71 
5-74 
5-76 
5-78 
5-80 
5-81 
5-83 
5-85 
5-86 
5-88 
5-89 
5-92 
5-93 
5-95 
5-97 
5-98 
5-99 
5-100 
5-101 
5-102 
5-103 
5-104 
5-105 
5-106 
5-107 
5-107 
5-108 
5-108 
5-109 

ix 
09/86 
CZ15-02A 



CONTENTS 

Quitting the Line Editor •••••••••••••••••••••••••••••• 
Creating a File ••••••••••••••••••••••••••••••••••••••••• 
Addressing Techniques ••••••••••••••••••••••••••••••••••• 

Addressing a Single Line •••••••••••••••••••••••••••••• 
Addressing Multiple Lines ••••••••••••••••••••••••••••• 
Printing Line Numbers ••••••••••••••••••••••••••••••••• 
Use of Period (.) for Current Line •••••••••••••••••••• 
Character String Addressing••••••••••••••••••a•••••••• 

Selective Specification of Character Strings •••••••• 
Specifying Initial Character String ••••••••••••••••• 
Specifying a Character String Ending a Line ••••••••• 
Specifying a Single Character Substitution in 
Search Strings •••••••••••••••••••••••••••••••••••••• 
Use of Escape Characters •••••••••••••••••••••••••••• 

Saving File Contents •••••••••••••••••••••••••••••••••••• 
Reading File Contents ••••••••••••••••••••••••••••••••••• 
Deleting Lines in Current Buffer •••••••••••••••••••••••• 

Deleting Multiple Lines ••••••••••••••••••••••••••••••• 
Deleting All Lines in Current Buffer •••••••••••••••••• 
Avoiding Post-Deletion Problems ••••••••••••••••••••••• 
Adding and Deleting Lines ••••••••••••••••••••••••••••• 

Changing Line Contents •••••••••••••••••••••••••••••••••• 
Changing Character Strings Within a Line •••••••••••••• 
Changing All Occurrences of a String •••••••••••••••••• 
Substituting Initial and Concluding Strings ••••••••••• 
Deleting Character Strings •••••••••••••••••••••••••••• 
Appending a New String to an Existing String •••••••••• 
Adding Lines to the Current Buffer •••••••••••••••••••• 

Inserting Lines ••••••••••••••••••••••••••••••••••••• 
Appe-nding Lines .••••..•.•.••.••..••..••.••.••..•••.• 

Global Directives ••••••••••••••••••••••••••••••••••••••• 
Global Delete ••••••••••••••••••••••••••••••••••••••••• 
Global Print •••••••••••••••••••••••••••••••••••••••••• 

Current and Auxiliary Buffers ••••••••••••••••••••••••••• 
Repeating Lines in a File ••••••••••••••••••••••••••••• 
Moving Lines in a File •••••••••••••••••••••••••••••••• 
Using Existing Files •••••••••••••••••••••••••••••••••• 
Buffer Status ......................•••............•... 
Saving Modified Buffer Contents ••••••••••••••••••••••• 

Using System Commands in the Editor ••••••••••••••••••••• 
Writing to Line Printer ••••••••••••••••••••••••••••••• 
Date and Time ••••••••••••••••••••••••••••••••••••••••• 
Important Considerations •••••••••••••••••••••••••••••• 

Page 

5-109 
5-110 
5--111 
5-111 
5-112 
5-112 
5-113 
5-113 
5-114 
5-114 
5-114 

5-115 
5-115 
5-116 
5-117 
5-118 
5-118 
5-118 
5-119 
5-120 
5-120 
5-120 
5-121 
5-121 
5-122 
5-123 
5-123 
5-123 
5-124 
5-124 
5-124 
5-125 
5-125 
5-126 
5-127 
5-128 
5-129 
5-130 
5-130 
5-130 
5-131 
5-132 

SECTION 6 LINKER. • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 6-1 

Linker Functions •••••••••••••••••••••••••••••••••••••••••• 6-1 

X 
09/86 
CZ15-02A 



CONTENTS 

Linker Directive Categories ••••••••••••••••••••••••••••••• 
Specifying Object Unit(s) tobe Linked •• . . . . . . . . . . . . . 
Specifying Location(s) of Object Unit(s) tobe Linked ••• 
Creating a Root and Optional Overlay(s) ••••••••••••••••• 
Producing Link Map(s) ••••••••••••••••••••••••••••••••••• 
Defining External Symbols ••••••••••••••••••••••• ~ ••••••• 
Protecting or Purging Symbol(s) ••••••••••••••••••••••••• 
Reloading After System Failure •••••••••••••••••••••••••• 
Controll~ng the Directive File . ........................ . 
Terminating the Linker •••••••••••••••••••••••••••••••••• 

Linker •... .•....•..•.................••.•..... Loading the 
Entering Linker 
Setting Access in 

Directives •••••••••••••••• ~··············· 
and FSEG Directives ••• the Linker's SEG 

BMMU and EMMU Segments ••••••••••••••• Setting Access f or 
Setting Access f or VMMU Segments •••••••••• . . . . . . . . . . . . . . 

Linker Directives ••••••••••••••••••••••••••••••••••••••••• 
BASE (or BE) •••• 
CALL CANCEL (CC) 
COMMON (or COMM) 

. . . . . . . . . . . . . . . . . . . . . ..•...•...•...•.•• . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
CPROT (or 
CPURGE (or 
EDEF (or 
FLOATB6 
FLOVLY (or 

CT) ._ •••••••••••••••••••••••••••••••••••••••••• 
CE) •••••• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 

EF) •••••••••••••••••••••••••••••••••••••••••••• 
F6) ••••••••••••••••••••••••••••••••••••••••• (or 

FY) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
FSEG (or FG) •••••••••••••••••••••••••••••••••••••••••••• 
GSHARE (or GE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
IN • ••••••••• • • • 

(or IE) 
I2) •• 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
• • • • • • e • • • • • • • • e • a • • • • • • • • • • • • • • • • • • • • • • • 

INCLUDE 
INIT2 (or 
IST (or IT) •••••••••••• e •••••••••••••••••••••••••••••••• 

LDEF (or LF) •••••••••••••••••••••••••••••••••••••••••••• 
LIB (or LIBl) ••••••••••••••••••••••••••••••••••••••••••• 
LIB 2, 3, 4 •• . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 
LINK (or 
LINKN (or 

I..I<) •••••••••••••••••••••••••••••••••••••••••••• 
~~) ..........................•................ 

LINKnn • ••••••••••••••••••••••••••••••••••••••••••••••••• 
LINKO (or .LO) ••••••••••••••••••••••••••••••••••••••••••• 
L~~ • ••• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
MAP, MAPD and MAPU (or MP, MD, and MU) ••••••••••• • • • • • • • 
NOTCMD (or ND) ••••• . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
ONECPU (or ()tJ) •••••••••••••••••••••••••••••••••••••••••• 
OVERLAYTABLE (or OE or OT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .• . . . . . . . . . . . . . . . . . . . . . . . . . . . OVLY (or OY) • 
PAGEPOOL (or 
PROTECT (PROT or 

PL) ••••••• . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
PSU ••• 
PURGE 

PT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
(or PE) ••••••••••••••••••••••••••••••••••••••••• 

Page 

6-3 
6-3 
6-3 
6-4 
6-5 
6-6 
6-6 
6-6 
6-6 
6-7 
6-7 
6-lo 
6-11 
6-11 
6-11 
6-13 
6-14 
6-21 
6-22 
6-23 
6-24 
6-25 
6-28 
6-29 
6-31 
6-33 
6-34 
6-36 
6-37 
6-38 
6-39 
6-43 
6-45 
6-46 
6-47 
6-50 
6-51 
6-52 
6-53 
6-64 
6-65 
6-66 
6-67 
6-69 
6-70 
6-72 
6-73 

xi 
09/86 
CZ15-02A 

1 

1 

1 

1 

1 
1 



1 

1 
1 
1 
1 

CONTENTS 

QUIT (or QT or Q) ••••••••••••••••••••••••••••••••••••••• 
REPORT (or RT) •••••••••••••••••••••••••••••••••••••••••• 
RERUN RELOCATABLE (~~) ............•..........•.•.•..•...•. 
RETURN ( o r RN) •••••••••••••••••••••••••••••••••••••••••• 

~c;) ••••••••••••••••••••••••••••••••••••••••••••• SEG (or 
SHARE (or 
STACK (or 

SE) 
SK) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
ST ART ( o r ST) ••• „ •••••••••••••••••••••• ~ ~ • -e ~ \!" -= = • = = = •• „ •• 
SW.APPOOL (or SL) •••••••••••••••••••••••••••••••••••••••• 
SYS (or SS) •••••••••••••••••••••• •.•••••••••••••••••••••• 
YNPROTECT (or UNPROT or UT) ••••••••••••••••••••••••••••• 
USERPOOL (or UL) • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
VAL (or VL) ••••••••••••••••••••••••••••••••••••••••••••• 
VDEF (or VF) ••• •••••••••••••••••••••••••••••••••••.•••••• 
VPURGE (or VE) •••••••••••••••••••••••••••••••••••••••••• 

Linker Procedures ••••••••••••••••••••••••••••••••••••••••• 
Using Overlays .•..•.•..•.......••..••.....•......•..... . 
Interrupting Linker Execution ••••••••••••••••••••••••••• 
Sample Link Sessions •••••••••••••••••••••••••••••••••••• 
Example 1: Linking With a Minimum of Directives ••••••••• 
Example 2: Specifying an Input Device ••••••••••••••••••• 
Example 3: Linking More Than One Object Unit •••••••••••• 
Example 4: Linking With Two Overlays •••••••••••••••••••• 

SECTION 7 MULTIUSER DEBUGGER ( SYMBOLIC MODE) . . . . . . . . . . . . . 
Overview ..••.....••.••••••..••.•..•.•.••••.•.•••••.•••••.• 
Capabilities •••••••••••••••••••••••••••••••••••••••••••••• 
Invoking the Debugger (Symbolic Mode) ••••••••••••••••••••• 
Debugger and Break Key Functionality •••••••••••••••••••••• 
Planning Considerations ••••••••••••••••••••••••••••••••••• 

Controlling Execution of the user's Program ••••••••••••• 
Setting Breakpoints ••••••••••••••••••••••••••••••••••••• 
Monitoring the Value of Variables ••••••••••••••••••••••• 
Controlling Output •••••.•••••••••••••••••••••••••••••••• 
Maintaining a Trace History ••••••••••••••••••••••••••••• 
Altering Values ••••••••••••••••••••••••••••••••••••••••• 

Debugger Directives ••••••••••••••••••••••••••••••••••••••• 
ACTIVATE (OR AC)•••••••••••••••••••••••••••••••••••••••• 
Pi'!' ••••••.•••••••••••••••••••••••••••••••••••••••••••••••• 
CHANGE ( OR CH) •••••••••••••••••••••••••••••••••••••••••• 
CLEAR (OR C) • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
DUMP (()J.t ])J?) •••••••••••••••••••••••••••••••••••••••••••• 
(;() ............................•..........•.............. 
IF ••• 
LIST 
MODE. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
( OR L) ••••••••••••••••••••••••••••••••••••••••••••• . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Page 

6-75 
6-76 
6-77 
6-78 
6-79 
6-82 
6-83 
6-84 
6-85 
6-86 
6-87 
6-89 
6-90 
6-91 
6-92 
6-93 
6-93 
6-93 
6-94 
6-94 
6-99 
6-99 
6-101 

7-1 

7-1 
7-2 
7-2 
7-6 
7-7 
7-7 
7-7 
7-7 
7-7 
7-7 
7-7 
7-8 
7-9 
7-10 
7-12 
7-13 
7-14 
7-15 
7-16 
7-18 
7-19 

xii 
09/86 
CZ15-02A 



( CONTENTS 

PAUSE (OR P) •••••••••••••••••••••••• .•••••••••••••••••••• 
QUIT (QT) ••••••••••••••••••••••••••••••••••••••••••••••• 
SET • •••••••••••••••••••••••••••••••••••••••••••••••••••• 
SL EEP ( SP) •••••••••••••••••••••••••••••••••••••••••••••• 
TRACE (OR TR) ••••••••••••••••••••••••••••••••••••••••••• 

Multiuser Debugger (SYMBOLIC MODE) Procedures ••••••••••••• 
Compiling a Program For Use With the Debugger ••••••••••• 

Sample Compilation Dialogs •••••••••••••••••••••••••••• 
Linking an Object Unit With the Debugger •••••••••••••••• 

Sample Linker Dialogs ••••••••••••••••••••••••••••••••• 
Invoking the Debugger ••••••••••••••••••••••••••••••••••• 

Sample Initialization Dialog~··················~······ 
Debugging Multiple Bound Units •••••••••••••••••••••••• 

Executing Your Program With the Debugger •••••••••••••••• 
Sample Executing Dialog ••••••••••••••••••••••••••••••••• 

Page 

7-20 
7-21 
7-22 
7-23 
7-24 
7-26 
7-26 
7-26 
7-27 
7-27 
7-28 
7-29 
7-30 
7-30 
7-30 

SECTION 8 MULTIUSER DEBUGGER (NUMERIC MODE) •••••••••••••• 8-1 

Overview ................................•......•..•...••.• 
Capabili ties ............................................. . 
Invoking the Debugger (Numeric Mode) •••••••••••••••••••••• 
Debugger File Requirements •••••••••••••••••••••••••••••••• 
Debugger Memory Requirements •••••••••••••••••••••••••••••• 
Debugger Operation •.••••••••••••••••••••••••••••.••••••••. 
Entering Directives ••••••••••••••••••••••••••••••••••••••• 
Debugger and Break Key Functionality •••••••••••••••••••••• 
Planning Considerations ••••••••••••••••••••••••••••••••••• 

Setting True Breakpoints and Bound Unit Breakpoints ••••• 
Setting Global Breakpoints •••••••••••••••••••••••••••••• 
Setting Quick Breakpoints ••••••••••••••••••••••••••••••• 
Preliminary Steps for Using Quick Breakpoints ••••••••••• 
Guidelines for Setting Breakpoints •••••••••••••••••••••• 
Controlling Output •••••••••••••••••••••••••••••••••••••• 
Determining the Active Level •••••••••••••••••••••••••••• 
Maintaining a Trace History ••••••••••••••••••••••••••••• 

Debugger Directives ••••••••••••••••••••••••••••••••••••••• 
ALL REGISTERS (AR) •••••••••••••••••••••••••••••••••••••• 
ASSIGN (AS) ••••••••••••••••••••••••••••••••••••••••••••• 
CHANGE MEMORY (CH) •••••••••••••••••••••••••••••••••••••• 
CLEAR ABNORMAL TRAP BIT (CT) •••••••••••••••••••••••••••• 
CLEAR ALL BOUND UNIT BREAKPOINTS (CB*) •••••••••••••••••• 
CLEAR ALL QUICK BREAKPOINTS (CQ*) ••••••••••••••••••••••• 
CLEAR ALL TRUE BREAKPOINTS (C*) ••••••••••••••••••••••••• 
CLEAR BOUND UNIT BREAKPOINT (CBn) ••••••••••••••••••••••• 
CLEAR QUICK BREAKPOINT {CQn) •••••••••••••••••••••••••••• 
CLEAR TRUE BREAKPOINT (Cn) •••••••••••••••••••••• •; ••••••• 
CONDITIONAL EXECUTION (IP)•••••••••••••••••••••••••••••• 

8-2 
8-2 
8-2 
8-3 
8-3 
8-3 
8-4 
8-10 
8-10 
8-10 
8-11 
8-11 
8-11 
8-12 
8-12 
8-12 
8-13 
8-13 
8-14 
8-15 
8-16 
8-17 
8-18 
8-19 
8-20 
8-21 
8-22 
8-23 
8-24 

xiii 
09/86 
CZ15-02A 

1 

* 



1 
1 

--·-----·--- --„------------~--·· 

DEFINE (Dn) ••• ~ ••••••••••••••••••••••••••••••••••••••••• 
DEFINE TRACE {DT)••••••••••••••••••••••••••••••••••••••• 
DISPLAY MEMORY {DH)••••••••••••••••••••••••••••••••••••• 
DUMP MEMORY { DP) •••••••••••••••••••••••••••••••••••••••• 
END TRACE (ET) ••••••••••••• •- •.••••••••••••••••••.••••••••• 
ESCAPE (E) •••••• •••••••••••••••••••••••••••••••••••••••• 
EXECUTE ( En) •••••••••••••••••••••••••••••••••••••••••••• 
FILE IN {FI)•••••••••••••••••••••••••••••••••••••••••••• 
li' T T. li' f'\TTIT' f "'" \ ••-- v~• \~V/••••••••••••••••••••••••••••••••••••••••••• 

GET QUICK MEMORY {MQ) ••••••••••••••••••••••••••••••••••• 
GO • ••••••••••••••••.••••••••••••••••••••••••••••••••• „ ••• 
LIST ALL BÖUND UNIT BREAKPOINTS (LB*) ••••••••••••••••••• 
LIST ALL QUICK BREAKPOINTS (LQ*)•••••••••••••••••••••••• 
LIST ALL TRUE BREAKPOINTS 
LIST BOUND UNIT BREAKPOINT 

( L*) • • • • • • • • . • • • • • • • • • • • • • • • • • 
( LBn) •••••••••••••••••••••••• 

LIST QUICK BREAKPOINT {LQn) ••••••••••••••••••••••••••••• 
LIST TRUE BREAKPOINT {Ln)••••••••••••••••••••••••••••••• 
l't()[)E. • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
PRINT (Pn) •••••••••••••••••••••••••••••••••••••••••••••• 
PRINT ALL ( P*) •••••••••••••••••••••••••••••••••••••••••• 
PRINT HEADER LINE (Hn)•••••••••••••••••••••••••••••••••• 
PRINT HEXADECIMAL VALUE (VB)•••••••••••••••••••••••••••• 
PRINT QUICK MEMORY POINTER (PQ) ••••••••••••••••••••••••• 
PRINT TRACE (PT) •••••••••••••••••••••••••••••••••••••••• 
QUIT (QT) ••• • ••••••••••••••••••••••••••••••••••••••••••• 
RESET FILE (RF) •••••••••••••••••••••••••• •.•••••••••••••• 
RETURN QUICK MEMORY (RQ) •••••••••••••••••••••••••••••••• 
SET BOUND UNIT BREAKPOINT (SBn) ••••••••••••••••••••••••• 
SET EXPRESS BOUND UNIT BREAKPOINT (XBn) ••••••••••••••••• 
SET QUICK BREAKPOINT (SQn) •••••••••••••••••••••••••••••• 
SET TRUE BREAKPOINT (Sn)•••••••••••••••••••••••••••••••• 
SLEEP (SP)•••••••••••••••••••••••••••••••••••••••••••••• 
SPECIFY FILE (SF)••••••••••••••••••••••••••••••••••••••• 
START J-MODE TRACE (ST) ••••••••••••••••••••••••••••••••• 
TURN ON ABNORMAL TRAP BIT (TB) •••••••••••••••••••••••••• 
TERMINATE THE TRAPPED TASK (TT) ••••••••••••••••••••••••• 

Multiuser Debugger (Numeric Mode) Procedures •••••••••••••• 
Sample Session 1 .................. ...•.................. 
Sample Session 2 ..........•....................••....... 
Sample Session 3 •••••••••••••••••••••••••••••••••••••••• 

SECTION 9 REQUESTING AND USING MEMORY DUMPS ••••••••••••••• 

overv iew . ................•............................•... 
Using the Dump Utilities •••••••••••••••••••••••••••••••••• 

Creating a Dump Volume •••••••••••••••••••••••••••••••••• 
Setting Dumpfile Sizei •••••••••••••••••••••••••••••••• 

Page 

8-27 
8-28 
8-29 
8-30 
8-31 
8-32 
8-33 
8-34 
8-35 
8-36 
8-38 
8-39 
8-40 
8-41 
8-42 
8-43 
8-44 
8-45 
8-46 
8-47 
8-48 
8-49 
8-50 
8-51 
8-52 
8-53 
8-54 
8-55 
8-56.l 
8-58 
8-61 
8-63 
8-64 
8-67 
8-68 
8-69 
8-70 
8-70 
8-79 
8-86 

9-1 

9-1 
9-2 
9-3 
9-4 

xiv 
09/86 
CZ15-02A 

. 



(' CONTENTS 

Dumpfile Format .........•....••.........•...••....•.•. 
Determining Available Disk Space •••••••••••••••••••••• 
Maximum Dumpfile Size ••••••••••••••••••••••••••••••••• 
Multiple-Volume Diskette •••••••••••••••••••••••••••••• 

Shared Dump and System Volumes •••••••••••••••••••••••••• 
Taking a Dump Using a Control·Panel ••••••••••••••••••••• 
Taking a Dump Using the System Control Facility ••••••••• 

Using DPEDIT •••••••••••••••••••••••••••••••••••••••••••••• 
Page Header ••••••••••••••••••••••••••••••••••••••••••••• 
Line Format ••••••••••••••••••••••••••••••••••••••••••••• 
Physical Dump •.••....•.•.•....•.••••..••.••.•.•.••...... 
Logical Dump ••......•. „ ••••••••••••••••• • ' •••••••••••••••• 

System Summary •••••••••••.•••.••••••••••••••••••••.••• 
Task Related Information •••••••••••••••••••••••••••••• 

Memory Pool Structures •••••••••••••••••••••••••••••• 
Task Group Structures ••••••••••••••••••••••••••••••• 
Task Structures ••••••••••••••••••••••••••••••••••••• 

DPEDIT Command .•••••••••••••••.••••••••••••••••••••••••• 
Operating Procedure for DPEDIT •••••••••••••••••••••••••• 

Interpreting and Using Memory Dumps ••••••••••••••••••••••• 
Determining the State of Execution of Your Code at the 
Time of the Dump •••••••••••••••••••••••••••••••••••••••• 

Halt at Level 2 ••••••••••••••••••••••••••••••••••••••• 
User Level Active at the Time of Dump ••••••••••••••••• 
No Level Active at the Time of Dump ••••••••••••••••••• 

Locating a Trap Processed by the System Default Handler. 
Using XRAY •••••••••••••••••••••••••••••••••••••••••••••••• 

Accessible Structures ••••••••••••••••••••••••••••••••••• 
XRAY Command • ••••••••••••••••••••••••••••••••••••••••••• 
Operating Procedure for XRAY •••••••••••••••••••••••••••• 

Page 

9-4 
9-5 
9-5 
9-5 
9-7 
9-8 
9-9 
9-10 
9-11 
9-11 
9-12 
9-12 
9-12 
9-14 
9-15 
9-15 
9-16 
9-17 
9-19 
9-19 

9-21 
9-21 
9-22 
9-22 
9-22 
9-23 
9-23 
9-24 
9-27 

SECTION 10 PATCH UTILITY••••••••••••••••••••••••••••••••• 10-1 

Overv iew • ....••..••••••••••.•••.••••••.•.••..•••.••••••••• 
Operation ........•....••.•.•.•.....••....•..•....•.....••• 

Absentee Mode ••••••••••••••••••••••••••••••••••••••••••• 
Interactive Mode •••••••••••••••••••••••••••••••••••••••• 
Loading Patch ••••••••••••••••••••••••••••••••••••••••••• 
Submitting Patch Directives ••••••••••••••••••••••••••••• 

Patching Techniques ••••••••••••••••••••••••••••••••••••••• 
Naming the Patch • ....•.••......•••••..•.••........•.•.•.. 
Applying the Patch •••••••••••••••••••••••••••••••••••••• 

Patch Directives •••••••••••••••••••••••••••••••••••••••••• 
CLEAR SYSTEM BIT (CLSY) ••••••••••••••••••••••••••••••••• 
C:C>l4.14E:~ (*) .••••••••••••••••••••••••••••••••••••••••••••• 
DATA PATCH (DP)••••••••••••••••••••••••••••••••••••••••• 
ELIMINATE PATCH (EP)•••••••••••••••••••••••••••••••••••• 

10-1 
10-2 
10-2 
10-3 
10-3 
10-4 
10-7 
10-7 
10-7 
10-7 
10-8 
10-9 
10-10 
10-14 

XV 
09/86 
CZ15-02A 



1 

1 

1 

CONTENTS 

(;() ..................................................... . 
GROUP PATCH 
HEXADECIMAL 
INTERROGATE 

( GP} •••••••••••••••••••••••••••••••••••••••• 
PATCH (HP) ••••• 
BOUND UNIT (WA} 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
I..I>E:E' • ••••••••••••••••••••••••••••••••••••••••••••••••••• 
LIST GROUP PATCH NAMES (LG) 

PATCH 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

LIST 
LIST 

SPECIFIED GROUP (LG) ••••••••••••••••••••••••• 
PATCHES (LP) ••••••••••••••••••••••••••••••••••••••• 

LIST PÄTCHES NOW (LN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
LIST PATCH NAMES (LS) ••••••••••••••••••••••••••••••••••• 
LIST 
LIST 

SPECIFIED PATCii ( LS) ••••••••••••••••••••••••••••••• 
UPDATES (LU) ••••••••••••••••••••••••••••••••••••••• 

QUIT (Q) •••••••••••••••••••••••••••••••••••••••••••••••• 
SET GLOBAL SHARE BIT OFF (GNSH) ••••••••••••••••••••••••• 
SET GLOBAL SHARE BIT ON ( GSHR) •••••••••••••••••••••••••• 
SET SHARE BIT OFF (NS) •••••••••••••••••••••••••••••••••• 
SET SHARE BIT ON (SS) ••••••••••••••••••••••••••••••••••• 
SET SYSTEM BIT ON (STSY} •••••••••••••••••••••••••••••••• 
SYMBOLIC DATA PATCH (SD)•••••••••••••••••••••••••••••••• 
SYMBOLIC PATCH ( SP) ••••••••••••••••••••••••••••••••••••• 
VDEF ••••• . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

SECTION 11 MESSAGES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Message Reporter ••••••••••••••••••••••••••••••••••••••••• 

Message Libraries •••••••••••••••••••••••••••••••••••••• 
System Message Library ••••••••••••••••••••••••••••••• 
Group Libraries •••••••••••••••••••••••••••••••••••••• 
Primary Libraries •••••••••••••••••••••••••••••••••••• 

Message Format ••••••••••••••••••••••••••••••••••••••••• 
Message Code • •••••••••••••••••••••••••••••••••••••••• 
Indicator Field •••••••••••••••••••••••••••••••••••••• 
Chain Pointer •••••••••••••••••••••••••••••••••••••••• 
Message Text •• ••••••••••••• J ••••••••••••••••••••••••• 

Parameter Designators •••••••••••••••••••••••••••••••••• 
Parameterized Messages ••••••••••••••••••••••••••••••• 
Parameter Designator Format •••••••••••••••••••••••••• 

Message Chaining ••••••••••••••••••••••••••••••••••••••• 
Standard Messages in the System Message Library •••••••• 
Message Library Utilities •••••••••••••••••••••••••••••• 

ZXDSMG Utility ••••••••••••••••••••••••••••••••••••••• 
ZXBTMG Utility ••••••••••••••••••••••••••••••••••••••• 
Argument Definition •••••••••••••••••••••••••••••••••• 

Updating the Message Library ••••••••••••••••••••••••••••• 
Message Structure •••••••••••••••••••••••••••••••••••••• 
Adding a Message to the Message Library •••••••••••••••• 
National Language Support •••••••••••••••••••••••••••••• 

Page 

10-16 
10-17 
10-18 
10-22 
10-23 
10-25 
10-26 
10-27 
10-29 
10-30 
10-32 
10-33 
10-34 
10-35 
10-36 
10-37 
10-38 
10-39 
10-40 
10-43 
10-48 

11-1 

11-1 
11-2 
11-2 
11-2 
11-3 
11-3 
11-4 
11-4 
11-4 
11-5 
11-5 
11-5 
11-6 
11-10 
11-12 
11-13 
11-13 
11-13 
11-14 
11-14 
11-14 
11-15 
11-18 

xvi 
09/86 
CZ15-02A 



( 

( 

(' 

CONTENTS 

Page 

MANUAL DIRECTORY••••••••••••••••••••••••••••••••••••••••• h-i 

INDEX. • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • i-1 

ILLUSTRATIONS 

Figure Page 

1-1 Application Developrnent Cornponent ••••••••••••••••••• 1-3 

2-1 
2-2 
2-3 

3-1 
3-2 
3-3 
3-4 
3-5 
3-6 

4-1 
4-2 
4-3 

4-4 

4-5 

4-6 

4-7 
4-8 

6-1 
6-2 
6-3 
6-4 
6-5 
6-6 
6-7 
6-8 

Login Form .......••...............•••..•••.•..•••••• 
Login Arguments Form •••••••••••••••••••••••••••••••• 
Sample Directory Listing •••••••••••••••••••••••••••• 

Example of Disk File Directory Structure •••••••••••• 
Sample Directory Structure •••••••••••••••••••••••••• 
Sample Pathnames ••••••••••••••••••••••••.••••••.•••• 
Location of Directories SHEPARD and COOK •••••••••••• 
Location of Subordinate File REPORTS •••••••••••••••• 
Location of Subordinate File WORDLIST ••••••••••••••• 

Sample Screen for Creating a File ••••••••••••••••••• 
Sample Screen for Modifying a File •••••••••••••••••• 
Screen Editor Template for VIP780X General Purpose 
Keyboard ••••••••••••••••••••••••••••••• ••••••••••••• 
Screen Editor Template for VIP730X and HDS 2 General 
Purpose and Data Entry Keyboard ••••••••••••••••••••• 
Screen Editor Template for VIP7300 and VIP7800 Word 
Processing Keyboard ••••••••••••••••••••••••••••••••• 
Screen Editor Template for microSystem 6/10 
Keyboard .•.••••••••••• .••••••••••••••••••••••••••••• 
Screen Editor Template for VIP7200 Keyboard ••••••••• 
Screen Editor Template for VIP7201 Keyboard ••••••••• 

Relative Location of Memory in Memory Pool AA ••••••• 
Overlays in Memory Pool AA •••••••••••••••••••••••••• 
Link Map Formats •••••••••••••••••••••••••••••••••••• 
Sample Link Map (DATIME.M) •••••••••••••••••••••••••• 
Structure of the Bound Unit SAMPLE •••••••••••••••••• 
Source Listing of PROG •••••••••••••••••••••••••••••• 
Source Listing of First Overlay Module PROGO •••••••• 
Source Listing of Second Overlay Module PROGl ••••••• 

/2-5 
2-6 
2-7 

3-2 
3-4 
3-10 
3-18 
3-20 
3-21 

4-5 
4-5 

4-46 

4-47 

4-47 

4-48 
4-48 
4-48 

6-20 
6-20 
6-56 
6-96 
6-102 
6-102 
6-103 
6-103 

xvii 
09/86 
CZ15-02A 



Figure 

8-1 
8-2 
8-3 
8-4 
8-5 
8-6 
8-7 
8-8 

----·----------~-~---· 

ILLUSTRATIONS 

Sample Program TEST ••••••••••••••••••••••••••••••••• 
Debugging Session of TEST ••••••••••••••••••••••••••• 
Bound Unit TSTNOW ••••••••••••••••••••••••••••••••••• 
Debugging Session of TSTNOW ••••••••••••••••••••••••• 
Contents Of Quick Disk File TSTNOW.QK •••••••••.•••••• 
Dump of Quick Memory •••••••••••••••••••••••••••••••• 
Debugging Session (Example 3) ••••••••••••••••••••••• 
Dump of Quick Disk File Sample .QK •••••••••••••••••• 

Page 

8-71 
8-73 
8-80 
8-82 
8-85 
8-87 
8-88 
A-01 V _, ... 

11-1 Message Library Record Structure •••••••••••••••••••• 11-4 

TABLES 

Table Page 

4-1 Summary of Screen Editor Directives ••••••••••••••••• 4-14 
4-2 Correlation of SCORPEO's Labeled Keys ••••••••••••••• 4-66 

5-1 Summary of Line Editor Directives and Escape 
Sequences ••••••••••••••••••••••••••••••••••••••••••• 5-16 

7-1 Summary of Symbolic Mode Directives ••••••••••••••••• 7-3 
7-2 Terms used in Symbolic Mode Directives •••••••••••••• 7-4 
7-3 Symbolic Mode Special Symbols ••••••••••••••••••••••• 7-5 

8-1 Summary of Numeric Mode Directives •••••••••••••••••• 8-5 
8-2 Symbols Used in Numeric Mode Directive Lines •••••••• 8-6 

9-1 Significant Locations on Memory Dump •••••••••••••••• 9-20 

xviii 
09/86 
CZ15-02A 



( 

REMOVE THIS PAGE AND PLACE TAB FOR 

TAB 1 

INTRODUCTION 





('. 

Section 1 
INTRODUCTION 

The DPS 6 GOC§._§_ MO.Q__'!_OJl~EJ;?.licJt_tiO~l_.Q~~.J.2~Q_Gui.§e 
describes the GCOS 6 system fac1lities available to the 
application programmer and provides the procedures to write, 
debug, and run application programs. 

SYSTEM FACILITIES 

The GCOS 6 MOD 400 Executive supports concurrent execution of 
one or more online job streams. 

User-written online applications can be loaded and started at 
any time after system initialization. The number of applications 
in operation is determined by the amount of available memory. 
When one application is deleted or terminates, its memory is 
automatically released to another application. 

The MOD 400 Executive allocates memory dynamically f rom pools 
and can relocate programs at load time. Once an application is 
loaded into memory, it is dispatched according to its assigned 
priority level. When multiple tasks share a priority level, they 
are serviced in a round-robin fashion. The Memory Management 
Unit (MMU) prevents user applications residing in different 
memory pools from interfering with each other or with the 
Executive. 

1-1 CZlS-02 



APPLICATION DEVEL_Q_PM~~!_fQliPQ.~~~!~ 

The following components support application development: 

• Screen Editor--A full screen, interactive program 
development, text editing, and documentation preparation 
system that allows a user to enter an entire screen of 
data into a work f ile. The ability to manipulate full 
screens of data at once makes text editing faster and 
reduces I/O processing. 

• Line Editor--An interactive program development, text 
editing, and documentation preparation system that works 
on data a line at a time. 

• COBOL, BASIC, and FORTRAN Run-Time Services--A total 
system of language processors including compile, link, and 
execute modules that validate and process ·COBOL, BASIC, 
and FORTRAN programs. 

• Forms Processor--A software component that permits a 
programmer to def ine terminal screen layouts as well as 
control characteristics of the data transmitted between 
the terminal. and program variable storage. 

• Debugger--A software diagnostic tool used to debug 
programs. 

Figure 1-1 illustrates the application development 
components. 

The Screen Editor, Line Editor, COBOL, BASIC, and FORTRAN 
run-time services, and the Multiuser Debugger are described in 
this manual. Forms processing is described in the Disp]_~ 
Formatting an§_Cont~ol manual. The MOD 400 Executive is 
described in the MOD 400 ~~~!!,1 _ _9oncE1E~~ manual. 

1-2 CZlS-02 



SCREEN 
EDITOR 

LINE 
EDITOR 

FORMS 
PROCESSOR 

GCOS6 
MOD400 
EXECUTIVE 

COBOL 
RUN-TIME 
SERVICES 

BASIC 
RUN-TIME 
SERVICES 

FORTRAN 
DEBUGGER RUN-TIME 

SERVICES 

86-139 

Figure 1-1. Application Development Components 

1-3 CZlS-02 



0 



REMOVE THIS PAGE AND PLACE TAB FOR 

TAB 2 

SYSTEM ACCESS 





( 

Section 2 
SYSTEM ACCESS 

This section describes user access procedures and the 
procedures and conventions used to control the processing 
environment once you have accessed the system. 

USER ACCESS PROCEDURES --------
When you are at a user terminal, access to the system depends 

on the way your terminal is described to and recognized by the 
system. Access to the system requires: 

1. Physical connection between your terminal and the central 
processor 

2. Logical connection between you (the user) and the 
operating system. 

In some cases, the Executive performs the second step for you 
automatically after you have made the physical connection. 

You can connect your terminal to the central processor by two 
methods, depending on the type of terminal you have: a direct­
connect terminal or a dialup terminal. 

2-1 CZlS-02 



Direct-Con~~~-1'~_r-~ina! 

For a direct-connect terminal, place the POWER ON/OFF switch 
in the ON position. If the terminal has a LOCAL/ON LINE switch, 
place it in the ON LINE position. This is sufficient to connect 
the terminal to the central processor. 

Dialup Terminal 

A telephone line connects a dialup terminal to the central 
processor. Take the following steps to make the connection: 

1. Turn both the terminal POWER ON/OFF switch to the ON 
position and the LOCAL/ON LINE switch to the ONLINE 
nn~ii-inn ·--- ---··· 

2. Lift the receiver, press the button marked TALK/CLEAR, 
and listen f or a dial tone. 

3. Use the telephone number provided by the system opera­
tor f or the dialup line to call into the system. 

4. Press the button marked DATA when you hear a high-pitched 
tone (this tone lets you know that the connection has 
been made). Hang up the receiver. 

If you are unable to make a connection, hang up the receiver 
and begin again at Step 2. 

CONNECTING A· USER TO THE EXECUTIVE -------------------
After you have made the physical connection between your 

terminal and the central processor, you can make the logical 
connection that identifies and establishes you as a user known to 
the Executive. The procedure you use depends on whether your 
terminal is defined as a login terminal or a non-login terminal. 
Login terminals are reserved for initial user access to the 
system through a system component called the Listener. Listener 
monitors all terminals that are listed in its Terminals file. 
Such terminals cannot be directly reserved by applications. On 
the other hand, non-login terminals (i.e., those not listed in 
the Terminals f ile) can be directly reserved by applications. 
Your system administrator can tell you what type of terminal you 
have. 

Login Terminal 

There are two types of login terminals: manual login and 
direct login. Manual login terminals require you to enter a 
Login command line or f ill out a login form in order to access 
the system. Direct login terminals take their Login commands 
f rom the Terminals f ile as soon as they are physically connected 
to the system; this process is invisible to the user. 

2-2 CZlS-02 



( 

( <-·····". '• . 

,. ,J 

MANUAL LOGIN TERMINAL 

Your terminal may or may not be conf igured for manual login. 
If it is, a login banner or form will be displayed. A manual 
login terminal is one that requires you to use the Login command 
to connect to the Executive. In order to log in to the system, 
you must be registered as a user. The system administrator can 
register you, or may allow an unregistered user to log in under 
the user identif ication USER. 

Manual login terminals can be of two types: Banner Login or 
Forms Login. A Banner Login terminal displays a banner message 
and waits for you to enter a login command line. A Forms Login 
terminal displays a form that guides you through the login 
process. The following paragraphs describe the login procedure 
for both types of terminals. 

Banner Login 

When a banner login terminal is physically connected to the 
system, it displays a login banner consisting of the message of 
the day and the login prompt: 

LOGIN 

followed by the terminal identif ication and the current date and 1 
time. You can access the system by logging in with either a full 
or abbreviated login line; your system administrator can tell you 
which type of login works on your term~nal. With a full login 
you can specify your group id, pool id, lead task, home 
directory, and other login characteristics, assuming that you are 
not restricted from these options. (Refer to the Commands manual 
for a full description of the Login command, or type LOGIN ? in 
response to the LOGIN prompt to see a summary of LOGIN options.) 
If the terminal (and your user profile) allow it, you may gain 
access to the system by entering a full login line, such as: 

or 

In these examples, Jones is a login id. You may instead use 
your two- or three-part user id, such as JONES.APPDEV or 
JONES.APPDEV.R27. -

An abbreviated login logs you in with a pre-def ined or 
"canned" login line and allows no options. An abbreviated login 
line consists of a single character that has been previously 
established as an abbreviation for a full login line. 
Abbreviations can be valid at all or any banner login terminals 
in a system. 

2-3 
09/86 
CZ15-02A 



After typing in your login line, you may be required to enter 
your password in response to the prompter message: 

Please enter your password. 

You must then correctly enter your password. This password gives 
you access to the system. For security purposes, your password 
is not displayed as you type it in. 

If this is the f irst time that you have logged in to the 
system, you rnay be asked (via a terminal display) to choose a 
password. In this case, choose a password six, seven, or eight 
characters long. 

·NOTE 

In the event that you may want to convert to Forms 
Login, you should not include control characters 
(e.g., TAB), commercial at (@), or blanks in your 
password. These characters are not acceptable in 
Forms Login passwords. 

Once you have successfully logged in to the system, what is 
displayed on your terminal depends on your user prof ile and the 
specif ications in your login line. 

1 If you need and are allowed to change your password, enter 
your login line with the -CPW argument. After you have logged in 
with your old password, the system displays the following 
message: 

Choose a password six to eight characters long 

After entering your new password, you must confirm it by 
reentering it when the following message is displayed: 

Reenter the password 

After you conf irm your new password, the following message is 
displayed: 

Your password has been changed. 

Forms Login 

When a forms login terminal is physically connected to the 
system, it displays the form shown in Figure 2-1. For anormal 
login using Forms Login, you must enter your login id, press the 
RETURN key, enter your password (if required by the System 
Administrator), and press the XMIT key. 

2-4 
09/86 
CZ15-02A 



( 

( 

Welcome to your Honeywell System. 

ID: 

PASSWORD: 

OPTIONS: To change your password, type c. 
To override your login defaults, type O. _ 

Figure 2-1. Login Form\ 

If this is the f irst time that you have logged in to the 
system, you may be asked (via a terminal display) to choose a 
password. In.this case, choose a password six, seven, or eight 
characters long, which doesn't include any of the following: 

• Control characters (e.g., TAB character) 

• Commercial at (@) 

• Leading or embedded blanks (i.e., a blank with another 
character following it) 

Once you have successfully logged in to the system, what is 
displayed on your terminal depends on your user prof ile and the 
specif ications in your login line. 

If you are allowed to change your password, you may type c in 
the last f ield of the form shown in Figure 2-1 before pressing 
XMIT. The following message will appear on the blanked-out 
screen: 

Choose a password six to eight characters long 

After entering your new password, you must conf irm it by 
reentering it when the following message is displayed: 

Reenter the password 

After conf irming your new password, the following message is 
displayed: 

Your password has been changed. 

To specify any of the optional login arguments that may 
follow your id on the login line, type 0 in the last field of the 1 
form shown in Figure 2-1 and press the XMIT key. The form shown 
in Figure 2-2 will be displayed. Make the appropriate entries in 
the f ields for any arguments you want to specify and press the 
XMIT key. 

2-5 
03/87 
CZ15-02B 



TEMPORARY OVERRIDES OF YOUR LOGIN DEFAULTS: 
Any entries you make will change your defaults for this login only. 
If you make no entries, you will be logged in with your defaults. 

/ Distination group for secondary login: \ You may skip these fields 
\ Group-id for primary login: := / or enter either, but not ooth. 

Horne di rectory: ------------------_______ _ 
Lead task pathname: 
Hold phone line on logout? (Y/NJ N 
Memory pool : 
Number of LRNs: Number of LFNs: 
Number of IRBs: Number of TSAs: 
Relative priority level: Language key: 
Arguments to lead task (start--On first line): 

--- - - - - - - - ------------
--------- - - - - ------------ --. ~~~~--

Figure 2-2. Login Arguments Form 

DIRECT LOGIN TERMINAL 

Your terminal may or may not be conf igured for direct login. 
If it is, there is no login prompt. The login process occurs 
automatically after connecting to the central processor. After 
the message of the day (if there is one), the system will respond 
with either a ready message or a menu. 

Non-Login Terminal 

A non-login terminal does not require a user Login command, 
either manually (from the terminal) or directly (from the 
Terminals file). When this terminal is physically connected to 
the system, it does not display a login banner or form. At the 
administrator's option, it may display the message of the day. 
Usually you can start entering data immediately after making a 
logical connection with the system. What is displayed on the 
terminal depends on the characteristics of the lead task of the 
task group associated with the terminal. 

If your lead task is the command processor, it is recommended 
that the first command you enter be the Ready On (RDN) command, 
if it is not already included in your START UP.EC file. If the 
system responds with the Ready prompt (RDY:), you can continue 
with the session. If the system does not respond either to this 
command or any other command, you can request the operator to 
activate a task group for that terminal. After the task group is 
activated, your access to system facilities is governed by the 
control arguments specif ied in the task group activation command. 

2-6 
03/87 
CZ15-02B 



Example: 

You have made a connection with the system. Your task group 
has the command processor as its lead task. The first user 
command you enter is: 

to activate the ready prompt message. The system responds 
with: 

RDY: 

Enter the command to !ist your working directory: 

The system responds (in this case) with: 

AZSYSSl>SOURCE>CODE 
RDY: 

To find out what files are in your working directory, enter: 

and the system responds with a listing of the f iles. 
Figure 2·-3 shows a sample directory listing. 

DIRECTORY: AZSYSSl>SOURCE>CODE 

TIME: 1986/05/04 0724:27 

ORDIN.C 
ORDOUT.C 
PAY.C 
INVNTRY.C 

SEQ 
SEQ 
SEQ 
SEQ 

Total Seetors: 32 

8 
8 
8 
8 

Figure 2-3. Sarnple Directory Listing 

2-7 CZlS-02 



PROCEDURES AND CONVENTIONS AFTER ACCESS 

Once you have successfully accessed the system, what is 
displayed on your terminal depends on the task group associated 
with your terminal. When the terminal is a login terminal, 
Listener connects your terminal to either a task group that is 
spawned according to your user registration information or an 
existing task group as a secondary terminal. If you are a 
command-mode user and the Ready On command is specif ied in your 

* START UP.EC, the system ready prompt is displayed. If you are a 
Menu Subsystem user, a menu is displayed. 

* Sending Messages to the Operator 

It may be necessary at times to request operator intervention 
while at your terminal. To send a message f rom your terminal to 
the system operator {e.g., when the terminal is remote from the 
operator terminal), enter the Message {MSG) command. Messages 
sent to the operator are displayed immediately. For example, to 
send a message to abort the current batch request, you might 
enter: 

If your message contains embedded blanks, you must enclose it 
in quotation marks or apostrophes. 

Interrupting a Task 

It may be necessary at times to int.errupt a running task 
while at your terminal. You can interrupt or break a running 
task in order to reenter commands, temporarily halt, or terminate 
the task. The break function immediately interrupts the command 
currently being processed and returns control to command level 
f or further action. 

To effect a break from your terminal, press the BREAK {BRK) 
key {or the key corresponding to the BREAK key on your 
terminal). The system then issues the break message: 

**BREAK** 

If your terminal was processing a form or menu, acknowledge 
the break message that is displayed on the supervisory line. 

2-8 
03/87 
CZ15-02B 



( 

Your response to the break can be any one of the following: 

1. Enter any user command (see the Commands manual). If the 
entered command is not Start (SR), Logoff (BYE), New 
Process (NEW PROC), Unwind (UW), or Program Interrupt 
(PI}, the lead task again enters the break mode and 
issues another **BREAK** message, requesting another 
response. This can be followed by another user command 
or by one of the responses described in step 2. If your 
terminal was processing a form or menu, acknowledge each 
message that is displayed on the supervisory line. 

2. Enter one of the following break mode responses to the 
**BREAK** message: 

a. Start (SR): This resumes execution of the suspended 
task as though the break had not been made. It also 
terminates the current break; i.e., there is no other 
**BREAK** message after it executes. 

b. Unwind (UW): This terminates the current task, and 
you return to command level. If the terminated task 
was invoked following a break, the lead task reenters 
the break mode, issues another **BREAK** message, and 
awaits a response. 

c. Logoff (BYE}: This aborts and deletes the current 
task group request. 

d. New Process (NEW PROC): This aborts all task 
requests in the task group except for the lead task, 
then restarts the task group, using the same argu­
ments as specif ied in the initial task group request. 
It also terminates the current break; i.e., there is 
no other **BREAK** message after it executes. 

e. Program Interrupt (PI}. The interrupted task is 
currently suspended. The PI command is meaningful 
only to the Linker and Editor running in a task group 
whose lead task is the Command Processor. For Linker 
and Editor, the command suppresses output and returns 
to directive input level. The PI command suppresses 
output resulting only from the Linker MAP directive. 

If your terminal was processing a form or menu, acknowl­
edge each message that is displayed on the supervisory 
line. 

2-9 
03/87 
CZ15-02B 



Example: 

You issue a List Names (LS) command and the output begins to 
appear on the screen at your terminal. You wanted this 
output to be printed on the line printer. You should 
immediately press the BREAK key and take one of the following 
steps: 

1. Enter: 

to change the output destination to the line printer; 
then enter the SR command to resume execution of the LS 
command. The output that had already appeared at the 
terminal does not appear on the hard-copy printout. 

2. Enter the UW command to terminate the current LS task, 
and enter: 

to change the output destination to the line printer. 
Then enter the LS command to restart the LS program from 
the beginning. 

2-10 
03/87 
CZ15-02B 



REMOVE THIS PAGE AND PLACE TAB FOR 

TAB 3 

FILE CONVENTIONS 





(' 

: .(···.\. \_ ~ 

. • 

Section 3 
FILE CONVENTIONS 

This section presents MOD 400 file conventions as well as a 
procedural scenario titled •working With Files.• This scenario 
provides a detailed explanation of frequently used f ile system 
commands and procedures • 

OVERVIEW 

A f ile is a logical unit of data composed of a collection of 
records. The principal external devices available for storing 
f iles are: 

• Disk devices (diskettes, cartridge disks, cartridge module 
disks, and mass storage units) 

• Magnetic tape units. 

These external devices are referred to as volumes (e.g., 
diskette volume, tape volume) • 

Various conventions to identify and locate f iles stored on 
disk and magnetic tape have been established f or their effective 
control. The conventions facilitate the orderly and eff icient 
use of the stored data. 

Unit record devices (such as card readers and printers) also 
use the f ile concept. However, since unit record devices cannot 
be used to store f iles, there is less need to establish conven­
tions for identification and location. A unit record f ile is 
simply the data that is read or written at any one time. 

3-1 CZlS-02 



--- . ·----~- ·----~-~---- ---·------·----······ ·--- - -----·- --- ··-·-----·~---·-···--··--------· -------------- ····- -·-----·------

DISK FILE CONVENTIONS --
Users must be able to specify an access path to any given 

f ile on a disk volume that contains multiple files. Files must, 
therefore, be organized on the volume in some predictable 
fashion. MOD 400 provides a set of volume organization conven­
tions by which the system can locate any element that resides on 
the volume. · 

The principal elements of this organization, aside from the 
f iles themselves, are directories. The access path to any given 
element on a volume is known as a pathname. 

Directorif!! 

Files on disk devices reside within a tree-structured 
hierarchy. The basic elements of this hierarchy are f iles known 
as directories. The directories are used to point to the loca­
tion of data f iles, which are the endpoints of the tree 
structure. 

A directory on a disk volume functions like a catalog. It 
contains the names and starting locations (sectors on the volume) 
of f iles or other directories (or both). The elements whose 
names are in the directory are said to be contained in or subor­
dinate to the directory; therefore, the organization of a disk 
volume is a multilevel structure. The complexity of the access 
path to any given element.in the structure depends on the number 
of directories between the root and the desired element. 

A directory structure is illustrated in Figure 3-1. The base 
directory on a volume is termed a root directory. In Figure 3-1 
the root directory is VOLOl. The root directory VOLOl points to 
two subordinate directories DIR! and DIR2. The directories DIR! 
and DIR2, in turn, point to the data files (FILEA, FILEB, FILEC, 
and FILED). 

VOL01 

FILEA FILEB FILEO 

84-817 

Figure 3-1. Example of Disk File Directory Structure 

3-2 CZlS-02 

' 0 



( 

( 

The following paragraphs describe the root directory and 
other special types of directories. 

ROOT DIRECTORY 

There is a tree structure for each disk mounted at any given 
time. At the base of each tree structure is a directory known as 
the root directory. This is the directory that ultimately con­
tains every element that resides on the volume either irnrnediately 
or indirectly subordinate to it. 

The root directory name is the same as the volume identif ier 
of the volume on which it resides. The directory VOLOl in 
Figure 3-1 is a root directory. 

SYSTEM ROOT DIRECTORY 

One or more disk root directories can be known to the system 
at any time during its operation. One of these, the system root 
directory, is required at all times. The volume used by the 
operator to initialize the system establishes the system root 
directory. This volume also normally contains system prograrns, 
commands, and other routinely used elements. It must contain a 
number of directories and f iles that the system needs to perform 
its functions. These are described in the Syste_!!l _ _!!.~il2~E.9...ll_nd 
Administration manual. ----------
USER ROOT DIRECTORIES 

The File System can recognize one or more user root direc­
tories. These are root directories of volumes created and used 
for the installation's own particular needs. They can contain 
user application programs and their associated data f iles, appli­
cation program source and object unit files, listing f iles, or 
anything else to be stored, either temporarily or permanently. 

INTERMEDIATE DIRECTORIES 

When a volume is f irst created, it contains only a root 
directory. Within this directory, you can create any additional 
directories required to satisfy the needs of the installation. 
Consider, for example, a volume that is to contain data used by 
two application projects, each of which has several people asso­
ciated with it. Each of these people has one or more files of 
interest to him. · The volume has been ini tialized and contains a 
root directory name. Two directories can be created subordinate 
to the root directory, each identif ied by the project name. 
Then, subordinate to these directories, a directory can be 
created for each person associated with each project. 

The data f iles are all contained within the personal direc­
tories. This sample intermediate directory structure is illus­
trated in Figure 3-2. 

3-3 CZlS-02 



VOL01 

FOSTER 

84-818 

Figure 3-2. Sample Directory Structure 

When the need for a user-created directory no longer exists, 
the directory can be deleted from the File System, making the 
space it occupied, as well as the space occupied by its attri­
butes in the immediately superior directory, available for 
reuse. A directory must be empty before it can be deleted; all 
directories and f iles subordinate to the one to be deleted must 
have been previously deleted by explicit commands. 

WORKING DIRECTORY 

The File System always starts at a root directory when it 
performs an operation on a disk f ile or a directory. At times 
the search for an element residing on a disk volume can traverse 
a number of intermediate directory levels bef ore locating the 
desired element; the File System must be supplied with the names 
of all the branch points it must pass on the way. The f iles of 
interest to a user doing work on the system are f requently all 
contained in a single directory specif ic to the task being per­
formed; this directory can be three, four, or more levels deep 
into the structure. It would be convenient to be able to refer 
to files in relation to a directory at some arbitrary level in 
the hierarchy rather than in relation to the root directory. The 
File System allows this to be done by recognizing a special kind 
of directory known as a working directory. 

3-4 CZlS-02 



A working directory establishes a ref erence point that 
enables you to specify the name of a file or another directory in 
terms of its position relative to that directory. If the access 
path of the working directory is made known to the File System, 
and if the desired element is contained in that directory, the 
element can be specif ied by just its name. The File System con­
catenates this name with the names of the elements of the working 
directory's access path to form the complete access path to the 
element. 

LOCATIONS OF DISK DIRECTORIES AND FILES 

The File System has total control over the physical location 
of space allocated to directories and files; you need never be 
concerned about where on a volume a directory or f ile resides. 
When a volume is first initialized, space is allocated to ele­
ments in essentially the order in which they are created. But 
after the volume has been in use for some time, elements may have 
been deleted and the space they occupied made reusable. Hence, 
when a new element is created, it is allocated the f irst avail­
able space even though that space may eventually be too small to 
contain the f ile. If more space is needed for even a single 
extent of a f ile, it will be obtained from another free area. 
Thus, there is not necessarily any relationship between a file's 
extents and contiguous f ree disk sectors. 

Naming Conventio_n~ 

Each disk f ile and directory name in the File System can con­
sist of the following ASCII characters: uppercase alphabetics (A 
through Z), lowercase alphabetics (a through z), digits (0 
through 9), underscore (_), apostrophe ('), hyphen (-), period 
(.), and dollar sign ($). On systems that use an 8-bit ASCII 
Extended Character Set (80 through FF hexadecimal), the disk file 
and directory names can also include the international graphic 
characters in the CO through FF hexadecimal range. File names 
are stored on the disk media and will be displayed as they were 
created. In any reference to a f ile name, lowercase alphabetics 
are treated the same as uppercase alphabetics and lowercase 
extended letters (EO through FF hexadecimal) are treated the same 
as uppercase extended characters (CO through DF hexadecimal) • 
For example, "FILE", "File", or "file" are equivalent and could 
be supplied in pathname requests to ref erence the same f ile. 

The f irst character of any name must not be hexadecimal FF 
(lowercase y with diaeresis) or hexadecimal 2E (period). The 
underscore can be used to join two or more words that are to be 
interpreted as a single name (e.g., DATE TIME). A period 
followed by one or more alphabetic or numeric characters after a 
file name is normally interpreted as -a suffix to a f ile name. 
This convention is followed, for example, by a compiler when it 
generates a f ile that is to be listed; the compiler identifies 
this f ile by creating a name of the form FILE.L. 

3-5 CZlS-02 



The name of a root directory or a volume identif ier can con­
sist of from one to six characters. The names of other direc­
tories and f iles can comprise from 1 to 12 characters. The 
length of a f ile name must be such that any system-supplied 
suffix does not result in a name of more than 12 characters. 

UNIQUENESS OF NAMES 

Within the system at any given time, the access path to every 
element must be unique. This leads to the following rules: 

• Only one volume with a given volume id can be mounted at 
any given time. (The system informs you of an attempt to 
mount a volume having the same name as one already 
mounted.) 

• Within a given directory, every immediately subordinate 
directory name must be unique. (The Create Directory com­
mand informs you of an attempt to add a duplicate 
directory name.} 

• Within a given directory, every file name must be unique. 
(The Create File command informs you of an attempt to add 
a duplicate file name.) 

PATHNAME 

The access path to any File System entity (directory or file) 
begins with a root directory name and proceeds through zero or 
more subdirectory levels to the desired entity. The series of 
directory names (and a f ile name if a file is the target entity} 
is known as the entity's pathname. The total length of any path­
name, including all hierarchical symbols, cannot exceed 57 char­
acters, except that a working directory pathname cannot exceed 51 
characters. 

Symbols Used in Pathnames 

The following symbols are used to construct pathnames. 

• Circumflex (A}--Used exclusively to identify the name of a 
disk volume root directory. The circumflex is used in two 
forms. In one form it directly precedes the root direc­
tory name (e.g., AVOLOll). In the other it directly pre­
cedes a greater-than symbol (>) to refer to the root 
directory of the current working directory (e.g., 
">DIRl>FILEA} • 

3-6 CZ15-02 



• Greater than (>)--Indicates movement in the hierarchy away 
from the root directory. The symbol is used to connect 
two directory names or a directory name and a f ile name. 
It can also be the f irst character of a pathname, in which 
case the element whose name follows it is immediately sub­
ordinate to the root directory of the system volume. Each 
occurrence of the greater-than (>) syrnbol denotes a change 
of one hierarchical level1 the name to the right of the 
symbol is immediately subordinate to the name on the left. 
Reading a pathname from left to right thus indicates 
movement through the tree structure in a direction away 
from the root directory. If the root directory AVOLOll 
contains a directory name DIRl, the pathname of DIRl is: 

AVOLOll>DIRl 

If the directory named DIRl in turn contains a f ile named 
FILEA, then the pathname of FILEA is: 

AVOLOll>DIRl>FILEA 

The greater-than symbol (>) is never followed by a space. 
Pathnames that begin with two greater than symbols (>>) 
assume that the entities specified are subordinate to the 
system boot directory. 

• Less than (<)--Used at the beginning of a pathname to 
indicate movement from the working directory in a direc­
tion toward the root directory. Cons~cutive ~ymbols can 
be used to indicate changes of more than one level1 each 
occurrence represents a one level change. When followed 
by elements of a relative pathname, those elements repre­
sent changes of direction away from the root directory. 
One or more of these symbols may precede only a relative 
pathname. 

• ASCII space character--Used to indicate the end of a 
pathname. When represented in memory, a pathname must end 
with a space character. 

The last (or only) element in a pathname is the name of the 
entity upon which action is to be taken. This element can be a 
device name, directory name, or file name, depending on the 
f unction to be perf ormed. In the Create Directory command, for 
example, a pathname specif ies the name of a directory to be 
created. The last element of this pathname is interpreted by the 
command as a directory name: any names preceding the final name 
are names of superior directories leading to it. An analogous 
situation occurs with the Create File command, except that in 
this case the final pathname element is the name of a f ile to be 
created. 

3-7 CZlS-02 



-------·--------·---------·-·- -------· ----· ------· 

Absolute and Relative Pathnames 

A full pathname contains all necessary elements to describe a 
unique access path to a File System entity, regardless of the 
type and location of the device on which it resides. The File 
System uses this form in referring to a directory or f ile. Bow­
ever, it is frequently unnecessary to specify all of these ele­
ments; the File System can supply some of them when the missing 
elements are known to it and the abbreviated pathnames are used 
in the appropriate context. An understanding of these conditions 
and contexts requires an understanding of absolute and relative 
pathnames. 

Absolute Pathname 

An absolute pathname is one that begins with a circumflex (") 
or a greater-than {>) symbol. A pathname that begins with a 
circumflex is a full pathname. A pathname that begins with 
either a single greater-than symbol or two greater-than symbols 
identif ies the root directory of the system root volume or the 
system boot volume. Thus, if the system root volume name is 
SYSOl and the pathname given is >DIRl>FILEA, the full pathname 
becomes "sYSOl>DIRl>FILEA. Using the greater-than symbol, you 
don't have to know the names of the system volumes. In addition, 
the name of the root directory of your current working directory 
can be abbreviated to ">. That is, ">DIR2>FILEB references 
another f ile on the same volume as the working directqry. 

Another volume, USER!, can also contain a >DIRl>FILEA access 
path and can be known to the File System; the two access paths 
are made unique by requiring that the root directory be specif ied 
when referring to the second volume. The full pathname of this 
f ile on the second volume is thus "USERl>DIRl>FILEA. 

Relative Path~ 

A relative pathname is a shortened version of the absolute 
pathname and assumes the working directory (or a higher element 
in the directory structure) without explicitly referring to it in 
the pathname. A relative pathname can begin either with a f ile 
or directory name or with one or more less-than symbols (<). If 
the pathname begins with a name (e.g., DIRI>FILEA or FILEA), the 
elements so identified are immediately subordinate to the working 
directory If a relative pathname begins with a less-than symbol 
(e.g., <FOSTER), the name following the less-than symbol identi­
fies an element that is inunediately subordinate, not to the 
working directory but to the element to which the working direc­
tory is itself inunediately subordinate. Thus, the less-than 
symbol is a way of working back up the directory structure. 

3-8 CZ15-02 

- ----... 
\ 



(( 

A relative pathname can consist of one or more elements. If 
a relative pathname contains more than one element, each element 
except the last must be a directory name, the first immediately 
subordinate to the current working directory level, the second 
immediately subordinate to the f irst, and so on. The last or 
only element can be either a directory name or a file name, 
depending on the function being performed, as described 
previously. 

A simple name is a special case of the relative pathname. It 
consists of only one element: the name of the desired entry in 
the working directory. 

If a reference is to be made to a f ile or directory that is 
on the same volume but not subordinate to the working directory, 
there are two alternative ways of making this reference: by 
using an absolute pathname, or by using any of the f orms of rela­
tive pathname described previously. 

Figure 3-3 shows some relative pathnames and the full path­
names they represent when the working directory pathname is: 

>PROJl>USERA 

3-9 CZlS-02 



BOX NUMBER 

t 
2 
3 
4 
5 

RELATIVE PATHNAME8 

DELTA 
OLO>DELTA 
<USERB>ALPHA 
< <PROJ2>USERA>DEL TA 
< 

J 
5 

PROJ1 

l J 1 
USERA8 US ERB 

I 1 I 
1 3 

DELTA ALPHA 

OLD 

2 
DELTA 

FULL PATHNAME 

"SYSOt>PROJt>USERA>OEL TA 
"SYSOt>PROJt>USERA>OLD>DEL TA 
"SYS01 >PROJ1 >USERB>ALPHA 
"SYS01 >PROJ2>USERA>OEL TA 
"SYS01>PROJ1 

SYSOt 

1 
PROJ2 

l 
USERA 

I 
4 

DELTA 

8 ASSUME CURRENTWORKING DIRECTORY IS "SYS01>PROJ1>USERA. 

84-819 

Figure 3-3. Sample Pathnames 

3-10 CZlS-02 

---..,_ 
\ 



('· 
J 

,.,-· 

MAGNETIC TAPE FILE CONVENTIONS 

The magnetic tape f ile conventions include tape f ile organi­
zation, tape file naming conventions, and tape f ile pathnames. 

9-Track Magnetic Tape File Organization 

9-track magnetic tape supports only the sequential f ile 
organization. Fixed- or variable-length records can be used. 
Records cannot be inserted, deleted, or modified, but they can be 
appended to the file. The tape can be positioned forward or 
backward any number of records. · 

The unit of transfer between mernory and a tape f ile is a 
block. Block size varies depending on the nurnber of records and 
whether the records are f ixed or variable in length. 

A block can be treated as one logical record called an 
"undef ined" record. An undef ined record is read or written with­
out being blocked, unblocked, or otherwise altered by data rnan­
agernent. Spanned records (i.e., those that span two or rnore 
blocks) are supported. (No record positioning is allowed with 
spanned records.) 

A labeled tape is one that conforrns to the current tape 
standard for volume and f ile labels issued by the American 
National Standard Institute. The following types of labeled 
tapes are supported: 

• Single-volume, single-f ile 
• Multivolume, single-file 
• Single-volume, multifile 
• Multivolume, multif ile. 

The following types of unlabeled tapes are supported: 

• Single-volume, single-file 
• Single-volume, multif ile. 

Magnetic Tape File and Volume Names 

Each tape f ile and volume name in the File System can consist 
of the following ASCII characters: 

• Uppercase alphabetics (A through Z) 

• Exclamation mark (!) 

• Double quotation marks ( " } 

• Percent sign (%) 
• Ampersand (&) 

• Single quotation mark ( ' ) 
• Left parenthesis ( () 

• Right parenthesis ()) 

• Asterisk (*) 
• Plus sign (+) 

3-11 CZlS-02 



• Comma (,) 
• Hyphen (-) 
• Period (.) 
• Slash (/) 
• Colon (:) 
• Semicolon (;) 
• Less-than sign (<) 
• Dollar sign ($) 
• Equal sign (=) 
• Question mark (?) 
• Underscore (_). 

Any of these characters can be used as the f irst character of 
a file or volume name. The underscore ( ) can be used as a 
substitute for a space. iE a lowercase alphabetic character is 
used, it is converted to its uppercase counterpart. 

The name of a tape volume can be from one through six charac­
ters; tape file names can be from 1 through 17 characters. 

Magnetic Tape Device Pathname Construction 

As previously mentioned, magnetic tape volumes can be labeled 
or unlabeled. 

UNLABELED TAPE PATHNAMES 

A tape device pathname must always be used when referring to 
an unlabeled tape. The general form of a tape device f ile 
pathname is: 

!dev name 

where dev name is the symbolic name defined for the tape device 
at system-building time. 

LABELED TAPE PATHNAMES 

Labeled tapes can be referenced either by the tape device 
pathname convention or by the tape volume id convention. The 
tape device file pathname convention is: 

!dev_name >vol_id[>filename] 

where dev name is the name of the tape device as specif ied at 
system buTlding time, vol id is the name of the tape volume, and 
f ilename is the name of the f ile on the volume. This convention 
requires that the volume be mounted on the specif ied device. 

3-12 
09/86 
CZ15-02A 



The tape volume id convention is: 

Avol_id[>filename] 

where vol id is the name of the tape volume and f ilename is the 
name of tne file on the volume. This convention allows the 
volume to be mounted on any available tape deviee. 

Automatie Tape Volume Reeognition 

Automatie volume recognition dynamieally notes the mounting 
of a tape volume. This feature allows the File System to reeord 
the volume identifieation in a deviee table, thus making every 
tape volume aeeessible to the File System software. 

UNIT-RECORD DEVICE FILE CONVENTIONS 

Unit-reeord deviees (e.g., card readers, eard punehes, 
printers) are used only for reading/writing data: they are not 
used f or data storage and thus do not require eonventions for 
f ile identif ieation and loeation. 

3-12.l 
09/86 
CZ15-02A 





( ·./ 

„ 

Refer to a unit-record device by entering a pathname consist­
ing of an exclamation mark (!) followed by the symbolic device 
name defined during system building. The format is: 

!dev name 

where dev name is the symbolic device name of the unit record 
device. 

WORKING WITH FILES 

The f ollowinq inf ormation addresses selected commands and 
procedures that you can use frequently, including: 

• Using f ile pathname conventions 
• Controlling your f iles and directories 
• Interrupting execution 
• Controlling your output 
• Controlling printing 
• Program execution 
• Communicating with other users 
• Performing batch processing. 

The examples that follow provide full details on perf orming 
these functions. Note that some examples do not list all 
optional control arguments for the commands described. See the 
Commands manual for a complete description of all commands and 
their arguments. 

COMMAND PROf~SSOR 

You communicate with the system through command lines entered 
at a terminal or read from a command f ile. Command lines are 
read and interpreted by a system sof tware component called the 
Command Processor. 

Standard I/O FiJ_es 

Four files are always associated with the Command Processor: 

• Command-in 
• User-in 
• User-out 
• Error-out. 

The command-in f ile is the f ile from which the Command 
Processor takes its input. The command-in f ile is normally asso­
ciated with (or assigned to) your terminal. However, it can be 
reassigned, temporarily, to another device or f ile, and subse­
quently reassigned to the terminal. 

3-13 CZlS-02 



A command function reads its own input during execution f rom 
the user-in file (normally assigned to your terminal). The 
directives submitted to the Editor following entry of the Editor 
command, for example, are submitted through user-in. A task 
group normally writes its output to the user-out file (normally 
assigned to your terminal). The user-out f ile can be reassigned 
to another device or file (see "Controlling Output"). This 
reassignment remains in effect until another reassignment occurs. 

The Command Processor, and any commands it invokes, writes 
any errors detected to the error-out f ile. The initial error-out 
f ile is the same as the initial user-out file; it can be 
reassigned by the File Out (FO) command. 

Full pathnames associated with each of these files can be 
determined by issuing a Status Group (STG) command at the 
terminal. 

Command Level 

The system indicates that it is at command level by issuing a 
ready (RDY) message at your terminal. This assumes that you have 
not disabled the ready message by a previously issued Ready Off 
(RDF) command; if you have, the system still comes to command 
level, but you are not informed. You can activate the ready 
prompt at any time by issuing a Ready On (RDN) command. 

Whe~ executing a command f unction, you can return to command 
level in one of two ways: 

• After a command function terminates, the system returns to 
command level and awaits the entry of another command. 
This command can be any function you wish to execute or it 
can be a BYE command, indicating that you have no further 
work to do and you want to terminate the current session. 

• You can interrupt execution of an invoked command by 
pressing the Break or Interrupt key at your terminal. See 
"Interrupting Execution" below. 

CONTROLLING YOUR OPERATING ENVIRONMENT -------------------
The following paragraphs describe the commands and procedures 

that may be most useful to an interactive system user. Once at 
command level, a wide variety of system operations can be 
performed using these commands and special system procedures. 
Selected examples are designed to help you become farniliar with 
using the systern for applications programming. For full 
descriptions of all commands and their arguments, ref er to the 
Commands manual. 

3-14 CZlS-02 



( 

Volume Control 

The following commands illustrate how to create or renarne a 
disk volume. 

CREATING VOLUMES 

Before beginning useful work on a previously unused tape or 
disk volume, assign it a unique name (volume identif ier or 
vol id) that can be recognized by the system. The vol id 
designates the volume (or root) directory name of the tape or 
disk volume. 

Ask the system operator to mount your diskette or tape on an 
available drive and notify you of the drive's symbolic peripheral 
device name. (The symbolic peripheral device name is the name 
the system uses to recognize the device.) 

For example, suppose you want to create a diskette volume and 
narne it WORK. Send the following message to the system operator 
(see "Communicating With Other Users" later in this section): 

The operator issues the Status System (STS) operator command 
to determine which devices are available: 

and the system responds: 

SYMPD CHANNEL DEVICE VOLUME USAGE AVAILABLE SECTORS VOL/FILE MEMBER 
NAME TYPE ID PHYSICAL LOGICAL SET NAME NUMBER 

B RCMOO 2800 2380 DMPVL 0 46504 5813 
B RCMOl 2880 2380 ··oPEN 0 51704 6463 
B FCMOl 2880 2385 SYSTST 0 172792 21599 
B MSMOl 1880 2361 D 
B RCDOO 1400 2332 MINE 0 9465 1182 
B FCDOO 1400 2333 0 0 0 
B RCDOl 1480 2332 RJE 0 1216 152 
B FCDOl 1480 2333 ·FcDOl 0 19560 2445 
B FCD02 1500 2333 FCD02 0 11960 1495 
B RCD03 1580 2332 D 
B FCD03 1580 2333 D 
B DSKOO 0400 2010 D 

The operator then mounts a diskette on the available drive, 
DSKOO, and sends you the following message: 

VOLUME MOUNTED ON DSKOO 

You can now use the Create Volurne (CV) cornmand to assign a 
unique vol id to your new disk volume, using the following form 
of the command: 

3-15 
09/86 
CZ15-02A 

* 



where WORK is the vol_id you want to assign. 

Using the -FT argument initializes all data structures on the 
volume and establishes WORK as the root directory name; the root 

1 directory pathname for this volume is AWORK. Since this command 
will erase any data on the disk, make certain you use the correct 
device name. 

RENAMING DISK VOLUMES 

If disk volumes having the same vol id are used, one of the 
volumes must be renamed before the system will accept it. (A 
tape vclume cannot be renamed.j The command: 

renames the volume OLD using the -RN control argument; the new 
volume name is NEW. 

Directory Control 

You can create an unlimited number of directories to organize 
your f iles. The following commands illustrate how to change your 
working directory, and create, rename, or delete directories. 

CHANGING YOUR WORKING DIRECTORY 

The system provides you with tools to keep you aware of your 
location within the directory and file structure at any moment. 
You can also request a list of the f iles and directories under 
any directory to which you have list access. 

To list your working directory, use the List Working 
Directory (LWD) command: 

ASYSVLA>UDD>PROGS>LOWELL 

The system responds with the absolute pathname of your work­
ing directory. If you want to change to some other directory, 
use the CWD (Change Working Directory) command. For example: 

RDY: 
~l{iiltl1 

ASYSVLA>UDD>PROGS>JONES 

The name of your new working directory is JONES. Any number 
of users can work in the same directory at one time, as long as 
each user has list access to move there. 

3-16 
09/86 
CZ15-02A 



. (~, 

It is usually more convenient to use the relative pathnames 
of directories. For example, you can change your working direc­
tory to LOWELL by typing: 

When going f rom a directory to a subdirectory, the system 
requires you to specify the directory name (there may be more 
than one directory subordinate to your working directory). 

However, when moving up in the file structure, there is no 
ambiguity. You can move up one or more directory levels by 
entering one or more "<" signs: 

--w• .... ,.w· lliitt .:;. i ,,~ .. c .. 
~' .·,,~··· ·.*~~ . 
RDY: „ 
"SYSVLA>UDD>PROGS 

,• 

If CWD is entered with no arguments, the system returns you 
to your home directory (your initial working directory): „ 

"SYSVLA>UDD>PROGS>JONES 
RDY: 

11111; ·:: . 
RDY: „ 
"SYSVLA>UDD>PROGS>LOWELL 

CREATING DIRECTORIES 

You can create a directory using the Create Directory (CD) 
command. For example, you may want to put a COBOL program and a 
BASIC program under separate subdirectories below your home 
directory (your initial working directory). You first create the 
directories: 

lall!llI'llll 
RDY: 
llllflS_,1:11 

You can now create your programs in subdirectories subordi­
nate to your home directory (or create them elsewhere and copy 
thern into the directories COBOL_DIR and BASIC_DIR). 

As another example, suppose that you have just created, for­
rnatted, and narned the disk volume WORK, as described under 
"Creating Volumes." You would like to create two directories, 
narned SHEPARD and COOK, irnmediately subordinate to the root 
directory "WORK • 

3-17 CZlS-02 



---------~ -- -···--'· ---~-·--------:._ -· 

Bef ore creating your two directories, you enter a CWD command 
to change your working directory to AWORK: 

(Note that this step is optional; you need not change your work­
ing directory to the volume AWORK to create subordinate direc­
tor ies or f iles. You can create directories or f iles f rom any 
location in the File System tree structure by supplying the 
appropriate absolute or relative pathname of the f ile or direc­
tory you wish to create. However, for the sake of simplicity, 
only simple pathnames are used here.) 

To create the directory SHEPARD, enter the command: 

This directory now resides immediately subordinate to the 
root directory AWORK. 

To create the directory COOK, enter the command: 

This directory now resides, along with SHEPARD, immediately 
subordinate to the root directory AWORK. Figure 3-4 illustrates 
this directory tree structure. 

SHEPHERD 

WORK 

root directory 

COOK 

86-049 

Figure 3-4. Location of Directories SHEPARD and COOK 

3-18 CZlS-02 



c 

c 

RENAMING DIRECTORIES 

You can change the name of an existing directory using the 
Rename (RN) command. For example, assume that within your work­
ing directory >UDD>PROGS>SMITH, there is a directory TEST. The 
command: 

changes the pathname of the affected directory from: 

>UDD>PROGS>SMITH>TEST to >UDD>PROGS>SMITH>WORK 

DELETING DIRECTORIES 

You can delete one or more directories using the Delete 
Directory (DD) command. For example, you may no longer need to 
use a directory called EXAMPLE. The command: 

deletes the directory called EXAMPLE f rom your working direc­
tory. Note that you could not delete EXAMPLE if it was your 
working directory. 

As a saf ety measure, the File System will not allow you to 
delete a nonempty directory. If you wish to delete a directory, 
you must f irst delete any subdirectories or files it contains. 

File Control 

The following commands show you how to create, rename, 
delete, copy, and locate f iles. 

CREATING FILES 

You create a f ile in the f ile structure with the Create File 
(CR) command. For example: 

produces a sequential file called DATAFILE in your working direc­
tory, with a record size of 216 characters (the default) and a 
length of zero sectors. The following command: 

produces a file called MIME.D in the working directory, with a 
record size of 80 characters and a maximum allowable size of 800 
control intervals. This file is meant to be a card f ile; after 
reading the cards (see "Copying Fi~es" later in this section), a 
listing reveals the following: 

3-19 CZlS-02 



DIRECTORY: ASYSVLl>UDD>PROGS>DIRA 

ENTRY NAME TYPE 
PHYSICAL STARTING 
SECTORS SECTOR HEX 

RE CORD 
LENG TH 

************************************************* 
START UP.EC 
MIME.D 

s 
s 

8 
40 

580 
800 

256 
80 

************************************************* 

As another example, assurne that you wish to create a f ile 
under each of the two directories, SHEPARD and COOK, shown in 
Figure 3-5. Your working directory is the root directory WORK. 
Tc create a f ile narned REPORTS under the directory SHEPARD, enter 
the cornrnand: 

where SHEPARD>REPORTS is the relative pathnarne (relative to your 
working directory) of the f ile you wish to create. 

The f ile REPORTS now resides irnrnediately subordinate to the 
directory SHEPARD, as shown in Figure 3-5. 

SHEPHERO 

REPORTS 

WORK 

root directory 

COOK 

86-050 

Figure 3-5. Location of Subordinate File REPORTS 

Suppose you want to create a f ile narned WORDLIST under the 
directory COOK. Since your working directory is still the root 
directory, WORK, enter the comrnand: 

where COOK>WORDLIST is the relative pathnarne of the f ile you want 
to create. The f ile WORDLIST now resides irnrnediately subordinate 
to the directory COOK, as shown in Figure 3-6. 

3-20 CZlS-02 



SHEPHERD 

REPORTS 

WORK 

root directory 

COOK 

WORD LIST 

86-051 

Figure 3-6. Location of Subordinate File WORDLIST 

RENAMING FILES 

Suppose that Cook wants to name his f ile more appropriately 
MATCHTM.D rather than MIME.D. The f ile can be renamed using the 
RN command: 

DELETING FILES 

You can delete f iles using the Delete File (DL) command. For 
example, to delete the f ile DATAFILE in your working directory, 
enter: 

COPYING FILES 

The Copy command allows you to copy files between direc­
tories, into directories from a card reader, out of directories 
to a printer, and between tape or disk volumes. For example, 
suppose Cook wants to read cards into a f ile MATCHTM.D. From the 
horne directory (COOK), enter: 

All peripheral devices (tapes, card readers, and printers) 
are referred to by their symbolic peripheral device name; e.g., 
CDR for card reader. 

3-21 CZlS-02 



When you read in cards, the card reader must be ready (the 
READY light must be on) • While the command is being processed, 
your terminal locks; if the card reader is not ready or jams, the 
operator receives an error message. Until the card reader pro­
cesses the end-of-f ile (EOF) card, the copy is not complete, and, 
if you f ail to include an EOF card, the reader and your terminal 
remain locked. An EOF card is multipunched in column 1, rows 11, 
5, 8, and 9. After copying is finished, you receive the Ready 
message or Master Menu (if in the Menu Subsystem). 

Cook wants to copy an Assembly language subroutine, REC3.A, 
f rom his home directory, "'SYSVLA>UDD>PROGS>COOK, currently his 
working directory, to the directory "'SYSVLA>UDD>PROGS>TOOLS. 
Note the use of the relative pathname. 

The command allows you to omit the second argument if you are 
copying a f ile into your working directory. Thus, if Cook were 
in the directory "'SYSVLA>UDD>PROGS>TOOLS, and wanted to copy in 
the file "'SYSVLA>UDD>PROGS>COOK>REC3.A, he needs to type only: 

The command copies REC3.A into TOOLS and names it REC3.A by 
default. You must be in the target directory to use this 
f eature. 

For another example, to copy cards onto a tape named BSOOl, 
that is already mounted, enter: 

LOCATING FILES 

You can use the Where (WH) command to locate and display a 
file's full pathname. The system searches your working direc­
tory and the two system libraries., SYSLIBl and SYSLIB2, looking 
for your f ile. If the file is found, its full pathname is dis­
played. If the f ile is not found, an error message is displayed. 
You may find this command useful if you know the simple pathname 
of a f ile but want to know its absolute pathname or to determirie 
if the f ile you want to locate exists. 

3-22 CZlS-02 



LISTING FILES AND DIRECTORIES 

You can list the contents of any directory that you have at 
( least list access to by using the List Names (LS) command. 

C„_ 

i 

For example, Cook lists the contents of his working directory 
by entering: 

DIRECTORY: ASYSVLl>UDD>PROGS>COOK 

ENTRY NAME TYPE 
PHYSICAL STARTING 
SECTORS SECTOR HEX 

RE CORD 
LENG TH 

************************************************** 
START UP.EC s 8 580 256 

************************************************** 

•To determine the starting sector of the file f~r file dumping 
purposes, the record length is the number of characters per line. 
Listing Cook's file without any arguments would produce this 
inf ormation. 

DIRECTORY: ASYSVLl>UDD>PROGS>COOK 
START UP.EC s 8 

TOTAL SECTORS 8 

With no arguments, the LS command lists all f iles and direc­
tories subordinate to your working directory. 

The -DIR argument of the command lists only directories 
subordinate to your working directory. 

To stop output (scrolling) during execution of a list com­
mand, press the space bar on your terminal keyboard. To resume 
scrolling, enter @ on the same line, followed by a carriage 
return. 

Interrupting_~~~c_l!..tion 

You can interrupt the execution of any command or program, 
at any time, by pressing the terminal break (BREAK) key. This 
signals the processor to interrupt execution. You can now enter 
any system command. To resume execution of the command or 
program •. enter the Start (SR) command for programs or the Program 
Interrupt (PI) command for system software, such as the Editor or 
Linker. 

3-23 CZlS-02 



If you do not want to resume execution after a break, you can 
use the Unwind (UW) command to return to command level, or a New 
Process (NEW PROC) command to restart your task group; i.e., 
return it to-the state existing immediately after login. 

For example, assume you are using the Line Editor to edit a 
large f ile, and you accidentally press the BREAK key while 
listing the f ile. To resume listing your f ile as if no break had 
occurred, you could issue an SR command, or you could save your 
work in the Editor and resume processing in edit mode by issuing 
a PI command. You can also enter the UW command if you want to 
close all your f iles, return to system command level, and proceed 
with other work. Your final option would be to issue a NEW_PROC 
command that would return you to cornmand level in your home 
directory. 

Controlli~g_Qut_p_!lt 

Normally, all output goes to your terminal. (At login, for 
example, all four I/0 f iles, user-in, user-out, command-in, and 
error-out, are assigned to your terminal.) If you are producing 
a large output, you may want to redirect it elsewhere. The fol­
lowing paragraphs describe how to direct your output to a f ile or 
to a printer. 

DIRECTING OUTPUT TO A FILE 

To direct output to a f ile (which need not have been pre­
viously created) using the FO (File Out) cornmand, enter: 

All normal system output (such as a response to an LS com­
mand) goes to FILEA, which is your new user-out f ile. Error 
messages and the ready message that go to the error-out f ile 
cannot be redirected and continue to appear at your terminal. 
Thus, if you entered an LS command, the system writes the listing 
to FILEA and responds at your terminal with only the ready 
message. However, input directed to your terminal is unaffected 
by the FO command. 

DIRECTING OUTPUT TO A PRINTER 

If you are perf orming functions that lead to many pages of 
output, you can direct output to a printer. The command: 

directs all subsequent output to LPTOO (assuming that you have 
access to the printer). Note that while you are using the 
printer, no one else can use it. In a multiuser system you may 
wish to avoid tying up the printer. {See "Deferred Printing" 
later in this section for information on printing large files.) 

3-24 CZlS-02 



( 

c 

REDIRECTING OUTPUT TO YOUR TERMINAL 

After you have finished directing output to a printer, you 
should redirect output to your terminal. Enter the FO command 
with no arguments: 

(The default is to redirect output to your terminal.) 

Printing Control 

You can print f iles at your terminal or you can request 
deferred printing. If you use the Print (PR) command, output 
appears on your terminal (i.e., output goes to the user-out 
f ile) • This is inconvenient, however, if you are printing lar~e 
files. For large files, you have the option of using deferred 
printing. The system stores your print request in a first-in, 
f irst-out queue. 

PRINTING FILES AT YOUR TERMINAL 

If you want to print a file at your terminal, issue a PR 
command: 

Remember that not all f iles are meant to be listed at a ter­
minal. Some f iles are print f iles; some are not. Examples of 
print f iles are listings from the Linker and compilers and batch 
output f iles. In print files, the first character of each line 
is a print control character, instructing the printer how many 
spaces to skip between lines and when to skip to the top of a 
form. When printing a nonprint f ile, use the -SP argument of the 
Print command. This argument instructs the printer to print the 
f irst character of each line, and to skip one space between 
lines. 

DEFERRED PRINTING 

To print large f iles, use the Deferred Print (DP) command. 
The DP command f rees you f rom the need to reserve a printer and 
allows more efficient use of your system's printer resources. 
The request is queued on a f irst-in, f irst-out basis in one or 
more print queues. 

3-25 CZlS-02 



Arguments of the DP command allow you to address your print 
output. If you are not at the printer, the person who is can 
separate printouts and route them to personnel. The Destination 
(-DS) argument accepts a string of up to 13 characters that 
appear as the f irst line of the address page. You can include 
blanks in the string if you enclose the string in quotes. The 
Header (HE) argument accepts a string of up to 26 characters that 
appear as the second line of the address page. For example: 

produces the following printer output: 

• An address page, with a header label and destination label 

• One blank page 

• One or more pages containing the f ile 

• One blank page 

• An end page, containing accounting information (e.g., the 
cost of the print job}. 

If you do not include a header and destination label, the 
default is the user name for the header label, and the account 
name for the address label. 

Your request is automatically entered in the queue. In this 
example, Shepard's print request will not be executed until it 
reaches the head of print queue three. 

NOTE 

Def erred print requests are queued on disk and 
are not lost when the system is restarted. 

Program _Ex~~!!~l-.9..!! 

Most of the programs you write require some type of input and 
output. Before you execute a program, you must provide informa­
tion that tells the program where your input comes f rom and where 
your output will go. The GET and REMOVE commands allow you to 
reserve f iles and devices for program input and output, and, 
after program execution, to cancel those reservations. 

3-26 CZlS-02 



( 

GET performs two functions. First, it reserves a f ile or 
device for use by the executing prograrn. This reservation rnay 
set exclusive access or sorne degree of shared access (see 
"Reserving Files or Devices"). Secondly, GET establishes a rela­
tionship between pathnames and the logical f ile numbers (LFNs) by 
which you can gain access to f iles and devices. Using a GET 
command overrides any internal LFN assignments you have included 
in your FORTRAN, BASIC, or Assembly language program. 

Once program execution has terrninated, you can use the REMOVE 
command to cancel f ile/device reservations and the LFNs that your 
prograrn assigned with the GET cornmand. 

For exarnple, if you are cornpiling the COBOL program CARDIN, 
CARDIN uses two f iles, a card reader (from which input will be 
read), and a disk file (to which output will go). The prograrn 
refers to these two f iles by internal file names (IFNs) OA and 
OC, which correspond (rnap) to logical file numbers (LFNs) 1 
and 3. You assigned these IFNs.when you wrote your COBOL 
prograrn. The system maps these IFNs to corresponding LFNs. 

After linking your object unit into a bound unit, you must 
use the GET command to reserve an input file (a card reader) and 
an output f ile (a disk f ile). 

To reserve the card reader, specify: 

To reserve the disk f ile, specify: 

In this example, it is assumed that the f ile MASTER was pre­
viously created under the directory COBOL DIR. lt is also 
assumed that the directory COBOL DIR is sÜbordinate to your work­
ing directory. (The GET command-could have directed program 
output to any file, not necessarily one named MASTER.) 

If you have already loaded the card reader, you can now exe­
cute CARDIN by entering the simple pathname (since the bound unit 
CARDIN is in your working directory) : 

The program reads cards into the f ile MASTER. Once the pro­
gram terminates, remove the device and f ile reservations: 

RDY: 

3-27 CZlS-02 



geservin9 Files or D~yices 

You can use the GET command to reserve a f ile or device for 
use by your task group. When you reserve a f ile, you can specify 
whether other users will be allowed some form of concurrent 
access. 

For example, when you reserve a disk f ile, you can specify 
that all users can read the f ile while you have it reserved, but 
that only you can alter (write to) it. To do this, enter: 

If a directory is reserved exclusively for you (using the 
-SHARE N argument)! then all subdirectories and files are also 
reserved exclusively. Thus, entering: 

reserves the entire volume VOL04 for your exclusive use. Note 
that the system always reserves tapes exclusively for your use 
when you reserve them. 

Communicatin9_.!Y'_i_t_1l_Oth~!-~_§;~_rs 

You can send messages to the system operator and send (or 
receive) mail to other system users by using the Message (MSG) 
or MAIL commands. Messages sent to the operator are displayed 
immediately on the operator.terminal; mail is not displayed until 
the receiver enters the MAIL command. 

To send a message to the operator, you might enter the fol­
lowing request: 

You must enclose your message in quotation marks (or apostro­
phes) if it contains embedded blanks. 

To send mail to another person, you might enter: 

where LOWELL is the person_id of the receiver. The system 
responds: 

INPUT: 

You can then enter the text of your message. Terminate the mes­
sage by entering a period (.) or the letter Q followed by a car­
riage return. Your message is queued in Lowell's mailbox until 
Lowell issues a MAIL command to display mail. 

3-28 CZlS-02 



( 

To mail a f ile that might be a program or a long message for 
many users, use the f ilename argument of the MAIL command: 

This command mails the f ile HEX AS.A to Lowell. Long mes­
sages should not be sent to users aE a VIP terminal. 

NOTE 

Before you can receive mail, either you or your 
system operator must have previously created the 
mailbox directory and the necessary mailboxes, and 
have set access controls on these mailboxes. See 
the System UseE~~-g~jjle for details. 

3-29 CZlS-02 





REMOVE THIS PAGE AND PLACE TAB FOR 

TAB 4 

SCREEN EDITOR 



f~~ ' 
\. ). 
~/ 



Section 4 
SCREEN EDITOR 

The Screen Editor is called Screen-Oriented Program for 
Editing Operations (SCORPEO). It is a full screen, interactive 
text editing, and. documentation preparation tool for GCOS 6 ASCII 
f iles. SCORPEO uses the entire screen of a visual display 
terminal to view and manipulate data, thereby making text editing 
faster and simpler. 

This section describes the Screen Editor capabilities as well 
as the directives used to create, modify, and save files. 

OVERVIEW 

The Screen Editor creates and/or alters character text in a 
f ile. You control editing by using a combination of directives, 
function keys, and labeled keys. 

Commonly used editing operations are assigned to function 
keys. To view a data file, use selected function keys to move a 
full screen of text (window) up and down within the f ile. To 
view lines that exceed the width of the terminal, rnove the window 
left or right. Other function keys move the cursor in a forward 
or backward movement in units of words. At all tirnes the cursor 
positioning keys (arrow keys) can be used to place the cursor in 
any location within the textual window. 

4-1 CZlS-02 



Labeled keys perform the function described on the key. To 
edit text quickly, simply position the cursor over any charac­
ter (s) and overstrike (or overtype) them. Lines and/or charac­
ters can be inserted or deleted relative to the cursor position. 

SCORPEO also provides global f ile operations, such as 
positioning, searching, and changing operations. In addition, 
line numbers can be used to rapidly f ill the window with a view 
of specif ic lines within the f ile. Where applicable, these 
global operations are compatible with similar capabilities in the 
GCOS 6 Line Editor (ED). You can edit files created by the Line 
Editor with the Screen Editor. The Line Editor is described in 
Section 5. 

Tab stops for COBOL, FORTRn.N, and GCOS 6 Assembly language 
statement formats are built into SCORPEO. For details on 
developing source programs, see the appropriate language manual. 

All edi ting is done in a temporary wo·rk area called a buff er. 
This buffer references a pair of temporary work f iles. When you 
invoke SCORPEO, a buffer and associated work f iles are automati­
cally created for you. To save the Screen Editor output, you 
must write the contents of the buffer to a f ile. 

NOTE 

During a single execution of the Screen Editor, 
you can read only one f ile. You must write the 
contents of the buffer out to another f ile or to 
the same f ile. To edit a second f ile, you must 
reinvoke the Screen Editor. (See 0 Loading the 
Screen Editor 0 later in this section.) 

SCREEN EDITOR PROCESSING 

You control Screen Editor processing. by specifying 
directives, or using function keys or labeled keys. The 
subsections that follow describe the following Screen Editor 
processing functions. 

• Suffix Conventions--describes file naming conventions. 

• Loading the Screen Editor--describes the command used to 
invoke the Screen Editor. 

• Description of the Screen--def ines and illustrates the 
three regions of the screen. 

• Creating a Source Unit--describes the procedure for 
creating a f ile. 

• Changing an Existing Source Unit--describes the procedure 
for modifying a f ile. 

4-2 CZlS-02 



(' 

c 

• 

• 

• 

• 

• 

Interrupting Screen Editor Processing--describes the 
procedures used to stop Screen Editor processing. 

Entering Screen Editor Directives--defines the rules for 
entering Screen Editor directives. 

Screen Editor Directive Format Conventions--defines the 
rules for specifying directive formats. 

Designating Lines--describes the procedure used for 
locating, adding, and deleting lines from a f ile. 

Special Characters--def ines the characters used to specify 
a processing function. 

• Screen Editor Directives--defines each directive in 
alphabetical order by directive name. Provides the 
information necessary for using the directives to create 
and modify f iles. 

• Function Keys--def ines each function key in alphabetical 
order by function name. Describes function key use in 
creating and modifying f iles. 

• Labeled Keys--describes each labeled key as it is used by 
the Screen Editor in creating and modifying f iles. 

SCREEN EDITOR SUFFIX CONVENTIONS 

When you create a source unit, you should append the 
appropriate suff ix identif ication character to the name of the 
f ile that will contain the source unit. The suffix designates 
the type of programming language that constitutes the source 
unit. The suffix must be .c for COBOL or c programs, .F for 
FORTRAN programs, .B for BASIC programs, .PS for Pascal programs, 
.AS for ADA programs, and .A or .P for Assembly language 
programs. 

When you specify the f ile names of Screen Editor input and 
output f iles (when calling the Screen Editor, and in selected 
directives), you must designate the complete file name, including 
the suffix that denotes the contents of the f ile. The Screen 
Editor does not append a suffix to its input and output files. 

LOADING THE SCREEN EDITOR 

To load the Screen Editor when running under the menu 
subsystem, select the SCORPEO option f rom one of the selection 
menus that contains it, and press TRANSMIT. The Screen Editor 
can be loaded when you enter the menu subsystem by selecting 
Commonly Used Functions (CF) from the General Menu System menu 
and then selecting SCORPEO (SC) f rom the Commonly Used Functions 
menu. 

4-3 CZlS-02 



To load the Screen Editor by a command line, enter the 
SCORPEO command. 

FORMAT: 

SCORPEO [path] [{ =~INES} nnnn J 
ARGUMENTS: 

None or any number of the following control arguments may 
be entered: 

[path] 

Pathname of the f ile you wish to edit. Pathnames can be 
full or relative. If a pathname is relative, it is 
expanded relative to your current working ~irectory. If 
you are creating a new f ile without any initial input 
from another f ile, do not enter a pathname. If you 
specify path, the first 17 lines of the f ile will f ill 
the window (text region) • 

{ =~INES} nnnn 

Approximate number of lines the Screen Editor should hold 
in main memory during the current editing session, nnnn 
is a positive decimal value between 500 (the minimum 
number of lines you can declare) and 4096 (the maximum). 
If you specify less than 500 lines or more than 4096, an 
error is reported. When editing very large files Cover 
10,000 lines) the -Lines option can help improve 
performance. A value higher than the 1000 line default 
(from 2000 to 4096) is recommended. For f iles over 
35,000 lines, use a value of at least 1500. The -Lines 
option increases memory usage (-LINES nnn * 22 words) for 
internal structures. 

Default: 1000 lines. 

Once you have loaded the Screen Editor, a screen such as that 
described in Figure 4-1 or Figure 4~2 is displayed. If you are 
creating a file (you invoked the Screen Editor without a 
pathname), the screen shown in Figure 4-1 is displayed. If you 
are modifying (editing) a previously created f ile, a screen 
similar to that shown in Figure 4-2 is displayed. 

If you are editing a f ile that contains characters from the 
8-bit ASCII Extended Character Set (80 through FF hexadecimal), 
be sure your terminal supports these characters (i.e., HDS 2 
terminal conf igured f or 8-bit operation) • 

4-4 CZ15-02 



c 

Description of the Screen 

The display on the terminal used by the Screen Editor is 
broken down into three distinct areas called "regions." Each 
region is described in detail in the following paragraphs. Refer 
to Figure 4-1 and Figure 4-2 for the location of each region. 

LEFT MARGIN = 001 CURRENT LINE = 00001 
**********TOP OF FILE************************** TOP OF FILE **************** 

(17 blank lines) 

DIRECTIVE: 

Figure 4-1. Sample Screen for Creating a File 

~VOLl>DIR>INVTNRY MODIFIED 
LEFT MARGIN = 001 CURRENT LINE = 00001 
**********TOP OF FILE ************************** TOP OF FILE **************** 

(17 lines of text are displayed here) 

DIRECTIVE: 

Figure 4-2. Sample Screen for Modifying a File 

4-5 CZlS-02 



STATUS REGION 

The status region of the screen is that area at the top of 
the screen that shows the status of the f ile. 

When you are creating a f ile, the information displayed in 
the status region is: the current position of the left margin 
and the current line number {as shown in Figure 4-1) • 

When you are editing a f ile, the information displayed is: 

• The full pathname of the f ile you are editing 

• The flag MODIFIED (if modified) 

• The current position of the left margin {as shown in 
Figure 4-2) • 

TEXT REGION , 

The text region of the screen is the large area in the middle 
of the display where you actually create and modify the text. 
The text region is also called the "window." The window is 18 
lines long and from 80 to 256 characters wide. (You control the 
width of the text with the Window Width directive described later 
in this section.) The maximum record length of a file is 256 
characters. 

When the f irst 17 lines of a file appear in the window, you 
will see at the top of the window a line designated as TOP OF 
FILE. This line is called the control line. You can use this 
line to verify that you are at the beginning of the f ile and to 
position the cursor when you want to insert text before the f irst 
line of your f ile. This line does not appear within your f ile. 

At the bottom of the window is a line of dashes and vertical 
bars. This line is called the tab designator line. The position 
of the vertical bars indicates the current tab stops. To set 
these tab stops, use the Language Type directive or the TAB SET 
key. To clear these tab stops, use the TAB CLR or the 
CLR/TAB/SET keys. Both operations are described later in this 
section. 

DIRECTIVE REGION 

The directive region is at the bottom of the screen just 
under the tab stop designator line. The cursor is positioned 
here when you press the HOME key to enter directives to the 
Screen Editor. Screen Editor directives are described later in 
this section. 

Immediately below the directive region is the area where you 
can view system messages, both informational and diagnostic, that 
relate to the current editing activity. 

4-6 CZlS-02 



Creating a source Unit 

To create a source unit, perform the steps that follow. 
Directives and function keys are described later in this section. 

1. Change the working directory to a user volume by 
specifying the Change Working Directory command (see the 
Commands manual) or by using the CWD form. 

2. Call the Screen Editor (see "Loading the Screen Editor" 
earlier in this section) • 

3. Enter the source unit text. 

4. Make changes, if necessary, by entering the appropriate 
directives, by using the function keys or the labeled 
keys, or by typing over existing text. 

5. Write the contents of the buffer to a file by using the 
Write directive. 

6. Exit from the Screen Editor by entering the Quit 
directive. 

You can use tab stops when creating a f ile (that is, with the 
TAB SET labeled key or LANGUAGE TYPE directive) • Tab characters 
convert to the appropriate number of space characters according 
to the tab stops, and are not present in the f ile. When an 
existing f ile that contains tab characters is modified, the tab 
characters are converted to spaces. 

Changing an Existing source Unit 

When you read an existing f ile, any ASCII non-printable 
characters are converted to dots (hexadecimal value 2E) • If the 
f ile contains any 8-bit ASCII extended characters (hexadecimal 80 
through FF) and your terminal doesn't support 8-bit operation, 
the 8th bit is folded and the character is displayed as a 7-bit 
character. To change an existing source unit, perform the steps 
that follow. (You can change a source unit that was created 
using the Line Editor with the Screen Editor.} Directives and 
f unction keys are described later in this section. 

1. Change the working directory to a user volume by 
specifying the Change Working Directory cornrnand (see the 
Cornrnands manual) or by using the CWD form. · 

2. Call the Screen Editor (see "Loading the Screen Editor" 
earlier in this section) optionally specifying the 
pathname of the source file you wish to modify. 

3. If you did not specify a file pathname when you called 
the Screen Editor, use the Read directive to read into 
the buffer the source unit you wish to edit. 

4-7 CZlS-02 



-----·-·-·--··-~-------------~~--··- -----~--- -· • ••----C------------ -·--·--·-- ··--·-------·--·-------

4. use the appropriate Screen Editor directives, function 
keys, and labeled keys or simply type over existing text 
to modify the source unit. -, 

r-\ 
5. Write the contents of the buffer to the file from which 10 

the lines were read or to a different f ile by using the 
Write directive. 

6. Exit from the Screen Editor using the Quit directive. 

Interrupting screen Editor Processing 

You can interrupt Screen Editor processing by either: 

• Entering the Quit directive. 

Entering the Quit directive is the preferred way to 
terminate processing. If no modified buffer exists (i.e., 
the user has n.ot changed a line in the f ile, or has not 
written a newly created file), then the Screen Editor 
terminates when the Quit directive is entered. If a 
modif ied buffer exists, then a question "Modif ied buffer 
exists. Do you still wish to quit? (Answer yes or no.)" 
is displayed and you make a choice (yes = terminate; no = 
resume). Thus, the system does not process the Quit 
directive, but the Screen Editor does in a very specif ic 
way, as described here. 

• Pressing the INTERRUPT or BREAK key on your terminal. 

e Entering aC~Bgroup-id on the Operator terminal, where 
group-id is the two-character task group name of the group 
containing the Screen Editor task. 

A **BREAK** message is displayed on the 25th line of your 
terminal when the system interrupts the Screen Editor. Before 
the break message can be responded to, it must be acknowledged by 
pressing the TRANSMIT key. Pressing TRANSMIT clears line 25 of 
your terminal. At this point, there are four actions you can 
take: 

1. Enter any user command found in the Commands manual. 

2. Enter the Start (SR) command. The Screen Editor resumes 
processing as if it bad not been interrupted. All of the 
changes to the f ile you were editing at the time of the 
interrupt are intact. 

3. Enter the Unwind (UW) command. The Screen Editor 
terminates processing and the system returns to the 
~ommand level. None of the changes made to the file 
since the last write directive are saved. 

Using UW causes the Screen Editor to terminate 
unconditionally. 

4-8 CZlS-02 



( 

4. Enter the New Process (NEW PROC) command. The current 
task group is aborted and then restarted using the same 
arguments specif ied when you logged in. None of the 
changes you made to the f ile since the last write 
directive are saved. 

ENTERING SCREEN EDITOR DIRECTIVES 

To enter any of the Screen Editor directives, press the HOME 
key to position the cursor in the directive region of the 
screen. See the description of the HOME key later in this 
section under "Labeled Keys." After entering the directive and 
its arguments (if any), press the RETURN key to execute the 
directive. 

If you have entered a directive line and you decide not to 
use the directive before you press the RETURN key, you can cancel 
the directive by pressing the Cursor Up ( t) key. (This key is 
described in detail later in this section.) The cursor is placed 
in the text region at the location on which the cursor was 
positioned before you pressed the HOME key. 

Screen Editor Directive Format Conven_!:ions 

Most Screen Editor directives consist of only a directive 
name, a directive name preceded by one or two line numbers, a 
directive name optionally preceded by one or two line numbers and 
followed by text, or only a line number. You cannot specify a 
directive line longer than 70 characters. You can specify only 
one directive on a line. Directive formats are: 

FORMAT 1: 

line number 

FORMAT 2: 

dirname 

FORMAT 3: 

line number dirname 

FORMAT 4: 

line number ,line_number dirname 

'FORMAT 5: 

dirname text 

FORMAT 6: 

line number dirname text 

4-9 CZlS-02 



FORMAT 7: 

line number ,line_number dirname text 

1. 

2 • 

DESIGNATING 

NOTES 

If a directive includes text, you must leave 
at least one space between the directive name 
and the text. 

If you specify two line numbers in a directive 
line, separate them by a comma (,); do not use 
any spaces. 

You can locate each line in the buffer by entering a decimal 
number that indicates the f ile-relative position of the line 
within the buffer. The first line in the buffer is line l; 
subsequent l(nes are numbered sequentially in ascending order. 

Screen Editor directives can cause lines to be added to or 
deleted from the buffer. Each time this occurs, all succeeding 
lines are renumbered. For example, if line 5 is deleted, line 6 
becomes 5, and each subsequent line number is decremented by 1. 

If you specify a line that is not in the buffer, an error 
message is displayed. 

BLOCK DESCRIPTION 

SCORPEO provides a set of block-related functions to move 
collections of data within a file and to extract collections of 
data from a file. The Block function key defines a 0 block, 0 or 
subset of the buffer on which some action will be performed. 
Function keys are used to def ine blocks, and subsequently to 
move, copy, or delete them. Blocks can also be written to 
external files. 

You def ine a block by positioning the cursor on the desired 
starting position and pressing the Block function key. Next, you 
position the cursor on the ending position and again press the 
Block f unction key. It is not necessary to set the starting 
position of the block first. The starting block position is 
always considered to be the block definition closer to the 
beginning of the buffer. The ending block position is always 
considered to be the block definition closer to the end (last 
line) of the buffer. 

A block is defined by its location; i.e., the line and column 
numbers of its starting and ending points. For example, if you 
define a block beginning in line 1, column 1, and ending in line 
10, column 80, and then you delete lines 5 through 10, the 
resulting block begins at line 1, column 1, and ends at the old 
line 16 (now the new line 10). 

4-10 CZlS-02 

-----, 
\ 

(----,\ / 
\ i 
~/ 



( 

Once you def ine a block, it can be acted upon. You perform 
actions on a block using the Move Block, Copy Block, Erase Block, 
and Delete Block function keys, and the Write Block and Change 
Block directives. 

The f ollowing block directives and block-related function 
keys erase the definition of the block: 

• Delete Block 
• Erase Block 
• Move Block. 

The following block directives and block-related function 
keys preserve the definition of the block: 

• Lower Case 
• Upper Case 
• Change Block 
• Write Block 
• Copy Block. 

These function keys and directives are described later in 
this section. 

When def ining a block for a Move Block or Copy Block 
directive, it is possible to split a line. A line split occurs 
when you try to insert or delete a block other than at the end 
points of a line. If you do this, the lines are truncated (if 
you insert) or concatenated (if you delete). Spaces are consid­
ered trivial characters and are truncated without a warning 
message. If concatenation causes an overflow of the maximum line 
length, the overflowing characters are truncated. 

The Delete Block function key erases the block def inition and 
deletes all the text in the block. If both the block start and 
block end positions are split lines, the two split lines at the 
end of each block are concatenated. The result is the display of 
one line where the block definition bad been previously. For 
example: 

The following lines are in the window with the block start 
and end positions denoted by shaded rectangles. 

TH IS IS AN EXAMPLE TOi'i!!SHOW WHAT HAPPENS 
WHEN THE TEXT IS DELETED BY USING 
THE DELETE BLOCK FUNCTION KE~ WITH SPLIT LINES. 

Pressing the Delete Block function key results in the 
following: 

THIS IS AN EXAMPLE WITH SPLIT LINES. 

4-11 CZlS-02 



Use of the Copy Block function key has a possibility of two . 
different split lines. The left portion of the line to which you 
are copying (up to the cursor position) is concatenated to the ·.· 
block start position. The right portion of the line on which you 
are copying is concatenated to the block end position. The 
result is the same as if you inserted characters. For example: 

The following lines are in the window with the block start 
and end positions designated by shaded rectangles. The 
position at which you want to copy is designated by an arrow. 

THIS IS AN EXAMPLE oFftopy BLOCK FUNCTIONALITY. 
THE DEFINED BLOCK WILL BE COPIED AT THE CURSOR POSITION. 
THIS LINE IS THE START OFllTHE COPY BLOCK. 
ALL THE TEXT IN THE BLOCK WILL BE COPIED 
TO THE COPY POSITION. THIS SHOWSllTHAT THE BLOCK WILL NOT BE 
DELETED. 

Pressing the Copy Block function key produces the following: 

THIS IS AN EXAMPLE OF THE COPY BLOCK. 
ALL THE TEXT IN THE BLOCK WILL BE COPIED 
TO THE COPY POSITION. THIS SHOWS COPY BLOCK FUNCTIONALITY. 
THE DEFINED BLOCK WILL BE COPIED AT THE CURSOR POSITION. 
THIS LINE IS THE START OF THE COPY BLOCK. 
ALL THE TEXT IN THE BLOCK WILL BE COPIED 
TO THE COPY POSITION. THIS SHOWS THAT THE BLOCK WILL NOT BE 
DELETED. 

The Move Block function key operates the same with split 
lines as does the Copy Block with a Delete Block. The split 
lines are the same as shown previously, except that the block is 
deleted from its previous position and the left portion of the 
block start line is concatenated to the right position of the 
block end line. Using the same example as used in the Copy Block 
example above, pressing the Move Block function key results in 
the following: 

THIS IS AN EXAMPLE OF THE COPY BLOCK. 
ALL THE TEXT IN THE BLOCK WILL BE COPIED 
TO THE COPY POSITION. THIS SHOWS COPY BLOCK FUNCTIONALITY. 
THE DEFINED BLOCK WILL BE COPIED AT THE CURSOR POSITION. 
THIS LINE IS THE START OF THAT THE BLOCK WILL NOT BE 
DELETED. 

The Write Block directive writes a split line as a line by 
itself. For example assume you defined a block as shown: 

MOVE PAY \IO OUT_PAY. 
MOVE CREDIT UNION TO OUTPUT CU. 
MOVE FED_TAXEI TO OUTPUT_FED_TAX. 

4-12 CZlS-02 



( 

c 

Using the Write Block directive results in the following: 

TO OUT PAY. 
MOVE CREDIT UNION TO OUTPUT CU. 
MOVE FED TAXES -

The Change Block directive is not affected by split lines. 

SPECIAL CHARACTERS 

When the f ollowing ASCII characters are included 
in search expressions or change expressions, they have special 
meanings. All special characters can be used only in 
search expressions, except the ampersand (&) special character, 
which can only be used in change expressions. 

Character 

* 

... 

$ 

• 

& 

!C 

[n]x 

Description 

Requests expressions that contain any number (or 
none) of the preceding character(s). If this 
character is the f irst character of a regular 
expression, it has no special meaning • 

When designated as the f irst character of an 
expression, requests lines that begin with the 
specif ied expression (excluding the character "') • 

When specif ied as the last character of an 
expression, requests lines that end with the 
specif ied expression (excluding the character $). 

Can be any character on a line1 specify one per 
character (e.g., • •• • means any two characters on 
any line). 

Can be used only in the change expression of a 
change directive to indicate that the strings of 
characters following •&n are to be concatenated to 
the target string of the search. 

Requests that the following character not be 
interpreted as a special character (e.g., "!C*n 
means match an asterisk) • Specify the C in 
uppercase. 

Requests a repeat factor ([n]) of the specified 
character (x). x can be any character including a 
period. (e.g., •c2s1 .• matches any 25 columns of 
characters) • 

4-13 CZlS-02 



Summary of Screen Editor Directives 

Table 4-1 lists each Screen Editor directive mnemonic, 
summarizes its function, and designates the directive name under 
which it is more fully described. 

Table 4-1. Summary of Screen Editor Directives 

Directive 
Mnemonic Function 

BL Display last line of buffer. 

C Change one character string to 
another character string. 

CA Change all occurrences of a cbarac­
ter string in the buff er to another 
character string. 

CB Change all occurrences of a charac­
ter string in a block to another 
character string. 

line Display a line of text. 
number 

LC Convert all uppercase characters in 
a block to lowercase. 

LM Display the left margin of the 
buffer. 

LT Set tab stops for the specif ied 
programming language. 

Q Conditionally terminate execution 
of the Screen Editor. 

R Read text from the specif ied f ile 
to the buff er. 

RM Display the right margin of the 
buffer. 

s Search the buffer for the specif ied 
character string. 

4-14 

Directive 
Name 

Bottom Line 

Change 

·change All 

Change Block 

Display 

Lower Case 

Lef t Margin 

Language Type 

Quit 

Re ad 

Right Margin 

Search 

CZlS-02 



(. 

Table 4-1 {cont). Summary of Screen Editor Directives 

Directive 
Mnemonic 

SB 

SC 

SF 

TB 

TL 

uc 

V 

w 

WB 

ww 

Function 

Search the buffer for the specif ied 
character string f rom the current 
cursor position backward to line 1. 

Change the number of lines to 
scroll. 

Search the buffer for the specif ied 
character string f rom the current 
cursor position forward to the last 
line of the buffer. 

Do not suppress trailing blanks 
when text is written to a f ile. 

Display line 1 of the buffer. 

Convert all lowercase characters 
in a block to uppercase. 

Display the current version of the 
Screen Editor. 

Write the contents of the buf f er to 
a f ile. 

Write the specif ied block of text 
in the buffer to a f ile. 

Set the window width to the 
specified value. 

SCREEN EDITOR DIRECTIVES 

Directive 
Name 

Search Backward 

Scroll Change 

Search Forward 

Trailing Blanks 

Top Line 

Upper Case 

Version 

Write 

Write Block 

Window Width 

Screen Editor directives are described in detail on the 
f ollowing pages. In the examples, numbers in parentheses are 
ref erences to line numbers and do not appear in memory or in the 
text. 

4-15 CZ15-02 



BOTTOM_LINE 

BOTTOM LINE (BOTTOM LINE OR BL} 

Display the last line of the buffer at the top of the current 
window. 

The cursor is positioned on the last line (the bottom line) 
of the f ile in the same column in which it was positioned before 
it was moved to the directive line. 

C'f"\DM7\m­
.L V.L'\.l"J.n.L 9 

{:~TTOM_LINE } 

Example: 

BL 

,• 

Display the last line of the buffer at the top of the current 
window. 

4-16 CZlS-02 



( 

CHANGE 

CHANGE {CHANGE OR C) 

Search the buffer for the specif ied search expression and 
replace the first occurrence of the search expression with the 
change expression. 

Searching begins at the current cursor position. Searching 
proceeds in a forward direction until the end of the f ile is 
reached, and, if necessary, resumes at the top of the file and 
proceeds forward to the current cursor position. 

The search expression must be found wholly on a line of the 
f ile to be considered a matched string. 

When the directive has completed execution and a match was 
found, the cursor rests on the f irst character of the changed 
expression. The changed line is displayed as the f irst line in 
the window. 

If a match was not f ound, the message SEARCH FAILED is 
displayed. 

It is not necessary to repeat the search expression for 
subsequent identical changes. Simply entering the first two 
delimiters and the change expression changes the next occurrence 
of the search expression to the change expression. 

FORMAT: 

{gHANGE} "search_expression"change_expression" 

ARGUMENTS: 

II 

{Delimiter) Can be any character. You must use the same 
character in each of the three locations where a 
delimiter is required. If using a delimiter that is a 
character within the search expression of the change 
expression, you must use the special character !C before 
the character within the text. It is recommended that 
you use a delimiter that is not within the search 
expression or the change expression. 

4-17 CZlS-02 



CHANGE 

search_expression 

Character ,string for which the Screen Editor is 
searching. The first occurrence of this character string 
is replaced with the character string specif ied in the 
change expression. 

change_expression 

Character string that replaces the f irst occurrence of 
the argument search expression. 

Example 1: 

C "ABC"DEF" 

Change the next occurrence in the f ile of ABC to DEF. 

Example 2: 

c II "DEF II 

Change the next occurrence of the previously def ined 
search expression ABC to DEF. 

Example 3: 

C 11 ".*$ 11 DEF" 

Change the next line to DEF. 

Example 4: 

c """ 

Delete the next occurrence of the previously designated 
search expression. 

4-18 CZlS-02 



CHANGE_ALL 

(_ CHANGE ALL (CHANGE ALL OR CA) 

( · ... 

/ 

search the buffer for all occurrences of the specif ied 
character string and replace all occurrences of the character 
string with another specif ied character string. 

Each occurrence of the search expression must be found wholly 
on a line of the file to be considered a match string. 

After this directive is executed, the cursor is positioned on 
the f irst character of the last changed character string. The 
changed line is displayed as the f irst line of the window. 

FORMAT: 

[n [ ,m]] { ~~ANGE_ALL} •search_expression"change_expression• 

ARGUMENTS: 

[n[,m]] 

" 

Includes the starting line number (n) and ending line 
number (m) in which the specif ied search expression is · 
changed. If you specify both starting and ending line 
numbers, all occurrences of the specified search 
expression found between the line numbers are changed. 
If you specify only a starting line number, only those 
occurrences of the search expression from the specif ied 
line number to the end of the buffer are changed. If you 
do not specify line numbers, the search for the search 
expression begins at line 1. Searching proceeds in a 
forward direction until the end of the f ile is reached 
and resumes at the top of the f ile until all occurrences 
of the search expression are replaced. When the change 
is completed, the cursor rests on the last changed 
expression. 

(Delimiter) Can be any character. You must use the same 
character in the three locations where a delimiter is 
required. If using a delimiter that is a character 
within the search expression or change expression, you 
must use the special character !C before the character 
within the text. It is recommended that you use a 
delimiter that is not within the search expression or the 
change expression. · 

4-19 CZlS-02 



CHANGE ALL 

search_expression 

Character string for which the Screen Editor is 
searching. Each occurrence of this string according to 
the line number values specif ied by n or m (see above) is 
replaced with the character string specified in the 
change expression argument. 

change_expression 

Character string that replaces each occurrence of the 
search expression. 

Example 1: 

CA "ABC"DEF" 

Change all occurrences in the buffer of ABC to DEF. 

Example 2: 

5,10 CA "ABC"DEF" 

Between (and including} lines 5 to 10, change all occurrences 
of ABC to DEF. 

Example 3: 

5 CA "ABC"DEF" 

Between (and including) line 5 and the last line of the 
buffer, change all occurrences of ABC to DEF. 

4-20 CZlS-02 



' ( \ 
·. __ , ~, 

CHANGE_BLOCK 

CHANGE BLOCK (CHANGE BLOCK OR CB) 

Search the current block for all occurrences of the specif ied 
expression and replace each occurrence of the expression with 
another specif ied expression. 

Before using this directive, you must def ine the block of 
text you wish to change (see the description of the Block 
function key under "Function Keys" later in this section) • 

See "Block Description" earlier in this section for details 
on blocks. 

FORMAT: 

{g:ANGE_BLOCK} "search_expression"change_expression" 

ARGUMENTS 

n 

(Delimiter) Can be any character. You must use the same 
character in the three locations where a delimiter is 
required. If using a delimiter that is a character 
within the search expression or change expression, you 
must use the special character !C before the character 
within the text. lt is recommended that you use a 
delimiter that is not within the search expression or the 
change expression. 

search_expression 

Character string for which the Screen Editor is 
searching. Each occurrence of this string within the 
def ined block is replaced with the character string 
specif ied in the change expression argument. 

change_expression 

Character string that replaces each occurrence of the 
search expression. 

4-21 CZlS-02 



CHANGE BLOCK 

Example: 

You have previously def ined a block as 

C:=A-B,D:=C-B,E:D-C, 

Enter the directive 

CB n n.n 
f I 

When the directive is executed, the resulting block is: 

C:=A-B;D:=C-B;E:=D-C; 

4-22 CZlS-02 



. . ·(·.·.,, 

c 

DISPLAY 

DISPLAY 

Display a specif ied line of text. 

After executing the Display directive, a new page (window) of 
text is displayed. The specif ied line of text appears as the 
first line of the new window. 

The cursor is positioned on the new line in the same column 
in which it was positioned before you executed the directive. 

FORMAT: 

line number 

ARGUMENT 

line number 

Line number (decimal) of the text you wish displayed. 
The line number must be a positive integer whose maximum 
value is 65535. The specified line appears at the top of 
the window. · 

Example: 

35 

Display line 35 of the buffer on the f irst line of the 
window. 

4-23 CZlS-02 



LANGUAGE_TYPE 

LANGUAGE TYPE (LANGUAGE TYPE OR LT) 

Set tabs stops for the specified programrn;ng language. 

FORMAT: 

{~~NGUAGE_TYPE} [language] 

ARGUMENT: 

language 

Prograrnrning language in which you are creating or editing 
your source f ile. Specify the language as shown below to 
set the appropriate tab stops: 

Language 

(defaul t) 

Assernbly or A 

COBOL or C 

FORTRAN or F 

PASCAL or p 

BASIC or B 

Tab Stops {Colurnn) 

11, then every 10 colurnns 

11, then every 10 colurnns 

8, 12, 21, then every 10 
colurnns through colurnn 
61, and 73 

7, 11, 21, then every 
10 columns through column 
61, and 73 

11, then every 10 columns 

11, then every 10 colurnns 

If you do not specify "language," the tab stops are set as 
specif ied in the default tab stops above. 

Example: 

LT COBOL 

Set tab stops at colurnns 8, 12, 21, and then every 10 columns 
until 61; then the next tab stop is 73. The tab stop line at 
the bottom of the text region is changed accordingly. 

4-24 CZlS-02 



LEFT_MARGIN 

LEFT MARGIN (LEFT MARGIN OR LM) 

Display the left margin of the buffer in the current window. 

The left margin is always set to the f irst character of each 
line. 

The cursor is positioned in column 1 on the line on which it 
was positioned before you executed the directive. 

See the Window Lef t function key description later in this 
section. 

FORMAT: 

{ t~FT _ MARG IN } 

Example: 

LM 

Display the f irst 80 columns of text in the current window. 

4-25 CZlS-02 



LOWER_CASE 

LOWER CASE (LOWER CASE OR LSl_ 

Convert all uppercase characters in a previously def ined 
block to lowercase characters. 

If the block contains characters within apostrophes (') or 
quotation marks ("), these characters are not converted. 

You must have previously def ined a block before you can use 
this directive. See the Block function key descripticn later in 
this section for information on def ining blocks. 

FORMAT: 

. { ~gwER _ CASE l 
Example: 

Assume you have def ined the following block: 

THIS PROGRAM CALCULATES THE WEEKLY 'GROSS' AND 'NET' PAY 

Enter the Lower Case directive: 

The block now reads: 

this program calculates the weekly 'GROSS' and 'NET' pay 

4-26 CZlS-02 



QUIT 

QUIT (QUIT OR Q) 

Terminate the current screen editing session and close the 
f ile associated with it. 

You must specify the Quit directive at the end of a screen 
editing session. 

Quit is executed conditionally. If you have modified a file 
and enter the Quit directive without having saved (written) the 
f ile (see the Write directive later in this section), you are 
warned that a modified f ile exists. If you want to save the 
edited text, answer NO or N to the prompt "Modified buffers 
exist. Do you wish to quit? (Answer yes or no.) ," and enter a 
Write directive to save the file. Now enter the Quit directive. 
If you do not wish to save the modif ied text, answer YES or Y to 
the prompt. 

NOTE 

If the cursor is positioned past the last visible 
character on a line, blanks exist on the line up 
to the cursor. If ä write is performed with the 
cursor positioned this way, these blanks are 
suppressed during the write operation (unless the 
TB option is used) • The cursor returns to the 
column past the last visible character on the line 
rather than to its original position on the 
screen. If the TB option is used and the cursor 
is positioned past the last visible character on 
the line, the cursor returns to its original 
position on the screen after the write operation 
and trailing blanks remain on the line. 

The Quit function key operates exactly as the Quit directive. 

FORMAT: 

Example: 

Q 

Terminate the current screen editing session. 

4-27 CZ15-02 



READ 

READ (READ OR R) 

Place the contents of the specified file into the buffer. 

The cursor is positioned in column 1 of the first line of the 
f ile. 

If you have not specif ied the pathname of the file when you 
called the Screen-Editor (see "Loading the Screen Editor" earlier 
in this section), use this directive f irst to read in the f ile 
you wish to edit. 

You may only use the Read directive once during the current 
screen editing session (i.e., you may only edit one file at a 
time). 

File concurrency for the specified f ile is exclusive read and 
exclusive write. 

During the read, all tab characters are replaced with the 
appropriate number of blanks according to the currently defined 
tab stops. If this occurs, the MODIFIED status flag is 
displayed. When the f ile is saved (written), it will contain no 
tab characters. 

During the read, if any hexadecimal sequence contains an 
ASCII non-printable character (i.e., hexadecimal characters 00 to 
lF and 7F to 9F), each ASCII non-printable character is replaced 
by the ASCII period (.) character, and the MODIFIED status flag 
is displayed. During the read on a 7-bit terminal, if any 
hexadecimal sequence contains an extended 8-bit ASCII character 
in the range of AO to FE, each character is folded and displayed 
as a 7-bit character. 

FORMAT: 

path 

ARGUMENT: 

path 

Pathname of the f ile to be read. Can be any valid form 
of pathname. 

Example: 

R FILEA 

Read the contents of the file FILEA into the buffer. 

4-28 CZlS-02 



RIGHT MARGIN -

RIGHT MARGIN (RIGHT MARGIN OR RM) 

Display the right margin of the buffer in the current buffer. 

The current window is moved to the right so that column 80 of 
the display coincides with the column that is the current window 
width. 

The cursor is positioned in the last column of the line on 
which it was positioned before you executed the directive. 

use this directive to view text beyond column 80. 

See the Window Right f unction key described later in this 
section. 

FORMAT: 

{~GHT_MARGIN} 

Example: 

RM 

Display the right margin of the buffer in the current window. 

4-29 CZlS-02 



SCROLL_CHANGE 

SCROLL CHANGE (SCROLL CHANGE OR SC) 

Change the nurnber of lines that rnove through the text region 
(window) when you press the Window Up or Window Down function 
keys. (The Window Up and Window Down function keys are described 
under "Function Keys" later in this section.) 

FORMAT: 

j SCROLL _CHANGE f 
l SC J 

ARGUMENT: 

[lines] 

[lines] 

Nurnber of lines to rnove the current window. Can be any 
positive decirnal integer. If a boundary (top or bottorn 
line) occurs before the specif ied nurnber of lines are 
scrolled, the boundary is displayed and scrolling stops. 
This value rernains in effect until explicitly changed by 
another Scroll Change directive. 

Default: 18 lines. 

Exarnple: 

If the current window displays the lines 

(1) 
(2) 
(3) 
( 4) 
(5) 

(18) 

and you enter the directive line SC 4 and press the Window 
Down function key, the current window will display: 

(5) 
(6) 
(7) 

(22) 

4-30 CZ15-02 



SEARCH 

SEARCH {SEARCH OR S} 

Search the buffer for the specif ied search expression 
{character string}. 

The cursor is positioned on the f irst character of the 
matched search expression. The line containing the match is 
displayed on the f irst. line of the window. 

If you have previously def ined a search expression, simply 
entering the directive followed by the two identical delimiters 
searches f or the next occurrence of the search expression. 

searching begins at the current cursor position,· continues to 
the end of the f ile, and, if no match is found, begins at the top 
of the buffer (line 1 of the f ile} and continues to the current 
cursor position. 

If no match is found, the message SEARCH FAILED is displayed 
at the terminal. 

FORMAT: 

[n[,m]] { ~EARCH} 0 search_expression" 

ARGUMENTS: 

[n] 

[, m] 

II 

Line number at which to begin the search. If you do not 
specify n, search begins at the current cursor position. 

Line number at which to end the search. If you do not 
specify m and have specif ied n, search ends at the last 
line of the f ile. 

{Delimiter} Can be any character. You must use the same 
character in the two locations where a delimiter is 
required. If using a delimiter that is a character 
within the search expression, you must use the special 
character !C before the character within the text. It is 
recommended that you use a delimiter that is not within 
the search expression. 

4-31 CZlS-02 



SEARCH 

search_expression 

String of characters that is the object of the search. 

Example 1: 

S "ABC" 

Search for the f irst occurrence after the current cursor 
position of the string ABC. 

Example 2: 

S /AB"C/ 

Search for the f irst occurrence after the current cursor 
position of the character string AB"C. 

Example 3: 

S BAB 

Search for the f irst occurrence after the current cursor 
position of A. Since the first non-blank character after the 
directive (B) is used as the delimiter, the search expression 
is that character string found between the f irst and second 
occurrence of the character B. 

Example 4: 

s "" 

search for the next occurrence of the previously def ined 
search expression. 

4-32 CZlS-02 



c··. 
SEARCH . BACKW ARD -

SEARCH BACKWARD {SEARCH BACKWARD OR SB) 

Search the buffer from the current cursor position back to 
line 1 for the specif ied search expression. 

The cursor is positioned on the first character of the 
matched search expression. The line containing the match is 
displayed on the f irst line of the window. 

If you have previously def ined a search expression, simply 
entering the directive followed by the two identical delimiters 
searches f or the next occurrence of the search expression. 

Searching begins at the current cursor ~osition and continues 
backwards, from right to left, toward line 1 of the buffer until 
a match is found. If no match is found, the message SEARCH 
FAILED is displayed. 

FORMAT: 

{~~CH _BACKWARD } "search_expression" 

ARGUMENTS: 

II 

(Delimiter) Can be any character. You must use the same 
character in the two locations where a delimiter is 
required. If using a delimiter that is a character 
within the search expression, you must use the special 
character !C before the character within the text. It is 
recommended that you use a delimiter that is not within 
the search expression. 

search_expression 

String of characters that is the object of the search. 

4-33 CZlS-02 



SEARCH BACKWARD 

Example 1: 

SB "ABC" 

Search for the f irst occurrence before the current cursor 
position of the string ABC. 

Example 2: 

SB "AB!C"C" 

Search for the f irst occurrence before the current cursor 
position of the string AB"C. 

Example 3: 

SB BAB 

Search for the f irst occurrence before the current cursor 
position of A. Since the first non-blank character after the 
directive (B) is used as the delimiter, the search expression 
is that character string found between the f irst and second 
occurrence of the character B. 

4-34 CZlS-02 



SEARCH_FORW ARD 

SEARCH FORWARD (SEARCH FORWARD OR SF) 

Search the buffer from the current cursor position to the end 
of the buffer for the specif ied search expression. 

The cursor is positioned on the first character of the 
matched search expression. The line contajning the match is 
displayed on the f irst line of the window. 

If you have previously def ined a search expression, simply 
entering the directive followed by the two identical delimiters 
searches for the next occurrence of the search expression. 

Searching begins at the current cursor position and continues 
forward, frorn left to right, toward the iast line of the buffer 
until a match is found. If no match is found, the message SEARCH 
FAILED is displayed. 

FORMAT: 

{ ;~ARCH_FORWARD} "search_expression" 

ARGUMENTS: 

II 

(Delimiter) Can be any character. You must use the same 
character in the two locations where a delimiter is 
required. If using a delimiter that is a character 
within the search expression, you must use the special 
character !C before the character within the text. It is 
recommended that you use a delimiter that is not within 
the search expression. 

search_expression 

String of characters that is the object of the search. 

4-35 CZlS-02 



SEARCH FORWARD 

Exarnpe 1: 

SF "ABC" 

Search for the f irst occurrence after the current cursor 
position of the character string ABC. 

Exarnple 2: 

SF XAB"CX 

Search for the f irst occurrence af ter the current cursor 
position of the character string AB"C. 

Exarnple 3: 

SF BAB 

search for the f irst occurrence after the current cursor 
position of A. Since the f irst non-blank character after the 
directive (B) is used as the delirniter, the search expression 
is that character string found between the f irst and second 
occurrence of the character B. 

Exarnple 4: 

SF II n 

search for the next occurrence of the previously def ined 
search expression. 

4-36 CZlS-02 



TOP_LINE 

TOP LINE (TOP LINE OR TL) 

Display the f irst line (line 1) of the buffer at the top of 
the current window. 

The cursor is positioned on line 1 in the column in which it 
was positioned before you executed the directive. 

FORMAT: 

{ ~P_LINE} 
Example: 

TL 

Display the f irst line of the buffer at the top of the 
window. 

4-37 CZlS-02 



TRAILING_BLANKS 

TRAILING BLANKS {TRAILING BLANKS OR TB) 

Do not suppress trailing blanks on the lines within the 
buffer when text is written to a f ile. 

A line with trailing blanks is a line in which some number of 
characters (at least one) at the end of a line are spaces. If 
you do not specify this directive, these spaces are lost 
{discarded) when the line is written to a file. If you do 
specify this directive, the Screen Editor preserves them. 

Once entered, this directive remains in effect until the end 
of the Screen Editor session. 

FORMAT: 

{ ~~ IL ING_ BLANKS } 

Example: 

TB 

Do not suppress trailing blanks when you write the buffer to 
a f ile. 

4-38 CZlS-02 



( 

UPPER CASE 

UPPER CASE (UPPER CASE OR UC) 

Convert all lowercase characters in a previously def ined 
block to uppercase characters. 

If the block contains characters within apostrophes (') or 
quotation marks (n), these characters are not converted. 

You must have previously def ined a block before you can use 
this directive. See the Block function key description later in 
this section for information on def ining blocks. 

FORMAT: 

{ g~PER _ CASE } 

Example: 

Assume you have def ined the following block: 

This program calculates the weekly gross and net pay 

Enter the Upper Case directive: 

The block now reads: 

THIS PROGRAM CALCULATES THE WEEKLY GROSS AND NET PAY 

4-39 CZlS-02 



-- - -·---•------------------~c----- -------- --------

VERSION 

VERSION (VERSION OR V) 

Display the current Screen Editor version number. 

This directive is informational only; the displayed version 
number appears in the message region of the screen. 

FORMAT: 

(VERSION~ 
~V ) 

Example: 

V 

Display the current Screen Editor version.number. For 
example, the message may read 

SCORPEO 09/04/1121 

where 09 is the month, 04 is the day, and 1121 is the time 
associated with the date the SCORPEO bound unit was created. 

4-40 CZlS-02 



WINDOW_ WIDTH 

WINDOW WIDTH (WINDOW WIDTH OR WW) 

Set the window width for the window. 

The width of a window is a measure of how far the right 
margin of the text can be. The Right Margin directive positions 
the right margin to the window's width. The Window Right 
f unction key moves the window until the window width is column 80 
of the display. 

The Window Width directive def ines the widest part of the 
records of a f ile that can be seen by moving· the window to the 
right. It is independent of the record length of the input 
f ile. · No data is lost when the window width is smaller than the 
length of the lines read from a f ile. However, the parts of the 
lines that are beyond the window width cannot be seen until the 
window width is made wider. 

When you call the Screen Editor (see "Loading the Screen 
Editor" earlier in this section), the window width is initialized 
to 256 characters except for COBOL (.C) files which are initially 
restricted to 80 characters (through their window width can be 
changed by WW) • 

FORMAT: 

l ~NDOW_WIDTH} 
ARGUMENT: 

[length] 

[length] 

Maximum length in characters (bytes) of the window. 
Specify a decimal number from 80 to 256. 

Default: 80 characters (for the WW directive, not the 
initial setting). 

Example: 

ww 132 

Set the window width to 132 characters. 

4-41 CZ15-02 



WRITE 

WRITE (WRITE OR W) 

Save the specif ied lines of the buffer in a f ile. 

If you specify a f ile pathname of a f ile which already · 
contains text, that text is overwritten. 

NOTE 

If you write text out to a f ile other than the f ile 
which you are editing; the f ile cf reference changes 
to the pathname specif ied in this directive. 

FORMAT: 

[n[,m]] { ~ITE} [path] 

ARGUMENTS: 

None or any number of the f ollowing control arguments may be 
entered: 

[n[,m]] 

The starting line number (n) and the ending line number 
(m) of the text to be placed into a f ile. If you do not 
specify starting and ending line numbers, all lines in 
the buffer are written to the f ile. If you specify only 
a starting line number, all lines in the buffer beginning 
with that line to the end are written to the f ile. 

If you do not specify a pathname, do not specify line 
numbers. 

[path] 

Pathname of the f ile that is to contain the specified 
lines of text. Can be any valid form of pathname. If 
you do not specify a f ile pathname, the text is placed in 
the current f ile whose name you specified when you called 
the Screen Editor or when you read in a file {see the 
Read directive earlier in this section) • This f ile is 
called the f ile of reference. If you specify a f ile 
pathname of a f ile that does not currently exist, the 
f ile is created for you. If the f ile does not exist, the 
Screen Editor creates a variable sequential f ile with a 
control interval size of 512 bytes and a maximum record 
size of 256 bytes. If you do not specify a path, the 
default pathname used is the current file reference. 

4-42 CZ15-02 



WRITE 

Example 1: 

w AVOLl>DIR>INVNTRY 

Write the contents of the buffer to a f ile whose pathname is 
AVOLl>DIR>INVNTRY. 

Example 2: 

Assume you called the Screen Editor as follows: 

SCORPEO AVOLl>DIR>INVNTRY. 

After editing the file, you wish to write all lines back to 
the same f ile. Enter the directive 

w 

Example 3: 

10,20 w AVOLl>DIR>INV NEW 

Write the contents of lines 10 through 20 to the f ile named 
AVOLl>DIR>INV NEW. 

4-43 CZlS-02 



WRITE_BLOCK 

WRITE BLOCK (WRITE BLOCK OR WB) 

Write the specif ied block of text into a f ile. 

You must have previously def ined a block of text using the 
Block function key (described later in this section under 
"Function Keys"). 

You cannot write a block of text to the f ile you are 
currently editing (i.e., the file of reference). 

If you specify a f ile pathname of a f ile which already 
contains text, that text is overwritten. 

NOTE 

If you write text out to a f ile other than the file 
which you are editing, the f ile of reference changes 
to the pathname specified in this directive. 

use this directive to "save" a piece (block) of the buffer in 
a f ile. 

See "Block Description" earlier in this section for details 
on blocks. 

FORMAT: 

{ :rTE_BLOCK} path 

ARGUMENT: 

path 

Pathname of the f ile that is to contain the block of 
text. Can be any valid form of pathname. You must 
specify a pathname different from the pathname of the 
f ile whose name you specified when you called the Screen 
Editor or when you read in a file (see the Read directive 
earlier in this section). If you specify a file pathname 
of a f ile that does not currently exist, the file is 
created f or you. If the f ile currently exists, the new 
text overwrites the file's current contents. Do not 
specify the current f ile of reference. 

4-44 CZlS-02 



( •. 

,, .. 

WRITE BLOCK 

Exarnple: 

Assurne you have already def ined. a block of text such as: 

CONST 
FEDTAX = 0.05; 
STATAXLO = 0.04; 
STATAXHI = 0.07; 

You want to write this block of text to a f ile narned 
'''VOLl>DIR>PAY whose cc:>ntents are.: 

PROGRAM PAY (INPUT,OUTPUT); 
(*THIS PROGRAM CALCULATES THE WEEKLY GROSS AND 

NET PAY OF AN UNDETERMINED NUMBER OF EMPLOYEES*) 

By entering the directive line 

the contents of the f ile AVOLl>DIR>PAY are now: 

CONST 
FEDTAX = 0 .OS; 
STATAXLO = 0.04; 
STATAXHI = 0.07; 

4-45 CZlS-02 



FUNCTION KEYS 

On a general purpose keyboard, the function keys are on the 
top row and are numbered Fl, F2, etc. On data entry and word 
processing keyboards these keys are described with other text. 
When a function key is pressed, the Screen Editor performs the 
action associated with that key. Each Screen Editor function key 
may have two definitions: one for normal (unshifted} depression, 
and one for depression with the SHIFT key. _ 

The keyboard design diff ers, depending on the kind of 
keyboard you have. Figures 4-3 through 4-8 summarize the Screen 
Editor function keys and associates them with their proper 
function key by keyboard. The function keys are: 

• Append Line 
• Backward Word 
• Block 
• Copy Block 
• Delete Block 
• Erase Block 
• Forward Word 
• Move Block 
• Window Down 
• Window Lef t 
• Window Right 
• Window Up • 

These function keys are described in detail on the following 
pages. 

s 
H 
1 
F 
T 

s 
H 
1 
F 
T 

Fl 

F7 

DELETE 
BLOCK 

F2 

BACKWARO 
WORD 

FB 

WINDOW 
LEFT 

WINDOW 
UP 

FJ 

FORWARO 
WORD 

F9 

WINDOW 
RIGHT 

WINDOW 
DOWN 

F4 F5 FS 

COPY ER ASE APPENO 
BLOCK BLOCK LINE 

MOVE OEFINE 
BLOCK BLOCK 

FlO Fll F12 

OUIT HELP 

86-142 

Figure 4-3. Screen Editor Template for VIP780X General Purpose 
Keyboard 

4-46 CZlS-02 



( 

( \.\ 
1 

/ 

s 
H 
1 
F 
T 

s 
H 
1 
F 
T 

F1 

F7 

DELETE 
BLOCK 

DELETE 
CHARACTER 

Figure 4-4. 

s 
H 
1 
F 
T 

s 
H 
1 
F 
T 

F1 

RESET 

QUIT 

F7 

DELETE 
8LOCK 

F2 F3 F4 F5 F6 

COPY ERASE APPEND 
BLOCK BLOCK LINE 

BACKWARD FORWARD MOVE OEFINE INSERT 
WORD WORD BLOCK BLOCK CHARACTER 

FS F9 F10 F11 F12 

WINDOW WINDOW 
LEFT RIGHT 

WINDOW WINDOW QUIT HELP 
UP DOWN 

86·140 

Screen Editor Template for VIP730X and HDS 2 
General Purpose and Data Entry Keyboard 

F2 F3 F4 F5 

ER ASE 
BLOCK 

DELETE DEFINE 
TOEOL BLOCK 

FS F9 F10 F11 

WINDOW WINDOW 
LEFT RIGHT 

WINDOW WINDOW BACKWARD 
UP DOWN WORD 

NOTE 

BLACK INSERT KEY TOGGLES INSERT CHAR MODE. 
THE MOVE AND COPY KEYS ARE MARKED 

F6 

APPEND 
LINE 

HELP 

F12 

FORWARD 
WORD 

86·141 

Figure 4-5. Screen Editor Template for VIP7300 and VIP7800 Word 
Processing Keyboard 

4-47 CZlS-02 



CONTFIOL 

s 
H 
1 
F 
T 

SHIFT 

UNSHIFT RESET 

Figure 

F1 

WINDOW 
LEFT 

WINDOW 
UP 

F1 F2 

4-6. 

F2 

WINDOW 
RIGHT 

WINDOW 
DOWN 

Figure 4-7. 

s 
H 
1 
F 
T 

F1 F2 

WINDOW WINDOW 
LEFT RIGHT 

WINDOW WINDOW 
UP DOWN 

Figure 4-8. 

------ ------------------------

FJ F4 F5 F6 F7 FS F9 F10 F11 F12 

COPY ER ASE 
APPEND 

BLOCK LEFT RIGHT 
LINE 

MOVE DEFINE CHAR· UP DOWN BACK· FOR· TRANS-
ACTER WARD WARD MIT ---- _ ____... -....--

BLOCK DELETE WINDOW WORD 
86-14.1 

Screen Editor Template f or microSystem 6/10 
Keyboard 

F3 F4 FS F6 F7 

BACKWARD COPY ER ASE APPEND DELETE 
WORD BLOCK BLOCK LINE BLOCK 

FORWARD MOVE DEFINE INSERT DELETE 
WORD BLOCK BLOCK CHAR. CHAR. 

86-144 

Screen Editor Template for VIP7200 Keyboard 

F3 F4 F5 F6 F7 

BACKWARD COPY ER ASE APPEND DELETE 
WORD BLOCK BLOCK LINE BLOCK 

FORWARD MOVE DEFINE 
WORD BLOCK BLOCK 

86·145 

Screen Editor Template for VIP7201 Keyboard 

4-48 CZlS-02 



APPEND LINE 

APPEND LINE 

Append a new .line after the line on which the cursor is 
positioned. 

The new line appears as a blank line on which you can enter 
text. You must position the cursor in the text region of the 
screen for the Append Line function key to take effect. 

To insert a line before the f irst line of text (line 1 in the 
file), position the cursor on the control line, and press the 
Append Line function key. Enter the new text on the blank line 
that is displayed. 

You cannot insert lines before the Screen Editor control 
line. 

The Append Line function key perf orms the same actions as the 
INS LINE key described later in this section. 

Example: 

(****.************************************************** 
THIS PROGRAM CALCULATES THE WEEKLY GROSS AND NET PAY 

Press the Append Line f unction key and the text appears as 
follows: 

I******************************************************* 

THIS PROGRAM CALCULATES THE WEEKLY GROSS AND NET PAY 

You can now enter text on the blank line on which the cursor 
is resting. Be aware that all line numbers following the new 
line are incremented by one. 

4-49 CZlS-02 



BACKWARD WORD 

BACKWARD WORD 

Position the cursor from its current position to the f irst 
character of the previous word. A word is considered a string of 
characters delimited by blanks. 

If the cursor is positioned in the middle of a word, it is 
repositioned to the beginning of that word. 

If the cursor is positioned on the first word of a line, it 
is repositioned to the first character of the last word of the 
previous line. 

Example 1: 

The current cursor position is: 

THIS PRIGRAM CALCULATES THE WEEKLY GROSS AND NET PAY 

Press the Backward Word function key. The cursor is now 
positioned as follows: 

THIS iiROGRAM CALCULATES THE WEEKLY GROSS AND NET PAY 

Example 2: 

The current cursor position is: 

THIS PROGRAM CALCULATES THE WEEKLY GROSS AND NET PAY 
IF AN UNDETERMINED NUMBER OF EMPLOYEES. 

Press the Backward Word function key. The cursor is now 
positioned as follows: 

THIS PROGRAM CALCULATES THE WEEKLY GROSS AND NET!IAY 
OF AN UNDETERMINED NUMBER OF EMPLOYEES. 

4-50 CZlS-02 



( 

·BLOCK 

BLOCK 

Designate the first and last positions of a block of text. 

Position the cursor on the character that is the f irst 
character of a block of text on which you wish to perform some 
action. Press the Block function key; this defines the beginning 
of the block. Position the cursor on the last character of the 
text you are def ining as a block of text. Press the Block 
function key again; this def ines the end of the block. The 
beginning and end of a block can be defined in any order. 

A block is defined by its location; i.e., SCORPEO retains the 
line number and the column position of ~he first character 'of the 
block, and the line number and column position of the final 
character of the block. The content of the block is all the data 
within these two end points. As data within the block is 
altered, the block definition is not changed. This can cause an 
implicit change in the content of the block. For example, if a 
block contains lines 20 through 60 and line 50 is deleted, the 
block still contains lines 20 through 60. However, once line 50 
is deleted, the text following the deleted line moves up to f ill 
the space. The line that was line 61 before the deletion now 
becomes line 60, the final line of the block. 

The def inition of a block remains in effect until you use it, 
or cancel the block by pressing the Erase Block f unctiön key 
(described later in this section) • 

You can define only one block at a time. 

You must def ine a block before using any of the block 
function keys (Erase Block, Delete Block, Copy Block, and Move 
Block; all are described later in this section), or any of the 
block directives (Write Block and Change Block) defined earlier 
in this section. 

Example: 

Locate the block of text you wish to define: 

THIS PROGRAM CALCULATES THE WEEKLY GROSS AND NET PAY 

Position the cursor on the character that is the f irst 
character of the block you wish to define, in this case T. 
Press the Block function key. 

4-51 CZ15-02 



BLOCK 

Next, position the cursor on the character that is the last 
character of the block you wish to define, in this case Y. 
Press the Block function key. 

The block you have just defined is: 

l!HIS PROGRAM CALCULATES THE WEEKLY GROSS AND NET PA~ 

4-52 CZlS-02 



COPY BLOCK 

COPY BLOCK 

Copy a def ined block of text to a specif ied position. 

You must have previously def ined a block before attempting to 
· copy it. See the Block function key description and nBlock 
Description" earlier in this section for information on defining 
blocks. 

When a block is copied, the text of the def ined block is: 

• Retained in its original position 
• Replicated at the current cursor position 
• Inserted to the left of the current cursoL position. 

The results of a Copy Block operation depend on whether or 
not the cursor is on the f irst character of the line when the 
Copy Block function key is pressed. 

• If the cursor is on the f irst character of the line, each 
line of the block is copied as a new line. The line where 
the cursor was originally positioned remains unchanged and 
follows the last line of the copied block. 

• If the cursor is not on the first character of the line, 
the f irst line of the block is appended to the right of 
the character that was to the immediate left of the 
original cursor position. Any intermediate lines of the 
block are appended next. The final line of the block is 
inserted to the lef t of the character that was under the 
original cursor position; this character and all 
characters to its right are preserved. 

Do not attempt a Copy Block operation when the cursor is 
positioned beyond the last line of the f ile being edited. 

After the Copy Block function key is used, the cursor is 
positioned on the first character of the newly inserted text. 

Example: 

The previously defined block is: 

WEEKLY NET PAY 

4-53 CZlS-02 



COPY BLOCK 

You wish to copy the block into the position specif ied by the 
arrow: 

************************* 
THIS PROCEDURE CALCULATES 
THE WEEKLY GROSS PAY 
AND ~ 
OF AN UNDETERMINED NUMBER OF EMPLOYEES 

Position the cursor on the second space character on the line 
beginning with AND. Press the Copy Block key. 

The text row reads: 

~************************ 
THIS PROCEDURE CALCULATES 
THE WEEKLY GROSS PAY 
AND WEEKLY NET PAY 
OF AN UNDETERMINED NUMBER OF EMPLOYEES 

The block of text remains in its original position and is 
copied into the new position. 

4-54 CZlS-02 



' . .,-

DELETE BLOCK 

DELETE BLOCK 

Delete the previously def ined block of text. 

You must have previously def ined a block bef ore attempting to 
delete it. See the Block function key description for informa­
tion on defining blocks. After the Delete Block function key is 
used, the cursor is positioned on the f irst character that 
remains after the last character of the deleted block. The line 
containing the cursor is the f irst line in the window. 

You do not need to position the cursor on the originally 
def ined block to delete it. 

The def inition of the block is erased after using Delete 
Block function key. 

See "Block Description" earlier in this section for details 
on blocks. 

Example: 

Assume you have previously def ined the block designated by 
the shaded rectangles: 

THIS IS AN EXAMPLE 10 SHOW WHAT HAPPENS 
WHEN TEXT IS DELETED BY USING 
THE DELETE BLOCK FUNCTION KEYIWITH 
SPLIT LINES. 

Press the Delete Block function key. The text now reads: 

THIS IS AN EXAMPLE WITH 
SPLIT LINES. 

4-55 CZ15-02 



ERASE BLOCK 

ERASE BLOCK 

Cancel the def inition of the previously def ined block. 

You must have previously defined a block (or have partially 
def ined a block) before attempting to erase it. See the Block 
function key description for information on defining blocks. 

There is no effect on the text within the def ined block; only 
the block definition is cancelled. 

You do not need to position the cursor on the originally 
defined block to·erase it. 

Example: 

Assume you have previously defined the following block: 

AND WEEKLY NET PAY 

Press the Erase Block function key to cancel the def inition 
of this block. 

4-56 CZlS-02 



FORWARD WORD 

FORWARD WORD 

Position the cursor on the f irst character of the next ward 
after the current cursor position. 

A ward is considered a string of characters delimited by 
spaces. 

If the cursor is on the last word of a line, the cursor is 
positioned on the f irst character of the f irst ward of the 
f ollow ing 1 ine. 

Example: 

The curient position of the cursor is: 

SWT := STAl)?.\XLO * GROSSPAY; 

Press the Forward Word function key. The new cursor position 
is: 

SWT := STATAXLO tl GROSSPAY; 

4-57 CZlS-02 



MOVE BLOCK 

MOVE BLOCK 

Move a previously def ined block of text to a specif ied 
position. 

You must have previously def ined a block before attempting to 
move it. See the Block function key description and "Block 
Description" earlier in this section for information on def ining 
blocks. 

When a block is moved, the text of the def ined block is: 

• Deleted from its o-riginal position 
• Replicated at the current cursor position 
• Inserted to the left of the current cursor position. 

The results of a Move Block operation depend on whether or 
not the cursor is on the f irst character of the line when the 
Move Block function key is pressed. 

• If the cursor is on the f irst character of the line, each 
line of the block is copied as a new line. The line where 
the cursor was originally positioned remains unchanged and 
follows the last line of the copied block. 

• If the cursor is not on the first character of the line, 
the f irst line of the block is appended to the right of 
the character that was to the immediate left of the 
original cursor position. Any intermediate lines of the 
block are appended next. The final line of the block is 
inserted to the left of the character that was under the 
original cursor position; this character and all 
characters to its right are preserved. 

Do not attempt a Move Block operation when the cursor is 
positioned beyond the last line of the file being edited. 

After the Move Block function key is used, the cursor is 
positioned on the first character of the newly inserted text. 

Example: 

The previously def ined block is: 

THIS PROGRAM CALCULATES THE WEEKLY GROSS AND NET PAY 

4-58 CZlS-02 



( 

. ( 

( 

MOVE BLOCK 

You wish to move the block into the position specif ied by the 
arrow. 

***************************************************** 
~ 

OF AN UNDETERMINED NUMBER OF EMPLOYEES. 

Position the cursor on the space where you want the f irst 
character of the block to appear: 

***************************************************** • OF AN UNDETERMINED NUMBER OF EMPLOYEES. 

Press the Move Block function key. The text now reads: 

***************************************************** 
THIS PROGRAM CALCULATES THE WEEKLY GROSS AND NET PAY 
OF AN UNDETERMINED NUMBER OF EMPLOYEES. 

The block of text is deleted from its original position. 

4-59 CZ15-02 



WINDOW DOWN 

WINDOW DOWN 

Move the current window toward the last line of the buffer by 
the number of lines specified in the scroll amount (see the 
Scroll Change directive earlier in this section for information 
on scroll amounts} • 

Scrolling stops at the last line in the buffer. 

If you append lines after the last line in the buffer, the 
window is automatically moved down to accommodate the appended 
lines. 

Default: 18 lines. 

Example: 

Assume the scroll amount is set at 5 and the text in the 
window appears as: 

(10) IF TOTWRKl >= STRTIME 
(11} THEN 
(12} SUBGROSS . -.- RATE * TOTWRKl; 
(13) SUBGROSS . -.- SUBGROSS * PENNYRND; 
(14) SUBGROSS := ROUND (SUBGROSS}; 
(15} SUBGROSS . -.- SUBGROSS " PENNYRND; 

(28} END 

Press the Window Down function key. The current window now 
displays: 

(15} SUBGROSS := SUBGROSS " PENNYRND; 

(32} FWT := FWT " PENNYRND; 
(33} WRITE (FWT :9:2}; 

4-60 CZlS-02 



( 

WINDOW LEFT 

WINDOW LEFT 

Move the current window 40 columns to the lef t (toward the 
left margin) of the buffer. 

Use this function key when you have entered text beyond 
column 80 and you wish to view text entered bef ore column 1 of 
the current window. 

If the current window is already at the left margin (displays 
column 1), no action is taken. 

Example: 

Assume the following phrase begins in column 81: 

ENTERED BEFORE COLUMN 1 OF THE CURRENT WINDOW 

Press the Window Left function key. The text that begins 40 
characters before column 81 now appears in the window: 

OND COLUMN 80 AND YOU WISH TO VIEW TEXT ENTERED BEFORE COL ••• 

4-61 CZlS-02 



WINDOW RIGHT 

WINDOW RIGHT 

Move the current window 40 columns to the right (toward the 
right margin) of the buffer. 

Use this function key when you have entered text beyond 
column 80 and you wish to view text entered beyond the last 
column of the current window. 

If you enter text beyond column 80 of the current window, the 
window automatically moves 40 columns to the right. 

If the current window already displays the text at the right 
margin, no action is taken. 

Example: 

Assume the window begins in column 1 and the last 54 
characters displayed are: 

USE THIS FUNCTION KEY WHEN YOU HAVE ENTERED TEXT BEYOND 

Press the Window Right function key. The text that begins 40 
characters beyond the f irst column of the current window is 
displayed. The last 54 characters displayed are now: 

RED TEXT BEYOND COLUMN 80 AND YOU WISH TO VIEW TEXT ENTERED B 

4-62 CZlS-02 



WINDOW UP 

WINDOW UP 

Move the current window toward the f irst line of the buffer 
by the number of lines specif ied as the scroll amount (see the 
scroll Change directive described earlier in this section for 
information on scroll amounts). 

Scrolling stops at the first line of the buffer. 

Example: 

Assume the scroll amount is set at 5 and the text in the 
current window appears as: 

(15) SUBGROSS := SUBGROSS " PENNYRND; 

(32) FWT := FWT " PENNYRND; 
(33) WRITE (FWT :9:2); 

Press the Window Up function key. The current window now 
displays: 

(10) IF TOTWRKl <= STRTIME 
(11) THEN 
(12) SUBGROSS := RATE * TOTWRKl; 
(13) SUBGROSS := SUBGROSS * PENNYRND; 
(14) SUBGROSS := ROUND (SUBGROSS); 
(15) SUBGROSS := SUBGROSS " PENNYRND; 

(28) END 

4-63 CZlS-02 



LABELED KEYS 

Labeled keys perform the functions described on the key. 
Depending on the type of terminal you are using you may or may 
not have these labeled keys. If your terminal does not have the 
listed labeled key, one of the function keys performs the same 
action. Function keys are described earlier in this section. 
Labeled key descriptions are listed alphabetically by key name on 
the following pages. Those labeled keys that have corresponding 
f unction keys are identif ied in the labeled key description. The 
labeled keys listed below are described in the following 
subsections, and are based on the VIP7801/VIP7802 {general 
purpose) terminal: 

• BACKSPACE 
w CARRIAGE RETURN/CR/ENTER NEW LINE/RETURN 
• CLEAR/RESET 
• CTL/CTRL CLR/TAB/SET 
• CTL/ CTRL TAB 
• CURSOR DOWN (~) 
e CURSOR LEFT (+-) 
e CURSOR RIGHT (~) 
e CURSOR UP {t) 
e DEL CHAR 
• DEL LINE 
e ERASE EOL 
• HOME 
• INS CHAR 
• LINE FEED 
e TAB CTL I/CTRL I 
• TAB CLR 
e TAB SET. 

NOTE 

The labeled keys AUTO LF (Automatie Line Feed) and 
LOCAL can cause unpredictable results during a 
screen editing session. 

AUTO LF causes an automatic line feed each time 
you press carriage return. The Screen Editor then 
perf orms another line feed/carriage return. This 
results in double spacing and loss of the correct 
cursor position. 

LOCAL allows you to move the cursor on the screen 
without interrupting processing. Using this key 
causes loss of the correct cursor position unless 
the cursor is repositioned to its original 
location before you exit from local mode. 

Use of either of these keys is not recommended 
during screen editing sessions. 

4-64 CZlS-02 



,• 

Table 4-2 correlates the VIP7801/VIP7802 (general purpose) 
terminal with the VIP7301 (general purpose ) keyboard, the 
VIP7303/VIP7803 (word processing} keyboards, the VIP7307 (data 
entry) keyboard, the microSystem 6/10 Workstation (VIP7305) , the 
VIP7200 keyboard, and the VIP7201 keyboard. The slash character 
(/) used in the table represents the word or. 

4-65 CZlS-02 



Table 4-2. Correlation of SCORPEO's Labeled Keys 

l/IP7 801/VIP7 802 

BACKS PACE 

RETURN 

CLEAR/RESET 

CTRL CLR/TAB/SET 

CT!U. TAB 

DEL CHAR 

DEL LINE 

ERASE EOL 

HOME 

INS CHAR 

INS LINE 

LINE FEED 

TAB 

TAB CLR 

TAB SET 

VIP7301 

BACKS PACE 

RETURN 

CLEAR/RESET 

CTRL CLR/TAB/SET 

CTRL TAB 

FCN KEY 7 

SHIFT DEL 

ERASE 

HOME 

FCN KEY 6 

SHIFT FCN KEY 6 

LINE FEED 

TAB 

TAB CLR 

TAB SET 

microSystem 
VIP7303/VIP7803 VIP7307 6/10 Workstation l/IP7200 VIP7201 

(VIP7305) 

BACRSPACE CTRL B Bacl<space CTL H BACKSPACE 

RETURN F!ELD ENTER Return/CR RETURN RETURN 

SHIFT CLEAR NOM CLEAR Reset SH!FT CLEAR SHIFT CLEAR 

CTRL T CTRL T Control Init CTL y CTRL T 

CTRL TAB CTRL TAB Sbift 1 CTL B I 

DELETE OELETE Oelete SHIFT FCN KEY F7 DELETE 

SHIFT DELETE NUM DEL Shif t Oelete DEL SHIFT DELETE 

ERASE CTRL E Erase ERASE EOL 

HOME FCN KEY 1 Home HOME HOME 

INSERT INSRT Insert SHIFT FCN KEY F6 INSERT 

SHIFT INSERT NUM FCN KEY 6 Shift Insert FCN KEY F6 SHIFT INSERT 

UNSOPPORTED UNSUPPORTED LF LF LINE FEED 

TAB 

SHIFT ABBREV· 

ABBREV 

TAB 

MDFY 

FORM 

Control Clear 

Control Set 

CTL I 

CTL C 

CTL s 

CTRL C 

CTRL S 

some of the keys on the microSystem 6/10 Workstation Multifunction (MF) keyboard are unlabeled. For definitition of these 
keys, use the SCORPEO Keyboard Overlay (T2010). 

4-66 CZlS-02 



BACKSPACE 

BACKS PACE 

Move the cursor one position (character) to the left. 

If the cursor is positioned on the leftmost column showing on 
the screen, pressing BACKSPACE has no effect. 

If the current window does not display the lef t margin, and 
the cursor is positioned in column 1 of the current window, 
pressing the BACKSPACE key automatically moves the window 40 
columns to the left. 

Example: 

Assume the cursor is resting on a line of text as follows: 

TBIS PROGRAM CALCULATES THE WEEKLY GROSS AND NET PAY 

Press the BACKSPACE key. The cursor is now positioned as 
follows: 

THIS PROGRAM CALCULATES mHE WEEKLY GROSS AND NET PAY 

4-67 CZlS-02 



CARRIAGE RETURN 
CR 

ENTER 
NEW LINE 

RETURN 
CARRIAGE RETURN 

Move the cursor from its current position to the leftmost 
column (column 1) of the succeeding line. 

Scrolling occurs, bringing the leftmost column into the 
window, if necessary. 

If the cursor is positioned on the last line of the window, 
the window automatically moves to display the next nine lines in 
the buffer. 

Example: 

Assume the cursor is positioned as follows: 

IF TOTWRKl >= STRTIME 
THEN 
SUBGROSS := RATE * ~OTWRKl; 
SUBGROSS := SUBGROSS * PENNYRND; 

Press CARRIAGE RETURN. The cursor is now positioned as 
follows: 

IF TOTWRKl <= STRTIME 
THEN 
SUBGROSS := RATE * TOTWRKl; 
;SUBGROSS : = SUBGROSS * PENNYRND; 

4-68 CZlS-02 



CLEAR/RESET 

CLEAR/RESET 

Cancel the character string just entered on the line. 

NOTE 

If transmission errors occur or if some other type 
of data corruption occurs on the screen, pressing 
the CLEAR/RESET key redisplays the entire screen 
(the three regions). 

Example: 

Assume you have· just entered the following line and the 
cursor is positioned as shown: 

THISS PROOGRAM CALUCLATE~ 

Rather than using function keys and labeled keys to correct 
the errors, press the CLEAR/RESET key. The line of text is 
cancelled, and the cursor is positioned at the beginning of 
the same line. 

4-69 CZlS-02 



CTL CLR/TAB/SET 
CTRL CLR/TAB/SET 

CTL CLR/TAB/ SET 
CTRL CLR/TAB/SET 

Cancel all user-def ined tab stops. 

Example: 

Assume you have def ined tab stops (using the Language Type 
directive) at columns 8, 12, 21, and then every 10 columns. 

Pressing the key sequence CTL CLR/TAB/SET cancels all tab 
stops, leaving the TAB key undef ined. 

4-70 CZlS-02 



( 
CTL TAB 
CTRL TAB 

CTL TAB 
CTRL TAB 

Move the cursor back one tab stop from its current position 
according to the currently defined tab stops. 

Example: 

With the default tab stops set, the current cursor position 
is: 

THIS PROGRAS CALCULATES THE WEEKLY GROSS AND NET PAY 

Press the CTL TAB sequence. The cursor is now positioned as 
follows: 

';lt.HIS PROGRAM CALCULATES THE WEEKLY GROSS AND NET PAY 

4-71 CZlS-02 



CURSOR DOWN 

CURSOR DOWN ( 4 ) 
·Move the cursor down one line leaving the cursor in the same 

column. 

If the cursor is positioned on the last line of the window, 
pressing the Cursor Down key positions the cursor on the first 
line of the window. The column is unchanged. To append blank 
lines to the end of the f ile, move the cursor past the current 
end of the f ile. A blank character (giving a line length of one) 
is appended each time the cursor is moved to a new line. 

Example: 

Assume the cursor is positioned as follows: 

IF TOTWRKl <= STRTIME 
THEN 
SIBGROSS : = * TOTWRKl; 
SUBGROSS := SUBGROSS * PENNYRND; 

Press the Cursor Down key. The cursor is now positioned as 
follows: 

IF TOTWRKl <= STRTIME 
THEN 
SUBGROSS := RATE * TOTWRKl; 
SIBGROSS := SUBGROSS * PENNYRND; 

4-72 CZ15-02 



( -... , ' \ . 
' -~ 

CURSOR LEFT 

CURSOR LEFT (~) 

Move the cursor one position (character) to the left. 

If the cursor is positioned on the leftmost column on the 
screen, pressing the Cursor Left key moves the cursor to the 
rightmost character on the screen of the preceding line. 

If the cursor is positioned in the leftmost column of line 1 
of the current window, pressing the Cursor Left key moves the 
cursor to the rightmost column of the last line displayed in the 
window. 

Example: 

Assume the cursor is positioned as follows: 

IF TOTWRKl <= STRTIME 
THEN 
SUBGRISS := RATE * TOTWRKl; 
SUBGROSS := SUBGROSS * PENNYRND; 

Press the Cursor Left key. The cursor is now positioned as 
follows: 

IF TOTWRKl <= STRTIME 
THEN 
SUBGIOSS := RATE * TOTWRKl; 
SUBGROSS := SUBGROSS * PENNYRND; 

4-73 CZlS-02 



CURSOR RIGHT. 

CURSOR RIGHT (~) 

Move the cursor one position (character) to the right of its 
current position. 

If the cursor is positioned on the rightrnost colurnn on the 
screen, pressing the Cursor Right key rnoves the cursor to the 
leftmost character on the screen of the succeeding line. Moving 
the cursor past the end of the line on which the cursor is 
situated causes blanks (spaces) to be appended to the end of the 
line. To keep these trailing blanks, use the TB option when the 
text is written to a file. 

If the cursor is in the rightrnost colurnn of the last line in 
the window, pressing the Cursor Right key positions the cursor in 
colurnn 1 of the f irst line in the window. If the cursor is 
positioned at the rightrnost edge of the window, inserting one or 
rnore characters at this point rnoves the cursor to colurnn 81. 
This situation causes all lines in the window to move to the left 
by 40 colurnns, and positions the cursor in colurnn 41 (now the 
lef trnost colurnn on the screen) • 

Exarnple: 

Assurne the cursor is positioned as follows: 

IF TOTWRKl <= STRTIME 
THEN 
SUBGROSS : = RATE)'·i'i* TOTWRKl; 
SUBGROSS := SUBGROSS * PENNYRND; 

Press the Cursor Right key. The cursor is now positioned as 
follows: 

IF TOTWRKl <= STRTIME 
THEN 
SUBGROSS := RATE 1 TOTWRKl; 
SUBGROSS := SUBGROSS * PENNYRND; 

4-7 4 CZlS-02 



CURSOR UP 

CURSOR UP ( i ) 

Move the cursor up one line leaving the cursor in the same 
column. 

If the cursor is positioned on the first line of the window, 
pressing the Cursor Up key positions the cursor on the last line 
of the window. The column is unchanged. 

If you have positioned the cursor in the Directive Region of 
the screen (by pressing HOME}, pressing the Cursor Up key returns 
the cursor to its location before you pressed the HOME key. (The 
HOME key is described later in this section.) 

Example: 

Assume the cursor is positioned as follows: 

IP TOTWRKl <= STRTIME 
THEN 
SUBGROSS := RATE * TOTWRKl; 
SUBGROSSi:= SUBGROSS * PENNYRND; 

Press the Cursor Up key. The cursor is now positioned as 
follows: 

IF TOTWRKl <= STRTIME 
THEN 
SUBGROSS)!. : = RATE * TOTWRKl; 
SUBGROSS := SUBGROSS * PENNYRND; 

4-75 CZlS-02 



DEL CHAR 

DEL CHAR 

Delete the character on which the cursor is positioned. 

To delete a character, position the cursor on the unwanted 
character and press the DEL CHAR key. The line that contained 
the deleted character is now one character shorter in length. 
All characters following the deleted character are moved one 
position to the left so that the first character following the 
deleted character is adjacent to the character preceding the 
deleted character. 

To delete multiple characters, press and hold the DEL CHAR 
key. 

Example: 

Assume the text reads as follows: 

THIS PROOGRAM CALCULATES THE WEEKLY GROSS AND NET PAY 

Position the cursor on the unwanted character: 

THIS PR~GRAM CALCULATES THE WEEKLY GROSS AND NET PAY 

Press the DEL CHAR labeled key. The text now reads: 

THIS PROGRAM CALCULATES THE WEEKLY GROSS AND NET PAY 

4-76 CZlS-02 



() 

DEL LINE 

DEL LINE 

Delete the line on which the cursor is positioned. 

After the line is deleted, the cursor is positioned in the 
same column but on the line that immediately followed the deleted 
line. 

Example: 

A'ssume the cursor is resting on the line as follows: 

IF TOTWRKl <= STRTIME 
THEN 
SIB 
SUBGROSS := RATE * TOTWRKl; 
SUBGROSS := SUBGROSS * PENNYRND; 

Press the DEL LINE labeled key. The text now reads as 
follows: 

IF TOTWRKl <= STRTIME 
THEN 
IUBGROSS := RATE * TOTWRKl; 
SUBGROSS := SUBGROSS * PENNYRND; 

4-77 CZlS-02 



ERASE EOL 

ERASE EOL 

Delete any text f rom (and including) the current cursor 
position to the end of the line. 

To erase characters from the current cursor position to the 
end of the line, position the cursor on the first character of 
the text you want to erase, and press the ERASE EOL key. If the 
cursor is on column 1 of the line, the ERASE EOL does not totally 
delete the line, but modifies the line length to one character, a 
blank. 

The cursor is positioned on the same line in the same column 
as when you pressed the ERASE EOL key. 

Example: 

Assume the text reads as follows and you have positioned the 
cursor as shown: 

THIS PROGRAM CALCULATES THE GROSS AND NET PAY OF llN OF 
AN UNDETERMINED NUMBER OF EMPLOYEES. 

Press the ERASE EOL key. The text now reads: 

THIS PROGRAM CALCULATES THE GROSS AND NET PAY OF 
AN UNDETERMINED NUMBER OF EMPLOYEES. 

4-78 CZlS-02 



(
~' .. . . 

1 • 

\ , 

HOME 

HOME 

Move the cursor to the directive input line of the screen. 

When you press the HOME key, the system "remembers" the 
cursor position before it is positioned to the directive input 
line. The "remembered" cursor position is the cursor position 
used for any directives related to cursor position. 

Example: 

Assume the cursor is positioned as follows: 

THIS PROGRAM CALCULATES TR,j WEEKLY GROSS AND NET PAY 

Press the HOME key. The cursor position is remembered and 
the cursor is repositioned to the directive input line as 
follows: 

DIRECTIVE :mru 

To cancel a directive, press the Cursor Up key--do not press 
RETURN. The Cursor Up key returns the cursor to its 
"remembered" position. 

4-79 CZlS-02 



INS CHAR 

INS CHAR 

Insert a nurnber of characters to the left of sorne point in a 
buffer. 

To insert characters, position the cursor to the character 
that should irnrnediately follow the character{s) that you are 
inserting. Press the INS CHAR key. The flag INSERT appears in 
the status region to alert you that you are in insert rnode. 
Enter the new characters. 

Every character to the right of the current cursor position 
(including the character on which the cursor is resting) is rnoved 
one space to the right for the insertion of each character you 
enter. 

To end character insertion, press the INS CHAR key a second 
time. The INSERT flag is rernoved f rorn the status region. Any 
characters you enter now will write over the existing text. 

To insert characters at the end of a line, position the 
cursor to the location where you wish to begin the insert and 
sirnply enter the characters. It is not necessary to use the INS 
CHAR key to enter characters at the end of a line. 

When SCORPEO is in insert rnode, the RETURN and LINE FEED keys 
can be used to split one line into two lines or create a blank 
line. While in insert rnode, if you press RETURN and enter it as 
an inserted character, the character where the cursor is located, 
and all the characters that follow the cursor on that sarne line, 
are rnoved to the next line and begin in colurnn 1. If you now 
press RETURN with the cursor positioned in colurnn l, a blank line 
is inserted in the buffer, and the original line rnoves to the 
next line. 

While in insert rnode, if you press LINE FEED and enter it as 
an inserted character, the character where the cursor is located, 
and all the characters that follow the cursor on that sarne line, 
are rnoved to the next line, with each character rernaining in its 
original colurnn. The cursor is positioned on the f irst character 
of the new line {it rernains in the sarne colurnn, one line down). 
If you are not in insert rnode and press LINE FEED, the new line 
is blank f illed up to the cursor position. 

4-80 CZlS-02 



( ~,_, (('·.·. 

Example 1: 

An example of pressing RETURN in insert mode is: 

THIS IS A IPLIT LINE. 

Press RETURN. The result is: 

THIS IS A 
!SPL IT L INE. 

Example 2: 

An example of pressing LINE FEED in insert mode is: 

THIS IS • SPLIT LINE. 

Press LINE FEED. The result is: 

THIS IS 
D SPLIT LINE. 

INS CHAR 

To insert multiple characters of the same value, press and 
hold the INS CHAR key. If inserting characters in a line 
causes the maximum line length of 256 characters to be 
exceeded, those characters in the rightmost columns of the 
line (past column 256} are lost. 

Example 3: 

Position the cursor to the right of the location where you 
want to insert characters. For example: 

NETPAY := GROSSPAY - ßICA; 

Press the INS CHAR key. Enter the characters you wish to 
insert. The new line of text (after insertion) now reads: 

NETPAY := GROSSPAY - FWT - SWT - !BICA; 

Press the INS CHAR key again to leave insert mode. 

4-81 CZ15-02 



INS LINE 

INS LINE 

Append a new line after the line on which the cursor is 
positioned. 

The new line appears as a blank line on which you can enter 
text. You rnust position the cursor in the text region of the 
screen for the INS LINE key to take effect. 

To insert a line before the f irst line of text (line l in the 
file), do the following: 

1. Position the cursor on the control line (you cannot 
insert lines before the Screen Editor control line) 

2. Press the INS LINE key. 

Enter the new text on the blank line that is displayed. 
Pressing RETURN af ter the new line of text inserts another blank 
line below the previous new line. Enter the next line of new 
text on this line. To exit INS LINE rnode, use the Cursor Up Ct) 
or Cursor Down (~) key--do not press RETURN at the end of the 
last line. 

The INS LINE key perf orrns the sarne actions as the Append Line 
function key described earlier in this section. 

Exarnple: 

Position the cursor on the line before the location of the 
line of text you want to insert: 

(******************************************************* 
THIS PROGRAM CALCULATES THE WEEKLY GROSS AND NET PAY 

•******************************************************) 

Press the INS LINE key and the text appears as follows: 

(******************************************************* 
THIS PROGRAM CALCULATES THE WEEKLY GROSS AND NET PAY 

•******************************************************) 

You can now enter text on the blank line on which the cursor 
is positioned. Be aware that all line nurnbers following the 
new line are incrernented by one. 

4-82 CZlS-02 



·r 

, c .... 

LINE FEED 

LINE FEED 

Move the cursor down one line from its current position and 
leave the cursor in the same column. 

If the cursor is positioned on the last line of the window, 
pressing the LINE FEED key moves the window down nine lines. 

Example: 

Assume the cursor is positioned as follows: 

IF TOTWRKl <= ~TRTIME 
THEN 
SUBGROSS := RATE * TOTWRKl; 
SUBGROSS := SUBGROSS * PENNYRND; 

Press the LINE FEED key. The cursor is now positioned as 
follows: 

IF TOTWRKl <= STRTIME 
THEN 
SUBGROSS := RATE * TOTWRKl; 
SUBGROSS := SUBGROSS * PENNYRND; 

4-83 CZlS-02 



TAB 
CTL 1 

CTRL I 

TAB 
CTL I 
CTRL I 

Move the cursor from its current position to the next tab 
stop to the right on that line, according to the current tab stop 
def inition. 

The key sequences CTL I or CTRL I perform the same actions as 
the TAB key. 

Example: 

With the default tab stops set, the current cursor position 
is: 

THIS PROGRIM CALCULATES THE WEEKLY GROSS AND NET PAY 

Press the TAB key. The cursor is now positioned as follows: 

THIS PROGRAM CALCULAl!ES THE WEEKLY GROSS AND NET PAY 

4-84 CZlS-02 



r.· ('"·., \ '., 

\ ' 

TAB CLR 

TAB CLR 

Cancel (clear) the tab stop def inition in a specif ied column. 

Position the cursor in the column containing the tab stop and 
press the TAB CLR key. 

Example: 

Assume you have set the tab stops as shown by the designated 
cursor positions: 

THIS PROGolAM CALCULITES THE WEEKLY GROSS AND NET PAY 

Positioning the cursor in the column containing the tab stop 
you wish to cancel (say, the f irst cursor position) cancels 
the definition of that tab stop: 

THIS PROGIAM CALCULITES THE WEEKLY GROSS AND NET PAY 

4-85 CZlS-02 



TAB SET 

TAB SET 

Set a tab stop in a specif ied colurnn. 

Position the cursor in the desired colurnn and press the TAB 
SET key. 

Exarnple: 

Assurne this line begins in colurnn 1. At each designated 
cursor position, you have pressed the TAB SET key. 

THIS PR~RAM CALCU\IATES THE WEEKLY GROSS AND NEY PAY 

Tab stops are now set at colurnns 9 and 19. 

4-86 CZlS-02 



( 

REMOVE THIS PAGE AND PLACE TAB FOR 

TAB 5 

LINE EDITOR 



"· ~/ 
1 • 
\..__.,.,../ 



Section 5 
LINEEDITOR 

This section describes Line Editor functions and the Line 
Editor directive set. Procedural information on using Line 
Editor directives to create and edit files is also included at 
the end of this section. 

OVERVIEW 

The Line Editor creates and/or alters character text that 
constitutes f iles; the f iles usually are source unit files. The 
statements in a source unit file can be written in any of the 
programming languages supported by MOD 400. Throughout this 
section, it is assumed that source unit f iles are being edited. 

Editing is controlled by directives entered to the Line 
Editor through the device specified in the in path argument of 
the Enter Group Request (EGR) command. This äevice can be 
reassigned in the command that loads the Line Editor. 

All editing is done in a temporary work area called the cur­
rent buffer. When the Line Editor is invoked, the Line Editor 
creates a current buffer. To save Line Editor output, you must 
write the source unit contents of the current buffer to a file. 

5-1 CZlS-02 



During a single execution of the Line Editor, the Line Editor 
can operate in input and/or edit mode. In input mode, you can 
create a source unit and/or add one or more specif ied lines to an 
existing source unit. In edit mode, you can locate and change 
single characters, words, or a string of characters, read the 
contents of a file into the current buffer so that the line(s) 
can be edited, write lines from the current buffer to a f ile, and 
terminate execution of the Line Editor. 

NOTES 

1. During a single execution of the Line Editor, 
you can create and/or change any number of 
f iles. You must delete the contents of the 
current buffer before you begin to edit 
ano~ner f ile, unless you want that f ile to 
comprise the same information that was in the 
previous file(s). 

2. At any time during execution of the Line 
Editor you can request a message that 
indicates whether input or edit mode is in 
effect. Each time !? is entered, the 
following message is issued: 

INPUT MODE 
EDIT 

Line Editor processing can be interrupted by either: 

• Pressing the QUIT, INTERRUPT, or BREAK key on your 
terminal 

• Entering ~C~Bgroup-id on the operator terminal, where 
group-id is the two-character group identification code 
associated with the group contai'ning the task to be 
interrupted. 

A **BREAK** message appears on your terminal when the system 
interrupts the Line Editor. If the Program Interrupt (PI) 
command is entered, output is suppressed and the task returns to 
directive input level. See the Commands manual for a detailed 
description of the Break function:-~--

Each Line Editor directive's name and function is listed in 
Table 5-1. They are described in detail in "Input Mode 
oescription and Directives," "Edit Mode Description and 
Directives," and "Advanced Usage of the Line Editor" later in 
this section. Directives described in the input and edit mode 
subsections operate within the current buffer. 

5-2 CZ15-02 



LINE EDITOR SUFFIX CONVENTIONS 

During the prograrn preparation, it is convenient to identify 
output file(s) with the narne of the input file. 

When you create a source unit, you should append the appro­
priate suffix identification character to the narne of the f ile 
that will contain the source unit. The suff ix designates the 
type of text that constitutes the source unit. The suffix rnust 
be .C for COBOL or C prograrns, .F for FORTRAN prograrns, .B for 
BASIC prograrns, .PS for Pascal prograrns, .AS for ADA, and .A for 
Assernbly language prograrns. 

When you specify the f ile narnes of Line Editor input and 
output f iles (in Line Editor directives), the editor requires 
that you designate the cornplete f ile narne, including the suff ix 
that denotes the contents of the f ile. The Line Editor does not 
append a suffix to its input and output files. 

LINE EDITOR DIRECTIVE FORMAT CONVENTIONS 

Most Line Editor directives consist of only a directive narne, 
a directive narne preceded by one or two addresses, or a directive 
narne optionally preceded by one or two addresses and f ollowed by 
text and terrnination escape characters (!F) that designate the 
end of the directive and cause the Line Editor to switch frorn 
input rnode to edit rnode. These forrnats are illustrated here. 
Note that if a directive includes text, the text rnay be specifi'ed 
beginning irnrnediately after the directive narne (see Format 4) or 
beginning on the next line (see Format 5). 

FORMAT 1: 

dirnarne 

FORMAT 2: 

aar, dirnarne 

FORMAT 3: 

ad~ {!}adr2 dirnarne 

FORMAT 4: 

[ adr1 [ {;} adr2J] di rname [ te xt 1 ! F 

5-3 CZ15-02 



FORMAT 5: 

[ adr1 [t~adr2] dirname 

[text] 

!F 

ARGUMENTS: 

dirname 

Valid Line Editor directive. 

adr 1 adr2 

Valid addresses for the current buffer. 

text 

Any text. 

NOTES 

1. Spaces are not perrnitted, except in the fol­
lowing circurnstances: 

a. Spaces are perrnitted in expressions con­
stituting addresses. 

o. A space is permitted after the Execute, 
Read, and Write directive narnes (these 
directives are described later in this 
section) • 

2. One or two addresses rnay be specified without 
a directive name; if no directive narne is 
specif ied, the last (or only) addressed line 
is printed (see "Print (P)" later in this 
section) • 

When a single address is specif ied, the Line Editor locates the 
specified line in the current buffer. When two addresses are 
specif ied within a single directive, the Line Editor locates a 
specified series of lines in the current buffer; the lines that 
are located depend on whether the addresses are separated by a 
comrna or a sernicolon (see "Referencing a Series of Lines"). If a 
Line Editor directive forrnat designates that either a single 
address or a pair of addresses rnay be entered, you can enter that 
directive and ornit one or both addresses; their default value(s) 
will be used. Address default values are described later in this 
section under each directive's argurnent descriptions. 

5-4 CZ15-02 



( 

Multiple Line Editor directives can be entered on a single 
line; it is not necessary to separate each directive with a 
delirniter, but one or rnore spaces can be specified, as 
illustrated below: 

Directives not separated by delirniters: 

dirnarnedirnarne 

II~ ~~~~~~-second directive 
~-~~~~~~~~~~-First directive 

Directives separated by delirniters: 

dirnarne dirnarne adr 1 dirnarne 

1 
I I~ ~~~-Third directive 
~-~~~~~~~~~~~Second directive 

'--~~~~~~~~~~~~~~~First directive 

A cornrnent can be included at the end of a directive line 
(i.e., at the end of the last or only directive); the cornrnent 
rnust be preceded by a quotation rnark ("), as illustrated: 

adr dirnarne dirnarne"cornrnent 

To include a cornrnent after an input rnode directive, specify 
cornment after the terrninator !F; otherwise, the comrnent is 
included as text. 

dirnarne[text] !F"cornrnent 

the 

[ adr1 [ {;} adr2J] 
1 '~~~~Directive cornrnent 
~-~~~~~~~~~Directive 

If a terminal is the directive input device, press RETURN at 
the end of each line. 

Methods of Specifying Addresses 

Each address can be specif ied by one of the following methods 
or by a cornbination of these rnethods: 

• Number of line 
• Position of line relative to the "current" line 
• Contents of line. 

5-5 CZlS-02 



DESIGNATING A LINE NUMBER AS AN ADDRESS 

Each line in the current buffer can be located by a decimal 
number that indicates the current position of the line within the 
buffer. The first line in the buffer is line l; subsequent lines 
are numbered sequentially in ascending order. To determine the 
line number of a specified line in the current buffer, enter the 
Print Line Number directive. To determine the line number and 
contents of specified line(s) in the buffer, enter the Print With 
Line Number directive. (These directives are described under 
"Advanced usage of the Line Editor" later in this section.) 
Multiple decimal numbers separated by plus or minus signs can be 
specif ied to represent a line number. 

Example: 

10 
5+5 

Each of the expressions above request line 10. The last line 
can be referenced by its line number or by the character $. 

If an address designates a line that is not in the current 
buffer, an error message is issued. 

Line Editor directives can cause lines to be added to or 
deleted from the current buffer. Each time this occurs, all 
succeeding lines are renumbered. For example, if line 15 is 
deleted, line 16 becomes 15, and each subsequent line number is 
decremented by 1. 

DESIGNATING THE POSITION OF A LINE RELATIVE TO THE "CURRENT" LINE 
AS AN ADDRESS 

Most Line Editor directives af fect either the current line or 
a line a designated number of positions from the current line. 
If the last Line Editor directive entered was an Input directive 
(i.e., input mode was in effect), the current line is the last 
line added or read by the Line Editor (regardless of whether the 
condition specified in the directive was met). If the last Line 
Editor directive entered was an Edit directive (edit mode was in 
effect), the current line is the last line of text edited. The 
current line can be located by specifying a period (.). 

NOTE 

If you do not know which line is the current line, 
you can obtain a display of the line number of the 
current line by specifying the Print Line Number 
directive, which is described under "Advanced Usage 
of the Line Editor" later in this section. 

5-6 CZ15-02 



{' 

\ 
f(~. 

c 

You can locate lines relative to the current line by specify­
ing an address that consists of a period followed by one or more 
signed decimal numbers. For example, the address .+l specif ies 
the line immediately following the current line, the address .-1 
specif ies the line immediately preceding the current line, and 
.+5+5-3 specif ies the seventh line after the current line. 

When specifying an increment to the current line number, you 
can omit the plus (+) sign; e.g., .5 is interpreted as .+5. When 
specifying a decrement to the current line number, you can omit 
the period; e.g., -3 is interpreted as .-3. 

DESIGNATING CONTENTS OF LINE AS AN ADDRESS 

You can designate that the Line Editor locate the f irst line 
that contains a specif ied character or a specif ied sequence of 
characters by designating those characters in an expression as an 
address. An expression comprises one or more ASCII characters, 
which must be delimited by slashes (e.g., /ASCII characters/). 

The Line Editor searches the lines in the current buffer 
until it finds the f irst occurrence of the specified expression; 
unless specif ied otherwise, the expression can be in any position 
within the line. If a circumflex (A) is designated as the first 
character of the expression, the expression must be the f irst 
expression on the line. If $ is designated as the last character 
of the expression, the expression must be the last expression on 
the line. (Use of these special characters is described in the 
following paragraphs.) The Line Editor searches from the line 
immediately following the current line (i.e., .+l) through the 
last line in the buffer; if a line containing the specified 
expression is not found, the Line Editor then searches line 1 to 
the current line. In the directive format: 

/BBB/dirname 

the address is the expression BBB. The Line Editor searches as 
many lines as necessary for the f irst occurrence of BBB. The 
contents of the source unit being searched are listed below. 
(The numbers in parentheses represent line numbers.) 

(1) AAA 
(2) BBB 
(3) CCC (current line) 
(4) BBB 

The specified directive causes the Line Editor to locate line 
number 4, since this is the first line after the current line 
that contains the expression BBB. 

5-7 CZ15-02 



1 . 

When the following ASCII characters are included in expres­
sions, they have special meanings: 

Character Description 

* 

$ 

& 

Requests expressions that contain any number (or 
none) of the immediately preceding character(s). 

When designated as the f irst character of an 
expression, requests lines that begin with the 
specif ied expression (excluding the character A). 

When specif ied as the last character of an expres­
sion, requests lines that end with the specified 
expression (excluding the character $) • 

Can be any charcter on any line; specify one 
period per character (e.g., " •• " means any two 
char- acters on any line) • 

Can be used in the string expression of a Substi­
tute directive to indicate that the strings of 
characters preceding and following "&" are to be 
con- catenated to the target string of the search. 
See the description of the Substitute directive 
later in this section. 

line feed 
(hex OA) 
(see Note 3) 

The occurrence of a line feed in the string expres­
sion determines the point in the resulting line at 
which the line is to be split into two lines. See 
the Substitute directive for further details. 

NOTES 

1. The special meanings of the above characters, 
/ (which delimits an expression) and !? (which 
causes display of the mode currently in 
eff ect) , can be removed by preceding the spe­
cial character with !C. For example, !C!? 
causes !? to be interpreted as text rather 
than as a request f or display of the mode that 
is in effect. 

2. The characters • and $ can be specified as 
line numbers or as special characters in 
expressions; the Line Editor can interpret 
their meaning from the way they are used. 

5-8 CZlS-02 



.(-. 

c ' i 

3. For the Line Editor, two hexadecimal 
characters can be interpreted as one ASCII 
byte by using the escape sequence !Hxx, where 
xx are the two hex characters. However, this 
feature must be used with care since some of 
the hexadecimal characters may be confused 
with control or special characters in ASCII 
strings. The following is a list of the 
hexadecimal characters whose use is 
restricted: 

OA is the line feed character; in a string 
expression, it is interpreted as a request 
for advancement to a new line. 

2E in a regular expression is treated as 
n n . . 
26 in a string expression is treated as 
ß & II • 

2A in a regular expression is treated as 
"*" 

24 at the end of a regular expression is 
interpreted as "end-of-line ($)". 

SE at the beginning of a regular expres­
sion becomes "beginning-of-line (A)". 

Rather than attempting to substitute in an 
expression using the characters above, execute 
a Change directive, reentering the line using 
hexadecimal and ASCII characters f or the 
entire line. 

Following are some examples of expressions specif ied as addresses 
in Line Editor directives. Following each expression is a 
description of the line/character(s) in the current buffer for 
which the Line Editor searches. In each case, the Line Editor 
searches the lines sequentially, starting with the line 
immediately following the current line to the end of the f ile, 
and then from line 1 through the current line. 

Expression DescriEtion 

/A/. Locates the first line that contains the expression 
A in any position in that line. 

/ABC/ Locates the f irst line that contains the expression 
ABC in any position on that line. 

/AB*C/ Locates the f irst line that contains the expression 
AC or A followed by any number of B's and a C. 

5-9 CZlS-02 



Expression Description 

/IN •• TO/ Locates a line that contains IN and TO separated by 
any two characters. 

/IN.*TO/ Locates a line that contains IN and TO, in that 
order, with any or no characters between those two 
words. 

/AABC/ Locates a line that begins with the expression ABC. 

/ABC$/ Locates a line that ends with the expression ABC. 

/ABC!C$/ Locates a line that contains the expression ABC$. 
ABC$ can be in any character positions: since the 
character $ was preceded by !C. 

/AABC.*DEF$/ Locates a line that begins with ABC and ends with 
DEF; there can be any number of characters between 
ABC and DEF. 

The Line Editor remembers the last specif ied expression. 
That expression can be reinvoked in a subsequent Line Editor 
directive by specifying a null expression (e.g., //). 

Examples: 

/ABC/dirname 

Expression ABC specif ied as address 

2dirname 

Second line in buffer specified as address 

//dirname 

Specif ies ABC as an address, since ABC was the last 
specif ied expression 

An address can be specif ied as an expression followed by one 
or more signed decimal integers. Each of the following three 
expressions requests the second line after the line that contains 
ABC. 

/ABC/2 
/ABC/+2 
/ABC/+5-3 

5-10 CZ15-02 



. .. '·(.~. 

COMPOUND ADDRESSES 

An address can be forrned by combining any of these methods. 
If a cornpound address contains a line number, the line number must 
be the f irst element of the address. 

The f irst element of the compound address determines the 
starting location f rom which the Line Editor searches for the 
designated expression. If the first elernent is a line number, the 
Line Editor searches for the expression starting with the line 
that imrnediately follows the specified line number. (Ordinarily, 
the Line Editor searches starting with the line that irnrnediately 
follows the current line.) 

Example 1: 

10/ABC/ 

The Line Editor searches the lines in the current buffer for 
the characters ABC, starting with line 11. 

Exarnple 2: 

.-8/ABC/ 

The Line Editor searches the lines in the current buffer for 
the character ABC, starting eight lines bef ore the current 
line. 

Exarnple 3: 

/ABC/DEF/ 

The Line Editor searches for the first line containing DEF 
that occurs after the f irst line containing ABC. 

Each expression in a compound address can be f ollowed by a 
signed decimal integer. 

Exarnple 4: 

/ABC/-10/DEF/5 

The Line Editor searches for the first occurrence of the 
character string DEF that is within 10 lines before the first 
line that contains ABC. After DEF is found, the current line 
is the f ifth line after the line containing the match for DEF. 

5-11 CZ15-02 



Ref erencing a Series of Lines 

A Line Editor directive that permits two addresses to be 
specif ied causes the Line Editor to locate a series of lines in 
the buffer. The addresses can be separated by a comma or a 
semicolon. If the second address is relative to the current line 
(plus or minus), both the addresses and the plus or minus sign 
determine which lines will be located by the Line Editor; 
otherwise, only the addresses are relevant. 

If the addresses are separated by a comma, the Line Editor 
locates the line at the first address through the line at the 
second address, inclusive. The current line remains unchanged 
until the directive is executed; the current line then becomes the 
line specif ied by the second address. 

If the addresses are separated by a semicolon, the line 
located by the f irst address becomes the current line and the 
value of the second address is calculated. 

Example 1: 

l,Sdirname 

These addresses specify lines 1 through 5, inclusive. After 
the directive is executed, line 5 becomes the current line. 

Example 2: 

l,$dirname 

These addresses specify line 1 through the last line in the 
buffer, inclusive. After the directive is executed, the last 
line becomes the current line. 

Example 3: 

.l,/ABC/ 

These addresses specify the line immediately following the 
current line through the f irst line that contains ABC. The 
f irst line that contains ABC then becomes the current line. 

Example 4: 

.1, . 2di rname 

The contents of a sample source unit are listed below. The 
numbers in parentheses represent line numbers. 

5-12 CZlS-02 



(~ 

(1) ABC 
(2) DEF (current line) 
(3) GHI 
( 4) ABC 
(5) XYZ 
(6) ABC 

These addresses specify the line immediately following the 
current line through the second line after the current line. 
The Line Editor locates lines 3 and 4. Line 4 becomes the 
current line. 

Example 5: 

.1;2dirname 

These addresses are the same as those in Example 4, but they 
are separated by a semicolon. If the contents of the sample 
source unit are the same as in Example 4, this directive 
causes the Line Editor to locate lines 3, 4, and 5. This 
f irst address specif ies the line immediately after the current 
line; i.e., line 3. Line 3 then becomes the current line. 
The second address specif ies that the Line Editor locate 
through the second line after the (new) current line; i.e., 
lines 4 and 5. 

The same series of lines can be requested by specifying their 
addresses in more than one way, using different delimiters. 

Example 6: 

/ABC/,/ABC/+3dirname 
/ABC/;.+3dirname 

The contents of a sample source unit follows. The numbers in 
parentheses represent line numbers. 

(1) ABC 
(2) DDD (current line) 
(3) EEE 
(4) FFF 
(5) GGG 
(6) HHH 

The f irst series of addresses specifies that the Line Editor 
locate the first line that contains ABC (line 1) through the 
third line after that line (lines 2, 3, and 4). Line 4 
becomes the current line. 

The second series of addresses specif ies that the Line Editor 
locate the first line that contains ABC (line 1), make that 
line the current line, and then reference three lines from the 
new current line (lines 2, 3, and 4). Line 4 becomes the 
current line. 

5-13 CZ15-02 



Loading the Line Editor 

The Line Editor command loads the Line Editor. Upon loading, 
a message indicating the current Line Editor release number is 
sent to the error-out f ile. 

To load the Line Editor, enter the ED command. 

FORMAT: 

ED[?SILENT] [ctl_arg] 

ARGUMENTS: 

Optional entry point that suppresses the welcome message. 

[ctl_arg] 

None or any number of the f ollowing control arguments can 
be entered: 

-IN path 

File f rom which Line Editor directives are to be 
read. -IN path in the Line Editor command line 
results in the user-in file being changed to path or 
the contents of path being copied to a buffer (EXEC) • 
Execution starts with the first line of (EXEC). 
If the path is relative, it is expanded relative to 
the current working directory. 

Default: directives are obtained from the current 
user-in f ile. 

{ -LINE_LEN nnn} 
-LL nnn 

Alter the line length to be acted upon by the Line 
Editor. Can be any value from 20 to 512. Default: 
nn equals 512. 

{ -PROMPT} 
-PT 

Print the prompt character E? (in edit mode) or I? 
(in input mode) on the user-in f ile upon completion of 
the previous Line Editor directive; no carriage return 
follows. If the user-in f ile is other than a 
terminal-like device, this argument is ignored. 

5-14 CZlS-02 

. ....._ 
\ 



. c--'.\ \ i 

{ -NO_BLANK_SUPPRESS} 
-NBS 

No blank suppression; i.e., the Line Editor does not 
suppress trailing blanks on the input line (for one 
invocation only) • subsequent invocation without -NBS 
suppresses trailing blanks. 

{ -FILE_SIZE nn ~ 
-FS nn J 

Alter the initial size of the work f ile to the size in 
the user-supplied value of nn, where nn is a decimal 
integer comprising up to four characters and des­
ignates the number of 256-byte control intervals. If 
an output f ile is created, it is initialized to the 
same size. 

Default: 4. 

{ -ARGS st7ings} 
-ARG strings 

Up to nine character strings that are numbered sequen­
tially and can be passed to the Line Editor in the 
Editor directive. (See "Change Origin of Text During 
Edit Mode (!B)" later in this section.) Each argument 
following the -ARG keyword is copied to buffer 
(ARGn). "n" denotes the position of the argument 
following the -ARG and can be any value from one 
through nine. If specif ied, this argument and its 
strings must be entered last. 

{ -SAFE name } 
-SF name 

Permanent work f iles called name.EDWKl and name.EDWK2 
are created in your current working directory to 
contain the two latest copies of the current buffer. 
Name can be from one to six characters. Abnormal 
termination causes the work f iles to be closed in 
their current state and saved f or later use, and 
normal termination releases them. To reuse the work 
files, invoke the Line Editor without -SAFE or with 
-SAFE and a different name, read each one in, and 
continue editing the one that contains the latest copy 
of the saved buffer. 

Default: work f iles are temporary files and are 
released under all conditions. If the Line 
Editor terminates abnormally, all modifica­
tions made after the last Write directive 
are lost. 

5-15 CZlS-02 



'-SIZE nn} t-sz nn 

Def ine the number of 1024-word blocks to be used for 
dynamic storage in memory. "nn" can be any value from 
l to 64. The formula for calculating the number of 
lines possible is (2*nnK/LL+6}-3, where K is 1024 and 
LL is the line length value (or 80 by default). 

Default: 1. 

SUMMARY OF LINE EDITOR DIRECTIVES AND ESCAPE SEQUENCES 

Table 5-1 lists each Line Editor directive name and escape 
sequence: summarizes its function, and designates the topic in 
this section under which the directive/escape sequence is 
described. The topics refer to the following paragraphs: 

• "Input Mode Description and Directives" (input mode} 
• "Edit Mode Description and Directives" (edit mode) 
• "Advanced Usage of the Line Editor" 

-"General Advanced Line Editor Directives" (advanced 
usage--general} 

-"Auxiliary Buffer Directives and Escape Sequences" 
(advanced usage--auxiliary buffers} 

-"Line Editor Debugging Directives" (advanced usage-­
debugging} 

-"Line Editor Programming Directives" (advanced usage-­
programming} • 

Table 5-1. Summary of Line Editor Directives and Escape 
Sequences 

Directive 
Name/Escape Topic Under 

Sequence Function Which Described 

A Add line(s} af ter speci- Append directive (input 
fied address. mode} 

B Make specif ied auxiliary Change Buffer directive 
buff er the current (advanced usage--auxil-
buffer. iary buffers} 

c Delete specif ied line(s} Change directive (input 
and insert other line (s}. mode) 

5-16 CZlS-02 



( 

(_) 

Table 5-1 (cont). Summary of Line Editor Directives and 
Escape Sequences 

Directive 
Name/Escape 

Sequence 

D 

E 

G 

I 

K 

L 

M 

N 

p 

Q 

Function 

Delete specified line(s) 
from current buffer. 

Execute command other 
than Line Editor without 
exiting from the Line 
Editor. 

Search for specified 
line(s) that contain 
specif ied character 
string. 

Add line(s) before a 
specified address. 

Copy line(s) in current 
buffer to specif ied 
auxiliary buffer. Do not 
delete lines f rom current 
buf fer-. Overlay existing 
line(s) in auxiliary 
buffer. 

Send line feed to the 
user-out f ile. 

Move line(s) from current 
buffer to specif ied 
auxiliary buffer; delete 
the lines from current 
buff er and overlay exist­
ing line(s) in auxiliary 
buffer. 

Designate different line 
as the current line. 

Print specified line(s) 
in current buffer. 

Conditionally terminate 
execution of Line Editor. 

5-17 

Topic Under 
Which Described 

Delete directive (edit 
mode) 

Execute directive 
(advanced usage-­
general) 

Global directive 
(advanced usage-­
general) 

Insert directive (input 
mode) 

Copy directive (advanced 
usage--auxiliary 
buffers) 

Line Feed directive 
(advanced usage-­
general) 

Move directive (advanced 
usage--auxiliary 
buffers) 

New Current Line directive 
(advanced usage--
general) 

Print directive (edit 
mode) 

Quit directive (edit mode) 

CZ15-02 



Table 5-1 (cont). Summary of Line Editor Directives and. 

Directive 
Name/Escape 

Escape Sequences 

Sequence Function 

R Read text from f ile to 
current buffer. 

S Substitute character 
string with another 
character string. 

T Display line of text on 
user-out f ile. subse­
quent input/output will 
be on the next line. 

U Convert specif ied upper­
case expression to 
lowercase. 

V Search for specif ied 
line(s) that do not con­
tain specified character 
string. 

W Write specified line(s) 
f rom current buffer to 
specified f ile. 

X Request status of auxil­
iary buffers. 

ZDUMP Print contents of speci­
f ied line(s). 

ZREGEXP Display last specif ied 
expression. 

ZTRACE Display each directive 
line before it is 
executed. 

!B Change origin of text to 
specified auxiliary buf­
fer or execute specif ied 
auxiliary buffer. 

5-18 

Topic Under 
Which Described 

Read directive (edit mode) 

Substitute directive (edit 
mode) 

'1"'1-71"'\0 ,.:i.; Y'"i'!!'J.,... .... .:„„" 1-...:1.„----~ 
... :Z .t"'- ._. ... ._"''-'-"-V C \ QUV QH\,.;t;::U 

usage--programming) 

Lowercase directive 
(advanced usage-­
general) 

Exclude directive 
(advanced usage-­
general) 

Write directive (edit 
mode) 

Buffer status directive 
(advanced usage--auxil­
iary buffers) 

Hexadecimal dump directive 
(advanced usage-­
debugging) 

ZREGEXP directive 
(advanced usage-­
debugging) 

ZTRACE directive (advanced 
usage--debugging) 

change origin of text 
during input/edit mode 
(advanced usage-­
auxiliary buff ers) 

CZlS-02 



Table 5-1 (cont). Summary of Line Editor Directives and 
Escape Sequences 

Directive 
Name/Escape 

Sequence 

!C 

!F 

!Hxx 

!K 

!L 

!M 

!P 

!Q 

!R 

!T 

Function 

Remove meaning of f ollow­
ing special character. 

Terminate an input mode 
directive. 

Interpret two f ollowing 
hexadecimal characters as 
one ASCII byte. 

Copy line(s) in current 
buff er to specif ied aux­
il iary buffer; do not 
delete existing line(s) 
in auxiliary buffer. 

Send line feed to the 
error-out file. 

Move line(s) from current 
buffer to specif ied aux­
iliary buffer; delete the 
line(s) from current buf­
fer and append them to 
existing line(s) in aux­
iliary buffer. 

Type line number and con­
tents of specif ied 
line(s) in current 
buffer. 

Unconditionally terminate 
execution of Line Editor. 

Accept single line f rom 
terminal. 

Display line of text on 
user-out file; subsequent 
input/output will be on 
the same line. 

5-19 

Topic Under 
Which Described 

(Input mode) 

Copy-append directive 
(advanced usage-­
auxil iary buffers) 

Line feed directive 
(advanced usage-­
general) 

Move-append directive 
(advanced usage-­
auxiliary buff ers) 

Print With Line Number 
directive (advanced 
usage--general) 

Quit directive (edit mode) 

Accept Single Line f rom 
Terminal directive 
(advanced usage--auxil­
iary buff ers) 

Type directive (advanced 
usage--programming) 

CZlS-02 



Table 5-1 (cont). Summary of Line Editor Directives and 
Escape Sequences 

Directive 
Name/Escape 

Sequence Function 

!U Convert specif ied lower­
case expression to 
uppercase. 

!? 

address # 

!S 

addresses # 

" # 

address " # 

addresses"# 

* 

Cause message indicating 
whether input or edit 
mode is in effect. 

If current buffer con­
tains data, execute 
specified directive(s). 

If current line is speci­
f ied line, execute speci­
fied directive(s). 

Replace each occurrence 
of specif ied character 
string with another char­
acter string. 

If current line is within 
specif ied lines, execute 
specified directive(s). 

Release a specif ied aux­
il iary buffer. 

If current buffer does 
not contain data, execute 
specified directive(s). 

If current line is not 
specif ied line, execute 
specified directive(s). 

If current line is not 
within specified lines, 
execute specif ied 
directive(s). 

If specif ied expression 
is within specified 
lines, execute specified 
directive(s). 

5-20 

Topic Under 
Which Described 

Uppercase directive 
(advanced usage-­
general) 

If Data directive 
(advanced usage-­
programming) 

If Line directive 
(advanced usage-­
progamming) 

Substitute directive (edit 
mode) 

If Range directive 
(advanced usage-­
programming) 

Destroy directive 
(advanced usage-­
auxiliary buffers) 

If Empty directive 
(advanced usage-­
programming) 

If Not Line directive 
(advanced usage-­
programming) 

If Not Range directive 
(advanced usage-­
programming) 

Search directive 
(advanced usage-­
programming) 

CZlS-02 



Table 5-1 (cont). Summary of Line Editor Directives. and 
Escape Sequences 

Directive 
Name/Escape 

Sequence Function 
Topic Under 

Which Described 

= 

> 

? 

n 

If specif ied expression 
is not within specified 
lines, execute specif ied 
directive(s). 

Def ine location to which 
Line Editor can be 
directed for subsequent 
directive(s). 

Type line number of 
specif ied line in current 
buffer. 

Accept subsequent direc­
tive (s) from specified 
location in current buf­
fer or interactively. 

If specif ied line is in 
current buffer, execute 
specified directive(s). 

Annotate Line Editor 
f iles. 

Search Not directive 
(advanced usage-­
progamming) 

Label directive 
{advanced usage-­
programming) 

Print Line Number 
directive (advanced 
usage--general) 

Go To directive (advanced 
usage--programming) 

Address Pref ix directive 
(advanced usage-­
programming) 

Comment directive 
(advanced usage-­
programming) 

CREATING A SOURCE UNIT 

To create a source unit, perform the following steps listed. 
Input mode directives are described under "Input Mode Description 
and Directives." Each of the directives referenced is described 
under "Edit Mode Description and Directives." 

1. Load the Line Editor. (See "Loading the Line Editor" 
earlier in this section.) 

2. If there already are lines in the current buffer, clear 
the buffer by specifying: l,$D. 

3. Enter the appropriate Input directive and text tobe 
included. 

4. Make changes, if necessary, by entering the appropriate 
Input and/or Edit directive(s). 

5-21 CZ15-02 



5. Write the contents of the current buffer to a file by 
using the Write directive. 

6. Exit from the Line Editor by entering the Quit directive 
{optional) • 

CHANGING AN EXISTING SOURCE. UNIT 

To change an existing source unit, perform the following 
steps. Input mode directives are described under "Input Mode 
Description and Directives." Each of the directives referenced is 
described under "Edit Mode Description and Directives" later in 
this section. 

l~ Load the Line Editor, if it is not already loaded. {See 
"Loading the Line Editor" earlier in this section.) 

2. If there already are lines in the current buffer, delete 
unwanted ·1ines by specifying the Delete directive. 

3. Use the Read directive to read into the current buffer the 
source unit to be edited. 

4. Enter the appropriate Edit and/or Input directive{s). 

5. Write the contents of the current buffer to the file from 
which the lines were read or to a different f ile by using 
the Write directive. 

6. Exit from the Line Editor by entering the Quit directive 
(optional). 

INPUT MODE DESCRIPTION AND DIRECTIVES 

During input mode, you can create a source unit or add lines 
to an existing source unit by entering through the directive input 
device one or more input directives. 

Input directives have the following capabilities: 

• Add lines after a specif ied address (Append directive). 

• Delete specified lines and insert other specif ied lines 
(Change directive). 

• Add lines before a specif ied address (Insert directive). 

You can create a source unit by using the Append or Insert 
directive. You can add lines to an existing source unit by using 
any or all of the above directives. 

5-22 CZ15-02 



Each input directive must have one of the following formats: 

text 

!F["comment] 

FORMAT 2: 

[ adr1 [{:}ad r2]] d i rname text ! F [ "comment] 

If directives are being entered through a terminal, the directive 
name can either be immediately followed by a carriage return, and 
then text (i.e., the lines tobe included in the source unit) or 
directive name can be immediately followed by text, with addi­
tional lines of text (if any) added on subsequent lines. The text 
can be any number of lines of ASCII characters. The maximum 
number of characters per line is determined by the value specif ied 
in the -LINE LEN n argument of the ED command. The last line of 
text must be-followed by the escape sequence !F to terminate input 
mode. Otherwise, the next Line Editor directive is interpreted as 
additional text. The escape sequence !F can be entered at the end 
of the last line of text or in the first character position of the 
next line. The next directive can begin in the next character 
position or on the next line. 

NOTES 

1. To enter a blank from the operator terminal, 
as the f irst character on a line, precede it 
with an !C sequence. 

2. The characters !F can be included as text by 
preceding them with !C; in this case, !F does 
not designate the end of the text. 

Input directives are described in detail on the following 
pages. In the examples, numbers in parentheses are references to 
line numbers and do not appear in memory or in text. 

5-23 CZlS-02 



APPEND 

APPEND (A) 

Move one or more specif ied lines into the current buffer after 
a specified address. If multiple lines are specified, they are 
put into the buf f er in the order in which they were entered. The 
Append directive can be used to create a source unit or to add 
lines to an existing source unit. 

After the Append directive is executed, the current line is 
the last line appended. The appended line(s) are given line 
numbers and subsequent lines, if any, are renumbered. 

FORMAT 1: 

[adr]A 
text 

• 

!F 

FORMAT 2: 

[adr]Atext!F 

ARGUMENT: 

adr: 

Address of the line immediately af ter which the specif ied 
lines are inserted. 

Default: Current line. If the buffer is empty, the 
current line is line number O. 

NOTE 

If you are creating a new source unit, there is no 
need to specify an address. 

5-24 CZlS-02 



Example 1, Creating a New Source Unit: 

In this example, the buffer is ernpty. 

A 
www 
XXX 
yyy 
zzz 
lF 

APPEND 

This Append directive puts lines www, XXX, YYY, and zzz into 
the current buffer. Since the buffer is empty, it is not nec­
essary to specify an address. The lines are inserted, in the 
order in which they were entered, starting at line 1. The 
lines put into the buffer constitute a new source unit which 
can then be edited and/or written to a f ile. 

Example 2, Adding Lines to an Existing Source Unit: 

/TTT/A 
uuu 
!F 
3A 
www 
XXX 
!F 

These Append directives put line UUU into the buffer immedi­
ately after the f irst line that contains TTT, and lines WWW 
and XXX into the buffer immediately after the third line. 

The contents of the buffer are: 

(1) TTT 
(2) vvv 

After the f irst Append directive is executed, the buffer 
contains: 

(1) TTT 
(2) UUU (current line) 
(3) vvv 

5-25 CZ15-02 



APPEND 

After the second Append directive is executed, the buffer 
contains: 

(1) TTT 
(2) uuu 
(3) vvv 
( 4) www 
(5) XXX (current line) 

5-26 CZ15-02 



·(· 

( .. 

../ 

CHANGE 

CHANGE (C) 

Delete a single line or a series of lines in the current 
buffer and then insert the text specif ied between the directive 
name and the insert terminator !F. 

After the Change directive is executed, the current line is 
the last line of inserted text. The inserted line(s) are given 
line numbers and subsequent lines, if any, are renumbered. 

text 

!F 

FORMAT 2: 

[ adr1 [ {;} adr2]] Ctext !F 

ARGUMENTS: 

adr1 

Address of the f irst or only line to be deleted and 
replaced. Default: Current line. 

Address of the last line to be deleted and replaced. 
Default: Only the line identif ied by adr 1 is deleted and 
changed. 

NOTE 

If both ad~ and ad~ are omitted, only the current 
line is deleted and replaced. 

5-27 CZlS-02 



„ 

CHANGE 

are: 
In the following examples, the contents of the current buffer 

(1) AAA 
(2) BBB 
(3) ccc (current line) 
( 4) DDD 
( 5) EEE 

ExamnlP „ - - 1: 

2C 
XXX 
yyy 
!F 

This Change directive deletes the second line and replaces it 
with lines XXX and YYY. subsequent lines are renumbered. 

After the Change directive is executed, the buffer contains: 

(!} AAA 
(2) XXX 
(3) YYY (current line) 
(4) ccc 
(5) DDD 
( 6) EEE 

Example 2: 

/BBB/,. lC 
XXX 
yyy 
ZZZ!F 

This Change directive deletes the f irst line that contains BBB 
(line 2) through the line immediately after the current line 
(line 4) and replaces them with lines XXX, YYY, and zzz, 
respectively. 

After the Change directive is executed, the buffer contains: 

(1) AAA 
(2) XXX 
(3) yyy 
(4) zzz (current line) 
( 5) EEE 

5-28 CZ15-02 



1 (~'"' 

CHANGE 

Example 3: 

• ,SC • , $C 
XXX or XXX 
!F !F 

Each of the Change directives above deletes the current line 
through line 5 and replaces them with a single line containing 
XXX. 

After the change directive is executed, the buffer contains: 

(1) AAA 
(2) BBB 
(3) XXX (current line) 

5-29 CZlS-02 



INSERT 

INSERT {I} 

Insert one or more specified lines into the current buffer 
before a specified address. If multiple lines are specified, they 
are inserted in the order in which they were entered. 

The Insert directive can be used to create a source unit or to 
add lines to an existing source unit. 

After the Insert directive is executed, the current line is 
tne last line inserted. The inserted line{s} are given line 
nurnbers, and subsequent lines, if any, are renurnbered. 

FORMAT 1: ,• 

[adr]I 
text 
• 

!F 

FORMAT 2: 

[adr]Itext!F 

ARGUMENT: 

adr 

Address of the line irnrnediately before which the specif ied 
line{s} are inserted. Default: Current line. 

NOTE 

If you are creating a new source unit, there is no 
need to specify an address. 

5-30 CZlS-02 



Example 1: 

In this example, the current buffer is empty. 

I 
AAA 
BBB 
ccc 
DDD 
!F 

„ 

INSERT 

This Insert directive creates in the current buffer a new 
source unit comprising lines AAA, BBB, CCC, and DOD, 
respectively. The lines can then be edited and/or written to 
a f ile. 

In Examples 2, 3, and 4, the contents of the current buffer 
are: 

(1) AAA 
(2) BBB 
(3) ccc 
(4) DOO (current line) 

Example 2: 

-2I 
XXX 
!F 

This Insert directive designates that a line containing XXX be 
inserted two lines before the current line. 

After the Insert directive is executed, the current buffer 
contains: 

(1) AAA 
(2) XXX (current line) 
(3) BBB 
(4) ccc 
(5) 000 

Example 3: 

/AAA/I 
H!C!FH 
KKK 
!F 

5-31 CZlS-02 



INSERT 

This Insert directive designates that lines H!FH and KKK be 
inserted into the current buffer immediately before the f irst 
line that contains AAA. Note that when !F is part of the 
text, it is preceded by !C; when !F delimits the last line of 
text, it is not preceded by !C. 

After the Insert directive is executed, the buffer contains: 

(1) H!FH 
(2) KKK (current line) 
(3) AAA 
(4) BBB 
(5) ccc 
(6) DDD 

Example 4: 

I 
XXX 
!F 

This Insert directive designates that a line containing XXX be 
inserted immediately before the current line. 

After the Insert directive is executed, the current buffer 
contains: 

(1) AAA 
(2) BBB 
(3) ccc 
(4) XXX (current line} 
(5) DDD 

5-32 CZ15-02 



EDIT MODE DESCRIPTION AND DIRECTIVES 

During edit mode you can create a source unit or edit an 
existing source unit. 

Edit mode directives have the following capabilities: 

• Delete specified line(s) from the current buffer (Delete 
directive) 

• Print on the user-out file specified line(s) in the current 
buffer (Print directive) 

• Terminate execution of the Line Editor (Quit directive) 

• Read text from specified f ile into the current buffer (Read 
directive) 

• Substitute a designated string of characters in specif ied 
line(s) with another specified string of characters 
(Substitute directive) 

NOTES 

1. To edit an existing source unit, the Read 
directive must be previously specif ied. 

2e Until you are familiar with the Line Editor, 
enter Print directives frequently so you can 
determine the status of the lines being 
edited. 

3. To save the results of an· edited or newly 
created source unit, you must specify the 
Write directive before you terminate execution 
of the Line Editor. 

Most edit mode directives have one of the following formats: 

FORMAT 1: 

dirname["comment] 

FORMAT 2: 

adr1 di rname [ "comment] 

FORMAT 3: 

[ adt; [ { ;} adr2]] dirname [ •comment] 

5-33 CZlS-02 



Edit mode directives are described alphabetically on the fol­
lowing pages. In the examples, numbers in parentheses are refer­
ences to line numbers and do not appear in memory or in text. 

' 

5-34 CZlS-02 

--, ,_ 



(~\ 

(
·„, 

,./ 

DELETE 

DELETE (D} 

Delete a single line or consecutive lines f rom the current 
buffer. 

After the Delete directive is executed, each subsequent line 
in the buf f er is renumbered, and the current line is the line that 
immediately follows the last line deleted or the last line in the 
buffer if the previous "last line" was deleted. 

are: 

FORMAT: 

[ adr'[{;} adr2J]o 
ARGUMENTS: 

aar, 

Address of the f irst or onl~ line to be deleted. 
Default: Current line. 

Address of the last line to be deleted. Default: Only 
the line identif ied by aar, is deleted. 

NOTE 

If both adr1 and adr2 are omitted, only the current 
line is deleted. 

In the following examples, the contents of the current buffer 

(1) AAA 
(2) BBB (current line} 
(3) ccc 
(4) DDD 
(5) EEE 

5-35 CZ15-02 



DELETE 

Example 1: 

1,30 

This Delete directive deletes lines 1 through 3. After this 
Delete directive is executed, the current buffer contains: 

(1) DDD (current 1-ine) 
(2) EEE 

Example 2: 

/CCC/D 
,• 

In this Delete'directive, adr is CCC and adr 
f ied, so the only line that is deleted is the 
contains ccc. After this Delete directive is 
current buffer contains: 

(l) AAA 
(2) BBB 
(3) DDD (current line) 
(4) EEE 

Example 3: 

• ,3D 

is not speci­
f i rst line that 
executed, the 

This Delete directive deletes the current line through line 
3. After this Delete directive is executed, the current 
buffer contains: 

(l) AAA 
(2) DDD (current line) 
( 3} EEE 

Example 4: 

D 

This Delete directive does not include any addresses so only 
the current line, line 2, is deleted. After this directive is 
executed, the current buffer contains: 

(l) AAA 
(2) CCC (current line) 
(3) DDD 
(4) EEE 

5-36 CZlS-02 



PRINT 

PRINT (P) 

Print a single line or consecutive lines in the current 
buffer. You can specify the address(es) of the line(s) tobe 
printed, or you can request a printout of the f irst line that 
contains a specified expression. The printout is issued to the 
user-out file; i.e., the file designated in the -OUT out path 
argument of the Enter Batch Request (EBR) or Enter Group-Request 
(EGR) command, unless the f ile was reassigned in the File Out (FO) 
command. If the printout occurs on the operator terminal, each 
line of text is preceded by the group identif ication characters. 

After the Print directive is executed, the current line is the 
last (or only) line printed. 

FORMAT 1: 

Format including directive name P: 

[ adr1[{;} adrj] P 
FORMAT 2: 

Format excluding directive name P: 

adr1[{:} ad'2] 
ARGUMENTS: 

adr1 

Address of the f irst or only line to be printed. The Line 
Editor begins its search at the second line in the current 
buffer. Default: Current line. 

Address of the last line to be printed. Default: Only 
the line identif ied by adG is printed. 

NOTE 

If both ad~ and adr2 are omitted and P is speci­
fied, only the current line is printed. 

5-37 CZlS-02 



PRINT 

are: 
In the following examples, the contents of the current buffer 

(1) AAABBB 
(2) CCCDDD (current line) 
(3) EEEFFF 
(4) GGGHHH 

Example 1: 

l,$P 

This Print directive causes a printout of each line in the 
current buffer. ' 

AAABBB 
CCCDDD 
EEEFFF 
GGGHHH 

After this directive is executed, the current line is line 4. 

Example 2: 

p 

This Print directive causes a printout of only the current 
line. 

CCCDDD 

After this directive is executed, the current line still is 
line 2. 

Example 3: 

4P 

This Print directive causes a printout of line 4. 

GGGHHH 

After this directive is executed, the current line is line 4. 

5-38 CZlS-02 



PRINT 

Exarnple 4: 

.,4P 

This Print directive causes a printout of the current line 
(line 2) through line 4: 

CCCDDD 
EEEFFF 
GGGHHH 

After this directive is executed, the current line is line 4. 

Exarnple 5: 

/AAA/ 

This Print directive causes a printout of the f irst line that 
contains AAA. 

AAABBB 

After this directive is executed, the current line is line 1. 

Exarnple 6: 

3D/AAA/ 

This exarnple illustrates a directive line that contains both a 
Delete directive and a Print directive. This directive 
deletes line 3 and causes a printout of the f irst line that 
contains AAA. After the directives are executed, the current 
buffer contains: 

(1) AAABBB 
(2) CCCDDD 
(3) GGGHHH 

Line 1 prints out, and is the current line. 

5-39 CZ15-02 



QUIT 

QUIT (Q OR !Q) 

Exit from the Line Editor. Quit must be specified at the end 
of 'the editing session. This directive must be the last or only 
directive on a line. If the directive input device is a terminal, 
the Quit directive must be immediately followed by a carriage 
return. 

Quit is executed conditionally or unconditionally, depending 
on which Quit format is specified. In a conditional Quit request 
(Format 1), if there are any buffers which have been modif ied but 
not·written to a file before the Quit directive is entered, a 
warning message is issued and Quit is not executed. After the 
message, any Line Editor directive(s), including Write, can be 
entered. If Write is not specified.and Quit is reentered, the 
Quit directive is executed and changes specif ied in previous Line 
Editor directives are not saved. In an unconditional Quit request 
(Format 2), modified buffers are not checked before Quit is 
executed. 

FORMAT 1: 

Q 

FORMAT 2: 

!Q 

Example: 

A 

AAABBB 
CCCDDD 
EEEFFF 

!F 

2D 

W FIRST 

Q 

Append directive, which puts specif ied lines 
into current buffer. 

Lines that are put into current buffer. 

Designate the end of the insertion. 

Delete the second line of text (e.g., CCCDDD). 

Write all lines in buffer to f ile named FIRST. 

Return control f rom the Line Editor to the 
Command Processor. 

5-40 CZlS-02 



( 

READ 

READ (R) 

Read text from a specified file into the current buffer. The 
Read directive must be the only or last directive on a line. 
After the Read directive is executed, the current line is the last 
line read from the f ile. 

FORMAT: 

[adr]R [path] 

ARGUMENTS: 

adr 

Address of a line in the current buffer; the contents of 
the specified f ile are appended after this line. 
Default: Last line in the buffer; if the buffer is empty, 
the f ile is appended starting at the first line in the 
buffer. 

path 

Pathname of the ASCII f ile to be read into the current 
buffer. (Methods of specifying pathnames are described in 
Section 2.) The pathname can be preceded by any number of 
blanks. Default: Pathname specified in the latest Read 
or Write directive associated with the current buffer. To 
determine which pathname was specif ied last, specify the 
Buffer Status directive, which is described under 
"Advanced usage of the Line Editor" later in this 
section. If the path argument is not specif ied and a 
pathname was not previously specif ied, an error message is 
issued. 

NOTE 

!CDR or any other device name beginning with an 
exclamation point (!) can cause errors. The 
exclamation point is a Line Editor escape 
character. A read of !CDRxx (R !CDRxx) tries 
to read f ile name DRxx because !C is a cancel 
flag. Use >SPD> in place of the exclamation point 
(e.g., R >SPD>CDRxx), or cancel a C (e.g., R 
!C!CDRxx). 

5-41 CZlS-02 



READ 

Example 1: 

R STA~T 

This Read directive reads into the current 
of a f ile whose simple pathname is START. 
not specif ied, the lines are read into the 
last line currently in the buffer. 

The 

(1) AAA 
(2) BBB 
(3) ccc 

buff er the contents 
Since an address is 
buf f er af ter the 

If the buffer is empty, after the Read directive is executed, 
the current buffer contains: 

(1) AAA 
(2) BBB 
(3) CCC (current line) 

If the buffer already contains: 

(1) XXX 
(2) yyy 
(3) zzz 

After the Read directive is executed, the current buffer 
contains: 

(1) XXX 
(2) yyy 
(3) zzz 
(4) AAA 
(5) BBB 
(6) CCC (current line) 

Example 2: 

/CCC/R NEW 

This Read directive designates that the contents of the f ile 
whose simple pathname is NEW be read into the current buffer 
after the f irst line in the current buffer that contains CCC. 

5-42 CZ15-02 



( 

The contents of the current buffer are: 

(1) AAA 
(2) BBB (current line) 
(3) ccc 
(4) ccc 

The contents of NEW are: 

(1) XXX 
(2) zzz 

After the Read directive is executed, the current buffer 
contains: 

(1) AAA 
( 2) BBB 
(3) ccc 
(4) XXX 
( 5) zzz (current line) 
(6) ccc 

Exarnple 3: 

READ 

This exarnple illustrates the Read directive used in conjunc­
tion with Append and Write directives. The current buffer is 
ernpty. 

A 
AAA 
BBB 
ccc 
!F 
w 

R 

NOW 

Puts subsequent lines into the current buffer. 

Designates the end of the insert. 
Writes the contents of the current buffer to the 
file whose simple pathnarne is NOW. 
Reads into the current buffer, after the last line 
in the buffer, the contents of NOW; NOW is the 
pathnarne specif ied in the last Write directive. 

After the Read directive is executed, the current buffer 
contains: 

(1) AAA 
(2) BBB 
(3) ccc 
(4) AAA 
(5) BBB 
(6) CCC (current line) 

5-43 CZ15-02 



------- ---·------------------

SUBSTITUTE 

SUBSTITUTE ( S OR ! S) 

Replace each occurrence of a specif ied string of characters in 
a single line or in a sequence of lines with another specified 
string of characters. 

After this directive is executed, the current line is the last 
line located by the Line Editor. 

Tf'()~Mn'T'• --· ... ·-··. 
[ adr, [ {:} adr2J] S/regexp/string/ 

or 

[ adr1 [ {:} adr2J] !S/regexp/string/ (See Note 3) 

ARGUMENTS: 

aar, 

/ 

Address of the f irst line to be searched for the specif ied 
string of characters. The search begins at the second 
line in the current buffer. Default: Current line. 

Address of the last line to be searched for the specif ied 
string of characters. Defaul t: adr1 • 

NOTE 

If both adr1 and adr2 are omitted, only the current 
line is searched. 

(Delimiter} Can be any character that is not in regexp or 
string. However, the same delimiter must be used in each 
of the three locations where a delimiter is required. 

regexp 

String of characters for which the Line Editor is 
searching~ each occurrence of this character string within 
the specified addresses is replaced with the character(s} 
specified in the argument "string". 

5-44 CZlS-02 



( '·, 
', 

1 
/ 

SUBSTITUTE 

Default: The last regexp specified. This can be 
determined by entering the ZREGEXP directive, which is 
described under "Line Editor Debugging Directives" later 
in this section. 

NOTE 

In scanning a line of text f or a match of a 
regular expression, the editor resolves possible 
ambiguities by selecting the leftmost, shortest 
possible match f irst (including a zero length 
match), with leftmost taking precedence. The 
substitute directive replaces all such matching 
substrings of a line in a single left-to-right 
pass over the line. · 

string 

String of characters that replaces each occurrence of 
regexp. 

NOTES 

1. If the string contains the ampersand (&) 
character in any position, each occurrence of 
regexp to be replaced is replaced with regexp 
included in the string, in place of &. For 
example, if regexp is "in" and string is 
"&to", each occurrence of "in" becomes 
"into". To ignore the special meaning of &, 
precede it with !C. 

2. The occurrence of a line feed in the string 
expression determines new-line characters; 
i.e., point in the resulting line at which the 
line is to be split into two lines. 

3. If the directive name !S is used (as illus­
trated in the second directive format) and the 
specif ied substitution fails, no error message 
is issued and execution of the command f ile 
(if any) continues. 

Example 1: 

S/ABGDEF/ABC linefeed DEF/ 

This Substitute directive searches the current line and (1) 
replaces each occurrence of ABGDEF with ABCDEF and (2) causes 
the character string to be split between two lines. ABC is on 
the f irst line, and DEF is on the second line. 

5-45 CZ15-02 



SUBSTITUTE 

Example 2: 

The contents of the current buffer are: 

( 1) E 
(2) NTE 
( 3) R 
( 4) YOUR 

1 _ ~~/1 i n,:i.Foorl 1'o.u// 
-w--, --··----- '"'"""~'' 

After this Substitute directive is entered, the current buffer 
contains: 

(1) ENTERYOUR 

Example 3: 

The contents of the current buffer are: 

(1) xxxxx 

S/XX*/Z/ 

After this Substitute directive is entered, the current buffer 
contains: 

(1) zzzzz 

Example 4: 

The contents of the current buffer are: 

(1) xxxxx 

S/X*$/Z/ 

After this Substitute directive is entered, the current buffer 
contains: 

(1) z 

5-46 CZlS-02 



SUBSTITUTE 

In the following examples, the contents of the current buffer 
are: 

(1) AAACCC 
(2) BBBAAA (current line) 
(3) CCCBBB 
(4) DDDAAA 

Example 5: 

2,4S/AAA/XXX/ 

This Substitute directive searches lines 2 through 4 and 
replaces each occurrence of AAA wi th xxx.· After this 
directive is executed, the current buffer contalns: 

(1) AAACCC 
(2) BBBXXX 
(3) CCCBBB 
(4) DDDXXX (current line) 

Example 6: 

• , 4 s-ccc-uuu-

This Substitute directive searches the current line (line 2) 
through line 4 and replaces each occurrence of CCC with UUU. 
After this directive is executed, the current buffer contains: 

(1) AAACCC 
(2) BBBAAA 
(3) UUUBBB 
(4) DDDAAA (current line) 

Example 7: 

-1,/DDD/S//&JJJ/ 

This Substitute directive searches one line before the current 
line (line 1) through the first line that contains DDD (line 
4) and replaces each occurrence of DDD with DDDJJJ. After 
this directive is executed, the current buffer contains: 

(1) AAACCC 
(2) BBBAAA 
(3) CCCBBB 
(4) DDDJJ~AAA (current line) 

5-47 CZ15-02 



WRITE 

WRITE (W) 

Write a specified line or a series o~ lines in the current 
buffer to a specified f ile. If the file does not already exist, a 
new file is created with the specif ied f ile name. If the named 
file does exist and currently contains other data, the line(s) 
written to the f ile via the Write directive replace the existing 
contents. 

To save the results of previcusly specified Line Editor 
directives, you must specify the Write directive before you 
terminate execution of the Lin~ Editor (i~e., Write must be 
specified before Quit). 

The Write directive must be the last directive on a line. 
After the Write directive is executed, the specified line(s) 
remain in the current buffer; a copy of them is written to the 
specif ied f ile. 

FORMAT: 

[ adr1 [ {;} adr2J] W[path] 

ARGUMENTS: 

adr1 

Address of the f irst line to be written to a specified 
f ile. Default: First line in the current buffer. 

Address of the last line to be written to a specif ied 
f ile. Default: Last line in the current buffer. 

NOTE 

If both adr1 and adr2 are omitted, all lines in the 
current buffer are written to the specified f ile. 

path 

Pathname of the file to which the specified line(s) will 
be written. (Methods of specifying pathnames are 
described in Section 2.) The pathname may be preceded by 
any number of spaces. Default: Pathname specified in the 
latest Read or Write directive associated with the current 
buffer. If a pathname was not previously specified, an 
error message is issued. 

5-48 CZlS-02 



WRITE 

Example 1: 

W IDENT 

This Write directive writes all lines in the current buffer to 
a f ile whose simple pathname is IDENT. 

Example 2: 

This example illustrates use of a Write directive in a sample 
Line Editor session. In this example, there is a f ile named 
EXIST that contains the following lines: 

(1) AAA 
(2) BBB 
(3) ccc 
(4) DDD 

R EXIST 

Read into the current buffer the contents of the f ile 
named EXIST. The current buffer contains: 

(1) AAA 
(2) BBB 
(3) ccc 
(4) DDD (current line} 

l,$S/AAA/XXX/ 

search each line in the current buffer and change each 
occurrence of AAA to XXX. The buffer contains: 

(1) XXX 
(2) BBB 
(3) ccc 
(4) DDD (current line) 

l ,3W 

Q. 

Write lines 1 through 3 to the f ile specif ied in the 
last Read or Write directive; i.e., EXIST. EXIST 
contains: 

(1) XXX 
(2) BBB 
(3) ccc 

Terminate execution of the Line Editor. 
5-49 CZlS-02 



ADVANCED FUNCTIONS OF THE LINE EDITOR 

The directives described on the previous pages permit you to 
create a source unit and perform basic editing. The following 
subsections describe Line Editor directives that perf orm general 
advanced functions, permit usage of auxiliary buffers, and perform 
debugging and programming functions. Within each subsection the 
directives are summarized and then described in de,tail 
alphabetically by full directive name. 

GENERAL ADVANCED LINE EDITOR DIRECTIVES 

The general advanced Line Editor directives have the following 
capabilities: 

• Cause another specif ied directive to act on only those 
lines that do not contain a specif ied charac·ter string 
(Exclude directive) 

• Permit execution of a command instead of Line Editor 
directives without exiting f rom the Line Editor (Execute 
directive) 

• Cause another specif ied directive to act on only those 
lines that contain a specif ied character string (Global 
directive) 

• send line feed to user-out f ile and error-out f ile (Line 
Feed directive) 

• Convert the specif ied expression to lowercase (Lowercase 
directive) 

• Make a different line the current line (New Current Line 
directive) 

• Print the line number of a specif ied line in the current 
buffer (Print Line Number directive) 

• Print the line number and contents of specified line(s) in 
the current buffer (Print With Line Number directive) 

• Convert the specif ied expression to uppercase (Uppercase 
directive) • 

5-50 CZlS-02 



( 

EXCLUDE 

EXCLUDE (V) 

Exclude specif ied elernents. The Exclude directive can be used 
in conjunction with Delete, Print, Print Line Nurnber, and Print 
With Line Nurnber directives so that the specif ied directive acts 
on only those lines that do not contain a specif ied character 
string. 

After the Exclude directive is executed, the current line is 
the last line searched by the Line Editor. 

FORMAT: 

[adr1 ~;}adrj]vx/regexp/ 
ARGUMENTS: 

adr1 

Address of the f irst line to be searched. Oefault: First 
line in the current buffer. 

adr2 

Address of the last line to be searched. Default: Last 
line in the current buffer. 

NOTE 

If both ad~ and adr2 are ornitted, all lines in the 
buffer are searched. 

X 
Directive narne with which the Exclude directive is being 
issued; rnust be one of the following: 

o - Delete line(s) that do not contain regexp. 

P - Print the contents of line(s) that do not contain 
regexp. 

!P - Print the line nurnber(s) and contents of line(s} 
that do not contain regexp. 

= - Print the line nurnber(s) of line(s) that do not 
contain regexp. 

5-51 CZlS-02 



EXCLUDE 

are: 

/ 

(Delimiter) Can be any character that does not occur in 
regexp. The same delimiter must be used bef ore and after 
regexp. 

regexp 

String of characters for which the Line Editor searches; 
only lines that do not contain regexp are acted upon by 
the Line Editor during execution of the d~rective name 
specif ied in argument x. 

In the following examples, the contents of the current buffer 

(1) JJJKKK {current line} 
(2) LLLMMM 
(3) NNNPPP 
(4) RRRJJJ 

Example 1: 

l,3V!P/JJJ/ 

This Exclude Print with line number directive causes the Line 
Editor to search lines 1 through 3 and to print the line 
number and contents of each line that does not contain JJJ. 

Printout: 

2 LLLMMM 
3 NNNPPP 

Current line: 3 

Example 2: 

VD*JJJ* 

This Exclude Delete directive deletes each line that does not 
contain JJJ1 since no addresses are specified, each line in 
the current buffer is searched. 

After this directive is executed, the current buffer contains: 

(1) JJJKKK 
(2) RRRJJJ (current line) 

5-52 CZ15-02 



C. - •, 

,' 

EXECUTE· 

EXECUTE (E) 

Cause execution processing. The Execute directive permits you 
to execute a command instead of Line Editor directives without 
exiting from the Line Editor; i.e., you can enter any command and 
then continue to use the Line Editor. For example, the Execute 
directive can be used to designate a printer as the Line Editor 
output f ile. Otherwise, if you want a printout of Line Editor 
output, the printout is issued to the terminal, which is the 
original user-out f ile. If the user-out f ile is a line printer 
and a Quit directive is entered to exit from the Line Editor, the. 
user-out file remains set to the printer. · 

The Execute directive must be the last directive on a line. 

The current line is not affected by Execute directives. 

FORMAT: 

E command 

ARGUMENT: 

command 

Any command (see the Commands manual) • 

Example: 

E FO >SPD>LPTOO 

This Execute directive includes a File Out (FO) command, which 
sets the user-out f ile to the line printer whose pathname is 
>SPD>LPTOO. 

5-53 CZ15-02 



GLOBAL 

GLOBAL (G) 

Act on only those lines that contain a specif ied character 
string and can be used in conjunction with-Delete, Print, Print 
Line Number, and Print With Line Number directives. 

After the Global directive is executed, the current line is 
the last line searched by the Line Editor. 

FORMAT: 

[ adr{{'.} adr2J]G.x/regexp/ 
ARGUMENTS: . 

adr1 
Address of the f irst line to be searched. Default: First 
line in the current buffer. 

X 

Address of the last line to be searched. Default: Last 
line in the current buffer. 

NOTE 

If both adr1 and adr2 are omitted, all lines in 
the current buffer are searched. 

Directive name with which the Global is being used; must 
be one of the following: 

D - Delete all line(s) in the specified range containing 
regexp. 

P - Print the contents of line(s) containing regexp. 

!P - Print the line number(s) and contents of line(s) 
containing regexp (see "Print With Line Number 
Directive" later in this section) • 

= - Print the line number(s) of line(s) containing 
regexp (see "Print Line Number Directive" later in 
this section} • 

5-54 CZlS-02 



C\ 
' ,/ 

/ 

GLOBAL 

(Delimiter) Can be any character that does not occur in 
regexp. The same delimiter must be used before and after 
regexp. 

regexp 

String of characters for which the Line Editor searches; 
only lines that contain regexp are acted upon by the 
directive name specif ied in argument x. 

In the following examples, the contents of the current buffer 
are: · 

(1) JJJKKK 
(2) LLLMMM 
(3) NNNPPP 
(4) RRRJJJ 

Example 1: 

1 ,3G ! P/ JJJ/ 

This Global Print With Line Number directive causes the Line 
Editor to search lines 1 through 3 and print the line number 
and contents of each line that contains JJJ. 

Printout: 

1 JJJKKK 

Current line: 3 

Example 2: 

GD*JJJ* 

This Global Delete directive deletes each line that contains 
JJJ; since no addresses are specified, all lines in the buffer 
are searched. 

After this directive is executed, the current buffer contains: 

(1) LLLMMM 
(2) NNNPPP (current line) 

5-55 CZ15-02 



LINE FEED 

LINE FEED (L OR !L) 

Send line feeds to the user-out f ile and the error-out file, 
respectively. After the Line Feed directive is executed, the 
current line is unchanged. Default: none (addresses are 
ignored) • 

FORMAT: 

L OR !L 

5-56 CZ15-02 

'1 
:/ 



LOWERCASE 

LOWERCASE (U) 

Convert all occurrences of a specif ied expression within 
specif ied addresses f rom uppercase to lowercase. After the 
Lowercase directive is executed, the current line is the last line 
read. 

FORMAT: 

[ adr1 [{!} adr:z]]u/regexp/ 

ARGUMENTS: 

adr1 

Address of the f irst line to be searched. Default: 
Current line. 

Address of the last line to be searched. Default: adr1 • 

regexp 

String of characters for which the Line Editor searches. 
Only uppercase letters (A through Z) are converted; others 
are not changed. 

Example: 

U/ADR/ 

This Lowercase directive searches the current line and changes 
each occurrence of ADR to adr. If the current line is: 

ADR FIRST 

after the Lowercase directive is executed, the line contains: 

adr FIRST 

5-57 CZlS-02 



NEW CURRENT LINE 

NEW CURRENT LINE (N) 

Cause the specif ied line to become the new current line. The 
contents of the new current line are not printed af ter the 
directive is executed. 

FORMAT: 

adrN 

ARGUMENT: 

adr 

Address of the line that is to be the new current line. 

Example: 

/CCC/N 

If the following condition exists prior to execution of the N 
directive: 

AAA (current line) 
BBB 
ccc 
DDD 

The situation is as follows after the N directive is exe­
cuted. 

AAA 
BBB 
CCC (current line) 
DDD 

5-58 CZlS-02 

.""" \ 



( 

( 

PRINT LINE NUMBER 

PRINT LINE NUMBER (=/!P) 

Print out the line number of a specif ied line in the current 
buffer. 

The printout is issued to the user-out file (i.e., the file 
designated in the -OUT out path argument of the Enter Batch 
Request (EBR) or Enter Groiip Request (EGR) command) unless that 
f ile was reassigned. 

After this directive is executed, the current line is the line 
whose line number was typed. 

are: 

FORMAT: 

[adr]= 

ARGUMENT: 

adr 

Address of the line whose line number is to be typed. 
Default: Current line. 

In the following examples the contents of the current buffer 

(1) AAABBB (current line) 
(2) CCCDDD 
(3) CCCEEE 

Example 1: 

/CCC/= 

This Print Line Number directive causes a printout of the line 
number of the f irst line that contains CCC. 

Printout: 

2 

Current line: 2 

5-59 CZ15-02 



PRINT LINE NUMBER 

Example 2: 

= 

This Print Line Number directive causes a printout of the line 
number of the current line. 

Printout: 

l 

Current line: 1 

5-60 CZlS-02 



c· 

PRINT WITH LINE NUMBER 

PRINT WITH LINE NUMBER (!P) 

Print out the line number and contents of a single line or 
consecutive lines in the current buffer. The printout is issued 
to tbe user-out file, i.e., the file designated in the -OUT 
out path argument of the Enter Batch Request or Enter Group 
Request command, unless the f ile was reassigned. If the printout 
occurs on a terminal, each line of text is preceded by the group 
identif ication characters. 

After this directive is executed, the current line is the last 
line whose line number and contents were typed. 

are: 

FORMAT: 

[ adr1[{;} adr2 JJP 
ARGUMENTS: 

aar, 
Address of the f irst line whose line number and contents 
are to be typed. Default: Current line. 

Address of the last line whose line number and contents 
are to be typed. Default: Address specified for ad;. 

NOTE 

If both adr1 and adr2 are omitted, the line number 
and contents of the current line print out. 

In the following examples, the contents of the current buffer 

(1) AAA 
(2) BBB (current line) 
(3) ccc 
(4) DDD 

5-61 CZ15-02 



PRINT WITH LINE NUMBER 

Example l: 

l,$!P 

----- ------- --

This Print With Line Number directive causes a printout of the 
line number· and contents of each line in the current buffer. 

Printout: 

l A..'A_n_ 
2 BBB 
3 ccc 
4 DDD 

Current line: 4 

Example 2: 

!P 

This Print With Line Number directive causes a printout of the 
line number and contents of only the current line. 

Printout: 

2 BBB 

Current line: 2 

5-62 CZlS-02 

-- ----- - - ----~------ -------



"·('"·,, ' . 

--~-~-

UPPERCASE 

UPPERCASE ( ! U) 

Convert all occurrences of a specif ied expression within 
specif ied addresses f rom lowercase to uppercase. 

After the Uppercase directive is executed, the current line is 
the last line read. 

FORMAT: 

[aar1 [t} ad"i]} U/ regexp/ 
AR.GUMENTS: 

aar, 
Address of the f irst line to be searched. Default: 
Current line. 

Address of the last line to be searched. Default: ad~ • 

regexp 

String of characters for which the Line Editor searches. 
Only lowercase letters (a through z) are converted1 others 
are not changed. 

Example: 

!U/adr/ 

This Uppercase directive searches the current line and changes 
each occurrence of adr to ADR. If the current line is: 

adr f irst 

after the Uppercase directive is executedr the line contains: 

ADR f irst 

5-63 CZlS-02 



COMMENT 

COMMENT ( ") 

Annotate Line Editor comrnand files. The text after the 
Cornment directive appears as prograrn output but is ignored by the 
Line Editor. 

FORMAT: 

"cornment 

5-64 CZlS-02 



AUXILIARY BUFFER DIRECTIVES AND ESCAPE SEQUENCES 

In the previous pages of this section, it was assumed that 
there is only a single buffer, the current buffer. The current 
buffer must be used, but one or more additional buffers, called 
auxiliary buffers, also can be used. There are 64 auxiliary 
buff ers available f or use. 

' 
The most common use of auxiliary buffers is for moving or 

copying text from one part of a f ile to another. 

To make an auxiliary buffer available and to put lines into 
it, specify the Move, Move-Append, Copy, and/or Copy-Append direc­
tives, which are described in the following paragraphs. 

Lines cannot be written directly from an auxiliary buffer to a 
f ile; the auxiliary buffer must be designated in the Change Buffer 
directive as the current buffer or the lines must be read back to 
the current buffer via the escape sequenc.e !P, which is described 
under "Change Origin of Text During Input Mode," later in this 
section. Lines can be written from the current buffer to a f ile 
via the Write directive ·(see "Write (W)" earlier in this section}. 

You can determine the status of each buffer currently in use 
by specifying the Buffer Status directive. 

Auxiliary buffer directives have the following functions: 

• Cause Editor to accept a line from terminal (Accept Single 
Line From a Terminal directive} 

• Determine status of each buff er in use (Buff er Status 
directive} 

• Make specif ied auxiliary buffer the current buffer (Change 
Buffer directive} 

• Cause Line Editor to accept subsequent text f rom a 
specif ied auxiliary buff er 

- During edit mode (Change Origin of Text During Edit Mode 
directive} 

- During input mode (Change Origin of Text During Input 
Mode directive) 

• Copy line(s) in current buffer to specified auxiliary 
buffer; lines in current buffer are not deleted. 

- Delete existing lines in auxiliary buffer (Copy 
directive) 

Do not delete lines in auxiliary buffer (Copy-Append 
directive) 

5-65 CZ15-02 



---- ------~---- . - ·----~---- ___ _, ____ --- ~ -----~-------~----

• Destroy a buffer (i.e., release its file space) (Destroy 
directive) 

• Move line(s) from current buffer to specified auxiliary 
buffer; lines in current buffer are deleted 

- Lines overlay existing lines, if any, in auxiliary buffer 
(Move directive) 

- Lines appended to existing lines, if any, in auxiliary 
buffer (Move-Append directive). 

5-66 CZlS-02 



ACCEPT SINGLE LINE FROM A TERMINAL (!R) 

ACCEPT SINGLE LINE 
FROM A TERMINAL 

Perrnit a single line of directives or text to be entered 
through a terminal. !R normally is used when Line Editor 
directives are being executed from a buffer. When the Line Editor 
encounters !R, the entire escape sequence is rernoved f rom the 
input strearn and replaced with the line read from the user-in 
f ile. 

FORMAT: 

!R 

Exarnple: 

T/ENTER YOUR NAME/ 
A!R!F 

These directives are in the buffer that is being executed. 

The following message appears on the terminal: 

ENTER YOUR NAME 

You respond with your name; i.e., Jane Jones. 

Following the current line in the current buffer what you 
entered appears: 

Jane Jones 

5-67 CZlS-02 



BUFFER STATUS 

BUFFER STATUS (X) 

Cause a message on the status of each buffer currently in 
use. The current line is not changed. 

FORMAT: 

X 

DESCRIPT!ON: 

The following information is designated: 

• Name of each buffer. The original current buffer is always 
named O. 

• Number of lines in each buffer. 

• Indicator as to which buffer is the current buffer. The 
name of the current buffer is preceded by ->. 

If a buffer has been read into and/or written from, the mes­
sage includes the pathname specif ied in the last read or write. 

If the contents of the current buff er have been modif ied 
(i.e., in the message, MOD is designated before its name), all of 
the following conditions must exist: 

• Lines from an existing f ile have been read into the current 
buffer via a Read directive or the contents of the current 
buffer have been written to a f ile. 

• The contents of the buffer were modif ied via one or more 
Line Editor directives. 

Each message has the following format: 

number of lines 
[number of lines 

-> [MOD] 
[MOD] 

5-68 

(buffer-name) 
(buff er-name) 

[pathname] 
[ pa thname] ] 

CZlS-02 



/c··- .... ! ',, 

~.,.,' 

C. 
' 
i 

BUFFER STATUS 

Example: 

This example illustrates usage of the Buffer Status direc­
tive. The f ile USE, which is in the working directory, com­
prises the following lines: 

(1) AAA (current line) 
(2) BBB 
(3) ccc 
(4) DDD 

R USE 

Read the contents of USE intQ the current buffer, 
which is named O. 

l,$S*BBB*XXX* 

Search the f irst line through the last line in the 
current buffer and change each occurrence of BBB to 
XXX. After this directive is executed, the current 
buffer contains: 

(1) AAA 
(2) XXX 
(3) ccc 
(4) DDD 

3,4M2 

X 

Move lines 3 and 4 of the current buffer into auxil­
lary buffer 2. After this directive is executed, the 
current buffer contains: 

(1) AAA 
(2) XXX 

Auxiliary buffer 2 contains: 

(1) ccc 
(2) DDD 

Request the status of each buffer currently in use. 
The following message is issued: 

2 ->MOD (0) USE 
2 ( 2) 

5-69 CZlS-02 



CHANGE BUFFER 

CHANGE BUFFER (Bx) 

Designate that a specif ied auxiliary buffer is to become the 
current buffer. The previously designated current buffer becomes 
an auxiliary buffer. 

After this directive is executed, lines can be written f rom 
·the new current buffer to a file. 

FORlv'l..AT: 

Bx 

ARGUMENT: 

X 

Buffer name. The name must be 1 to 6 ASCII characters. 
If the name comprises more than a single character, the 
name must be enclosed within parentheses; otherwise, the 
parentheses are optional. The original current buffer 
name is o. This name can never be altered. An auxiliary 
buffer name, once specif ied, cannot be altered during the 
current Line Editor session. 

Example: 

B3 

This directive designates that auxiliary buffer 3 is the cur­
rent buffer. If desired, lines can now be written from this 
buffer to a f ile. 

5-70 CZlS-02 



CHANOJtJ)ltIGIN ___ O:F __ TEXT 
DURING EDIT MODE 

CHANGE ORIGIN OF TEXT DURING EDIT MODE (!B) 

Cause the Line Editor to read subsequent directives from a 
specified auxiliary buffer. !B can be specified within an 
expression, pathname, text tobe typed (i.e., in the Type 
directive), or as a directive. When the Line Editor encounters 
this sequence in an expression, pathname, or text, the entire 
escape sequence is r~moved f rom the input stream and replaced with 
the literal contents of the first line of the specified buffer; if 
!B is a directive, the input stream is replaced with the entire 
literal contents of the specified buffer. If another !B escape 
sequence is encountered while accepting input from buffer x, the 
newly encountered escape sequence is also replaced by the contents 
of its named buffer. 

The buffer to which the input stream is redirected may contain 
Line Editor requests, literal text, or both. If the Line Editor 
is executing a request obtained f rom an auxiliary buffer and an 
error occurs, the usual error comment is suppressed and the 
remaining contents of that buffer are skipped. Control returns to 
the statement immediately following the !B escape sequence that 
called the auxiliary buffer. For example, if one thinks of the 
escape sequence !B(x) as a subroutine call statement, the failure 
to match a regular expression specif ied by some request in buffer 
x may be thought of as a return statement. Once the last commands 
in the auxiliary buffer have been processed, control returns to 
the statement immediately following the !B escape sequence that 
called the auxiliary buffer. 

The buffer name can be in the format (ARGn) , where n is a 
number f rom 1 to 9 that ref ers to the nth argument that f ollowed 
the -ARG argument of the ED command. The escape sequence is 
replaced with the first (or only) line of the buffer (ARGn) 
created during initialization of the Line Editor. 

FORMAT: 

!Bx 

ARGUMENT: 

X 

Name of the buffer that contains subsequent Line Editor 
text. The buffer name must be 1 through 6 ASCII 
characters. If the buffer name comprises more than a 
single character, the name must be enclosed within 
parentheses; otherwise, the parentr.eses are optional. 

5-71 CZlS-02 



CHANGE ORIGIN OF TEXT 
DURING EDIT MODE 

Example 1: !B as a directive 

!B(TEST) 

In this example, the contents of the current buffer and the 
auxiliary buffer named TEST are: 

Current buffer: 

(1) A 
(2) B 
(3) A 
( 4) D 
( 5) E 

Auxiliary buffer: 

l,$S/A/X/ 

This Substitute directive designates that in the current 
buffer all occurrences of A be replaced with X. After the 
Substitute directive is executed, the current buffer contains: 

( 1) X 
( 2) B 
( 3) X 
( 4) D 
( 5) E 

The auxiliary buffer named TEST remains the same. 

Example 2: !B Within an Expression 

2S/AAA/!B2/ 

This Substitute directive designates that in the second line 
of the current buffer, each occurrence of AAA should be 
replaced with the first line of auxiliary buffer 2. 

The contents of the current buffer and auxiliary buffer 2 are: 

Current buffer: 

(1) AAABBB 
(2) CCCAAA 
(3) XXXYYY 

5-72 CZ15-02 



( 

(. 

Auxiliary buffer 2: 

DDD 
EEE 

CHANGE ORIGIN OF TEXT 
DURING EDIT MODE 

After the Substitute directive is executed, the current buffer 
contains: 

(1) AAABBB 
(2) CCCDDD 
(3) XXXYYY 

Exarnple 3: !B Within Text tobe Typed 

T/!B2/ 

This Type directive (which is described later in this section) 
requests that the f irst line of auxiliary buffer B2 be dis­
played on the user-out f ile. 

Exarnple 4: Buffer Name (ARGn) 

The ED cornrnand includes the argurnent -ARG ABC "MY NAME" XYZ 

S/DEF/!B(ARG3)/ 

This Substitute directive searches the current line and 
replaces each occurrence of DEF with XYZ (i.e., the third 
argurnent following -ARG in the ED cornrnand) • 

5-73 CZlS-02 



"~------··--·· ------···· 

CHANGE ORIGIN OF TEXT - - -- -

DURING INPUT MODE 

CHANGE ORIGIN OF TEXT DURING INPUT MODE (!B) 

Cause the Line Editor to accept subsequent text f rom a 
specified auxiliary buffer. The escape sequence !B can appear 
within the text of an Input directive. 

When the Line Editor encounters !B, the entire escape sequence 
is removed from the input stream and replaced with the literal 
contents of the specif ied buffer. If another !B escape sequence 
is encountered after accepting text from the specified buffer, the 
newly encountered escape sequence is also replaced with the 
contents of the named buffer. 

FORMAT: 

[text]!Bx [[text]!B J ... 
ARGUMENT: 

X 

Name of the buffer that contains subsequent Line Editor 
text. The buffer name must be l to 6 ASCII characters. 
If the buffer name comprises more than a single character, 
the name must be enclosed within parentheses1 otherwise, 
the parentheses are optional. 

Example 

/D/I 
!B(TEST)!F 

In this example, the contents of the current buffer and the 
auxiliary buffer named TEST are: 

Auxiliary buffer: 

(1) X 
(2) y 
(3) z 

Current buffer·: 

(1) A 
(2) B 
(3) c 
( 4) D 
( 5) E 

5-74 CZlS-02 

--,\ 

!\ 
\ ; 
~; 



(~ .. · 

0 

CHANGE ORIGIN OF TEXT 
DURING INPUT MODE 

This Insert directive designates that the contents of the 
auxiliary buffer named TEST to be inserted into the current 
buff er bef ore the line that contains D. 

After the Insert directive is executed, the current buffer 
contains: 

(1) A 
(2) B 
( 3) c 
( 4) X 
( 5) y 
( 6) z 
(7) D 
( 8) E 

The auxiliary buffer named TEST remains the same. 

5-75 CZ15-02 



---- ---- -- --- -- ------- ·- -- ·--- ~ --· ··---

COPY 

COPY (K) 

Write into a specif ied auxiliary buffer a single line or 
consecutive lines contained in the current buffer. The lines in 
the current buffer are not deleted; i.e., the lines are in both 
the current and the auxiliary buffers. Any lines previously in 
the auxiliary buffer are destroyed during execution of the Copy 
directive. 

After the Copy directive is executed, cne current line in the 
current buffer is the last line moved to the auxiliary buffer. 
There is no current line in the auxiliary buffer until that 
auxiliary buffer is changed to the current buffer via a Change 
Buffer directive. ' 

FORMAT: 

[ adr1 [ {:} adr2]] Kx 

ARGUMENTS: 

adr1 

X 

Address of the f irst line to be ~ritten into the specif ied 
auxiliary buffer. Default: Current line. 

Address of the last line to be written into the specif ied 
auxiliary buffer. Default: ad~ • 

NOTE 

If both adr1 and adr2 are omitted, only the current 
line is written into the specified auxiliary buffer. 

Name of the auxiliary buffer into which the specif ied 
line(s) are written. The name must be l to 6 ASCII 
characters. If the name comprises more than a single 
character, the name must be enclosed within paren­
theses; otherwise, the parentheses are optional. 

5-76 CZlS-02 

----~-------



( 

COPY 

Exarnple: 

l,3K(52) 

This Copy directive copies lines 1 through 3 of the current 
buffer into auxiliary buffer 52. The contents of the current 
buffer are: 

(1) FIRST (current line) 
(2) SECOND 
(3) THIRD 
(4) FOURTH 

After the Copy directive is executed, the contents of the cur­
rent buffer are unchanged, but the current line is line 4. 
Auxiliary buffer 52 contains: 

(1) FIRST 
(2) SECOND 
(3) THIRD 

There is no current line in the auxiliary buffer. 

5-77 CZ15-02 



COPY-APPEND 

COPY-APPEND ( !K) 

Write a line or lines from the current buffer to an auxiliary 
buffer without destroying the contents of the auxiliary buffer. 
The lines copied f rom the current buffer are appended to the 
contents of the auxiliary buffer. The lines written are also 
retained in the current buffer. 

After the Copy-Append directive is executed, the current line 
in the current buffer is the last line written to the auxiliary 
buffer. There is no current line in the auxiliary buffer. 

FORMAT: 

[ad~ [ {:} adr2 J] !Kx 
' 

ARGUMENTS: 

adr1 

X 

Address of the first line to be written to the specif ied 
auxiliary buffer. Default: Current line. 

Address of the last line to be written to the specified 
auxiliary buffer. Default: ad~ • 

NOTE 

If both addresses are omitted, only the current 
line is written to the auxiliary buffer. 

Name of the auxiliary buffer into which the specif ied 
line(s) are written. The name must be from 1 to 6 ASCII 
characters. If the name is more than one character, it 
must be enclosed within parentheses; otherwise, paren­
theses are optional. 

5-78 CZlS-02 

-------------·---·~~------· 



COPY".""APPEND 

Example: 

l,3!K(ABUF) 

This directive appends lines 1 through 3 of the current buffer 
to the contents of auxiliary buffer ABUF. Thus, if the cur­
rent buffer and ABUF contain the following lines prior to 
execution: 

Current ABUF 

(1) AAA (current line) 
(2) BBB 
(3) ccc 
(4) DDD 

(1) MMM 
(2) NNN 

They will contain the following after execution: 

(1) AAA 
(2) BBB 

Current 

(3) CCC (current line) 
(4) DDD 

5-79 

ABUF 

(1) MMM 
(2) NNN 
(3) AAA 
(4) BBB 
(5) ccc 

CZ15-02 



DESTROY 

DESTROY ("B) 

R~lease a specified auxiliary buffer's file space. Any buffer 
other than buffer O and the current buffer can be removed; if the 
current buffer name is specif ied, the directive is ignored and an 
error message is issued. 

FORMAT: 

"Bx 

ARGUMENT: 

X ,• 

Name of the auxiliary buffer to be destroyed. The name 
must be f rom 1 to 6 ASCII characters. If the name com­
prises more than one character, it must be enclosed within 
parentheses; otherwise, parentheses are optional. 

Example: 

"B(AX) 

This Destroy directive removes buffer AX. 

5-80 CZlS-02 

) 



( 

(" \ 

C-·-
'\ 
) 

MOVE 

MOVE (M) 

Move a single line or consecutive lines from the current 
buffer to a specified auxiliary buffer1 the lines no longer exist 
in the current buffer. If the auxiliary buffer already contains 
lines, those lines are destroyed. 

After the Move directive is executed, the current line in the 
current buffer is the next line (if any) after the last line moved 
to the auxiliary buffer. There is no current line in the 
auxiliary buffer, nor in the current buffer if all its lines were 
moved. 

FORMAT: 

[adr1 [C} ad~] Mx 
ARGUMENTS: 

adr1 

X 

Address of the f irst line to be moved from current buffer 
to auxiliary buffer. Default:, Current line. 

Address of the last line to be moved from current buffer 
to auxiliary buffer. Default: adG • 

NOTE 

If both adG and ad12 are omitted, only the current 
line is moved from the current buffer to the auxil­
iary buffer. 

Name of the auxiliary buffer to which the specif ied 
line(s) are moved. The name must be 1 to 6 ASCII 
characters. If the name comprises more than a single 
character, the name must be enclosed within parentheses1 
otherwise, the parentheses are optional. 

5-81 CZlS-02 



--------······· ····-·· ··-····-----·-

MOVE 

Example: 

l,3M5 

This Move directive moves 1 through 3 from the current 
buffer to auxiliary buffer 5. In this example, the contents 
of the current buffer are: 

(1) FIRST (current line) 
(2) SECOND 
(3) THIRD 
(4) FOURTH 

After the Move directive is executed, the current buffer 
contains: 

(1) FOURTH (current line) 

Auxiliary buffer 5 contains: 

(1) FIRST 
(2) SECOND 
(3) THIRD 

-·----··--- ------··· ---

5-82 CZ15-02 

„ 

·--...,_ 
\ 



c 

c ' 1 

MOVE-APPEND 

MOVE-APPEND (!M) 

Move one or rnore lines of text from the current buffer to the 
specified auxiliary buffer. The lines are appended to the 
existing contents of the auxiliary buffer; the existing contents 
of the auxiliary buffer are not overlaid. If the auxiliary buffer 
contains no text, the lines are placed in the auxiliary buffer 
starting at line 1. The lines moved are deleted from the current 
buffer. 

After the Move-Append directive is executed, the current line 
in the current buffer is the next line (if any) after the last 
line written to the auxiliary buffer. There is no current line in 
the auxiliary buffer, nor in the current buffer if all lines there 
were written out. 

FORMAT: 

[ad~~:} adr~]!Mx 
ARGUMENTS: 

ad~ 

Address of the f irst line to be moved from the current 
buffer to the auxiliary buffer. Default: Current line. 

ad~ 

X 

Address of the last line to be moved f rom the current 
buffer to the auxiliary buffer. Default: ad~ • 

NOTE 

If both adr1 and ad~ are omitted, only the current 
line is moved f rom the current buffer to the auxil­
iary buffer. 

Name of the 
line(s) are 
characters. 
enclosed in 
optional. 

auxiliary buffer to which the specif ied 
moved. The name must be 1 to 6 ASCII 

A narne of rnore than one character rnust be 
parentheses; otherwise, parentheses are 

5-83 CZlS-02 



MOVE-APPEND 

Example: 

l,3!M(SOOZ) 

This directive appends lines 1 through 3 to the contents of 
auxiliary buffer SOOZ. If the contents of the buffers are as 
f ollows prior to the move: 

Current sooz 
(1) FIRST (current line) (1) AAAAA 
(2) SECOND (2) BBBBB 
(3) THIRD 
(4) FOURTH 

The buffers contain the following af ter the move: 

Current sooz 
(1) FOURTH (current line) (1) AAAAA 

(2) BBBBB 
(3) FIRST 
(4) SECOND 
(5) THIRD 

5-84 CZlS-02 

<) 
~-j 



{ 

LINE EDITOR DEBUGGING DIRECTIVES 

The functions of Line Editor debugging directives are: 

• Print contents of specified line(s) on the terminal 
(Hexadecimal Dump directive) 

• Display, on the user-out f ile, the last specif ied regular 
expression (ZREGEXP directive) 

• Display each directive line before it is executed (ZTRACE 
directive). 

5-85 CZ15-02 



HEXADECIMAL DUMP 

HEXADECIMAL DUMP (ZDUMP) 

Print the contents of specified line(s) on the terminal in 
both hexadecimal and ASCII formats. The output format consists of 
the line number, the length (number of characters) expressed in 
hexadecimal, eight words in hexadecimal format, and eight words in 
ASCII format. 

The display of each buffer line is separated from following 
displays by a blank line. If a buffer line is too long to be dis­
played on a single line, it is con~inued on the next line, with no 
blank line separation. 

After this directive is executed, the current line is the last . 
(or only) line printed. 

FORMAT: 

[ adr{t} adr2J]ZDUMP 
ARGUMENTS: 

'\ 

adr1 ) 

Address of the f irst buffer line to be dumped. Oefault: 
Current line. 

Address of the last buffer line to be dumped. Oefault: 
aar, . 

NOTE 

If both addresses are omitted, only the current 
1 ine is dumped. 

Example: 

The contents of lines 1 and 2 of the current buffer are: 

(1) START EDIT 
(2) VDEF ZFVER,X'3031' 

l,2ZDUMP 

5-86 CZlS-02 



( .. 

, (-··· \ 

/ __ ,, 

HEXADECIMAL DUMP 

This Hexadecimal Dump directive produces the f ollowing output 
at the terminal: 

0001 OOOA 5354 4152 5420 4544 4954 START EDIT 

0002 0012 5644 4546 205A 4656 4552 2C58 2733 3033 VDEF ZFVER,X'303 
3727 1 1 

Thus, 0001 indicates line l; OOOA indicates a length of 10 
characters (A ) , followed by the hexadecimal equivalent of 
START EDIT. A blank line is followed by the dump of line 2, 
with a length of 18 characters (12 ) • Because nine words are 
required to fully dump the line, the output continues on the 
next line of the terminal, with no blank line intervening. 

5-87 CZ15-02 



ZREGEXP 

ZREGEXP 

Display the last specif ied expression on the user-out f ile. 
The current line is not changed. 

FORMAT: 

ZREGEXP 

Example: 

S/ABC/DEF/ 
ZREGEXP 

This ZREGEXP directive displays the last specif ied expression; 
i.e., /ABC/. 

5-88 CZlS-02 



(·· 

( 

ZTRACE 

ZTRACE 

Display each directive line on the user-out file before it is 
executed. 

FORMAT: 

ZTRACE 

ARGUMENTS: 

ON Each directive line is displayed before it is executed. 

OFF subsequent lines are not displayed bef ore they are 
executed. 

Example: 

This example illustrates a program that includes an ED command 
to load the Line Editor and a ZTRACE ON directive. Following 
is a printout of the Line Editor output. 

Program including ED command and ZTRACE ON directive: 

1 RL DIRECTORY 
2 FO DIRECTORY 
3 WS &l "LS -BF" 
4 FO 
5 &A 
6 ED 
7 ZTRACE ON 
8 Bl 
9 I 

10 R DIRECTORY 
11 GD/"' &/ 
12 GD/"'. ENTRY NAME TYPE$/ 
13 GD/ D$/ 
14 1, $S/ .... II 
15 1, $8/ "'DIRECTORY: . II 
16 $N 
17 :C ?/""/;M(2} 
18 :D "*/""/S/". *$/& !C!B2>&/?+l;>D 
19 ?+1,-lN>C 
20 */""'/D!F 
21 BO 
22 !Bl 
23 W DIRECTORY 
24 Q 

5-89 CZlS-02 



ZTRACE 

25 ED -NBS -LL 160 
26 R DIRECTORY 
27 l,$S/ •• $/ 
2a 1,$s"'·····································1········ 
29 ,$S/!.*$// 
30 l,$S/A/!H00/ 
31 W DIRECTORY 
32 Q 
33 SORT -IN SORT CMD ST -FF 
34 FO >SPD>LPTOO 
35 PR SORTED DIR -LL 132 
36 FO -

Line Editor output: 

EDIT-0200-09/11/0948 
**EDIT** Bl 
**EDIT** I 
**INPUT** R DIRECTORY 
**INPUT** GD/A $/ 
**INPUT** GD/A. ENTRY NAME TYPE$/ 
**INPUT** GD/ D$/ 
**INPUT** l,$S/A. II 
**INPUT** l,$S/ADIRECTORY: • II 
**INPUT** $N 
**INPUT** :C ?/AA/;M(2) 
**INPUT** :D A*/AA/S/A.*S/&!C!B2>&/?+l;>D 
**INPUT** ?+1,-lN>C 
**INPUT** */AA/D!F 
**EDIT** BO 
**EDIT** !Bl 
**EDIT** R DIRECTORY 
**EDIT** GD/A $/ 
**EDIT** GD/A. ENTRY NAME TYPE$/ 
**EDIT** GD/ 0$/ 
**EDIT** l,$S/A. II 
**EDIT** 1, $S/ ADIRECTORY: • / / 
**EDIT** $N 
**EDIT** :C ?/AA/;M(2) 
**EDIT** :D A*/AA/S/A.*S/&!B2>&/?+l;>D 
**EDIT** :D A*/AA/S/A.*S/&!B2>&/?+l;>D 
**EDIT** :D A*/AA/S/A.*S/&!B2>&/?+l;>D 
**EDIT** ?+1,-lN>C 
**EDIT** :C ?/AA/;M(2) 
**EDIT** :D A*/AA/S/A.*S/&!B2>&/?+l;>D 
**EDIT** :D A*/AA/S/A.*S/&!B2>&/?+l;>D 
**EDIT** :D A*/AA/S/A.*S/&!B2>&/?+l;>D 
**EDIT** ?+1,-lN>C 
**EDIT** :C ?/AA/;M(2) 
**EDIT** :D A*/AA/S/A.*S/&!B2>&/?+l;>D 
**EDIT** :D A*/AA/S/A.*S/&!B2>&/?+l;>D 

5-90 CZlS-02 

\ 



**EDIT** 
**EDIT** 
**EDIT** 
**EDIT** 
**EDIT** 

·-- - ·-···· -··-----···------------

:D A*/AA/S/A.*S/&!B2>&/?+11>D 
?+1,-lN>C 
*/AA/D 
W DIRECTORY 
Q 

5-91 

ZTRACE 

CZlS-02 



LINE EDITOR PROGRAMMING DIRECTIVES 

Line Editor programming directives cause conditional execution 
of subsequent directives, change the location of subsequent Line 
Editor input, and display a line of text on the user-out file. 
Programming directives can be in the directive input f ile 
(specif ied in the -IN path argument of the ED command) or an 
auxiliary buffer, or they can be entered through a terminal. 

Each conditional directive includes one or more other Line 
Editor directives. The directives must be on a single line. If 
the specif ied condition exists, the subsequent embedded 
directive(s) are executed. The following conditions can be 
tested: 

• Does specif ied line exist (Address Pref ix directive) 

• Does current buffer contain data (If Empty and If Data 
directives) 

• Is current line a specif ied line (If Line and If Not Line 
directives) 

• Is current line within specif ied lines (If Range and If Not 
Range directives) 

• Is specif ied expression within specif ied lines (Search and 
Search Not directives). 

Programming directives also have the following capabilities: 

• Change location from which Line Editor accepts subsequent 
directives (Go To directive) 

• Def ine location that can be the endpoint of a Go To direc­
tive (Label directive) 

• Display a line of text on the user-out f ile (Type 
directive). 

NOTE 

If a directive format comprises multiple directives, 
the directives can be separated by spaces for 
readability. 

5-92 CZlS-02 

„~,\ 

' J„r'"""''·~-.......,, 

1 " 0 



'(: 

'(_ 

C", 
\ 
,/ 

ADDRESS· PREFIX 

ADDRESS PREFIX (?) 

Execute the directives contained in the Address Pref ix line if 
the specified line exists in the current buffer; otherwise, 
they are not executed. 

FORMAT: 

?adr {:} directive [directive] ••• 

ARGUMENTS: 

adr 

Address of the line for which the Line Editor searches. 

NOTE 

If adr is irnrnediately followed by a sernicolon, adr 
becornes the current line. If adr is irnrnediately 
followed by a cornrna, the current line is not changed. 

directive 

Any Line Editor directive(s); they are executed only if 
the specif ied line is found. 

Exarnple 1: 

?8;P 

This Address Pref ix directive specif ies that if there is a 
line 8 in the current buffer, print the contents of that line; 
that line becornes the current line. 

Exarnple 2: 

In this exarnple, the contents of the current buffer are: 

(l} DEFGHI 
(2) ABCZYZ 
(3) ABCGGG (current line) 

?/ABC/;S/ABC/DEF/ 

This Address Pref ix directive designates that if there is a 
line that contains ABC, rnake that line the current line, and 
in that line replace each occurrence of ABC with DEF. 

5-93 CZlS-02 



ADDRESS PREFIX 

After this directive is executed, the current buffer contains: 

(1) DEFGHI 
(2) DEFXYZ (current line) 
(3) ABCGGG 

5-94 CZlS-02 

.---.._,, 
\ 

··"·} 



( 

( 

GO TO 

GO TO (>) 

Change the location frorn which the Line Editor accepts 
subsequent directives. 

If the Go To directive is encountered in the buffer that is 
currently being executed, the Line Editor accepts subsequent 
directives frorn a specif ied location in that buffer. The location 
rnust have been previously def ined in that buffer by a label 
directive. 

If the Go To directive is entered interactively, only direc­
tives in the current directive line are used. 

FORMAT: 

>label 

ARGUMENT: 

label 

Location to which control is transferred; the Line Editor 
accepts subsequent directives f rorn this location. 

If the label cornprises multiple characters, they rnust be 
enclosed within parentheses; otherwise, the parentheses 
are optional. 

Exarnple 1: 

In this exarnple, the contents of the current buffer are: 

(1) EAST ROCKAWAY, NY 
(2) LONG BEACH, NY 
(3) BRIGHTON, MASS 
(4) ANDOVER, MASS 
(5) HEWLETT, NY 

Buffer 2 contains the following directives: 

: (REPEAT) 1 , $P 

Assign label REPEAT to Print directive line. 

l,$S/MASS$/MASSACHUSETTS/P 

Substitute each occurrence of MASS at the end of a 
line with MASSACHUSETTS and print the contents of the 
last line in the buffer (i.e., line 5). 

5-95 CZlS-02 



GO TO 

NOTE 

When the Line Editor searches the buffer the second 
time and does not find MASS at the end of a line, 
control returns to the previous buffer or to the 
terminal. 

l,$S/NY/NEW YORK/>(REPEAT) 

Substitute each occurrence of NY with NEW YORK and 
print the contents of all lines (i.e., lines 1 through 
5) • 

Example 2: 

:A?/ABC/;S/ABC/DEF/P>A 

If this directive is 
actions take place. 
action indicates how 
line. 

entered interactively, the following 
The inf ormation to the right of each 
the action is requested in the directive 

Assign label A to directive line. :A 

If ABC exists, take the subsequent actions. ?/ABC/ 

Change the current line to the location of ABC ; 
(semicolon precedes the substitute directive). 

Replace each occurrence of ABC with DEF. S/ABC/DEF/ 

Print the current line. P 

Go to line A (i.e., reexecute the same directive line). >A 

After all lines containing ABC have been acted upon (i.e., 
each occurrence of ABC has been replaced with DEF and the 
resulting lines printed), control returns to the next direc­
tive entered interactively. 

5-96 CZ15-02 



IF DATA 

IF DATA (#) 

Execute the directives contained on the If Data directive line 
if the current buffer contains data; otherwise, they are not 
executed. 

FORMAT: 

#directive [directive] ••• 

ARGUMENT: 

directive 

Any Line Editor directive(s); they are executed only if 
the current buffer contains data. 

5-97 CZlS-02 



IF EMPTY 

IF EMPTY ( "'#) 

Execute the directives contained in the If Empty directive 
line if the current buffer is empty; otherwise, they are not 
executed. 

FORMAT: 

"'#directive [directive] ••• 

ARGUMENT: 

directive 

Any Line Editor directive(s); they are executed only if 
the current buffer does not contain data. 

5-98 CZlS-02 



IF LINE 

IF LINE (adr#) 

Execute the directives contained on the If Line directive line 
if the current line is the specif ied line; otherwise, they are not 
executed. 

FORMAT: 

adr#directive [directive] ••• 

ARGUMENTS: 

adr 

Address of the line being checked to see if it is the cur­
rent line. 

directive 

Any Line Editor directive(s); they are executed only if 
the specif ied line is the current line. 

5-99 CZlS-02 



-----·-··-----

IF NOT LINE 

IF NOT LINE (adr Ai) 

Execute the directives on the If Not Line directive line if 
the current line is not the specif ied line; otherwise, they are 
not executed. 

FORMAT: 

adrAidirective [directive] ••• 

ARGUMENTS: 

adr 

Address of the line being checked to see if it is the cur­
rent line. 

directive 

Any Line Editor directive(s); they are executed only if 
the specif ied line is not the current line. 

5-100 CZlS-02 

----~------ -----------



0 

IF RANGE 

IF RANGE (adr(s) #) 

Execute the directives on the If Range directive line if the 
current line is within specified lines; otherwise, they are not 
executed. 

FORMAT: 

adr1 {:} adr2 #directive [directive] ••• 

ARGUMENTS: 

Address of the f irst line to be searched. 

Address of the last line to be searched. 

directive 

Any Line Editor directive(s); they are executed only if 
the current line is within addresses ad~ through adr2 • 
The current line is unchanged. 

5-101 CZlS-02 



IF NOT RANGE 

IF NOT RANGE (adrs A#) 

Execute the directives on the If Not Range directive line if 
the current line is not within specified lines; otherwise, they 
are not executed. 

FORMAT: 

adr1 {:} adr2 A#directive [directive] ••• 
' . ' 

ARGUMENTS: 

Address of the f irst line to be searched. 

Address of the last line to be searched. 

directive 

Any Line Editor directive(s); they are executed only if 
the current line is not within addresses ad~ through 
adr2 • The current line is unchanged. 

Example: 

l,lOA#S/yes/no/ 

This If Not Range directive specif ies that if the current line 
is not within lines 1 through 10, substitute each occurrence 
of "yes" in the current line with "no". 

5-102 CZlS-02 



LABEL. 

LABEL (:) 

Define a location to which the Line Editor can be directed 
(via a Go To directive) for subsequent directives. If a Go To 
directive is entered interactively, only the current directive 
line is searched for the label. The Label directive must be 
specif ied at the beginning of a line. 

FORMAT: 

:labeldirective [directive] ••• 

ARGUMENTS: 

label 

Location that can be the argument value of a Go To state­
ment; i.e., a location to which control can be transfer­
red. If multiple characters constitute the labe!, they 
must be enclosed within parentheses; otherwise, parenthe­
ses are optional. 

directive 

Any Line Editor directive(s); they are executed when 
control passes to the specif ied label. 

5-103 CZlS-02 



SEARCH 

SEARCH (*) 

Execute the directives on the Search directive line if a 
specified expression is within specified lines; otherwise, they 
are not executed. 

FORMAT: 

adr1 {;} adr2 */regexp/directive [directive] ••• 

ARGUMENTS: 

adr1 

Address of the f irst line to be searched for the regular 
expression. Default: Current line. 

Address of the last line to be searched f or the regular 
expression. Default: ad~ • 

NOTE 

If both ad~ and adr2 are omitted, only the current 
line is searched. 

regexp 

String of characters for which the Line Editor is 
searching. 

directive 

Any Line Editor directive(s); they are executed only if 
the specified expression is within the specified 
addresses. 

5-104 CZlS-02 

'"", 

\ 
) 



(/ 

' C .. 

SEARCH.NOT 

SEARCH NOT ("*) 

Execute the directives on the Search Not directive line if a 
specified expression is not within specified lines1 otherwise, 
tbey are not executed. The current line is unchanged. 

FORMAT: 

adr1 {;} adr2 "'*/regexp/directive [directive] ••• 

ARGUMENTS: 

adr1 

Address of the f irst line to be searched f or the regular 
expression. Default: Current line. 

Address of the last line to be searched f or the regular 
expression. Default: ad~ • 

NOTE 

If both adr1 and adr2 are omitted, the directives 
are executed only if the regular expression is not 
in the current line. 

regexp 

String of characters for which the Line Editor is 
searching. 

directive 

Any Line Editor directive(s)1 they are executed only if 
the specified expression is not within the specified 
addresses. The current line is unchanged. 

5-105 CZlS-02 



TYPE 

TYPE (T) 

Display a line of text on the user-out f ile. If the optional 
exclamation point (1) is specified in the directive format, the 
next input or output appears immediately after the printout, on 
the same line; otherwise, the next printouts are on subsequent 
lines. 

FORMAT: 

[l]T/text/ 

ARGUMENTS: 

/ 

(Delimiter) Can be any nonblank character, but the same 
character must be used in each place where a delimiter is 
required. 

text 

Text to be displayed. Default: One blank line. 

Example 1: 

T/IDENTIFICATION NUMBER/ 

This Type directive prints IDENTIFICATION NUMBER. Since the 
optional exclamation point was not specif ied, subsequent input 
or output appears on subsequent lines. 

Example 2: 

!T/IDENTIFICATION NUMBER !B2/ 

This Type directive prints IDENTIFICATION NUMBER and the con­
tents of auxiliary buffer B2. If B2 contains FOR THIS YEAR, 
the printout will be: IDENTIFICATION NUMBER FOR THIS YEAR. 
Since the directive name T was immediately preceded by an 
exclamation point, the next input or output appears 
immediately after the printout, on the same line. 

5-106 CZlS-02 
C> 



C--\ 
1 1 
~ / 

PROGRAMMING CONSIDERATIONS 

1. Tabbing causes embedded tab characters to be replaced with 
the appropriate number of spaces so that printed output on 
a printer or terminal has "tab stops" at character posi­
tion 11 and at every subsequent 10 character positions. 
Tab characters can be entered into Assembly language 
source lines by pressing CTRL I on the terminal device 
while entering insert and/or substitute directive(s). 
CTRL I is a nonprinting tab character that has a hexadeci­
mal value of 09. Tabbing is not apparent until a printout 
occurs. 

2. The Line Editor uses a minimum of two temporary work files 
in the working directory. These f iles are created by the 
Line Editor when the Line Editor is invoked; they exist 
only during the current execution of the Line Editor. A 
minimum of 16 diskette or 8 cartridge sectors must be 
available in the working directory f or temporary work 
f iles. Additional temporary files are created for each 
auxiliary buffer used; the number of temporary f iles is 
limited by the space available in the working directory. 

3. If you specify a buffer name comprising more than a single 
character and omit the parentheses, only the first charac­
ter is considered the buffer name; subsequent characters 
are treated as directives. 

4. If a file manager error (190223, lack of space) or a phys­
ical error (190107) is encountered, use the Quit directive 
to exit from the Line Editor, and restart after the 
problem has been corrected. Attempting to recover by 
other means (such as the escape sequence) can cause 
unspecif ied results. If an error occurs while processing 
a work f ile (this situation is indicated by an error 
message that is not followed by a f ile name), the Line 
Editor can terminate processing, and a fatal error message 
is issued. 

5. An error occurs if the maximum nurnber of lines that the 
Line Editor accepts in a program has been reached. 
Control is returned to command level. 

LINE EDITOR PROCEDURES 

This section provides information on using the Line Editor to 
create and modify f iles. When using the Line Editor, each 
directive or line of information entered must be followed by a 
carriage return. Throughout this text, all user entries shown in 
examples are shaded. This distinguishes user entries f rom system 
messages and prompts. 

5-107 CZlS-02 



Initiating A Line Editor Session 

To initiate a Line Editor session, enter the ED command 
followed by a space and a -PT as shown: 

-09/09/81 

The entry ED -PT causes display of an E? prompt. 
prompt is caused by the -PT argument and inf orms you 
Editor is ready to accept directives. The E? prompt 
indicates that the Line Editor is ready for use. 

CREATING WORK FILES 

The E? 
that the Line 
also 

In addition to the -PT argument, other arguments can be 
included with the ED command. One argument is the -SF argument. 
There may be times when you are working on f ile contents in a 
temporary work area known as the current buffer. If the system 
fails while working in the current buffer, the contents of the 
current buf f er are lost. The -SF option creates two permanent 
work f iles. If the system fails, current buffer contents are not 
lost. 

The two f iles created by the -SF argument are the .EDWKl and 
and .EDWK2 f iles. The format for the -SF argument is -SF, a 
space, and a name for the work files. The .EDWKl and .EDWK2 suf­
fixes are appended to the specified file name automatically. The 
f ile name can be from one to six characters long. 

The following example uses the -PT and -SF arguments. 
Immediately following the -SF argument is a space and f ilename 
CSRC. This entry creates two permanent f iles named CSRC.EDWKl and 
CSRC.EDWK2 in your current working directory. As modif ications 
are made to the current f ile, the permanent work f iles are updated 
alternately. If the system fails while you are working with the 
Line Editor, the files named CSRC.EDWKl and CSRC.EDWK2 are saved. 

Once the system is working again, you can sign on, invoke the 
Line Editor, and read in CSRC.EDWKl or CSRC.EDWK2 to begin 
modifying the f ile again. Reading a f ile into the current buffer 
and working on the f ile are described later. 

5-108 CZlS-02 

-'-. 
/-"'\· 
( : 
\..__,,_/ 



( 

Two f acts about the use of the -SF argument are very 
important: 

• The permanent f iles with the .EDWKl and .EDWK2 suffixes are 
updated alternately. You should check both files to 
determine which f ile has the latest version of the update 
f ile. Use the X directive (described under "Buffer 
Status") to determine file status. These files can be read 
in by the Line Editor only if there is a system failure. 
When you create the f iles with the -SF argument, you cannot 
examine those f iles. Also, if there is no system failure, 
the two files are released when you quit the Line Editor. 
The f iles are available for examination only after there is 
a system failure during use of the Line Editor. 

• When you sign on and invoke the Line Editor after a system 
failure, the -SF argument should be followed by a f ile name 
that is different from the first backup f ile name; 
otherwise, the Line Editor overwrites the old safe files. 

Example: 

Assume that you have signed on and invoked the Line Editor as 
shown above. Later, during the building or modification of a 
file through the current buffer, there is a system failure. 
Once the system is running again, sign on and invoke the Line 
Editor again. This time the -SF argument is followed by the 
f ile name CTEMP. As a result of this series of terminal 
entries, the permanent work files named CSRC.EDWKl and 
CSRC.EDWK2 are available for examination and a new set of 
backup files named CTEMP.EDWKl and CTEMP.EDWK2 are created. 
In this way, old f iles can be read into the current buffer for 
modif ication and two backup f iles are available in case there 
is another system failure. When the new update session is 
complete, you should release the f iles named CSRC.EDWKl and 
CSRC.EDWK2. If there is no system failure, the files named 
CTEMP.EDWKl and CTEMP.EDWK2 are released automatically. 

RDY: 
[tllllllllll!ll(llllltl 
Edit REL -09/09/81 
E? 

LINE EDITOR MODES 

The Line Editor works in two modes: input mode and edit 
mode. Input mode is used for adding lines to an existing f ile or 
for building a new file. Edit mode is used for making changes to 
an existing f ile. In edit mode, deletion of lines, substitution, 
and printing of lines can be done. 

QUITTING THE LINE EDITOR 

After invoking the Line Editor and f inishing your editing 
session, you will want to quit, or exit, the Line Editor. 

5-109 CZlS-02 



To exit the Line Editor, you must be in edit mode. The .Line 
Editor prompt indicates the current mode. If the Line Editor 
prompt E? is displayed, the Line Editor is in edit mode. 

If the prompt displayed in response to a terminal entry is I?, 
the Line Editor is in input mode. If the I? prompt is displayed 
and you want to quit the Line Editor, you must switch to edit 
mode. This can be done with the !F directive, as shown: 

E? 
I? 

The I? prompt indicates that the Line Editor is in input 
mode. The !F entry causes the Line Editor to return to edit mode, 
as indicated by the E? prompt. The uses of input rnode and edit 
mode are covered in detail in this section. · 

Once the Line Editor is operating in edit mode, exiting from 
the Line Editor is accomplished with the Quit directive or Q. 
This directive causes the Line Editor to halt and returns you to 
command level. 

Example: 

The following example shows that the Line Editor is operating 
in edit mode due to the !F directive. In response to the E? 
prompt, enter Q to return to the command level. This return 
is shown by the RDY: prompt. At this point, you can execute 
any command or reenter the Line Editor with the ED -PT 
directive. 

Creating A File 

To create a source file using the Line Editor, invoke the Line 
Editor {with the ~PT and -SF arguments) and invoke input mode 
using the I directive as shown: 

E?I 
I? 

Once in input mode, your lines of code are entered sequen­
tially into your current buffer. The current buffer is allocated 
when the Line Editor is invoked, and a pointer is established to 
point to this buffer as the working buffer. The current buffer is 
a temporary work area that is established in your working 
directory and memory pool (allotrnent). You can build a new f ile 
or read a permanent f ile into the current buffer for additions or 
rnodifications. 

5-110 CZlS-02 



( .. 

When you guit the Line Editor, the current buffer is 
released. Buffer management is discussed later. Each line of 
data entered starts in position 1 of the line and is terminated 
with a carriage return. When all lines of data have been entered, 
you terminate input mode with the !F directive. The following 
example shows directives used when entering data and terminating 
input mode: 

E? 
I? 
I? 
I? 
E? 

In this example, enter an I to switch to Input mode. Enter 
two lines of a COBOL program, pressing the carriage return af ter 
each entry. Enter !F to switch processing back to Edit mode. 

As shown later, the A directive can also be used to build a 
new f ile. 

Addressing Technigues 

After entering all the lines of data or source code, you may 
need to make corrections to a line (or lines) before saving the 
file. However, before you learn the directives for making cor­
rections, it is necessary to understand basic addressing tech­
niques. You must be in edit mode to address current buff~r 
contents. 

ADDRESSING A SINGLE LINE 

To address (specify for access} a single line you need to 
enter only the line number (assigned by the Line Editor as each 
line was entered) followed by a directive. Or, in the case of 
addressing the current line, you need to enter the directive 
only. The current line is established either as the last line 
addressed in edit mode or as the last line entered in input mode. 

For example, assume that you want to address line 3 to view 
its contents. You enter 3 followed by the P directive to view the 
contents of the line. The f ollowing example uses these 
directives. 

E?. 
AUTHOR. NAME. 
E? 

Notice that the P follows the 3. The sequence that you enter 
directives is very important. The syntax rule for entering 
directives is: 

[adr1 ] [ ,adr2 ] command 

5-111 CZlS-02 



Since you are working in edit mode and line 3 is the last line 
addressed, it is now the current line. To print line 3 again, as 
shown in the following example, you enter the P directive alone. 

E?I 
AUTHOR. NAME. 
E? 

ADDRESSING MULTIPLE LINES 

To print the contents of several lines in sequence use two 
line numbers separated by a comma. The comma inf orms the Line 
Editor that the line numbers are inclusive. An example is 10,12P, 
as shown: 

E?-
DATA DIVISION. 
WORKING-STORAGE SECTION. 
01 PNAME PIC X(S) 
E? 

In this example the contents of lines 10, 11, and 12 are 
listed at the terminal. 

To print the contents of the entire current buffer, use the 
special character $ as the end-of-f ile character. When the $ 
follows the comma in line number addressing, all lines from the 
.initial value to the end of the f ile are affected. For example, 
if the addresses 7,$ are specified with the P directive, line 7 
through the end of f ile is listed. The following example shows a 
use of the $ with the P directive. 

E?IJ8JI 
IDENTIFICATION DIVISION. 
AUTHOR. NAME. 
OTHER LINES 
STOP RUN. LAST LINE 
E? 

The entry shown in this example tells the Line Editor to start 
with line 1 and list to the end of f ile (the last entry made in 
Input mode) the contents of all lines. The printing of the 
contents is caused by the P directive. 

PRINTING LINE NUMBERS 

Note that when the P directive is used, only the contents of 
the line (or lines) specified is shown. To print specified con­
tents of the current buffer and display the line numbers assigned 
to each line, specify !P. 

5-112 CZlS-02 



(~ 

", C.„. 

The following example shows the use of the !P directive •. 
Notice that the only difference in the listing is that line num­
bers are displayed at the terminal with the buffer contents. 

E?~BI:,~ ·~Llfl@ 

1 IDENTIFICATION DIVISION. 
2 PROGRAM-ID. PROGNAME. 
3 AUTHOR. NAME. 

E? 

USE OF PERIOD (.) FOR CURRENT LINE 

If you use multiple line addressing and want to start with the 
current line, use the period (.) character in the first address. 

For example, your current line is 10 and you want to print 
through line 20. If the !P directive were used instead of the P 
directive in the following example, lines 10 through 20 would be 
listed with the f ile contents. 

E?fllll 
OBJECT-COMPUTER. HIS-SERIES-60 LEVEL 6. 
DATA DIVISION. 
OTHER LINES 
MOVE "DATUM" TO QNAME. 
E? 

CHARACTER STRING ADDRESSING 

The Line Editor can also address a line (or lines) by 
contents. 

The contents, called a character string, are expressed using 
two delimiters. Delimiters are slashes (/) that precede and fol­
low the designated search string. For example, the slashes in the 
expression /ABC/ delimit the string ABC. The two slashes are the 
delimiters, and the characters between are the string that is 
searched for. The search begins with the line following the cur­
rent line, continues to the end of the f ile, and then starts with 
line 1 and searches to the current line. When the Line Editor 
finds a line containing the specif ied string it executes any 
directive specified with the search string and positions the 
current line pointer to that line. 

In the following example, enter PROGRAM-ID as a character 
string with delimiters, with the P directive. As a result, the 
line containing PROGRAM-ID is printed, revealing that the internal 
name of the program is PROGl. If the !P directive were used, the 
line number would have been printed with the line contents. 

E?•lllllllllll 
PROGRAM-ID. PROGl 
E? 

5-113 CZlS-02 



The search f or the contents ends when the first line that 
contains the specif ied character anywhere in that line is found. 
The current line pointer is then positioned at that line. If no 
match is made with the search string, the current line pointer is 
positioned at the line that was the current line before the 
directive was executed. Also, if there is no character string 
match, the message SEARCH FAILED is displayed at the terminal. 

Selective Specif ication of Character Strings 

To be more selective when specifying search characters, make 
the string within the delimiters more specif ic. For example, you 
may want to print the line number and the contents of a line that 
contains the character X. Suppose there are two lines that con­
tain X. One contains P!C X(S} and another PIC X(lO). To specify 
the f irst, you designate the search string so that the Line Editor 
can determine that you want the line that contains PIC X(S}. You 
could specify PIC X(S} as the character string. Or, you could 
specify only that portion of the string that distinguishes it from 
all other strings in the file. The string X(S would be 
sufficient. If you enter /X(S/!P at the terminal, the only line 
that qualifies for printing is PIC X(S). 

In the example, only DATA DIVISION is printed because others, 
like PROCEDURE DIVISION, do not fit the search characteristics. 

E. 
11 DATA DIVISION. 
E? 

Specifying Initial Character String 

The Line Editor can also be told to searcn for a line 
beginning with a character string. This is done by preceding the 
character string with a circumflex (A). For example, assume that 
the specif ied character string TAG must occur as the f irst 
characters on a line. The following example shows specif ication 
of this search string: 

In this example the use of the circumflex (A) specifies the 
character string TAG must occur as the f irst three characters of 
the line searched for. The !P directive is used to print line 
contents with the line number. 

Specifying a Character String Ending a Line 

A string occurring as the last character(s} on a line can be 
specif ied as a search string. You specify this with the $ char­
acter. To specify that you want to find the line that ends with 
the characters FILE, use the search string: /FILE$/. 

5-114 CZlS-02 



(·-. 

C\ 
' 

The f ollowing example shows the use of the $ character to 
specify the FILE ending character string with the !P directive. 
The result is the terminal listing of FD INFILE with the line 
number 32. 

E. 
32 FD INFILE 
E? 

Remember that the results of the directive shown in the pre­
vious example- are dependent upon the location of the current 
line. If the current line was after line 32 in the buffer (at the 
time of executicn of the directive in the previous example}, the 
terminal display might contain a different line number and 
contents, such as FD OUTFILE. Therefore, it is important to know 
the location of the current line when you initiate a character 
string search. 

As shown in the addressing methods, certain characters repre­
sent special or control characters. The circumflex (A} is used to 
specify a line beginning with a specif ied string. The $ is used 
to specify a string ending a line when it is used in a search for 
line contents. The dollar sign ($} is also used to specify the 
end of f ile when it is entered as the second address to designate 
multiple lines as in this example. The period (.}, when used in 
line number specification, represents the current line.· It has 
another use--single character substitutions. 

Specifying a Single Character Substitution In Search Strings 

When a period (.) is used in a character string search, it 
takes on a special meaning. When a period is used in a search 
string such as /A.C/ it means that any character can be 
substituted between the characters A and C. This means that ABC 
f its the search, as does AlC or AZC. 

In the following example, EDB is the f irst search match, so 
line 10 is printed. 

X'FFFF' 
E? 

Use Of Escape Characters 

It is possible that any of the special addressing characters 
($, !, or A}, are part of the data tobe searched for. The pre­
ceding example contains such an example in the display of line 10. 

To distinguish between a special character as data and a 
special character used to affect a search string, escape char­
acters are used. For example, to specify that the character has 
its data meaning and not search meaning, !C escape characters are 
used. 

5-115 CZlS-02 



The escape characters remove the search meaning f rom the next 
character. For example, the search string /Al!C$/ contains !C, 
which removes the search meaning from the $. The Line Editor 
searches for three characters designated as Al$ rather than Al at 
the end of a line. The following example shows another use of the 
escape characters. 

IDENTIFICATION DIVISION. 
E? 

In this example, !C precedes the period so that IDENTIFICATION 
DIVISION. is found. Also, the $ symbol ensures that ION. occurs 
in the last four characters of the line that is found and listed. 

Saving File Contents 

All of the work done building a f ile in the current buffer is 
destroyed when you quit the Line Editor. The current buffer is a 
temporary working f ile. The contents of the current buffer must 
be stored in a permanent f ile if the buffer contents are to be 
saved after you quit the Line Editor. 

If you are building a new f ile in the current buffer, you need 
to create a new permanent f ile to accept the contents of the 
current buffer. A new f ile can be created using the CR command at 
the command level before you call in the Line Editor. The current 
buffer contents can be copied into the previously created f ile. 
If the f ile you want to create is to be a sequential file, you can 
create that f ile at the sarne time that you copy current buffer 
contents by using the W directive. 

As shown in the following example, a COBOL source program has 
been built in the current buffer. The file (source program) is 
saved to a permanent f ile called COBOLP.C. The f ile named 
COBOLP.C did not exist before the W directive was entered. When 
the W directive is entered, the f ile named COBOLP.C is created as 
a sequential file immediately subordinate to the working direc­
tory (however, a full or relative pathname could have been used). 
After the W directive creates the file, the same directive copies 
the contents of the current buff er to the designated permanent 
f ile, which is COBOLP.C in this case. 

Two other situations exist in which you may want to save the 
current buffer contents to a permanent f ile. One situation was 
already mentioned. The f ile may exist before the W directive is 
used because the f ile was created using the CR command. Another 
situation is when you want to replace the contents of a f ile with 
the contents of the current buffer, as in the case of making 
modif ications to a program. In either case, the W directive 
stores the contents of the current buffer in the designated f ile. 

5-116 CZlS-02 



( '··. 1 

/ 

In the case of the f ile that was created using the ·CR com­
mand, the contents of the current buffer are copied into the 
existing permanent f ile. In the case of the permanent f ile that 
exists and contains a previously stored program or data, the old 
f ile contents are replaced by the contents of the current buffer. 
The format for copying the current f ile contents to the existing 
permanent f ile is the same as the one shown in the preceding 
example. Just be sure to designate the correct pathname for the 
existing permanent f ile that is to contain the current buffer 
file. 

After preserving the contents of the new file you can quit the 
Line Editor, return to command level, and perhaps compile the 
program, if this is a source program. Remember, if you did not 
write the buffer f ile to a permanent f i1e prior to quitting the 
Line Editor, all data from the editing session is lost. 

Reading File Contents 

This subsection describes the procedures used to modify the 
contents of a new f ile, or to modify a source or data f ile already 
in existence. 

Invoke the Line Editor and be sure you are working in Edit 
mode. 

If you want to modify the contents of an existing f ile, you 
must copy that f ile into the current buffer before you can use the 
file modification techniques •. 

If the f ile to be modif ied exists as a permanent f ile, you 
must copy the file contents into the Line Editor's current 
buffer. This is done with the Read (R) directive followed by the 
pathname of the file to be altered. 

Note that in the following example, a full pathname is speci­
fied. You can use any of the pathname variations allowed. 

The R directive is a read and append directive. That is, the 
contents of the f ile read are appended to the contents of the 
current buffer. If you want the contents of the file being read 
as the only data in the current buffer, first delete the contents 
of the current buffer and then perform the read. If the Line 
Editor was just invoked, the sequence is: 

5-117 CZlS-02 



Oeleting Lines In Current Buffer 

The 
buffer. 
deleted 
use the 

O directive is used to delete lines f rom the current 
To delete lines, specify the line (or lines) to be 

followed by the Oelete directive (O). To delete one line, 
line number followed by o, as shown: 

To delete·the contents of the current line specify just the 
directive o, as shown: 

E?I 
E? 

OELETING MULTIPLE LINES 

To delete multiple lines in sequence, specify the line num­
bers separated by a comma and followed by the o directive. 

In the following example, s,100 causes lines 5 through 10 to 
be deleted from the current buffer: 

OELETING ALL LINES IN CURRENT BUFFER 

To delete all lines in the current buffer, use the character $ 
as the second address and line 1 as the f irst address. 

The following example shows the directive sequence (l,$0). 
This directive sequence is used to delete or clear the contents of 
the current buffer for the use of the R directive explained under 
nReading File Contents.n There are times when you do not want to 
clear the current buffer before using the R directive; these 
instances are covered later in this section. Usually, however, 
you do want a clean current buf fer before you read a permanent 
file into it. 

The f ollowing example shows a typical clear-and-read 
sequence. The l,$D directive clears the current buffer. Then the 
f ile named COBTEST, immediately subordinate to the working 
directory, is read into the current buffer. 

5...;11a CZlS-02 

;'""" '\ 

~-/ 



.( 
AVOIDING POST-DELETION PROBLEMS 

In the preceding examples, the use of line numbers to specify 
lines to be deleted was shown. After the line is deleted any 
remaining lines following the deleted line are automatically 
renumbered. This can cause problems in the deletion or rnodifica­
tion of remaining lines. 

For example, if you delete line 10, what was line 11 is now 
line 10 and line 12 is now line 11 and so on through the end of 
the file. If your next directive affects old line 15, you rnust 
rernernber that it is now line 14. 

Exarnple 2 shows the results of deleting lines 2 and 3 frorn the 
current buffer file shown in Exarnple 1. Note that line 4 
(containing the PROGRAM-ID) becornes line 2. All subsequent line 
numbers are affected in the sarne way. Notice that line nurnbers 
before the deleted line(s) are not affected; the line number for 
the IDENTIFICATION DIVISION Statement in this case does not 
change. 

Exarnple 1: 

E ?l!iliili1litl; 
1 IDENTIFICATION DIVISION. 
2 ****NOTE: MAKE SURE THAT YOU CONFIRM INSTALLATION,***** 
3 ****AND SECURITY BEFORE COMPLETING PROGRAM*********** 
4 PROG RAM- ID. COURSE:. 
5 AUTHOR. AMY SMITH. 
6 INSTALLATION. LOMPOC, CA. 
7 DATE WRITTEN, 05181 
8 SECURITY. NONE. 
9 ENVIRONMENT DIVISION. 
10 CONFIGURATION SECTION. 
11 SOURCE-COMPUTER. HIS-SERIES-60 LEVEL-6. 
12 OBJECT-COMPUTER. HIS-SERIES-60 LEVEL-6. 
E? 

Exarnple 2: 

E. 
E. 
1 IDENTIFICATION DIVISION. 
2 PROGRAM-ID. COURSE. 
3 AUTHOR. AMY SMITH. 
4 INSTALLATION. LOMPOC, CA. 
5 DATE-WRITTEN. 05181 
6 SECURITY. NONE. 
7 ENVIRONMENT DIVISION. 
8 CONFIGURATION SECTION. 
9 SOURCE-COMPUTER. HIS-SERIES-60 LEVEL-6. 
10 OBJECT-COMPUTER. HIS-SERIES-60 LEVEL-6. 
E? 

5-119 CZ15-02 



ADDING AND DELETING LINES 

To avoid confusion when adding or deleting lines, use one of 
the following methods. The f irst is to delete or add lines 
starting with the line nearest the end of f ile. For example, you 
must delete lines 10, 15, and 20 in a buffer containing 25 lines. 
If you start with line 20 first, lines 10 and 15 are unaffected 
because only the lines following 20 are renumbered. Then line 15 
should be deleted so that line 10 is not affected by the change. 
Finally, line 10 should be deleted. 

The second method is to delete by contents of a line. For 
example, you know that only the line containing STOP RUN is to be 
deleted. So, you specify a search for the line by its contents 
with the D directive. 

The following example shows how a line can be deleted, 
regardless of its line number. Naturally, any number of lines can 
be deleted using this method, but a separate D directive must be 
used f or each line to be deleted. 

E ?l\ifll(l!llflllli 
E? 

Due to automatic resequencing of line numbers after line 
additions or deletions, it is helpful to list the f ile to deter­
mine the new line numbers bef ore you attempt any subsequent modi­
f ications by line number. 

Changing Line Contents 

To change the contents of a line, use the Change (C) directive 
or the Substitute (S) directive. The C directive allows you to 
change the entire contents of a line. This directive is 
considered an input mode directive. After executing the C 
directive the Line Editor is in input mode. This requires that 
you execute the !F directive to exit input mode. 

In the following example, the entire new line had to be 
entered. You cannot use the C directive to change just portions 
of a line. Also, the use of the !F directive at the end of the 
entry causes the Line Editor to return to edit mode. 

E ?1llilf\I! 
10 MOM'S APPLE PIE. 
E ?lliflillll,lll1llllrlllll![l!llllllll~l!~lilill' 
E? 

CHANGING CHARACTER STRINGS WITHIN A LINE 

To change portions of a line, 
tive. The S directive allows you 
string for another within a line. 
directive. 

use the Substitute (S) direc­
to substitute one character 

The S directive is an edit mode 

5-120 CZlS-02 



(( 

C. 
' 

To make a substitution, enter a line number, an s, a delim­
iter, the character string to search for, a delimiter, the sub­
stitute string, and a final delimiter. 

To substitute a new character string for a specified char­
acter string on line S, you could use this method: 

E?lll 
5 PROGRAMMER-ID. ROGER. 
E?S-
E? 

In this method all occurrences in the line of the character 
string ROGER would be replaced by the character string GARY. This 
means that if ROGER occurs three times on line s, three sub­
stitutions are performed. 

To specify that only one occurrence of a character string is 
to be altered, you must be more specific in the search character 
string. For example, the word ROGER occurs only once in the line 
shown in the preceding example. If ROGER occurs twice in the 
affected line and you want to change only the f irst occurrence to 
GARY, the search character string must be made more specific. 
This is described in the earlier section, "Selective Specif ication 
of Character Strings." 

CHANGING ALL OCCURRENCES OF A STRING 

The Line Editor can be told to search one line, multiple 
lines, or all lines for a specified character string and to 
substitute all occurrences of that string for the new string. 

In the f ollowing example, all occurrences of IONFILE in the 
current buffer are changed to INFILE: 

Techniques for substituting, printing, and deleting all 
occurrences of a specified string are discussed below. These 
techniques for affecting all occurrences of a string can be help­
ful in program modif ication. 

For example, a program that already exists might be almost 
perfect to meet a new data processing need, but the record or 
field names are wrong. With a single directive, all occurrences 
of the unwanted record name or identif ier can be changed to the 
necessary entry. 

SUBSTITUTING INITIAL AND CONCLUDING STRINGS 

As explained previously, the circumflex (A) and dollar sign 
($) can be used in an address search. Those same rules apply 
here. To specify a character string that begins a line, use the A 

character. 

5-121 CZlS-02 



The following example shows a directive used to substitut.e the 
character string PROGRAM for the occurrence of PRGRAM at the .\. 
beginning of line 3. PROGRAM replaces PRGRAM as the initial 
character string. To affect a string that ends the line, use the 
$ character. 

The next example shows the concluding character string OUTFILD 
at the end of-line 7 is replaced by the string OUTFILE., through 
the s directive. Of course, it is possible to replace all 
occurrences of an initial or concluding string with a specified 
character string. 

E. 
E? 

In the f ollowing example, starting with line l through the end 
of the f ile, all occurrences of the # at the beginning of a line 
are replaced by seven spaces. 

The technique shown in this example is commonly used in edit­
ing source programs that by convention have coding statements 
beginning in specif ic columns of a line. Column 7 in FORTRAN and 
columns 8 and 12 in COBOL are examples of columns that are speci­
f ied for coding purposes. For example, all statements that should 
start in column 8 might begin with a i character. As a result of 
the use of the directive in the example, all of those statements 
now begin in column 8 because of the preceding seven spaces. 

DELETING CHARACTER STRINGS 

If you have entered a character string and later find that you 
do not need it, you can delete that string using the substitute 
directive. To delete a character string specify the substitution 
f ield as blank. 

In the following example, the substitution field is specified 
as //. This informs the Line Editor that there is no replacement 
string. Therefore, the string specif ied in the search f ield 
(DATA) in line 20 is to be deleted. 

~~-

5-122 CZlS-02 

/„,.--" ....... ,,/ 

\...._ _ _c,) 



i (:·~ ... , ; < 

1 ' ...___, ,.-

APPENDING A NEW STRING TO AN EXISTING STRING 

Expanding a character string on a line (or lines) can be done 
with the ampersand (&). The position of the & dictates where the 
new character string occurs in the new line. For example, the 
character string L6 is online 23, and that character string 
should be LEVEL-6. The following example shows how the use of &, 
by its position, changes the line in the correct location. 

E?-
23 HIS-SERIES-60 L6. 
E 
E. 
23 OBJECT-COMPUTER. HIS-SERIES-60 LEVEL-6. 
E? 

The substitution causes the L in L6 to be followed immedi­
ately by EVEL-. The result is LEVEL-6. Notice that there are no 
spaces between delimiters and strings or between special char­
acters (such as & or A) and the strings. It is important to 
define the search strings and the modification strings accu­
rately, or the result will be incorrect. 

The escape characters (!C) cause an editing character to have 
no meaning to the Line Editor. For example, if the character & is 
to be used as a nonediting character in the second field of a Line 
Editor directive, the & should be preceded by the !C escape 
chara~ters. Such an example would occur if you want to change the 
string $ION to &ION. The line entry would be S/1C$ION/!C&ION/. 

ADDING LINES TO THE CURRENT BUFFER 

To add a new line to your current buffer, use either the 
Append (A) directive or the Insert (I) directive. 

Inserting Lines 

Using the I directive you can insert a line (or lines) before 
the line specified in the address. To insert a line of code pre­
ceding line 15, enter lSI. 

The results of the directives shown in the following example 
are a new line 15 and all subsequent line numbers incremented 
by 1. The old line 15 becomes line 16, and so forth. 

Notice in this example that the E? prompt is displayed af ter 
you press the carriage return. In this case, because the !F 
directive follows the entry of the new line, the E? prompt sig­
nals that the Line Editor is ready to work in edit mode. If the 
!F directive were not entered, the I? prompt would be a request 
for another line of input. Remember, the I directive causes the 
Line Editor to work in input mode. 

5-123 CZlS-02 



Two lines are inserted in the f ile in the current buffer in 
the next example. The first line added becomes line 15 because of 
the 15I directive. The I? prompt requests another line of input. 
The RBN-STATUS line is entered. It becomes line 16. The I? 
prompt requests another line of input. The !F response causes a 
switch to edit mode. 

E? 

Remember, because lines 15 and 16 are inserted as new lines, 
the old line 15 becomes line 17 and all subsequent line numbers 
are incremented by 2. 

Appending Lines 

To append a new line to any point in a f ile, the A (Append) 
directive is used. Append adds a new line f ollowing the number 
specif ied. 

The example below shows the use of the Append directive. This 
directive creates a new line 16 and all subsequent lines are 
renumbered. The new line follows line 15. The A directive allows 
you to add more than one line. If the !F directive was not used 
in this example, the Line Editor would be expecting you to enter 
another new line that would be line 17. 

E 
E? 

Note that after the A directive, the !F directive is needed to 
exit input mode. 

Global Directives 

Searching for lines that need to be modif ied or listed can be 
simplified by using the Global directive. The Global directive 
(G) works only with the following directives: P, !P, D, and =. 

With the Global directive only the lines that contain the 
specif ied character string have the directive P, !P, D, or = 
applied to them. 

GLOBAL DELETE 

Global Delete (GD) is used to remove a character string 
throughout a f ile. To issue a Global Delete, type the directive G 
f ollowed by D, followed by the character string to search for in 
delimiters. The following example shows a Global Delete. 

E 
E 

5-124 CZ15-02 



c 

In this·example, no line numbers are specified. Line numbers 
can be specif ied, but when they are absent, the directive defaults 
to start at line l and works to the end of the f ile. If line 
numbers are specif ied, only those lines specif ied are affected by 
the delete. For example, the entry l,lSGD/DATA/ removes all lines 
containing the string DATA from lines l through 15. 

GLOBAL PRINT 

To print only lines that contain certain characters, specify 
the GP or G!P directive. 

The GP directive prints just the contents of the lines that 
contain the character string and the G!P directive prints the 
contents and the line numbers associated with those contents. 

The f ollowing example shows the terminal entry requesting the 
line number for each of the four COBOL divisions for a program 
that is in the current buffer. The G directive with the !P 
directive and the SION search directive is entered. The SION has 
been used as the search string because it is common to all four 
COBOL program divisions. 

E?lfllfllfrlf 
3 IDENTIFICATION DIVISION. 
7 ENVIRONMENT DIVISION. 

10 DATA DIVISION. 
21 PROCEDURE DIVISION. 
E? 

The next example shows the G and = directives with the same 
search and current buffer f ile used in the previous example. Note 
that only line numbers are printed. 

E?\llflllm 
3 
7 

10 
21 
E? 

Current and Auxiliary Buffers 

Thus far, changes have been made to a permanent file through 
the use of the current buffer. In addition to the current buffer, 
there are f ive auxiliary buffers available to assist in 
manipulation of f ile contents. 

For example, to repeat lines of coding in a program, to move 
lines of coding from one location in a f ile to another location, 
or to build a new file from coding lines of other f iles, auxiliary 
buffers are used. 

5-125 CZ15-02 



REPEATING LINES IN A FILE 

There are a number of f ile-building and file-modif ication 
f unctions that can be carried out through buffer management. The 
current buffer and up to five auxiliary buffers assist in creat­
ing or modifying f ile contents. The auxiliary buffers can have 
alphabetic or numeric names. The examples shown below use single 
number names. 

The next two examples illustrate buffer manipulation used to 
repeat lines -in a f ile. The directives used in the manipulation 
of current and auxiliary buffers are the K and !B directives. K 
and !B are used for copying lines to a specif ied auxiliary buffer 
and for fetching lines from a specified auxiliary buffer. 

The f ollowing example shows how the current buffer and an 
auxiliary buffer can be used to repeat lines of a f ile at the end 
of the f ile. The program stored in the file named COBPRG.C is 
read into the current buffer, and lines 50 through 63 are copied 
to an auxiliary buffer named 1, through the Kl directive. If any 
lines exist in the auxiliary buffer at the time that the K direct­
ive is used to copy new lines to that buffer, the old lines in the 
buffer are deleted before the new lines are copied to that buffer. 

RDY: 

E? 

After the copy is completed, the lines in buffer 1 are 
appended to the end of the f ile in the current buffer. The $A 
directive causes lines to be appended to the end of the f ile. The 
!Bl directive causes the lines in buffer 1 to be fetched for 
appending. The !F directive is used to change to edit mode (after 
the A directive is used). Then the w directive causes the current 
buffer contents to be copied to the f ile named COBPRG.C to replace 
the old contents in that f ile. Finally, the contents of the 
current buffer are deleted with the D directive to allow a new 
f ile to be read into the current buffer. If no more editing is to 
be done, the current buffer contents do not have to be deleted. 
The Q directive would be sufficient to quit the Line Editor. 

The next example demonstrates two editing concepts important 
to buffer manipulation--how to repeat lines within a f ile and how 
to use a different auxiliary buffer to save the contents in an 
existing auxiliary buffer. 

5-126 CZlS-02 



, 
' 0-

A f ile narned CFILE.C is read into the current buffer, and 
lines 9 through 17 are copied to an auxiliary buffer named 2. If 
there are lines in another auxiliary buffer, such as buffer 1, the 
copying of lines to buffer 2 allows the lines to remain in buffer 
1. The lines in buffer 2 are then appended to line 45 in the 
current buffer (through the 45A directive) • The !B2 directive 
causes those lines to be fetched from buffer 2. Again the !F 
directive causes a return to edit mode. Finally, the changes must 
be made to the f ile narned CFILE.C through the W directive. 

MOVING LINES IN A FILE 

The next example shows moving lines within a f ile. The f irst 
situation involves moving lines to a location near the end of the 
f ile. 

The following example shows how lines 8 through 12 in a f ile 
can be moved to follow line 27. A file named FILEN is read into 
the current buffer. Lines 8 through 12 are copied to buffer 1. 
Then the lines are appended to line 27 in the f ile. Because the 
lines in the original location remain, they must be removed 
through the D directive. Then the current f ile contents are 
written back to FILEN. The current buffer contents are deleted to 
allow for additional editing of a different f ile. 

RDY: 

When lines are moved to a location closer to the beginning of 
the f ile than their current location, the deletion of the old 
lines after the move presents a different problem. 

The next example shows the steps taken to move lines 21 
through 37 of a f ile to the beginning of the file. The file named 
RNGT is read into the current buffer, lines 21 through 37 are 
copied to buffer 1, and lines 21 through 37 in the current buffer 
are deleted. 

The I directive is used to insert the contents of buffer 1 
before line 1 of the f ile. The file is listed. The current 
buffer is written to RNGT. 

5-127 CZ15-02 



The Line Editor keeps track of the actual line numbers of the 
lines in a buffer. You can add, delete, or rearrange lines and 
the Line Editor automatically renumbers to keep the count correct. 

f ile Is listed 

Sometimes a new program must be created and it contains logic 
elements that are similar to elements in one or more existing 
programs. In this case, you can call an existing program into the 
current buffer, delete the unnecessary coding from the current 
buffer, and build a new file around the useful coding. At other 
times, you may want to call portions of different programs into 
the current buf f er and use those portions as a basis f or building 
a new program. These Editor and buffer techniques can save 
program development time. 

The f ollowing example shows how two programs can be used f or 
developing a single new program. In this example only two buffers 
are used. It should be noted that all f ive can be used. 
Additionally, if necessary, the entire contents of the current 
buffer can be copied to an auxiliary buffer as different portions 
of the program are developed. This example shows the steps that 
can be used to develop the program from two existing programs. 

Read in ABPRG.C. 
Copy lines 1 through 8 to buffer 1. 
Copy lines 59 through 67 to buffer 2. 
Delete contents of current buffer. 
Read in GGPRG22.C. 
Delete lines 29 through 32. 
Delete lines 26 and 27. 
Delete lines 1 through 12. 
List file with line numbers. 

listing is produced 

E?' 
E? 
E? 

Append contents of buffer 2 after line 5. 
Insert contents of buffer 1 before line 1. 
List f ile with line numbers. 

listing is produced 

Write to a permanent file. 

5-128 CZ15-02 



The lines are deleted from the end of the file (29~320} toward 
the beginning of the file (1,120). The next step shown in this 
example is the listing of the current buffer at the terminal. 
This listing indicates line numbers f or the insertion of lines 
f rom the two auxiliary buffers. The lines in buffer 2 are 
appended to line 5 of the current buffer (5A!B2!F). If the lines 
from buffer 1 were inserted at the beginning of the f ile, the line 
numbers in the current buffer would change. Then you would have 
to list the contents of the current buffer again to see where the 
iines f rom buffer 2 should be appended. After the lines f rom 
buffer 2 are appended to line 5, the lines from buffer 1 can be 
inserted before line 1 of the current buffer. 

To make sure that the current buffer contains all the lines in 
the proper sequence, list the f ile contents again. Then you can 
write the current buffer contents to a permanent f ile or con­
tinue working on the current buffer contents to create a pro­
gram. The contents of the current buffer are saved to a perma­
nent f ile named NEWP.C. 

BUFFER STATUS 

The X directive is used to determine buffer size or current 
buffer status. Buffer status can be checked at any time during the 
editing process. The following example shows the use of the X 
directive: 

E?I 
15->(0)AVOLlO>EOMOO>COBPRG.C 
E? . 

The example indicates that there are 15 lines in buffer O. 
The second f ield of the display information is an arrow pointing 
to the buffer that is the current buffer. In this example, only 
one buffer is shown; the following example shows two buffers. 

E?I 
15->(0)AVOLlO>EDMOO>COBPRG.C 
8 (1) 
E? 

This example indicates that there are two buffers; one with 15 
lines and one with 8 lines. The buffer pointer is pointing at 
buffer O, the current buffer. 

If you were to add, delete, change, or substitute lines in the 
current buffer, MOD would appear, as shown: 

E?~. 
15 MOD->(O)AVOLlO>EDMOD>COBPRG.C 
8 ( 1) 
E? 

5-129 CZ15-02 



The next f ield is the buffer name in parentheses. The name 
for the ~irst is 0 (the default current buffer) , which was cre­
ated when the Editor was invoked. The second is 1, which was 
created when data was moved into it. 

The final field in the buffer status is the absolute pathname 
used in the last read or write operation involving that buffer. 
Notice in the preceding examples that the f ile with the absolute 
pathname AVOLlO>EDMOD>COBPRG.C has been read into the current 
buffer. 

SAVING MODIFIED BUFFER CONTENTS 

The following example shows part of a terminal session where a 
f ile has been modified using the Line Editor. You attempt to quit 
the Line Editor with the Q directive. Because you have not saved 
the current buffer contents with the W directive, the system 
displays the QUIT DEFERRED message. This message indicates that 
modif ications have been made to the current buffer but the current 
buf fer contents have not been saved. 

E?I 
MODIFIED BUFFERS EXIST, QUIT DEFERRED 
E. 
E. 
RD : 

In this case, you respond to the message with the entry W 
TESTFL and to the E? prompt with the Q directive to return to the 
command level of processing. If you responded to the QUIT 
DEFERRED message with the Q directive, the system would have 
accepted the directive, the current buffer contents would have 
been destroyed, and processing returned to command level. 

Using System Commands in the Editor 

The Execute directive (E) allows you to use system commands 
while you are working with the Line Editor. 

The Line Editor must be in edit mode. Then an E followed by 
any system command causes the Line Editor to pass that command to 
the Command Processor. After executing that command, the system 
returns control to the Line Editor. 

WRITING TO LINE PRINTER 

To write the contents of the current buffer to the line 
printer, first reserve the line printer as the user output f ile. 
This is done with the FO command explained earlier. The following 
example shows the commands used to reserve a line printer. 

5-130 CZlS-02 



.. c~ 

After executing the command shown in the ex·ample, ·the Line 
Editor sends all output that would go to the screen (except for 
the ready display and errors) to the line printer. To get hard 
copy of the current buffer, type the directive line that prints 
the entire contents of the buffer. 

The next example shows that once user output is directed to a 
printer, any variation of the P directive causes printing to take 
place at the printer. In this case, the entire file (!,$) is 
printed with line numbers (!P). 

After printing the contents of the current buffer on the line 
printer, to change output back to the terminal (or default 
device), enter the FO command with no pathname. 

The following example shows the Execute (E) directive is nec­
essary to execute the FO command while the Line Editor is invoked. 

DATE AND TIME 

When the lines of the current buffer are listed on the line 
printer they are printed as is. There is no date or time dis­
played with the printing. Sometimes it is helpful or important to 
know when a listing of a f ile was made, particularly when various 
updates of f iles must be compared. 

To display a date and time heading with your listing on the 
line printer, use the system command TIME after directing output 
to the line printer. 

TIME is a system command. Therefore, the Execute (E) direc­
tive must be entered too. 

The directive line E TIME causes the system date and time to 
be displayed on the output device. This display becomes a header 
for the f ile listing that follows. For example, as a result of 
the following entries, the entire contents of the current buffer 
are listed at printer LPTOO with a date and time header • 

5-131 CZlS-02 



IMPORTANT CONSIDERATIONS 

When using the Execute (E) directive you can execute any sys­
tem command. However, if the E directive is omitted, certain 
problems can occur. For example, if the E directive is not used, 
the Line Editor does not pass the entry to the Command Processor. 
As a result, the Line Editor tries to execute the entry as a Line 
Editor directive. For this reason, accidentally entering a 
command to the Line Editor without the E directive can cause 
problems. Accidentally entering a command that begins with any of 
the following characters can be particularly problematical: w, 
LW, D, I, c, and A. 

For example, an entry beginning with a C changes line 
contents. An I or an A causes additions to a current buffer 
f ile. A w copies the current buffer ccntents to a permanent 
f ile. Therefore, using the E directive is important. 

For instance, if LWD is entered without the preceding E, the 
Line Editor causes a line feed and writes the contents of the 
current buffer to a f ile called D under the working directory. 
The correct way to enter the LWD command is shown in the example: 

E?!ll!!lll 
"VOL3>DIR23 
E? 

5-132 CZlS-02 



( 

( 

REMOVE THIS PAGE AND PLACE TAB FOR 

TAB 6 

LINKER 





Section 6 
LINKER 

This section describes Linker functions and the Linker 
directive set. Procedural information on using Linker directives 
to create a bound unit is also included in this section. 

LINKER FUNCTIONS 

The Linker combines object units created by the language pro­
cessors (compilers and the Assembler) into a bound unit that you 
can then execute. During a single execution of the Linker, a 
single bound unit is created. A bound unit contains a root or a 
root with one or more overlays. 

The Linker functions are: 

• CREATE A BOUND UNIT--A bound unit is the output file that 
results from Linker execution. The bound unit is an 
executable program. 

• BUILD A SYMBOL TABLE--During the linking process, the 
Linker builds an internal symbol table used for resolving 
external references (i.e., references within an object 
unit to locations or values outside that object unit) • 
You can def ine a symbol within an object unit or by using 
Linker directives described later in this section. 

6-1 
09/86 
CZ15-02A 



e PRODUCE A LISTING--The Linker listing has two parts; a 
dynamic part and a static part. 

- The dynamic part is generated continuously and contains 
information about each object unit linked, the 
directives used, and a summary. 

- The static part is produced in response to one of the 
MAP directives ( MAP, MAPD, or MAPU) and is a picture of 
the state of the link when the directive is 
processed. It lists the external def initions 
currently in the symbol table and the unresolved 
references to external symbols, if any exist. 

At the end of the link process, summary information about 
the bound unit is automatically output to a list f ile. 
The· format of this information is as follows. 

LINK SUMMARY 

Al! values are in hex 

Load Unit Description: 

Name Number Attributes 

DF 
R 

*DATA 
JANlO· 

**FIRST 0 0 

Key to Attributes: 

Base 

EOOOO 
20000 
2003A 

Start 

00000 
20028 
20053 

Size Access 

OOOCB 000 
0003A 000 
00028 000 

R•Root; D=Data; O•Fixed overlay; F•Floating overlay 
U•Contains unresolved references; I•Contains IMAs 

Bound Unit Description: 

Linked for BMMU 
Size of fixed area: 65 
Number of overlays; Fixed: l, Floating: l, Total: 2 
Oninitialized data area; Size: es, Initialization value: 00000000 
Bouna unit record; size: 100, count: 2 

LINK DONE 

e RESOLVE EXTERNAL REFERENCES--The Linker resolves 
external references in object units being linked. To do 
this, the Linker uses external def initions found in 
object units or declared by LDEF, VDEF, or VAL 
directives. (These directives are described later in 
this section.) When a bound unit is linked, any 
unresolved external references are listed at the end of 
the link map. If unresolved external references exist 
at the end of the Linker run, an error message is 
displayed on the error-out f ile (usually the terminal) • 

*This line appears only if common has been gathered into one 
contiguous area. The -R control argument was specified in the 
Linker command line. 

**This line repeated for each overlay. 

6-2 
09/86 
CZ15-02A 



( 

(~ 

LINKER DIRECTIVE CATEGORIES 

The Linker directive set can be grouped into the functional 
categories described in the following paragraphs. 

Specifying Object Unit(s) to be Linked 

LINK, LINKN, LINKnn, and LINKO designate that one or rnore 
specif ied object units are to be linked. Object units specif ied 
in LINK directives are not linked irnrnediately; their narnes are 
put into a link request list. Linking begins when the Linker 
f inds a directive that requires all preceding link requests to be 
honored. Specified object units in the prirnary input ditectory 
are linked before specif ied object units in the secondary input 
directory; within each directory, the object units are linked in 
the order in which they were requested. 

LINKN causes the Linker to link object units already narned in 
the link request list, and then to link object units specified in 
the LINKN directive in the order in which they were requested. 

LINKO perforrns in the sarne rnanner as LINKN, except that all 
ernbedded directives in the narned object unit(s) are ignored by 
the Linker. LINKnn is a special form of LINKN used to perforrn 
selective linking. 

Specifying Location(s) of Object Unit(s) to be Linked 

Object units to be linked rnust be in at least one directory. 
The Linker searches the prirnary directory first, then searches 
other directories if they have been specified by directives 
described below. When the Linker is loaded into rnernory, the 
prirnary directory is the working directory. The directives used 
to specify location(s) of object unit(s) to be linked are listed 
below. 

• IN is used to designate a directory other than the working 
directory as the prirnary directory. 

• LIB is used to designate a directory as the second 
directory to be searched. 

• LIB2 is used to designate the 
searched. 

• LIB3 is used to designate the 
searched. 

• LIB4 is used to designate the 
searched. 

• LSR is used to request a list 
order in which they are to be 

6-3 

third directory to be 

fourth directory to be 

f ifth directory to 

of the directories 
searched. 

be 

in the 

09/86 
CZ15-02A 



------------------------------------------------------

Creating a Root and Optional Overlay(s) 

START is used to specify the relative address at which the 
root or overlay begins executing when it is loaded into memory. 

BASE is used to def ine a relative address (within 
unit) where subsequent object units are to be linked. 
once the lowest address of a root or overlay has been 
(i.e., an object unit has been linked), it is invalid 
lower BASE address within the root or overlay. 

the bound 
Note that 

established 
to def ine a 

OVLY is used to name the nonfloatable overlay that follows 
and designates the end of the preceding root or overlay. 

FLOVLY is used to name the floatable overlay that follows and 
designates the end of the preceding root or overlay. 

FSEG is used to specify a base segment number and the access 
rights for a floatable overlay. 

CC permits a COBOLA program that uses CALL and CANCEL 
statements to call overlays by their names. 

IST is used to identify the beginning of initialization code 
in the root. 

INIT2 is used to specify a 2-word initialization pattern for 
all otherwise uninitialized common blocks. This directive is 
meaningful o~ly if a bound unit is being linked with the -R 
option (separate code and data). 

SHARE is used to designate that the bound unit is shareable 
within a memory pool. 

QUIT is used to designate that the last Linker directive has 
been entered. Execution of the Linker terminates after the bound 
unit has been created. 

FLOATB6 is used to suppress certain error checking on local 
common references when the -R Linker argument has not been 
specif ied. Local common references are relocated as if B6 
pointed to the base of the containing overlay, or to base plus 
32K words if the overlay is that large. 

STACK is used to specify the size of the stack area. 

GSHARE is used to specify that the bound unit is globally 
shareable. Its root is loaded into the system memory pool. 

SEG is used to specify nondefault segment number(s) and 
access rights before linking begins. 

REPORT is used to ascertain the current segment number and 
access rights before linking begins. 

6-4 
09/86 
CZ15-02A 

--""\ 
1 

0 



( 

( 

c 

SYS is used to designate that the bound unit may be run as a 
system task. 

USER is used to designate that the bound unit must be loaded 
into the user area of memory. 

SWAPPOOL is used to designate that the bound unit must run in 
a swap pool or page pool environment. 

PAGEPOOL is used to designate that the bound unit must run in 
a page pool environment. 

PSU is used to indicate that each floatable overlay will be 
loaded into group work space (GWS) rather than being assigned to 
the segment address established for it by the Linker. 

ONECPU is used to designate that th~ bound unit and all its 
subordinate tasks must run in a single central processor 
environment. 

NOTCMD is used to designate that the bound unit cannot be 
executed as a command. 

LINK, LINKN, and LINKO are used to specify those object units 
to be linked. The order in which specified object units are 
linked, and when they are linked, is determined by the link 
directive used. 

LDEF is used to assign a relative location to an external 
symbol. When a symbol is defined, its definition is put into the 
Linker symbol table so that it can be used to resolve references 
to the symbol during linking. 

VDEF is used to assign a value to an external symbol. When a 
symbol is def ined, its definition is put into the Linker symbol 
table so that it can be used during linking to resolve external 
references. 

Producing Link Map(s) 

MAP is used to create a rnap that lists both externally 
defined syrnbols and unresolved references to external syrnbols. 

MAPU is used to create a rnap that lists only unresolved 
references to external syrnbols. 

MAPD is used to create a rnap af ter cornrnon block sizes have 
been changed to addresses. This directive is rneaningful only if 
a bound unit is being linked with the -R option (separate code 
and data). 

6-5 
09/86 
CZ15-02A 



-------------~··------------------------------

Def ining External Symbols 

A symbol can be def ined as a relative location or value by 
specifying the LDEF or VDEF directive, respectively. The 
symbol's definition is then put into the symbol table by the 
Linker. 

EDEF permits specif ic definitions in the Linker symbol table 
to be made part of the bound unit so that they are available to 
the Loader if the bound unit is loaded using an LDBU directive. 

OVERLAYTABLE is used to put a value definition containing the 
name of each overlay and its overlay number in the bound unit 
symbol table. 

COMM is used to define a·labeled common block. 

VAL is used to specify a value def inition that is equivalent 
to the difference between two external location definitions. 

Protecting or Purging Symbol(s) 

CPROT and CPURGE are used to protect and remove symbols 
associated with labeled common blocks. 

PROT and UNPROTECT are used to protect and remove protection 
of symbols and object unit names in the symbol table. PROT 
.prevents certain symbols and/or object unit names f rom being 
.removed from the symbol table. Symbols are protected if they 
identify a specif ied address or an address within a specif ied 
range; object unit names are protected if they are equated to a 
specif ied address or an address within a specif ied range. 
UNPROTECT removes the protection from one or more items in the 
symbol table. 

PURGE is used to remove f rom the symbol table unprotected 
symbols that define a specif ied address or an address within a 
specif ied range, and/or object unit names equated to a specif ied 
address or an address within a specif ied range. 

VPURGE is used to remove a specif ied value definition from 
the symbol table. 

Reloading After System Failure 

RR indicates that after a system failure a shareable bound 
unit can be reloaded into locations other than those it occupied 
at checkpoint. 

Controlling the Directive File 

The user can use the -IN argument of the LINKER command to 
specify the user-in file from which the Linker reads directives. 
Otherwise, the user-in file is normally the user's terminal. 

6-6 
09/86 
CZ15-02A 

-\ 

/,,., ..... ._,'"'\., 

1 

\___/ 



( 

( 

An INCLUDE directive causes the Linker to accept directives 
from a file specified in the directive rather than from user-in. 
When the Linker encounters a RETURN directive in the f ile 
specif ied with INCLUDE, the Linker returns to user-in. 

Terminating the Linker 

QUIT is used to terminate the Linker. If a bound unit is 
being created, execution of the Linker terminates after the bound 
unit has been created. If no bound unit is being created, QUIT 
terminates execution of the Linker. 

LOADING THE LINKER 

The command LINKER is used to load the Linker and initiate 
Linker processing. 

After the Linker is loaded, a message is sent to the 
error-out file indicating the version.· The message format is: 

LINKER-rrrr-mm/dd/hhmm 

where rrrr is a release identif ication, mm/dd is the month 
and day the Linker component was linked, and hhmm the time 
(hour, minutes) at which that link took place. 

FORMAT: 

LINKER bound-unit-path [ctl_arg] 

ARGUMENTS: 

bound-unit-path 

Pathname of the bound unit file. The pathname can be 
simple, relative, or absolute and must be preceded by 
a space. If the specif ied f ile already exists, the 
existing information in the f ile is deleted and 
replaced with the new bound unit. The bound unit 
pathname must be specif ied. It may be up to 57 
characters in length. The format of the bound unit 
file is fixed-relative. 

ctl_arg 

-IN 

Control arguments; none or any number of the 
following control arguments can be entered, in any 
order: 

path 1 -I path 

Pathname of the disk file, card reader, operator's 
terminal, or other terminal through which Linker 
directives are entered. 

6-7 
09/86 
CZ15-02A 



-PT 

When this argument is specif ied, the prompt character 
does not appear. 

If the -IN argument is not specif ied, -PT can be 
specif ied to produce a prompt character on the user 
terminal. A prompt character is issued only if -PT 
is specified. 

-COUT list-path-name 1 -COUTA list-path-name 

Name of the list file. The list f ile can be sent to 
a disk, another terminal, or a printer. The 
list-path-name is associated with this list f ile. If 
-COUT is not specif ied, the list-path-name has a 
default value of bound-unit-name.M in the working 
directory. If -COUTA is specified, the listing is 
appended to the specified f ile. 

Error messages are written to the error-out file and 
the list f ile. Linker error messages are described 
in the System Messages manual. 

-SIZE nn 1 -sz nn 

-w 

-R 

"nn" designates the size, in units of 1024 (lK) 
words, of the memory area the Linker initially gets 
for its syn~ol table. "nn" must be from 2 to 64. 
Default is 8. · 

Whenever the Linker needs more symbol table space 
during linking, it attempts to get another memory 
area of nn size. This process is repeated as often 
as necessary. 

Save the Linker work f iles. Default: Linker work 
f iles are automatically released by the Linker upon 
Linker termination. 

Create a bound unit where all data areas defined as 
common are separated from all other code. Required 
for shareable bound units containing common data 
areas. 

-NOMAP 

Suppress the list f ile. 

6-8 
09/86 
CZ15-02A 

--------. 



C~: 

Example: 

-SYMBOL 1 -SYM 

Create a debugger information f ile. This f ile is 
used for symbolic debugging. The name of the file ie 
buname.v. 

-ENV string 

This string must match a string at the beginning of a 
message library message that def ines an execution 
environment. The bound unit is linked f or the 
specif ic execution environment associated with the 
string (unless a SEG directive is used to modify the 
intended execution environment). In the absence of 
this argument, the bound unit is linked for the 
execution environment in which the Linker is 
current.ly running (again, unless a SEG directive is 
used to modify the intended execution environment) • 

Each installation is responsible for adding one or 
more environment-defining messages to the m.essage 
library if the -ENV control argument is to be used. 
The f irst (or only) environment-defining message must 
have message number 01170. If additional environ­
ment-defining messages are needed, they must be in a 
message chain that begins with message number 01170. 
Each message describes one execution environment. 

If the Linker cannot find message number 01770 or if 
it cannot find a match for "string" in the message 
chain, it continues linking the bound unit for the 
execution environment in which the Linker is 
running. The format of a message describing an 
execution environment is: 

string,argl,arg2,arg3,arg4,arg5,arg6 

For a description of the values of arg! through arg6, 
refer to the SEG directive later in this section. 

LINKER MYPROG -IN AMYDISK>CNL -COUT !LPTOO -SIZE 20 

This LINKER command loads the Linker and specif ies the 
following: 

• Bound unit is a f ixed-relative f ile named MYPROG in the 
working directory. 

• Linker directives are entered through disk f ile 
AMYDISK>CNL. 

6-9 
09/86 
CZ15-02A 



- -~--~--------- ---------------------------=------

•List file goes to a line printer (configured as LPTOO), 
rather than to a variable sequential f ile named MYPROG.M 
in the working directory. 

• The Linker initially gets 20K words of memory for its 
symbol table. 

LPTOO must have been previously def ined in the DEVICE 
directive to the Conf iguration Load Manager at system 
generation time. 

ENTERING LINKER DIRECTIVES 

Linker directives are entered through the directive input 
device. Most directives can also be embedded in Assembly 
language \.:'.L'HL Statements. The exceptions are npted under the 
descriptions of certain directives. 

Linker directives consist of a directive name or a directive 
name followed by one or more arguments. Each directive name can 
be preceded by zero or more blank spaces. If one or more 
arguments are to be specif ied in a Linker directive, the 
directive name must be immediately followed by one or more 
spaces. 

Multiple directives can be entered on a line by specifyin9 a 
semicolon (;) after each directive except the last on the line. 

The last directive on a line can be followed by a comment; to 
include a comment, specify a space and a·s1ash (/) after the last 
directive and then enter the comment. 

FORMAT: 

directive [ argument ] [ argument ] [ /comment] 

If the directive input device is the operator's terminal or 
another terminal, press RETURN at the end of each line (i.e., at 
the end of the comment, or at the end of the last directive if 
there is no comment). There is no continuation between lines; 
the values associated with a single directive cannot be continued 
on a second line. 

If an error occurs during the entering of a directive, an 
error message is written to the error-out f ile. Linker error 
messages are described in the System Messages manual. Determine 
what caused the error, and reenter the directive correctly. If 
multiple directives are entered on a line and an error occurs, 
the error does not affect the execution of previously designated 
directives. The directive that caused the error and subsequent 
directives on that line are not executed. 

6-10 
09/86 
CZ15-02A 

("',) ,,_j 



(< 

(„ 

SETTING ACCESS IN THE LINKER'S SEG OR FSEG DIRECTIVE 

The method for encoding access information in the Linker's 
SEG or FSEG directive depends on the type of Memory Management 
Unit (MMU) for which the bound unit is being linked. One method 
is used for the Basic Memory Management Unit (BMMU) and the 
Extended Memory Management Unit (EMMU); a different method is 
used for the Virtual Memory Management Unit (VMMU). The MMU type 
can be ascertained by means of the Linker's REPORT directive if 
the user is running the Linker interactively. 

Setting Access f or BMMU and EMMU Segments 

Whenever access is specif ied in a SEG or FSEG directive for 
the BMMU or EMMU environment, it must be specified as a bit 
string of exactly 6 binary digits expressed in the form B'bbbbbb' 
where each b is either 0 or 1. These bit values establish read, 
write, and execute access for a segment according to the 
following pattern: 

RR RW RE 

---------Execute access 

...._ _________ Write access 

1..-------------Read access 

The two bit positions designating each type of access 
represent ring numbers. The ring numbers are coded in one's 
complement form: 11 =ring 0 (highest privilege); 10 =ring l; 01 
=ring 2; and 00 =ring 3 (lowest privilege). A procedure 
attempting to read, write, or execute a segment is given access 
to that segment only if the ring number at which the procedure is 
running is less than or equal to the ring number specif ied in the 
segment for the type of access being attempted by the procedure. 

The default access value for a BMMU or EMMU segment is 000000 
(i.e., ring 3 read, write, and execute access). However, if a 

GSHARE or SHARE directive is specified for a bound unit, the 
Linker changes the RW (write access) field for the root segment 1 
to 11 (i.e., ring O write access). 

Setting Access f or VMMU Segments 

Whenever access is specif ied in a SEG or FSEG directive for 
the VMMU environment, it must be specif ied as a bit string of 
from 6 to 10 binary digits expressed in the form B'b ••• • where 
each b is either 0 or 1. These bit values establish access for a 
segment according to the following pattern: 

PR R w E RllR21 R3 

6-11 
03/87 
CZ15-02B 



The meaning of each field is: 

PR - Privileged Indicator (one bit). If this bit is set, 
privileged instructions in this segment can be executed when 
this segment is executed by a procedure running in ring O. 
If PR= O, a trap will occur on an attempt to execute a 
privileged instruction in this segment. 

R - Read-permit Indicator (one bit). If this bit is set, 
this segment can be read by a procedure running in a ring 
number lower than or equal to the ring number specif ied in 
R2. If R = O, a trap will occur on an attempt to read from 
this segment. 

W - Write-permit Indicator (one bit). !f this bit is set, 
this segment can be written into by a procedure runnirig in a 
ring number lower than or equal to the ring number specif ied 
in Rl. If W = O, a trap will oc.cur on an attempt to write 
into this segment. 

E - Execute-permit Indicator (one bit). If this bit is set, 
instructions (unprivileged) in this segment can be executed 
by a procedure running in a ring number lower than or equal 
to the ring number specified in R2. If E = O, a trap will 
occur on an attempt to execute an instruction in this 
segment. 

Note that if E = l and R = O, the segment is treated as an 
"execute only" segment. Such a segment is able to read its 
own data, despite the absence of read permission. However, 
the segment is not readable by other procedures. 

Rl - A two-bit ring number that specifies the highest ring 
number (lowest privilege) f rom which a running procedure can 
write into this segment. That is, a procedure running in a 
ring number from 0 to Rl (the "write bracket") can write into 
this segment. 

R2 - A two-bit ring number that specif ies the highest ring 
number (lowest privilege) from which a running procedure can 
read or execute this segment. That is, a procedure running 
in a ring number from 0 to R2 (the "read/execute bracket") 
can read or execute this segment. 

R3 - A two-bit ring number reserved for future use. This 
field should always be assigned the binary value 11. 

The Rl, R2, and R3 fields represent ring numbers. Each of 
these f ields must be encoded with the actual (not complemented) 
binary value of the desired ring number: 00 = ring 0 (highest 
privilege); 01 =ring l; 10 =ring 2; and 11 = ring 3 (lowest 
privilege). The system requires that the Rl ring number be less 
than or equal to the R2 ring number, and that R2 ring number be 
less than or equal to the R3 ring number. Linker enforces this 
rule in checking the syntax of a SEG or FSEG directive. 

6-12 
09/86 
CZ15-02A 



( 

c 

The default access value for a VMMU segment is 1111111111 
(i.e., PR, R, w, and E bits set on, and ring 3 read, write, and 
execute access). However, if a GSHARE or SHARE directive is 
specif ied for a bound unit, the Linker changes the Rl value for 
the root segment to 00 (i.e., a ring 0 write bracket). 

As mentioned above, access in a SEG or FSEG directive for a 
VMMU can be specified by a bit string of from 6 to 10 bits. 
Whenever fewer than 10 bits are specif ied, the Linker treats them 
as the low-order end of the PR-R-W-E-Rl-R2-R3 f ield. For 
example, if only 6 access bits are specified, they are considered 
to be Rl-R2-R3 ring values. 

LINKER DIRECTIVES 

Linker directives are described in alphabetic order on the 
~ollowing pages. Examples are provided to illustrate directive 
usage. 

6-13 
03/87 
CZ15-02B 

1 



BASE 

BASE (or BE) 

Defines the relative link address within the bound unit for 
subsequent object units to be linked. 

Unless a BASE directive specifies otherwise, tbe root is 
based at a default segment address established by the Linker, or 
at a segment address specif ied by the user (see the -ENV control 
argument and SEG directive). subsequent object units are linked 
at successive relative addresses. A BASE directive can be used 
at any point during linking to change the relative locations of 
the root, fixed overlays, or individual object units. A BASE 
directive can specify a previously used or def ined location, or 

~ an address relative to the beginning of the fixed area (which 
contains the root and any fixed overlays). 

Each floatable overlay is normally based at a default segment 
address established by the Linker or at a segment address 
specified by the user (see the FSEG directive). A BASE directive 
in a floatable overlay can specify a previously used or def ined 
location, or an address relative to the beginning of that same 
floatable overlay. 

If unprotected symbols def ine locations that are equal to or 
greater than the location designated in the BASE directive, those 
symbols are removed f rom the symbol table. 

The BASE directive cannot be embedded in Assembly language 
control statements. 

FORMAT: 

$ 
% 
X'address' 
=object-unit-name 

xdef + X'offset' 
i 
*ODD 
*EVEN 
*X'offset' 

ARGUMENTS: 

$ 

Next location after the highest address of the linked 
root or just previously linked nonfloatable overlay. 

6-14 
09/86 
CZ15-02A 



( 

!.· (-~ ... , •. 
' ' ' 

-~- .-' 

(_~) 

% 

BASE 

Highest address+l ever used in the linked root or any 
previously linked nonfloatable overlay. 

X'address' 

A one- to f ive-character hexadecimal address enclosed in 
apostrophes and preceded by X. The specif ied address is 
relative to either the base of the f ixed area (where root 
and f ixed overlays are linked) or to the base of the 
current floatable overlay. For example, if root is based 
at a segment address of 50000, BASE X'lOOO' indicates a 
segment address of 51000. If a floatable overlay is 
based at a segment address of 90000, BASE X'lOO' 
indicates a segment address of 90100. 

=object-unit-name 

Specified object unit's base address; the subsequent 
root, overlay, or object unit is linked at the same 
relative address as the specif ied object unit, which must 
have already been linked. Furthermore, the object unit 
name must still exist in the symbol table (i.e., it has 
not been purged). 

xdef + X'offset' 

*ODD 

Any previously defined (noncommon) external symbol. If 
an offset is specified, it must be a hexadecimal integer 
with an absolute value less than 800016 (32,768 decimal). 

The current address. 

The current address, if it is odd; if it is even, base 
address is converted to current address+l. 

*EVEN 

The current address, if it is even; if it 
address is converted to current address+l. 

6-15 

is odd, base 

09/86 
CZ15-02A 



------------------·-·--··--·-·-··- ·-·----~- ---~--

BASE 

*X'offset' 

The next location whose rightmost hexadecimal characters 
equal the of fset (where the of f set is a hexadecimal 
integer of four or fewer characters}. 

Default: $ with the following exceptions: 

The root and each floatable overlay are based at a 
default Segment address or at a Segment address 
specified by the user. 

Example: 
,• 

LINKER TEXT -COUT lLPTOO -PT 

LINKER-rrrr-mm/dd/hhmm 

START TEXTEN 

L? 

IST INIT 

L? 
LINK OBJ1,0BJ2 

L? 
MAP 

L? 
OVLY ABLE 

Load Linker. 

Linker identification message. 

Specify address where execution 
begins when root is loaded. 

Linker prompt. 

Def ine INIT as the begipning of 
initialization code. 

Request that OBJl.O and OBJ2.0 be 
linked. 

cause OBJl.O and OBJ2.0 to be linked, 
and produce a link map. 

Designate end of the 
nonf loatable overlay 
immediately follows. 
assigns the number 0 

6-16 

root, and that a 
named ABLE 

The Linker 
to this overlay. 

09/86 
CZ15-02A 



L? 
BASE =OBJ2 

L? 
LINK OBJS 

L? 
MAP 

L? 
LINK OBJ6 

L? 
OVLY FOX 

L? 
BASE $ 

L? 
LINK OBJA,OBJB 

L? 
MAP 

BASE 

subsequent object unit(s) 
constituting overlay ABLE are linked 
starting at the base address of the 
object unit OBJ2.0; this address can 
be determined f rom the map. 
Unprotected symbols that def ine 
locations equal to or greater than 
the address of OBJ2 are removed f rom 
the symbol table. 

Request that OBJS.O be linked. 

Cause OBJS.O to be linked and produce 
a link map. 

Request that OBJ6."0 be linked. 

Designate the end of the above 
overlay, and specify that a non­
floatable overlay named FOX 
immediately follows. The Linker 
assigns the number 1 to this overlay. 

subsequent object unit(s) 
constituting the overlay named FOX 
are linked starting at one location 
higher than the ending address of 
OBJ6.0. This is the default BASE 
address, so BASE $ need not be 
specif ied. 

Request that OBJA.O and OBJB.O be 
linked. 

Cause OBJA.O and OBJB.O to be linked 
and produce a link map. 

6-17 
09/86 
CZ15-02A 



BASE 

L? 
OVLY ZEBRA 

L? 
BA~E· X'll05' 

L? 
LINK OBJC 

L? 
LINK OBJD 

L? 
MAP 

L? 
FLOVLY FLOAT 

L? 
LINK OBJE 

L? 
MAP 

L? 
QUIT 

LINK DONE 
RDY: 

' 

Designate end of overlay 1 and name 
subsequent nonfloatable overlay. The 
Linker assigns the number 2 to this 
overlay. 

Designate that subsequent object 
units constituting overlay ZEBRA be 
linked based at location 1105 
relative to the base of the f ixed 
area. 

Request that object unit OBJC.O be 
linked (based at location 1105 
relative to the base of the f ixed 
area). 

Request that OBJD.O be linked. 

Designate end of the above overlay, 
and that .a f loatable overlay named 
FLOAT immediately follows. The 
Linker assigns the number 3 to this 
overlay. This overlay is linked 
starting at a segment address 
assigned by the Linker. 

Request that OBJE.O be linked. 

6-18 
09/86 
CZ15-02A 



,c:, 

BASE 

Figure 6-1 illustrates the use of BASE directives in a bound 
unit that consists of a root and overlays. This example assumes 
that the bound unit being created will be executed as part of 
task group Al, and memory pool AA will be used by this task 
group. Figure 6-1 also shows memory pool AA's location in memory 
relative to the system pool and another pool. The object units 
specif ied by the preceding directives are loaded into memory pool 
AA during execution of the bound unit. 

Figure 6-2 shows the conf iguration of memory pool AA at 
different times during execution. Note that OBJ2.0 of the root 
is overlayed by overlay ABLE and that overlay FOX is partially 
overlayed by overlay ZEBRA. Also note that overlay FLOAT is 
positioned by the Loader and is not necessarily at the location 
shown in the diagram. 

6-19 
09/86 
CZ15-02A 



BASE 

ADDRESS 

RELATIVE 0 FOR ROOT 

RELATIVE 0 OF ROOT 

HIGH MEMORY 

ADDITIONAi. TASK 
GROUP INFORMATION 

ROOT ANO OVERLA Y AREA 

TASKGROUPCONTROI. 
STRUCTURES 

ADDITIONAL TASK 
GROUP INFORMATION 

ROOT ANO OVERLAY AREA 

TASK GROUP CONTROL 
.• STRUCTURES 

SYSTEM POOi. 

OPERATING SYSTEM 

0 

LOWMEMORY 

MEMORY POOi. 
AB(TASK 
GROUPA2 
WILLUSE 
THISAREAI 

MEMORY POOL 
AA (TASK 
GROUPAI 
WILLUSE 
THISAREAI 

88-146 

------------ _________ , __ _ 

Figure 6-1. Relative Location of Memory in Memory Pool AA 

r 
RELATIV 
OF ROOT 

EO 

ADDITIONAL 
TASKGROUP 
INFORMATION 

OBJ2.0 

OBJ1.0 

TASK GROUP 
CONTROL 
STRUCTURES 

0 VERLAY 
OX F 

0 
A 

~ 

VERLAY 
BLE 

ROOT 

. ~ 

Figure 6-2. 

ADDITIONAL 
TASKGROUP 
IN FORMATION 

OBJB.O 

OBJA.O 

OBJ6.0 

OBJ5.0 

OBJ1.0 

TASKGROUP 
CONTROL 
STRUCTURES 

OVERLAY{ 
ZEBRA 

ADDITIONAL 
TASK GROUP 
INFORMATION 

OBJD.0 

OBJC.O 

OBJA.O 

OBJ6.0 

OBJ5.0 

OBJ1.0 

TASKGROUP 
CONTROL 
STRUCTURES 

ov 
FL 

ERLAY 
OAT 

LO CATION 
5 110 

Overlays in Memory Pool AA 

6-20 

{ 

ADDITIONAL 
TASKGROUP 
INFORMATION 

OBJE.O 

OBJD.O 

OBJC.O 

OBJA.0 

OBJ6.0 

OBJ5.0 

OBJ1.0 

TASKGROUP 
CONTROL 
STRUCTURES 

86·147 

09/86 
CZ15-02A 



(:, 

CALLCANCEL 

CALL CANCEL (CC) 

Places each overlay name and its associated Linker-generated 
overlay number into the bound unit attribute table so that the 
COBOL program can call/cancel overlays by name. This directive 
is used when linking COBOLA programs that contain CALL/CANCEL 
statements to invoke overlays. 

When the CC directive is specif ied, a special object unit, 
ZCCEC.O, is linked into the root to support the CALL/CANCEL 
facility. 

The CC directive must be specif ied before the f irst LINK, 
LINKN, or LINKO directive in the root1 it cannot be embedded in 
Assembly language control statements. 

FORMAT: 

cc 

6-21 
09/86 
CZ15-02A 



CO MM ON 

COMMON (or COMM) 

Def ines a labeled "commonn area of a specif ied size. 
cannot be embedded in source code. 

FORMAT: 

{COMMON} symbol,XJsize' 
.COMM 

ARGUMENTS: 

symbol 
.• 

The external symbol to be treated as common. 

X'size' 

---·--·------------ ---- ··-· 

It 

Size is specif ied as a one- to four-character hexadecimal 
number bound by single quotes and preceded by the 
letter X. 

6-22 
09/86 
CZ15-02A 



c· 

·cPROT 

CPROT (or CT) 

Protects the specif ied common syrnbol in the syrnbol table. 

This directive cannot be embedded in Assembly language 
control statements. 

FORMAT: 

{~~ROT } syrnbol 

ARGUMENT: 

symbol 

Name of the external symbol that is to be protected. The 
symbol must have been specif ied in a COMM directive or 
def ined as common during assembly or compilation. 

6-23 
09/86 
CZ15-02A 



------- --- -~----------------~- -------- ---

CPURGE 

CPURGE (or CE) 

Removes an unprotected common symbol from the symbol table. 

FORMAT: 

{ g:uRGE } symbol 

ARGUMENT: 

symbol 

The external symbol to be removed from the symbol table. 
The symbol must qave been defined as common. 

6-24 
09/86 
CZ15-02A 

--- ...... - --~ .--



EDEF 

EDEF (or EF) 

Puts the externally defined symbol(s) in the bound unit's 
permanent symbol table. These symbols are available for use by 
the Loader as described below. 

When EDEF is specified, the symbol's definition must already 
be in the Linker symbol table. 

If a bound unit is permanently resident in memory because it 
has been loaded at system conf iguration time by an LDBU 
directive, the def initions for any EDEFed symbols in the bound 
unit are placed in the system symbol table. Thereafter, whenever 
the Loader loads another bound unit that contains unresolved 
references, it tries to resolve these references by use of the 
def initions in the system symbol table. 

If a bound unit is not permanently resident in memory, but it 
does contain EDEFed symbols, these symbols are used as follows: 

• They can identify secondary entry points to the bound 
unit. Secondary entry points can be specified in the -EFN 
argument of the Create Group, Spawn Group, Create Task, 
and Spawn Task commands, as well as in the corresponding 
macrocalls. 

• If the bound unit containing EDEFed symbols attaches or 
loads another subordinate bound unit (by means of $BUAT or 
$BULD macrocalls), its EDEFed syrnbols can be used (by the 
Loader) to resolve any unresolved references in the 
subordinate bound unit as it is loaded. 

The EDEF directive can be embedded in Assembly language 
control statements. 

FORMAT: 

{ ~~EF} syrnbol1 [ ,symbol2l 

ARGUMENTS: 

symbol1 

Any external def inition. The syrnbol must have been 
previously defined; it can name a root or overlay once 
the root or overlay has been linked. If the symbol was 
multiply def ined, the f irst definition is used. 

6-25 
09/86 
CZ15-02A 



-------------··----------

EDEF 

symbol2 

Name of the symbol to be incorporated in the bound unit's 
permanent symbol table. If symbol2 is not specif ied, the 
name of the symbol placed in the bound unit's permanent 
symbol table is that specified by symbol1. 

Example: 

LINKER MYPROG -PT Load the Linker. The bound unit named 
MYPROG is created in the working 
directory. The list file MYPROG.M is 
also created in the working directory. 

LINKER-rrrr-mm/dd/hhmm Linker iqentif ication messa~e. 

L? 

LINK A 

L? 
LINKN B 

L? 
MAP 

L? 
EDEF BEE 

L? 
LDEF SYM,X 11234 1 

L? 
OVLY FIRST 

L? 
LINK X,Y 

L? 
EDEF SYM 

Linker prompt. 

BEE is a symbol previously def ined by 
an XDEF statement in B.O as an 
external location or value. 

Assign relative location 1234 to an 
external symbol named SYM. 

Declare end of root, and name non­
floatable overlay that immediately 
follows. 

6-26 
09/86 
CZ15-02A 

/,,,,..,..~·"'·-,\ 

\...___/: 



/ 

( 
L? 
QUIT 

LINK DONE 
RDY: 

EDEF 

Declare that the last Linker direc­
tive has been entered. Execution of 
the Linker terminates after the bound 
unit has been created. 

LINKER PROG2 -COUT !LPTOO -PT 

Load the Linker; 
created is named 
is the printer. 
the default size 
memory. 

the bound unit to be 
PROG2. The list file 
The symbol table has 
of BK words of 

LINKER-rrrr-mm/dd/hhmm Linker identification message. 

L? 
LINKN W 

L? 
MAP 

L? 
QUIT 

LINK DONE 
RDY: 

Request that object unit w.o be 
linked. 

Produce a link map. In this map, it 
is determined that object unit w.o 
contains an unresolved reference to 
the symbol SYM, which was def ined in 
the root of the bound unit MYPROG. 

If MYPROG is loaded into memory by an LDBU conf iguration 
directive, when the Loader loads PROG2 the Loader resolves 
the unresolved reference in PROG2 to the symbol SYM, which 
was def ined in the root of MYPROG. 

An EDEF directive cannot be entered on the same directive 
line that causes linking of the object unit that def ines the 
EDEF's syrnbol. For example, if the syrnbol TAG is defined in 
object unit A, the following directive line is not allowed: 

LINK A;EDEF TAG. 

6-27 
09/86 
CZ15-02A 



···-·--------------- ---

FLOATB6 

FLOATB6 (or F6) 

Suppresses certain error checking on local common references 
when the -R argument has not been used. The directive tells the 
Linker that the user manages $B6 and causes each local common 
reference to be relocated as if the $B6 pointed to the base of 
the fixed or floatable overlay containing the reference. (If an 
overlay is equal to or greater than 32K words, each local common 
reference is relocated as if $B6 pointed to the base of the 
overlay plus 32K words.) Normally, $B6 is set by the system to 
the base of the fixed (root and fixed overlay) area, and $B6-type 
lo~al common references within floatable overlays would be 
invalid. 

Before using this directive, consult the person responsible 
for system building and determine available system memory. 

This directive must be specif ied before the f irst object unit 
containing a local common reference is linked. 

FORMAT: 

{ ~~OATB6} 

6-28 
09/86 
CZ15-02A 



( / „ 

FLOVLY 

FLOVLY (or FY) 

Assigns the specif ied name and a number to the floatable 
overlay that immediately follows, and designate the end of the 
preceding root or overlay. The characteristics of floatable 
overlays are described at the end of this directive description. 

FLOVLY must be specif ied as the f irst directive of each 
floatable overlay. 

The Linker assigns a four-digit number to each overlay. 
Overlays are numbered sequentially in ascending order; the first 
overlay is O. 

FORMAT: 

{ ~iOVLY } name 

ARGUMENT: 

name 

Name of the floatable overlay that immediately follows. 
For character conventions, see "OVLY" later in this 
section. 

Example: 

LINKER BU -PT Load the Linker and designate BU as 
the bound unit name. 

LINKER-rrrr-mrn/dd/hhmm Linker identification message. 

L? 
LINK A,B 

L? 
MAP 

L? 
FLOVLY GR 

Produce a link map. 

Declare the end of the root that 
consists of object units A.O and B.O, 
and specify that the next overlay is 
a f loatable overlay named GR. The 
Linker assigns the number 0 to this 
overlay. 

6-29 
09/86 
CZ15-02A 



----------·-~·-~----

FLOVLY 

L? 
LINK X,Y7 MAP 
L? 
FLOVLY BR Declare the end of floatable overlay 

GR and designate that the f loatable 
overlay that immediately follows is 
BR. The Linker assigns the number 1 
to this overlay. 

1' ? 
Me 

LINK R6 

L? 
MAP 

L? 
QUIT 

LINK DONE 
RDY: 

External location def initions def ined within a floatable 
overlay are automatically purged at the end of the overlay 
because they cannot be referred to from outside the overlay. 

A floatable overlay must have the followin9 characteristics: 

• External location def initions in the overlay are not 
referred to from the root or any other overlay. ~ 

• There cannot be external references between floatable 
overlays. 

• The overlay must be linked after all desired 
nonfloatable-ovirlays have been linked. 

• The overlay cannot contain P+DSP references to any other 
overlay or to the root. 

• The overlay can contain IMA (immediate memory address) 
ref erences t'ö"Tocations within itself and/or IMA 
references to the root and fixed overlays. 

6-30 
09/86 
CZ15-02A 

,• 



( 

FSEG 

FSEG (or FG) 

Def ine the execution environment in which a floatable overlay 
will run. Before using this directive, consult with the person 
responsible for system building and determine the segment numbers 
available to task groups. If used, the FSEG directive must 
appear after a FLOVLY directive and before the f irst 
LINK/LINKN/LINKO, BASE, LDEF, PROTECT, PURGE, or UNPROTECT 
directive for the floatable overlay. With this directive, you 
can specify the segment number to be assigned, as well as the 
access rights to the segment. If FSEG is not used, the Linker 
assigns a base segment number and default access rights to the 
floatable overlay. 

It is generally best to let the Linker assign segment numbers 
for floatable overlays. Since floatable overlays must be linked 
after the root and all fixed overlays, the Linker can determine 
which segment numbers have already been used when it is ready to 
link the first floatable overlay. If you don't specify a segment 
number for the f irst floatable overlay, the Linker assigns one as 
follows: 

• If the bound unit doesn't contain separated data (i.e., 
linked without the -R control argument), the Linker 
assigns the f irst floatable overlay a segment number one 
higher than the highest number used for the f ixed area 
(root and fixed overlays). The Linker then increases the 
segment number for each successive floatable overlay. 

• If the bound unit contains separated data, the Linker 
assigns the f irst floatable overlay a segment number one 
higher than the number assigned to the separated data 
(either by default or explicitly by the user). If you 
know that the separated data requires more than one 
segment, you can use the FSEG directive to assign the 
f irst floatable overlay a segment number one higher than 
the highest number expected to be used for the data. 

FORMAT: 

{~~EG} argl ,arg2 

6-31 
09/86 
CZ15-02A 



FSEG 

ARGUMENTS: 

argl 

arg2 

Specif ies the base segment number to be used for the 
floatable overlay. The value must be a hexadecimal 
number from 1 to F for a BMMU environment, from SC to FF 
for an EMMU environment, and from 3B to 3FF for a VMMU 
environment. 

Segment numbers must be specif ied in hexadecimal 
notation; e.g~, X'h ••• •. 

Specifies the access rights for the floatable overlay. 
The value must be a bit string of 6 binary digits for the 
BMMU or EMMU environment and f rom 6 to 10 binary digits 
for the VMMU environment. The value must be specif ied in 
binary string notation; e.g., B'b ••• •. The bit string 
represents the corresponding access f ields in the segment 
descriptor. For more information on setting access, 
refer to "Setting Access in the Linker's SEG or FSEG 
Directives" earlier in this section. 

Example 1: 

FSEG X'9' 

In this example, segment 9 with default access is assigned to 
the floatable overlay. 

Example 2: 

FSEG X'90',B'001000' 

In this example, segment 90 with ring 1 write access is 
assigned to the floatable overlay. 

6-32 
09/86 
CZ15-02A 



/ 

i 1(--
\ . 

. ( ••. 
' -~·' 

GSHARE 

GSHARE (or GE) 

Indicates that the bound unit is globally shareable, which 
means that the program is shareable among groups, and the root is 
always loaded into the system memory pool. This directive should 
not be used if a SHARE directive would suff ice. System 
perf ormance can be affected if this directive is misused. 
Floatable overlays are loaded into user space and are not 
shareable unless. overlay area tables (OATs) are used. 

GSHARE causes the root of the bound unit to be assigned ring 
o write access. If the globally shareable bound unit contains 1 
any f loatable overlays or a separate data area, the Linker leaves 
them with the default write access (ring 3) or with any user­
supplied write access. Before using this directive, consult with 
the person responsible for system building and determine 
available system memory. 

Nonsharable bound units (linked without SHARE or GSHARE) are 
always loaded into the user's memory pool. 

FORMAT: 

{~iHARE} 

6-33 
03/87 
CZ15-02B 



-----·---~-- -·---~--------------

IN 

IN -
Change the primary directory. The primary directory is the 

first one the Linker searches for the specified object unit(s) to 
be linked. The default primary directory is the working 
directory. 

The IN directive must be specif ied before the f irst LINK, 
LINKN, or LINKO directive that requests the linking of an object 
unit that is in the specified directory. 

The specif ied directory Eemains the· primary directory until 
another IN directive is entered. If the primary directory is 
changed by an IN directive and at a later time you want the task 
group's working directory to be the primary directory, enter the 
IN directive and omit the pathname. 

The IN directive cannot be embedded in Assembly language 
control statements. 

FORMAT: 

IN [path]' 

ARGUMENT: 

path 

Pathname of the directory being designated as the primary 
directory. The pathname can contain a maximum of 57 
characters. A simple, relative, or absolute pathname can 
be specif ied. (Methods of designating pathnames are 
described in Section 3 of this manual). If the path is 
omitted, the working directory becomes the primary 
directory. 

Example 1: 

IN "'DIR>PRIM 

This directive designates that "'DIR>PRIM is the primary 
directory. 

6-34 
09/86 
CZ15-02A 



!,( 

IN 

Example 2: 

This example illustrates use of the IN directive in 
conjunction with directives that request the linking of 
object units. Assume that the primary directory is the 
working directory, whose absolute pathname is AWORK>CURR; 
object units x.o and Y.O are in the working directory. A.O 
and c.o are not in the working directory. 

LINKER OUTPUT -PT Load the Linker; a bound unit named 
OUTPUT is created on the working 
directory. 

LINKER-rrrr-mm/dd/hhrnm Linker identif ication message. 

L? 
LINKN X Request the linking of object unit 

x.o; x.o is in the working directory. 

L? 
IN ANEW>PRIM Designate ANEW>PRIM as the primary 

L? 
LINKN A,C 

L? 
IN 

L? 
LINKN Y 

L? 
MAP; QUIT 

LINK DONE 
RDY: 

directory. 

Request the linking of object units 
A.O and c.o in the primary 
directory. ANEW>PRIM>A.O is the 
pathname of A.O and ANEW>PRIM>C.O is 
the pathname of c.o, as expanded by 
the Linker. 

Designate the working directory as 
the primary directory. 

Request the linking of object unit 
Y.O, in the working directory. 
AWORK>CURR>Y.O is the pathname of 
Y.O, as expanded by the Linker. 

6-35 
09/86 
CZ15-02A 



---~-~------

INCLUDE 

INCLUDE {or IE) 

Accept directives from a f ile other than user-in or the f ile 
specif ied in the -IN argument of the LINKER command. When the 
Linker encounters an end of f ile or a RETURN directive in the 
file specified by the INCLUDE directive, it again seeks 
directives from the previously active f ile. If used, the INCLUDE 
directive must be tbe last directive entered on a line. 

The directive file soecif ied by the INCLUDE directive cannot 
contain an INCLUDE directive. 

The INCLUDE directive cannot be embedded in Assembly language 
control statements. 

FORMAT: 

{ INCLUDE} path 
IE . 

ARGUMENT: 

path 

Pathname of the f ile from which the Linker directives are 
to be read. A simple pathname can be up to 12 characters 
in length1 an absolute pathname can be up to 57 
characters in length. 

Example: 

INCLUDE NEW 

This directive causes the Linker to accept directives f rom a 
file named NEW in the working directory. 

6-36 
09/86 
CZ15-02A 

,...____ 
\ 



( 

INIT2 

INIT2 (or I2) 

Specifies a 2-word initialization pattern for all otherwise 
uninitialized cornmon blocks if code and data are separated. If 
code and data are separated and the INIT2 directive is not used, 
all otherwise uninitialized common blocks are initialized to null 
by the the Loader as it loads the separated data load unit. 

FORMAT: 

{~~IT2} X'hhhhhhhh' 

ARGUMENT: 

X'hhhhhhhh' 

Hexadecimal initialization pattern compr1s1ng exactly 8 
integers enclosed in apostrophes and preceded by X. 

Example: 

INIT2 X'55555555' 

In this example, assuming code and data are separated, all 
otherwise uninitialized common blocks are initialized by the 
Loader to the specified value (ASCII Us}. 

6-37 
09/86 
CZ15-02A 



IST 

IST (or IT) 

Identif ies the initialization code start address in the 
root. Initialization code is to be executed once, immediately 
after the root is loaded at system boot time. After the 
initialization code is executed, its space can be made available 
for overlays. The IST directive can be used only with a bound 
unit that contains an initialization subroutine table and is 
loaded at system conf iguration time by means of an LDBU 
directive. LDBU; a CLM directiver is explained in the System 
Building and Administration manual. IST is not meaningful unless 
the bound unit is specified in an LDBU directive •. 

The IST directive cannot be embedded in Assembly language 
control statement·s. 

FORMAT: 

{ ~~T} external symbol 

ARGUMENT: 

external symbol 

Symbol identifying the be9innin9 of the IST section of 
the bound unit. 

6-38 
09/86 
CZ15-02A 

-" \ 
,l 



LDEF 

LDEF (or LF) 

Defines an external symbol and assigns it a relative 
location. A symbol should be def ined only once, either as a 
location or as a value. When a symbol is def ined, its def inition 
is put into the Linker symbol table so that it can be used to 
resolve references to the symbol during linking. When a symbol 
defined as a location is no longer used, its symbol table entry 
can be cleared by specifying the PURGE directive. PURGE has no 
effect if a PROTECT (PROT) directive was previously specif ied: 
however, a protected symbol can be named in an UNPROTECT 
directive and then in a PURGE directive. 

The LDEF directive cannot be embedded in Assembly language 
control statements. 

FORMAT: 

{ ~~EF} symbol, 

$ 
% 
X'address' 
=object-unit-name 
xdef {+}X'offset' 
# -

ARGUMENTS: 

symbol 

$ 

% 

The symbol can include any character that is legitimate 
for a f ile name: see the LINK directive. 

Next location after the highest address of the linked 
root or just previously linked nonfloatable overlay. 

Highest address+l ever used in the linked root or any 
previously linked nonf loatable overlay. 

6-39 
09/86 
CZ15-02A 



LDEF 

X'address• 

A one- to f ive-character hexadecimal address enclosed in 
apostrophes and preceded by X. The specif ied address is 
relative to either the base of the f ixed area (where root 
and f ixed overlays are linked) or to the base of the 
current floatable overlay. For example, if root is based 
at a Segment address of 50000, LDEF LLEWELLYN,X'l234 1 

indicates a segment address of 51234. 

=object-unit-name 

Specified object unit's base address. 

xdef[ + X'offset'] 

Any previously defined external symbol. If an offset is 
specif ied, it must be a hexadecimal integer with an 
absolute value less than 800016 (32,768 decimal) • 

• 
The current address. 

Example: 

LINKER BOUND -PT 

LINKER-rrrr-mm/dd/hhmm 

L? 
LINI< A, B, C 

L? 
MAP 

L? 
LDEF SYM, X'l234' 

L? 
OVLY FIRST 

L? 
LINI< R~ MAP 

Load the Linker and designate 
BOUND as the bound unit name. 

Linker identif ication message. 

SYM assigned location 1234 relative 
to the base of the f ixed area. 

Declare end of root and name f irst 
nonfloatable overlay. 

6-40 
09/86 
CZ15-02A 

r~-" 

~j 



( 
L? 
LDEF QUIZ,=C 

L? 
OVLY SECOND 

L? 
LINKN D1 LINK F1 MAP 

L? 
LDEF NEW,SYM 

L? 
OVLY NEXT 

L? 
BASE X'l300' { (->' \ 

__ ,/ 

L? 
LINK w,x: MAP 

L? 
LDEF ANY,$ 

L? 
OVLY THIRD 

L? 
LINK z 

L? 
LINK Q1 MAP 

LDEF 

QUIZ assigned base location of the 
previously linked object unit named 
c.o. 

NEW assigned same location as the 
symbol SYM, which was def ined in the 
root1 i.e., NEW is assigned location 
1234 relative to the base of the 
f ixed area. 

This overlay is based at location 
1300 relative to the base of the 
f ixed area. 

ANY assigned next location after 
highest address of the previously 
linked nonfloatable overlay, SECOND. 

6-41 
09/86 
CZ15-02A 



---------·----·--·---- --

LDEF 

L? 
LDEF FIND,% 

L? 
QUIT 

LINK DONE 
RDY: 

FIND assigned next location after 
highest address of the root or any 
previously linked nonf loatable 
overlay. (A previous nonfloatable 
overlay was named SECOND; if it 
ended at location 1566 relative to 
the base of the f ixed area and if 
this is the highest location reached 
durina the linkinq of obiect units 
constituting this-bound Ünit, FIND 
is assigned location 1567 relative 
to the base of the fixed area.) 

This example illustrates the use of each format of the LDEF 
directive. 

6-42 
09/86 
CZl5-02A 



(_ 

LIB 

LIB (or LIBl) 

Designate a directory as the secondary directory. This 
directive permits the linking of object units that are in 
directories other than the primary directory. If an object unit 
specif ied in the LINK, LINKN, or LINKO directive cannot be found 
in the primary directory, the Linker searches the secondary 
directory. 

If LIB is not specif ied, there is no secondary directory; the 
Linker searches only the primary directory. 

The specif ied secondary directory remains in effect until the 
LIB directive is respecified with a different directory name, or 
without any directory name. 

All specif ied object units in the primary directory are 
linked f irst; then all specif ied object units in the secondary 
directory are linked, and so on. To cause object units to be 
linked in an order that is independent of their location, the 
LINKN or LINKO directive must be used. 

The LIB directive must be specified before the first LINK, 
LINKN, or LINKO directive that requests the linking of an object 
unit in the secondary directory. 

FORMAT: 

LIB [pathJ 

ARGUMENT: 

path 

Pathname of the directory being designated as the 
secondary directory. A simple, relative, or absolute 
pathname can be specif ied. (Methods of specifying 
pathnames are described in Section 3.) If path is 
omitted, a previously specif ied directory is removed f rom 
the list of directories to be searched by the Linker. 

Example 1: 

LIB DIR>SECND 

This directive designates DIR>SECND as the relative pathname 
of the secondary directory. 

6-43 
09/86 
CZ15-02A 



--- ----------

Example 2: 

LIB DIR>SECND 

LINK B 

LINK A 

LINK W 

--- --------

Designate DIR>SECND as the relative 
pathname of the secondary directory. 

Request the linking of object unit B.01 
B.O resides in the primary directory. 

Request the linking of object unit A.01 
A.O resides in the primary directory. 

Request the linking of object unit w.01 
w.o resides in the secondary directory. 
DIR>SECND>W.O is the relative pathname of 
w.o, as expanded by the Linker. 

6-44 
09/86 
CZ15-02A 

-, 

·-) 



( 

LIB2, LIB3, OR LIB4 

LIB2, LIB3, OR LIB4 

Designates directories as the third, fourth, or fifth 
directory. If an object unit specified in the Linker directive 
cannot be found in the primary or secondary directory, then the 
third directory is searched and so on. 

The specif ied directories remain in effect until another 
LIB2, LIB3, LIB4 Statement is given. 

The LIB2, LIB3, or LIB4 directive must be specified before 
the f irst LINK, LINKN, or LINKO directive that requests the 
linking of an object unit in one of these directories. 

FORMAT: 

{ LIB2 l LIB3 
LIB4 

[path] 

ARGUMENT: 

path 

Pathname of the third, fourth, or fifth directory to be 
searched (if LIB is specified) if the object unit 
specif ied. in a Linker directive is not found in the 
preceding directories. A simple, relative, or absolute 
pathname can be specif ied. If path is omitted, a 
previously specified directory (2, 3, or 4) is removed 
from the list of directories to be searched by the 
Linker. 

6-45 
09/86 
CZ15-02A 



LINK 

LINK (or LK) 

Links one or more specif ied object units. Each specif ied 
object unit name is put into the link request list. The object 
units are linked when the f irst subsequent directive other than 
LINK or START is encountered. When this occurs, the Linker 
searches the primary directory and links the specified object 
units in the primary directory in the order in which they were 
requested. If all of the object units are not found and there is 
a secondary directory, the Linker searches the secondary 
directory and links specified object units found there, in the 
order in which they were requested. If there is a copy of an 
object unit in both the primary and secondary directory, the copy 
in the primary directory is linked. 

The order in which object units are linked is important for 
the following reasons: (1) it determines which object units are 
in memory when parts of the root or overlay are overlaid, and 
(2) within the root and each overlay, the first start address 
encountered by the Linker (either in an END statement or a START 
directive) is used as the start address for that root or overlay. 

During each execution of the Linker, at least one LINK, 
LINKN, or LINKO directive must be entered for each root or 
overlay. Multiple LINK directives can be specified within a 
single root or overlay. If LINK and/or LINKN and/or LINKO 
directives request that the same object unit be linked more than 
once within a single bound unit, only the first request is 
honored, unless the object unit name has been purged. 

LINK directives can be embedded in Assembly language control 
statements1 the specified object unit(s) are added to the end of 
the current link request list. See "LINKN" and "LINKO" later in 
this section for the order in which object units are linked if 
there are embedded LINK directives and/or LINKN and/or LINKO 
directives. 

FORMAT: 

{ ~~NK} obj-unit1 [ ,obj-unit21 ••• 

ARGUMENTS: 

obj-unit 

Name of an object unit to be linked. The name of each 
object unit must conform to the conventions for 
specifying disk f ile names1 see Section 3 of this manual 
for file name.conventions. 

09/86 
6-46 CZ15-02A 



(-

(( 

LINKN 

LINKN (or LN) 

Link object units in the exact order specif ied. 

If directives request that an object unit be linked more than 
once within a single bound unit, only the f irst request is 
honored, unless the object unit name has been purged. 

During each execution of the Linker, at least one LINKN, 
LINK, or LINKO directive must be specif ied for each root or 
overlay. 

Multiple LINKN directives can be specif ied within a single 
root or overlay. 

LINKN directives can be embedded in Assembly language control 
statements; the specified object unit(s) are added to the end of 
the link request list and the library search restarts at the 
primary directory. 

FORMAT: 

{ t~NKN } obj-unit1 [ ,obj-unit2] ••• 

ARGUMENTS: 

Name of an object unit to be linked. See the description 
of the obj-unit under "LINK." 

Examples: 

In the following examples, assume that the working directory 
is the primary directory and LIB and LIB2 directives have 
been specif ied. 

A.O E.O c.o 2nd copy 
B.O F.O I.O of c.o 
c.o G.O J.O 
D.O H.O K.O 

PRIMARY LIB LIB2 

Note that two copies of module c.o have been created. 
Throughout the following examples, the first (primary 
directory) copy is designated C(l) and the second (LIB2) copy 
is designated C(2). 

09/86 
6-47 CZ15-02A 



-·---··-~~------------ ----------------· ·-·----~-~---------

LINICN 

Example l: 

LINK A,G,K,C,F 

The modules are linked in the following order: 

A,C{l),G,F,K 

Example 2: 

LINKN A,G,K,C,F 

The modules are linked in the following order: 

A,G,K,C{l),F 

Example 3: 

LINK A,G,K,C,F 

Assume that module G.O contains CTRL LINK B,J. The modules 
are be linked as follows: 

A,C(l),G,F,K,B,J 

Once the Linker has started to search LIB, it does not return 
to the primary directory unless a new link request list is 
found. The two embedded requests are added to a new link 
request list, forcing a rescan of all libraries. 

Example 4: 

LINKN A,G,K,C,F 

Assume that module G.O contains CTRL LINKN B,J. The modules 
are linked as follows: 

A,G,K,C{l)',F,B,J 

Example 5: 

LINKN G,B 

Assume that module G.O contains CTRL LINK c. The modules are 
linked as follows: G,B,C{l) 

6-48 
09/86 
CZ15-02A 

---\ 
l 



'· (·.· 
' ' 

LINKN 

Example 6: 

LINK G,D,F 

Assume that module G.O contains CTRL LINK C,B. The modules 
are linked as follows: 

D,G,F,C(l) ,B 

Example 7: 

LINK G,D,F 

Assume that module G.O contains CTRL LINKN C,B. The modules 
are linked as follows: 

D,G,F,C(l) ,B 

6-49 
09/86 
CZ15-02A 



---------- ·---- _________ „ __ _ 

LINKnn 

LINKnn 

Link the specified object unit(s) if bit nn is turned on. 
This directive allows selective linking. 

The LINKnn directive must be used in conjunction with the 
VDEF directive (or a VALDEF directive in a compilation unit). 
The VDEF directive is used to modify the bit setting in a 32-bit 
array. The leftmost 16 bits in the array are set by the symbol 
z MSKR; the rightmost 16 bits in the array are set by the symbol 
Z-MSKU. Through the VDEF directive, you assign a value to Z MSKR 
or z MSKU that sets the appropriate bit ON (a value of 1) or-OFF 
(a välue of 0). 

Each occurrence of LINKnn causes the array to be indexed by 
nn. If the referenced bit is ON (1), the link request is 
processed. If the referenced bit is OFF (0), the link request is 
ignored. 

The bits in the array are initially set ON; i.e., all LINKnn 
directives are processed. The array is modified by the VDEF 
directive (as described above). The VPURGE directive must be 
used to remove Z MSKR and Z MSKU from the symbol table before 
these Symbols can be redefined. 

FORMAT: 

LINKnn obj-unit1[,obj-unit2···1 

ARGUMENTS: 

nn 

Two-digit hexadecimal value between 00 and lF used as an 
index in a 32-bit array • 

. obj-unit 

Name of the object unit to be linked if bit nn of the 
32-bit array is ON. See the description of obj-unit 
under "LINK". 

6-50 
09/86 
CZ15-02A 



." (··.·. 
·._ ' 

. LINKO 

LINKO (or LO) 

Operates in the same manner as the LINKN directive, except 
that all embedded Linker directives in the named object units are 
ignored. 

Only the namgd object units are linked. 

The LINKO directive cannot be embedded in Assembly language 
control statements. 

FORMAT: 

{ ~6NKO} obj-unit1 [ ,obj-unit2l ••• 

ARGUMENT: 

obj-unit 

Name of an object unit to be linked. See the description 
of obj-unit under "LINK." 

6-51 
09/86 
CZ15-02A 



LSR 

LSR 

List the Linker search rules. The directories to be searched 
by the Linker for object unit(s) are listed in the order in which 
they will be searched. 

FORMAT: 

LSR 

6-52 
09/86 
CZ15-02A 



MAP, MAPD, AND MAPU 

MAP, MAPD, and MAPU (OR MP, MD, and MU) 

Creates a link map containing: (1) externally defined symbols 
that have not been purged, and (2) any unresolved references to 
external symbols. The link map is written to the list-file (see 
-COUT in the Linker command) • 

If MAP or MAPD is specif ied, each externally defined symbol 
and unresolved reference generated by the linking of object units 
is listed in the map and preceded by the name of the object unit 
in which it is located. A map also includes the names of object 
units that were linked because of embedded Linker directives, and 
the externally def ined symbols and unresolved references 
contained in those object units. If the MAP directive 
immediately precedes a QUIT directive, the link map contains all 
the unpurged externally defined symbols and unresolved references 
of the completed bound unit. 

The MAPD directive is meant to be used if a bound unit is 
being linked with the -R option (separated code and data). 
Although MAPD can be specified anywhere among the Linker 
directives, it has a delayed effect. It causes the Linker to 
produce a link map after the QUIT directive has been encountered 
and at a time when all common blocks in the separate data area 
have been assigned addresses. (If a bound unit is linked with 
separated code and data, each common block is listed with its 
current size, rather than its address, in any map that appears 
before the QUIT directive.) 

The MAPU directive lists only unresolved references. If MAPU 
is specif ied, the map contains each unresolved reference and the 
object unit in which it is located. 

Any of the map directives can be interspersed among other 
Linker directives. When these directives are encountered, all 
object units named in the link request list are linked before a 
map is produced. Maps are useful for determining whether all 
required object units have been linked, and whether all symbols 
referred to in those object units have been def ined. 

If there are any unresolved references remaining after the 
last object unit is linked, a MAPU directive is automatically 
generated by the Linker. 

6-53 
09/86 
CZ15-02A 



-~ ---------·-------

MAP, MAPD, AND MAPU 

FORMAT: 

MAP 
MP 
MAPD 
MD 
MAPU 
MU 

Default; No map produced. 

A full link map (a map generated by the MAP directive) 
comprises the following sections: 

Start 

Low 

High 

$LCOMW 

Current 

External 
Definitions 

Unresolved 
References 

Address at which execution of the current load unit 
(root or overlay) begins; specif ied in the START 
directive or in a linked object unit. 

Memory address at which the current load unit is 
based. 

Next location after the highest address of the 
current load unit. 

Address or size assigned to local common for the 
current load unit. If no local common is defined 
for the current load unit, this does not appear on 
the MAP. 

Next location after the current address of the 
current load unit (when the map was created). 

All external symbols currently def ined in the sym­
bol table. Unprotected symbols defined in the root 
or a previously linked overlay appear in the map 
unless the symbols are purged by a PURGE or BASE 
directive. Symbols erroneously def ined as both a 
value and a location appear twice under External 
Definitions. 

All references to undef ined symbols contained in 
the root and overlay(s) are listed iri the map. 

For the root and each overlay containing unresolved 
references, the following information is presented: 

• Root and overlay(s) containing references to 
undefined symbol(s) 

6-54 
09/86 
CZ15-02A 

.//~·-„,„_\ 

', ___ „) 



MAP, MAPD, AND MAPU 

• Relative address of the last reference to the 
symbol 

If an undef ined symbol is referred to in multiple 
overlays, the symbol is listed in the map more than 
once. 

If there are external references in both P-relative 
and Immediate Memory Address forms to an undefined 
symbol, the syrnbol is listed twice under Unresolved 
References. 

External symbol names and cornmon block names can contain up 
to 127 characters. Because of the potentiaily great variation in 
the length of these names, two different formats are possible for 
the list of common blocks or externally def ined symbols that 
appear under a given object unit name in the link rnap. If an 
object unit contains no names greater than 10 characters, the 
portion of the link rnap pertaining to that object unit appears in 
a three-column format. Otherwise, the portion of the link map 
pertaining to that object unit appears in a two-column format, 
and names that exceed 23 characters are truncated at that point. 
Figure 6-3 illustrates the use of the MAP and MAPU directives. 

The date and time at which the bound unit was created is 
automatically put in the bound unit's header area. 

6-55 
09/86. 
CZ15-02A 



MAP, MAPD, AND MAPU 

EXMPL 1986/09/09 1354:43.7 

LINKER-(Linker identification) (System identification) 
Bu• EXMPL Linked on: 1986/09/09 1354:43.7 -R -SYM 

-> LIB >>LDD>ZFlRT 

-> IN „M4LNKR 

-> LIB2 M4LNKR>TESTPROGS>ASSEMBLER 

-> VDEF Z_MSKR,X'4000' 

... > BASE X'l0' 

-> START STARTl 

-> LINK RTPROG 

-> MAP 

.. M4LNKR>TESTPROGS>ASSEMBLER>RTPROG. 0 
RTPROG (00020010) 

Page 1 

1986/01/09 1353:17.7 MAP-l.l -08/04/1008 GCOS6 MOD400-R3.l-06/ll/l913 PAGE 

EDEF STARTl] 

EDEF OLil] 

EDEF OLI2] 

EDEF OLI3] 

Figure 6-3. Link Map Formats 

6-56 

.. ·-· --„_---

09/86 
CZ15-02A 



( EXMPL 1986/09/09 1354:43.7 

* * * * * * * * * * * * * * * * * 
* * * * * M A P * * * * * 
* * * * * * * * * * * * * * * * * 

**Start: 
**Low: 
**High: 
**Current: 

0002001E 
00020000 
00020042 
00020042 

***** Common Block Definitions ***** 

** EXMPL 00020000 
* RTPROG 00020010 

C COMMl 00000032 
LX $LCOMW 00000064 

C COMM2 

***** External Detinitions ***** 

P ZHCOMM 00000000 

** EXMPL 00020000 
* RTPROG 00020010 

STARTl 0002001E 
ST4 00020015 
OLI2 00020025 

P ZHREL 

ST2 
ERP 
OLI3 

***** Unresolved References ***** 

** EXMPL 00020000 
* RTPROG 00020010 

V OVLAYl 0002001F 
V OVLAY4 UU02003C 

V OVLAY2 

00000064 

00020000 

00020011 
00020017 
0002002E 

0002002A 

MAP, MAPD, AND MAPU 

LX LCOMMl 

V Z_MSKR 

ST3 
OLil 
OLI4 

V OVLAY3 

Page 2 

00000032 

00004000 

00020013 
00020010 
00020037 

00020033 

Key: **=Root or overlay name, or heading; *=Object file name; C=Common; 
L=Local common; D=Displacement reference; V=Value; P=Protected; X=Purged; 

* * * * * * * * * * * * * * * * * 
* * * * * * * * * * * * * * * * * 
* * * * * * * * * * * * * * * * * 

-> OVLY OVLAYl 

-> LINKN RTPROG.00 

""M4LNKR>TESTPROGS>ASSEMBLER>RTPROG. 00 .O 
OVLAYl {00020042) 

1986/01/09 1338:32.8 MAP-1.l -08/04/1008 GCOS6 MOD400-R3.l-06/ll/1913 PAGE 

-> LINKOl TIME 

-> LINK02 WAIT 

-> LDEF ST4A,ST4+X'l0' 

>>LDD>ZFlRT>TIME.O 
TIME 8310260 (00020056) 

Figure 6-3 (cont}. Link Map Formats 

6-57 
09/86 
CZ15-02A 



MAP, MAPD, AND MAPU 

EXMPL 1986/09/09 1354:43.7 Page 3 

1983/10/26 1423:11.9 MAP-l.l -08/04/1008 GCOS6 MOD400-R3.0-09/l7/l626 PAGE 

[ LINK Zl TIME] 

>>LDD>ZFlRT>ZlTIME.O 
ZlTIME 8310270 (00020056) 

198.j/ .l0/ 27 1038:27 .2 MAP-l .l -08/04/1008 GCOS6 MOD400-R3 .0-09/17/1626 PAGE 

-> EDEF ST3 

-> MAP 

Figure 6-3 (cont). Link Map Formats 

09/86 
6-58 CZ15-02A 



EXMPL 1986/09/09 1354:43.7 

* * * * * * * * * * * * * * * * * 
* * * * * M A P * * * * * 
* * * * * * * * * * * * * * * * * 

**Start: 
**Low: 
**High: 
**Current: 

00020048 
00020042 
00020078 
00020078 

***** Common Block Definitions ***** 

** EXMPL UUU20000 
* RTPROG 00020010 

C COMMl 00000032 
LX $LCOMW 00000064 

** OVLAYl 00020042 
* RTPROG.00 00020042 

LX LCOMMl 00000032 

C COMM2 

LX $LCOMW 

***** External Detinitions ***** 

P ZHCOMM 00000000 

** EXMPL 00020000 
* RTPROG 00020010 

START! oao2001E 
ST4 00020015 
OLI2 00020025 

V OVLAYl 00000001 

** OVLAYl 00020042 
* RTPROG.00 00020042 
* TIME 00020056 
* ZlTIME 00020056 

TIME 00020056 

P ZHREL 

ST2 
ERP 
OLI3 

ST4A 

***** Unresolved References ***** 

** EXMPL 00020000 
* RTPROG 00020010 

V OVLAY2 0002002A V OVLAY3 

00000064 

00000096 

00020000 

00020011 
00020017 
0002002E 

00020025 

00020033 

MAP, MAPD, AND MAPU 

LX LCOMMl 

LX LCOMM2 

V Z_MSKR 

ST3 
OLil 
OLI4 

V OVLAY4 

Page 4 

00000032 

00000032 

00004000 

00020013 
00020010 
00020037 

0002003C 

Key: **=Root or overlay name, or heading; *=Object file name; C=Common; 
L=Local common; D=Displacement reference; V=Value; P=Protected; X=Purged; 

* * * * * * * * * * * * * * * * * 
* * * * * * * * * * * * * * * * * 
* * * * * * * * * * * * * * * * * 

-> MAPU 

Figure 6-3 (cont). 

6-59 

Link Map Formats 

09/86 
CZ15-02A 



MAP, MAPD, AND MAPU 

EXMPL 1986/09/09 1354:43. 7 

* * * * * * * * * * * * * * * * * 
* * * * * M A P * * * * * 
* * * * * * * * * * * * * * * * * 

**Start: 
**Low: 
**High: 
**Current: 

00020048 
00020042 
00020078 
00020078 

***** unresolved Reterences ***** 

** EXMPL UUU20000 
* RTPROG 00020010 

V OVLAY2 0002002A V OVLAY3 

Page 5 

00020033 V OVLAY4 0002003C 

Key: **=Root or overlay name, or neading; *=Object file name; C=Common; 
L=Local common; D=Displacement reference; V=Value; P=Protected; X=Purged; 

* * * * * * * * * * * * * * * * * 
* * * * * * * * * * * * * * * * * 
* * * * * * * * * * * * * * * * * 

-> PROTECT OLI4 

-> PURGE ST2 

-> BASE OLI3 

-> OVLY OVLAY2 

-> LINKO RTPROG.01 

„M4LNKR>TESTPROGS>ASSEMBLER>RTPROG.Ol.O 
OVLAY2 (0002002E) 

1986/-01/ 09 133 9: 30 .O MAP-1.l -08/04/1008 GCOS6 MOD400-R3 .l-06/11/1913 PAGE 

-> LINKOl WAIT 

-> MAP 

>>LDD>ZFlRT>WAIT.O 
WAIT 8310260 (00020042) 

1983/10/26 1424:02.9 MAP-1.l -08/04/1008 GCOS6 MOD400-R3 .0-09/17/1626 PAGE 

[ LINK ZlWAIT] 

>>LDD>ZFlRT>ZlWAIT.O 
ZlWAIT 8310270 (00020042) 

1983/10/27 1116:12.2 MAP-1.l -08/04/1008 GCOS6 MOD400-R3,0-09/17/1626 PAGE 

Figure 6-3 (cont) • Link Map Formats 

6-60 
09/86 
CZ15-02A 

) 
/ 



( 

1 (' 

c: 

EXMPL 1986/09/09 1354:43.7 

* * * * * * * * * * * * * * * * * 
* * * * * M A P * * * * * 
* * * * * * * * * * * * * * * * * 

**Start: 
**Low: 
**High: 
**Current: 

UUU20034 
0002002E 
00020058 
00020058 

***** Common 8loc.k Detini tions ***** 

** EXMPL 00020000 
* RTPROG 00020010 

C COMMl 00000032 
LX $LCOMW UOU00064 

** OVLAYl 00020042 
* RTPROG.00 00020042 

LX LCOMMl 00000032 

** OVLAY2 UUU2002E 
* RTPROG.01 0002002E 

LX LCOMMl 00000032 

***** External Definitions 

P ZHCOMM 00000000 

** EXMPL 00020000 
* RTPROG 00020010 

STARTl 000200lE 
ST4 00020015 
OLI2 00020025 

V OVLAYl UUOOOOOl 

** OVLAYl 00020042 
* RTPROG.00 00020042 
* TIME 00020056 
* ZlTIME 00020056 

X TIME 00020056 

** OVLAY2 0002002E 
* RTPROG.01 0002002E 
* WAIT 00020042 
* ZlWAIT 00020042 

WAIT 00020042 

***** Unresolved Reterences 

** EXMPL OUU20000 
* RTPROG 00020010 

V OVLAY3 00020033 

C COMM2 

LX $LCOMW 

LX $LCOMW 

***** 

p ZHREL 

X ST2 
ERP 

X OLI3 

ST4A 

***** 

V OVLAY4 

MAP, MAPD, AND MAPU 

Page 6 

00000064 LX LCOMMl 00000032 

00000096 LX LCOMM2 00000032 

ooooooca LX LCOMM2 00000032 

00020000 V Z MSKR 00004000 

00020011 ST3 00020013 
00020017 OLil 00020010 
0002002E P OLI4 00020037 

00020025 V OVLAY2 00000002 

0002003C 

Key: **=Root or overlay name, or heading; *=Object file name; C=Common; 
L=Local common; D=Displacement reference; V=Value; P=Protected; X=Purged; 

Figure 6-3 (cont). Link Map Formats 

6-61 
09/86 
CZ15-02A 



MAP, MAPD, AND MAPU 

EXMPL 1986/09/09 1354:43.7 

* * * * * * * * * * * * * * * * * 
* * * * * * * * * * * * * * * * * 
* * * * * * * * * * * * * * * * * 

-> LSR 

********** 
PRIM ""M4LNKR 
LIB >>LDD>ZFlRT 
LIB2 "M4LNKR>TESTPROGS>ASSEMBLER 
********** 

-> Q 

EXMPL 1986/01/09 1354:43.7 

* * * * * * * * * * * * * * * * * 
* * * * * M A P * * * * * 
* * * * * * * * * * * * * * * * * 

**Start: 
**Low: 
**High: 
**Current: 

00020034 
0002002E 
00020058 
00020058 

***** Unresolved Reterences ***** 

** EXMPL 00020000 
* RTPROG 00020010 

V OVLAY3 00020033 V OVLAY4 

Page 7 

Page 8 

0002003C 

Key: **=Root or overlay name, or beading; *=Object f ile name; C=Common; 
L=Local common; D•Displacement reference; V•Value; P•Protected; X=Pur9ed1 

* * * * * * * * * * * * * * * * * 
* * * * * * * * * * * * * * * * * 
* * * * * * * * * * * * * * * * * 

Figure 6-3 (cont). 

6-62 

Link Map Formats 

09/86 
CZ15-02A 

---"\ 

:/~·-·. '"1 
\;_---,/ 

1 
1 



MAP, MAPD, AND MAPU 

EXMPL 1986/09/09 1354:43.7 

LINK SUMMARY 

All values are in hex 

Load Unit Description: 

Name 

DATA 
EXMPL 
OVLAYl 
OVLAY2 

Nurnber Attributes 

DF 
RIU 

0 0 
1 0 

Key to Attributes: 

Base 

EOOOO 
20000 
20042 
2002E 

Start 

00000 
2001E 
20048 
20034 

Size Access 

00352 000 
00042 000 
00039 000 
0002D 000 

R=Root; D=Data; O=Fixed overlay; F=Floating overlay 
U=Contains unresolved references; I=Contains IMAs 

Bouna Unit Description: 

Linked for BMMU 
Size of f ixed area: 78 
Nurnber of overlays; Fixed: 2, Floating: 1, Total: 3 
Nurnber of EDEFs: 5 

Page 9 

Uninitialized data area; Size: 1F4, Initialization value: 00000000 
Bound unit record; size: 100, count: 4 

* * * * * Bound unit contains unresolved references. 

LINK DONE 

* * * * * Nurnber of errors during the link: 1. 

Figure 6-3 (cont). Link Map Formats 

09/86 
6-6 3 CZlS-0 2A 



. ·- ··--------------------------~-------- -··--- -- -

NOTCMD 

NO'l'CMD (or ND) 

Indicates that the bound unit cannot be executed as a 
command. This directive sets an indicator in the bound unit 
header area. 

FORMAT: 

6-64 
09/86 
CZ15-02A 

,,-·-·-,. 
f ' 
\~J 



( 

ONECPU 

ONECPU (or OU) 

Indicates that the bound unit and all its subordinate tasks 
rnust be run on a single central processor unit. This directive 
sets an indicator in the bound unit header area. 

FORMAT: 

6-65 
09/86 
CZ15-02A 



----·--~"· ---------- --- --- ---- -- ·--~-------

OVERLAYTABLE 

OVERLAYTABLE (or OE or OT) 

Include the name of each overlay and its associated 
Linker-generated overlay number in the Linker's permanent symbol 
table. 

FORMAT: 

t g~ERLAYTABLE ! 
( OT ) 

6-66 
09/86 
CZ15-02A 



( 

OVLY 

OVLY (or OY) 

Assigns a specif ied name to the nonfloatable overlay that 
immediately follows, and designates the end of the preceding root 
or overlay. OVLY must be specified as the first directive of 
each nonf loatable overlay. The Linker assigns a number to each 
overlay. They are numbered sequentially, in ascending order; the 
first overlay is O. 

FORMAT: 
' 
{ g~LY} name 

ARGUMENT: 

name 

Name of the nonf loatable overlay that immediately 
follows. The overlay name can include any character that 
is legitimate for a file name; see the LINK directive. 

Example: 

LINKER BU -PT 

LINKER-rrrr-mm/dd/hhmm 

L? 
LINK A, B; MAP 

L? 
OVLY A2 

L? 
LINK X 

L? 
LINK Y 

L? 
MAP 

Load the Linker and designate BU 
as the bound unit name. 

Linker identif ication message. 

Declare the end of the root (which 
comprises object units A.O and B.O) 
and specify that the next overlay is 
a nonfloatable overlay named A2. 
The Linker assigns the number 0 to 
this overlay. 

6-67 
09/86 
CZ15-02A 



OVLY 

L? 
QUIT 

LINK DONE 
RDY: 

6-68 

-----------~ -----„·--------- . -·-·-···---~-

09/86 
CZ15-02A 

~ 

/'---\ 
0 



( 

PAGEPOOL 

PAGEPOOL (or PL) 

Indicates that the bound unit must be run in a page pool in 
memory. This directive sets an indicator in the bound unit 
header area. Before using this directive, consult with the 
person responsible for system building and determine available 
page pool memory. 

This directive can be used only for bound units being linked 
for a VMMU environment. 

FORMAT: 

{ ~~GEPOOL} 

6-69 
09/86 
CZ15-02A 



PROTECT 

PROTECT (PROT or PT) 

Prevents certain symbols and/or object unit names f rom being 
removed f rom the symbol table. Symbols that identify addresses 
within the range of addresses specif ied by the f irst operand 
through the second operand are protected. Object unit names 
equated to addresses within that range are protected. If a 
second operand is not specif ied, the symbol at the address of the 
first operand and any other symbols or object unit names equated 
to that address are protected. The PROTECT directive cannot be 
embedded in Assembly language control statements. 

FORMAT: 

$ 
% 
X'address' 
=object-unit-name 
xdef 
i 

$ 
% 
X'address' 
=object-unit-name 
xdef 
# 

ARGUMENTS: 

$ 

% 

Next location after the highest address of the linked 
root or just previously linked nonfloatable overlay. 

Highest address+l ever used in the linked root or any 
previously linked nonf loatable overlay. 

X' address' 

A one- to f ive-character hexadecimal address enclosed in 
apostrophes and preceded by X. The specified address is 
relative to either the base of the fixed area (where root 
and f ixed overlays are linked} or to the base of the 
current floatable overlay. For example, if root is based 
at a segment address of 50000, PROTECT X'lOOO' indicates 
a segment address of 51000. Therefore, do not include a 
segment number as part of 'address'. 

=object-unit-name 

Specified object unit's base address. 

6-70 
09/86 
CZ15-02A 



· PROTECT 

xdef 

Any previously defined external symbol. 

The curr.ent address. 

Example 1: 

PROT X'l234',X'4565' 

If the Linker is currently processing the fixed area of a 
bound unit based at a segment address of 70000, this 
directive protects all symbols and object unit names that 
identify addresses from 71234 through 74565. 

Example 2: 

PT =FIRST 

This directive protects symbols that identify the base 
address of the object unit FIRST and all symbols equated to 
that address. The base address of FIRST is determined by 
producing a link map. 

Example 3: 

PROT SYM,X'5555' 

If the Linker is currently processing the fixed area of a 
bound unit based at a Segment address of 8C0000, this 
directive protects all symbols and object unit names that 
identify addresses from the address of the previously def ined 
external symbol named SYM through 8C5555. 

6-71 
09/86 
CZ15-02A 



PSU 

PSU -
The PSU (planned segment utilization) directive can be used 

to indicate that each floatable overlay is to be loaded into 
group work space (GWS) rather than being assigned the segment 
address established for it by the Linker. 

FORMAT: 

PSU 

6-72 
09/86 
CZ15-02A 

··---- ·--~-

' 

' \) 
V 



PURGE 

PURGE (or PE) 

Removes the following items from the symbol table: 
unprotected symbols that def ine addresses greater than or equal 
to the f irst address and less than or equal to the second 
address. If a second operand is not specified, the symbol at the 
address of the f irst operand and any other symbols or object unit 
names equated to that address are purged. 

Limitations are: 

• Undefined symbols cannot be purged. 

• Symbols and object unit names that are protected by a 
PROTECT directive cannot be purged unless they have been 
unprotected (see "UNPROTECT"). 

• Only symbol addresses (not values) can be purged by this 
directive. (See "VPURGE.") 

• The PURGE directive cannot be embedded in Assembly 
language control statements. 

FORMAT: 

{ ~~RGE} 

$ 
% 
X'address' 
=object-unit-name 
xdef 
# 

' 

$ 
% 
X'address' 
=object-unit-name 
xdef 
t 

ARGUMENTS: 

$ 

% 

Next location after the highest address of the linked 
root or just previously linked nonfloatable overlay. 

Highest address+l ever used in the linked root or any 
previously linked nonfloatable overlay. 

6-73 
09/86 
CZ15-02A 



PURGE 

X'address' 

A one- to f ive-character hexadecimal address enclosed in 
apostrophes and preceded by X. The specified address is 
relative to either the base of the f ixed area (where root 
and f ixed overlays are linked) or to the base of the 
current floatable overlay. For example, if root is based 
at a segment address of 50000, PURGE X'lOOO' indicates a 
segment address of 51000. Therefore, do not include a 
segment number as part of 'address'. 

=object-unit-name 

Specified object unit's base address. 

xdef 

Any previously defined external symbol. 

The current address. 

Example 1: · 

PURGE X'l234',X'4565' 

If the Linker is currently processing the fixed area of a 
bound unit based at segment address 60000, this directive 
purges all unprotected symbol and object unit names that 
identify addresses from 61234 through 64565. 

Example 2: 

PE =FIRST 

This directive purges unprotected syrnbols that identify the 
base address of the object unit FIRST and any other 
unprotected syrnbol names equated to that address. 

Example 3: 

PURGE SYM,X'5555' 

If the Linker is currently processing the fixed area of a 
bound unit based at a segment address of 40000, this 
directive purges all unprotected syrnbols and object unit 
names that identify addresses f rom the address of the 
previously defined external symbol SYM through 45555. 

6-74 
09/86 
CZ15-02A 



QUIT 

QUIT (or QT or Q) 

Indicates that the last Linker directive has been entered. 
QUIT should be entered after the last overlay, or at the end of 
the root if there are no overlays. 

If object units were successfully linked, the bound unit is 
completed and the Linker terminates; otherwise, the Linker 
terminates execution immediately. 

The QUIT directive is required; it cannot be embedded in 
Assembly language control statements. 

FORMAT: 

6-75 
09/86 
CZ15-02A 



-----·--·-·----------------- ·-- - ---~- ----- --·------------ -------- ·------

REPORT 

REPORT (or RT) 

Reports the execution environment for which the bound unit is 
being linked. This report includes the following information: 

• The type of memory management unit under which the bound 
unit is intended to run. 

• The base segment number used for the bound unit's root. 

• The access assigned to all load units in the bound unit's 
fixed area (i.e., to the root and all nonfloatable 
overlays). 

• The base segment number used for the bound unit's 
separated data area (if the bound unit is linked with the 
-R option). If you use the REPORT directive before the 
f irst object module of the bound unit is linked and you 
have not explicitly assigned a base segment number for the 
separate data portion of the bound unit, the Linker may 
choose to use a base segment number different from the one 
reported. 

• The access assigned to the bound unit's separated data 
area (if the bound unit is linked with the -R option). 

Use the REPORT directive in either of two cases: 

• Bef ore the f irst object module of the bound unit is 
linked. This allows an interactive user to decide whether 
to use a SEG directive to change the current segment 
number(s) and access before linking begins. 

• After a FLOVLY directive and before the f irst object 
module of that floatable overlay is linked. In this case, 
the second item above is now the default base segment 
number the Linker will assign to this f loatable overlay 
unless you specify a different segment number in an FSEG 
directive. Likewise, the third item above is the access 
to be assigned to this f loatable overlay unless you 
specify different access in an FSEG directive. 

FORMAT: 

{=~PORT} 

6-76 
09/86 
CZ15-02A 

,.tr"---...... ,,,_ / 
1 ' 



( 

(.: 

RERUN RELOCATABLE 

RERUN RELOCATABLE (RR) 

If a shareable bound unit has to be restarted, it can be 
reloaded into locations other than those it occupied when the 
checkpoint was taken. (See the Commands manual for details on 
checkpoint- restart.) If this d1rect1ve is not specified, the 
bound unit must be reloaded at the same memory pool locations it 
occupied when the checkpoint was taken. 

If the RR directive is used, it is important to remember that 
after reloading, the current values of the IMAs referencing 
locations in the bound unit are no longer valid; therefore, if 
the bound unit contains IMAs (see the link map or compiler list 
file to determine this), RR should not be used. 

FORMAT: 

RR 

6-77 
09/86 
CZ15-02A 



RETURN 

RETURN (or RN) 

Return to accepting directives f rom the user-in f ile. This 
directive should be specif ied only in an INCLUDE f ile. A RETURN 
directive in a f ile specif ied in an INCLUDE directive is 
logically equivalent to an EOF mark; it returns the Linker to the 
user-in file. 

FORMAT: 

{::TURN} 

6-78 
09/86 
CZ15-02A 

---.,_ 
\ 
) 



( 

SEG 

SEG (or SG) 

Define the execution environment in which the bound unit will 
run. Before using this directi~e, consult with the person 
responsible for system building and determine the segment numbers 
available to task groups. If used, the SEG directive must 
precede any LINK/LINKN/LINKO, BASE, LDEF, PROTECT, PURGE, or 
UNPROTECT directives. With this directive, you can specify the 
segment number(s) tobe assigned to the bound unit, as well as 
the access rights to the segment(s). 

It is generally best to let the Linker assign the bound unit 
segment numbers. After determining which type of memory 
management unit the bound unit will use, the Linker assigns an 
appropriate base segment number to the code portion of the bound 
unit. If the code portion requires more than one segment, the 
Linker assigns successive segment numbers. After the fixed area 
(root and fixed overlays) has been linked, the Linker assigns the 
next higher segment number to the separate data portion unless a 
base segment number has been specif ied for the separated data. 
If the bound unit has any floatable overlays, the Linker then 
assigns the next higher segment number to the f irst floatable . 
overlay. If the bound unit has both separated data and floatable 
overlays, the Linker assigns the separate data portion the 
segment number one higher than the highest number used f or the 
f ixed area, and then assigns the first floatable overlay a 
segment number one higher than the number assigned to the 
separate data portion. 

FORMAT: 

{ ~~G} argl,arg2,arg3,arg4,arg5,arg6 

ARGUMENTS: 

Each argument is optional, but at least one must be 
specif ied. If an argument is to be omitted and another one 
will be specified to the right, include a comma for the 
omitted argument. (e.g., SEG ,,,X'A' means change only 
arg4.) 

argl 

Specif ies the type of memory management unit to be used 
in the execution environment. The value must be either 
BMMU, EMMU, or VMMU. 

6-79 
09/86 
CZ15-0'2A 



SEG 

arg2 

arg3 

arg4 

argS 

arg6 

Specif ies the base segment number to be used for the code 
portion of the bound unit. The value must be a 
hexadecimal number from 1 to F for a BMMU environment, 
f rom 8C to FF for an EMMU environment, and from 3B to 3FF 
for a VMMU environment. 

Segment numbers must be specif ied in hexadecimal 
notation; e.g., X'h ••• •. 

Specifies the access rights for the code portion of the 
bound unit. The value must be a bit string of exactly 6 
binary digits for a BMMU or EMMU environment and f rom 6 
to 10 binary digits for a VMMU environment. The value 
must be specified in binary string notation; e.g., 
B'b ••• •. The bit string represents the corresponding 
access fields in the segment descriptor. For more 
information on setting access, refer to "Setting Access 
in the Linker's SEG or FSEG Directives 0 earlier in this 
section. 

Specif ies the base segment number to be used for the data 
portion of the bound unit, if the bound unit consists of 
separated code and data. The value must be a hexadecimal 
number from 1 to F for a BMMU environment, from 8C to FF 
for an EMMU environment, and f rom 3B to 3FF for a VMMU 
environment. Segment numbers must be specified in 
hexadecimal notation; e.g., X'h ••• •. (This segment 
number must not be the same number specified in arg2.) 

Specif ies the access rights for the data portion of the 
bound unit, if the bound unit consists of separated code 
and data. The value must be a bit string of 6 binary 
digits for a BMMU or EMMU environment. For a VMMU 
environment it must be 6 to 10 binary digits •• Access 
rights must be specified in binary string notation; e.g., 
B' b ••• '. 

Specif ies the highest segment number in the execution 
environment. 

6-80 
09/86 
CZ15-02A 



,- ,· 

SEG 

Example 1: 

SEG BMMU,X'D',,X'F' 

In this example, segment D with default access is assigned to 
the code portion of the bound unit and segment F with default 
access is assigned to the data portion. 

Example 2: 

SEG EMMU,X'8E',B'001100' 

In this example, segment SE with ring 0 write access is 
assigned to the code portion of the bound unit. If the bound 
unit contains separated data, the default values for segment 
number and access apply to the separated data. 

Example 3: 

SEG VMMU, X'3E',B'001111',X'40' 

In this example, Segment 3E with Ring 0 write acces~ is 
assigned to the code portion of the bound unit and segment 40 
with default access is assigned to the data portion. 

6-81 
09/86 
CZ15-02A 



1 

SHARE 

SHARE {or SE) 

Designates a bound unit as shareable within a memory pool. 
If another task requests that the bound unit be loaded, instead 
of another copy of the root being loaded, the existing copy in 
memory is used. The bound unit must have reentrant code, but the 
system does not check to see that it does. 

SHARE causes the root of the bound unit to be assigned ring 0 
write access. !f the shareable bound unit contains any floatable 
overlays or a separate data area, the Linker leaves them with the 
default write access (ring 3) or with any user-supplied write 
access. 

FORMAT: 

{~~ARE} 

6-82 
03/87 
CZ15-02B 



( 

·STACK 

STACK (or SK) 

Specif ies the size of the stack (as a decirnal nurnber of 
words). If no STACK directive is specif ied, the Linker uses the 
largest stack size specified in an object unit linked into the 
bound unit. 

FORMAT: 

{ ~i'ACK} value 

ARGUMENT: 

value 

The size of the stack (as a decirnal nurnber of words). 

6-83 
09/86 
CZ15-02A 



START 

START (or ST) 

Specif ies the relative location within a root or overlay at 
which execution be9ins once it is loaded into memory. 

If a linked object unit contains a start address (specif ied 
in an Assembler or compiler ENDstatement), and a START directive 
is specif ied for the root or overlay containin9 this object unit, 
the Linker uses the f irst start address it encounters (in either 
a START directive or an END statement) for this root or overlay. 

Once a START directive is specif ied, it prevents the Linker 
f rom usin9 a start address specified in any object unit 
subsequently linked in the affected root or overlay. This is 
true even if the START directive symbol is never def ined. 

FORMAT: 

{ START} 
ST symbol 

ARGUMENT: 

symbol 

Name of the externally def ined symbol whose address 
indicates the relative address at which the root or 
overlay be9ins executing. 

Default: Start address specif ied in the first linked 
object unit that has a start address. If a start address 
is not specif ied, the start address is the first 
non-common location in the root or overlay. 

6-84 
09/86 
CZ15-02A 



/ 

l ---, 
. ./' 

SWAPPOOL 

SWAPPOOL (or SL) 

Indicates that the bound unit must be run in a swap pool or 
page pool in memory. This directive sets an indicator in the 
bound unit header area. Before using this directive, consult 
with the person responsible for system building and determine 
available swap pool or page pool memory. 

FORMAT: 

{ ~~APPOOL} 

6-85 
09/86 
CZ15-02A 



SYS 

SYS (or SS) 

Indicates that the bound unit can be run as a system task. 
This directive sets an indicator in the bound unit header area. 
Before using this directive, consult the person responsible for 
system building and determine available system memory. 

The SYS directive must be used for a bound unit that will be 
named in an LDBU directive to the Configuration Load Manager. 

FORMAT: 

{ ~~s} 

6-86 
09/86 
CZ15-02A 



( 

( .. 

UNPROTECT 

UNPROTECT (or UNPROT or UT) 

Removes protection f rom one or more protected symbols in the 
symbol table. The symbols were formerly protected by means of 
the PROTECT directive, which prevents certain symbols and/or 
object unit names from being removed from the symbol table. With 
the UNPROTECT directive, symbols that identify addresses within 
the range of addresses specif ied by the first operand through the 
second operand are unprotected. Object unit names equated to 
addresses within that range are also unprotected. If a second 
operand is not specif ied, the symbol at the address of the f irst 
operand and any other symbols or object unit names equated to 
that address are unprotected. Once a symbol or object unit name 
is unprotected, it is eligible for subsequent purging. The 
UNPROTECT directive cannot be embedded in Assembly language 
control statements. 

FORMAT: 

{ UNPROTECT} 
UNP ROT 
UT 

$ 
% 
X'address' 
=object~unit-name 
xdef 

* 

$ 
% 
X' address' 

=object-unit-name 
xdef 

* 
ARGUMENTS: 

$ 

% 

Next location after the highest address of the linked 
root or just previously linked nonfloatable overlay. 

Highest address+l ever used in the linked root or any 
previously linked nonfloatable overlay. 

X'address' 

A one- to f ive-character hexadecimal address enclosed in 
apostrophes and preceded by X. The specif ied address is 
relative to either the base of the f ixed area (where root 
and f ixed overlays are linked) or to the base of the 
current floatable overlay. For example, if root is based 
at a segment address of 50000, UNPROTECT X'lOOO' 
indicates a segment address of 51000. Therefore, do not 
include a segment number as part of 'address'. 

6-87 
09/86 
CZ15-02A 



UNPROTECT 

=object-unit-name 

Specified object unit's base address. 

xdef 

Any previously defined external symbol. 

The current address. 

Example 1: 

UNPROTECT X'l234',X'4565' 

If the Linker is currently processing the f ixed area of a 
bound unit based at a segment address of 8COOOO, this 
directive unprotects all symbols and object unit names that 
identify addresses from 8Cl234 through 8C4565. 

Example 2: 

UNPROTECT =FIRST 

This directive unprotects symbols that identify the base 
address of the object unit FIRST and all symbols equated to 
that address. The base address of FIRST is determined by 
producing a link map. 

Example 3: 

UNPROTECT SYM,X 1 5555' 

If the Linker is currently processing the f ixed area of a 
bound unit based at a segment address of 70000, this 
directive unprotects all symbols and object unit names that 
identify addresses f rom the address of the previously def ined 
external symbol named SYM through 75555. 

6-88 
09/86 
CZ15-02A 



( 

USERPOOL 

USERPOOL (or UL) 

Indicates that the bound unit must be run in a user memory 
pool as a user task. This directive sets an indicator in the 
bound unit header area. 

FORMAT: 

{ g~ERPOOL} 

6-89 
09/86 
CZ15-02A 



------------· ·-- -· ---·--·-------

VAL 

VAL (or VL) 

Defines at link time a value that is equivalent to the 
difference between two external location definitions. When VAL 
is specif ied, the external location def initions must already 
exist in the Linker's symbol table. 

FORMAT: 

t ~~ ~ symbol, external location1 - external lo_cation2 
\ VL J 

ARGUMENTS: 

symbol 

Assign a name to the value of the distance between two 
locations. 

external location 

Externally defined location. 

6-90 
09/86 
CZ15-02A 



VDEF 

VDEF (or VF) 

Assigns a value to an external symbol. The VDEF directive 
cannot be embedded in Assembly language control statements. A 
symbol should be defined only once, as a value or as a location. 
When a symbol is defined, its definition is put into the Linker 
symbol table so that it can be used during linking to resolve 
external references. 

FORMAT: 

{ VDEF} 
VF symbol,X'value' 

ARGUMENTS: 

symbol 

One to eight hexadecimal characters. 

X'value' 

Value of the designated symbol; must be enclosed in 
apostrophes and preceded by x. 

6-91 
09/86 
CZ15-02A 



VPURGE 

VPURGE (or VE) 

Remove the specif ied external value def inition f rom the 
Linker symbol table. This directive cannot be embedded in 
Assembly language control statements. 

FORMAT: 

{ ~~URGE} value-definition-symbol 

ARGUMENT: 
. 

value-definition-symbol 

External symbol name associated with a particular value. 

6-92 
09/86 
CZ15-02A 



( 

( 

LINKER PROCEDURES 

The Linker is a system software program that functions as the 
final stage of program development before program execution is 
possible. Before being linked, each program must be compiled (or 
assembled} to produce an object unit {or compile unit} that the 
Linker identifies for linking. The Linker recognizes object 
units by the .o suffix (appended to each f ile name by the 
compiler}. The Linker combines one or more object units to 
produce a bound unit. A bound unit is an executable program 
consisting of a root and zero or more overlays that can be loaded 
into memory. 

This subsection describes frequently used Linker procedures. 
The examples provided show different methods for linking COBOL 
programs, including one example that uses overlays. 

Using Overlays 

In situations where memory is limited, it may be necessary 
for you to divide your program into one or more overlays so that 
individual portions of your program can be called into a single 
memory area only when needed. Unlike the root, which cannot be 
reloaded once it is read into memory, an overlay can be read in 
as often as it is needed. See Example 4 for a link session that 
uses overlays. 

Interrupting Linker Execution 

If at any time during Linker execution you want to interrupt 
processing, you can perform one of the following actions: 

• Press the QUIT, INTERRUPT, or BREAK key at your terminal. 

• Enter C Bid if you are at the operator terminal, where id 
is your two-character task group identif ication. 

After you perform one of the above actions, a **BREAK** 
message appears on your terminal. You can now: 

• Enter any valid ECL command. 

• Resume Linker execution as if no break had occurred by 
entering the Start (SR} command. 

• Terminate Linker processing and return to command level by 
entering the Unwind (UW} command. 

• Restart your task group by issuing a New Process 
(NEW_PROC} command. 

If you want to terminate the MAP operation and jump to the 
next Linker directive, issue a Program Interrupt (PI} command. 

6-93 
09/86 
CZ15-02A 



Sample Link Sessions 

The sample link sessions that follow will help you become 
familiar with Linker procedures. 

The f irst three examples illustrate different methods for 
linking a COBOL program. The fourth example describes a method 
for linking a COBOL program that contains two overlays. 

Example 1: Linking With a Minimum of Directives 

This example illustrates a link session requiring a minimum 
of Linker directives. 

The COBOL program DATIME has just been compiled. A List (LS) 
command is issued to examine the contents of the programmer's 
(Cook) working directory: 

Directory: ACOBOL>ONE 
Time: 1986/01/17 1103:33 

DATIME.C 
DATIME.L 
DATIME.O 

Total Seetors: 

SEQ 
SEQ 
SEQ 

20 

4 
10 

6 

The file DATIME.C contains Cook's source program. The files 
DATIME.O and DATIME.L were produced by the COBOL Compiler. 
DATIME.O contains the object unit that the Linker uses to produce 
a bound unit named DATIME. 

Cook now wants to link bis program into a bound unit. He 
enters the command: 

Cook has specif ied that he wants to create a bound unit named 
DATIME. Cook also specif ies that his link map be directed to 
printer !LPTOO rather than to the f ile named DATIME.M in his 
working directory. (The contents of DATIME.M are described later 
in this example.) The -PT argument causes the Linker prompt L? 
to appear when the Linker is ready to receive input. It is 
recommended that new users include this argument in the Linker 
command f ormat. The -R argument indicates that all common blocks 
are to be placed into a separate data area. 

The Linker responds: 

LINKER-(Linker identif ication) 

6-94 
09/86 
CZ15-02A 



( 

( 

Cook now enters Linker directives. Each directive has been 
keyed to the explanatory notes that follow. (The Linker prompts 
have been omitted from the text.} 

********** 
PRIM WORKING DIRECTORY 
********** 

********** 
PRIM WORKING DIRECTORY 
LIB ADEVX>NEW>ZCART 
********** 

LINK DONE 

Cook asks the Linker to list the search rules it currently 
uses to locate object units to be linked. The Linker's 
response indicates that the primary directory searched is 
Cook's working directory. 

The LSR directive is optional. Omitting it does not affect 
the linking process. It is included here and below to 
illustrate how you can view the Linker's current search rules 
as they result from your use of LIB directives. 

Because Cook's COBOL program requires the run-time routines 
located in the directory ZCART, Cook must designate ZCART as 
the secondary directory to be searched by the Linker. If the 
required object units cannot be found in Cook's primary 
directory, the Linker automatically searches the secondary 
directory ADEVX>NEW>ZCART. 

Cook lists the Linker's modified search rules. 

This LINK directive queues the object unit DATIME.O for 
linking. 

The MAPD directive produces a link map that is written out to 
the printer LPTOO (as specified in the -COUT argument of the 
Linker command). This link map is shown in Figure 6-4. It 
also causes DATIME.O to be linked before the map is produced. 

Cook enters the QUIT directive to indicate that there are no 
more directives. The Linker builds the bound unit and 
terminates. 

6-95 
09/86 
CZ15-02A 



----------------------·· --~--

DA'l'IME 1986/09/15 1826:47.6 

LINKER-(Linker identification) (System identification) 
Bu• DA'l'IME Linked on: 1986/01/15 1826:47.6 -R 

-> LIB ··oEVX>NEW>ZCAR'l' 

-> LINK DA'l'IME 

-> MAPD 

DA'l'IME.O 
DA'l'IM (00020000) 

13COBOLM REV. 1.0 DATE 86/01/13 TIME 1830 

L!NK!l4 ZCPJ!P!] 

EDEP DA'l'IME] 

LINK04 ZCRMDT] 

LINK04 ZCRMIN] 

LINK04 ZCRMDI] 

DEVX>NEW>ZCAR'l'>ZCRMPI.O 
ZCRMPI 8510100 (000200BE) 

HRS ASSEMBLER 10.1 10/10/85 1651.2 edt 'l'hu 

LINK ZCRMER 

LINK ZCRASP 

""DEVX>NE.W>ZCAR'l'>ZCRMDT.O 
ZCRMD'l' 8508240 (00020469) 

HRS ASSEMBLER 10.1 08/24/85 1057.3 edt Sat 

„DEVX>NE.W>ZCAR'l'>ZCRMIN.O 
ZCRMIN 8508240 (00020408) 

HRS ASSEMBLER 10.1 08/24/85 1100.2 edt Sat 

""DEVX>NEW>ZCAR'l'>ZCRMDI.O 
ZCRMDI 8601130 (00020803) 

HRS ASSEMBLER 10.l 01/13/86 1559.9 est Mon 

""DEVX>NEW> ZCAR'l'> ZCRMER. 0 
ZCRMER 8511130 (00020907) 

HRS ASSEMBLER 10.1 11/13/85 1414.3 est Wed 

[ LINK ZCPRO'l' ] 

DEVX>NEW>ZCAR'l'>ZCRASP.O 
ZCRASP 8601130 (0002099.2) 

HRS ASSEMBLER 10.1 01/13/86 1439.6 est Mon 

""DEVX>NEW>ZCAR'l'>ZCPRO'l'.O 
ZCPRO'l' 8511210 (000209AA) 

HRS ASSEMBLER 10.1 11/21/85 1436.5 est 'l'hu 

-> Q'l' 

Figure 6-4. Sample Link Map (DATIME.M) 

6-96 

Page 1 

09/86 
CZ15-02A 

. 

._) 1 



DATIME 1986/09/lS 1826:47.6 

* * * * * * * * * * * * * * * * * 
* * * * * M A P * * * * * 
* * * * * * * * * * * * * * * * * 

**Start: 
**Low: 
**High: 
**$LCOMW: 
**Current: 

00020016 
00020000 
000209CC 
OOOEOOOO 
000209CC 

***** Common Block Definitions ***** 

** DATIME 00020000 
* DATIME 00020000 

L $LCOMW OOOEOOOO L LUDATA 

***** External Definitions ***** 

P ZHCOMM 

** DATIME 00020000 
* DATIME 00020000 

00000000 

DATIME 00020016 
* ZCRMPI 000200BE 

ZCRINI 000200BE 
ZCSTOP 00020293 
ZCB32K 00020310 

* ZCRMDT 00020469 
ZCRMDT 00020476 

* ZCRMIN 000204DB . 
ZCRMIN 000204DB 

* ZCRMDI 00020803 
ZCRMYl 00020805 
ZCRMY3 U00208F6 

* ZCRMER 00020907 
ZCRMER 00020910 

* ZCRASP 00020992 
ZCRASP 00020992 

* ZCPROT 000209AA 

P ZHREL 

ZCRMEX 
ZCGRNG 
ZCERRO 

ZCRMYO 

OOOEOOBB 

00020000 

000203D8 
0002035C 
000203C3 

000208EC 

L LGDATA 

ZCRMSG 
ZCXRNG 
ZCERRX 

ZCRMY2 

Page 2 

OOOE029C 

00020409 
00020366 
000203C7 

000208EE 

Key: **=Root or overlay name, or heading1 *=Object f ile name7 C=Common; 
L=Local common1 D=Displacement reference1 V=Value; P=Protected7 X=Purged; 

* * * * * * * * * * * * * * * * * 
* * * * * * * * * * * * * * * * * 
* * * * * * * * * * * * * * * * * 

Figure 6-4 (cont) • Sample Link Map (DATIME.M) 

6-97 
09/86 
CZ15-02A 



DATIME 1986/09/15 1826:47.6 

LINK SUMMARY 

All va1ues are in hex 

Load Unit Description: 

Name Number Attributes Base Start Size Access 

DATA 
DATIME 

Key to Attributes: 

DFI 
RI 

EOOOO 
20000 

00000 
20016 

0029C 
009CC 

R=Root; D=Data; O=Fixed overlay; F•Floating overlay 
U=Contains unresolved references; I•Contains IMAs 

Bouna Unit Description: 

Linked for BMMU 
Size of f ixed area: 9CC 
Number of overlays; Fixed: O, Floating: l, Total: l 
Number ot EDEFs: l 

000 
000 

Page 3 

Uninitialized data area; Size: lEl, Initialization value: 00000000 
Sound unit record; size: 100, count: D · 

LINK DONE 

Figure 6-4 (cont) • Sample Link Map (DATIME.M) 

The linking process has been successfully completed1 Cook now 
enters an LS command to examine the contents of his working 
directory: 

Directory: "COBOL>ONE 
Time: 1986/01/17 1119:38 

DA TIME 
DATIME.C 
DATIME.L 
DATIME.O 

Total Seetors: 

F R 
SEQ 
SEQ 
SEQ 

48 

28 
4 

10 
6 

The bound unit DATIME now resides in Cook's working 
directory, ready for execution. Note that DATIME.M, the link 
map, is not listed in the working directory. This f ile was 
written out to the printer LPTOO when cook issued the MAPD 
directive. 

6-98 
09/86 
CZ15-02A 



( 

( 

Example 2: Specifying an Input Device 

This example shows you how to specify a directive input 
device (such as a file, another terminal, or card reader) from 
which the Linker reads its directives. This procedure is useful 
if you have many directives to enter, or if you wish to create a 
Linker directive f ile for future use. 

Programmer Cook wants to have the Linker read its directives 
from a file named LKDIR. He invokes the Editor, types in his 
Linker directives, and writes the f ile to the pathname 
ADEVX>WORK>LKDIR. The contents of LKDIR are listed below. (The 
object unit to be linked, DATIME.O, resides in Cook's working 
directory.) 

LIB ADEVX>NEW>ZCART 
LINK DATIME 
MAP 
QUIT 

To activate Linker processing, Cook need only enter the 
following command: 

Cook has specif ied that he wants to create a bound unit named 
DATIME. The -IN argument specif ies the pathname of the file from 
which Linker directives are read. Cook could also have 
designated another terminal or a card reader as the directive 
input device~ 

The complete dialog as it appears at Cook's terminal is shown 
below: 

LINKER-(Linker identification) 
LINK DONE 

RDY: 

Example 3: Linking More Than One Object Unit 

In this example, Cook wants to link the object unit DATIME.O, 
which resides on a diskette volume named ADSK, and whose full 
pathname is ADSK>MYDIR>DATIME.O. Since Cook wants to create the 
bound unit DATIME in his working directory ASYSRES>WORK, he must 
designate the directory ADSK>MYDIR as the primary directory the 
Linker will search. 

A second object unit NEXT.O is also to be linked into the 
bound unit. It resides on the current working directory. Cook 
wants to link NEXT.O to DATIME.O after DATIME.O has been linked. 

Cook's dialog with the system is shown below. The dialog has 
been keyed to the explanatory notes that follow. 

6-99 
09/86 
CZ15-02A 



---------·-·-----·-- ·-·----~·· .. 

********** 
PRIM ... DSK>MYDIR 
LIB ... DEVX>NEW>ZCART 
********** 

********** 
PRIM WORKING DIRECTORY 
LIB ... DEVX>NEW>ZC~..RT 
********** 

LINK DONE „ 
Directory: ... SYSRES>WORK 
Time: 1986/01/17 1148:33 

DATIME 
DATIME.M 
NEXT.O 

Total Seetors: 

F R 
SEQ 
SEQ 

52 

28 
18 

6 

Invoke the Linker and specify DATIME as the name of the bound 
unit to be created. 

Request that the Linker search the secondary directory ZCART 
for the required COBOL run-time routines. 

Specify the IN directive, designating ... DSK>MYDIR as 
... DSK>MYDIR the primary directory in which the Linker should 
search for the required object unit. 

List the Linker's search rules. The Linker's response 
indicates that the primary directory to be searched is 
"DSK>MYDIR. 

Request that DATIME.O be queued for linking. Enter the IN 
directive again, this time omitting a pathname. This action 
modifies the Linker's search rules; the primary directory to 
be searched is now Cook's working directory. 

List the Linker's search rules again, and note that the 
Linker's primary directory has been redirected to his working 
directory. 

6-100 
09/86 
CZ15-02A 

-~. 



Request that NEXT.O be queued for linking. Issue a MAP 
directive. A link map is written to a f ile named DATIME.M in 
Cook's working directory. 

Indicate that there are no more Linker directives. 

Specify an LS command to verify that the bound unit DATIME 
has been created in his working directory. DATIME.M contains 
link map information. 

Example 4: Linking with Two Overlays 

This example describes how to link a program containing two 
overlays. 

Programmer Shepard has written a COBOL program called PROGR, 
which calls two overlays, PROGO and PROGl. Figure 6-5 shows the 
relationship between the root PROGR and the two overlays. Source 
listings of the root program and the two overlays are shown in 
Figures 6-6, 6-7, and 6-8. (Source listings are included to show 
you the relationships that exist between a root program and its 
overlays. In Figure 6-6, for example, note how the source 
program calls in its overlays. If Shepard's link is successful, 
each greeting message will join with the others in the specif ic 
order Shepard intends.) 

Following COBOL compilation of all three source files, 
Shepard issues an LS command to display the contents of the 
wo+king directory: 

Directory: ACOBOL>TWO 
Time: 1986/01/17 1200:08 

PROGO.C 
PROGO.L 
PROGO.O 
PROGl.C 
PROGl.L 
PROGl.O 
PROGR.C 
PROGR.L 
PROGR.O 

Total Seetors: 

SEQ 
SEQ 
SEQ 
SEQ 
SEQ 
SEQ 
SEQ 
SEQ 
SEQ 

60 

4 
8 
6 
4 
8 
6 
4 

10 
10 

Note that all three object units to be linked are located in 
Shepard's working directory. PROGR.O is the object unit that 
forms the root of the bound unit SAMPLE. PROGO.O and PROGl.O are 
object units that form the two overlays of the bound unit. 
Figure 6-5 shows the bound unit Shepard will create when she 
links the root module PROGR.O and the two overlay modules, 
PROGO.O and PROGl.O. 

6-101 
09/86 
CZ15-02A 



Root 
(PROGR) 

Overlay O 
(PROGO) 

overlay 1 
(PROGl) 

Figure 6-5. Structure of the Bound Onit SAMPLE 

IDENTIFICATION DIVISION. 
PROGRAM-ID. PROGR. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE~COMPUTER. DPS6. 
OBJECT-COMPUTER. DPS6. 
DATA DIVISION. 
WORKING-STORAGE SECTION. 
01 ME PIC X(l7) VALOE aPROGR IN THE ROOT". 
PROCEDURE DIVISION. 
BEGIN. 

DISPLAY "THIS IS a ME. 
DISPLAY "PROGR ATTEMPTING TO CALL PROGO IN OVERLAY O". 
CALL "PROGO" USING ME. 
DISPLAY "THIS IS " ME. 
CANCEL •pROGO". 
DISPLAY "PROGR ATTEMPTING TO CALL PROGl IN OVERLAY l". 
CALL "PROGl" USING ME. 
DISPLAY "THIS IS " ME. 
CANCEL "PROGl". 
DISPLAY "DONEn. 
STOP RUN. 

Figure 6-6. Source Listin9 of PROG 

6-102 
09/86 
CZ15-02A 

~\ 
i 

_/ 

. . \ 
/' •,\) 

\""'--,/ 



(._, 
IDENTIFICATION DIVISION. 
PROGRAM-ID. PROGO. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. DPS6. 
OBJECT-COMPUTER. DPS6. 
DATA DIVISION. 
WORKING-STORAGE SECTION. 
01 ME PIC X(18) VALUE "PROGO IN OVERLAY O". 
LINKAGE SECTION. 
01 CALLER PIC X(17). 

PROCEDURE DIVISION USING CALLER. 
BEGIN. 

DISPLAY "THIS IS " ME. 
DISPLAY " CALLED BY " CALLER. 
EXIT PROGRAM. 

Figure 6-7. Source Listing of First Overlay Module PROGO 

IDENTIFICATION DIVISION. 
PROGRAM-ID. PROGl. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. DPS6. 
OBJECT-COMPUTER. DPS6. 
DATA DIVISION. 
WORKING-STORAGE SECTION. 
01 ME PIC X(l8) VALUE "PROGl IN OVERLAY 1". 
LINKAGE SECTION. 
01 CALLER PIC X(l7). 

PROCEDURE DIVISION USING CALLER. 
BEGIN. 

DISPLAY "THIS IS " ME. 
DISPLAY " CALLED BY " CALLER. 
EXIT PROGRAM. 

Figure 6-8. Source Listing of Second Overlay Module PROGl 

6-103 
09/86 
CZ15-02A 



Shepard is ready to link her program. Her dialog with the 
system is described below. The dialog has been keyed to the · 
explanatory notes that follow. 

tif ication) 

LINK DONE 

Invoke the Linker, specifying SAMPLE as the name of SAMPLE 
the bound unit to be created. 

Request the Linker search the secondary directory ZCART for 
the required COBOL run-time routines. 

Queue the object unit PROGR.O for linking. 

Specify a MAP directive. A link map is written to a file 
named SAMPLE.M in Shepard's working directory. 

Designate the end of the root and the beginning of the f irst 
overlay PROGO. 

Identify the relative load address for PROGO within the bound 
unit. The BASE $ directive specifies that PROGO will be 
linked beginning with the next location after the highest 
address of the root module PROGR. This is the default base 
address for PROGO. This BASE directive could be omitted. 

Queue the object unit named PROGO for linking. 

Specify a MAP directive. 

Designate the end of the overlay PROGO and the beginning of 
the second overlay PROGl. 

Request that the overlay named PROGl be loaded starting at 
the same relative address as the object unit PROGO. Overlays 
PROGO and PROGl can never be in memory at the same time. 

Queue PROGl for linking. 

Request a link map. 

6-104 
09/86 
CZ15-02A 



( 

,(' 

Terminate Linker processing. 

Shepard is now ready to execute the bound unit SAMPLE. (No 
data files are required.) Shepard enters the bound unit name: 

The program responds: 

THIS IS PROGR IN THE ROOT. 
PROGR ATTEMPTING TO CALL PROGO IN OVERLAY O. 
THIS IS PROGO IN OVERLAY O. 

CALLED BY PROGR IN THE ROOT. 
THIS IS PROGR IN THE ROOT. 
PROGR ATTEMPTING TO CALL PROGl IN OVERLAY 1. 
THIS IS PROGl IN OVERLAY 1. 

CALLED BY PROGR IN THE ROOT. 
THIS IS PROGR IN THE ROOT. 
DONE. 

6-105 
09/86 
CZ15-02A 



\i 
\ ~,, 



( 

REMOVE THIS PAGE AND PLACE TAB FOR 

TAB 7 

MULTIUSER D.B. SYSTEM 





( 

' (~.· 

Section 7 
MULTIUSER DEBUGGER 

(SYMBOUC MODE) 

The Multiuser Debugger is a general purpose tool used for 
testing application programs. The debugger operates in two 
modes: 

• Numeric Mode--primarily used for applications written in 
Assembly language (can be used on any program) 

• Symbolic Mode--used for applications written in higher­
level languages such as COBOL or FORTRAN. 

Numeric debugging is described in Section .8 of this manual. 
Symbolic debugging is described in this section; full information 
on symbolic debug functions and directives is provided. 
Procedural information on using symbolic debugging directives to 
debug a bound unit is also included in this section. 

OVERVIEW 

The debugger can be used with object units that have been 
compiled with the debug option (-SYMBOL). The debug optiön 
causes the compiler to generate a file for later use by the 
debugger. 

Additionally, the object unit must be linked with the 
Linker's debug option (-SYMBOL). In any bound unit there can be 
a mixture of programs compiled with and without the debug option. 

7-1 
09/86 
CZ15-02A 



* 

CAPABILITIES 

The debugger uses the object unit tables and a Linker symbol 
table to manipulate breakpoints, process action lines, and alter 
and display {dump) data variables. The debugger uses the same 
referencing format for variables as in the source programs. This 
referencing format can be a variable name, label, or line number. 

The various debug directives can be used to halt a program at 
s.elected breakpoints during execution, restart the program from 
the same point, or change sequence and start from a different 
point. While the program is halted, you can examine and alter 
program data and set further breakpoints. 

'l'h~ n~hnnn~r t"".::in h~ 11l=l~n +-n n~hnn {"OROT . .::inn 1"0l)'l'l)lUJ ---- ----";;J:i-- ---- -- ---- -- -----:i ----- ---- - __ „ ____ • 

programs. Programs must be compiled with the debug option 
{-SYMBOL). This option generates an object unit file. 

The debugger uses the object unit symbol tables and link 
symbol table (produced by the Linker debug option, -SYMBOL) to 
manipulate breakpoints, process action lines, and alter data 
variables. The symbol table is called object unit name.z. The 
Special link map f ile is called bound unit name. Object unit * name is the name of the COBOL or FORTRAN söurce program.- Do not 
try to edi t these. symbol table f iles because you may destroy 
necessary information. 

NOTE 

All concurrent users of the multiuser .debugger 
must use a common copy of the DEBUG bound unit. 
Attempting to use a different copy of DEBUG f rom 
the one currently being used results in a SD22 
error. For this reason, you should not make a 
copy Of DEBUG. 

INVOKING TBE DEBUGGER (SYMBOLIC MODE) 

After the program to be debugged has been compiled and linked 
with the debug option, you can invoke the debugger with the 
following command: 

FORMAT: 

DEBUG program_name 

ARGUMENT: 

program_name 

Name of the bound unit to be debugged. 

7-2 
09/86 
CZ15-02A 



To use the debugger effectively, you should become familiar 
with the directives, terms, and symbols listed in Tables 7-1 
through 7-3. Table 7-1 lists the debu99er directives by 
function, indicating the directive name and its meaning. 
Table 7-2 is a list of terms used in debugger directives. 
Table 7-3 is a list of debugger special symbols and their 
meanings. 

Table 7-1. Summary of Symbolic Mode Directives 

Function Meaning 

Breakpoint control Set breakpoints 

Trace trap control 

Display and mod­
if ica tion of data 

General execution 

Clear specif ied or all breakpoints 

List current breakpoints 

Trace flow of program 

Change specified variable's 
control contents 

Display specif ied variable (dump) 

Set values represented by special 
symbols 

Resume execution 

Conditional requirements for 
breakpoint and request lists 

Switch between syrnbolic and 
numeric modes 

Change ref erence to a different 
object unit 

Enter interactive mode 

Terminate debugger (quit) 

Temporarily suspend the Multiuser 
Debugger; return control to the 
command processor (sleep} 

STEP Execute one prograrn statement 

7-3 CZlS-02 



Table 7-2. Terms Used in Symbolic Mode Directives 

Term Definition 

Character string A string of characters enclosed in apostrophes 
(') or quotes. The string may include all 
printable characters except those used for 
terminal editing. Use two apostrophes to 
include an apostrophe in the string. 

Directive A statement to the debugger containing 
keywords, which cause the debugger to perform a 
specified action (e.9., AT, CLEAR, TRACE). 

Hex value A maximum of eight hexadecimal digits prefixed 
by a percent (%) sign. 

Identifier A name containing a maximum of 30 characters. 

Input unit 

Integer 

Statement 

Type 

Variable 

Valid characters include all alphanumerics, the 
hyphen, and the underscore. The f irst charac­
ter must be alphabetic. 

NOTE 

A minus sign in an expression must be preceded 
and followed by a blank to distinguish it from 
a hyphen. 

A line consisting of one or more debu9ger 
directives separated by semicolons. The 
maximum length is the input device's maximum 
line length. 

A value less than 65535 and greater than or 
equal to -65536 entered as a string of decimal 
digits. 

A single source statement that generates exe­
cutable code. 

Identif ication of the internal storage and 
external display formats of variables. All 
source-def ined variables have a basic type such 
as integer, real, character, string, or 
alphabetic. 

A single f ield, array element, entire array, 
record, or single component of a record. 

7-4 CZlS-02 



(_ 

Table 7-3. Symbolic Mode Special Symbols 

Symbol Definition 

$Rl-$R7 Index registers (containing data) 

$Bl-$B7 Base registers (containing 
addresses) 

$P Program counter 

$ Current breakpoint 

$T True 
. 

$F False 

$L Pref ix f or numeric statement 
labels 

The following is a list of reserved keywords. These reserved 
keywords and special symbols should not be used as variable names 
or labels in programs to be run with the debugger. 

AT 
CH 
CHANGE 
c 
CLEAR 
DUMP 
IF 
L 
LIST 
MODE 
ACTIVATE 
PAUSE 
SET 
TRACE 

p 
QT 
SP 
-NUM 
-NUMERIC 
-SYMBOLIC 
$ 
SP 
$Rl-$R7 
$Bl-$B7 
$L 
$F 
TR 

After invoking the debugger, you are prompted with the 
greater-than character (>). To initialize the debugger, set, 
list, and clear breakpoints using the AT, LIST, and CLEAR 
directives. 

After you have arranged breakpoints to your satisfaction, use 
the SP directive to return to the Command Processor. Execute 
your program normally. When a breakpoint is reached, program 
execution is suspended and the debugger enters interactive mode. 
Now you can enter any valid debugger directive to debug your 
program. 

7-5 CZlS-02 



To leave the debugger, either continue execution of the 
program to the normal end (perhaps clearing unwanted breakpoints 
with the CLEAR directive) and then enter the GO directive, or 
enter the QUIT directive which terminates debugger control and 
resumes normal execution of your program. 

While the debugger is in operation, it maintains two internal 
variables that identify the current bound unit and the current 
debugging mode: 

• current object unit identifies the object unit to which 
symbolic debugging directives refer. The initial default 
is the first linked object module with a symbol table. 
During execution of a program, current object unit is 
autcmatically changed to identify the Öbject Ünit in which 
the most recent breakpoint occurred. You can override the 
automatic setting with the SET directive. 

• current mode is automatically set to symbolic if the 
debugger is invoked with a bound unit name. 

DEBUGGER AND BREAK KEY FUNCTIONALITY 

Typing DEBUG after pressing the BREAK key and getting the 
**BREAK** message transfers you to the debugger. To return to 
the previous level, enter the SP directive or terminate the 
debugger completely with the QUIT directive • 

are: 

. 
If DEBUG was the task that was broken, the responses allowed 

• Any command 
e UW, PI, SR or NEW PROC. 

NOTES 

1. The PI response returns the user group to the 
debugger input mode and allows the entry of 
debugger directives. 

2. If the Debugger task was broken and DEBUG was 
entered as the response, the user would be placed 
in the debugger input mode. 

3. The UW response causes the debugger to be exited 
as if a GO or SP directive was input, depending on 
which was appropriate f or the current state of the 
debugger. That is, if debug was invoked as the 
result of encountering a breakpoint, a GO is 
appropriate to exit debug. 

7-6 CZlS-02 



PLANN'ING CONSIDERATIONS 

Controlling Execution of the User's Program 

The following directives can be used to control execution of 
the user program. 

IF is used to specify if-statement processing. 

GO causes execution to resume. 

STEP steps through a program one executable statement at a 
time. 

PAUSE enters input mode and allows you to request display of 
variables and registers. 

PAUSE used with IF causes execution to stop and entry into 
interactive mode. 

Setting Breakpoints 

You can set, list, and clear breakpoints _during initializa­
tion as well as during execution. All other functionality can 
only be done during execution. The AT directive sets 
breakpoints; CLEAR deletes them. The LIST directive lists 
breakpoints. 

( Monitoring the Value of variables 

The IF directive can be used in a number of ways to perform 
other directives when a certain condition is met. The primary 
use of the IF directive is to monitor the value of a variable 
during execution of the user's program. If the value meets a 
given condition, program execution stops and the user is 
notified. 

Controlling Output 

The DUMP directive displays the contents of variables and 
constants. 

Maintaining a Trace History 

The TRACE directive controls tracing program execution. It 
can be used in conjunction with IF for conditional tracing. You 
can issue the TRACE directive only while stopped at a breakpoint. 

Altering Values 

The CHANGE directive alters the values of variables. SET 
sets or alters the values of special symbols. 

7-7 CZlS-02 



-- ---- -- -----· ···---·-- ~- ·- ------·--·---- ---· - ··- ··---·-·---·---- ·- --- ··-~---·--·----·-

DEBUGGER DIRECTIVES 

This subsection provides an alphabetic listing of the 
debugger directives with detailed descriptions for each 
directive. 

7-8 CZlS-02 

""""\ 
\ 

,r--"·r-...._\// 

i~j 



•t 

ACTIVATE 

ACTIVATE (OR AC) 

Change reference to a different object unit. 

FORMAT: 

{ ~~TIVATE} object_unit_narne [/overlay _narne] 

ARGUMENTS: 

object_unit_narne 

Name of the object unit other than the one currently 1 
active. 

overlay_narne 

Nurnber of the overlay in which the object unit is linked. 

DESCRIPTION: 

The object unit narned becornes the current object unit. 

Exarnple: 

AC PROCl 
DUMP ABC 
AC PROC2 
DUMP DEF 
AC PROC3/4 
DUMP XYZ 

ABC, DEF, and XYZ are variables declared in three separately 
cornpiled object units. This sequence of directives displays 
ABC, activates the PROC2 syrnbol block, and displays DEF. 
Then the syrnbol table for PROC3, linked in overlay 4, is 
activated, and variable XYZ is displayed. 

7-9 
09/86 
CZ15-02A 



AT 

AT 

Set breakpoints in the program. 

FORMAT: 

AT location list [(request_list)] 

ARGUMENTS: 

location list 

One or more places in the program where you want to set a 
breakpoint. Location specifiers are separated by commas. 
Individual statements in the program are identif ied 
either by statement label or source line number. Set 
breakpoints only on executable statements. For FORTRAN 
programs, do not set breakpoints on FORMAT statements. 

request_list 

Optional list of one or more dir~ctives to be executed 
when a breakpoint is reached. A request list can be a 
single directive or a series of directives delimited by 
parentheses. Directives in a request list are separated ~ ' 
by either semicolons or newline characters. GO is under-
stood to be the last directive in a breakpoint request 
list. If no request list is given, PAUSE is assumed. 

DESCRIPTION: 

A breakpoint is set in the program for every statement in the 
location list. A breakpoint identif ier is assigned to each 
breakpoint, and a brief message is printed showing the line 
number, label (if any), and assigned identifier number. 
Breakpoint identif iers are numbers assigned in descending 
order beginning with 31. You can set a maximum of 32 break­
points (from 31 through O, inclusive). Request list direc­
tives are saved in the DEBUG.SM f ile for each breakpoint. To 
distinguish FORTRAN statement labels from line numbers, 
prefix statement labels with "$L". 

7-10 CZlS-02 



(.· 
Example l: 

AT 1020,LOOP (PAUSE) 
AT 1020,LOOP 

AT 

These two directives are equivalent. Both cause program 
breakpoints to occur before execution of statement number 
1020 and the statement labeled LOOP. When a breakpoint 
occurs, the debugger enters interactive mode and prompts you 
(with the greater-than (>) sign) to enter directives from the 
terminal. 

Example 2: 

AT LOOPl (DUMP INVENT PART NO,A(J_INDEX),J~INDEX;CH BUFNO=l) 

Each time execution reaches LOOPl, the DUMP and CHANGE direc­
tives are performed, and execution of the target program 
resumes without user intervention. 

Example 3: 

AT 2/1 

This example illustrates how to set breakpoints within 
include (COPY) f iles in COBOL. In this case, the breakpoint 
is set in the f irst line within the second COPY f ile. 

7-11 
09/86 
CZ15-02A 



CHANGE 

CHANGE (OR CH) 

Alter the contents of variables. 

FORMAT: 

{ g:ANGE } change_list 

ARGUMENT: 

change_list 

List of change statements of the form: 

{
decimal integer } 

variable name hexadecimal string 
record component = character string 

$T . 
$F 

DESCRIPTION: 

For each change statement, the item on the lert is assigned 
the value of the element on the right. Change statements are 
separated by commas. 

Example: 

CHANGE TAGA = %3031, TAGC = 5 

The hexadecimal value 3031 is placed in TAGA and 5 is loaded 
into TAGC. 

The data types of the left side and right side must match. 
For example, a variable name defined as a hexadecimal string 
cannot be changed to a decimal integer. The one exception is 
that any type variable can change to a hexadecimal string 
that represents exactly the internal format of the data. 
There is no other conversion of data types. 

7-12 CZlS-02 



CLEAR 

CLEAR (OR C) 

Delete breakpoints. 

FORMAT: 

{gLEAR} breakpoint_list 

ARGUMENT: 

breakpoint_list 

List, which can include: 

• Individual breakpoint numbers 
• A range of breakpoints (e.g., Nl to N2) 
• $ {indicating the current breakpoint) 
• * (indicating all currently defined breakpoints). 

DESCRIPTION: 

All breakpoints specif ied in the breakpoint list are deleted. 

Example 1: 

CLEAR * 
Clear all currently def ined breakpoints. 

Example 2: 

C $, 14, 15, 0 TO 5 

Clear multiple breakpoints. 

7-13 CZlS-02 



DUMP 

DUMP (OR DP) 

Display prograrn variables and other inforrnation about the 
prograrn execution. 

FORMAT: 

i~~MPl dump_list 
' , 

ARGUMENT: 

durnp _l ist 

List of iterns separated by cornrnas, which can include: 

• Variable narnes representing individual values, or 
record structures: 

DUMP HEAD_OF_LIST, TABLE, MASS REC 

• Range of variables as declared textually in the 
prograrn: 

DUMP ABC TO J MODE 

• Record cornponent: 

DUMP C OF B OF A 
DUMP C IN BIN A (these two are equivalent). 

If # precedes a variable narne, the variable is displayed 
in hexadecimal. 

DESCRIPTION: 

Each requested itern is displayed on a new line. Record corn­
ponents are indented according to level. The itern narne is 
printed on the left followed by the itern value. The value is 
printed in a f orrnat conf orrning to its data type unless the 
hexadecirnal override character (#) precedes the narne. 

Exarnple: 

DUMP ABC, 'RESULT' 

Display the contents of variable ABC and print the character 
string RESULT. 

7-14 CZIS-02 



GO 

·. (/' 

c\ 

Resume execution of the program. 

FORMAT: 

GO [program_location] 

ARGUMENT: 

program_location 

GO 

Either a statement label or a statement line number. 

DESCRIPTION: 

If no argument is given, the debugger resumes execution of 
the program where it left off. If a program location is 
given, the debugger resumes execution at the new location. 

NOTE 

The program location option should be used with 
caution because registers used by the bound unit 
can be scrambled by such a jump. 

7-15 CZlS-02 



IF 

IF 

Provide a simple conditional for use in breakpoint and trace 
request lists. 

FORMAT: 

(:=) ( ~~~=~~:~:-~t:~I1<J ) l/ j l U't:AClUt:\.:J.llldJ. :s-i;;;r in9j > decimal literal 
< $T 
< $F 

request_list 

ARGUMENTS: 

= Equals 
.... Not equal = 
> Greater than 

>= Greater than or equal to 

< Less than 

<= Less than or equal to 

request_list 

Required list of one or more directives to be performed 
when the IF expression evaluates to True. A request list 
consists of a single directive or a series of directives 
delimited by parentheses. Directives in a request list 
are separated by either semicolons or new line characters. 

DESCRIPTION: 

When an IF directive is performed, the comparative expression 
is evaluated. If the result is True, the request list is 
perf ormed. When execution of the request is completed 
(without encountering a GO or PAUSE), processing continues 
with the next directive following the list. 

If the result of the comparison is False, the request list is 
ignored. 

7-16 CZlS-02 



( 

( 

IF 

The data types on the left and right of the relation must 
match. For example, a variable name def ined as a hexadecimal 
string cannot be compared to a decimal literal. The one 
exception is that any type variable can be compared to a 
hexadecimal literal that represents exactly the internal 
format of the data. There is no other conversion of data 
types. 

The length of a comparison corresponds to the language 
rules. If an expression being evaluated is determined to be 
invalid, an error message is issued and the debugger pauses. 

Examples: 

AT 1020 ( I'F VARl = 'ABCD' (PAUSE)) 
AT 1020 (IF VARl = %41424344 (P)) 

These two directives are both valid assuming the base type of 
VARl is a character string. A True condition causes a PAUSE; 
False causes a GO. 

AT 1020 (IF BOOL = $F (PAUSE)) 

The debugger pauses only if BOOL is False. 

TR (IF J_INDEX < 0 (PAUSE)) 

Establish tracing for all statements in the compiled 
program. At each staternent, the IF expression is evaluated. 
If J INDEX is ever less than zero, the PAUSE occurs. 
Otherwise, the prograrn continues. 

7-17 CZlS-02 



LIST 

LIST (OR L) 

List current breakpoints. 

FORMAT: 

{tIST} [breakpoint_list] [-LG] 

ARGUMENT: 

breakpoint_list 

List, which can include: 

• Individual breakpoint numbers 
• A range of breakpoints (e.g., Nl to N2) 
• * (indicating all currently defined breakpoints) 
• $ (indicating the current breakpoint). 

DESCRIPTION: 

The breakpoint identifier (an integer between 0 and 31), the 
line number, and label (if any) are printed for all specified 
breakpoints. In addition, if -LG is 9iven, the request list 
(if any) associated with each breakpoint is printed. 

Example 1: 

LIST 3,4,10 TO 15 -LG 

Print the basic information and request lists for breakpoints 
3, 4, and 10 through 15. 

Example 2: 

L$ 

Print the basic information for the breakpoint at which the 
program is currently stopped. 

7-18 CZ15-02 



MODE 

MODE 

Define the debugger mode of operation desired: symbolic mode 
for debugging programs written in high-level languages, numeric 
mode for debugging Assembly language programs. 

FORMAT: 

MODE 

{ NUMERIC} 
NUM 

{ SYMBOLIC} 
SYM 

DESCRIPTION: 

If the debugger is currently in symbolic mode, type MODE 
NUMERIC to put the debugger in numeric mode. See Section 8 
of this manual for a description of numeric directives. 

If the debugger is currently in numeric mode, type MODE 
SYMBOLIC to put the debugger in symbolic mode. Symbolic mode 
can only be used with bound units that have been compiled and 
linked with the -SYMBOL control argument. In addition, you 1 
can only change from numeric mode to symbolic mode if the 
debugger is initially invoked in symbolic mode. 

7-19 
09/86 
CZ15-02A 



----~·-- ·-----~---·---~·----- -~-· -~---· -- --- ------ ---· 

PAUSE 

PAUSE (OR P) 

Enter interactive mode. 

FORMAT: 

DESCRIPTION; 

When a PAUSE directive is performed, the debugger enters 
interactive mode, sends a prompt message (the greater-than 
sign (>)) to the user-in file, and reads the user-out file 
(generally a terminal) to obtain its next directive. 

When a PAUSE is encountered within a request list, it takes 
effect immediately, and any directives remaining in the list 
are ignored. 

Example: 

AT 1020 (DUMP I,NEXT1IF NEXT=%40 (PAUSE)) 

Whenever line 1020 is reached, the variables I and Next are 
dumped. Then, the IF expression is evaluated. If NEXT is a 
hexadecimal 40, the debugger pauses. Otherwise, execution of 
the program resumes at statement 1020. 

7-20 CZlS-02 

{'~-,,,', ,' 

1 \ 

'~i 



( 

QUIT 

QUIT (QT) 

Clear all breakpoints, close all debugger work f iles, and 
disable the debugger trap handler before terminating the debugger 
task. 

FORMAT: 

QT 

7-21 CZlS-02 



SET 

Set values represented by special symbols. 

FORMAT: 

SET l
$Bnl $Rn 
$P 

= ( ~:~ )\~) ~~~~} l 
) ~!x valuef);{ 1 ~~:x value 

ARGUMENTS: 

$Bn 

$Rn 

"$P 

hex value 

dec value 

DESCRIPTION: 

\ dec valueJ \ } Ldec valuej 

base register 

index register 

p-counter 

hexadecimal value 

decimal value 

For each set list item, the item on the left is assigned the 
value of the item on the right. The expression must evaluate 
to a hexadecimal value when setting base or P-registers, or 
to a decimal or hexadecimal value when setting index 
registers. 

Example: 

SET $Rl = %F3E2 

Register Rl is set to hexadecimal value F3E2. 

NOTE 

The SET directive is generally not useful to users 
running only COBOL or FORTRAN programs. 

7-22 CZlS-02 



SLEEP 

SLEEP (SP) 

Return processing to command level after initial breakpoints 
have been set. 

FORMAT: 

SP 

DESCRIPTION: 

The SP directive temporarily suspends the execution of the 
debugger and returns control to the Command ProceS$Or. You 
can 'now start execution of the bound unit in the standard 
manner. The debugger becomes active again if: 

• A breakpoint is reached in the user's program. 
• The user types DEBUG from the command level. 

7-23 CZlS-02 



TRACE 

TRACE (OR TR) 

Trace the flow of a program. The TRACE directive can also be 
used in conjunction with the IF directive to monitor the contents 
of a variable. You must be at a breakpoint to issue the TRACE 
directive. 

FORMAT: 

{~~CE} -OFF [ ( request _l ist) j 

ARGUMENTS: 

-OFF 

Turn tracing off for the current bound unit. 

request_list 

Optional list of one or more directives to be performed 
when a tracepoint is reached. A request list consists of 
a single directive or a series of directives delimited by 
parentheses. Directives in a request list are separated 
by either semicolons or new line characters. 

DESCRIPTION: 

A trace is def ined and becomes active when the next GO direc­
tive is entered. As each statement is executed, a trace 
message consisting of the line number, bound unit name, and 
statement label (if any} is listed, the request list (if any} 
is performed, and execution of the program continues. 

7-24 CZlS-02 

···--..,,, 
\ 



( 

Multiple TRACE directives can be entered, but only one 
request line (the last one entered) will be in effect. 

Examples: 

TRACE (DUMP TAG) 

Print the variable TAG at every statement. 

TR (IF J_INDEX = 0 (PAUSE)) 

TRACE 

Monitor the contents of J INDEX during execution of the 
current object unit. If J INDEX goes to zero, execution 
pauses. 

7-25 CZlS-02 



MULTIUSER DEBUGGER (SYMBOLIC MODE) PROCEDURES 

This subsection guides you through a sample session using the 
debugger in symbolic mode. You can follow along at a terminal 
step by step. The original source program could be written in 

1 either Advanced FORTRAN or Multiuser COBOL. 

Compiling a Program For Use With the Debbuger 

. Compile your program with either the Advanced FORTRAN or 1 Multiuser COBOL compiler using the -SYMBOL argument. The -SYMBOL 
argument creates a symbol table f ile, name.z, where name is the 
name of your source program. The compiler commands are described 
next. 

1 
FORMAT: 

{ COBOLM }name 
FORTRANA 

-SYMBOL [ctl_arg] 

ARGUMENTS: 

name Name of your source program. 

ctl_arg Other control arguments you wish to use. See 
the Commands manual for the complete command 
descript1on. 

If necessary, correct any compilation errors and recompile. 
Proceed with the next step when you have an error-free 
compilation. 

SAMPLE COMPILATION DIALOGS 

To compile the Advanced FORTRAN program NFTYPM, the 
compilation dialog might be: 

FORTRANA 2.0 07/09/1302 
The compiler is invoked. 
000/000 W/E COUNT NFTYPM 

RDY: 

7-26 

Invoke the Advanced 
FORTRAN compiler specify­
ing that object code be 
listed, a special symbol 
table be created, and 4K 
of memory be used. 

There are no warnings 
or errors. 
Control returns to corn­
mand level. 

09/86 
CZ15-02A 



To compile the Mu1tiuser COBOL program COMPTV, the 
compilation dialog might be: 

1 

Invoke the Multiuser 1 
COBOL compiler speci­
fying that a special 
symbol table be 
created. 
The compiler is 1 
invoked. 

COBOLM x.x 07/15/0813 

NO FATAL ERRORS OR WARNINGS IN COMPTV 
RDY: 

There are no errors. 
Control returns to 
command level. 

Linking an Object Unit With the Debugger 

Link the object unit resulting from successful compilation 
using the -SYMBOL option. -SYMBOL cr~ates a separate link f ile 
named buname.v, where buname is the name of the bound unit 
created by the link. 

The Linker command's description follows: 

FORMAT: 

LINK buname -SYMBOL [ctl_arg] 

ARGUMENTS: 

buname Name of the bound unit to be created. 

ctl_arg Other control arguments. See the 
Commands manual f or the complete command 
description. 

For more inforrnation on the Linker, see Section 6. After you 
have linked successfully, go on to the next step. 

SAMPLE LINKER DIALOGS 

To link object unit NFTYPM, compiled by the Advanced FORTRAN 
compiler above, the Linker dialog might be: 

LINKER 1982/06/18 0912:50.5 
L? 

7-27 

Invoke the Linker specify­
ing creation of a special 
debug link map and a 
prompt for the user. 
The Linker is invoked. 
You are prompted f or a 
directive. 
Include the standard 
Advanced FORTRAN runtirne 
library, ZFlRT. 

09/86 
CZ15-02A 



1 

1 

L? 
LINK NFTYPM 

L? 
QUIT 
ROOT NFTYPM 
LINK DONE 
RDY: 

Link the object unit. 

Terminate the Linker. 
The bound unit is created. 
The Linker is f inished. 
Control returns to command 
level. 

To link object unit COMPTV, compiled by the Multiuser COBOL 
compiler above, the Linker dialog might be: 

LINKER 1982/06/18 0912:50.5 
L? 

L? 

L? „. 
ROOT COMPTV 

LINK DONE 
RDY: 

Invoking the Debugger 

Invoke the Linker, speci­
fying a special debug link 
map be created and a 
prompt be given. 
The Linker is invoked. 
You are prompted for a 
directive. 
Include the standard 
Multiuser COBOL runtime 
library, ZCMRT. 

Link the object unit. 

Terminate the Linker. 
The bound unit is 
created. 
The Linker is f inished. 
Control returns to command 
level. 

To initiate the debugger and set breakpoints in the program to 
be debugged, issue the Debug commande 

FORMAT: 

DEB UG buname 

ARGUMENTS: 

buname 

Name of the bound unit to be debugged. 

7-28 
09/86 
CZ15-02A 



•('\ 

The debugger responds with a prompt (the greater-than sign 
(>)). Set breakpoints using the AT directive. You can set up to 
32 breakpoints. They are numbered from 31 to 0 in descending 
order. During initialization you can also list the breakpoints 
with the LIST directive and clear erroneously set breakpoints with 
the CLEAR directive. 

When you are satisf ied with the breakpoints you have set, 
issue the Sleep (SP) directive to temporarily suspend the 
debugger and return to the command processor. Now you can begin 
execution of your program with the debugger. 

SAMPLE INITIALIZATION DIALOG 

The debugger initialization dialog for NFTYPM might look like 
this: 

> .... Wl)i. " 
BP 31 SET 

> -BP 31 BU=NFTYPM 

> „. 
BP 30 SET 
> -BP 29 SET 
> .... ~~~~~ 
BP 29 DELETED 

> 
~­~ BP 29<SET 
> -BP 31 BU=NFTYPM 
BP 30 BU=NFTYPM 
BP 29 BU=NFTYPM 
> „ 

Invoke the debugger for the bound 
unit named NFTYPM. 
The debugger responds with its 
prompt, the greater-than sign • 
Set a breakpoint at line 12. 
The breakpoint id is given in 
response. 

List all breakpoints. 
CU=NFTYPM LINENO=l2 

The 'debugger. responds with a list of 
all current breakpoints by ID. 

Set a breakpoint at line 19. 

Set a breakpoint at line 24. 

Clear breakpoint 29, at line 24. 
The debugger acknowledges the 
deletion. 

Set a breakpoint at line 25. 

CU=NFTYPM LINENO=l2 
CU=NFTYPM LINENO=l9 
CU=NFTYPM LINEN0=25 

Temporarily suspend the debugger and 
return to the command processor. 

7-29 CZlS-02 



DEBUGGING MULTIPLE BOUND UNITS 

The debugger can be invoked for one bound unit. After that, 
the debugger must be turned off before other bound units can be 
debugged. To turn off the debugger, issue the command sequence: 

Then another bound unit can be debugged by re-invoking the 
debugger with-the DEBUG directive and the new bound unit name. 

Executing Your Program With the Debugger 

Execute your prcgram by entering the bounä unit name. Execu­
tion is suspended at the f irst breakpoint set during debugger 
initialization. The AT directive allows you to specify a list of 
debugger directives (a request list) to be executed when the 
specif ied breakpoint is reached. If you included a request list 
when you set the breakpoint, the request list executes. If not, 
the debugger enters interactive mode and issues the greater-than 
prompt (>). You can then enter any valid debugger directives to 
check out the program. 

Sample Executing Dialog 

Assume you initialized the debugger using the previous 
example, your execution then might look like this: 

*BRKPT 31 AT LINE 12 

> 

yy 81 
> 

> 

yy 84 
> 

7-30 

Begin execution of the 
program NFTYPM. 
Execution stops at line 
12, the first breakpoint 
set. 
The debugger prompts f or a 
directive. 
Print the current value of 
variable YY. 
The value is printed. 

Change the value of YY to 
ASCII 84 (hexadecimal 
3 834) • . 

Check that the change was 
made. 

CZlS-02 



*BRKPT 30 AT LINE 19 

> 

RDY: 

( ·.) 

./ 

7-31 

Continue execution. If 
you found an error, you 
could issue the Quit (QT) 
directive to terminate the 
debugger. 

Execution resumes until 
the next breakpoint is 
encountered. 
The debugger prompts f or a 
directive. 

Trace the value of YY and 
terminate if YY is not 
equal to 81. 

YY is not equal to 81, so 
the program terminates and 
you return to the command 
level. 

CZlS-02 



( 



( 

REMOVE THIS PAGE AND PLACE TAB FOR 

TAB 8 

MULTIUSER D.B. NUM. 

("' 

~' 



\ 
) 



(·. 

((····· .... 
. . 

•' 

:C 

Section8 
MULTIUSER DEBUGGER 

(NUMERIC MODE) 

The Multiuser Debugger is a general purpose tool used for 
testin9 application programs. The debugger operates in two 
modes: 

• Numeric Mode--primarily used for applications written in 
Assembly language (can be used on any program) 

• Symbolic Mode--used for applications written in higher­
level languages such as COBOL or FORTRAN. 

Symbolic debugging is described in Section 7 of this manual. 
Numeric debugging is described in this section1 full information 
on numeric debug functions and directives is provided. 
Procedural information on using numeric debugging directives to 
debug a bound unit is also included in this section. 

8-1 
09/86 
CZ15-02A 



-----·-----·-·--·----- -- -------- -- ----·---·· 

OVERVIEW 

The Multiuser Debugger is an interactive tool used at pro- ~, 
gram execution time to debug bound units. In numeric mode, it 
can debug COBOL, FORTRAN, BASIC, and Assembly language programs. 
This facility runs in a protected environment and is available to 
multiple users; it can be used by all task groups (except $0) 
running on the system. For information on $0, see Section 9. 

CAPABILITIES 

In numeric mode, data is referred to by program locations in 
terms of memory (segment) addresses. Data is displayed in 
hexadecimal or hex-ASCII dump format. Osing Multiuser Debugger 
commands, you can suspend programs at selected breakpoints during 
execution, restart at the same point, or change sequence and 
start from a different point. While the program is suspended, 
you can examine input, display data, or alter values. 

With the Multiuser Debugger you can: 

• 
• 
• 

• 

• 
• 

Define, store, and execute a sequence of directives 

Set or clear true breakpoints in task code to monitor task 
status 

Set or clear bound unit breakäoints to gain control of 
bound units as they are loade 

Set or clear quick breakpoints (from the $S group only) to 
monitor time-dependent tasks without undue distortion of 
time 

Display, change, and dump either memory or registers 

Evaluate expressions • 

NOTE 

All concurrent users of the multiuser debugger 
must use a common copy of the DEBOG bound unit. 
Attempting to use a different copy of DEBOG f rom 
the one currently being used will result in a SD22 
error. For this reason, you should not make a 
copy of DEBOG. 

INVOKING THE DEBUGGER (NOMERIC MODE) 

The command used to invoke the Multiuser Debugger is: 

DEBUG 

There are no valid arguments with this command. 

8-2 CZlS-02 

. . -- -----------·--- ---



DEBUGGER FILE REQUIREMENTS 

For true and bound unit breakpoints, Debugger directives can 
. be stored in a user-defined work f ile. If used, this f ile must 

be opened by the Specify File directive (the SF directive is 
described later in this section) and must always be followed by 
the suffix ".DB". This work file requires a size of 64 sectors 
on any media. 

The Multiuser Debugger directives associated with quick 
br.eakpoints are stored in memory, and optionally, in a work f ile 
as described above. Output generated by these directives is 
written to memory and, optionally, to a user-defined quick disk 
file. This quick disk f ile must have been created previously 
outside the.Debugger task using the Create File command (see the 
Commands manual for details) and must be referenced within the 
Multiuser Debugger task by a Specify File (SF) directive. This 
file must end with the suffix ".QK". 

The Debugger directives mentioned above are identified and 
described in Table 8-2, later in this section. 

DEBUGGER MEMORY REQUIREMENTS 

To set true or bound unit breakpoints, the reentrant portion 
of the Multiuser Debugger requires a minimum memory area of 
278410 words. The separate data portion of the amount of memory 
requ~red per group is approximately 198410 words. This includes 
all non-reentrant code, the Multiuser Debugger overlay area, and 
all necessary data information. 

1 
To debug time-dependent tasks using quick breakpoints, the I 

total amount of memory required is 847210 words (for reentrant 
and data portions) plus the amount of memory you requested for 
the quick memory buffers. The quick memory buffers are described 
later in this section. 

DEBUGGER OPERATION 

The Multiuser Debugger is restricted to the write privileges 
of the group it serves; several users can debug within their own 
groups without affecting other groups. Since the Multiuser 
Debugger runs under any user-def ined group, memory protection is 
dependent upon the task group. If no memory protection is estab-
1 ished, you can alter any and all memory; therefore, the task 
should run in a protected environment. 

The Multiuser Debugger handles traps to trap vector 06 1 
(register overflow), trap vector 14 (unauthorized reference to 
protected memory), trap vector 15 (reference to unavailable 
resource}, and trap vector 34 (segment fault) and continues as 
described below. 

8-3 
09/86 
CZ15-02A 



An error message is displayed if you try to access nonvir.tual 
memory within any Multiuser Debugger directive except the Dump 
Memory (DP) directive. If a Trap-to-Trap-Vector-15 occurs when a 
DP directive is specif ied, the Multiuser Debugger dumps as much 
of the requested memory as possible. Once a nonvirtual address 
is invoked, the rest of the current line to be printed is blank­
f illed. The current nonvirtual address is advanced to the value 
that is the next multiple of lK. The procedure continues until 
the area to be dumped is exhausted or the end of memory is 
reached. 

ENTERING DIRECTIVES 

Multiuser Debugger directives consist of a directive name 
only or a directive name and one or more arguments~ Within a 
directive, arguments are separated from each other by one or more 
spaces. Multiple Debugger directives can be entered on a single 
line; each directive, except the last, must be followed by a 
semicolon (;). At the end öf each line (i.e., immediately after 
the last or only directive), press carriage return. Except where 
otherwise specif ied, all argument values are entered in hexa­
decimal notation. 

Debugger directives may only be entered when the Debugger has 
control of the group. This occurs when: 

• The Debugger is loaded. 

• A breakpoint occurs. 

• You press the BREAK key and DEBUG is typed as the post­
break input. (BREAK key functionality is described later 
in this section.) 

Table 8-1 summarizes Multiuser Debugger directives by func­
tion. These directives are described in detail on the following 
pages. 

NOTE 

Pay careful attention to the format of each direc­
tive, because the use of delimiters, if any, 
between a directive name and the f irst (or only) 
argument varies according to which directive is 
being specif ied. 

Special symbols are used in the Multiuser Debugger directive 
lines. These symbols are described in Table 8-2. 

NOTE 

The Multiuser Debugger only recognizes tasks that 
are in a trapped state. 

8-4 CZlS-02 



i( 

( 

Table 8-1. Summary of Numeric Mode Directives 

Function 

Directive 
line and 
handling 

True 
breakpoint 

Bound unit 
breakpoint 
control 

Quick 
breakpoint 
control 

Trace trap 
control 

Memory and 
register 
control 

Directive 

Dn 
En 
P* 
Pn 

C* 
Cn 
L* 

Ln 

Sn 

CB* 
CBn 
LB* 

LBn 

SBn 
XBn 

CQn 
CQ* 
LQn 

LQ* 

MQ 

PQ 
RQ 
SQn 

DT 
PT 
ST 
ET 

AR 

CH 
DH 
DP 

Directive Name 

Def ine directiv~ line n 
Execute directive line n 
Print all predef ined directive lines 
Print predefined directive line n 

Clear all true breakpoints 
Clear true breakpoint n 
List all true breakpoints and 
associated directive lines 
List true breakpoint n and associated 
directive line 
Set true breakpoint n 

Clear all bound unit breakpoints 
Clear bound unit breakpoint n 
List all bound unit breakpoints and 
associated directive line 
List bound unit breakpoint n and 
associated directive line 
Set bound unit breakpoint n 
Set express bound unit breakpoint n 

Clear quick breakpoint n 
Clear all quick breakpoints 
List quick breakpoint and its 
associated directive line 
List all quick breakpoints and their 
associated directive lines 
Get memory block for quick breakpoint 
information storage 
Print pointer to quick memory block 
Return quick memory 
Set quick breakpoint n 

Def ine trace directive line 
Print trace directive line 
Start j-mode trace 
End j-mode trace 

Print contents of all 
registers of the active level 
Change memory 
Display memory in hexadecimal 
Dump memory in hexadecimal and ASCII 

8-5 
09/86 
CZ15-02A 

1 

* 



Table 8-1 (cont). Summary of Numeric Mode Directives · 

Function Directive 

Symbol AS 
control VH 

General E 
execution 

FI 
FO 
GO 
Hn 
IF 
MODE 

RF 
SF 
SP 

QT 

Abnormal CT 
Trap Control TB 

TT 

Directive Name 

Assign a hexadecimal value to symbol 
Print value of expression in 
hexadecimal 

Temporary escape to the command 
processor 
Redirect input 
Redirect output 
Continue execution from breakpoint 
Print header line 
Conditional execution 
Change from numeric to symbolic mode or 
vice-versa . 
Reset f ile location 
Specify f ile location 
Temporarily suspend the Multiuser 
Debugger1 return control to the command 
processor {sleep) 
Abort Multiuser Debugger task (quit) 

Clear abnormal trap bit 
Turn on abnormal trap bit 
Terminate trapped task 

NOTE 

The memory and register control directives (AR, CH, 
DH, and DP) apply to registers on the active level. 
To determine which level is the active level and/or 
to set the active level to a specif ied value, see 
"Determining/Setting the Active Level" below. 

Table 8-2. Symbols used in Numeric Mode Directive Lines 

Symbol Type Meaning 

Arithmetic 
0Eerators 

plus sign (+) Perf orms addition. 

minus sign (-) Performs subtraction. 

K Multiplies a hexadecimal integer by 1024 decimal 
(400 in hexadecimal) when K is the last charac-
ter of an integer expression. 

8-6 CZlS-02 

\ 



·( 

Table 8-2 (cont). Symbols Used in Numeric Mode Directive Lines 

Symbol Type 

Address 
Operators 

period (.) 

ampersand (&) 

brackets [] 

Reserved 
Symbols 

$Bn 

$Rn 

$P 

$I 

$IV 

$IV_Bn 

$IV Rn 

Meaning 

Represents the last start address used in a pre­
v ious rnemory reference directive (DH, CH, DP) • 

Represents the address of the next location 
beyond the last one used by a previous memory 
reference directive (DH, CH, DP). 

Signif ies the contents of the location defined 
by the expression within the brackets. Three 
levels of nesting rnay be used. 

Contents of the base register n of the active 
level. The values 1 through 7 can be used for 
n. 

Contents of the data register n of the active 
level. The values 1 through 7 can be used for 
n. 

Contents of the program counter of the active 
level. 

Contents of the indicator register of the active 
level. 

Address of the Task Control Block of the task 
which is currently trapped (i.e., on a true or 
bound unit breakpoint, a true trap, or a user 
trap). 

Represents the address of the base register n 
storage area in the Interrupt Save Area (ISA) of 
the active level. The values 1 through 7 can be 
used f or n. 

Represents the address of the data register n 
storage area in the ISA of the active level. 
The values 1 through 7 can be used for n. 

8-7 
09/86 
CZ15-02A 



-----------··- ·---------------

'fable 8-2 (cont). Symbols Used in Numeric Mode Directive L-ines 

Symbol Type 

1 $IV_Mn 

1 $IV_Sn 

l '$IV_Kn 

$Kn 

$S 

$SL 

$E 

$T 

G throu9h z 

1 $V G throu9h 
$V Z 

$CI 

Meanin9 

Represents the address of the Commercial or 
Scientif ic Instruction Processor mode control 
register n stora9e area in the ISA of the active 
level. For the Commercial Instruction Processor 
mode, n must equal 3. For the Scientific 
Instruction Processor mode n can be either 4 or 
5. 

Represents the address of the scientif ic accu­
mulator register n storaqe area in the ISA of 
the active level. The values l through 3 can be 
used for n. 

Represents the address of the K register n 
storage area in the interrupt save area (ISA) of 
the active level. The value of n can be l 
through 7. 

Contents of the K register n of the active 
level. The value of n can be 1 through 7. 

Contents of the system status register (level 
number and privilege bit only) of the active 
level. 
Represents the value of the level number of the 
active level. 

Represents the entry point of a bound unit as 
defined in the bound unit or by the caller. 
This reserved symbol is used only at the time of 
a bound unit breakpoint, in place of $P 
associated with true and quick breakpoints. 

Represents the address of the stack of the 
active level. 

Twenty single-character symbols havfng initial 
values of zero. Values may be assigned using 
the AS directive. 

Represents the address of symbolic variable G 
through z. This allows variables to be tested 
by the IF directive, which requires an address 
for its left argument. 

Represents the contents of the Commercial 
Processor indicator word of the active level. 

8-8 
09/86 
CZ15-02A 

-\ 



( 

(/ 

Table 8-2 (cont). Symbols used in Numeric Mode Directive Lines 

Symbol Type 

$Cl 

$SI 

$Mn 

Debug Language: 

< 
= 
> 

Meaning 

Represents the contents of the Commercial 
Processor remote descriptor table of the active 
level. 

Represents the contents of the Scientif ic 
Instruction Processor (SIP) indicator word of 
the active level. 

Represents the contents of the mode control 
register of the active level. The values l 
through 7 can be used for n. 

The condition to be satisf ied in an IF directive 
for continuous processing of the directive line. 
""" indicates a logical NOT which may optionally 
be used. 

parentheses ( } Indicates directive or header information to be 
stored for later use. An unmatched right paren­
thesis results in an error. A right parenthesis 
that is paired with the first left parenthesis 
terminates the directive definition. 

exp 

rexp 

i 

* 

Indicates a valid expression formed by using 
expression elements. Expression elements are 
addresses, reserved symbols, and hexadecimal 
values up to 32 bits in length. No more than 
one address is allowed within an expression. An 
expression element may be preceded by the posi­
tive (+) or negative (-) unary operator. 
Expression elements can be joined by the 
addition (+) or subtraction (-) operator. 

Consists of exp /exp , whe~e exp is a hexa­
decimal number that is a value of a location 
expression; exp is an optional hexadecimal 
repeat f actor whose value must be between 1 and 
32,767. If exp is omitted, there is no 
repetition. 

Separation character between directives on the 
same line. 

Signif ies "all" in certain Print, Clear, and 
List directives. 

8-9 
09/86 
CZ15-02A 



---~-·-----------·----~----~-----

DEBUGGER AND BREAK KEY FUNCTIONALITY 

Typing DEBUG as a response to the BREAK key transfers you to 
the Multiuser Debugger task. To return to the previous stack 
level, enter the Sleep (SP) directive or terminate the Debugger 
completely with the Quit (QT) directive. The description of the 
Debugger and BREAK key functionality applies only to true and 
bound unit breakpoints, and not to quick breakpoints. BREAK key 
functionality is not supported in the $S task group. 

If DEBUG is the task that was broken, any command is a valid 
response, including PI, uw, SR, or NEW_PROC. 

NOT ES 

l. The Program Interrupt (PI) response returns the 
user group to the Debugger input level and 
allows the entry of Debugger directives • 

. • 
2. If the Debugger task was broken and DEBUG is 

entered as the response, you are placed in the 
Debugger input mode. 

3. The Unwind (UW) response causes the Debugger to 
execute either the GO or SP directive, depend­
ing on which is appropriate at the time of the 
**BREAK**· If the Debugger was activated as 
the result of encountering a breakpoint, enter­
ing uw causes execution of the GO directive. 

PLANNING CONSIDERATIONS 

Setting True Breakpoints and Bound Unit Breakpoints 

True breakpoints and bound unit breakpoints can be set to 
trap at selected task code locations. At true breakpoints, 
memory and register values can be displayed and changed. At 
bound unit breakpoints, only memory can be displayed and changed. 
The registers displayed at the time of a bound unit breakpoint 
are not those of the trapped task. In this way, a task can be 
executed, the value of. its variables checked as execution 
proceeds, code modified and, if necessary, variable values 
changed in order to test the sequence of code up to the next 
breakpoint. 

1 Express bound unit breakpoints allow you to cause a true 
breakpoint to be set at bound unit load time, avoiding the 
inconvenience of having to stop at a bound unit breakpoint and 
setting the first true breakpoint. 

09/86 
8-10 CZ15-02A 



( 

( 

(. 

,,,' 

Setting Global Breakpoints 

Any true, bound unit, or express bound unit breakpoint set in 
the system task group ($S) will be activated regardless of which 
task group encounters it. For this reason, these breakpoints are 
called global breakpoints. 

Certain effects need to be considered when setting either 
bound unit breakpoints or express bound unit breakpoints in group 
$S. If normal bound unit breakpoints are to be used in group $S, 
the command processor must be loaded (e.g., EC !CONSOLE). (This 
is done to prevent a system hang.) If express bound unit 
breakpoints are to be used in group $S, the command processor 
must not be loaded. It is recommended that you use only express 
bound unit breakpoints as global breakpoints without the command 
processor. 

When a global breakpoint is encountered for another group, 
the group is identif ied by an output line preceding the 
breakpoint banner line. The format is: 

For Group id: 

where id is the two-character group id number. 

Setting Quick Breakpoints 

Quick breakpoints can be set to trap at selected locations to 
monitor time-dependent functions (for example, monitoring a 
driver). At these breakpoints, memory and registers can be 
stored in a block of memory (reserved by means of the Get Quick 
Memory directive) and, optionally, in a disk file to be retrieved 
and studied at some later time at your convenience. These 
breakpoints must be set when you are running in the system task 
group ($S). 

Preliminary Steps f or Using Quick Breakpoints 

Before invoking the Debugger from the $S task group: 

1. Calculate the approximate amount of memory necessary for 
the quick memory buffers. 

2. Create a Debugger quick disk file with the format 

path.QK 

using the Create File (CR) command (see the Commands 
manual). The quick disk f ile must be created from a 
user-def ined group. It should be created as a a relative 
f ile with a control interval (CI) size greater than or 
equal to the size of the quick memory blocks that you 
specify in the Get Quick Memory (MQ) directive. 

8-11 
09/86 
CZ15-02A 



3. Enter the command 

EC· !CONSOLE 

to load the command processor. 

Now you can invoke the Multiuser Debugger and monitor the 
time-dependent task without causing any time distortion within 
the task. 

Guidelines for Setting Breakpoints 

The following guidelines should be observed in setting 
breakpoints: 

• True breakpoints can be set in a bound unit in a task 
group (or in an overlay of a bound unit in a task group) 
only when the task group/overlay currently is memory 
resident. use the SBn (Set Bound Unit Breakpoint) 
directive to 9ain control of a task group bound 
unit/overlay when it is loaded, to allow true break­
points to be properly set. 

• True breakpoints may not be set in code that will be exe­
cuted at the inhibit level (level 3). 

• True breakpoints are set in task groups by specifying the 
Set Breakpoint (Sn) directive. (The detailed description 
of the Sn directive later in this section includes addi­
tional rules for specifying true breakpoints.) 

• Quick breakpoints can only be set from the system task 
group ($S); i.e., you must be debugging from the terminal 
designated as the operator terminal. 

• Quick breakpoints are set in the $S task group by specify­
ing the Set Quick Breakpoint (SQn) directive. (The 
detailed description of the SQn directive later in this 
section includes additional rules for specifying quick 
breakpoints.) 

• Only quick breakpoints may be set in shareable code. 

• Quick breakpoints may be embedded in true or bound unit 
directive lines. Note that in this case you set all 
breakpoints f rom the system task group and that tnese 
breakpoints could impact all users. Thus, caution must be 
used when debugging in the system task group. 

Controlling Output 

Output can be redirected by using a true or bound unit break­
point. When the breakpoint condition occcurs, the FO directive 
can be used to redirect the output. 

8-12 
09/86 
CZ15-02A 

\ 



(_ 

When quick breakpoints are utilized, output sent to the pre­
viously specified user-defined disk file can be retrieved after 
closing the disk f ile and, outside the Multiuser Debugger task, 
entering the PR_QK command (see the Commands manual for details.) 

Determining the Active Level * 
The active level is the priority level currently in effect. 

When the Debugger is activated by a breakpoint, trace trap, or 1 
user trap, the active level is automatically set. The active 
level can be displayed by displaying the pseudo-variable $SL 
( i. e. , 'VH $SL' ) • 

Maintaining a Trace History 

When using the Debugger with disk-stored directive lines that 
execute upon encountering a trap or a breakpoint, a trace history 
may be maintained on the device specified as user-out. 

Also, while at a Debugger breakpoint, the suspended task may 
be set to run in jump-trace mode (j-mode). In this case, every 
departure f rom the current sequence of instructions generates a 
trace trap. 

DEBUGGER DIRECTIVES 

The rest of this section consists of detailed descriptions of 
the Multiuser Debugger directives, presented in alphabetic order. 

The following notational symbols are used to describe the 
format of Multiuser Debugger directives. 

Notational Symbols 

braces { } 

Ellipsis ( ••• ) 

Delta (i'.l) 

Meaning 

For a single enclosed argument, indicates 
that the argument is optional. If more than 
one argument is enclosed by braces in a 
vertical listing, the braces indicate that a 
choice is to be made. In this case, optional 
argurnents are identif ied in the text. 

Indicates the ability to repeat within 
braces. 

Indicates one or more spaces. 

Vertical bar (1) Indicates a choice between two or more 
argurnents. 

Note that the use of braces shown above dif f ers f rorn the 
usage defined in the preface and employed in other sections. 

8-13 
09/86 
CZ15-02A 



ALL REGISTERS 

ALL REGISTERS (AR) 

The All Registers (AR) directive prints all registers for the 
active level on the device specif ied as user-out. Bound unit 
breakpoints lie within the loader, not in the task context. As a 
result, the display of registers at a bound unit breakpoint are 
not those of the task and can be ignored. 

FORMAT: 

AR 

8-14 CZlS-02 

/·~) 
<"-._j 



ASSIGN 

ASSIGN (AS) 

The Assign (AS) directive assigns a specif ied hexadecimal 
value to a specified symbol; this directive alters registers of 
the active level, and def ines reserved symbols. Bound unit 
breakpoints lie within the loader, not in your task context. As 
a result, the Assign directive on a register is refused by the 
Multiuser Debugger, if the current level's task is suspended on a 
bound unit breakpoint. 

FORMAT: 

AS sym exp {sym exp ••• } 

ARGUMENTS: 

sym 

exp 

A reserved symbol G through z or a register. 

An expression that resolves to a hexadecimal value up to 
32 bits. The rightmost 20 bits are used for an address 
register ($Bn), the program counter ($P), or the bound · 
unit entry point ($E); the rightmost 16 bits are used for 
all other registers. 

Example: 

AS $Rl -2 X 1408 $B7 X+lS 

-2 is assigned to data register 1, 1408 is assigned to the 
reserved symbol X, and 1410 assigned to base register 7. 

8-15 CZlS-02 



CHANGE MEMORY 

CHANGE MEMORY (CH) 

The Change Memory (CH) directive changes the contents of a 
single specif ied memory location, or consecutive locations start­
ing at that location, to specified value(s). 

NOTE 

This directive changes memory only. To alter 
register contents, see the Assign (AS) directive. 

FORMAT: 

CH exp rexp {rexp ••• } 

ARGUMENTS: 

exp 

First or only location whose contents are to be changed. 

rexp 

Value(s) tobe put in memory location(s). 

Example 1: 

CH 200 4FFF 1716 

Put the value 4FFF into location 200 and 1716 into location 
201. 

Example 2: 

CH 100 0/10 

Locations 100 to lOF are zero-f illed. 

Example 3: 

CH 2000 0/10 1/10 2/10 

This example shows how multiple repeat factors can be used: 
Locations 2000 to 200F are given a value of zero, locations 
2010 to 201F are given a value of 1, and locations 2020 to 
202F are f illed with 2s. 

8-16 CZlS-02 

. ~, 



CLEAR ABNORMAL TRAP BIT 

CLEAR ABNORMAL TRAP BIT (CT) 

Clear the abnormal trap bit set in the debugger's indicator 
word. 

This bi t -is set to request that a special debug breakpoint 
message be displayed if a task in a group encounters an 
unexpected (abnormal) 0303xx trap condition. If the bit is not 
set, the trap information is displayed and the task is 
terminated. 

With the bit set, the trap information is displayed, the task 
is suspended, and a special breakpoint message appears. These 
events allow the user to decide whether to continue executing the 
task (by entering GO) or to terminate the task (by entering TT). 

FORMAT: 

CT 

8-17 CZlS-02 



CLEAR ALL BOUND. UNIT 
BREAKPOINTS 

CLEAR ALL BOUND UNIT BREAKPOINTS (CB*) 

The Clear All Bound Unit Breakpoints (CB*) directive clears 
all bound unit breakpoints, but not their associated directive 
lines. 

FORMAT: 

CB* 

8-18 CZlS-02 



,. 
CLEAR ALL QUICK BREAKPOINTS (CQ*) 

CLEAR ALL QUICK 
BREAKPOINTS 

The Clear All Quick Breakpoints (CQ*) directive clears all 
quick breakpoints, but not their associated directive lines. 

FORMAT: 

CQ* 

8-19 CZlS-02 



CLEAR ALL TRUE 
BREAKPOINTS 

CLEAR ALL TRUE BREAKPOINTS (C*) 

:rhe Clear All True Breakpoints (C*) directive clears all 
defined true breakpoints, but not their associated directive 
lines. 

FORMAT: 

C* 

,• 

8-20 CZlS-02 



CLEAR BOUND UNIT BREAKPOINT (CBn} 

CLEAR BOUND UNIT 
BREAKPOINT 

The Clear Bound Unit Breakpoint (CBn} directive clears a 
specif ied breakpoint for a bound unit, but does not clear the 
associated directive line. 

FORMAT: 

CBn 

ARGUMENT: 

n 

Specif ies the bound unit breakpoint to be cleared; must 
be a decimal digit from 0 to 9. 

Example: 

CB3 

Breakpoint number 3 is cleared for the bound unit previously 
defined by SB3; the associated directive line is not cleared. 

8-21 CZlS-02 



CLEAR QUICK BREAKPOINT 

CLEAR QUICK BREAKPOINT (CQn) 

The Clear Quick Breakpoint (CQn) directive clears a specif ied 
quick breakpoint, but not the associated directive line. 

FORMAT: 

CQn 

ARGUMENT: 

l'l 

Nmnber of the quick breakpoint; must be a decimal digit 
from 0 through 9. 

Example: 

CQ3 

Quick breakpoint number 3 is cleared: the associated 
directive line is not cleared. 

8-22 CZlS-02 



CLEAR TRUE BREAKPOINT 

CLEAR TRUE BREAKPOINT (Cn) 

The Clear True Breakpoint (Cn) directive clears a specif ied 
true breakpoint, but not the associated directive line. 

FORMAT: 

Cn 

ARGUMENT: 

n 

Nurnber of the true breakpoint; rnust be frorn O through 31 
( dec irnal) • 

Exarnple: 

C3 

True breakpoint number 3 is cleared; the associated directive 
line is not cleared. 

8-23 CZlS-02 



CONDITIONAL EXECUTION 

CONDITIONAL EXECUTION (IF) 

The Conditional Execution (IF) directive allows a set of con­
di tions to be tested prior to execution of other Multiuser 
Debugger directives. The IF directive is intended to be used in 
a stored breakpoint directive line. It permits breakpoints to be 
reported without suspending the active level if the specif ied 
condition does not exist. When a breakpoint occurs for which an 
IF directive has been specified, the following actions occur: 

• Any directives preceding IF are executed. 

• The IF conditions are evaluated, as follows: 

If TRUE, a line in the following format is displa~ed on 
the current Debugger output device 

•exp { • }{~ }{•} hhhh ... • 
and any directives following IF are executed. If a GO 
directive does not follow, the active level is suspended. 

If FALSE, no.display occurs, and the directives following 
IF are not executed. The active level continues 
processing. 

FORMAT: 

IF exp n{;}Hhhhh ... ; 
ARGUMENTS: 

exp 

Hexadecimal memory address of a byte string argument. 
This must specify an address1 $Rn (where 0 < n < 7) 
cannot be used for exp. No check for this error is 
performed1 however, if you use $Rn, results are 
unpredictable. 

Symbolic variable address $V G through $V z can be used 
to represent the address of symbolic variables G through 
z. 

8-24 

------·---

09/86 
CZ15-02A 

···-, \ 

,1 

./ 



.
(·'· c ' 

{'} 

CONDITIONAL EXECUTION 

specif ies the condition to be tested when cornparing the 
rnernory byte string value to the test pararneter. "" 11 

optionally specifies logical negation; i.e., not less 
than, not equal, not greater than. 

Indicates that the argurnent is right-byte aligned. 

hhhh ••• 

The test pararneter, expressed in ASCII as a string of 
pairs of hexadecirnal digits; each pair represents one 
byte. The test pararneter rnay not be an assigned syrnbol 
(see the Assign (AS) directive). The length of the 
pararneter is lirnited by the rnaxirnurn size of a Multiuser 
Debugger stored directive (127 bytes). The pararneter's 
ASCII value rnust consist of pairs of hexadecirnal values. 
If an odd nurnber of hexadecirnal values is specif ied, a 
cornrnand error is reported when the directive is executed 
and the task rernains suspended to allow f or correction. 
If the IF directive is ernbedded in a Quick Breakpoint 
directive line, this error condition is a false state and 
the rest of the directive line is ignored and the task 
continues. The IF directive terrninator rnust be a 
sernicolon (;} • 

Exarnple: 

Assurne that true breakpoint 2, as defined below, is 
encountered, and that $B7 points to rnernory location SSSF: 

S2 135E (IF 1000">,3E;IF $B7=42Dl;DP $B7/100;GO} 

Two conditions rnust be true before the Durnp (DP) direc­
tive is executed: 

1. The rightrnost byte at rnernory location 1000 rnust be 
less than or equal to 3E. 

2. The byte string found at rnernory location SSSF rnust be 
equal to 42Dl. 

8-25 CZlS-02 



CONDITIONAL EXECUTION 

If both conditions are met, the dump is executed, and the 
active level continues in response to the GO directive. 
If either condition is not satisf ied, the dump does not 
occur, and the active level continues without suspension. 

NOTE 

The IF directive can be entered f rom the terminal, 
in which case its action corresponds to its entry 
in a stored directive line. However, using the IF 
directive from the terminal ·is of limited useful­
ness, since the conditions to be tested can be 
checked by using other directives (e.g., DH). 

8-26 CZlS-02 



(_, 

C,. 
' 

' 

DEFINE 

DEFINE (Dn) 

The Def ine (Dn) directive def ines a specified directive line 
for future use and associates that line with a specified number. 
The directive line is stored on the user-defined work f ile and 
can be ref erred to by specifying in an Execute (En) directive the 
number with which it was associated. The entire Define directive 
may comprise a maximum of 126 characters. 

When you reuse a disk that has predef ined directive lines 
from a previous execution, the lines may be referred to without 
redefining them. (See "Set True Breakpoint (Sn)" later in this 
section.) This prevents complex predefined directive lines from 
being respecif ied each time the system is reloaded for debugging 
the same problem. 

FORMAT: 

Dn (directive line) 

ARGUMENTS: 

n 

Number with which the specif ied directive line is associ~ 
ated1 must be from 0 through 9. 

(directive line) 

One or more directives stored for future use. 

Example l: 

D3 (CH 100 O) 

Associate the number 3 with the directive within the paren­
theses. Hereafter, each time the directive E3 (see "Execute 
(En)".) is executed, the parenthetical directive is executed 
and location 100 is zero-f illed. 

Example 2: 

D4 ( ) 

By storing a null directive, deactivate a previously def ined 
directive line 4 which is no longer required. 

8-27 CZlS-02 



DEFINE TRACE 

DEFINE TRACE (DT) 

The Def ine Trace (DT) directive associates the directive line 
within the parentheses with the occurrence of a jump trace trap 
or a BRK instruction not already def ined as a breakpoint. The 
specif ied directive line is stored in the user-defined work f ile 
for future use. The entire Define Trace directive may comprise a 
maximum of 126 characters. 

When you reuse a disk f ile that has predef ined directive 
lines f rom a previous execution, the lines may be referred to 
without redefining them. (See "Set True Breakpoint (Sn).") 

FORMAT: 

DT (directive line) 

ARGUMENT: 

(directive line} 

One or more directives stored for future use. 

Example 1: 

DT (AR) 

All registers are displayed each time a trace trap occurs. 
(See "All Registers (AR).") 

Example 2: 

DT ( ) 

Cancel usages of the predef ined trace directive line. 

8-28 CZlS-02 



DISPLAY MEMORY 

DISPLAY MEMORY (DH) 

The Display Memory (DH) directive displays one or more speci­
fied memory location{s) in hexadecimal notation either on the 
terminal or on another specif ied device. 

FORMAT: 

DH rexp {rexp ••• } 

ARGUMENT: 

rexp 

Location{s) whose contents are displayed. A minimum of 
one location may be displayed. 

Example 1: 

DH 200 

Display the contents of location 200. 

Example 2: 

DB 200/100 

Display the contents of locations 200 to 2FF. 

8-29 CZlS-02 



DUMPMEMORY 

DUMP MEMORY (DP) 

The Dump Memory (DP) directive prints on the te~minal or 
another specif ied device an area of memory starting at a speci­
f ied location. The printout comprises a minimum of eight loca­
tions and is in hexadecimal and ASCII notations. 

NOTE 

Up to 32K words of memory can be dumped in 
response to a single DP directive. Dumps of more 
than 32K must be performed as separate operations. 

FORMAT: 

DP rexp {rexp ••• } 

ARGUMENT: 

rexp 

Memory location(s) whose contents are displayed. The 
display is always in a multiple of eight locations. 

Example 1: 

DP 200 

Display (at the current user-out device) one line of rnemory 
in both hexadecirnal and ASCII, starting at location 200. 

Example 2: 

DP 80/3C 200/240 

Display the contents of locations 80 to BF and 200 to 43F on 
the current user-out device. Although the repeat expression 
of 3C was specif ied in the directive, the display is through 
location BF because displays are always in multiples of eight 
locations. 

8-30 CZlS-02 

----------------------------- -------- ----------- --- ----- --- - -----

.··~. 



( 

ENDTRACE 

END TRACE (ET) 

The End Trace (ET) directive disables the j-rnode trace (see 
"Start J-Mode Trace (ST)") for a specific task on the next trap. 

FORMAT: 

ET lvl 

ARGUMENT: 

lvl 

The level, as previously specif ied by the last ST 
directive. lvl is preceded by one space. The trace rnust 
f irst have been enabled using ST. 

8-31 CZlS-02 



ESCAPE 

ESCAPE (E) 

The Escape (E) directive passes the rest of the input buffer 
to the command processor for processing. Debugger directives'can 
precede the portion of the input buff er to be passed to the com­
mand processor, if they are separated by semicolons (;). They 
cannot, however, follow commands passed to the command pro­
cessor. Once an Escape directive has been encountered, the rest 
of the input line is interpreted by the command processor. This 
allows multiple commands to be passed to the command processor 
using only one Escape directive. 

FORMAT: 

E exp{ ;exp} · 

ARGUMENT: 

exp 

Any command. 

Example: 

E TIME 

Return the time. 

NOTE 

Do not use the Escape directive to invoke the 
bound units that you intend to debug. The 
Multiuser Debugger must be terminated (see "Sleep 
(SP)" for details) before invoking a bound unit 
containing breakpoints. 

8-32 CZlS-02 

/ 
1 



EXECUTE 

EXECUTE (En) 

The Execute (En) directive retrieves and executes a specified 
predefined directive line. This directive may not be embedded in 
Define (Dn) directive lines; it is permitted in Set True Break­
point (Sn), Define Trace (DT), and Set Bound Unit Breakpoint 
(SBn) lines. 

FORMAT: 

En 

ARGUMENT: 

n 

Number of the line to be executed; must be from O through 
9. 

Example 1: 

D3 (CH 100 O) 
E3 

The directive E3 retrieves and executes line 3, previously 
defined in the Define directive as CH 100 O. 

Example 2: 

D3 (CH 100 0) 
Sl 100 (E3) 

The Execute (E3) directive is embedded in a Set True Break­
point directive line. The Execute directive retrieves and 
executes line 3, previously defined in the Define directive 
as CH 100 O, whenever true breakpoint 1 is encountered. 

8-33 CZlS-02 



1 

FILE IN 

FILE IN (FI) 

The File In (FI) directive causes input directives to be 
taken from the f ile named by the path argument. The directive 
f ile must end with an FI directive to switch back to the user-in 
file. 

FORMAT: 

FI {path} 

ARGUMENT: 

{path} 

The pathname of the f ile or device from which subsequent 
directives are to be taken. 

Example: 

FI MY.FI 

Input is taken from the file MY.FI until another FI directive 
is read. If an EOF is reached on the input file (no FI 
directive to redirect input), DEBUG terminates with an error 
message. 

8-34 
09/86 
CZ15-02A 

·~. 



(„. 

FILE OUT 

FILE OUT (FO) 

The File Out (FO) directive redirects output frorn the current 
user-out f ile to the device specified by the pathname argurnent. 
This directive allows rnessages that result when a true or bound 
unit breakpoint or other condition occurs to be sent to a device 
other than the user-out f ile. It has no effect on input to the 
prograrn. 

FORMAT: 

FO {path} 

ARGUMENT: 

{path} 

The pathnarne of the device to which output for the group 
is directed. If path is ornitted, user-out defaults to 
the group's original user-out file. 

Exarnple: 

FO !LPTOO 

Output is redirected f rorn the current user-out f ile to a line 
printer. 

8-35 CZ15-02 



GET QUICK MEMORY 

GET QUICK MEMORY (MQ} 

The Get Quick Memory (MQ} directive reserves the requested 
amount of memory for storin9 (in memory buffers) the output from 
execution of a Quick Breakpoint directive line. 

FORMAT: 

MQ {-BS exp} {-RS exp} {-NB exp} 

ARGUMENTS: 

{-BS exp} 

Size of buffer specif ied in wotds (hexadecimal). 
Default: 800 

{-RS exp} 

Size of record specif ied in words (hexadecimal). 
Default: 100 

{-NB exp} 

Number of buffers requested; must be two or more. 
Default: 2 

NOTES 

1. To use quick breakpoints, enter this directive 
first after invoking the Multiuser Debugger in 
the $s task group. 

2. Each buffer must contain at least two records. 
The f irst record of each buffer contains the 
information needed by the Multiuser Debugger 
as listed below. 

8-36 CZlS-02 

\ 
\ 

\ 
/ 1 

{ ,/ 



( 
Nurnber 

Offset of Words 

0 4 
4 l 
5 2-
7 2 
9 l 

10 l 
11 l 
12 l 
13 l 
14 l 
15 l 

Definition 

File systern inforrnation 
Quick f ile identif ier 

GET QUICK MEMORY 

Pointer to next buf f er in chain 
Pointer to next available record in buf fer 
Maximum record size 
Nurnber of records still available in buffer 
Nurnber of records not cornpleted in buff er 
Nurnber of records f or reset 
Current buffer nurnber {n+l) 
Nurnber of buf fers in the rnernory block 
Indicators word 

X'l' buffer in use 
X'2' buff~r full 
X'4' buffer ready for reuse 
X'8' buffer information lost 
X'lO' last buffer to be written to disk 
X'20' disk file has cycled 

The minimum size for each record is 19 words. 

Example: 

MQ -RS 80 

Request memory. The default values for buffer size and the 
nurnber of buffers requested are used. Each record is 80 
words long. 

8-37 CZlS-02 



GO 

GO 

The GO directive resumes execution on the current active 
level after a breakpoint and can optionally specify a 
limit-to-pause counter value which applies only to j-mode trace 
traps. (See "Start J-Mode Trace (ST)"). 

FORMAT: 

GO {LLLL} 

ARGUMENT: 

{LLLL} 

Optionally, an ASCII expression of 1 to 4 hexadecimal 
digits greater than zero. The ASCII expression is pre­
ceded by one space. Default: 1 

Example: 

SO 100 (DH 200/lO;GO) 

The task encountering true breakpoint 0 traps; the Associated ~- j 
directive line is executed by the Multiuser Debugger and the 
last directive of the directive line (GO) reactivates the 
task. 

8-38 CZlS-02 

------- ------ --- --------- ---------·---··-·---



( 

LIST ALL BOUND UNIT 
BREAKPOINTS 

LIST ALL BOUND UNIT BREAKPOINTS (LB*) 

The List All Bound Unit Breakpoints (LB*) directive displays 
all bound unit breakpoints and their associated directive lines 
if the work f ile is open. If the work f ile is not open, only 
defined bound unit breakpoints are listed. If the work f ile is 
open, the listing contains all bound unit breakpoints and all 
associated directive lines. It is possible to list a bound unit 
breakpoint with no corresponding directive line or a directive 
line with no defined bound unit breakpoint. However, if neither 
a bound unit breakpoint nor a directive line is defined for a 
particular bound unit breakpoint number, that bound unit break­
point number does not appear in the list. 

FORMAT: 

LB* 

Sample Listing: 

BUO (SO $E;GO) 
BU2 LWD ( ) 

The work f ile is open and bound unit 0 has a directive line 
but rio defined breakpoint; bound units 1 and 3 through 9 have 
neither defined breakpoints nor directive lines; and bound 
unit 2 has only a defined breakpoint. 

NOTE 

Ten bound unit breakpoints (one per bound unit; 0 
through 9) can be set. (See "Set Bound Unit 
Breakpoint (SBn)".) 

If a bound unit breakpoint is in express mode, the output of 
the LB* directive contains an additional field in the format: 

:nnnn 

where nnnn is the hexadecimal Offset specif ied for the 
resulting true breakpoint. 

8-39 
09/86 
CZ15-02A 



LIST ALL QUICK 
BREAKPOINTS 

LIST ALL QUICK BREAKPOINTS (LQ*) 

The List All Quick Breakpoints (LQ*) directive displays all 
quick breakpoints and their associated directive lines. You can 
print a directive line without an associated quick breakpoint 
(e.g., if the quick breakpoint has been previously cleared). If 
neither a quick breakpoint nor a quick breakpoint directive line 
is defined for a particular quick breakpoint number, that break­
point does not appear in the list. 

FORMAT: 

LQ* 

Sample Listing: 

QUICK BREAKPOINTS 

l LOC = ABCD INST = OF03 (GO) 
3 (DP $P;AR;GO) 

Directive lines are defined for quick breakpoints 1 and 3, 
although breakpoint 3 is not currently set. Quick break­
points 0 and 2 through 9 have neither a defined breakpoint 
nor a directive line. 

NOTE 

Ten quick breakpoints (0 through 9) may be set. 
(See •set Quick Breakpoint (SQn)".) 

8-40 

------------ ---------------

CZlS-02 



LIST ALL TRUE BREAKPOINTS 

LIST ALL TRUE BREAKPOINTS (L*) 

The List All True Breakpoints (L*) directive lists all cur­
rently def ined true breakpoints, their location in rnernory, the 
instruction which was replaced, and their associated directive 
lines. If th-e work f ile is not open, the list consists of the 
locations of the def ined true breakpoints and the instruction 
being replaced. If the work f ile is open, all defined true 
breakpoints and all associated directive lines are listed. It is 
possible to list a true breakpoint without an associated direc­
tive line, or a directive line without an associated true break­
point. However, if neither a true breakpoint nor a directive 
line is def ined for a particular true breakpoint nurnber, that 
breakpoint nurnber does not appear in the list. 

FORMAT: 

L* 

Sarnple Listing: 

TRUE BREAKPOINTS 
1 LOC = OOABCD INST = OF02 ( ) 
3 (AR;DP $P ;GO) 

True breakpoint 1 is listed with no directive line and true 
breakpoint 3 has only a def ined directive line. True break­
points O, 2, and 4 through 31 have neither a defined true 
break- point nor directive line. 

NOTE 

32 true breakpoints (0 through 31) rnay be set. 
(See "Set True Breakpoint (Sn)".) 

8-41 CZIS-02 



LIST BOUND UNIT 
BREAKPOINT 

LIST BOUND ONIT BREAKPOINT (LBn) 

The List Bound Unit Breakpoint (LBn) directive displays the 
stored directive line associated with a specified bound unit 
breakpoint. 

FORMAT: 

LBn 

ARGUMENT: 

n 

Number of the bound unit breakpoint for which the direc­
tive line is to be listed; must be from 0 through 9. 

Example: 

LB3 

List the directive line associated with bound unit breakpoint 
3. 

8-42 CZlS-02 



/(···„. 
\ .. ,•'' 

C.„ .• 

/ 

LIST QUICK BREAKPOINT 

LIST QUICK BREAKPOINT (LQn) 

The List Quick Breakpoint (LQn) directive displays a particu­
lar quick breakpoint number set by a Set Quick Breakpoint (SQn) 
directive, and its associated directive line. You can print a 
directive line without an associated quick breakpoint (e.g., if 
the quick breakpoint had been previously cleared) • 

FORMAT: 

LQn 

ARGUMENT: 

n 

Number of the quick breakpoint whose directive line is 
listed; must be a decimal digit from 0 through 9. 

Example: 

LQ2 

Display the directive line associated with quick breakpoint 
2. 

8-43 CZlS-02 



LIST TRUE BREAKPOINT 

LIST TRUE BREAKPOINT (Ln) 

The List True Breakpoint (Ln) directive displays a particular 
true breakpoint number set by a Set True Breakpoint (Sn) direc­
tive, and its associated directive line. 

FORMAT: 

Ln 

ARGUMENT: 

n 

Number of true breakpoint whose directive line is listed; 
can be 0 through 31 (decimal). 

Example: 

L2 

Display the directive line of true breakpoint 2. 

8-44 CZlS-02 



(~ .• 

MODE 

MODE 

Change the current mode of the debugger from numeric to 
symbolic. 

FORMAT: 

MODE SYM[BOLIC] 

DESCRIPTION: 

This directive is used when debugging a program written in a 
high level language, then compiled and linked with the 
-SYMBOL argument. After invoking the debugger in symbolic 
mode, you can change to numeric mode by entering: 

MODE NUM 

(You might make this change to examine register contents.) 
Once in numeric mode, you can return to symbolic by entering: 

MODE SYM 

Example: 

MODE SYM 

The debugger is currently in numeric mode; the directive 
changes the mod• to symbolic. 

NOTE 

A detailed description of the symbolic mode 
directives and their use is found in Section 7 of 
this manual. 

If the debugger is not initially invoked in symbolic mode, 
you cannot change from numeric mode to symbolic mode. 

8-45 
09/86 
CZ15-02A 

1 



PRINT 

PRINT (Pn) 

The Print (Pn) directive prints specified lines predefined by 
On directives. Use the Print All (P*) directive to print all 
predefined lines. 

FORMAT: 

Pn 

ARGUMENT: 

n 

Number of the line to be printed; can be O through 9. 

8-46 CZlS-02 



( 

(~ .· 

PRINT ALL 

PRINT ALL (P*) 

The Print All (P*) directive prints all lines predef ined by 
Dn directives. Use the Print (Pn) directive to print only speci­
f ied predef ined lines. 

FORMAT: 

P* 

8-47 CZlS-02 



PRINT HEADER LINE 

PRINT HEADER LINE (Hn) 

The Print Header Line (Hn) directive prints a specified 
header line starting at the head of form or after a specif ied 
number of lines are skipped. The main uses of the Print Header 
Line directive are to document printed inf ormation related to 
breakpoint or trace trap debugging, and to annotate a line 
printer memory dump. 

FORMAT: 

Hn (header 

ARGUMENTS: 

n 

Number of lines skipped before header line is printed; 
can be l through 9, or O. 0 causes header to be printed 
at head of form. 

(header ) 

Any ASCII characters and/or expressions; each expression 
must be preceded by a percent (%) sign. If a percent 
sign is to be printed, two percent signs must be used 
(%%). Left and right parentheses must be balanced within 
header lines. 

Example: 

HO (DUMP OF BREAKPOINT FOR LEVEL %$S ) 

Document dumps. As soon as a carriage return is typed, the 
above header is printed at the top of a new page. 

8-48 CZlS-02 



' ( -.,.' 

PRINT HEXADECIMAL VALUE 

PRINT HEXADECIMAL VALUE (VH) 

The Print Hexadecimal Value (VH) directive prints, in hexa­
decimal, the value of each specified expression. 

FORMAT: 

VH exp {exp} 

ARGUMENT: 

exp 

Expression whose value is displayed. 

Example: 

VH .+100-M 

Display the result of the computation defined by the last 
referenced memory location plus 100 (hexadecimal) minus the 
value assigned to the temporary symbol M. 

8-49 CZlS-02 



PRINT QUICK MEMORY 
POINTER 

PRINT QUICK MEMORY POINTER (PQ) 

The Print Quick Memory Pointer (PQ) directive prints the 
hexadecimal address of the start of quick memory. 

FORMAT: 

PO 

8-50 CZlS-02 



( .... 

PRINTTRACE 

PRINT TRACE (PT} 

The Print Trace (PT) directive prints a def ined trace direc­
tive line. 

FORMAT: 

PT 

8-51 CZlS-02 



QUIT 

QUIT (QT) 

The Quit (QT) directive clears all breakpoints, closes all 
Debugger work f iles, and disables the Debugger trap handler 
before aborting the Multiuser Debugger task. 

FORMAT: 

QT 

8-52 CZlS-02 

---- ------~------ ~-------~-- ---- -------~-



( ·--./ 

/ 

RESET FILE 

RESET FILE (RF) 

The Reset File (RF) directive closes f iles and prohibits exe­
cution of directives that refer to user-defined files. 

FORMAT: 

RF 

ARGUMENTS: 

~DB l 
t QK ~ 

DB - Close the Debugger work f ile and prohibit execution 
of the P*, Pn, PT, Sn, Dn, DT, En, SBn, Ln, and LBn 
directives. These directives may not be entered 
until another Specify File (SF) directive is issued 
to open a new work f ile. 

QK - Close the quick disk f ile and prohibit the quick 
memory buffers from being written to the f ile. If 
no quick breakpoints are currently set prior to an 
RF directive, the following occurs: 

1. The current buffer is marked "last" used and 
full. 

2. The quick disk file is closed after the 
"last" buffer is written to the disk f ile. 

3. The writer task is terminated. 

If there are quick breakpoints still set, steps 1 
and 3 are done, but step 2 cannot be guaranteed to 
write all the buffers to the disk before the f ile is 
closed. 

8-53 CZlS-02 



RETURN QUICK MEMORY 

RETURN QUICK MEMORY (RQ) 

The Return Quick Memory (RQ) directive causes (1) the quick 
disk f ile to be closed after all memory buffers used have been 
written to it, (2) the asynchronous writer task to be terminated, 
and (3) memory to be returned to your pool. 

NOTE 

Both the quick memory and that memory necessary 
for quick breakpoint processing are returned to 
your pool. 

FORMAT: 

RQ 

8-54 

----------~--------

CZlS-02 

-~ 



( 

.( 

SET BOUND UNIT 
BREAKPOINT 

SET BOUND UNIT BREAKPOINT (SBn) 

The Set Bound Unit Breakpoint (SBn) directive sets a numbered 
breakpoint for a specified bound unit or overlay. A given bound 
unit (BU) breakpoint refers to either roots or to overlays, or to 
both. When the bound unit breakpoint is encountered, a message 
informs you where the specif ied bound unit or overlay has been 
loaded into memory, so that you can then set true breakpoints at 
specif ied locations in the program. Because a bound unit is 
loaded at the time the task associated with it is created, the 
level number displayed when a BU breakpoint occurs is not neces­
sarily the one used when requests for that task are later 
executed. 

The message format is: 

*BU n $SL=OOxx $E=OOxxxx + OOxx 

n 

Number of bound unit breakpoint; can be 0 through 9. 

$SL=OOxx 

Specif ies priority level. 

$E=00xxxx + OOxx 

Represents the bound unit base address plus entry point 
offset as defined by the bound unit or by the caller. 
used in place of $P associated with true breakpoints. 

FORMAT: 

SBn 

ARGUMENTS: 

n 

bound-unit-name 
bound-unit-name/overlay-number 
bound-unit-name/* 
* 
*/overlay-number 
*/* 

(directive line} 

Bound unit breakpoint number; can be from O to 9. 

8-55 CZ15-02 



SET BOUND UNIT BREAKPOINT 

bound-unit-name 

Name of the bound unit to which the breakpoint applies; 
up to six ASCII characters (first six characters of the 
bound unit name). 

overlay-number 

* 

Hexadecimal number of the bound unit overlay. 

Stands for all roots or all overlays, depending on 
context. 

(directive line) 

Directives to be executed when the bound unit or overlay 
is loaded. 

Example: 

SB6 SOOZ/A (IF 3D02=5354;VH M-2 ;GO) 

Sets breakpoint 6 for overlay nwnber A (hexadecimal) of the 
bound unit named sooz. The directive line specif ies that if 
the condition indicated is true (location 3002 equals 5354), 
then the value of M minus 2 is displayed. When overlay A is 
loaded into memory, its location is displayed at the 
terminal, and the directive line associated with bound unit 
breakpoint 6 is executed. 

8-56 CZlS-02 



( 

( 

SET EXPRESS BOUND UNIT BREAKPOINT 

SET EXPRESS BOUND UNIT BREAKPOINT (XBn) 

The Set Express Bound Unit Breakpoint (XBn) directive sets a 
numbered breakpoint for a specified bound unit or overlay. A 
given bound unit (BU) breakpoint refers to either roots or to 
overlays, or to both. This directive operates similarly to the 
Set Bound Unit Breakpoint (SBn) directive, however instead of 
stopping when the bound unit breakpoint is encountered, a true 
breakpoint is set and execution continues until the true 
breakpoint is encountered. 

Express bound unit breakpoints are not another set of bound 
unit breakpoints, but are simply a mode of bound unit 
breakpoints. Therefore, all of the features of normal bound unit 
breakpoints are available in express mode. This includes the 
ability to include a stored directive with the express bound unit 
by opening an xxx.DB f ile with the Specify File (SF) directive. 

The breakpoint number for the true breakpoint which is set 
when the express bound unit breakpoint is encountered is the same 
as the number of the express bound unit breakpoint itself. This 
true breakpoint must be in the cleared state when the express 
bound unit breakpoint is set. Otherwise, a Breakpoint Active 
error will occur. Conversely, setting a true breakpoint- when the 
express bound unit breakpoint of the same number is set will also 
result in a Breakpoint Active error. 

An optional argument can be given with the express mode 
directive to specify the offset into the bound unit at which the 
true breakpoint will be set. If no offset is given or if the 
given offset is zero, the true breakpoint is set at the default 
entry point ($E). 

When the true breakpoint resulting from an express breakpoint 
is encountered, an internally generat~ directive is issued to 
clear the true breakpoint. This frees the true breakpoint for 
re-use by the express bound unit breakpoint. For this reason, if 
such a true breakpoint has a stor~ directive associated with it, 
the stored directive is not executed. 

FORMAT: 

bound-unit-name 
bound-unit-name/overlay-number 

XBn bound-unit-name/* [offset [(directive line)]] 
* 
*/overlay-number 
*/* 

8-56.1 
09/86 
CZ15-02A 



--- - -- - --------~-- -~- - --·-·-·-----·- ------·----··-- ·------------- ·---- -·------------·----··-·-------------·----·----·-·--------- - -

SET EXPRESS BOUND UNIT BREAKPOINT 

ARGUMENTS: 

n 

Bound unit breakpoint number; can be from 0 to 9. 

bound-unit-name 

Name of the bound unit to which the breakpoint applies; 
up to twelve ASCII characters (f irst twelve characters of 
.the bound uni t name) • 

overlay-number 

* 

Hexadecimal number of the bound unit overlay as given in 
the link map. 

Stands for all roots or all overlays, depending on 
context. 

of f set 

Relative Offset from the beginning of the load unit at 
which to set the true breakpoint. An offset must be 
specif ied if a directive line is to be used. The offset 
is limited to four hexadecimal digits. 

directive line 

Directives to be executed when the bound unit or overlay 
is loaded. When an express bound unit breakpoint has a 
non-null directive associated with it, that directive 
will be executed in lieu of the internally generated 
directive which sets the corresponding true breakpoint. 
If this function is required, include a Set True 
Breakpoint (Sn) directive. A GO directive is not 
required, since a GO is always issued in express mode. 

When stored directives are used with express bound unit 
breakpoints, it is possible to include a set true 
breakpoint directive with a number differing frorn that of 
the express bound unit breakpoint. If this is done, the 
true breakpoint is not cleared when encountered and any 
directives associated with it are executed. 

8-56.2 
09/86 
CZ15-02A 

~; 

\ 
) 



(
~. 

i 
' ' . ..·' 

SET EXPRESS BOUND UNIT BREAKPOINT 

Example: 

XB6 SOOZ/A 

Sets breakpoint 6 for overlay number A (hexadecimal) of the 
bound unit named SOOZ. When overlay A is loaded into memory, 
true breakpoint 6 is set and execution continues until the 
true breakpoint is encountered. When the true breakpoint is 
encountered, an internally generated directive is issued to 
clear the true breakpoint. This frees the true breakpoint 
for re-use by the express bound unit breakpoint. If the true 
breakpoint has a stored directive associated with it, the 
stored directive is not executed. 

8-57 
09/86 
CZ15-02A 



SET QUICK BREAKPOINT 

SET QUICK BREAKPOINT (SQn) 

The Set Quick Breakpoint (SQn) directive sets a numbered 
quick breakpoint at a specif ied location. When the breakpoint is 
e.ncountered, the stored specif ied directive line is executed and 
the Debugger task continues. A message and any information 
requested by the directive line are written to quick memory and, 
optiorially, to a quick disk f ile. The entire SQn directive may 
comprise a maximum of 124 characters. 

If there is a·preexisting directive line associated with a 
given quick breakpoint and that directive line is no longer 
applicable, clear the line by designating empty parentheses ( ) 
when resetting the quick breakpoint. 

The message format is: 

($S)QBn Group Id TCB ptr Level 

n 

Quick breakpoint number1 must be 0 through 9. 

Group Id 

Group name of the task being debugged. 

TCB ptr 

Task control block location of the task being debugged. 

Level 

Priority level of the task being debugged. 

NOT ES 

1. A quick breakpoint cannot be set in any of the 
following instructions: input/output, generic 
(BRK), scientific, invalid instruction, LEV, 
ENT, LNJ, JMP, STS, or any instruction with an 
invalid address symbol. 

2. A GO directive should be the last directive 
specif ied in a quick breakpoint directive 
line. A GO directive embedded in an SQn 
directive allows task execution to proceed 
after the desired operation has been per­
formed. The Multiuser Debugger appends a GO 
directive to the directive line. 

8-58 CZlS-02 

·~ 

} 



(_ 

(~. 
/ 

SET QUICK BREAKPOINT 

3. If the NR argument is specified, there is no 
evidence that the quick breakpoint has been 
encountered. If the directive line contains 
an IF directive and the condition specif ied is 
true, any requested information is stored in 
the memory buffer. 

FORMAT: 

SQn exp {NR} (directive line) 

ARGUMENTS: 

n 

exp 

{NR} 

Number of the quick breakpoint; can be 0 through 9. 

Location at which the quick breakpoint occurs. 

Quick breakpoint output is not stored in the memory 
buffer. 

(directive line) 

Directives that are executed when the quick breakpoint is 
reached. The directives allowed in a quick breakpoint 
directive line are: AR, AS, CH, OH, GO, HS, IF, and VH. 
The GO directive should only appear as the last entry in 
the directive line; if omitted, the GO directive is 
appended. 

If GO is the only directive specif ied in the directive 
line, only the message described above is stored in the 
memory buffer. 

Example: 

SQl 1D8B NR (IF 1000<,3E;AR;GO) 

A quick breakpoint numbered "l" is set at location 1D8B. If 
the condition specif ied in the directive line is false, no 
information is stored in the memory buffer. If the condition 
is true, the breakpoint message and the contents of the 
active registers are stored in the memory buffer. 

8-59 CZlS-02 



SETTEMPORARYLEVEL 

(DELETED) 

8-60 
09/86 
CZ15-02A 



•( 

„( 

SET TRUE BREAKPOINT 

SET TRUE BREAKPOINT (Sn) 

The Set True Breakpoint (Sn) directive sets a numbered true 
breakpoint at a specified location. When the true breakpoint is 
encountered, the stored specif ied directive line, if any, is exe­
cuted. Otherwise, a typeout occurs indicating the contents of 
the location counter and the active priority level, and the task 
execution is suspended. The Set File (SF) directive is a precon­
di tion for directive line execution. The entire Sn directive may 
comprise a maximum of 126 characters. 

If there is a preexisting directive line associated with a 
given true breakpoint and that directive line is no longer appli­
cable, clear the line by designating empty parentheses ( ) when 
setting the true breakpoint. 

The message format is: 

( $H) BPn $P=OOxxxx $SL=OOxx 

$P=OOxxxx 

Location counter 

$SL=00xx 

Priority level 

NOTES 

1. If a true breakpoint is set in any of the 
following types of instructions, the true 
breakpoint must be cleared (Cn directive) 
before continuing execution (GO directive): 
input/output, generic (BRK), scientific, LEV, 
invalid instruction, or instruction with an 
invalid address syllable. To avoid this 
restriction, clear the existing true break­
point and then reset it in a subsequent Sn 
directive. 

2. A GO directive embedded in an Sn directive 
line allows task execution to proceed after 
the desired operations have been performed, 
without further operator intervention. 

3. True breakpoints are cleared when a bound unit 
or overlay is loaded or unloaded. Therefore, 
you should not clear previous breakpoints when 
loading a new bound unit. 

8-61 
09/86 
CZ15-02A 

1 



SET TRUE BREAKPOINT 

FORMAT: 

Sn exp {(directive line)} 

ARGUMENTS: 

n 

Number of true breakpoint1 can be 0 through 31 (decimal). 

exp 

Location at which true breakpoint occurs: 

{(directive line)} 

Directives that are executed when true breakpoint is 
encountered. 

Example 1: 

SO 100 (DH 200/101GO) 

Display locations 200 to 2,0F when location 100 is reached, 
then proceed from breakpoint~ 

Example 2: 

so 100 ( ) 

Cancel any line previously associated with true breakpoint o. 
Example 3: 

SO 1000 (AR;CO;GO) 
Sl 1003 (SO lOOO;GO) 

The f irst directive line sets true breakpoint number 0 at 
location 1000, prints all registers on the active level, 
clears true breakpoint number 0 because the instruction at 
location 1000 is restricted (see Note 1 above), then proceeds 
from the breakpoint. 

The second directive line sets true breakpoint number 1 at 
location 1003 and then reestablishes true breakpoint 0 at 
location 1000; the second true breakpoint line causes no 
visible action except the printing of the breakpoint message. 

8-62 CZlS-02 



( .,.\ 
•' 

SLEEP 

SLEEP (SP) 

· The Sleep (SP) directive temporarily suspends the execution 
of the Multiuser Debugger and returns control to the command 
processor. 

FORMAT: 

SP 

8-63 CZlS-02 



------·- -----·-·- ----· - -- ---··------- --- ----·-·-------~---·----- ----------------- ----------------

SPECIFY FILE 

SPECIFY FILE (SF) 

The Specify File (SF) directive identif ies the relative or 
full pathname of the Multiuser Debugger f ile to be opened. Since 
the function of the SF directive is to locate the file, first 
execute this directive: otherwise, an error message appears as 
soon as a directive requiring the f ile is used. When using quick 
breakpoints, the first directive entered after invoking the 
Multiuser Debugger should be the Get Quick Memory directive. The 
Specify File directive, in this case, should be the second direc­
tive entered. 

FORMAT: 

SF l path l 
pa th -CYCLE ( 
-CYCLE } 

ARGUMENTS: 

path 

Relative or full pathname of the f ile to be opened; rela­
tive pathname can be 1 to 12 c~aracters in length. All 
Multiuser Debugger work f iles must end with the suff ix 
.DB; all Multiuser Debugger quick disk files must end 
with the suff ix .QK. 

-CYCLE 

Used only with quick disk files. At end of file, returns 
the Debugger writer task, which enters debug information 
into the f ile, to the beginning of the quick disk f ile. 
If -CYCLE is not specif ied, the quick disk f ile is closed 
at end of f ile even if there was more data to be written. 

NOTE 

If you did not initially specify the -CYCLE argu­
ment and desire to do so later in the Debugger 
session, enter 

SF -CYCLE 

at any point later in the Debugger directive 
sequence before end of f ile; this causes the 
Debugger writer task to return to the beginning of 
the quick disk f ile when it reaches end of f ile. 

8-64 CZlS-02 



SPECIFY FILE 

Example 1: 

SF GLASS.DB 

Work f ile GLASS.DB is opened. 

Example 2: 

SF GLASS.QK -CYCLE 

Quick disk f ile GLASS.QK is opened and, when end of file is 
reached, the Debugger writer task returns to the beginning of 
the quick disk f ile to continue entering input into the file. 

Example 3: 

SF GLASS.QK 
• 
• 

SF -CYCLE 

Quick disk f ile GLASS.QK is opened. Later in the program, 
f orce the writer task to return to the beginning of the quick 
disk ~ile to complete the writing task. 

NOTES 

1. If the .QK or .DB suffix is not specified in 
the SF directive line for a work f ile, it is 
assumed a work f ile is being requested and .DB 
is appended before the f ile is opened. 

2. If the specified work file does not exist, it 
is created and opened with exclusive 
read/write access when the SF directive is 
entered. Only one user has access to a 
Debugger work f ile at any given time. 

3. If a simple pathname is entered, the system 
looks only in the current working directory 
for the specified work f ile. 

4. You have the option of changing work files by 
entering a new SF directive, thereby closing 
the currently active f ile and opening a new 
f ile in its place. 

8-65 CZlS-02 



SPECIFY FILE 

5. The quick disk file must have been previously 
created outside the Multiuser Debugger task 
using the Create File (CR) command. The path­
name supplied must include the suffix .QK. 
The argument values supplied must agree with 
those used in the Get Quick Memory (MQ) 
directive. In the following example, the 
argument values are the default values of the 
MO directive: 

CR f ilename.QK -REL -CISZ 4096 -SZ n -LRSZ 512 

n must be greater than or equal to 2. 

6. The .QK suffix must be specified in the SF 
directive line löra quick disk f ile; other­
wise, a default value of .DB is appended and a 
work f ile is opened. 

7. The quick disk file can only be opened when 
running the Multiuser Debugger from the system 
($S) group. Only one quick disk file can be 
opened at any given time. When the SF 
directive is specif ied, this quick disk f ile 
has exclusive write access. · 

8. Opening a quick disk file spawns the Debugger 
writer task. The writer task terminates when 
the quick disk f ile is closed. This task runs 
on level 62. 

9. You have the option of changing the quick disk 
f ile by entering a Reset File (RF) directive, 
thereby closing the currently active f ile. 
Then enter a new Specify File (SF) directive 
to open the new f ile. 

8-66 CZlS-02 



START J-MODE TRACE 

START J-MODE TRACE (ST) 

The Start J-Mode Trace (ST) directive sets the given task's 
Ml register j-bit on. As a result, any departure from the cur­
rent processing sequence causes a trap. The Multiuser Debugger 
treats the trap as a ntrace trap.n The following points apply: 

• j-mode trace can be started only for a task which is cur­
rently suspended due to a true breakpoint. 

• The ST directive is refused if the task is suspended due 
to a bound unit breakpoint. 

• j-mode processing is specif ic to a given task and is shut 
off or restored at the monitor call interfaces. 

• When a task is running in j-mode, the Multiuser Debugger's 
handling of successive traps is governed by the limit-to­
pause counter of the GO directive. 

• Limit-to-pause has a default value of 1, but may be set to 
an arbitrary value via the GO directive. The Multiuser 
Debugger decrements the limit-to-pause once for each 
occurrence of a trace trap. When limit-to-pause assumes 
the value zero, the trapped task is suspended to permit 
operator action and a TRACE PAUSE message is issued. When 
the task is reactivated (GO [ LLLL]) the limit-to-pause is 
reset to the default value or to a user-specif ied value. 

FORMAT: 

ST lvl 

ARGUMENT: 

lvl 

Active level of the task in question. 

8-67 CZlS-02 



TURN ON ABNORMAL 
TRAP BIT 

TURN ON ABNORMAL TRAP BIT (TB) 

Turn on the abnormal trap bit in the debugger's indicator 
word. 

This bit is set to request that a special breakpoint message 
be displayed if a task in the specified group encounters an 
unexpected (abnormal) 0303xx trap condition. With the b~t set, 
the trap information is displayed, the task is suspended, and the 
special breakpoint message is displayed. At this time, debug has 
control of the group, allowing the user to determine what caused. 
the trap. The user can then decide to continue f rom the trap {by 
entering GO) or to terminate the task (by entering TT). 

This bit is automatically set when debug is f irst invoked in 
a group. It can be turned off at any time by entering the Clear 
Abnormal Trap Bit (CT) directive. 

The format of the abnormal breakpoint message is: 

BP TP $SL=OOXX $P=OOXXXX 

$P points to the next location in memory following the trapped 
instruction. 

FORMAT: 

TB 

8-68 CZlS-02 



TERMINATE THE 
TRAPPED TASK 

TERMINATE THE TRAPPED TASK (TT) 

Terminate the request previously entered against the trapped 
task. 

A user who decides that the task being debugged has been 
sufficiently examined can terminate the task by this directive. 
The TT directive can be executed only for a task suspended by a 
true or special trap breakpoint. 

NOTE 

If TT terminates a task that has been abnormally 
trapped and is now suspended on the special 
breakpoint, there is no evidence of that task left 
in the task group. Normally, the trapped task's 
TCB and associated TSAs are left in the group for 
later analysis of a dump. 

FORMAT: 

TT 

8-69 CZlS-02 



MULTIUSER DEBUGGER (NUMERIC MODE) PROCEDURES 

Three sample debugging sessions are shown below to illustrate 
some of the directives and procedures described earlier in this 
section. The second and third debugging sessions illustrate 
primarily the use of quick breakpoints. 

Sample Session 1 

The bound unit being debugged is TEST, listed in Figure 8-1. 
TEST takes as- an argument a number in the range O through 2. The 
function of TEST is to write to user-out one of three numbered 
messages; the message number should correspond to the number 
entered as the argument. 

The debugging session is shown in Figure 8-2. At the start 
of the listing shown in Figure 8-2, TEST is invoked with the 
argument l. TEST should write to user-out TEST MESSAGE ONE, but 
fails to do so. A debugging session follows. Each Debugger 
directive beside which a number appears is explained by a 
correspondingly-numbered comment, beginning below. 

1. Invoke the Multiuser Debugger. 

2. Set bound unit breakpoint 1 on bound unit TEST. 

3. List all bound unit breakpoints. 

4. Put the debugger to sleep (SP) to allow input to the 
group through ECL commands. Note that the group is back 
in RDY state, waiting for input. 

5. Type the bound unit name with an argument, causing a 
bound unit breakpoint message to appear. You are now 
back in debug mode, ready to type in debug directives. 

6. Assign temporary symbol X to the base of the prograrn in 
rnernory. If the start address of the prograrn is not 
off set zero, the offset value rnust be subtracted f rorn $E 
to deterrnine the base. 

Exarnple: 

Assurne the following bound unit breakpoint rnessage: 

*BU 2 $SL=001B $E=OOABCD + 0023 DATA=OOOOOO 

To set X to the base of the bound unit, you would type 

or 

8-70 CZlS-02 



~ 
l ' ' / 

.~ 
' 

!~ 

1 1 11. E JE s 1 07122/ßO 1557.ß e d t lue llRS ASSEMßlfR 6.02 -SL IC PAGE 0001 
f)()l)l)fl 1 r 1 r L E t e 5 t, ' 800 7 2 200' Oebug Test Progr.u• 
1)()1100? • 
011000 .i • COPVR IC.llr, ( c), 1980, HONEYllfll 1 N f OR MA r 1 ON SVSJEftS, 1 NC. 
00011()1, 
l)(ll)f)I)') 0011() s l cl' l equ ' 1Hl0006 llflllO f IH7 l , ... Sr7,t'Jb7 arg count ff Oll rRß 
OOIHlll / 0110 1 9870 1 702 l tJ r sr1,:x•1102i error status 
011000!\ 0001 7002 C•I V Jr7,=2 two or more a rgs? 
ll1Hl01l9 01101, 0216 bl >error br i f n o 
fl'l001 () 000') ßOFl cmn t$b7 move passed I i r st arg 
11'101111 01106 9 ( 1\7 ldb $bJ,Jb7 ptr to second argumenJ 
01)111111 000 1 .9871. ldr Srl,tSbl arg size 
l)l)tltl 1 'i ono ß II All 1 inc : Sr 1 
0110011. II 1 HI') 11101 sol Jr 1, 1 convert [0 words 
f)ll(l(ll ') 
IJ()f)I) 1 f; 0 Oll A .aq1 equ j 

II ~Hlll 1 l OIHIA AO~l lJh 'Jr2,Ul1 ge t sec ond arg 
1111110 1 R no11u 2U>O cl•iV ,,2,-. • 10· drop ascii b i lS 
011'101<) I)()(}( AIHO 0017 l c1h Sb2,i.sgdsp 
011110?.tl 000( E 822 l 1fr lr6,Jb2.Sr2 length ot arg 
0000;,>1 flllllf A006 ldh lr2,:Jr6 get l engt h 
llOIJflU tlfl 1 () ASlO OOff anti Jr2,:x'00ff' drop s i gn extension 

00 Oll002i 1101 2 cuco 0015 l .11.J Jb41ms9 ptr to 11sg table 
1 flfll)() ?.I, 110 lt, ( ( A/, l 1Jb Sb4,Jb4.Sr2 move to desireo 11sg ....., 

1)1)1)1};,> ') 0111 s 6()1,8 lr6,8 s h i , ' length eo right byte ....... sor 
flllll026 IHll 6 7C llll l dv ,,,,o 
'l!lllOl / Oll 1 I 0001 IDC t 
()1)1)()?. !i 0018 O!Hll de •"0801' ca l l. USER_OUT 
0011019 1)()1 •) l 'JO 7 bez Jrl,>done br i f no error 
01100 rn fllJ 1 " u81ll 1111110 error tdr Ir 11 "X' 80' component code 
Ollllll S 1 tlO 1 C f li '> 1 ldr ,,,,„,,, error code 
()()()()~;> ()l)J 0 6(1Jfl ldv lr6,0 
00110 \ s Oll 1 E II llll l lllC t 
onno H ()01 f OfOO "c X'Of00' call REPORT E RROR 
t)fl(ll) \':i • 
OOOOS6 ()();,>() Jone equ ' f)l)f)I) ~ 7 1)()/0 1 C IJO l •lv Sr 1,0 
tl'.lfltl ~II 11011 2 C llll l <1 V \r2,0 
flt)l)I) s '> I) 02 ;> llOfll •llC l 
'l()l)l) I, IJ 1)1)/' Olfli ·IC .·0101• ca l l TERl'IJNATE JASIC 
f)•)l)t) 1, 1 
ll'llllll, ... ll ll 1 

'· 
lß !i q •• s p equ ' 

(".) llll1)1ll, ' ')II.' '· 01. f )/, ,j i: ms~O-a$9dspt256•(ms90_l-l) 
~ 1) l ll lll 1, '· l)ll.!'; 111' 'llt 1IC msg1-msgdspt256•(msgl_l-1> 
....... 'llltlOt, '> II II? 6 {JC. ''· llc msg2-msgdspt256•(msq2_l-1> 
U1 
1 

0 

"' Figure '8-1. Sampl~ Program TEST 



CO 
1 

" N 

() 
t'1 
....... 
U1 
1 

0 
N 

0000 

J 1 1 L E Jt s J 07/22/80 IS'l1.8 

()1)001,6 1l02 7 0910 
0011047 0028 „SI) 
()t)l)Ot. 'J ()028 4141> 4SB 'd4 l 111 sgO 

4 H S .?llSA 1, S S2 
t, F 20 

fltlllll 4 9 00fl7 msg.O_ l 
1)1)0050 1) 01- f 4 1"i4 4551 St. 20 111sg1 

4 0 4 s 'HSJ 4l 4 7 
1, S lO t,f t.E t. s.?O 

'llJllO'i 1 000') AISljl_l 
OfltHlS2 111H8 4 140 4 5 s l 'i HI 1ns9 2 

474 s .?OH s 74f 
2020 

OtJOIJ S \ 0007 1u~2_l 
'l'Hlll St. ()l)}f 4151, 4'iB St, 20 „sy J 

t, 01. 5 5 JSl 1,1 47 
1, 'i.>O 54 48 SHS 
t, S.?O 

()000'i5 UOOA 11sgl_l 
1)1)1)()56 •• 
001)057 l)()t,Q OOflO 

E II II C OllNT 

Figure 8-1 (cont). 

e.dt rue HRS ASSEMBLER 6.02 -SL IC PAGE 0002 

de msgJ-msgdsp+2S6•<•sgl_l-1) 
equ ' de 'A'tES SAGE ZERO • 

equ 1-•sgO 
•1e 'ArESI MESSAGE ONE • 

equ J-11s91 11es sage tength 
,Je • AHES SAGE 11.10 • 

equ 1-111s92 
de 'ArESf MESSAGE 1 URE E • 

equ l-11sgS 

end test„start 

Sample Program TEST 

) 



( 

( $H) RDY: 
TEST 1 
( $H) ,/D 
( $H) RDY: 

1 DEBUG 
($H)DEBUG-R210-07/18/1310 

2 SBl TEST 
3 LB* 

($H) BUl TEST 
4 SP 

($H)RDY: 
s TEST l 

($H) *BU 1 $SL=001B $E=OOFDDA + 0000 DATA+OOOOOO 
6 AS X $E 
1 -VH X 

($H) X=OOFDDA 
a DP X/10 

( $H) 
($H) OOFDDA/ F877 9870 1702 7002 0216 8DE7 9C87 9871 .w.p •• } •••.•••• 8 
($H) OOFDE2/ BADl 1001 A081 2EDO ABCO 0017 E822 AOD6 ••••••••••••• " •• 

9 Sl X 
10 L* 

($H) TRUE BREAKPOINTS 
($H) 1 LOC=OOFDDA INST=F877 

11 DP X 
' ( $H) 
($H) OOFDA/ 0002 9870 1702 7002 0216 8DF7 9C87 9871 ••• p •• }.: •••••• q 

12 GO 
($H) *BP 1 $SL=001C $P=OOFDDA 

13 AR 
($H) $Rl=OOOO $R2=0000 $R3=0000 $R4=0000 $R5=0000 $R6=0000 
($H) $R7=0000 $81=000000 $B2=00FFA6 $B3=000000 $B4=00FFA2 
($H) $B5=001194 $B6=00FDDA $B7=00FFA6 $P=00FDDA $!=0000 $S=4010 

14 DP $B7/10 
( $H) 
($H) 00FFA6/ 0002 FFAA FFAE 0000 0004 5445 5354 2020 •••••••••• TEST 
($H) OOFFAE/ 0001 3120 0102 FFA2 FD82 FD42 0000 8002 •• l ..•..... B •••• 

1s 82 X+A 
16 GO 

($H) *BP 2 $SL=001C $P=OOFDE4 
11 AR 

($H) $Rl=0004 $R2=0000 $R3=0000 $R4=0000 $R5=0000 $R6=0000 
($H) $R7=0002 $Bl=OOFFAF $B2=00FFA6 $B3=000000 $B4=00FFA2 
($H) $B5=001194 $B6=00FDDA $B7=00FFA8 $P=OOFDE4 $!=0004 $8=401C 

1a AS $Rl 1 
19 DP $Bl 

( $H) 
($H) OOFFAF/ 3120 0102 FFA2 FD82 0000 8002 0000 1 •••••• B •••••• 

20 DP X/10 
( $H) 
($H) OOFDDA/ 0002 9870 1702 7002 0216 8DF7 9087 9871 ••• p •• } •••••••• q 
($H) OOFFE2/ 8AD1 1001 0002 2EDO ABCO 0017 E822 AOD6 ••••••••••••• " •• 

21 83 X+B 
22 L * 

( $H) TRUE BREAKPOINT8 
($H) 
($H) 
( $H) 

1 LOC=OOFDDA INST=F877 
2 LOC=OOFDE4 INST=A081 
3 LOC=OOFD35 INST=2EDO 

Figure 8-2. Debugging Session of TEST 

8-73 CZlS-02 



23 GO 
($H) *BP 3 $SL=001C $P=OOFDE5 

24 A.R 
($H) $Rl=0001 $R2=0031 $R3=0000 $R4=0000 $R5=0000 $R6=0000 
($H) $R7=0002 $Bl=OOFFAF $B2=00FFA6 $B3=000000 $B4=00FFA2 
($H) $85=001194 $86=00FDDA $87=00FFA8 $P=OOFDE5 $1=0004 $S=401C 

25 S4 X+F 
26 GO 

($H) *BP 4 $SL=001C $P=OOFDE9 
21 •AR 

($H) $Rl=0001 $R2=0001 $R3=0000 $R4=0000 $R5=0000 $R6=080B 
($H) $R7=0002 $81=00FFAF $82=00FDFE $B3=000000 $84=00FFA2 
($H) $85=001194 $86=00FDOA $87=00FFA8 $P=OOFDE9 $1=0024 $S=401C 

21 OP $82 
( $H) 
($H) OOFOFE/ 0604 0808 0614 0918 4140 4553 5341 4745 •••••••• AMESSAGE 

29 S5 X+l4 
30 GO 

($H) *B 5 $SL=001C $P=OOFDEE 
31 AR 

($H) $Rl=0001 $R2=000B $R3=0000 $R4=0000 $R5=0000 $R6=0808 
($H) $R7=0002 $Bl=OOFFAF $82=00FDFE $83=000000 $B4=00FE02 
($H) $85=001194 $B6=00FDOA $B7=00FFA8 $P=OOFOEE $1=0024 $5=401C 

32 DP $84 
( $H) 
($H) OOFFE02/ 4140 4553 5341 4745 205A 4552 4F20 4154 AMESSAGE ZERO AT 

33 OP $84/10 
($H) 
($H) OOFE02/ 4140 4553 5341 4745 205A 4552 4F20 4154 AMESSAGE ZERO AT 
($H) OOFEOA/ 4553 5420 4045 5353 4147 4520 4F4E 4520 EST MESSAGE ONE 

34 S6 X+l7 
35 L* 

($H)TRUE 
( $H) 1 
( $H) 2 
($H) 3 
($H) 4 
( $H) 5 
( $H) 6 

36 GO 

BREAKPOINTS 
LOC=OOFDOA INST=F877 
LOC=OOFOE4 INST=A081 
LOC OOFOE5 INST=2E00 
LOC-00FOE9 INST=A006 
LOC=OOFDEE INST=OOA4 
LOC=OOFDFl INST=OOOl 

($H) *BP 6 $SL=001C $P=OOFDF1 
37 AR 

($H) $Rl=0001 $R2=0008 $R3=0000 $R4=0000 $R5=0000 $R6=0008 
($H) $R7=0000 $81=00FFAF $B2=00FOFE $83=000000 $B4=005353 
($H) $B5=001194 $B6=00FODA $87=00FFA8 $P=OOFDF1 $1=0004 $5=4010 

38 OP $B4 
( $H) 
($H) 005353/ 83C8 FF68 190E A870 0008 F851 E870 0000 •.• h ••• p ••• Q.p .• 

39 DH $B2+B 
( $H) OOFE09/ 4154 

40 DP FE09 
($H) 
($H) OOFE09/ 4154 4553 5420 4045 5353 4147 4520 4F4E ATEST MESSAGE ON 

41 AS 84 FE09 
42 DP $B4 

( $H) 
($H) 00FE09/ 4154 4553 5420 4045 5353 4147 4520 4F4E ATEST MESSAGE ON 

43 OP $B4/10 
( $H) 
($H) OOFE09/ 4154 4553 5420 4045 5353 4147 4520 4F4E ATEST MESSAGE ON 
($H) OOFEll/ 4520 4140 4553 5341 4745 2054 574F 2020 E AMESSAGE TWO 

Figure 8-2 (cont) • Debugging Session of TEST 

8-7 4 CZlS-02 



( 

44 GO 
($H) ILL INST "GO" 

45 C6 
46 GO 

($H)TEST ME 
($H)ROY: 

47 TEST 1 
($H) *BU 1 $SL=001B $E=OOFOOA + 0000 OATA=OOOOOO 

48 OP $E/20 
($H) 
( $H) 
( $H) 
( $H) 
( $H) 

OOFOOA/ 
00FOE2/ 
OOFOEA/ 
OOFOF2/ 

F877 9870 1702 7002 0216 80F7 9087 9871 
8A01 1001 A081 2EOO ABCO 0017 E822 A006 
A570 OOFF CBCO 0015 CCA4 6048 7000 0001 
0801 1907 B870 0080 F851 6COO 0001 OFOO 

49 L* 
($H)TRUE 
( $H) 1 
( $H) 2 
( $H) 3 
( $H) 4 
( $H) 5 

50 C* 
51 L* 

BREAKPOINTS 
LOC=OOFDDA 
LOC=OOFOE4 
LOC=OOF035 
LOC=OOFDE9 
LOC=OOFDEE 

INST=F877 
INST=A081 
INST=2EDO 
INST=AOD6 
INST=CCA4 

($H) INACTIVE BP "L*" 
52 OP $E/20 

( $H) 
($H) OOFOOA/ 
($H) OOFOE2/ 
($H) OOFOEA/ 
( $H) OOFOF2/ 

53 SlO $E 
54 GO 

F877 9870 1702 7002 0216 80F7 9087 9871 
8AD1 1001 A081 2EDO ABCO 0017 E822 AOD6 
A570 OOFF CBCO 0015 CCA4 6048 7000 0001 
0801 1907 B870 0080 F851 6COO 0001 OFOO 

($H) *BP 10 $SL=001C $P=OOFOOA 
55 DP $P 

( $H) 

.w.p .. } ... • .. • .q 
" . . . . . . . . . . . . . . . 

.p. • • • • • • • 'H • • • 

..... p . .. Q ••••• 

.w.p .. } ........ q 
II ........ •· . . . . . . 

.p. • • • • • • • 'H • • • 

..•.. p . .. Q ••••• 

($H) OOFOOA/ Q002 9870 1702 7002 0216 8DF7 9087 9871 ••• p •• } ••••••• q 
56 AS X $P 
57 VH X 

($H) X=OOFOOA 
58 CH X+l4 CBA2 
59 OP X+l4 

( $H) 
($H) OOFOEF/ CBA2 6048 7000 0001 0801 1907 B870 0080 •• 'H •••••••••• p. 

60 OH X+25 
($H) OOFOFF/ 080B 

61 CH X+25 lOOB 
62 OH X+25 

($H) OOFOFF/ lOOB 
63 Sll X+l6 
64 GO 

($H) *BP 11 $SL=001C $P=00FOFO 
65 AR 

( $H) $Rl=0004 $R2=000B $R3=0000 $R4=0000 $R5=0000, $R6=0010 
($H) $R7=0002 $Bl=OOFFAF $B2=00FDFE $B3=000000 $B4=00FE09 
j$H) $B5=001194 $B6=00FOOA $B7=00FFA8 $P=00FOFO $I=OOOF $S=4010 

66 OP $84/10 
( $H) 
($H) 00FE09/ 4154 4553 5420 4045 5353 4147 4520 4F4E ATEST MESSAGE ON 
($H) OOFEll/ 4520 4140 4553 5341 4745 2054 574F 2020 E AMESSAGE TWO 

67 GO 
($H)TEST MESSAGE ON 
($H)ROY 

Figure 8-2 (cont). Debugging Session of TEST 

8-75 CZlS-02 



7. Verify the value that has been assigned to x. 
8. Display memory starting at the location assigned to X for 

10 (hexadecimal) locations. 

9. Set true breakpoint 1 at location X (the base of the 
bound unit). 

10. List all true breakpoints currently set. 

11. Displaymemory starting at location x. Note that the 
instruction F877 has been replaced by 0002--a break 
instruction. The original instruction has been saved in 
a table in Debugger workspace. 

12. Reactivate the broken task by typing GO. The GO 
directive causes the true breakpoint to be encountered 
and the message to appear. GO must be typed from a true 
breakpoint; SP is not accepted at this time. 

13. Display all registers. You must be at a true breakpoint 
for register values to be meaningful. Register values 
displayed at a bound unit breakpoint are not meaningful 
for the bound unit being debugged. 

14. Display memory pointed to by $B7 for 10 (hexadecimal) 
locations. 

15. Set true breakpoint 2 at location X + A. 

16. Type GO, causing true breakpoint 2 to be encountered and 
the message to appear. 

17. Display all registers. 

18. By means of the AS directive, change the value of $Rl 
from 4 to 1. The logic of the program calls for a 
division by 2 to convert the number of bytes to words. 
Instead, the instruction at offset 9 multiplies by 2. 
The value of $Rl is changed to correct this mistake. 

19. Display memory pointed to by $Bl. 

20. Displaymemory starting at X, to show where breakpoints 
are currently set. 

21. Set true breakpoint 3. 

22. List all currently active breakpoints. 

23. GO from breakpoint 2. 

24. Display all registers. 

8-76 CZlS-02 



(_ 

(~ 

; 
,/ 

c 

25. Set true breakpoint 4. 

26. GO frorn breakpoint 3. 

27. Display all registers. 

28. Display rnernory pointed to by $B2. 

29. Set true breakpoint 5. 

30. GO frorn breakpoint 4. 

31. Display all registers. 

32. Display rnernory pointed to by $B4. 

33. Display rnore of rnernory pointed to by $B4 than was 
requested for display by the previous directive. 

34. Set true breakpoint 6. 

35. List all currently active true breakpoints. 

36. GO frorn breakpoint 5. 

37. Display all registers. 

38. Display rnernory pointed to by $B4. 

39. Display in hexadecirnal only (not in ASCII) rnernory at the 
location pointed to by $B2 + B. 

40. Display rnernory at location FE09. 

41. Assign FE09 to $B4, which was not pointing to the proper 
location. 

42. Display rnernory pointed to by $B4 to confirrn that the 
value just assigned to $B4 is correct. 

43. Display rnore of rnernory pointed to by $B4. 

44. GO frorn breakpoint 6. The rnessage ILL INST "GO" rneans 
that the breakpoint rnust be cleared before the GO can be 
issued. The description of the Set True Breakpoint 
directive (earlier in this section) explains when a 
breakpoint rnust be cleared before GO can be issued. 

45. Clear breakpoint 6, replacing the 0002 break instruction 
with the original instruction, which has been stored in 
Debugger workspace. 

46. GO frorn breakpoint 9. There are no rnore breakpoints, and 
the bound unit cornpletes execution. The group is back in 
ECL rnode, awaiting input (RDY). 

8-77 CZlS-02 



47. Type in the bound unit name with argument in order to 
step through the program again. Note that the bound unit 
breakpoint is still set f or TEST. 

48. Display memory starting at the base address of the bound 
unit ($E). 

49. List all currently active breakpoints. Even though the 
Debugger thinks that true breakpoints 1 through 5 are 
active, there are no 0002 instructions in memory at the 
specif ied locations. When TEST is reinvoked, a new copy 
of the bound unit is loaded in memory, overwriting the 
version containing the breakpoint instructions. It is 
important to remember that true breakpoints must be reset 
after each invocation of a program. 

50. Clear all currently active breakpoints. 

51. List all currently active breakpoints. 

52. Displaymemory starting at the base address ($E) of the 
bound unit. You can enter the expression $E only when at 
a bound unit breakpoint. At other times, refer to the 
value of $E by assigning that value a temporary symbol in 
the range G through z. 

53. Set true breakpoint 10. It is possible to reuse 
breakpoint numbers 1 through 6. The number 10 was Chosen 
simply to show that higher numbers are available. 

54. 

55. 

GO f rom 

Display 

bound unit breakpoint 1. 

memory pointed to by $P (program counter) • 

56. 

57. 

Assign the value of $P to the temporary symbol X. 

Verify the value assigned to X. 

58. Change the instruction at of f set 14 f rom LDB to LAB. 

59. Display memory starting a location X + 14 of the bound 
unit. (The displayed change has, of course, occurred 
only in memory.) 

60. Display the contents of memory at offset 25 of the bound 
unit. 

61. Change the value of the memory location X + 25. 

62. Display the location again to view the new contents. 

63. Set true breakpoint 11. 

64. GO from breakpoint 10. 

8-78 CZlS-02 



(. 

,( 

65. Display all registers. 

66. Displaymemory pointed to by $B4. 

67. GO from breakpoint 11. Because no more breakpoints have 
been set, the bound unit completes execution; the group 
is back at the RDY state, awaiting input. 

sample Session 2 

The bound unit TSTNOW, listed in Figure 8-3, is debugged with 
quick breakpoints. The debugging session is shown in Figure 
8-4. Each numbered Debugger directive in Figure 8-4 is explained 
below by a correspondingly-numbered comment. 

1. Establish standard I/O files for the system {$S) group. 

2. Turn on the ready prompt. (Use of .the ready prompt is 
optional. In this example, RDY helps to distinguish user 
input from system response.) 

3. Change the default group id to $H. 

4. Change the working directory of the $H group. 

5. Create a quick disk file, specifying for control interval 
and logical record size the default values of Get Quick 
Memory {MQ) arguments. 

6. Change the default group id to $S. To use quick break­
points, you must invoke the Debugger from the $S group. 

7. Invoke the Multiuser Debugger. {The bound unit usually 
resides in SYSLIB2 and is invoked by entering DEBUG.) 

8. Request quick memory, using the default values. 

9. Print the memory location at which quick memory begins. 

10. Open the quick disk file. 

11. Set bound unit breakpoint one on the bound unit TSTNOW. 

12. List all bound unit breakpoints currently set. 

13. Put the Debugger to sleep. This directive returns the 
group ($S) to the ready state, allowing you to enter ECL 
commands. 

14. Invoke the bound unit TSTNOW. This command causes bound 
unit breakpoint 1 to be encountered and its breakpoint 
message to be displayed. The occurrence of breakpoint 
one reactivates the debugger, which handles all input to 
the $S grcrup until GO or QT is entered. 

8-79 CZlS-02 



TITLE fSTNOW 
000001 
000002 
000003 
000004 
000005 0000 ceco 0036 
000006 0002 E870 401C 
000007 0004 1COS 
000008 
000009 0005 0001 
000010 0006 OC08 
000011 
C00012 0007 19AA 
000013 
000014 
000015 
000016 0008 ceco 0020 
000017 OOOA E870 0010 
C00018 oooc F 8 70 0001 
000019 OOOE 0001 

Q) C00020 OOOF 0801 
1 000021 

Q) 000022 0010 
0 000023 0010 CBCO 003A 

C00024 0012 E870 401E 
000025 0014 , cos 
000026 0015 0001 
000027 0016 OC08 
00002R 0017 199A 
cnoon oooo;:r, 
00003~ 0018 CBCO 0031 
000032 001 A E870 001F 
080033 001C F 870 0001 
000034 001 E 0001 
000035 001F 0801 
000036 
C00037 0020 
C00038 '.)()20 CBCO 003f 
C0003~ 0022 E870 4011 
C00040 0024 1C05 
C00041 0025 0001 
C00042 0026 OC08 
000043 
000044 0027 198A 
000045. 

() 
N ..... 
U1 
1 

0 
N 

08/13182 1334.4 edt F rt HRS ASSEMBLER 9„00 -LAF PAGE 0001 
tl tle t ltnow 

* 
* COPYRIGHT, Ce>, 19811 HONEYWELL INFORMATION SYSTEMS, 
* bt'gin lab Sb41buffer 

ldr Sr61•Z '4 01 C' 
ldv Sr1 ,5 

* 11el 
de x'OC08' 

* bnez Sr1,>aa 
* 
* SUS OUT !Sl0EW1•291•1 
*· SLOB SB41 ! SLEW 

l ab Sb4,slew 
ldr Sr6,c29 
ldr Sr7,•1 
11e l 
de x'0801' 

* user equ s 
lab Sb41buff 2 
ldr Sr6,=Z •4n1e• 
ldv Sr1 ,5 
mel 
de x'OC08' 
bnez Sr1,>aa 

* SUSOUT ! SLEW!2,c 311=1 
* LOB SB4,! LEW'22 

lab Sb4, sl ew_ 
ldr Sr61=31 
ldr Sr7,=1 
mct 
Je •'0801' 

* nest equ s 
tab Sb41buff 3 
ldr Sr61•Z '4011' 
ldv Sr1 ,5 . 
me l 
de x'OC08' 

* f 
bnez Sr1,:ll'.aa 

* 

Figure 8-3. Bound Unit TSTNOW 

/\ r , 
\ ) 
~' ) 



~ ~ 
: ; 
\_ ' 

~ 

TITLE TSTNOW 08/13/82 1334.4 edt Fr 1 HRS ASSEMBLER 9.00 •LAI PAGE 0002 
000046 • SUSOUT ! SLEW~3, • 201•1 
000047 • LDB Sb4, ! LEWl3 
C00048 0028 CBCO 0036 l ab Sb4,slew_ 
000049 002A E870 0014 l dr Sr6,•20 
000050 002C f 8 70 0001 ldr Sr7,•1 
000051 OOH 0001 llC l 
C00052 002F 0801 de x•os01• 
000053 0030 1903 bez Sr1,>bb 
000054 . • 000055 0031 A851 aa ldr Sr21•Sr1 

00 COOOS6 0032 Of 82 b >cj 
1 000057 0033 2COO bb ldv SR ,Q 

00 000058 • 
1-' 000059 •Sc STRHRQ 

C00060 0034 cc equ s 000061 0034 0001 11cl 
000062 0035 0103 de x'0103' 
000063 • 000064 0036 2041 slew Je z'2041• 
000065 0037 5B4E 4F57 5D20 buffer text a'[NOW] ' 
C00066 003A 2020 resv 11,z'2020' 
000067 0045 2020 extra resv 5,z•2020• 
000068 • C00069 004A 2041 s lew_2 de z'2041' 
000070 0048 5855 5345 525D buf f_2 text a•[uSER~· 000071 004E 2020 resv 12,z•20 o• 
000072 OOSA 2020 ext r _2 resv s,z•2020• 
C00073 005F 2041 s lew_3 de z'2041' 
C00074 0060 5B6E 6F74 2058 buff_3 text a'Cnot Cequal 2 2JJ • 

0063 6571 7561 6C20 
3220 325D 5020 

C00075 0069 2020 resv 12, z. 202 0' 
CUOU76 • 1'00077 0075 0000 end tstnow1begin 

0000 ERR COUNT 

("') 
N 
1-' 
01 
1 

0 
N Figure 8-3 (cont). Bound Unit TSTNOW 



00 
1 

00 
N 

(') 
N 
~ 
01 
1 

0 
N 

l$Si~COS6 MOD400-L3.0-07/02/0741 
\ Ho) "c l MIN ••• OR * II 
i SS l C „ 
üülT 
,ss1 u 11413.o v10.1 u 
l$SlTHI3 SYSTEM IS BUlLT ON THE'NEW DIRECTORY STRUCTURE 
i$Sli:i1HE TIME IE.ü:, at JAN 10 1405i: 82 AUG 13 1538 
i$SlFRI AUü 13, 1~82 15:38:08 
iSFiuAEMvN üROUP READY! 
•SHlüRüUP READ'i! 
<SHi$H 

1 EC ! C01~SOLE 
2 f\Im 

i$SlRD"1': 
3 C :sH: 

·4 CWD ~TERRY>LAF 

1$HlRDi: 
s CR TSTNOW.G~ -REL -ClSZ 4096 -LRSZ 512 -SZ 4 

($HlR~Y: 

6 ·: : $':): 

1 ATERRi)LAF>DEBUG 
($SiDEBüG-R300-08i13/1514 

• t1 (i 
9 PG 

Ci3i Fü= 015C03 
10 SF '·lERR"l>LAF>TSTNOW.OK 
11 :..;a 1 i 3rn..;;.i 
12 i...B * 

d.;: s01 rsrnow 
13 SP 

14 

15 

16 

17 

18 

19 

iSSiRDY: 

hfERRY>LAF>TSTNOW 
iSSI •BU 1 SSL=001C $E=022263 + 0000 DATA=OOOOOO 
AS X SE 
OP X 
($8) 

<SSi 022263/ CBCO 0036 E870 401C 1C05 0001 OC08 19AA ••• 6.Pa ••••••••• 
SG 1 X -t 7 U.R i 
502 X-t 17 <AR :DH X+36/201G0) 
SQ~ X-t27 <VH SR1:DH X+4A/20l 

Figure 8-4. Debuggipg Session of TSTNOW 

f\. \ j ' 

\ .. ) I "--:. _ __) 



00 
1 

00 
w 

n 
t:;I 
..... 
U1 
1 

0 
N 

<::;) 

20 LG" 
iSSIGUICK BREAKPOINTS 

!~ 
\ i 

./ 

iH.) 1 LOC=02226A INST=19AA <ARJGOl 
llSI 2 LOC=02227A 1NST=199A <AR;DH X+36/201GOIGO> 
tiS) 3 LOC=02228A INS1=198A <VH SR1JDH X+4A/20JGO> 

21 G:J 
\$SiFRI AUG 13, 1982 15:44:15 
i$Si0FERATOR.SYSTEM.OPR 
d3iEC: 17 0805 i 1C> 

!~ 

i$f.J~•BALANCED QUOTATION MARKS, BRACKETS. OR PARENTHESES EXIST. lHE HEXT FUNCTION 
<SSl15 PERFORMED. CORRECT THE DELIMITER AND RETRY. 
\ i s j f\ j~"y': 

22 [j c. 0 ;J .:_j 

ifolLESüü - RDY 
23 L\iit 

IS3l~UlCK BREAKPOINTS 
d~ i ! LJC=02.22oA INST=19AA \AR:GOl 
. ii·: ;,. i..0C=02~c:;-,; IN::IT=17TM 1,;R;DH X+.3o/201GvlGOl 
i~SI 3 LOC=o222a,; INST=198A <VH $Rl;DH X+4A/201GO> 

24 l. (jit 

25 lüit 

iSSlGUICK BREAKPOINTS 
( $f;) 1 
\ ~~~ i 2 
<H:i 3. 

26 RF GI\ 
21 iH FO 'LPTOO 

(SH>RDY: 
u SH PR_QK TSTNOW.OK 

ISHiRDI: 
29 Fii SH FO 

i SHlRD'1': 
30 FO 1 LPTOO 
31 DP 15C031500 
32 F 0 
33 ;: G 

\ $5: F3= 015·:03 
34 f\ u 
35 p;_j 

<ARJGOl 
<AR:DH X+36/20JGO;GOl 
\VH $R11DH X+4A/20:GOl 

dS 1 N0 ~UICK MEMORY EXISTS "PG" 
36 GT 

iSSIRDY: 

Figure 8-4 (cont). Debugging Session of TSTNOW 



15. Assign the value of $E to the temporary symbol X. Since 
the value of $E is the base location of the bound unit, 
all subsequent references to a location in the bound unit 
can take the form: X + offset. 

16. Dump one line of memory, starting at the location 
associated with the temporary symbol X. 

17. Set quick breakpoint 1 and its associated directive 
at off set 7 in the bound unit. 

18. Set quick breakpoint 2 and its associated directive 
at off set 17 in the bound unit. 

19. Set quick breakpoint 3 and its associated directive 
at off set 27 in the bound unit. 

line 

line 

line 

20. List all currently active quick breakpoints and their 
associated directive lines. Note that the directive line 
for quick breakpoint 2 ends with two GOs. The Debugger 
appends GO to the end of a quick breakpoint directive 
line, whether or not the user has already done so. The 
repetition of GO causes no problems. Once a GO is 
encountered in a directive line, the rest of the line 
(whatever it may be) is ignored. 

21. Go from the bound unit breakpoint. The bound unit 
completes execution without any visible evidence that the 
quick breakpoints were encountered. 

22. Reinvoke the Debugger. 

23. List all quick breakpoints currently set and their 
associated directive lines. 

24. Clear the quick breakpoints just listed. 

25. List all quick breakpoints currently set and their 
associated directive lines. Note that although quick 
breakpoints 1, 2, and 3 are no longer set, their 
directive lines rernain f or f uture use. The clear 
breakpoint directive does not clear directive lines. 

26. Close the quick disk file currently in use. 

27. Frorn the $H group, change user-out to the line printer. 

28. Frorn the $H group, invoke the Debugger utility PR QK to 
print the inforrnation written to the quick disk file 
TSTNOW.QK. The printout of this information is shown in 
Figure 8-5. 

29. From the $H group, change user-out back to its original 
device. 

8-84 CZ15-02 



CX> 
1 

CX> 
VI 

(') 
N 
1-' 
VI 
1 

0 
N 

~i 
\.__ / 

~ 
,/ 

,Alrt., 
r ~ . 

-TEPRY>LAF>TSTNO~.WK 
***DUMP Of OAT• GENfkAltO BY MOO 400 Mülll•USEN OEBUG WUlCK BREAKPU[NTS*** 

OATA fRUM MtMORY bUFF~R 1 
UBI 10= $5 TCB= 021E98 LtV= IC SR1=0000 sP2:0-01c SRl=oooo SR4=0000 SRS=oooo SRo:OOlC SR7:0000 i81•000000 182•022704 '83=000 

00 S84=022i!9A $H5=oo2F7C S8b=0222bl SB7=0231b9 SP•02~2b8 Sl=ltOO SS=401C 
QR2 ID= ss TCB= 021E98 LEV= IC 1R1=0000 iR2:00l3 iR3=oooo SRq:oooo SRS:oooo SRb•0013 SR1=0000 S81•000000 S82•022bC4 i8:S=000 

0222991 2041 4b72 b920 4175 b12o 1111 2c2o·:s1:s9 363l 
2t5l 5953 544S 402E 4f50 S220 2020 

00 $B4=022~At S~5=002f7C SHb=0222hl se7:0231b9 SP=022218 il=3tOO ss=401C 
2020 2020 313S lA~4 341A 3135 2o2u 2020 2020 2020 2020 2041 4f5U 4552 4154 4f52 

W8l 10= SS fC8: U2lf98 lE~= IC •Rl:0805 0222A0/ 2041 4f5U 4552 4154 4F52 
20 2020 2020 2020 2020 2041 58bt bf/4 205H b57t 7Sb1 bCi!O 3220 32SO 5V20 2020 
EUF 

2E5l 59S3 5445 402t 4f5o 5220 2020 2020 2020 2020 2o20 l 

Figure 8-5. Contents of Quick Disk File TSTNOW.QK 



30. Change the user-out of the (default) $S group to the. line 
printer. In this case, FO !LPTOO is a Debugger 
directive. 

31. Dump 500 words of memory, starting at the location 
displayed earlier by the PQ directive as the start of 
quick memory (see step 9) • A printout of this dump is 
shown in Figure 8-6. 

32. Change_user-out of the $5 group back to its original 
device. 

33. Print the start of quick memory. 

34. Return the quick memory block. 

35. Print the start of quick memory. A message is returned 
verifying that the quick memory has been returned by the 
RQ directive. 

36. Abort the Debugger from the $S group. 

Sample Session 3 

The code being debugged is in lower (system) memory, and 
deals with a semaphore related to all console I/O. The true 
·breakpoint set in the f ollowing debugging session, shown in 
Figure 8-7, is subsequently encountered at each I/O request made 
to the console. Each numbered directive in Figure 8-7 is 
explained below by a correspondingly-numbered comment. 

1. Change default group id to $H. 

2. Change working directory of $H. 

3. List all quick disk files in the directory. 

4. Change default group id to $S. To use quick breakpoints, 
you must invoke the Debugger f rom the $S group. 

5. Change working directory of $S. 

6. Establish standard I/O files for the $S group. 

7. Turn on the ready prompt. (Use of the ready prompt is 
optional. In this example, RDY helps to distinguish user 
input from system response.) 

8. Invoke the Debugger. 

9. Request quick memory, using the default values. 

10. Print the start of quick memory. 

8-86 CZ15-02 



' -~ 

r-; ~' 
\ J 
'··._,,/ 

-~ 

Ol~C03/ 0000 0800 0000 0100 ,148 0001 &403 0001 0003 0100 0004 0004 0007 0001 0002 0007 ••••••••QK •• O ••• •••••••••••••••• 
015Cl3/•0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 •••••••••••••••••••••••••••••••• 
0150031 0000 ooot ,142 3120 4944 3020 24,3 2054 4342 3020 3032 3145 3938 204C 45So 3020 ••• NUtll 10: ss tcn: 021tYS L~v= 
015013/ 3143 2020 2020 2452 3130 3030 3030 2020 2452 3230 3030 5143 2020 24,2 3330 3030 IC SHl:OOOO s1a=oou: SiU:Oo 
015023/ 3030 2020 c452 3430 3030 3030 2020 2452 3,30 3030 3030 2020 2452 3030 3030 3143 00 SR4:0000 SR5:0000 SR6=0011. 
015033/ 2020 2452 3730 3030 3030 2020 2442 3130 3030 3030 3030 2020 2442 3230 3032 3237 SR7=0000 s1:11=000000 '"2=0.:!27 
015043/ 3034 2020 2442 3330 3030 3030 3030 2020 2442 3430 3032 3232 3941 2020 2442 3530 04 St:t3:000000 St14:02229A SdS;: 
0150,3/ 3030 3240 3743 2020 2442 3oJD 3032 3232 3o33 2020 2442 3730 3032 ~331 3o39 2020 002F7C S86=0Z2lo3 Sd7=023loc,I 
015Do3/ 24,0 3030 3232 3230 4220 2024 4930 3345 3030 2020 2453 3014 3031 4320 2020 2020 SP=0222bd U=3tOO SS:401C 
0150731•0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 •••••••••••••••••••••••••••••••• 

(X) 
Ol5E-03/ 0000 OuC4 ,142 3220 4944 3020 2453 2054 4342 3020 3032 3145 3938 204C 455b 3020 •••• QB2 JU: S8 TCt1= 021t98 LEv: 

1 Ol5El3/ 3143 2020 2020 2452 1130 3030 3010 2020 2452 3210 3030 3133 2020 2452 3330 1030 lC StH:OOOO Sw2:001l S1ß:Oo 

(X) 015E231 3030 2020 2452 3430 3030 3030 20~0 2452 3530 3030 303U 2020 2452 3o30 3030 3133 00 SH4=0000 SHS:OOOO SHo:0013 
~ Ot5E33/ 2020 2452 37JO 3030 3030 2020 2442 3130 3030 3030 3030 2020 2442 3230 3032 J23b SH7=oooo Sl:ll=oooooo S112:022b 

015E43/ 4334 2020 2442 3330 30JO 3030 3030 2020 2442 3430 3032 l2J.2' 414, 2020 2442 3530 (4 Sl:lJ=oooooo St14=0222At:. s.:ss= 
OlSES3/ 3010 3240 3743 2020 2442 3&30 3032 3232 3o33 2020 2442 l7JO 3032 3331 3b39 2020 002F7C SBo:0222b3 Sil7:0231o9. 
Ol5Eo3/ 2450 3030 3?32 3237 4220 2024 4930 3J45 3030 2020 2451 3034 3031 4320 2020 2020 SP=02227H Sl=Uoo SS=401C 
Ot5E73/ 3032 3232 J9J9 2F20 32JO 3431 2034 3b37 3220 3039 1230 2034 3137 3520 3o37 i2JO Q222Y9/ 2041 4672 6920 4175 6720 
Ol5f83/ 2033 3133 3320 1243 3230 2033 3133 3920 3338 3332 2032 3032 3020 3230 3230 2033 3133 2C20 3139 3832 2020 2020 J 

Ol5E93/ 3133 3,20 3341 3334 2Pl3 3431 4120 3331 333, 2032 3032 3020 3230 3230 2032 lOJ2 135 3A34 343A .313~ 2020 20.2'0 202 
Ol5EA3/ 3020 3230 3?JO 2032 3032 3020 3230 3431 2034 4035 30.2'0 3435 3532 2034 313, 3420 0 2020 2020 2041 4F~O 4SS2 ~1~4 
015Eh3/ 3440 3532 2012 4535 3320 3,39 3533 2035 3434 3520 3444 3245 2034 4035 3020 3532 4F52 lf 53 59,J ,445 4U2E 4F50 52 
OtSEC3/ 3230 2032 3032 3020 2020 2020 oouo 0000 0000 0000 0000 0000 0000 0000 0000 OOüO 20 2020 .................... 
OISEOJ/*0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 ····~·······················~··· 
OISF03/ 0000 OObU ,142 3320 494~ 3020 2453 2054 4342 3020 3032 3145 3938 204C 45Sb 3020 ••• MQdJ IU= '8 JCd= 021E98 LEV= 
Ol5Fl3/ 3143 2020 2020 2452 3130 3o3d 3035 2020 2020 3032 3232 4144 2f20 3230 3431 2034 IC SRl=OHOS Oc!22AO/ .2'041 q 

Ot5F23/ 4o35 3020 1435 3,32 2034 3135 3420 3440 3532 2012 4535 1120 3539 3533 203s 3434 ·Fso 4552 41~4 4f52 2Es3 5953 544 
Ot5F33/ 3520 3444 3245 20~4 4035 3020 3532 3230 2032 3032 S020 3230 3230 2032 3032 1020 5 402t:. 4F5o 5220 2020 2020 2020 
Ot5F43/ 3230 3230 2032 3032 3020 3230 J230 2032 3032 1020 1210 1230 2012 3012 1020 3230 2020 2020 2020 2020 2d20 2020 20 
Ot5F53/ 3230 2o32 3034 3120 3542 3b4~ 2010 4o37 3420 J.2'JO 3~42 20Jb 3537 1120 373, Jo31 20 2041 s~ot oF74 2051:1 b571 7~bl 
015F63/ 20Jo 4332 3020 3332 3230 2033 3235 4420 3,44 3230 2032 1032 3020 2020 2020 0000 bC20 3220 ~2,0 5020 ~020 
-015F73/•0000 0000 0000 0000 0000 0000 uOOO OUOO 0000 0000 0000 0000 0000 0000 0000 000-0 •••••••••••••••••••••••••••••••• 
OloOF3/ 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 •••••••••••••••••••••••••••••••• 

0 
N ..... 
U1 
1 

0 Figure tJ 8-6. Dump of Quick Memory 



CX> 
1 

CX> 
CX> 

() 
N ,_. 
U1 
1 

0 
N 

1$SIGCOS6 MOD400-L3.0-07/02/0741 
l *f, l "CLMrn ... OR *'' 
\ $5 i c ~ 
GUIT 
i E 1 ** M4/3.0 V10. 1 H 
iiSiTHIS SYSTEM IS BUILT ON THE NEW DIRECTORY STRUCTURE 
d3 u,;rc: TIME IE.G •• 81 JAN 10 1405): 82 AUG ·13 1557 
,,3 FRI ,;u~ 13, 19a2 1s:~1:oa 
iiF ~,;EMON GROUP READY! 
dH" Gi\ 0UP READY 1 

, iH :. $H 
.: : SH: 

2 CWD ATERRY>LAF 
i $ H l Ru ·1 : • 

a LS ..t.üf\ -BF 
\$Hi 

DIRfClORY: AJERRY>LAF 
($HI 
ISHl TSTNOW.GK R 
<SHl SAMPLE.OK R 
l$Hl 
i$Hl TOTAL SECTORS 
i*H>RDY: 

4 c : ss: 
s CWD '·lERRY>LAF 
6 EC 'Ci>NSOLE 
1 RDN 

($SIROY: 
a DEBUG 

ISSlDEBUG-R300-08/13/1514 
9 MG 
10 F' (J 

($31 PO= 015C03 
11 SF SAMPLE. GK 
12 DP 13 1 D 

( ss) 

112 

64 
48 

1$Sl D0131D/ CBCO FF52 DJCO 1994 D3CO 20C8 D3CO 1C5E ••• R •••••••••• A 
13 5 G 3 13 1 D <AR > 

Figure 8-7. Debugging Session (Example 3) 



00 
1 

00 
l.O 

(') 
~ ..... 
01 
1 

0 
N 

~ 
"-.._ ___ j 

~-1 J 
\ _; 

14 ·LG* 
iSSiQUICK BREAKPOINTS 
($S> 3 LOC:OQ131D INST=CBCO tAR:GO> 

u SH LSR 
( tH i „ .. fERRY>LAF 
<SH l"KB>SYSLIB 1 
< tHl "KB>SVSLIB2 
($HlRD'/: 

16 SH LWD 
C$Hl"TERRY>LAF 
($HlRDY: 

11 CG;i 
11 LCH 

iSSiGUICK BREAKPOINTS 
( $S) 3 

1t RF i.li\ 
20 i\ u 
21 p ü 

CAR:GO> 

iSSI NO ~UICK MEMORY EXISTS "PO~ 
22 uT 

·S5lRD·i·: 
23 SH FO 1 LPTOO 

\$HiRDY: 
24 SH PR_QI( SAMPLE. OK 

\$HlRD'i': 

Figure 8-7 (cont). Debugging Session (Example 3) 

~ 



11. Open the quick disk file SAMPLE.QK. 

12. Dump a line of memory, starting at location 131D. This 
location is in system memory. 

13. Set quick breakpoint 3 at location 131D, specifying a 
directive line. As already mentioned, breakpoint 3 will 
be encountered at each I/O request made to the console. 

14. List all quick breakpoints currently set and their 
associated directive lines. 

15. List search rules for the $H group. 

16. List the current working directory for the $H group. 
Even though the Debugger is running in the $S group, a 
task running in $H (steps 15 and 16) can encounter a true 
breakpoint. 

17. Clear all quick breakpoints. The Debugger has remained 
active in the $S group while quick breakpoints were 
encountered by a task running in the $H group (steps 15 
and 16). Input to the $S group is still being handled by 
the Debugger. 

18. List all quick breakpoints currently set and their 
associated directive lines. Note that no quick 
breakpoints are currently set. There is, however, a 
directive line ready to be used for quick breakpoint 3. 
The CQ directive does not clear directive lines. 

19. Close the currently active quick disk file. 

20. Return the quick memory requested by the MQ directive 
(step 8). 

21. Print the start of quick memory. The message shows that 
quick memory has been returned. 

22. Abort the Debugger from the $S group. 

23. Change user-out for the $H group to the line printer. 

24. From the $H group use the Debugger Utility PR QK to print 
information stored in the quick disk f ile. A-print-out 
of this information is shown in Figure 8-8. 

8-90 CZ15-02 

.\, 
('-", : 

u 



CX> 
1 

'° ..... 

n 
N ..... 
l11 
1 

0 
N 

(j 
,,.-, 
I~ 
. ·l 

/ '"" 

•TERRV>LAF>SAMPLl.WK 
***OUMP OF DATA GENENATED BV MUD 400 MULJl•USER DEBUG QUICK BREAKPOINTS*** 

DATA fROM MtMORY 8UfftR 1 
Q83 10= SS TC8: 000777 LEV= 18 SRl:OOOO SR2•009E SR3•0009 SR4•0002 SRS:0001 SAb•24S3 SR7•0002 SHl=OOHlfo SB2=00H403 )03=001 

'AS 184=023105 SH5=00IJl3 S8o=OOOIA7 S87•0007.f8 SP=OOl31E Sl•3E04 ss=4018 
G83 10= ss TCB= 000777 LEV= 18 SRl=OOOO SR2•00FE SR3•0002 IR4•002A SR5•0023 SRo•2453 ·sR7•008C SB1=008oF7 SB2=001237 )83=000 

11 SB4=0011Ao S85•001J13 SBo•OOOIA1 Sb7=0007f8 SP•OOl31E Sl•3t04 ~=4018 . 
Q83 ID= ss Tee: 000777 LEV= 18 SRl•OOOO SR2•00FE SRl•OOO] ·SR4•0001 SRS=OOF7 SRb=OOl4 SR1•4101 S81•0083EE 182•001221 SBJ=OOO 

77 S84•0011C8 SH5•001313 ieo•OOOlA7 S87•0007f8 SP•00131E Sl=3E04 SS•4018 
Q83 I~= SS TC8: 000777 LEV= 18 SRl•QOOO SR2•0000 SR3•0002 SR4•0003 SR5•0023 )Ab•0014 SN7•0000 S81=00d2f2 )82=00llC~ '8J=Ol3 

F5 S84•0233FS . SH5=0013t3 seo:OOOlA7 S87•0007f8 SP•OOl31E Sl•3E04 SS•4018 
Q83 ID= ss TC8: 000777 LEV= 18 SRl•OOOO SR2•00~E SR3•0003 IR4•000l IRS=OOF7 $Rb=0022 SA7=4l01 1Hl=OOH2BJ se2:001221 'BJ=OOO 

11 S84:00llCB 185:001313 seo=OOOIA7 Sb7:0007f8 SP•OOlllE II:3f04 18•4018 
QB3 ID= ss TC8= 000117 LEv= 18 SRl•OOOO SR2=oooo SR3=0002 IR4•0003 SAS=0023 SRo=0022 SR7=oooo 'Hl=008o2S S82•001lCH '83=013 

fS lb4:0~33F5 185:001313 S8o=OOOIA7 SH7:0007F8 SP:00131E IJ•3E04 15:4018 
Q83 ID= ss 1C8: 000777 LEV= 18 SN1:0000 SR2•00~ IR3•0009 IR4•0002 SR5•000l SRb•0022 ·SR1=0002 j81=008oCD '82=008403 '83=001 

A5 Sb4•02JlD5 185=001313 S8o=OOOIA7 IB7=0007f8 IP=OOl3lE Sl:3t04 SS:4018 

DATA fRUM M~MORY BUFFER 2 
Q83 ID= ss TCB: 000777 LEV= 18 SNt=oooo SR2•00FE IR3=0002 IR4•00S2 SR5=0-02t 1Ro=2448 IRl=008C $81=00H4bC S82=0Pl237 $83=000 

11 184=0011Ao S85=0ul313 IB6=0001A7 SB7=0007F8 IP=00131E 11=3E04 18•4018 
083 ID= SS TC8: 000777 LEV: 18 SAl•OOOO IR2•0044 SR3•0009 IR4•0009 IR5•0001 SRb•2448 SR7:0002 S8t:008b4F S82=00boCD $8J=001 

AS S84:040b23 185=001313 S8o=OOOIA7 SB7:021A3C SP:00131f Sf•3E04 SS=4018 
Q83 ID= ss TCB= 000777 LEV= 18 SR1=oooo SR2•00FE SR3•0003 SR4=000l SA5=00F7 SRo•0008 SR7=4t02 S81=00038U se2:001221 sBJ•OOO 

11 S84:0011C8 1"5=001113 seb:OOOIA7 S&7:0007f8 SP:OOl31E Sl:3t04 ss:40l8 
Q83 10= ss TC8=· 000717 LEV= IB sR1=0000 SR2•0000 'R3=0002 $R4=0003 SR5=0023 $Rb•0008 SR7:oooo SKl=OOH7UE S8l=OOllC8 )KJ=023 

15 SB4•023215 Sb5•001313 lbb•0001A7 Se7:022A3C SP:OOlllE SJ:3E04 SS=4018 
Q83 ID= ss TC8: "000111 LEv= 18 SNl=OOOO sR2=00Ft SR3=0003 SR4=uOOI 'H5=00f7 SRb•OOOC SR7=4102 SKl=0004l0 s02=uo1221 )83=000 

77 S84:0011Cb Sb5•001313 S8o:OU01A7 Sb7=0007f8 IP•00131E 11=3E04 SS:40lH 
QBJ ID: SS TC8: 000777 LEV= IR SAl=OOOO SR2•0000 SR3•0002 SR4•Q003 SAS•0023 SRb:OOOC SN/•0000 S8l•OOB92f '82•0011CK )8J•023 

15 184=021215 SH5•001Jl3 S8o•OOOIA7 S67:0007f8 SP:00131E ,Sl=3t04 18•4018 
Qß3 ID= ss TC8= 000777 LEV= lH sA1=0000 'R2=00ff $R3•0003 SR4:000I 'H5=00F7 SRo=oooc SR7=4102 S81=00Ro8E SR~=oo1221 )83=000 

77 SB4•00llCH Sb5:0QIJ13 S8o•0001A7 SB7:0007f 8 IP•0013tE Sl=3t04 15:4018 

Figure 8-8. Dump of Quick Disk File Sample .QK 



CX> 
1 

\0 
N 

(") 
N 
...... 
ln 
1 

0 
N 

DATA fHUM MEMOkY l:lU~FtR l 
WB3 lD= iS TCB: uOU777 LEV= !H s1<1:0000 sR2=0000 sA1=oooz SAli=OOOJ sA!>=0023 sAo=oooc lR7:0000 se1zoouu uz=oo uce llH=OU 

15 :u14:(l2J21s s11s=oo13n Sl:lb=OOO 1 A7 Stl7::0001f8 Sl'=OOlllE U=ltOll ss=1101e 
UBl 10= $S TCR: 000777 ltV: tH sfn=oooo sRz=oouo lRJ=ooos $Rq:o009 iRS•OtA8 $Ro:21148 SR7=000l se1=0001111A sBZ•OZll:U '83=001 

A7 Sl:l4::0401>20 fö'>::OOl.H~ Sl:lb=OOO t Al SH7:0007f ll SP:;;OOlllE u =lt:.04 SS•llOIB 
W83 10= SS TCH: 1100777 ltV: lH SHt=OOOO SRZ=OOFE SRl=0003 SR'l=OOOl SRS:OOF7 1Ro:OOO& SR7:4tOl S8&•QOllll•S t82•00&22l S8l•OOO 

77 tll4:00llCB Sö";:Oo 1.H 3 Slll>=OOO tA 7 'tl7:0007f 8 Sl'=0013lf U:JtOll 1s:1101& 
Q83 10: SS TCB: 000717 Lt.V= JH SRl=OOOO SRZ=oouo. 1R1=0002 sR11=0003 SRS=0023 11Ro=oooi. iR7:0000 .;111:008570 :118Z=OOllC8 SIH=ou 

tS S!i4=02321~ iöS:Out .H3 Sl:lb=0001#7 Sb7:0007f8 $l':OOJ3lE sl=3E04 ss=1101e 
UR3 IO: SS TCB: 000777 LEV= l~ ~Rl=OOOO s112=00<1t. SR:S•0009 SR'l=0002 SAS=OOOl iRb=UOOb SA7:0002 :li8t=008ht1 $8c!=UOll&CO :1il!3=00l 

A5 'll4=022UIS Sb5=1JOU13 Sllb=OOOIA7 SB7:0007f8 SP=00131E U:ltOll SS='IOIB 
QB3 10= SS TCB= 000717 LEV= IH 3.IH=OOOO SR2=00FE aRl„0002 $Rll=OO'l'I SRS=0023 $Rb=24'18 :tR7:008C iBt:OOdltl SBC!:OOIZH SH.S•OOO 

77 Sl14=001JAb Sil5=001313 SHb=OOO 147 Sll7=02lC3C Sl'=00131E SJ:3EOll SS•ll018 
QBl 10= iS TCB: 000777 LEV= 18 ilH=oooo SR2=0044 SR3=0009 $Rll=0009 SRS=OOOl SRo=c!4118 sR1=0002 l8l=00d49b sac!=oouco slH•OOl 

A~ fHll=OllOb23 585:001 Hl Stlb=OOOIA7 Stl7:02lA3C SP=OOlllE U:3t04 SS•4018 

DATA f RUM MtMOHY öUFFER „ 
WBl 10= SS TCI!: 000777 LEV= !H iRl=OOOO sR2:00FE SRJ:zOOo3 SA11::000I sR!>=ooF7 sAo=oooe SR7:11t02 S8t:OOö904 S82=1l0ll2l SHi=OOO 

71 S84:0011Crl ~b5:0ot.H3 SBl>=OOO 1 A7 St17:0007fll SP:00131E Sl::lfOll SS:ll018 
WB3 10= SS TC8: 000777 LfV: 111 SRt:OOO(l SP2=0000 SRl=0002 SRll::0003 SA5:0023 sRt.•0006 SR7=oooo S81=0088Ef se2=0011ca S83=oU 

IS Sllll:023C!IS SH'i:Oul .SB $Bt>=OOOIA7 $t17:022A3C SP::OOBtE U:3E04 ·ss:1101e 
Q83 IO= $5 TCB= uOo777 LEv= IH sRt=oooo )Rc=oooo SRJ:o008 SAll:0009 SAS::otA8 SHo=.!1148 SR7=000l SBl=OOlllll $8i!=Ui!1Eö1 stl.S•OOl 

A7 f.BQ::OllOb?U $b'i=oonn SHb::OOOIA7 St<7:0007f8 Sl'=OO 13tE :il::3EOll ss=1101s 
Q83 IO= SS TCB= 000777 LEV:: JB iRt=oooo SAZ=OOfE SR3:0003 :j,RQ:OOOl SR5:00f 7 SRo•OOO& $1H:11tOl :alt l ::oOllt>'lf $t12=11012c!I :111u=ooo 

71 SBll:OOllCö $ö";:OOJ313 Sllb=OOOIA7 Sb7:0007f8 Sl'=0013tE :aI:3E011 S'S=40IB 

QB3 10= ~s TCB= 000777 Lfv: IH ~Rl=OOOO )R2=uooo SRl=0002 :äR'l=0003 SRS::0023 SRb=OOOb SR7:oooo S81=00838!> l8~=0011ctt $83=023 
IS SH4=02321~ $ö'i=OOl313 $bb=OOOIA7 SH7=0007fd Sl'=OOlllE Sl::3f0'1 SS=4018 . 

QB3 10= ~s TCH= u007/7 LtV= IH 'Rt:oooo sP2:uo~~ SR1=0009 sR11:0002 iWS:ooot $Ao=ooo& SR7=0002 i~l=OOllJOF SBc!:OOl!bCO ltlJ:OOI 
A!> JH4=022Dt5 St15=0Ulll3 $H&:0001A7 SH7:0007f6 SP::OOlllE $1:3t011 $5:4018 

UAJ IO= ss TCll= 000777 Lf V: IH >Ht::oouo $~2=00fE SRJ:0002 SRq:OOZA SRS•0023 SRb•c!4S3 SR7•008C S8l=0083ff S82=00l237 i83=000 
77 SH4=0011Ab Stl5=oot513 Sl:lt>=0001A7 Stt7=021ClC Sl'=00131E SJ:3EOll 55=4018 
fOF 

Figure 8-8 (cont). Dump of Quick Disk File Sample .QK 



Section 9 
REQUESTING AND 

USING MEMORY DUMPS 

This section provides procedures for dispalying, printing, 
and analzing the contents of main memory. 

OVERVIEW 

The Create Volume (CV) command allows disks to be prepared to 
hold main memory and communications controller memory dumps. 

There are two methods to process memory dumps, each geared to 
a specif ic need. DPEDIT is a Dump Edit utility that allows you 
to print a main memory dump. XRAY is an Interactive Memory Dump 
Editor utility that allows you to display all or a portion of 
main memory. (Contact your Honeywell support representative for 
information on displaying a communications controller memory 
dump.) This section tells how to: 

• Prepare a volume to which dump utilities called DMPMEM 
write the contents of main memory and, optionally, 
communications controller memory 

• Execute the dump utilities, writing the contents of main 
memory (and/or communications controller memory) to your 
dump volume 

• Print and analyze a main memory image, using the DPEDIT 
Utility 

9-1 
09/86 
CZ15-02A 



• Display and analyze a main memory image, using the XRAY 
Utility. 

The general procedure for taking memory dumps is to: 

l. Prepare a disk dump volume, using the Create Volume 
command with the -MDUMP and/or -COMMFILE argument. Once 
prepared, the volume contains empty files whose simple 
pathname, assigned by the system, is DUMPFILE 
correspondin9 to the -MDUMP argument and COMMFILE 
corresponding to the -COMMFILE argument • The volume also 
contains a f ile named ZVDLDR in the root directory and a 
directory named ZVPROG DIR, which contains several other 
files. Col1ectively, these files comprise the dump 
utilities called DMPMEM. Execution of the dump utilities 
write an image of memory. 

The dump utilities are loaded and executed independently 
of the Executive. They can therefore be used to obtain an 
image of memory after a system failure. You should, of 
course, prepare a dump volume while the system is 
operative, before it is needed. 

2. Mount the dump volume1 load and execute the dump 
utilities. 

3. On a system running under the Executive, invoke either the 
XRAY or DPEDIT Utility. DPEDIT is used to print DUMPFILE 
in edited or unedited format. {DPEDIT can also be used to 
print the contents of current main memory.) XRAY is used 
to display DOMPFILE in edited or unedited format on your 
terminal. (XRAY can also be used to display the contents 
of current main memory.) 

USING THE DUMP UTILITIES 

You can dump the contents of main memory to the same volume 
f rom which you initialize the system, or you can dump memory to a 
different volume. Since the need to take a memory dump is 
infrequent, you will probably want to dump to a volume different 
from your system disk. This avoids reserving space on your 
system disk for the dump file(s). If your system has only one 
disk and it is a fixed disk, you can chose to place the dump 
files(s) on multiple diskettes or to share space on the system 
disk. 

The following paragraphs f irst describe taking a dump with a 
volume other than the system volume: mutiple-diskette and shared 
volumes are discussed afterwards. 

9-2 
09/86 
CZ15-02A 

.-... 
\ 



Creating a Durnp Volurne 

The volurne which is to serve as a dump volume rnust have been 
previously formatted (via the Create Volume command with the -FT 
argument). It need not be ernpty, as long as any existing files 
on the volurne allow space for DUMPFILE and, optionally, COMMFILE 
to be created in the volume root directory. 

To create a <lump volume, mount a formatted volume and enter 
the cornrnand: 

cv pathname -MDUMP nnnn [-COMMFILE nn] 

pathname 

Designates the disk volume that you have mounted. This 
argument can take the form: 

!device name>volurne id 

or 

!device narne 

Device narne is the syrnbolic device name assigned to the 
drive on which the volume is rnounted. If you use the 
f irst forrnat, specifying both device name and volurne 
identifier, the system checks the labe! on the mounted 
volurne, thus ensuring that Create Volume runs against the 
correct volume. 

If the drives of your systern are not labelled with their 
device names, a simple way of determining a device name 
is by using the DRIVE active function. Suppose, for 
exarnple, that you have rnounted a volume DMPVOL on an 
unlabelled drive. Using the DRIVE active function, enter: 

CV [DRIVE ADMPVOL] -MDUMP nnnn 

This cornmand line resolves to: 

CV !RCDOO -MDUMP nnnn 

assuming that the device name of the unlabelled drive is 
RCDOO. For further inforrnation on this active function, 
see the Comrnands rnanual. 

-MDUMP nnnn 

This argurnent writes the durnp utilities to the specif ied 
volurne and creates a f ile in the volume root directory, 
named DUMPFILE, of the size nnnn, where nnnn is a decimal 
nurnber of 4096-word units. (The argument -MDUMP 20, for 
example, specifies a file size of 20 x 4096 or 81,920 
words.) 

9-3 
09/86 
CZ15-02A 



There is no default value for nnnn; you 1DUSt supply one. 
The minimum value for nnnn is 16 (65,536 words). 
Entering a value less than 16 does not cause an error; 
instead, Create Volume creates a dump file of 65,536 
words as if you had entered 16. The maximum allowable 
value f or nnnn depends upon the disk medium that you 
select (e.g., mass storage module, removable cartridge) 
for a dump volume. The maximum values for each medium 
are given later in this section under •Maximum Dumpf ile 
Size.• 

-COMMFILE nn 

This argument writes the dump utilities to the specif ied 
volume and creates a f ile in the volume root directory, 
named COMMFILE, of the size nn, where nn is a decimal 
number of 4096-word units. (The argument -COMMFILE 8, 
for example, specifies a file size of 8 x 4096 or 32,768 
words.) 

SETTING DUMPFILE SIZE 

Your dumpf ile should be at least equal in size to the main 
memory installed in your system; it may be greater in size as 
well. 

The size of installed memory can be determined by entering 
the command VIDEO. The f irst item of information displayed by 
this command is the amount of memory occupied by the Executive 
and the total amount of installed memory. This information is 
displayed in the following format: 

237K/768K 

In this example, the Executive occupies 237K words of memory; 
the size of installed memory is 768K words. Dividing 768 by 4 · 
gives you the smallest value you can enter for nnnn (192) when 
preparing to dump 768K words of memory. 

Most current communications controllers contain 64K bytes 
(32K words) of memory. 

DUMPFILE FORMAT 

Both DUMPFILE and COMMFILE are a fixed-relative files, 
immediately subordinate to the volume root directory. That is, 
there pathname is Avol id>DUMPFILE or Avol id>COMMFILE. 

9-4 
09/86 
CZ15-02A 

\ ! 

------ ·--------------- ------- -··---- --- - ------~-----·----- ----- --· ----



( 

DETERMINING AVAILABLE DISK SPACE 

It is possible that a used volurne cannot accornrnodate a durnp 
f ile large enough for your purposes. You can deterrnine the 
availability of space on a volurne by means of the Get Quota (GQ) 
command, specifying the pathname of the volurne as a device name. 
For exarnple, if your ADMPVOL is mounted on the drive called 
RCDOO, enter: 

This utility returns the following inforrnation relevant to 
creating a dump f ile: 

• Total capacity of the volurne, in sectors 
• Nurnber of sectors used. 

By subtracting the second item from the first, you arrive at 
the amount of disk space available. 

On a disk, a sector holds 256 bytes. 
(in words) that the disk will hold is the 
sector tirnes the number of sectors (e.g., 
sectors available). 

The arnount of memory 
nurnber of words per 
128 words x nurnber of 

MAXIMUM DUMPFILE SIZE 

The largest durnpf iles you can create on various disk media 
are shown below. After each rnaximurn size (given in words) 
appears the corresponding value for the -MDUMP nnnn argurnent. 

Maximum -MDUMP Percent 
Medium Size nnnn of Disk 

diskette, single volurne 192,512 47 100 
rnass storage module (67 MB) 33,554,432 8192 96 
rnass storage rnodule (256 MB) 33,554,432 8192 24 
rernovable cartridge module 6,737,920 1645 100 
rernovable Lark cartridge 10,436,608 2548 100 
f ixed disk (132 MB) 33,554,432 8192 56 
f ixed disk (142 MB) 33,554,432 8192 48 
f ixed disk (295 MB) 33,554,432 8192 20 
f ixed disk ( 413 MB) 33,554,432 8192 12 

MULTIPLE-VOLUME DISKETTE 

To create a multiple-volurne dumpfile on diskette that is 
suitable for durnping mernory, it is necessary to forrnat each 
diskette as a mernber of a multiple-volurne set. To create a 
rnultiple-volurne diskette set, use the CV cornrnand as follows: 

CV !DSKnn -FT narne 
CV !DSKnn -SMS setnarne -MBR nn 

9-5 
03/87 
CZ15-02B 

1 

1 



where setname and member number are as described under the.CV 
command description in the Commands manual. These commands 
should be used f or each diskette in the set. Each diskette will 
hold 192K words of memory, so the total number of diskettes 
required is the main memory size (plus any optional 
communications controller memory) divided by 192K words. The 
first diskette in the set should be member number l, the second 
should be 2, and so on. 

The number of diskettes required to hold representive memory 
sizes are shown below. After each memory size (given in words) 
appears the number of required diskettes. 

Memory Size 

2M 
4M 
8M 

Reguired Diskettes 

11 
22 
44 

Wben all the diskettes have been formatted, the DUMPFILE 
should be put on each diskette. To put this on each diskette, 
use the CV command as follows: 

cv !DSKnn -MDUMP nnnn -MBR nn 

The -MBR argument of the CV command will prevent the 
unnecessary copying of dump utility programs and f iles to all but 
the first diskette. If communications controllers are also being 
dumped, the -COMMFILE argument of the CV command should be used 
with the first diskette. If a large COMMFILE is to be created, 
it may be necessary to use a smaller DUMPFILE (as specif ied by 
the -MDUMP argument) on the first diskette. Note that the 
DUMPFILE on the f irst diskette must be at least 64K words (-MDUMP 
16) • 

When taking a memory dump with a multiple-volume diskette 
set, the f irst diskette should be placed in the drive and 
booted. After the first diskette's DUMPFILE is filled, the dump 
utility will issue a prompt to mount the next diskette. This 
procedure will continue until the end of memory is reached, at 
which point the dump utility will issue a prompt to remount the 
f irst diskette. This signals the end of the dump and the f irst 
diskette has to be remounted. 

Before the dump can be analyzed, the individual dumpf iles 
rnust be cornbined into one durnpf ile. This is done by using the 
Copy cornmand to copy each of the diskettes onto a higher capacity 
disk device. To copy the diskettes, use the CP cornrnand as 
follows: 

CP Aname>DUMPFILE DUMPFILE -APPEND 

When all of the diskettes have beeen cornbined in this 
fashion, the resulting DUMPFILE can be analyzed. 

9-6 
09/86 
CZ15-02A 



(_ 

Shared Dump and System Volumes 

As mentioned at the outset 
create a disk dump volume that 
used to initialize the system. 
enter the command line: 

of this section, it is possible to 
serves also as a system volume 

To create such a "shared" volume, 

CV pathname -BOOT [X'cccn'] -MDUMP nn 

-BOOT [X'cccn'] 

Entering the -BOOT argument writes a bootstrap and 
intermediate loader records to sectors 0 through 6 of the 
volume identif ied by the pathname argument. The optional 
value X'cccn' allows you to place the bootstrap and 
intermediate loader records on a different volume f rom 
the Executive. . 
When using this directive with cartridge disks you should 
be aware that the bootstrap and intermediate loader 
records must reside on a removable disk. 

The hexadecimal digits ccc specify the channel number 
associated with the volume that holds the Executive 
(e.g., if the Executive disk is on channel 1400, ccc = 
140). 

The value of n can be zero or one. Zero indicates that 
the volume holding the Executive is removable disk or a 
Winchester technology fixed disk; the value one indicates 
a fixed cartridge or cartridge module disk. If the 
removable cartridge or cartridge module disk (specif ied 
by pathname) and the fixed cartridge or cartridge module 
disk (signified by X'cccl') reside on the same device and 
so share the same channel number, the value of ccc can be 
zero. When initializing the system, you enter the shared 
channel number. 

-MDUMP nnnn 

For a discussion of this argument, see the preceding 
subsection "Creating a Dump Volume". 

You may create the memory dump f iles (DUMPFILE and COMMFILE) 
on the present boot device of a single disk system by using the 
f ollowing CV command: 

CV Avolname -MDUMP nnnn -COMMFILE nn 

This commad will write the bootstrap records and assume that 
the necessary memory dump file and directory (ZVDLDR and 
ZVPROG_DIR) exist in the volume's root directory. 

9-7 
09/86 
CZ15-02A 



Taking a Dump Using a Control Panel 

The f ollowing procedure applies to systems that support a 
control panel. The dump volume used can be one prepared with or 
without the Create Volume -BOOT argument. In either case, it 
must be one prepared with the Create Volume -MDUMP argument or 
-COMMFILE argument, or both. 

The memory dump will be more useful if the contents of the 
registers are recorded before taking the dump. Once you perform 
the memory dump, keep the register information with the dump. 

To write an image of main memory (and/or communications 
controller memory} to a dump f ile, first mount the volume 
containing a dumpf ile and the dump utilities. Then perform the 
following steps at the system's control,panel: 

1. Press STOP and CLEAR. 

2. Set P register to 004. This is done by: 

a. Pressing SELECT and entering the register code EO 
from the control panel key pad. 

b. Pressing CHANGE and entering the value 004. 

This step instructs the central processor not to clear 
memory and to start execution at the address that you 
enter in register Bl (step 4) • 

3. Enter in Register Dl (Rl} the channel number of the 
device on which you have mounted the dump or dump/system 
volume. This is done by: 

a. Pressing SELECT and entering the register code Dl. 

b. Pressing CHANGE and entering the channel number. If 
the volume is shared (i.e., was created with the 
-BOOT and -MDUMP arguments), change the last digit of 
the channel number to the value 8. That is , set Rl 
to the value X'ccc8', where 'ccc' represents the 
first three digits of the channel number. The value 
8 causes the BTDUMP routine, rather than the system 
bootstrap record, to be loaded into memory. 

4. Enter in register Bl the starting memory address (hexa­
decimal) into which the MDUMP routine is to be loaded. 
This address should be at least 2000 (hexadecimal) to 
ensure that hardware-dedicated locations in memory (e.g., 
trap save area pointers, interrupt vectors) are not 
overlayed. The contents of Bl are set by: 

a. Pressing SELECT and entering Bl in the Location 
register. 

9-8 
09/86 
CZ15-02A 



( 

b. Pressing CHANGE and entering a hexadecimal address 
not less than 2000. 

5. Press LOAD, then EXECUTE. During successful execution of 
the memory dump, the contents of Bl increment until 
reaching the last address of installed memory. Then Bl 
is cleared to zeros. 

Taking a Dump Using the System Control Facility (SCF) 

The following procedure applies to taking dumps on a system 
using the System Control Faci~ity (SCF). This facility allows 
the operator's terminal to be used as a control panel. The 
legends STEP, SELECT, CHANGE, LOAD, and EXECUTE, referred to in 
the procedure, appear on an overlay that fits over the function 
keys of your terminal. In case your terminal is not equipped 
with this keyboard overlay, each reference is followed 
parenthetically by a function key numbe~ (e.g., STEP (F6)). In 
the absence of a keyboard overlay showing STEP, press the 
function key labeled F6. 

The dump volume used can be one prepared with or without the 
Create Volume -BOOT argument. In either case, it must be one 
prepared with the Create Volume -MDUMP argument or -COMMFILE 
argument, or both. 

The memory dump will be more useful if the contents of the 
registers are recorded before taking the dump. Once you perform 
the memory dump, keep the register information with the dump. 

To write an image of main memory (and/or communications 
controller memory) to a dump f ile, first mount the volume 
containing a dumpf ile and the dump utilities. Then perform the 
following steps at the operator's terminal. 

1. Ensure that the terminal is in panel mode. The current 
mode is the last item of information displayed on the 
25th line of the monitor screen. To put the terminal in 
panel mode, type: 

ESC ESC # C/R ENA PAN 

2. Press STEP (F6) and CLEAR. 

3. Set P register to 004. This is done by: 

a. Pressing SELECT (F2) and typing the register code EO. 

b. Pressing CHANGE (F3) and typing the value 004. 

This step instructs the central processor not to clear 
memory and to start execution at the address you enter in 
register Bl (step 5) • 

9-9 
09/86 
CZ15-02A 



4. Enter in Register Dl (Rl) the channel number of the 
device on which you have mounted the dump or dump/system 
volume. This is done by: 

a. Pressing SELECT (F2) and typing the register code Dl. 

b. Pressing CHANGE (F3) and typing the channel number. 
If the volume is shared (i.e., was created with the 
-BOOT and -MDUMP arguments), change the last digit of 
the channel number to the value 8. That is, type the 
value x•cccs•, where 'cce 1 represents the first three 
digits of the ehannel number. The value 8 causes the 
BTDUMP routine, rather than the system bootstrap 
record, to be loaded into memory. 

S. Enter in register Bl the starting memory address 
(hexadecimal) into which the MDUMP routine is to be 
loaded. This address should be at least 2000 
(hexadecimal) to ensure that hardware-dedicated locations 
in memory (e.g, trap save area pointers, interrupt 
vectors) are not overlayed. The contents of Bl are set 
by: 

a. Pressing SELECT (F2) and typing Bl. 

b. Pressing CHANGE (F3) and typing a hexadecimal address 
not less than 2000. 

6. Press LOAD (Fl), then EXECUTE (Fl2). During successful 
execution of the memory dump, the contents of Bl 
increment until reaching the last address of installed 
memory. Then Bl is cleared to zeros. 

USING DPEDIT 

The DPEDIT utility can be used to print the contents of a 
memory dump. Printed dumps produced by the DPEDIT utility are 
written to the user-out file, which must be capable of receiving 
a 132-character line. There are two sources of dumps: 

• Files created by the previous execution of the BTDUMP 
utility. (All or selected portions of the f ile can be 
dumped.) 

• Main memory. (A dump of main memory allows you to 
determine the conf iguration under which DPEDIT is 
executing.) 

Dumps produced by DPEDIT may be logical (edited format) dumps 
or physical (memory image format) dumps. Control arguments in 
the DPEDIT command (described later in this section) allow you to 
request either a logical or physical dump. If these control 
arguments are omitted, execution of DPEDIT produces a full 
logical dump followed by a full physical dump. 

9-10 
09/86 
CZ15-02A 

--.\ 
i 



Logical and physical dumps are printed in both hexadecimal 
and ASCII notation. Duplicate lines, if any, are suppressed. 
Suppressed lines are described under "Line Format." 

Page Header 

The page heading contains the following information: 

• The origin of the dump (main memory or a dump file) 

• The date and time of the edit 

• The version of DPEDIT used 

• The version of the system DPEDIT is executing on 

• The pool and group currently being dumped (for a logical 
dump) 

• The page number. 

Line Format 

The format of a basic line for both logical and physical 
dumps is as follows: 

Columns 

1-6 

Content 

Six hexadecimal digits designating the starting 
physical (real) address of the line of dump 
information. The hexadecimal digit in print position 6 
is always O. This forces the dump line to agree with 
the template printed at the heading of each page. 

7-8 Slash (/) followed by a space. 

9-14 Six hexadecimal digits designating the starting virtual 
address of the line of dump information. 

15-17 Slash (/) followed by two spaces. 

18-98 Sixteen consecutive words. Each word is represented by 
four hexadecimal digits and is followed by a space. 

99 Space 

100-131 ASCII representation of the previous group of 16 
consecutive words. A byte that is non-printing is 
designated by a period (.). 

Duplicate lines within the dumps are shown as: 

1-8 Spaces 

9-11 
09/86 
CZ15-02A 



Columns Content 

9-95 

96-131 

* * * * * * * * * * * (indicates one or more duplicate 
lines) 

Spaces. 

Physical Dump 

In a physical dump, the leftmost six columns of data 
designate real memory addresses. When the Memory Management Unit 
(MMU) is in use, there may be ranges of invalid virtual addresses 
in a physical dump from main memory. When an invalid virtual 
address is encountered, a message interrupts the listing of 
memory locations, specifying the invalid virtual address and the 
physical address for which no valid virtual address exists. 

The virtual address is displayed whenever possible. If it 
does not appear, it means that the v~rtual and physical addresses 
are the same (in low memory), or that DPEDIT could not discover 
the virtual address corresponding to a given physical address. 
The listing of real locations resumes when the valid virtual 
address is known. The numerical sequence of real memory 
addresses, before and after the message, is unbroken. 

A physical dump from an external dump f ile does not display 
invalid virtual address messages, and the left column of 
addresses is an uninterrupted continuum of physical addresses. 

Logical Dump 

By means of DPEDIT control arguments, the user can select the 
task groups about which a logical dump supplies information. 
File system information can also be selected. · 

The main addresses in a logical dump are virtual addresses 
(columns 9-14). The leftmost six columns of data are physical 
addresses, and are displayed whenever they differ from the 
virtual addresses. This applies to dumps of disk files as well 
as to dumps of main memory. For disk files, Dump Edit calculates 
the virtual address in the same way as the Memory Management Unit 
would under the same conditions. 

The arrangement of information in a logical dump is described 
in the following paragraphs. 

SYSTEM SUMMARY 

The information contained in a logical dump includes: 

• Location and contents of hardware-dedicated main storage 

• System time of dump 

9-12 
09/86 
CZ15-02A 



(' „ 

c 

• 
• 
• 
• 

• 

• 

Time of system boot 

Time of power-fail restart (if it occurred} 

Hardware conf iguration 

Location and contents of System Control Block (SCB} 

- Model number of central processor 

- Presence (or absence) of the Commercial Instruction 
~rocessor, the Scientific Instruction Processor, and the 
Memory Management Unit 

- Value of the real-time clock scan cycle 

- Presence (or absence} of an operator's terminal 
. 

High address of physical memory. 

Software conf iguration 

- Name and version of operating system 
- Presence (or absence) of the system message library 
- Size of trap save area (TSA} 
- Size of interrupt save area (ISA) 
- Number of indirect request blocks (IRBs} in IRB pool 
- Presence (or absence} of the batch task group. 

Memory pool data 

- Pool identif ication 
- Starting address of pool 
- End address of pool 
- Total size of pool 
- Physical start address 
- Total available space 
- Maximum contiguous available space 
- Number of available fragments (pieces} of pool space 
- Number of users 
- Table of attributes for each pool. 

• Additional pool information 

• 

- Memory pool descriptor 
- Bit map (unless it is a queue-managed pool) 
- Segment descriptors. 

System symbol table 

The names and values of all symbols that have an entry in 
the system symbol table are displayed. Symbols are 
grouped according to the bound unit(s) in which they 
occur. 

9-13 
09/86 
CZ15-02A 



• File system structures 

- Record locking pool control block 
- Volume descriptor blocks (VDBs) 
- Directory descriptor blocks (DDBs) 
- File descriptor blocks (FDBs) 
- Currency control blocks 
- Remote extent blocks 
- Wait control blocks 
- User control blocks 
- Semaphore control blocks 

Record locking control blocks 
- Device descriptor blocks (DDBs) 
- Buffer control blocks 
- Public buffer pool headers (BPHs) 
- Buffer control blocks (BCBs) 
- Buffers. 

Each block is assigned an integer that cor~esponds to the 
level of the block in the hierarchy. The headings of all blocks 
are indented according to the depth of the block. This makes it 
easy to see which f iles belong to volume major directories and 
which belong to subordinate directories. The display of the tree 
of file system structures may be suppressed by the -NF argument. 

The following f ile system structures are also displayed: 

• Free indirect request block queue (only when editing a 
dump f ile) 

• Globally sharable bound units 

- Bound unit description 
- Bound unit attributes 
- Bound unit. 

TASK RELATED INFORMATION 

The preceding logical dump information is obtained f rom the 
operating system area of memory and occurs once within a logical 
dump. The following information can be repeated more than once 
depending on the number of active pools, task groups, and tasks. 
This information is presented in the following order: 

l. Memory pools (as allocated at CLM time), if there are 
task groups assigned to them 

2. Task groups within a memory pool 

3. Tasks within a task group. 

9-14 
09/86 
CZ15-02A 



( 

(/ 

Memory Pool Structures 

The following inforrnation on sharable bound units is repeated 
for each pool with assigned task groups: 

• Bound unit description 
• Bound unit attributes 
• Bound unit. 

Task Group Structures 

The following inforrnation is repeated for each task group in 
a pool. 

• Edited task group inforrnation 

- User narne, account, and rnode 
Assigned rnernory pool 

- Bit rnap switches 
- Outstanding requests to system group 
- Address and narne of control block for current working 

directory, error-out, and user-out. 

• Group control block 

• Logical resource table 

• Logical f ile table 

• Task structures (detailed below) 

• File control blocks (if there are active files) 

• work space blocks. 

NOT ES 

1. For the systern task group, IRBs (and hence 
also RBs) are displayed only when DPEDIT is 
processing a durnp file; i.e., the display 
is suppressed when the input is f rorn 
current rnain rnernory. 

2. Work space blocks and FCBs for the batch 
task group are not displayed when the batch 
group is rolled out. 

9-15 
09/86 
CZ15-02A 



Task Structures 

The following information is repeated for each task in a 
group: 

• Edited task information 

- Sound unit name, location, and start address 
- Hardware level 
- Logical resource number 
- Enabled trap bit map 
- Reserved and current overlay area locations 
- Control block name and address f or user-in and 

command-in. 

• Segment descriptor table (swap pool only) 

• Memory control block for each segment (swap pool only) 
.• 

• Task control block 

• Trap save area 

• MCL word space (for an MCL trap) 

• Sound unit description 

• Sound unit attributes 

.• Sound unit 

• Overlay areas (if an overlay area table was used). 

The firmware-defined fields (instruction, P-counter, I', z, 
A, R3, and S3) for each trap save area (TSA) are displayed. If 
the instruction is a monitor call, the function code is also 
displayed. 

In addition, a possible context of the rema1n1ng data and 
address registers (Rl, R2, R4, RS, R6, R7, Bl, B2, B4, BS, B6, 
and B7) is displayed for each trap save area. This context, 
which is extracted f rom the work space area of the trap save 
area, may not be valid in all cases, but in general, is correct 
due to internal conventions of the Executive. 

9-16 
09/86 
CZ15-02A 

-'"'\ 
(~\) 

~j 

\ __ j. 



c 

DPEDIT Command 

The DPEDIT command loads the Dump Edit utility program. 
Immediately after Dump Edit begins executing, a message is issued 
to the error-out file giving the unique version number in the 
following format: DPEDIT-nnn-mm/dd/hhmm. The message "DUMP 
COMPLETE" is issued to the error-out file immediately before the 
execution of Dump Edit terminates. The format for the DPEDIT 
command is: 

DPEDIT [path] [ctl_arg} 

path 

Pathname of the memory dump f ile to be printed. 

ctl_arg 

None or any of the following control arguments may be 
entered, in any order: 

-NO_LOGICAL 1 -NL 

Does not print a logical dump of system control 
structures. Default: Prints a logical dump. 

-NO_PHYSICAL 1 -NP 

Does not print a physical dump of memory. Default: 
Prints a physical dump. 

-NO_FILES 1 -NF 

Does not print a logical dump of File System structures. 
Default: Prints File System structures. 

-GROUP id [id] ••• 1 -GP id [id} ••• 

Produces only group-related information within a logical 
dump for the group(s) indicated by id; id is the 
two-character group identifier. 

-FROM X'hhhhhhhh' 1 -FM X'hhhhhhhh' 

Low-memory address of area that will appear in physical 
dump; must be a 1- to 8-character physical address 
specified in hexadecimal. Default: Absolute O. 

-TO X'hhhhhhhh' 

High-memory address of area that will appear in physical 
dump; must be a 1- to 8-character physical address 
specified in hexadecimal. Default: High-memory address 
of the dump f ile. 

9-17 
09/86 
CZ15-02A 



-MEMORY 1 -MEM 

Produces a dump of main memory. If both the path 
argument and this argument are specif ied, an error 
occurs. Default: Prints a dump of main memory. 

-NO_SHAREDBU 1 -NS 

Does not print sharable and global bound units in the 
logical dump. 

-NO SYS 

-ME 

Does not print the system portion of the logical dump. 

Dump the group that DPEDIT is running in. {This is 
equivalent~to entering: DPEDIT -MEM -NP -NS -NO SYS 
-GROUP my_group_id.) 

-FORCE 

Forces DPEDIT to try to edit an incomplete dump file. 
{i.e., the message "DUMP FILE IS INCOMPLETE" occurred). 
The results may or may not be useful. 

-SWAP_FILE swapf ile_name 1 -PF swapf ile_name 

Specif ies the name of a swap f ile containing non-resident 
memory information associated with the dump f ile. 
Default: No non-resident memory information is available. 

-PSYS 

Dumps only system space in the physical dump. 

-PAGE_FILE pagef ile_name 1 -PF pagef ile_name 

Specif ies the name of a page f ile containing non-resident 
memory information associated with the dump f ile. 
Default: No non-resident memory information is available. 

Example 1: 

DPEDIT ""DMPVOL>DUMPFILE -NL -TO X'3000' 

This command loads the Dump Edit utility and requests only a 
physical dump of the f irst 12K locations of the specif ied 
dump f ile. 

Example 2: 

DPEDIT -MEM -GROUP XX -NP -NF 

9-18 
09/86 
CZ15-02A 



( 

By specifying a group that does not exist (i.e., XX), this 
command loads the Dump Edit utility and requests an 
abbreviated logical dump consisting of only the system 
summary of the currently executing system. 

Operating Procedure for DPEDIT 

The DPEDIT utility can be used to examine either the contents 
of a f ile created by the previous execution of the MDUMP utility 
or the contents of the main memory of the system on which DPEDIT 
is executing. If DPEDIT is being used to examine MDUMP output, 
mount the disk volume that contains the memory image obtained 
from the MDUMP memory dump. Once the volume is loaded, specify 
the disk volume pathname when entering the DPEDIT command. 

If DPEDIT is being used to print the contents of either MDUMP 
output or live memory, the DPEDIT command must be entered with 
the proper control arguments. 

DPEDIT processing can be stopped at any time by pressing the 
BREAK key. A **BREAK** message appears on the user's terminal 
display when processing stops. An operating system command may 
be specified at this point. If the Unwind (UW) command is 
specif ied, the end-of-processing details are automatically 
handled and control returns to the command processor with a 
successful subtask completion status. If the Start (SR) command 
is specified, DPEDIT resumes processing. If DPEDIT appears to be 
looping, the loop can usually be broken and DPEDIT can be made to 
recover by forcing a **BREAK** and entering the Pro9ram Interrupt 
(PI} command. Note, however, that it is normal for DPEDIT to run 
for f ive or ten minutes (or more} while dumpin9 a large memory or 
dump f ile. 

INTERPRETING AND USING MEMORY DUMPS 

This subsection describes significant locations in memory 
dumps, how to interpret the contents of locations on memory 
dumps, and how to use memory dumps to perform the following 
procedures: 

• Finding the location in memory of your code 
• Determinin9 the execution state of your code 
• Determinin9 where a trap occurred. 

A trap is a special software- or hardware-related condition 
that may occur during the execution of a task. Many traps are 
caused by an error, but a few, such as the Monitor Call, are 
not. The above procedures may have to be performed if a trap 
message is issued. 

9-19 
09/86 
CZ15-02A 



Table 9-1 describes memory locations on the dump that may be 
useful to refer to during debugging. It is assumed that you are 
familiar with the data structures referenced. Brief definitions 
of these data structures are contained in the glossary of the 
System Concepts manual. The locations listed in Table 9-1 are 
for a single CPU system. If your system has more than one CPU, 
the data structures are repeated in locations 0100 through OlFF 
for the second CPU, locations 0200 through 02FF for the third 
CPU, and so on. 

To locate your code, use the logical dump format and locate 
your group-id and the TCB for your bound unit (BU). The first 
six characters of the BU filename are printed beside each TCB of 
the group in a logical dump. 

Table 9-1. Significant Locations on Memory Dump 

„ 
Memory ·Address Meaning 

0010/0011 Head of queue of available trap save areas 
(TSAs) • 

0018/0019 Point~r to system control block (SCB). This is 
the key to locating all system data structures. 

0020-0023 

0024-007F 

0080-00FF 

Level activity flags for levels 0 through 63. 
Bits ON indicate which levels are ready to 
execute. The lowest (numerically) of these 
levels is the level currently executing (i.e., 
the active level). The level 63 bit always is 
on. The clock level bit (4) may be on. 

Trap vectors. Each trap vector is associated 
with a specific trap condition and points to 
that trap handler's entry address. The trap 
vector for trap number 1 is in location 7E/7F. 
The trap vectors for subsequent trap numbers are 
in descending, contiguous locations; i.e., the 
trap vector for trap number 2 is in location 
007C/007D. 

Pointers to interrupt save areas (ISAs) for 
levels 0 through 63, respectively. A null value 
means there is no dedicated task (i.e., driver) 
or nondedicated task ready to execute on the 
specified level. 

9-20 
09/86 
CZ15-02A 

) 



Determining the State of Execution at the Time of the Dump 

Dump analysis begins with gathering all relevant 
information: the dump itself, the console hard-copy (if any) of 
the activity of a particular group (or groups), copies of the 
>>SID>CLM_USER and >>START_UP.EC files, plus any link maps. 

These materials are required to understand the environment of 
the system represented in the dump. 

Three conditions are discussed below: 

1. Halt at level 2. 

2. User level active at the time of dump. 

3. No level active at the time of dump, except level 63. 

HALT AT LEVEL 2 

Examination of the level activity indicators at locations 
20-23 conf irms that level 2 is active. The system forces this 
condition to occur if either TSA or IRB resources are exhausted 
(see CLM SYS directive in the System Building and Administration 
manual). Note that once level 2 becomes active, other lesser 
priority levels rnay be ready but will not receive CPU time. 

The Dl register contains an ASCII'"IR" (4952) when IRB 
exhaustion has occurred. Location 10/11 is zero when TSA 
exhaustion has occurred. 

If this symptom persists after augmenting the nurnber of TSA/ 
IRBs available to the systern, it is possible that either your 
code or the system is irnproperly altering the TSA/IRB chains. 

To verify this, take a mernory durnp irnrnediately after systern 
startup. This allows easy location of the TSA chains from 
location 10/11 and the IRB chains f rorn the f irst location of the 
SCB. Compare this durnp to one taken after all TSA/IRBs are 
supposedly exhausted to verify that they really are. If the 
systern is suspect, supply both dumps to Honeywell. TSAs can also 
be exhausted by a recursive trap. A recursive trap uses up all 
available TSAs. Adding TSAs simply allows for greater 
recursion. In this instance, the systern is suspect and dumps 
should be supplied to Honeywell. 

The optionally conf igured defective-mernory trap handler may 
also force a level 2 halt if a defective memory trap indicates 
the operating systern's trap save area is exhausted. In this 
case, $Dl ($Rl) contains X'DEFA'; $Bl, the physical address of 
the defective mernory; and $B2, the logical address of the 
defective rnemory. 

9-21 
09/86 
CZ15-02A 



---------------·-----~--------

USER LEVEL ACTIVE AT TBE TIME OF DUMP 

This often indicates a halt or software loop condition on the 
active level. When a level is active, the pointer to the TCB 
associated with the code runnin9 is in the interrupt vector for 
that level. Match the TCB pointer with the TCBs listed for the 
groups present in the system. When a level is active, use the 
P-counter in the ISA portion of the TCB to locate the software 
running at the last time this level's context was saved. Since 
the system clock is active on level 4, the P-counter in the ISA 
for this level is usually helpful. It is also helpful to record 
the contents of R and B registers and EO when entering STEP mode 
at the control panel prior .to taking the dump. 

NO LEVEL ACTIVE AT THE TIME OG DUMP 

This condition usually indicates a system failure in that all 
tasks have been suspended and none are being reactivated. In 
this situation it is helpful to deter~ine the conditions existing 
at this time. To do this, examine all TCBs in groups other than 
the $S group. If the TCB under examination has not experienced a 
default trap condition, it may or may not have an associated 
TSA. If a TSA is shown, DPEDIT displays the monitor call 
function code if the trapped instruction is 0001 (monitor call 
generic). 

When the system is called for a 
.registers that must be preserved by 
TSA workspace. The saved registers 
Ml, beefinning at TSA location E/F. 
detailed below. 

monitor function, only those 
the system are saved in the 
are: B7, B6, BS, Bl, RS, R4, 
The trap save area (TSA) is 

Locating a Trap Processed by the System Default Handler 

If a trap message occurs on the operator terminal from the 
system default trap handler, i.e., "{id) BUname (0303zz) level", 
the TCB of the referenced task group may be located using the 
bound unit name (BUname). In this situation, unless the TCB is 
subsequently requested, the last two TSAs associated with the TCB 
are related to the system handling of the trap. The f irst TSA 
following the TCB was used by the system to terminate the task 
request in progress when the trap occurred. Your information is 
found in the next TSA associated with the TCB. It contains the 
previously described hardware information, followed by a complete 
set of registers current when the trap occurred. The order of 
the registers, beginning at location E/F of the TSA, is: B7, B6, 
BS, B4, B2, Blp I, R7, R6, RS, R4, R2, Rl, Ml (B3, R3, I are 
already in the TSA). When the TCB has been rerequested, only 
this second TSA remains attached to the TCB. 

9-22 
09/86 
CZ15-02A 

-------. \ 
1 



(/ 

USING XRAY 

The XRAY utility is used to produce an annotated display of 
memory image information. Displays produced by the XRAY utility 
are written to the user-out f ile. The information to be 
displayed will be in response to interactively entered commands 
from your terminal, a stream of commands from a command file, or 
the processing of structures which simulate DPEDIT operation. 
There are two sources of memory image information: 

• Files created by the previous execution of the BTDUMP 
utility. (All or selected portions of the file can be 
dumped.) 

• Main memory. (Allows you to determine the configuration 
under which XRAY is executing •. ) 

You can select one of three display modes in which memory 
image information is displayed: 

1. Raw mode, which provides raw data with no annotation. 

2. Pack mode, which provides the name, offset, and contents 
of each f ield. 

3. Full mode, which provides detailed annotation for each 
field. This mode is recommended for users new to the 
system or to reading dumps •. 

Accessible Stuctures 

The following list describes the memory locations that may be 
useful to ref er to when XRAY is being used to view information 
interactively during debugging. It is assumed that you are 
familiar with the data structures referenced. Brief definitions 
of these data structures are contained in the glossary of the 
System Concepts manual. 

The data structures that are accessible when running XRAY 
interactively are: 

Structure 

AIFCB 
BAS 
BCD 
BIFCB 
BPA 
BPCB 
BPH 
BPSTAT 
BUD 
CB 
CCB 

Description 

After image file control block. 
Bound unit attribute section. 
Buffer control block. 
Before image control block. 
Buffer pool array descriptor. 
Buffer pool control block. 
Buffer pool header. 
Buffer pool status block. 
Bound unit descriptor. 
Control block (record locking structures). 
Currency control block. 

9-23 
09/86 
CZ15-02A 



Structure 

CQB 
FCB 
FDB 
FIB 
FIRB 
GCB 
IORB 
IRB 
LB 
LUD 
LFT 
LRT 
MCB 
MPA 
MPD 
OAT 
OATS 
RCT 
RXB 
SCB 
SDT 
SYMBT 
TCB 
TSA 
UCB 
WB 
ZQCl 
ZQCDIR 
ZQCIT 
ZQSl 

XRAY Command 

Description 

Cornrnunications queue block. 
File control block. 
File descriptor block. 
File information block. 
Free indirect request block. 
Group control block. 
Input/Output request block. 
Indirect request block. 
Lock block (record locking structures) • 
Load unit descriptor. 
Logical f ile table. 
Logical resource table. 
Memory control block. 
Memory pool array. 
Memory pool descriptor. 
Overlay area table. 
Overlay area information •. 
Resource control table. 
Remote extent control block. 
System control block. 
Segment descriptor table. 
Symbol table descriptor. 
Task control block. 
Trap save area. 
User control block. 
Wait block (record locking structures). 
Channel table descriptor. 
Channel table directory. 
Communications information table. 
Station table descriptor. 

The XRAY command loads the Interactive Memory Dump Editor 
utility program. The format for the XRAY command is: 

XRAY [path] [ctl_arg] 

path 

Pathname of the memory dump f ile to be processed. 

ctl_arg 

None or any of the following control arguments may be 
entered: 

-CUSTOM_STRUCT path 1 -es path 

Specif ies the pathname of a f ile containing additional or 
customized structures to be included for the session. 
Default: Use only the provided system structures f ile. 

9-24 
09/86 
CZ15-02A 



( 
-IN path 

Specif ies the pathname of a f ile containing interactive 
mode commands. If the command f ile does not end with a 
QUIT command, additional commands are expected from the 
terminal user-in f ile. Default: use terminal user-in 
f ile. 

-FILE_OUT path 1 -FO path 

Specif ies the pathname of a f ile that will receive the 
printable output. Default: use terminal error-out file. 

-OUT path 

Specif ies the pathname of a file to which XRAY copies the 
interactive commands if the commands execute succesfully. 

-FORCE 

Forces XRAY to try to edit an incomplete dump f ile. 
(i.e., the message "DUMP FILE IS INCOMPLETE" occurred}. 
The results may or may not be useful. 

-SWAP_FILE swapf ile_name 1 -SF swapf ile_name 

Specif ies the name of a swap f ile containing non-resident 
memory infdrmation associated with the dump file. 
Default: No non-resident memory information is available. 

-DPEDIT 

Request Dump Edit simulation. XRAY is placed in 
non-interactive mode and output is directed to the 
user-out f ile. At the termination of Dump Edit 
simulation, XRAY terminates. Default: XRAY runs in 
interactive mode. 

The following control arguments relate to Dump Edit 
simulation and must be preceded by a -DPEDIT control 
argument. This is the only restriction on the order of XRAY 
control arguments: 

-NO_LOGICAL 1 -NL 

Does not print a logical dump of system control 
structures. Default: Prints a logical dump. 

-NO PHYSICAL 1 -NP 

Does not print a physical dump of memory. Default: 
Prints a physical dump. 

9-25 
09/86 
CZ15-02A 



-NO_FILES 1 -NF 

Does not print a logical dump of File System structures. 
Default: Prints File System structures. 

-GROUP id [id] ••• 1 -GP id [id] ••• 

Produces only group-related information within a logical 
dump for the group(s) indicated by id; id is the 
two-character group identifier. 

-FROM hhhhhhhh 1 -FM hhhhhhhh 

Low-memory address of area that will appear in physical 
dump; must be a 1- to 8-character physical address 
specified in hexadecimal. Default: Absolute o. 

-TO hhhhhhhh 

High-memory address of area that will appear in physical 
dump; must be a 1- to 8-character physical address 
specif ied in hexadecimal. Default: High-memory address 
of the dump f ile. 

-NO_SHAREDBU 1 -NS 

Does not print sharable and global bound units in the 
logical dump. 

-NO SYS 

-ME 

Does not print the system portion of the logical dump. 

Dump the group that DPEDIT is running in. (This is 
equivalent to entering: DPEDIT -MEM -NP -NS -NO SYS 
-GROUP my_group_id.) 

-PSYS 

Dumps only system space in the physical dump. 

Example 1: 

XRAY 

This command loads the XRAY utility in the interactive mode. 

9-26 
09/86 
CZ15-02A 



Example 2: 

XRAY -IN XRAY C 

This command loads the XRAY utility in the interactive mode. 
User commands will be taken from the f ile named XRAY c. 

Example 3: 

XRAY ADMPVOL>DUMPFILE -DPEDIT -NL -TO 3000 

This command loads the XRAY utility in the non-interactive 
mode and requests only a physical dump of the f irst 12K 
locations of the specified dump file. DPEDIT simulation mode 
should only be used as a backup capability to the DPEDIT 
utility. XRAY has better error recovery when processing 
corrupted memory dump f iles. 

Operating Procedure for XRAY 

The XRAY utility can be used to examine either the contents 
of a f ile created by the previous execution of the MDUMP utility 
or the contents of the main memory of the system on which XRAY is 
executing. If XRAY is being used to examine MDUMP output, mount 
the disk volume that contains the memory image obtained f rom the 
MDUMP memory dump. Once the volume is loaded, specify the disk 
volume pathname when entering the XRAY command. 

XRAY processin·g can be stopped at any time by pressing the 
BREAK key. A **BREAK** message appears on the user's terminal 
display when processing stops. An operating system command may 
be specif ied at this point. If the Unwind (UW) command is 
specif ied, the end-of-processing details are automatically 
handled and control returns to the command processor with a 
successful subtask completion status. If the Start (SR) command 
is specified, XRAY resumes processing. If XRAY appears to be 
looping, the loop can usually be broken and XRAY can be made to 
recover by forcing a **BREAK** and entering the Program Interrupt 
(PI) command. Note, however, that it is normal for XRAY to run 
f or f ive or ten minutes while dumping a large memory or dump 
f ile. 

If XRAY is being used to print the contents of either MDUMP 
output or live memory, the -DPEDIT command argument must be 
entered with the XRAY command with the proper DPEDIT control 
arguments. 

If XRAY is being used to view information interactively, 
enter the XRAY command (without the -DPEDIT argument) to load 
the XRAY utility program. You are asked to select one of the 
following: 

• DPEDIT, which allows you to create a memory durnp 

9-27 
09/86 
CZ15-02A 



• QUIT, which allows you to terminate XRAY 

• IA, which allows you to examine information interactively. 

After you have selected IA, the following online help is 
available by typing: 

• HELP, to get a !ist of available commands 
t 

• HELP followed by any of the commands, to get information 
about the specif ic commands and arguments. 

The interactive commands are: 

l BACKUP} 
BACK 
B 

This command allows you to step back to the previous 
structure in the current access path c~current Path:" 
display shown in top line of screen display) and display 
it in zone 1. The structure pointed to by the new last 
entry of the current access path is accessed and 
displayed in zone 1. 

{ ~:AIN} fld_name 

This command allows you to enter a f ield name that is 
appended to the access path and then displayed in zone 
1. · If the f ield named by the fld name argument is valid 
(found in the structure currently-being displayed) and is 
a pointer to a structure, the pointed-to structure is 
accessed and displayed in zone 1. The structure's name 
is also appended to the current access path. 

{ ~ONTINUE} 

This command allows you to redisplay the current 
structure in zone l. The structure pointed to by the 
last entry in the current access path is accessed and 
redisplayed in zone 1. This refreshes the data being 
displayed in zone 1. This is important in controlling 
which zone's data is current for displaying indicators or 
single zone (full screen) displays. 

es path_name 

This command allows you to specify a customer structure 
f ile containing additional or customized structures that 
are to be used during the session. The customer 
structure f ile named in the XRAY command argument (if 
any) is overridden. 

9-28 
09/86 
CZ15-02A 



.·( 

c; 

{
DISPLAY} 
DISP 
D 

This command allows you to redisplay the current 
structure in zone 2. The currently assigned zone 2 
structure is the structure that was accessed by a DISPLAY 
command with the fld name argument. This structure is 
accessed and redisplayed in zone 2. This refreshes the 
data being displayed in zone 2. This is important in 
controlling which zone's data is current for displaying 
indicators or single zone (full screen) displays. 

{ 
DISPLAY} fld_name 
DISP 
D . 

This command allows you to display a field in zone 2. If 
the f ield named by the fld name argument is valid (found 
in the structure currently-being displayed) and is a 
pointer to a structure, the pointed to structure is 
accessed and displayed in zone 2. There is no effect on 
the current access path. 

{ 
DISPLAY} IND 
DISP 
D 

This command allows you to display indicators in zone 2. 
The most recently accessed structure, either in zone 1 or 
2, is examined for any fields defined as indicator or 
flag f ields and the individual indicators are displayed 
in zone 2. 

{ 
DISPLAY}{FROM} hhhhhhhh [P] 
DISP FM 
D 

This command allows you to use a virtual or physical 
address to display the pointed-to data area in zone 2. 
The address specif ied by hhhhhhhh is accessed and the 
contents are displayed in zone 2. If there is no 
structure associated with the data, the USE command can 
be used to associate a structure to this data. If the P 
argument is used, the address is accepted as a physical 
address, otherwise the address is treated as a virtual 
address. 

DPEDIT [ctl_arg] ••• 

This command allows you to create a memory dump. XRAY 
will leave the interactive mode of operation and perform 
the DPEDIT simulation controlled by any supplied DPEDIT 
arguments. Refer to the XRAY command description for a 
description of these arguments. 

9-29 
09/86 
CZ15-02A 



FO path name 

This command allows you to redirect the output 
(user-out). XRAY will redirect the user-out to the 
specif ied f ile-out pathname. 

{ 
HARDWARE } n 
HARD · 
H 

This command allows you to display the hardware-dedicated 
area of any processor. The hardware-dedicated 
information for the processor specif ied by n is displayed. 
in zone 2. The value for n is an integer from 0 to 15. 

HELP [comrnand] 

This cornmand allows you to obtain a !ist of available 
interactive cornmands or help information for a named 
command. If the cornmand argurnent is specified, help 
information for the named cornrnand is displayed below the 
comrnand line. If no command is specified, the narne of 
all cornmands will be displayed. Responding with a Y to 
the "rnore?" prompt causes additional help inforrnation. 

{ 
LOCATE} str_name [ [ctl_arg]] 
LOC 
L 

This comrnand allows you to search for a specif ic 
structure and display that structure in zone 1. If the 
control argument (ctl arg) isn't included, the first 
occurrence of the strücture named by str name is accessed 
and displayed in zone 1. Using the control argument 
allows the search to continue until a structure named by 
str narne rneeting the test described by ctl arg is found 
or all occurrences of that structure have been tested. 

The control argurnent rnust be bounded by brackets ([]) and 
will be one or rnore tests cornparing A to B. The forrnat 
is: 

[A::B ••• ] 

where A can be a field narne within the structure or an 
offset into the structure (begining with O). B can be a 
f ield narne within the structure, a hexadecirnal constant, 
or an ASCII character string constant. The comparison 
(: : ) can be: 

> Greater than 
> Less than 
= Equal to 
# Not equal to 

9-30 
09/86 
CZ15-02A 



+ Bit true 
Bit false 

For two or more tests, the individual tests are separated 
by: 

/ Indicating and test results 
Indicating or test results 

For structures containing identifier fields such as G 
NAME in a GCB structure, the test can be formatted as: 

[=id] 

where id would be the two-character group id. 

{ :ODE } zone { i } 
This command can be used to select one of three display 
rnodes for either of the two display zones. The zone 
specif ied by zone (either 1 or 2) is changed to the rnode 
specified by R, P, or F. The modes are: 

1. R for raw mode, which provides raw data with no 
annotation. 

2. P for pack mode, which provides the names, offset, and 
contents of each f ield. 

3. F for full mode, which provides a detailed annotation 
for each field. 

This command allows you to step to the next version of 
the structure or ~lement in the current access path and 
display it in zone 1. If the current structure in zone l 
is one of a queue of like structures or a table of 
elements, the next structure or element will be accessed 
and displayed in zone 1. 

{ 
PAGEDOWN} zone 
PDN 
PD 

This command allows you to move a zone display one page 
of information toward the end of the information. If the 
structure in the zone specif ied by zone (either 1 or 2) 
has more information than is displayed on the screen, 
this command will cause the next page (screen) toward the 
end of the structure to be displayed. 

9-31 
09/86 
CZ15-02A 



{ 
PAGEUP} zone 
PUP 
PU 

This command allows you to move a zone display one page 
of information toward the beginning of the information. 
If the structure in the zone specif ied by zone (either 1 
or 2) has more information than is displayed on the 
screen, this command will.cause the next page (screen) 
toward the beginning of the structure to be displayed. 

{~~!NT} 

This command allows you to print the current screen 
image. The screen image is sent to user-out. 

{~~!NT} fld_name [mode] 

This command allows you to print the contents of a 
structure. If the f ield named by the 
fld name argument is valid (found in the structure 
currently being displayed) and is a pointer to a 
structure, the pointed to structure is accessed and sent 
to user-out. The information is printed in raw mode, 
unless otherwise specif ied by the mode argument. 

This command allows you to use a virtual or physical 
address to print the pointed-to data area. The address 
specif ied by hhhhhhhh is accessed and the contents are 
sent to user-out in raw mode until the limit number of 
words have been sent. If the P argument is used, the 
address is accepted as a physical address, otherwise the 
address is treated as a virtual address. 

This command allows you to control when the current 
screen image will be printed. AUTO causes the screen 
image to be sent to user-out whenever subsequent commands 
cause the screen to change. MAN causes the screen image 
to be printed only on demand. 

9-32 
09/86 
CZ15-02A 

) 



( 
This command allows you to end the current interactive 
session of XRAY. 

{ RESTART} 
RES 

This command allows you to cancel the current access path 
and start over by displaying the System Control Block. 
Returns XRAY to f irst screen displaying HW and SCB in 
zones 1 and 2. 

{ 
SCROLLDOWN } zone n 
SDN 
SD 

This command allows you to move a zone display a 
specif ied nurnber of lines of information toward the end 
of the information. If the structure in the zone 
specified by zone (either 1 or 2} has rnore information 
than is displayed on the screen, this command causes the 
next specified n number of lines toward the end of the 
structure to be displayed. 

{ 
SCROLLUP f zone n 
SUP l 
su ' 

This command allows you to rnove a zone display a 
specif ied number of lines of information toward the 
beginning of the information. If the structure in the 
zone specified by zone (either 1 or 2} has more 
information than is displayed on the screen, this command 
causes the next specif ied n number of lines toward the 
beginning of the structure to be displayed. 

SF swapf ile_narne 

This command allows you to specify a swapf ile that is 
associated with the durnp file being processed. The 
swapf ile named in the XRAY command argurnent (if any} is 
overridden. 

{ gsE} str_name zone 

This command allows you to associate a structure to the 
displayed data in a zone. Associate the structure named 
by str name to the data that is currently displayed in 
the zone specified by zone (either 1 or 2). 

9-33 
09/86 
CZ15-02A 



{:ALK} str_name 

This command allows you to locate and display in zone l 
all occurrences of a structure. As each occurrence of 
the structure named by 
str_name is displayed, you are prompted to either end the 
walk or continue to the next like structure. 

{ ZONES} n 
ZONE 
z 

This command allows you to change the display to either 
one (full screen) or two zones. A selection of 2 changes 
the screen image format to display both zones. Selecting 
1 changes the screen f or'mat to display only the most 
recently displayed zone. 

9-34 
09/86 
CZ15-02A 



REMOVE THIS PAGE AND PLACE TAB FOR 

( "-, 
.' \ 
1 1 
' , 

~„,/ 

TAB 10 

PATCH UTILITY 





(
'"„~ 

' 
/ <. ..._,.,._,~" 

Section 10 
PATCHUTWTY 

This section describes how to use the Patch utility. 

OVERVIEW 

The Patch utility is used to apply patches to and remove 
patches f rom object units (variable sequential f iles created by 
the compilers)' and bound units (relative f iles created by the 
Linker). Patches are identified by patch-ids. The Patch utility 
can also be used to list, by patch-id or group-id, all patches 
for an object unit or bound unit. The listing is written to the 
user-out file, terminal line screen, or printer for a hard copy. 

Unless you specify otherwise, the patcher does not patch a 
location that has been patched before. 

The Patch utility, in modifying object or bound units, 
extends the file space, as necessary. Insufficient file space 
terminates Patch operations; therefore, you should ensure that 
suff icient space exists to accommodate the patches on the medium 
(disk, etc.). 

10-1 
09/86 
CZ15-02A 



~- ··----·--------· ···----

OPERATION 

Patch execution is controlled by directives entered to Patch 
through the terminal user-in f ile or a sequential f ile. Only the 
f ile specif ied on the Patch command line can be patched with each 
invocation of the Patch utility. The Patch utility operates in 
either absentee mode (batch mode) or in interactive mode. By 
using Patch directives, you can: 

• Manipulate shared and system attributes of bound units 

• Assign an address or value to undef ined external 
references in bound units 

• Interrogate the current contents of bound unit locations 

• Apply patches with or without verifying the existing 
values at the locations to be patched 

• List patches 

• Eliminate patches. 

The Patch utility performs a verify unique address operation 
as it applies new patches. That is, as each new patch is 
applied, it is compared against those already applied. If the 
new patch modif ies a location already modif ied by a previous 
patch, the new patch will be rejected and an error message will 
be issued. If the Patch utility is invoked using the -FORCE 
argument, the address is not verif ied and patches to patches will 
be accepted. 

The Patch utility also maintains a special history record for 
bound units that are distributed by Honeywell. This record 
contains inf ormation pertaining to the update level of the bound 
unit and the number of patches applied to the bound unit for each 
update. You can determine from this information if a program is 
at the correct update level, has the correct number of patches or 
has bad some patches added or deleted. This information can be 
displayed using either the LS, LP, or LU directives. 

Absentee Mode 

In absentee mode Patch processes directives and applies them 
to the bound unit or object unit f ile specified on the Patch 
command line. These directives allow applying of patches with or 
without verification, elimination of patches, and listing of 
patches. 

The Patch utility processes attribute modification and 
interrogate directives as they are entered. Regardless of the 
input sequence of other directives, Patch processes directives in 
the order: resolve undefined references, eliminate patches, 
apply patches, and list patches. 

10-2 
09/86 
CZ15-02A 

... ""' 



(
~. 

\ 

\' ,,.,/ 

Interactive Mode 

By specifying the Patch command with the -IA argurnent, a 
bound unit f ile can be patched in interactive mode. In 
interactive mode, directives must be cornpleted before they are 
applied; a directive is completed when the Patch utility reads a 
new directive. 

Manipulation of the bound unit share or systern attributes and 
bound unit interrogation are always perforrned as the directives 
are keyed-in. 

Loading Patch 

Patch can operate on two types of files: 

• Object units, which are variable sequential files created 
by the compilers 

• Bound units, which are relative files created by the 
Linker. 

To load Patch, enter PATCH, as follows: 

FORMAT: 

PATCH filenrn [ctl_arg] 

ARGUMENTS: 

f ilenm 

Pathname of the object unit file or bound unit file to be 
patched. If an object unit is being patched, the 
pathname rnust end with the .o suffix. 

ctl arg 

The following control argurnents can be entered: 

-IA 

Operate in interactive rnode. Process one directive at a 
time as they are entered; error messages (if any) 
immediately follow the applicable directive. If this 
argurnent is not specified, Patch operates in the absentee 
rnode. Object unit files must be patched in absentee 
mode. 

10-3 
09/86 
CZ15-02A 



-IN path 

Pathname of the device through which Patch directives are 
entered1 can be your terminal, a card reader, or a 
sequential file. Error messages are written to the 
error-out file. Patch error messages are described in 
the System Messages manual. Oefault: Oser_in. 

-PROMPT 1 -PT 

If input is from your terminal, each time the Patch 
utility program is ready to accept an input line, the 
typeout P? appears on the input device. Oefault: No 
prompt. 

-SI 

·suppress the display of the sign-on message (i.e., PATCH, 
f ollowed by the system version number and the date Patch 
was created). Oefault: Patch sign-on message is 
displayed. 

-SIZE nn 1 -SZ nn 

Create a Patch work area of nn 1024-word blocks of 
memory. 0 nn°_ specifies the maximum number of blocks and 
must be from 01 to 63. Default for nn: 10. 

-FORCE 

Suppress the verify unique address operation as new 
patches are applied. Normally, if the new patch modifies 
a location already modif ied by a previous patcht the new 
patch will be rejected and an error message will be 
issued. If this argument is used, the address is not 
verif ied and patches to patches will be accepted. 
Default: perform the verify unique address operation. 

Submitting Patch Directives 

The Patch directives are listed and bri~fly defined below. 
Detailed descriptions for each Patch directive are provided later 
in this section. 

Directive 
Name Function 

CLSY Set bound unit system bit off 

OP Apply patches to either the data section of a bound 
unit or to the common area of an object f ile 

EP Eliminate named patch or group of patches, or all 
patches 

10-4 
09/86 
CZ15-02A 

. """ \ 



(' 
,' 

Directive 
Name 

GO 

GP 

GNSH 

GSHR 

HP 

LDEF 

LG 

LN 

LP 

LS 

LU 

NS 

Q or QT 

SD 

SP 

ss 

STSY 

VDEF 

WA 

* 

Function 

Process previous patch directive if mode is 
interactive 

Apply a group (logical set) of patches to a bound 
unit 

Set bound unit global share bit of f 

Set bound unit global share and share bits on 

Apply hexadecimal patches 

Assign an address to an undef ined external location 
reference within a bound unit 

List groups (logical sets) of patches by name only or 
specif ied groups within a bound unit and exit from 
Patch if mode is absentee (batch) 

List patches now but do not exit from Patch if mode 
is absentee (batch) 

List patches and exit from Patch if mode is absentee 
(batch) 

List patches by name only or specif ied patch and exit 
f rom Patch if mode is absentee (batch) 

List the Honeywell RSUF updates that were applied to 
the bound unit 

Set bound unit global share and share bits off 

Process previous Patch directives if mode is absentee 
(batch) and exit from Patch 

Apply symbolic patches to either the data section of 
a bound unit or to the common area of an object file 

Apply symbolic patches 

Set bound unit share bit on 

Set bound unit system bit on 

Assign a value to an undef ined external symbol within 
a bound unit 

Interrogate bound unit locations 

List a comment on the user-out f ile 

10-5 
09/86 
CZ15-02A 



Each Patch directive consists of only a directive name or. a 
directive name followed by one or more values. Values must be 
separated by a delimiter. The delimiter can be a space, a comma, 
or a semicolon. However, on an interactive device (i.e., a 
terminal), the carriage return replaces the delimiter. Lines can 
neither begin nor end with a comma or semicolon. If directives 
are entered from a card reader, trailing blanks or column 80 
replace the delimiter. 

Multiple Patch directives can be specified during one 
execution of the Patch utility. To enter Patch directives for a 
different f ile, you must reload Patch, specifying a different 
file in the filenm argument. 

For patching in the interactive mode: 

• Patch directives are processed in the sequence in which 
they are entered. 

• Patch directives can be entered in any order, except that 
Quit (Q) must be entered last. 

• A Patch directive must be complete before it is processed; 
it is complete when Patch reads a new directive. 

For patching in the absentee (batch) mode: 

• The List Patches Now (LN) directive must be the f irst 
directive; otherwise, it is processed like an LP directive 
(i.e., last). 

• Patches are f irst eliminated, then applied, and f inally 
listed regardless of the sequence in which the associated 
directives are entered. 

• The bound unit share bit and system bit (SS, STSY, CLSY, 
GSHR, GNSH, and NS) directives and the Interrogate bound 
unit (WA) directive are always processed when they are 
entered. 

If directives are being entered through a terminal, press 
RETURN at the end of each line. Each time RETURN is pressed, 
except after Quit, the typeout P? is reissued if the prompt 
control argument was specif ied in the command line. 

use the BREAK key with caution; it can only be followed by 
the SR command when applying or eliminating patches. BREAK 
followed by the uw, PI, or NEW PROC command while applying or 
eliminating patches produces a-corrupted f ile. BREAK can be used 
safely with uw, PI, or NEW PROC only if listing patches or 
between directives in interactive mode. 

10-6 
09/86 
CZ15-02A 



'( 
PATCHING TECHNIQUES 

Techniques used when naming and applying a Patch are 
described in the following paragraphs. 

Naming the Patch 

Each patch has a patch-id by which it is identified. When 
you designate in Patch directives (DP, HP, SD, or SP) that one or 
more patches are to be applied to a specif ied object unit or 
böund unit, you must specify a patch-id. The patch-id identifies 
the patch(es) and designates whether the patch(es) are to be 
applied to an object unit or to the root, data section, or 
overlay of a bound unit. 

To eliminate individual patches f rom or list individual 
patches in an object unit or bound unit, you must specify in the 
directive the patch-id with which the patch(es) are associated. 
See "Hexadecimal Patch (HP)" for a description on how to 
designate patch-ids. 

Applying the Patch 

If an object unit is being patched, object records are 
created for the specif ied patches and appended to the end of the 
object f ile. These records are referred to by the LS, LP, LG, 
and EP directives. When the object unit is processed by the 
Linker, existing values are replaced with the specified patch 
values. Locations that contain external references should not be 
patched. 

If a bound unit is being patched, each specif ied patch value 
is applied directly to the proper image record in the bound unit. 
The patch-id, the previous value, and the patch value are saved 
in a Patch history record that is written at the end of the f ile 
area allocated to the bound unit. These records are referred to 
each time a List Patch or Eliminate Patch directive is specified. 

Use caution when patching executing bound units. If a 
program or one of its overlays is loaded while in the process of 
being patched, results are unspecif ied. 

PATCH DIRECTIVES 

The Patch directives are described on the following pages in 
alphabetic order by directive function. 

10-7 
09/86 
CZ15-02A 



CLEAR SYSTEM BIT 

CLEAR SYSTEM BIT (CLSY) 

Indicate that the patched bound unit is prohibited f rom 
running as a system task. This directive turns off an indicator 
in the bound unit header area. This directive cannot be used for 
object unit files. 

The system bit is set at link time by the SYS Linker 
directive. 

FORMAT: 

CLSY 

Example: 

CLSY 

In this example, the bound unit header contains an indicator 
signifying that the bound unit is prohibited from running as 
a system task. 

10-8 
09/86 
CZ15-02A 



'( 

. (/ 

COMMENT 

COMMENT (*) 

List the accompanying text on the user-out f ile. The 
contents of the Comment directive are not saved in the patch 
history f ile. Permanent comments can be entered with symbolic 
patch directives. For an example of this method, refer to the 
Symbolic Patch (SP) description found later in this section. 

FORMAT: 

* comrnent-text 

Example: 

* THIS IS A COMMENT 

In this example, the phrase THIS IS A COMMENT is displayed 
when this directive is executed • 

10-9 
09/86 
CZ15-02A 



DATA PATCH 

DATA PATCH (DP) 

For bound units, apply one or more hexadecimal patches, by 
relative location, to the data section of the bound unit. The 
bound unit must have been created by the Linker when the -R 
Linker argument is specified (separate code and data section). 

For object f iles, the DP directive causes patches to be 
applied to common areas. 

FORMAT: 

For Bound Units, Without verification: 

DP patch-id /addr patchval[ patchval ••• ] [ /addr patchval ••• ] 

For Bound Units, With Verif ication: 

DP patch-id /addr (verval patchval[ verval patchval ••• ]) 
[/addr (verval patchval[ verval patchval ••• ]) ••• ] 

For Object Files, Without Verification -- Local Common 
Block: 

DP patch-id /offsetl patchval[ /offsetl patchval] ••• 

For Object Files, With Verification -- Local Common 
Block: 

DP patch-id /offsetl (verval patchval) 
[/offsetl (verval patchval)] ••• 

For Object Files, Without Verif'ication -- Named Common 
Block: 

DP patch-id blockname /offset2 patchval[ patchval ••• ] 
[/offset2 patchval[ patchval ••• ] ••• ] 

For Object Files, With Verif ication -- Named Common 
Block: 

DP patch-id blockname /of fset2 (verval patchval 
[ verval patchval] ••• ) [/offset2 (verval patchval[ verval 
patchval] ••• ) ••• ] 

10-10 
09/86 
CZ15-02A 



DATA PATCH 

ARGUMENTS: 

patch-id 

Patch-id of the patch(es) to be applied. A patch-id 
cornprises eight characters; the first six can be any 
ASCII characters except spaces. The last two characters 
rnust be RT for an object unit or the separate data area 
of a bound unit linked with the -R option. 

/addr 

Relative location in the bound unit segrnent at which the 
first (or only) subsequent patch value is applied. Each 
address rnust cornprise one to eight right-justif ied 
hexadecirnal characters and rnust be preceded by the slash 
character (/). subsequent patch values, if any, are 
applied to succeeding rnernory locations. A patch can have 
a rnaxirnurn of 127 /addr f ields and a rnaxirnurn of 127 values 
for any /addr field. The segrnent base is added to all 
locations specif ied or irnplied and all relocatable 
addresses (IMAs). 

NOTE 

Take care in specifying an address to be patched. 
If the address of a location to be patched is 
identified when a bound unit is being executed, 
that rnernory address has three possible factors: 

• The original address of the location in the 
bound unit relative to the beginning of the 
bound unit 

• The linking relocation f actor 

• The loader relocation factor. 

If a bound unit address that is to be identif ied 
at execution time is being patched, the loader 
relocation rnust be subtracted frorn the address. 
If an object unit is being patched, both the 
linking and loader relocation rnust be subtracted. 
Object unit locations can also be obtained f rorn 
the listing produced during assernbly. 

10-11 
09/86 
CZ15-02A 



DATA PATCH 

patchval 

Value to be inserted at an address, replacing the 
contents of that location. The value must be specif ied 
as one of the following: 

• Data, represented by one to four hexadecimal 
characters 

• Relocatable address, represented by one to eight 
hexadecimal characters, preceded by the less-than 
character (<). 

verval 

Verification value: one to four hexadecimal characters 
specifying the value that should be in the location 
before the patch is applied. If patchval is a 
relocatable address, verval can be one to eight 
hexadecimal characters. 

of fsetl 

Non-negative offset from the beginning of $LCOMW. 

patchval 

A value of one to four hexadecimal characters to insert 
into $LCOMW. Relocatable values are not permitted and 
only one patch value can be specified--rc>r each offset. 

blockname 

Symbolic name of the common block. The name can contain 
one to six characters. Only one blockname is .allowed per 
directive. 

of f set2 

Offset from the symbol name of the common block. 

NOT ES 

1. Each verval must be immediately followed by a 
patchval. 

2. The verification value(s) and patch value(s) 
associated with each address must be enclosed 
within parentheses. 

10-12 

-------------··· 

09/86 
CZ15-02A 

.• 

--..._ 
\ 



DATA PATCH 

3. For consecutive locations, the verify and new 
values can be included within one set of 
parentheses. The /addr field is internally 
adjusted. 

4. Within a set of parentheses, the number of 
verify values must equal the number of new 
values. 

5. The IMA indicator cannot be used with a verify 
value. IMA status is determined from the 
segment or from the new value. 

6. For IMAs, verify value and new value can be up 
to eight hexadecimal characters (30 bits). If 
the new value is not an IMA, the verify value 
can be no more than four hexadecimal 
characters even if the old value is an IMA. 

7. For IMAs, Patch allocates two words. For 
example: 

DP patch-id,/100,(1111,<12345,ABC,DEF) 

If the contents of 100 and 101 are 00001111, 
and the contents of 102 are OABC, the patch is 
applied, and the contents of the specif ied 
addresses are: 

Address 

100 
101 
102 

Contents 

0001 
2345 
ODEF 

8. An IMA can be patched to a non-IMA or a 
non-IMA can be patched to an IMA. 

9. Verified and nonverified patches can be 
included within one patch directive; however, 
if the verify fails, none of the addresses in 
the directive is patched. 

10. A left parenthesis cannot immediately follow a 
right parenthesis or unverified patch value. 
There must be a /addr field between them. 

11. In object modules, patches to areas that have 
no def ined value cannot be verified. 

10-13 
09/86 
CZ15-02A 



ELIMINATE PATCH 

ELIMINATE PATCH (EP) 

Eliminate all patches or all patches associated with a 
specified patch-id or group-id. The patch(es) must have been 
previously applied by DP, HP, SD, or SP directives. To determine 
what patches have been applied, and theit patch-ids, enter one of 
the List Patch (LN, LP, LS) directives described later in this 
section. 

If you are eliminating patches to patches, you must specify 
the patch-ids or group-ids in reverse order of application to 
preserve the integrity of the bound unit locations invo~ved. 

If you eliminate.the patches using the ALL argument, or out 
of reverse order, and the bound unit contains patches to patches, 
the locations with multiple patches are not restored to their 
original value. When patcher detects this situation, it issues a 
warning message, but continues to eliminate the patches as 
directed. 

In absentee mode, the Patcher eliminates specif ied patch-ids 
or group-ids in reverse patch history order, no matter in what 
order the EP directives are entered. 

FORMAT: 

{ patch-id} 
EP group-id 

ALL 

ARGUMENTS: 

patch-id 

Patch-id of the patch(es) to be removed. A patch-id 
comprises eight to ten characters: the first six can be 
any ASCII characters except spaces. The last two to four 
characters must identify the root or overlay to which the 
patch(es) are applied. If an object unit or the root or 
separate data area of a bound unit is being patched, the 
patch-id is eight characters, the last two of which are 
RT. If an overlay is being patched, the last two to four 
characters identify the hexadecimal overlay number. The 
f irst overlay is 00 for bound units created by the Linker 
(01 if linked with the -R option), and subsequent 
overlays are numbered consecutively in ascending order. 
There can be no embedded blanks. Within the root and 
each overlay, patch-ids must be unique. 

10-14 

----------------- --------- -----------------~-----------·------

09/86 
CZ15-02A 

,, 



·( 

ELIMINATE PATCH 

group-id 

ALL 

Group-id of the group of patches to be removed. A 
group-id comprises six ASCII characters and is assigned 
to the group by the GP directive. Note that single 
patches within a group patch cannot be removed - they 
must be removed as a group. 

If the ALL option is used, all patches in the f ile are 
eliminated in the order they were applied. 

Example 1: 

EP NUMBRFOA 

In this example, patch NUMBRF in overlay OA of a bound unit 
is eliminated. 

Example 2: 

EP W9999A 

In this example, patch group W9999A with all its associated 
patch-ids is eliminated from a bound unit. 

10-15 
09/86 
CZ15-02A 



GO 

Tell Patch that the previous directive is complete and is to 
be processed. This directive is effective only in interactive 
mode for which a new Patch directive signals the completion of 
the previous one. The GO directive is used in circumstances in 
which the user would like to have a directive processed before 
entering any other directive. 

FORMAT: 

GO 

10-16 
09/86 
CZ15-02A 



( (« .. 
' ' 

(
·~·,., 

! ·~ 

\ ~-'"/ 

GROUPPATCH 

GROUP PATCH (GP) 

Apply two or more patches to a bound unit as a logical set 
(group). In order to eliminate one patch of the group, the 
entire group must be eliminated. The group will usually consist 
of patches to the root and various overlays of a bound unit. The 
group can be a maximum of 30 patch-ids. 

Patch directives for the patch-ids listed in the GP directive 
must immediately follow the GP directive. If an error is 
detected for any patch within the group, the entire group patch 
will not be applied. 

FORMAT: 

GP group-id,patchidl,patchid2, •••• ,patchidn 

ARGUMENTS: 

group-id 

Group-id to be ass~gned to the group of patches. A 
group-id comprises six ASCII characters. 

patch-id 

Patch-id of the patch(es) to be within the group. A 
patch-id comprises eight to ten characters: the first 
six can be any ASCII characters except spaces. The last 
two to four characters must identify the root or overlay 
to which the patch(es) are being applied. If an object 
unit or the root or separate.data area of a bound unit is 
being patched, the patch-id is eight characters, the last 
two of which are RT. If an overlay is being patched, the 
last two to four characters identify the hexadecimal 
overlay number. The first overlay is 00 for bound units 
created by the Linker (01 if linked with the -R option), 
and subsequent overlays are numbered consecutively in 
ascending order. There can be no embedded blanks. 
Within the root and each overlay, patch-ids must be 
unique. 

Example: 

GP W9999A,W9999ART,W9999AOO,W9999A01 

In this example, patch W9999ART in the root, W9999A00 in 
overlay 00, and W9999A01 in overlay 01 of a bound unit are 
associated to create a group patch named W9999A. 

10-17 
09/86 
CZ15-02A 



HEXADECIMAL PATCH 

HEXADECIMAL PATCH (HP) 

Apply one or rnore individual patches, by relative location, 
to an object unit or bound unit. You can designate that 
specified patch(es) be applied only if specified location(s) 
currently contain specified value(s); these are called 
verification values. Within a single HP directive1 verification 
values can be specif ied for sorne or all of the locations. If any 
of the verification values do not rnatch the values currently at 
the locations for which verification values were specified, none 
of the patches specif ied in the HP directive are applied. 

FORMAT: 

Without Verification Values: 

HP patch-id,[base,]/addr,patchval[,patchval ••• patchval] 
[[+base,]/addr,patchval[,patchval ••• patchval]] ••• 

With Verification Values: 

HP patch-id,[base,]/addr, (verval,patchval[,verval,patchval] ••• ) 
[[+base,]/addr,(verval,patchval[,verval,patchval] ••• )] ••• 

NOTES 

1. One or more lines of arguments can be 
specif ied. When two or rnore lines of arguments 
are entered in an HP directive, the last 
character on each line rnust be a valid 
hexadecirnal character or right parenthesis. 
Individual fields, values, and addresses rnust 
not be split between lines. The entry of a 
Patch directive narne (e.g., EP, LP) at the 
beginning of a line designates the end of the 
previous Patch directive. 

2. A space or sernicolon can be used in lieu of a 
comma as a separator. 

10-18 
09/86 
CZ15-02A 



HEXADECIMAL PATCH 

ARGUMENTS: 

patch-id 

base 

Patch-id of the patch(es) to be applied. A patch-id 
comprises eight to ten characters; the first six can be 
any ASCII characters except spaces. The last two to four 
characters must identify the root or overlay to which the 
patch(es) are being applied. If an object unit or the 
root of a bound unit is being patched, the patch-id is 
eight characters, the last two of which must be RT. If 
an overlay is being patched, the last two to four 
characters identify the hexadecimal overlay number. The 
first overlay is 00 for bound units created by the Linker 
(01 if linked with the -R option), and subsequent 
overlays are numbered consecutively in ascending order. 
There can be no embedded blanks. Within the root and 
each overlay, patch-ids must be unique. 

Optiona~ argument allowed only for bound units. Base 
defines a value that is added to all locations, i.e., 
/addr specif ied or implied and all relocatable add:i:esses 
(IMAs). If this argument is omitted, the default base is 
the segment base. Base can be entered as a hexadecimal 
address of one to eight characters or as a name that has 
been specif ied as an EDEF at link time and placed in the 
bound unit symbol table. If a symbol name is used, Patch 
f inds the name in the symbol table and uses its address 
as the base value. The format for the symbol name as a 
base is +symname, where symname comprises l to 12 
characters. Except in the case of multiple base fields, 
if a hexadecimal address is used for base, the plus sign 
is not required. Leading hexadecimal digits A through F 
should be preceded by 0 to assure treatment as a numeric 
base. · 

For bound units created by the Linker, the values 
specif ied for the /addr f ields and IMA references (if 
any) must include the displacement of the root or 
overlay. This displacement is equal to the base address 
of the root or overlay as printed on the link map. The 
user can specify the base argument in the Patch 
directive, omit it and rely on the default base value, or 
specify a zero base and add the displacement to each 
/addr f ield and IMA to achieve the same result. For an 
example of all methods, refer to "Symbolic Patch (SP)" 
later in this section. 

10-19 
09/86 
CZ15-02A 



HEXADECIMAL PATCH 

/addr 

Relative location at which the f irst (or only) subsequent 
patch value is applied. Each address must comprise one 
to ei9ht ri9ht-justif ied hexadecimal characters and must 
be preceded by the slash character (/). subsequent patch 
values, if any, are applied to succeeding memory 
locations. A patch can have a maximum of 127 /addr 
f ields and a maximum of 127 values for any /addr f ield. 

NOTE 

Take care in specifying an address to be patched. 
If the address of a location to be patched is 
identif ied when a bound unit is being executed, 
that memory address has three possible factors: 

• The original address of the location in the 
bound unit relative to the beginning of the 
bound unit 

• The linking relocation factor 

• The loader relocation factor. 

If a bound unit address that is to be identif ied 
at execution time is being patched, the loader 
relocation must be subtracted from the address. 
If an object unit is being patched, both the 
linking and loader relocation must be subtracted. 
Object unit locations can also be obtained from 
the listing produced during assembly. 

patchval 

Value to be inserted at an address, replacing the 
contents of that location. The value must be specified 
as one of the following: 

• Data, represented by one to four hexadecimal 
characters 

• Relocatable address, represented by one to eight 
hexadecimal characters, preceded by the less-than 
character (<). 

10-20 
09/86 
CZ15-02A 



( --·--, ,, 

,, 
-~-_,.,-

HEXADECIMAL PATCH 

verval 

Verif ication value; one to four hexadecimal characters 
{one to eight if patchval is a relocatable address) 
specifying the value that currently should be in the 
location at which the subsequent patch will be applied. 
See the notes on verification that follow the DP 
directive. 

Example 1: 

HP PTCHIDRT,/1B2A,1FFF,1DFC,<2BFC,2D4E,<ABF2 

This Hexadecimal Patch {HP) directive requests that the 
subsequent patches, identified by the name PTCHIDRT, be 
applied to the root. Patch values lFFF through <ABF2 are to 
be inserted in successive locations, with the f irst patch 
value lFFF to be located at address 1B2A. The hexadecimal 
patches are to replace any previous values in these 
locations. The value to be inserted in address 1B2C is the 
two word addresss 2BFC, which is to be relocated at load 
time; the relocatable address ABF2 is to be inserted in 
address 1B2F. Note that patch locations and relocatable 
address values are relative to the root base. 

Example 2: 

HP VPATCH01,/1FEA,{1Al,1B7,1A7,1B8),/lE72,8900 

This example illustrates the use of verification values in a 
Hexadecimal Patch {HP) directive requesting that specif ied 
patches, identified by the name VPATCHOl, be applied to 
overlay 01. Patch checks location lFEA for the value !Al, 
and location lFEB for the value 1A7. If the values are at 
those locations, then the contents of locations are changed 
as follows: location lFEA contains 1B7, location !FEB 
contains 1B8, and location 1E72 contains 8900. If either of 
the verif ication values is incorrect, none of the three 
locations is changed. Note that patch locations are relative 
to the overlay base. 

10-21 
09/86 
CZ15-02A 



INTERROGATE BOUND UNIT 

INTERROGATE BOUND UNIT (WA) 

Display the current contents of specif ied locations within a 
bound unit on the user-out f ile. This directive cannot be used 
to display locations in object files. 

FORMAT: 

WA [ovly,]/addrl[,words] [,/addr2 ••• ] 

ARGUMENTS: 

ovly 

addr 

Hexadecimal overlay number that the address referehces. 
If this f ield is omitted, the root is the default. The 
root can also be specif ied as RT. For -R linked bound 
units (separated data and code), this field can be CM or 
DP for data section or RT for code section as well as 
being an overlay number. 

The relative location within the specif ied root, data 
section, or overlay. indicating where the display is to 
start. 

words 

The hexadecimal number of consecutive words to be 
displayed. The default is one. Eight locations per line 
are displayed. 

Example: 

WA 18,/C,2 

In this example, two words from the bound unit overlay 18 at 
offset C are displayed. The format of the display is: 

OVLY ADDRESS LOC [ LOC ••• ] 

Therefore, the above example would display: 

0018 oooooooc xxxx yyyy 

where xxxx is in location C and yyyy is in location D of 
overlay 18. 

10-22 

-----~-------

09/86 
CZ15-02A 



( 

( 

LDEF 

LDEF 

Assign a specif ied address to an undef ined external location 
reference and change all locations that reference this name 
within a bound unit. Undefined external references in a bound 
unit can only be changed once. If you make a mistake, you must 
use HP or SP directives to correct each location containing the 
wrong information. This directive cannot be used for object unit 
files. 

FORMAT: 

LDEF symname,[<]addr[,L] 

ARGUMENTS: 

symnarne 

addr 

< 

L 

Name of the undef ined external reference that is assigned 
an address; can be frorn 1 to 12 characters long. If 
symname is used as both a relocatable and displacernent 
address, two separate LDEF directives are required. 

Address to which symname is assigned. 

Address specif ied is a relocatable (IMA} address. If 
this argurnent is not used, the address is treated as a 
displacernent (P+DSP) • . 

List all changed external references to symname on the 
device specified as user-out. Default: No list. No 
history of the changes rnade with the LDEF directive is 
kept. Therefore, use the L argurnent and retain the 
listing for future use. 

Exarnple 1: 

LDEF EPPTR,50,L 

This directive assigns address 50 to symbol EPPTR and lists 
all changed locations. 

10-23 
09/86 
CZ15-02A 



LDEF 

Example 2: 

LDEF PK,<50,L 

This directive assigns address 50 to symbol PK and changes 
all IMA references to external symbol PK to address 50. 

10-24 

-----------------···-·--·-··--··„-·--

09/86 
CZ15-02A 

) 



( 

LIST GROUP PATCH NAMES 

LIST GROUP PATCH NAMES (LG) 

List the narnes (group-ids) of the group patches along with 
their respective patch narnes (patch-ids) in the bound unit and 
exit frorn Patch if in absentee (batch) rnode. The listing is 
produced on the user-out f ile. Addresses, values, and syrnbolics 
are not listed. 

FORMAT: 

LG 

Exarnple: 

LG 

Assurning a bound unit is being patched, this exarnple produces 
a printout of all the narnes of group patches applied to the 
bound unit with their respective patch-ids. 

The printout would appear as: 

W9999A 
RT *W9999A 
0000 *W9999A 

The printout has the following rneaning: a group patch 
identified by group-id W9999A was applied to the bound unit. 
The group consisted of the patch identif ied by patch-id 
W9999ART applied to the root and the patch identif ied by 
patch-id W9999AOO applied to overlay 00. 

10-25 
09/86 
CZ15-02A 



LIST SPECIFIED GROUP PATCH 

LIST SPECIFIED GROUP PATCH {LG) 

List patches for patch-ids associated with those group-ids 
specif ied and exit f rorn Patch if in absentee (batch) rnode. The 
listing is produced on the user-out f ile. Up to f ive group-ids 
can be requested per absentee run. 

FORMAT: 

LG group-id[,group-id ••• ] 

ARGUMENTS: 

group-id 

Group-id assigned to the group of patches by the GP 
directive. A group-id cornprises six ASCII characters. 

Exarnple: 

LG W9999A 

Assurning bound unit patches are being listed, this exarnple 
· produces a printout of the entire group ~atch W9999A with all 
its associated patch-ids. 

10-26 
09/86 
CZ15-02A 



( 

LIST PATCHES 

LIST PATCHES (LP) 

Produce a listing of all patches within the object unit or 
bound unit being patched and exit from Patch if in absentee 
(batch) mode. The listing is produced on the user-out f ile. 

If bound unit patches are being listed, the listing 
designates, for each patch, the following information in the 
order listed: full patch-id, Honeywell update number if any, 
address at which the patch was applied, contents of the location 
before the patch was applied, and the patch value. Listings of 
patches include any symbolic instuctions and comments entered by 
the user on a Symbolic Patch (SP) directive. A final summary 
line provides the count of all patches on the f ile. 

If patches on a bound unit that is distributed by Honeywell 
are being listed, the listing may also include update summary 
information. The information consists of the current update 
level of the bound unit and the total number of update-applied 
patches. A warning is issued if the total number of patches 
entered through updates is not equal to the actual count of 
patches on the bound unit. 

In the listing, the characters that identify the root or 
overlay segment appear first, and are separated from the other 
six characters of the patch-id by spaces. When the separate data 
area (common) of a bound unit has been patched, the letters CM 
are printed rather than RT. 

When listing a group patch, a group-id lists with blanks in 
the segment identif ier field. An asterisk to the left of the 
following patch-ids indicate their association with the group. 

If object unit patches are being listed, the listing 
designates the following information for each patch: six 
character patch-id (omitting RT), address at which the patch was 
applied, patch value, and any symbolic instruction and comment if 
present. 

If termination of the listing of patches is desired before 
normal completion of the list process, use the Break facility 
followed by a UW command. The Patch program must then be 
reloaded. 

FORMAT: 

LP 

10-27 
09/86 
CZ15-02A 



LIST PATCHES 

Example 1: 

LP 

Assuming a bound unit file, this example produces a printout 
of a listing of patches applied to the bound unit: 

0001 G5195A 02 008C02E2 00000-000 OOOOOF02 NOP >$+2 COMMENT 

02 UPDATE LEVE:L 
0001 UPDATE PATCH TOTAL 
0001 CURRENT PATCH TOTAL 

The patch line has the following meaning: a patch identified 
by the patch-id G5195A was applied to overlay 01 by Honeywell 
update 02. The patch was applied to location 8C02E21 this 
location previously contained 0000, and now contains OF02. 
The symbolic instruction and comment are also listed. 
Applicable summary lines follow the patch line. 

Example 2: 

LP 

Assuming an object unit is being patched, this example 
produces a printout of a listing of patches applied to the 
f ile. The printout would appear as: 

NUMBRF 00000162 00000444 DC 444 COMMENT 
00000163 00000222 DC 222 

NUMBRH 000001A6 00000333 
000001A7 00000444 
000001A8 <00000221 
OOOOOlAA 00000004 
OOOOOlAB 00000321 

The printout has the following meaning: patch-id, addre5s at 
which the patch was applied, and the patch value. Any 
symbolic instruction and comment entered on an SP directive 
are also listed. The first line designates that patch 0444, 
whose patch-id is NUMBRF, was applied to location 162. Note 
that the last two characters of the patch-id (e.9., RT) were 
omitted from the printout. The less than character (<) 
beside the patch value indicates the two-word relocatable 
address (IMA) 00000221 was patched in at locations 1A8 and 
1A9. 

10-28 
09/86 
CZ15-02A 



( 
LIST PATCHES NOW 

LIST PATCHES NOW {LN) 

List all patches on the specif ied f ile and then allow more 
patches to be applied. The listing is produced on the user-out 
f ile. This directive is effective only in the absentee {batch) 
mode and can be applied only to bound unit files. It must be the 
f irst directive issued. If it is entered in the interactive 
mode, entered for an object unit, or not the first directive 
entered, it ·is processed the same as an LP directive. The LN 
directive allows the current patches to be listed f irst and then 
additional patches to be applied without reloading Patch. 

If patches on a bound unit that is distributed by Honeywell 
are being listed, the listing may also include update summary 
information. The information consists of the current update 
level of the bound unit and the total number of update- applied 
patches. A warning is issued if the total number of patches 
entered through updates is not equal to the actual count of 
patches on the bound unit. 

FORMAT: 

LN 

Example: 

LN 

In this example, a printout of the patches applied to the 
bound unit is produced: 

0000 CONRCT 038000A8 00005A4D 00005A4E DC 5A4E COMMENT 

0001 CURRENT PATCH TOTAL 

The patch line has the following meaning: a patch identified 
by the patch-id CONRCT was applied to overlay 00. The patch 
was applied to location 38000A8~ this location previously 
contained 5A4D, and now contains 5A4E. Any symbolic 
instruction and comment entered on the SP directive are also 
listed. The printout of patches ends with a line providing 
the number of patches currently on the bound unit. 

10-29 
09/86 
CZ15-02A 



LIST PATCH NAMES 

LIST PATCH NAMES {LS) 

List the names (patch-ids and group-ids) of the patches in 
the specified f ile and exit from Patch if in absentee (batch) 
mode. The listing is produced on the user-out f ile. Addresses, 
values, and symbolics are not listed. 

If patches on a bound unit that is distributed by Honeywell 
are being listed, the listing may also include update summary 
information. The information consists of the current update 
level of the bound unit and the total number of update- applied 
patches. A warning is issued if the total number of patches 
entered through updates is not equal to the actual count of 
patches on the bound unit. 

FORMAT: 

LS 

Example 1: 

LS 

Assuming patches to a bound unit distributed and updated by 
Honeywell is being listed, this example produces a printout 
of the names of all patches and patch groups applied to the 
bound unit. The printout would appear as: 

0000 PATCHO 01 
RT PATCH! 02 

02 UPDATE LEVEL 
0002 UPDATE PATCH TOTAL 
0002 CURRENT PATCH TOTAL 

The printout has the following meaning: the patch identified 
by patch-id PATCHO was applied to overlay 00 by Honeywell 
update 01 and the patch identif ied by patch-id PATCH! waJ 
applied to the root by Honeywell udate 02. Applicable 
summary lines follow the patch inf ormation. 

10-30 
09/86 
CZ15-02A 

\ 
1 . 



( 

LIST PATCH NAMES 

Example 2: 

LS 

Assuming an object unit is being patched, this example 
produces a printout of the names of the patches applied to 
the object unit. The printout would appear as: 

PATCHl 
PATCH2 

The printout has the following meaning: the patches 
identif ied by patch-id PATCHl and PATCH2 were applied to 
object unit f ile. 

10-31 
09/86 
CZ15-02A 



LIST SPECIFIED PATCH 

LIST SPECIFIED PATCH (LS) 

List patches for those patch-ids specified and exit from 
Patch if in absentee (batch) mode. The listing is produced on 
the user-out file.. Up to f ive patch-ids can be requested per 
absentee run. 

FORMAT: 

LS patch-id[,patch-id ••• ] 

ARGUMENTS: 

patch-id 

Patch-id of the patch{es) to be removed. A patch-id 
comprises eight to ten characters: the first six can be 
any ASCII characters excett spaces. The last two to four 
characters must identifyhe root or overlay to which the 
patch{es) are applH~d. If an object unit or the root or 
separate data area of a bound unit is being patched, the 
patch-id is eight characters, the last two of which are 
RT. If an overlay is b·eing patched, the last two to four 
characters identify the hexadecimal overlay number. The 
f irst overlay is 00 for bound units created by the Linker 
(01 if linked with the -R option), and subsequent 
overlays are numbered consecutively in ascending order. 
There can be no embedded blanks. Within t.he root and 
each overlay, patch-ids must be unique. 

Example 1: 

LS NUMBRART,NUMBRBOO 

Assuming a bound unit is being patched, this example produces 
a printout of the entire patch NUMBRART in the root and the 
entire patch NUMBRBOO in overlay 00. 

Example 2: 

LS PATCH1RT,PATCH2RT 

Assuming an object unit is being patched, this example 
produces a printout of the entire patch PATCH! and the entire 
patch PATCH2 in the object unit. 

10-32 
09/86 
CZ15-02A 

--·--------------··- ---------·--------- ----



LIST UPDATES 

LIST UPDATES (LU) 

List the update inf orrnation of a bound unit that was 
distributed by Honeywell. The listing is produced on the 
user-out f ile. The inf orrnation will consist of the update 
nurnbers of all update's applied to the bound uni t and how rnany 
patches cornprise each update. Update surnrnary inforrnation 
consists of the current update level and the total nurnber of 
update-applied patches. A warning is issued if the total nurnber 
of patches entered through updates is not equal to the actual 
count of patches on the bound unit. 

FORMAT: 

LU 

Exarnple: 

LU 

Assurning patches to a bound unit distributed and updated by 
Honeywell is being listed, this exarnple produces a printout 
of the update information. The printout would appear as: 

01 UPDATE 05 PATCHES 
02 UPDATE 03 PATCHES 
02 UPDATE LEVEL 

0008 UPDATE PATCH TOTAL 
0008 CURRENT PATCH TOTAL 

If the total nurnber of patches entered through updates is not 
equal to the actual count of patches on the bound unit, the 
printout would appear as: 

01 UPDATE 05 PATCHES 
02 UPDATE 02 PATCHES 
02 UPDATE LEVEL 

0007 UPDATE PATCH TOTAL 
0008 CURRENT PATCH TOTAL *** WARNING *** 

If no updates were applied to the bound unit, the printout 
would appear as: 

NO UPDATES 
0008 CURRENT PATCH TOTAL 

10-33 
09/86 
CZ15-02A 



QUIT 

QUIT (Q) 

Inform Patch that the final Patch directive has been entered, 
and initiate processing of the previous Patch directives if mode 
is absentee (batch). This directive is usually preceded by at 
least one other directive. When the directive(s) have been 
processed, execution of Patch terminates. 

FORMAT: 

10-34 
09/86 
CZ15-02A 

\ 
) 



SET GLOBAL SHARE BIT OFF 

SET GLOBAL SHARE BIT OFF (GNSH) 

Indicate that the patched bound unit is not globally 
shareable, which means that the program is not sharable between 
groups. This directive turns off the global share bit in the 
bound unit header area. The share bit is not affected by this 
directive. This directive cannot be used for object unit files. 

The global share bit is set at link time by the GSHARE Linker 
directive. 

FORMAT: 

GNSH 

Example: 

GNSH 

In this example, the bound unit is not globally sharable. 

10-35 
09/86 
CZ15-02A 



SET GLOBAL SHARE BIT ON 

SET GLOBAL SHARE BIT ON (GSHR) 

Indicate that the patched bound unit is globally sharable, 
which means that the program is sharable by all users on the 
system, and the root is loaded into the system memory pool. This 
directive turns on the global share and share bits in the bound 
unit header area and sets write access in the load unit 
descriptor (LUD) for the root and all f ixed overlay segments to 
ring O. The bound unit must have reentrant code •• Patch alters 
the Status of the global--sliire and share bits only; it makes no 
check on the sharability of the bound unit. This directive 
cannot be used for object unit f iles. 

This Patch directive is equivalent to the Linker GSHARE 
directive. 

FORMAT: 

GSHR 

Example: 

GSHR 

In this example, the bound unit is globally sharable and its 
root will be loaded into the system memory pool. 

10-36 
09/86 
CZ15-02A 



SET SHARE BIT OFF 

SET SHARE BIT OFF (NS) 

Indicate that the patched bound unit is not sharable within a 
memory pool. This directive turns off the global share and share 
bits in the bound unit header area and sets write access in the 
load unit descriptor (LUD) for the root and all f ixed overlay 
segments to ring 3. This directive cannot be used for object 
unit f iles. 

The share and global share bits are set at link time by the 
SHARE and GSHARE Linker directives. 

FORMAT: 

NS 

Example: 

NS 

In this example, the bound unit is not sharable. 

10-37 
09/86 
CZ15-02A 



SET SHARE BIT ON 

SET SHARE BIT ON (SS) 

Indicate that the patched bound unit is sharable within a 
memory pool. This directive turns on the share bit in the bound 
unit header area and sets write access in the load unit 
descriptor (LUD) for the root and all fixed overlay segments to 
ring o. The bound unit must have reentrant code. ·Patch alters 
the status of the share bit only1 it makes no check on the 
sharability of the module. This directive cannot be used for 
object unit files. 

This Patch directive is equivalent to the Linker SHARE 
directive. 

FORMAT: 

ss 

Example: 

ss 

In this example, the bound unit is sharable. If anothet task 
requests that the bound unit be loaded, instead of another 
copy of the bound unit being loaded, the existing copy in 
memory is used. 

10-38 
09/86 
CZ15-02A 



SET SYSTEM BIT ON 

SET SYSTEM BIT ON (STSY) 

Indicate that the patched bound unit may run as a system task 
while clearing any indicators requiring the bound unit run in the 
user pool, the page pool, or the swap or page pool. This 
directive alters indicators in the bound unit header area. The 
directive cannot be used for object unit files. 

Before using this directive, consult with the person 
responsible for system building and determine the available 
system memory. This Patch directive is equivalent to the Linker 
SYS directive. 

FORMAT: 

STSY 

Example: 

STSY 

In this example, the bound unit header contains an indicator 
signifying that the bound unit may run as a system task. 

10-39 
09/86 
CZ15-02A 



SYMBOLIC DATA PATCH 

SYMBOLIC DATA PATCH (SD) 

Convert one or more symbolic instructions into the form of a 
hexadecimal patch and apply to an object unit or bound unit. For 
bound units, the directive causes patches to be applied to the 
separate data section of a -R linked bound unit. For object 
units, the directive causes one or more one-word instructions to 
be applied to common areas; i.e., to either named or local common 
blocks. You can verify the current contents of locations while 
patching. 

FORMAT: 

For Sound Units -- No Verif ication: 

SD patch-id;/off1;patchval1[;patchval2 ••• ] [/off2;patchval3 ••• ] 

For Sound Units -- With Verif ication: 

SD patch-id;/off1;Coldval1;newval1[oldval2;newval2 ••• ]) 
[/off2;(oldval3;newval3[;oldval4;newval4 ••• ]) ••• ] 

For Object Units -- Named Common Block -- No 
verification: 

SD patch-id;blockname;/offs;patchval1[;patchval2 ••• patchvalnl 
[/offs;patchval1[;patchval2···Patchvalnl···l 

For Object Units -- Named Common Block -- With 
verification: 

SD patch-id;blockname;/offs;(oldval1;newval1 
[oldval2;newval2) ••• ] [;/offs;(oldval3;newval3 
[oldval4;newval4 ••• ]) ••• ] 

For Qbject Units -- Local Common Block -- No 
verification: 

SD patch-id;/offl;patchval[;/offl;patchval] ••• 

For Object Units -- Local Common Block -- With 
verif ication: 

SD patch-id;/offl;(oldval;newval) [;/offl; (oldval;newval)] ••• 

10-40 
09/86 
CZ15-02A 



SYMBOLIC DATA PATCH 

ARGUMENTS: 

patch-id 

of fn 

Patch-id of the patch(es) to be applied. A patch-id 
comprises eight characters; the first six can be any 
ASCII characters except spaces. The last two characters 
must be RT for an object unit or the separate data area 
of a bound unit linked with the -R option. 

Relative location in the bound unit segment at which the 
f irst (or only} subsequent patch value is applied. Each 
address must comprise one to eight right-justif ied 
hexadecimal characters and must be preceded by the slash 
character (/). Subsequent patch values, if any, are 
applied to succeeding memory locations. A patch can have 
a maximum of 127 /addr f ields and a maximum of 127 values 
for any /addr field. The segment base is added to all 
locations specif ied or implied and all relocatable 
addresses (IMAs}. 

NOTE 

Take care in specifying an address to be patched. 
If the address of a location to be patched is 
identified when a bound unit is being executed, 
that memory address has three possible factors: 

• The original address of the location in the 
bound unit relative to the beginning of the 
bound unit 

• The linking relocation factor 

• The loader relocation factor. 

If a bound unit address that is to be identif ied 
at execution time is being patched, the loader 
relocation must be subtracted from the address. 
If an object unit is being patched, both the 
linking and loader relocation must be subtracted. 
Object unit locations can also be obtained f rom 
the listing produced during assembly. 

of fl 

Non-negative offset from beginning of the local common 
block. 

10-41 
09/86 
CZ15-02A 



SYMBOL.IC DATA PATCH 

oldval 

Verif ication value; one to four hexadecimal characters 
specifying the value that should be in the location 
before the patch is applied. If patchval is a 
relocatable address, verval can be one to eight 
hexadecimal characters. 

patchval (object units) 

Value to insert into the common block. Relocatable 
address are not permitted. For a local common block, 
only one patcnvalue can be specif ied for each offset. 

The value must be specified as: 

opcode field1[,field2][,field3] 

opcode specifies a symbolic instruction; f ieldn specifies 
either a register or a hexadecimal value. 

blockname 

Offs 

Symbolic name of the common block. The name can contain 
one through six characters. 

Offset from the symbolic name of the common block. 

patchval (bound units) 

Value to be inserted at an address, replacing the 
contents of that location. The value must be specified 
as a symbolic instruction. 

newval 

Specify the patch value to be applied. See the 
appropriate description of patchval, above. 

10-42 
09/86 
CZ15-02A 

.____\ 

' 



C', 
I 

SYMBOLIC PATCH 

SYMBOLIC PATCH (SP) 

Convert one or more symbolic instructions into the form of a 
hexadecimal patch and apply to an object unit or bound unit. You 
can verify the current contents of locations while patching. 

FORMAT: 

Without Verification: 

SP patch-id[;base1];/addr1;instruction[;instruction ••• ] 
[[+base2;]/addr2;instruction[;instruction ••• ]] [%comment] 

With Verification: 

SP patch-id[;base1];/addr1; (oldval;instruction[;oldval 
instruction ••• ]) [;[+base2;]/addr2;oldval;instruction 
[oldval;instruction ••• ]] [%comment] 

NOT ES 

1. One or more lines of arguments can be 
specif ied. When two or more lines of 
arguments are entered in an SP directive, 
instructions and verif ication values must not 
be split between lines. No line can begin or 
end with a semicolon (;). Individual fields, 
values, and addresses must not be split 
between lines. The entry of a Patch directive 
name {e.g., EP, LP) at the beginning of a line 
designates the end of the previous Patch 
directive. Hexadecimal patches are not 
permitted. 

2. You can use a carriage return instead of a 
semicolon as a delimiter. Commas and spaces 
are not permitted because they are legitimate 
in symbolic instructions. 

3. You can mix verification and nonverification 
patches. For example: 

SP NUMBRDRT;/135; (lll;LDV $Rl,1;2;CL =$R2) 
/150;STB $B2,400 

Only the patches at 1ocations 135 and 136 are 
verified. 

10-43 
09/86 
CZ15-02A 



SYMBOLIC PATCH 

ARGUMENTS: 

patch-id 

base 

Patch-id of the patch(es) to be applied. A patch-id 
comprises eight to ten characters1 the first six can be 
any ASCII characters except spaces. The last two to four 
characters must identify the root or overlay to which the 
patch(es) are being applied. If an object unit or the 
root of a bound unit is being patched, the patch-id is 
eight characters, the last two of which must be RT. If 
an overlay is being patched, the last two to four 
characters identify the hexadecimal overlay number. The 
first overlay is 00 for bound units created by the Linker 
(01 if linked with the -R option), and subsequent 
overlays are numbered consecutively in ascending order. 
There can be no embedded blanks. Within the root and 
each overlay, patch-ids must be unique. 

Optional argument allowed only for bound units. Base 
defines a value that is added to all locations, i.e., 
/addr specif ied or implied and all relocatable addresses 
(IMAs). If this argument is omitted, the default base is 
the segment base. Base can be entered as a hexadecimal 
address of one to eight characters or as a name that has 
been specif ied as an EDEF at link time and placed in the 
bound unit symbol table. If a symbol name is used, Patch 
f inds the name in the symbol table and uses its address 
as the base value. The format for the symbol name as a 
base is +symname, where symname comprises 1 to 12 
characters. Except in the case of multiple base fields, 
if a hexadecirnal address is used for base, the plus sign 
is not required. Leading hexadecirnal digits A through F 
should be preceded by 0 to assure treatrnent as a numeric 
base. 

10-44 
09/86 
CZ15-02A 

l 
I 



(:< 
SYMBOLIC PATCH 

For bound units created by the Linker the values 
specif ied for the /addr fields and IMA references (if 
any) must include the displacement of the root or 
overlay. This displacement is equal to the base address 
of the root or overlay as printed on the link map. The 
user can specify the base argument in the Patch 
directive, omit it and rely on the default base value, or 
specify a zero base and add the displacement to each 
/addr field and IMA to achieve the same result. For 
example, if the f irst overlay of a bound unit is based at 
1000 and a patch to locations 100 to 103 and 200 to 204 
is to be made within the overlay, the following patch 
directives are equivalent: 

SP NUMBRAOO;O;/llOO;LDR $Rl,1500;STR $Rl,=$R2 
/1200;ADD $Rl,1600;JMP 1156 

SP NUMBRAOO;lOOO;/lOO;LDR $Rl,500;STR $Rl,=$R2 
/200;ADD $Rl,600;JMP 156 

SP NUMBRAOO;/lOO;LDR $Rl,500;STR $Rl,=$R2 
/200;ADD $Rl,600;JMP 156 

There can be multiple base values in one directive line. 
The f irst of the multiple base values can optionally be 
preceded by a plus (+) sign; the remaining base values 
must be preceded by a plus sign, as shown: 

/addr 

SP NUMBRART;lOO;/lO;LAB $Bl,100 
+0;/40;STR $Rl,<100 
+10;/60;ADV $R4,3 

Relative location at which the first (or only) subsequent 
patch value is applied. Each address must comprise one 
to eight right-justif ied hexadecimal characters and must 
be preceded by the slash character (/). subsequent patch · 
values, if any, are applied to succeeding memory 
locations. A patch can have a maximum of 127 /addr 
f ields and a maximum of 127 values for any /addr field. 

10-45 
09/86 
CZ15-02A 



SYMBOLIC PATCH 

NOTE 

Take care in specifying an address to be patched. 
If the address of a location to be patched is 
identified when a bound u.nit is being executed, 
that memory address has three possible factors: 

• The original address of the location in the 
bound unit relative to the beginning of the 
bound unit 

• The linking relocation f actor 

• The loader relocation factor. 

If a bound unit address that is to be identif ied 
at execution time is being patched, the loader 
relocation must be subtracted f rom the address. 
If an object unit is being patched, both the 
linking and loader relocation must be subtracted. 
Object unit locations can also be obtained from 
the listing produced during assembly. 

instruction 

Value to be inserted at an address, replacing the 
contents of that location. The value must be specified 
as: 

opcode field1[,field2] [,field3] 

opcode specif ies a symbolic instruction (except for I/O 
or floating-point instructions); field specifies either a 
register or a hexadecimal value. 

Field can contain a l to 12 character symbol name that 
has been specified as an EDEF at link time. Name m~st be 
preceded by an exclamation mark (!). 

Field can contain positive or negative offsets with the 
dollar sign ($) indicating the current address. All 
offsets must be hexadecimal values. 

SP NUMBRART;/lOO;B $+12;B $-2F;B >$+5 

10-46 
09/86 
CZ15-02A 



() 

Ci 

SYMBOLIC PATCH 

Value may be a text statement of up to 30 characters. 
Field must be enclosed in single quotes ('). If verify 
values are used, the number of verify values must equal 
the length of the text in words. Text must be an even 
number of characters (i.e., if the text is an odd number 
of characters, then an extra space character should be 
used). 

SP NUMBRART;/lOO;TEXT 'AMESSAGE ONE' 

Field can use the symbol ZHCOMM preceded by an 
exclamation mark (!) to represent unrelocated zero. In 
this case the less than character (<) indicates two words 
and not relocatable; without it the address is a 
displacement. 

oldval 

SP NUMBRART;/lOO;LAB $Bl,<!ZHCOMM+5 
LDB $B4,<!ZHCOMM;STR $Rl,!ZHCOMM+S 

Verif ication value; one to four hexadecimal characters 
specifying the value that should be in the location 
before the patch is applied. If patchval is a 
relocatable address, verval can be one to eight 
hexadecimal characters. 

comment 

After the last character in a directive line, a space 
followed by a percent sign (%) or a 0,8,4 punch on a card 
causes Patch to interpret the rest of the line as a 
comment. The percent sign is replaced by a blank. 
Parentheses are not allowed in comments on patches 
specifying verification. A comment must not be split 
between lines; i.e., it must end the line. Comments are 
written along with patches to patch history records. 
Therefore, when patches are listed (via the LP or LN 
directives), comments are listed also. 

Example: 

SP NUMBRART;/lOO;LDV $Rl,l %THIS IS A COMMENT 

Comments signif icantly increase the amount of media space 
taken up by patch history records at the end of object and 
bound units. 

10-47 
09/86 
CZ15-02A 



VDEF 

VDEF 

Assign a specified value to an undef ined external symbol 
within a bound unit and chan9e all locations that reference this 
symbol to the specif ied value. Tbis directive cannot be used for 
object unit f iles. 

FORMAT: 

VDEF symname,value[,L] 

ARGUMENTS: 

symname 

Name of the external reference that is assigned a value1 
can be f rom 1 to 12 characters in length. 

value 

L 

Value that is assigned to all ref erences to symname. 

List all changed ref erences to symname on the device 
specified as user-out. Default: No list. 

Example: 

VDEF VALZZ,50,L 

This example assigns the value 50 to the undef ined external 
symbol VALZZ, changes all locations that referenced VALZZ to 
50, and lists all changed locations. 

VDEF is used for changing undefined value definitions. The 
LDEF directive is used for changing undef ined location 
definitions. 

Undef ined external references in a bound unit can be defined 
by a VDEF directive only one time. If you make a mistake you 
must use HP, DP, SP or SD directives to change each location 
containing the incorrectly def ined value. No listing of the 
VDEF Patch processing is kept, therefore, the L argument 
should be used. 

10-48 
09/86 
CZ15-02A 



( 

REMOVE THIS PAGE AND PLACE TAB FOR 

TAB 11 

MESSAGES 



·-....., 
\ 

r-~/ 
I '; 

('-.,_ __ ) 



Section 11 
MESSAGES 

This section describes the Message Reporter and how to add 
user messages to the message library. 

MESSAGE REPORTER 

The Message Reporter is a system service that is used to 
retrieve and display prepared messages stored in a library f ile 
on disk. lt is used by system components to display messages 
that indicate error conditions or give help to the user of the 
terminal, and it can be used for these purposes by application 
programs as well. You can invoke the Message Reporter either 
through program calls or through the Display command. 

If the program running at the terminal is being executed 
under control of the command processor, the Message Reporter 
sends messages to the terminal via the error-out f ile. If the I 
program operates the terminal in text mode, the messages are 
displayed starting at the current cursor position. If the 
program operates the terminal in forms mode, the messages are 
displayed in the supervisory message line (line 24 on VIP7200 and 
VIP7700 terminals; line 25 on VIP7300 and VIP7800 terminals). 

11-1 
09/86 
CZ15-02A 



If the program is being executed under the control of the 
menu processor, the program's messages, as well as any help 
messages connected with the menus, are displayed in the message 
region, which is maintained by the menu processor. This com­
prises lines 20 through 23 on VIP7200 and VIP7700 terminals and 
lines 21 through 24 on VIP7300 and VIP7800 terminals. However, 
if the selection menu specif ies that the program is to have 
control of the entire screen, its messages are displayed in the 
supervisory message line. 

Message Libraries 

A message library is an indexed sequential disk f ile in which 
prepared messages are stored in ascending order according to a 
fiye-character record key. This key is known to programs using 
the library as the message code. When a program asks for a 
particular message, it passes the message code to the Message 
Reporter, which retrieves from the file the record having that 
key value. If the Message Reporter fails to find a record with 
that key value, it reports the message code instead of the 
message text. 

You may have more than one message library in use at the same 
time. If you have an application that runs only once a week, you 
can put its specif ic messages on a separate message library 
rather than adding them to the Honeywell-supplied system message 
library. This conserves disk space when the application is not 
running. 

SYSTEM MESSAGE LIBRARY 

A system message library f ile is supplied with the MOD 400 
system to provide the text for the messages displayed by system 
components. Its pathname is: 

>>ML>MLFILE.EN 

where >> specifies location directly under the system root 
directory (as opposed to a user root directory). This is the 
default pathname that the Message Reporter uses to reference the 
system message library. 

Some of the messages in the system message library are 
standard messages that may be of use to application programs. 
You may also add messages to the system message library. 

GROUP LIBRARIES 

Message library file names conventionally have a suff ix 
consisting of a period {.) followed by two alphabetic characters. 
This is called the "language key" because it is used to indicate 
the national language in which the library is written. The 
language key for the default system library MLFILE.EN indicates 
that the messages are in English. 

11-2 CZlS-02 



An alternate language key can be specified in the Current 
Language Key entry in the user's profile file wheri the user is 
registered. That key then replaces the EN key in the pathname 
f or the system message library f ile. Thus, for example, a 
message library written in French would be named MLFILE.FR, and 
users wishing to receive messages in French would have FR 
specified as their current language key. Instead of MLFILE.EN, 
the Message Reporter would reference MLFILE.FR. 

The registered user can also enter or change the current 
language key entry in bis or her prof ile f ile when logging in by 
including the -LK argument in the LOGIN command. The current 
language key (regardless of how it is entered in the profile 
file) becomes the default language key until changed. 

The system commands that activate task groups (Enter Batch 
Request, Enter Group Request, and Spawn Group) support an argu­
ment (-ML pathname) that allows you to spec.ify a message library 
to be used for all tasks executing within the group. If the 
Message Reporter fails to find a specif ied message record in the 
group library, it then searches the system library. If no -ML 
argument is entered when a task group is activated, its group 
library is the same as that f or its parent process. 

PRIMARY LIBRARIES 

Tasks created within a group use the message library of the 
group unless it is changed by a Change Message Library {CML) 
command. After a task group is activated, the CML command can be 
used to enter the pathname for a "primary" message library to be 
searched before any other library associated with the task group. 
If the Message Reporter fails to find a message record in the 
primary library, it then searches the group library, if one has 
been specified. If it fails to find the record in either the 
primary library or the group library, it searches the system 
library. The CML command entered without a pathname removes the 
primary library assignment. 

You can determine the primary message library being used by 
your program by using the List Message Library (LML) command. 

Message Format 

Each message in a message library f ile is stored as an ASCII 
character string in a variable-length record whose maximum length 
is 252 bytes. Figure 11-1 shows how message records are 
f ormatted: a brief explanation follows. 

11-3 CZlS-02 



INOICATOR 
FIELO 

MESSAGE CHAIN 
cooe• POINTERC MESSAGE 

TEXT 
IUP TO 240 CHARACTERSI 

0 . 

CLASS JI T. I 0. PARAMETERS IN MESSAGE 
1 • NO PARAMETERS IN MESSAGE 

MESSAGE 
-- COMPONENT NUMBER 

cooEb 100 - FF! 

8 MESSAGE CODE IS RECORO KEY 

bcODES 00 .+EF ARE RESERVEO FOR APPLICATIONS IN SYSTEM MESSAGE LIBRARY 
cCHAIN POINTER lS 0-0 FOR UNCHAINEO MESSAGE OR LAST MESSAGE 1 N CHAI N 

d MOST COMMON TYPE IS A IASCI II WITH 0 EOIT ITRAILI NG SPACE SUPPRESSION) · 

PARAMETER OESIGNATOR 

11'1 1 1 1 1 1 1 
FLAG _J Tll_--C: FIELDSIZE 

PARAMETER EOITd 
NUM8ER 

TYP Ed 

84-840-1 

Figure 11-1. Message Library Record Structure 

MESSAGE CODE 

The f irst f ive chaiacters of the record are the key value, 
which is also the message code. This is an ASCII representation 
of a hexadecimal value. Conventionally, the first character is 0 
f or error messages and standard system messages, and 1 or 2 f or 
help messages and other kinds of advice messages. Messages 
begi~ning with 3, 4, s, ~' or 7 are parts of chains (see "Message 
Chaining" later in this section). The next two characters 
identify the component (or program) calling for the display of 
the message. Note that component codes DO through EF in the 
system message library are reserved for application programs. 
The last two characters are used to select among the messages 
associated with a particular program. The range for these last 
two characters is 00 through FF. 

INDICATOR FIELD 

The next two characters (bytes 6 and 7) are called the 
indicator f ield. If the text of the message includes parameters 
(see "Parameter Designators" later in this section), the value in 
the indicator field must be 00. This tells the Message Reporter 
to process the parameters. If the text of the message does not 
include parameters, the value here should be 01 (to prevent 
unnecessary execution of the code that processes parameters) • 

CHAIN POINTER 

The next f ive characters (bytes 8 through 12) can be used as 
the pointer to a sub~equent message in a message chain. This 
pointer consists Cf the message code of the next piece of the 
message chain or it is 0000 (signifying the end of the chain). 

11-4 CZlS-02, 



C
~" 

\ 
\ / 

MESSAGE TEXT 

The remaining characters are the text of the message. Up to 
240·characters can be accommodated. This allows for up to three 
lines of 80 characters each. The Message Reporter displays the 
amount of text that will fit on a line before displaying text on 
the next line, unless the text contains a special 2 character 
string called a new line indicator. If the Message Reporter 
encounters a new line indicator, which is a circumflex (A) 
followed by a slash (/), the remainder of the text is displayed 
at the beginning of the next line. 

Parameter Designators 

Messages can be f ormulated to include special character 
strings called parameter designators. A parameter designator in 
a message def ines a substitution f ield: the Message Reporter 
replaces it with a character string supplied by the program 
calling for the display of the message. . Thus, parameterization 
allows the f ormulation of generalized messages that can be 
tailored to particular situations by different programs. 

PARAMETERIZED MESSAGES 

A process wanting to display a parameterized message calls 
the Message Reporter, passing it the message code as usual, but 
also passing it parameter values. The Message Reporter obtains 
the message from the library, and then performs the substitution 
of the parameter values for the parameter designators. 

The passage of parameters to the Message Reporter is sup­
ported by macrocalls in Assembly language and by calling proce­
dures in higher-level languages such as COBOL and FORTRAN. 

Note that a parameterized message record must have 00 (ASCII) 
in its indicator field (bytes 6 and 7) in order to be processed 
as such. (If the indicator field is 01, the parameter designators 
are treated as normal text.) If a program calls for the display 
of a correctly parameterized message, but does not pass any 
parameter values, the Message Reporter removes the parameter 
designator(s) and closes up the remaining message text. 

Note also that if message chaining is used (see "Message 
Chaining" later in this section), only the first message in a 
chain can be parameterized. 

Here are two examples of parameterized message text. In 
these examples the message code, indicator, and chain pointer 
f ields are omitted; the parameter designators are underscored, 
and upper case characters are used for clarity: 

DELETING TASK GROUP' A01A029 AT "02All8. 
EXECUTION [OF "01A014] COMPLETED. PRESS CLEAR TO CONTINUE. 

11-5 CZlS-02 



The first message contains two parameter designators, and the 
calling program is expected to pass values for both of them (the 
message is syntactically incorrect unless parameters are supplied 
for both parameter designators). In the second message, the 
parameter designator is enclosed in brackets along with the word 
OF. This construct is used to link nonparameter text with a 
parameter designator--to be included when the parameter is used, 
and omitted when it is not used. Thus, if a process calls for 
the display of the second message given above, but does not pass 
a parameter, ~he message is displayed this way: 

EXECUTION COMPLETED. PRESS CLEAR TO CONTINUE. 

If the brackets are to appear as normal text in a parameterized 
message, they must be "escaped" by being repeated once, as in: 

EXECUTION [OF A01A014] COMPLETED. [[PRESS CLEAR TO CONTINUE.]] 

·PARAMETER DESIGNATOR FORMAT 

To use parameterized messages, you should understand how a 
parameter designator is formulated: 

Flag 

"' nn 
/ / 

/ / 
FLAG / 

/ 
PARAMETER 
NUMBER 

t e ss -- -
1 \ \ 
1 \ \ 
1 \ SIZE 

1 \ 
1 EDIT 

1 
TYPE 

84-841 

The circumflex character (A) is normally used to flag the 
succeeding six characters as being a parameter designator. If 
the circumflex character is to appear as nonparameter text in a 
parameterized message, it must be escaped by being repeated once, 
as in: 

PLEASE MOUNT VOLUME AA01A012 

Here, the f irst two circumflex characters are interpreted by the 
Message Reporter as a single circumflex and as text. So if the 
calling program were to pass APPl as the parameter value, the 
message would appear as: 

PLEASE MOUNT VOLUME AAPPl 

As explained earlier, the bracket characters, which are used to 
associate text with parameter descriptors, must also be escaped 
by being repeated once if they are to appear as message text in a 
parameterized message. 

11-6 CZlS-02 



A special record in the system message library allows you to 
substitute other characters for the circumflex and the brackets. 

( The format for this message is: 

OOOFFOlOOOOOA~[Q]~ 

where a is the substitute character for the circumflex, b is the 
substitute for the left bracket, and c is the substitute-for the 
right bracket. The default content of this record is: 

000FF0100000AA[[]] 

If this record is altered, all messages on the library that use 
these characters must also be changed. 

Parameter Number 

The two numeric characters following the flag are the 
parameter's number--in effect, its address within the message. 
Every parameter designator includes a parameter number in the 
range of 01 to 99, although its usefulness is evident only when 
the message provides for two or more parameters. Assembly 
language programs pass message parameters by means of a data 
structure in which the parameters are identified by number, and 
theref ore such programs have random access to the parameter 
designators in a message. Given a message like this: 

ERROR IN [A01A015 RECORD OF] A02A015 FILE. 

an Assembly language program could omit a value for parameter 
#01, and specify a value for parameter #02, in which case the 
message might be displayed as: 

ERROR IN SMITH FILE. 

A similar message: 

THE A02A015 FILE STILL HAS AN ERROR! [REENTER RECORD A01A015.] 

could be displayed as: 

THE SMITH FILE STILL HAS AN ERROR! 

or as: 

THE FILE STILL HAS AN ERROR! 

or as: 

THE SMITH FILE STILL HAS AN ERROR! REENTER RECORD 00234 .• 

or as: 

THE FILE STILL HAS AN ERROR! REENTER RECORD 00234. 

11-7 CZlS-02 



depending upon the parameter(s) for which the calling program 
supplied values. Note the implication that parameters in a 
message do not have to be ordered by parameter number. 

For programs written in a higher-level language, the use of 
messages having more than one parameter is somewhat more 
restricted because the statements that support calls to the 
Message Reporter require the values for the parameters to be 
passed as po·si tional arguments ( ref er to "Message Library 
Utilities" later in this section for more details) • Tbus, when 
programs written in these languages want to display messages 
baving two or more parameters, tbe relative position of the 
argument in tbe statement determines the parameter designa.tor to 
wbicb the argument applies. This also means tbat parameters 
cannot be skipped. Here again are the two messages used above. 
For this illustration, they hav·e message codes 12345 and 12346, 
respectively: 

123450000000ERROR IN [A01A015 RECORD OF] A02A015 FILE. 
123460000000THE A02A015 FILE STILL HAS AN ERROR! [REENTER RECORD A01A015.] 

Given tbese two messages and the following COBOL data 
declarations: 

tbese 

DATA DIVISION. 
WORKING-STORAGE SECTION. 
01 MSGl PIC XXXXX VALUE "12345". 
01 MSG2 PIC XXXXX VALUE "12346". 
01 PAR! PIC 9(6). VALUE "000234". 
01 PAR2 PIC X(l5) VALUE "SMITH". 

procedure statements: 

CALL "ZXDSMG" US ING MSGl PAR! PAR2. 
CALL "ZXDSMG" US ING MSGl PAR!. 
CALL "ZXDSMG" US ING MSGl PAR2. 
CALL "ZXDSMG" US ING MSG2 PAR! PAR2. 

would display, respectively, these rnessages: 

ERROR IN 000234 RECORD OF SMITH FILE. 
ERROR IN 000234 RECORD OF FILE. 
ERROR IN SMITH RECORD OF FILE. 
THE SMITH FILE STILL HAS AN ERROR! REENTER RECORD 000234. 

Parameter Type 

The character following the parameter nurnber is alphabetic, 
and it specifies the pararneter type, that is, the kind of 
inforrnation to be inserted in the rnessage. In most cases, this 
character is the letter A, specifying that the pararneter type is 
an ASCII character string. 

11-8 CZlS-02 



. c\ 
;! 

The possible parameter types and their meanings are: 

Edit 

Parameter 
Type 

A 
B 
D 
H 
p 
R 
T 

Meaning 

ASCII Character String 
Bit String 
Convert Hexadecimal to Decimal 
Hexadecimal 
Adress Pointer 
Radix 40 Packed Name 
Convert Interna! Time to External 

-- ---··-·------·----

The character following the parameter type designa.tor is 
numeric and it specif ies the editing to be performed on the 
parameter value„ The implication of the edit character depends 
upon the parameter type specif ication. However, assuming that 
the parameter type is A (an ASCII character string), the value 
here is most often O, which specifies trailing blank suppres­
sion. Thus, if the ASCII character string you want to pass to 
the Message Reporter does not f ill the buffer you have allocated, 
the trailing blanks are suppressed (do not occupy space in the 
message) • 

The possible edit character values for each of the parameter 
types are: 

Parameter 
Type Edit Character and Meaning 

A or R O= Suppress Trailing Blanks 
l= Don't Suppress Trailing Blanks 

B Bit Offset to the Beginning of String 

D O= Signed, Suppress Leading Zeros, Left-Justif ied 
l= Unsigned, Suppress Leading Zeros, Left-Justif ied 
2= Signed, No Zero Suppression 
3= Unsigned, No Zero Suppression 
4= Signed, Suppress Leading Zeros, Right-Justif ied 
5= Unsigned, Suppress Leading Zeros, Right-Justified 

NOTES 

1. The sign precedes the digits only if the sign is 
negative. Therefore, negative numbers produce 
one extra character, which should be included in 
the f ield size. 

2. No zero suppression implies right-justification 
with left zero f ill. If the number is signed 
and negative, the sign replaces the leftmost zero. 

11-9 CZlS-02 



Parameter 
Type Edi t Character and Meaning 

H O= Don't Suppress Leading Zeros 
l= Suppress Leading Zeros 

p 

T 

Must Be Zero 

O= Display Date/Time (yyyy/mm/dd hhmm:ss.mmm) 
l= Display Time Only (hhmm:ss.mmm) 
2= Display Elapsed Time (hhhhh:mm:ss.mmm) 

Field Size 

The last two numeric characters specify the number of 
character positions that the parameter f'ield allows. For ASCII 
character strings, the maximum field size is 80 characters. The 
maximum field size.for each of the parameter types is: 

Parameter 
Type Units Range From Caller 

A Characters 1 to 80 1 to 80 bytes 
B Bits 1 to 32 l to 32 bits 
D Decimal Digits 1 to 10 l to 4 bytes 
H Hexadecimal Digits 1 to 8 1 to 4 bytes 
p Hexadecimal Digits 6 4 bytes 
R Characters 1 to 80 1 to 80 bytes 
T Characters 1 to 22 6 bytes 

Message Chaining 
--- ---- -„··-- . --- ·----.--. 

Message chaining is the method by which the •more help?" 
f unction is implemented. If •more help?" is enabled through the 
MHON (More Help On) command, and the Message Reporter displays a 
message whose chain pointer is nonzero, it also displays the 
"more help?" prompt. The display of the f irst message may have 
been initiated by a program (e.g., to report an error), or by the 
user having pressed the HELP key while a form or menu was 
displayed. In either case, if the user responds affirmatively to 
the •more help?" prompt, the Message Reporter displays another 
related message. This continues until either the user responds 
negatively to the "more help?" prompt, or the end of the sequence 
of messages is reached, whereupon the Message Reporter so 
indicates with an end-of-message message. 

This function is enabled by the MHON (More Help On) command, 
and disabled by the MHOFF (More Help Off) command. It is nor­
mally enabled by default for most processes at system startup. 
It is not automatically enabled for the execution of EC commands. 

11-10 CZlS-02 

---------- -- ------·--- -- ----·- ------ ----

[~<) 
\ 

( , ___ / 



Given the following library, and assuming that "more help" is 
enabled, the chaining function would work as follows: 

OOOAAOlOOOOOyes 
OOOCFOlOOOOODo you wish more help? (Type yes or no.) 
OOODFOlOOOOOPress HELP key for more help; press XMIT key to exit help. 
OOOEFOlOOOOOEnd of message 
188000158801This is the first message in the chain 
588010158802This is the second message in the chain 
588020100000This is the last message in the chain. 

The chain pointer (bytes 8 through 12) of message 18800 con­
tains the message code 58801. Message 58801 points to message 
58802 in the same manner. Message 58802's pointer is zero, which 
specif ies that it is the end of the chain. 

When the Message Reporter receives a request to display mes­
sage 1~800, it observes that the 18800's pointer is nonzero. 
After displaying message 18800, it displays the "more help?" 
prompt. If the calling program is operating the terminal in TTY 
mode, the "more help?" prompt is message number OOOCF, and the 
affirmative response is typing Yes (actually, just the letter Y). 
The Message Reporter compares the user's response with the first 
character in message OOOAA, which in this case is the letter Y. 
(For a national language other than English, some other character 
could be substituted in message record OOOAA.) Any other key­
stroke is interpreted as a negative response. 

If the terminal is being operated in forms mode, the "more 
help?" prompt is message OOODF, and the affirmative response is 
the user pressing the HELP key; the negative response is the user 
pressing the CLEAR key. 

In either case, if the user responds aff irmatively, the 
Message Reporter then displays message 58801, and repeats the 
"more help?" prompt. If the user again responds affirmatively, 
the Message Reporter displays messages 58802 and OOOEF. Any user 
response terminates the function at this point. 

Note that message OOOAA must be present in the library if 
message chaining is to work; if it is not, the Message Reporter 
does not display the "more help?" prompt. 

Only the f irst message in a message chain can be parameter­
ized. subsequent messages should have their indicator f ields set 
to 01 (ASCII) to avoid unproductive execution of the parameter 
processing code. 

11-11 CZ15-02 



------ -------- -------- ----

Standard Messages in the System Message Libracy 

The f ollowing standard messages are supplied in the system 
messa·ge library1 they have a •oo• component code and are 
available for any program to use: 

0002B ***STANDARD MESSAGES**** 

OOOAA yes 

OOOAB no 

OOOAC No interactive help available. 

OOOAD Argument "'01A065 not recognized. 

OOOAE Parameter "'01A065 not recognized. 

OOOAF Please answer •yes• or •no•. 

OOOBO Key is inactive at this time. 

OOOBl Monday""Tuesday""Wednesday""Thursday"'Friday""Saturday"' 
sunday"" 

OOOB2 January"'February"'March"'April"'May"'June""July""August"' 
September""October"'November"'December"" 

OOOB3 Jan"'Feb""Mar"' Apr"'May"' Jun"' Jul"" Au9"' Sep""Oct"'Nov"'Dec"' 

OOOB4 [ ... 01A006] Called with an incorrect number of 
parameters 

OOOBS True 

OOOB6 False 

OOOCE Press XMIT to continue [-message "'01A005-] 

Do you wish more help? (Type yes or no.) OOOCF 

OOODF Press HELP key for more help1 press XMIT key to exit 
help • 

OOOFF ....... [ [ 1] 

If messages Bl through B3 are used, the user must determine 
the correct separater character via message FF. Messages AD, AF, 
and B4 allow for a specialization parameter (65 ASCII characters 
for messages AD and AF1 6 ASCII characters for message B4). 

11-12 CZ15-02 

---- -----·------- ------· ·----- ------ ------· ------ -------



Ci 

Message Library Utilities 

Higher-level languages such as COBOL, FORTRAN, BASIC, and 
PASCAL c~n use the ZXDSMG and ZXBTMG utilities to send and 
receive messages. ZXDSMG allows a program to send a specif ied 
message to the error-out f ile. ZXBTMG allows a program to place 
a message in a specified buffer. 

ZXDSMG UTILITY 

The ZXDSMG utility enables an application to send a specif ied 
message to the error-out f ile. The message must be in one of the 
message libraries, and can have parameters. 

ZXDSMG accepts arguments of the following form: 

<msg_numb> - Set of five ASCII'characters that specify the 
message code. 

<argl> - Optional list of specialization parameters. 
Each is a set of ASCII characters • 

• 
• 

<argn> 

ZXBTMG UTILITY 

The ZXBTMG utility returns a message to a specified buffer. 
The message can contain parameters. If the Luffer is not large 
enough to contain the entire message, it is f illed with 
asterisks. 

ZXBTMG accepts arguments of the following form: 

<msg_numb> - Set of f ive ASCII characters that specify the 
message code. 

<buffer> A block of memory set aside to receive the 
message specified by <msg_numb>. 

<argl> - Optional list of specialization parameters. 
Each is a set of ASCII characters • 

• 
<argn> 

11-13 CZlS-02 



ARGUMENT DEFINITION 

You must def ine the previously described arguments accordin9 
to the requirements of the lan9ua9e you are using. For example, 
to define <msg_numb>: 

Language Argument Definition 

COBOL MES-NUMB PIC X(S) VALUE "0021F" 

FORTRAN CHARACTER*S MES_NUMB 
• 
• 
• 

MES NUMB = '0021F' 

BASIC MESNUMB$ = '0021F' 

PASCAL MES NUMB: PACKED ARRAY [l •• 5] OF CHAR; 
• 
• 
• 

MES NUMB: = '0021F'; 

Refer to the appropriate lan9ua9e manual for detailed 
information on how to reference external programs. · 

UPDATING THE MESSAGE LIBRARY 

The message library allows you to create error, status, text, 
and help messages and to store the messages as described below. 

Message Structure 

User-created messages to be stored in the message library 
must have the following structure (see Figure 11-1): 

• A hexadecimal, five-character message code (stored as f ive 
ASCII bytes), in the form nyyzz. The value for n must be 
from 0 through F. In the system message library, the 
value f or yy must be selected f rom the component message 
codes DO through EF (hexadecimal) , which are reserved for 
user definition. (Note, however, that TPS 6 and QR6 use 
component message codes 80 through CF. Users who run TPS 
6 and QR6 must not use these component codes f or user­
created messages.) The value for zz can be anywhere in 
the range 00 through FF. 

• Two-character indicator word 

11-14 CZlS-02 

--- ---·----------"-·----~ -----·--------- ---~------ -

~ 
('" \.J 



• Five-character chain pointer 

• Message text. This text cannot exceed 240 ASCII 
characters. The message text should be left-justified. 
Messages can be displayed with the message identif ier 
preceding the text. In this case, the initial piece of 
the message cannot exceed 216 ASCII characters. 

The system message library f ile name is >>ML>MLFILE.xx, where 
xx is a language suff ix. 

Adding A Message to the Message Library 

Use the Line Editor or Screen Editor to create a f ile (an 
abbreviated version of the message library) to change messages in 
the master message library. The Add/Delete Message utility (ADM, 
described in the MOD 400 Commands manual) provides the ability to 
add, update, or delete messages on a message library using the 
abbreviated message library created with the Line Editor or the 
Screen Editor. 

When updating the message library, the user program or the 
Display command may be used to check the message text. The 
Display command may also be used to generate a list of the 
available component codes. See the GCOS 6 MOD 400 Commands 
manual (CZ17) for a description of the Display command. 

First an indexed sequential file is created. The file must 
be UFAS-indexed sequential, and have the following 
characteristics: 

variable length 
indexed f ile organization 
logical record length - 252 
control interval size - 512 
allocation growth size - 8 
number of key descriptors - 1 
number of key components - 1 
key type - C 
key component size - 5 
key component of f set - 1 

To create the message f ile, use the following command: 

CR name -LRSZ 252 -GRSZ 8 -KSZ 5 -KLOC 1 -IND 

Prior to using either of the editors to create the message 
records, the Set Terminal Characteristics (STTY) command is used 
to change the terminal line length to the maximum message record 
size (252 characters). 

NOTE 

The Set Terminal Characteristics command is not 
valid in the $S group. 

11-15 CZ15-02 



The editor is invoked once the terminal line length is 
ch~nged. To invoke the Line Editor, use the following command: 

ED -PT -LL 252 -NBS 

The entire message library file is ASCII. 
of the message entries is as follows: 

The f ormat of each 

Message Code (5 characters) 

Character 1 - ASCII O = error message 
(n) ASCII 1, 2 = help/text message 

ASCII 3-F = chained message text 

Characters 2-5 - Four uppercase ASCII characters that 
(yyzz) represent a unique four-digit hexadecimal 

number in the range 0000 to FFFF. 

Indicator Word - ASCII 00 - The message may have parameter 
substi tution. · 

ASCII 01 - The message has no parameter 
substitution. This indicator 
must be set to 01 f or chain 
messages. 

Chain Pointer - Link to the next message in the chain; this 
is a f ive-digit ASCII number consisting of 
the message code of the next piece of the 
chain, or it is 00000 (signifying the end of 
the chain). 

Message Text - ASCII message text optionally containing 
embedded parameter designators for the 
substitution of parameters. 

To delete a message, including all parts of the chain, 
include only the message code of the f irst message in the chain. 

The editors do not provide a means for automatically checking 
whether message chains have been added or deleted correctly. If 
the message is chained, all pieces of the chain must be submitted 
with each updated or added entry. Chained messages may have 
parameters substituted only in the f irst message of the series. 
The second and subsequent messages in the series must be entirely 
text {all parameter designators are ignored) and the message's 
indicator word must be set to 01. 

This message f ile is supplied to the Add/Delete Message {ADM) 
program, which is used to update the message library. The 
Add/Delete Message utility cannot update the message library file 
currently in use; it must update a copy of the message library. 
A copy of the output f rom the ADM program indicates the status of 
each message (i.e., whether it was added, deleted, or rejected). 
The ADM program does not allow invalid messages to be added into 
the message library. 

11-16 CZlS-02 

. ·~ 
' 

~-------- --------· 



(~' 

Even bef ore the master message library is updated using the 
Add/Delete Message utility, new messages can be checked by your 
progrC!Jll or by means of the Display command by making the abbre­
viated message library the first library looked at by the task. 
This is accomplished by using the Change Message Library (CML) 
command. Once you are satisfied with the text of the messages 
you want to add to the message library you can use the Add/Delete 
Message (ADM) command to update your master message library. 

NOTE 

The Change Message Library command is not valid in 
the $S group. 

Examples: 

Message Indicator Chain 
Code Word Pointer Message Text 

00105 00 00000 DEVICE [ ! ""OlAOO 5] NOT READY 
= ""02H] [ST = ""03H] 

00201 01 00000 The pathname violates naming 
conventions. 

[CH 

ODOOO 00 00000 RECORD ""OlH IS WITHHOLDING TAX 
ODOOl 00 3D001 USER-ID IS ""01A020 
3D001 01 3D002 IT CONSISTS OF A NAME, PROJECT, 

AND MODE 
3D002 01 00000 NAME, PROJECT, AND MODE ARE 

UPPERCASE 
OOOCF 01 00000 Do you wish more help? (type 

yes or no) 
OOODF 01 00000 Press HELP key f or more help; 

press XMIT key to exit help. 
OOOEF 00 00000 [end of message ""OlAOOS] 
OOOFF 01 00000 AA [ [] ] 

Optional parameters allow you to supply text f or the message 
with your program. If the parameter is supplied, it is inserted 
in the proper location in the message. If a parameter is not 
supplied, the same message is displayed with the parameter desig­
nator and associated bracketed text eliminated f rom the displayed 
message. If a parameter is supplied and there is no parameter 
designator in the message, the parameter descriptor is ignored. 

NOTE 

If a message contains parameter designators but the 
indicator word is 01, the message is displayed with 
parameter designator characters even if a parameter 
is supplied. 

11-17 CZlS-02 



Nati.onal Language Support 

The Executive can operate with more than one message library; 
theref ore, different users can execute with message libraries in 
different lan9ua9es. Use the steps described earlier to build 
and update a message library in a different language. 

NOTE 

Message 0392C may not be translated or made lower­
case. 

Message number OOOFF is a special case on the system message 
library. On the English language library, the message is: 

OOOFFOlOOOOO AA[[)) 

This message def ines the special characters that are used to 
Signal optional parameters to the system. If nAn, "[",·or "]" is 
not a valid special character you can either change message OOOFF 
or change all supplied messages with parameter designators so 
that newly-def ined special characters are used. For example, if 
"-" is to be used as a special character instead of the default 
nAn to indicate a parameter designator in a message, message 
OOOFF becomes: 

OOOFFOlOOOOO A-[[]] 

Parameter designators can be in any order in a message. If a 
message is supplied with two designators, the message can be 
translated and the designators moved within the message with no 
effect on the programs supplying the missing parameters. For 
example, 

text AOlAOlO text A02A012 

can be translated into: 

translated text A02A012 translated text AOlAOlO 

11-18 CZlS-02 

.. """"' 
'1 
; 



( , 

REMOVE THIS PAGE AND PLACE TAB FOR 

TAB 12 

MEMORY DUMPS 



~\\ 
/ ) 



( 

MANUAL DIRECTORY 

MOD 400 OPERATING SYSTEM MANUALS 

Manual Title 

ONE PLUS Guide to Software Documentation 
GCOS 6 MOD 400 System Building and 

Administration 
GCOS 6 MOD 400 System Concepts 
GCOS 6 MOD 400 System User's Guide 

,• 

GCOS 6 MOD 400 System Programmer's Guide -
Volume I 

GCOS 6 MOD 400 System Programmer's Guide -
Volume II 

GCOS 6 MOD 400 Programmer's Pocket Guide 
GCOS 6 MOD 400 System Maintenance Facility 

Administrator's Guide 
GCOS 6 MOD 400 Menu System User's Guide 
GCOS 6 MOD 400 Software Installation Guide 
GCOS 6 MOD 400 Application Developer's Guide 
GCOS 6 MOD 400 System Messages 
GCOS 6 MOD 400 Commands 
GCOS 6 Sort/Merge 
GCOS 6 Data File Organizations and Formats 
GCOS 6 MOD 400 Transaction Control Language 

Facility 
GCOS 6 MOD 400 Display Formatting and Control 
GCOS 6 VISION Reference Manual 
GCOS 6 MOD 400 R3.l to R4.0 Migration Guide 
GCOS 6 MOD 400 Application Development 

Overview 
ONE PLUS System Administration 1 
ONE PLUS System Services 
ONE PLUS Menu Ref erence Card 

h-1 
03/87 
CZ15-02B 



,• 

,,,. \ 

! 

~__/,. 



( 

( ····,· ' 

INDEX 

9-Track 
9-Track Magnetic Tape File 
Organization, 3-11 

Abnormal 
Clear Abnormal Trap Bit, 

8-17 
Turn On Abnormal Trap Bit, 

8-68 

Absolute 
Absolute and Relative 

Pathnames, 3-8 

Access 
Procedures and Conventions 
After Access, 2-8 

User Access Procedures, 2-1 

Active 
Determining the Active 

Level, 8-12 
No Level Active at the Time 
of Dump, 9-22 

User Level Active at the 
Time of Dump, 9-22 

Adding 
Adding a Message to the 

Message Library, 11-15 
Adding and Deleting Lines, 

5-120 
Adding Lines to the Current 
Buffer, 5-123 

Address 
Address Pref ix, 5-93 
Designating a Line Number 

as an Address, 5-6 
Designating Contents of 

Line as an Address, 5-7 

Addresses 
Compound Addresses, 5-11 
Methods of Specifying 
Addresses, 5-5 

Appending 
Appending a New String to 

an Existing String, 5-123 
Appending Lines, 5-124 

i-1 

Application 
Application Development 

Components (Fig), 1-3 
Application Development 

Components, 1-2 

Automatie 
Automatie Tape Volume 
Recognition, 3-12 

Auxiliary 
Auxiliary Buffer Directives 

and Escape Sequences, 5-65 
Current and Auxiliary 
Buffers, 5-125 

Avoiding 
Avoiding Post-Deletion 
Problems, 5-119 

BACKSPACE, 4-65 

Banner 

Bit 

Banner Login, 2-3 

Clear Abnormal Trap Bit, 
8-17 

Clear System Bit, 10-8 
Set Global Share Bit Off, 
10-35 

Set Global Share Bit On, 
10-36 

Set Share Bit Off, 10-37 
Set Share Bit On, 10-38 
Set System Bit On, 10-39 
Turn On Abnormal Trap Bit, 

8-68 

Block 
Block, 4-49 
Block Description, 4-10 
Change Block (Change Block 

or Cb), 4-21 
Copy Block, 4-51 
Delete Block, 4-53 
Erase Block, 4-54 
Move Block, 4-56 
Write Block (Write Block or 
Wb), 4-44 

09/86 
CZ15-02A 



Bound Unit 
Clear All Bound Unit 
Breakpoints, 8-18 

Clear Bound Unit 
Breakpoint, 8-21 

Debugging Multiple Bound 
Units, 7-30 

Interrogate Bound Unit, 
10-22 

List All Bound Unit 
Breakpoints, 8-39 

List Bound Unit Sreakpoint 
Directive, 8-42 

Set Sound Unit Breakpoint, 
8-55, 8-56 

Setting True Breakpoints 
and Bound Unit 
Breakpoints, 8-i'o 

Break 
Debugger and Break Key 
Functionality, 7-6, 8-10 

Breakpoint 
Clear All Bound Unit 
Breakpoints, 8-18 

Clear All Quick 
Breakpoints, 8-19 

Clear All True Breakpoints, 
8-20 

Clear Sound Unit 
Breakpoint, 8-21 

Clear Quick Breakpoint, 
8-22 

Clear True Breakpoint, 
8-23 

Guidelines for Setting 
Breakpoints, 8-12 

List All Sound Unit 
Sreakpoints, 8-39 

List All Quick Breakpoints, 
8-40 

List All True Breakpoints, 
8-41 

List Bound Unit Breakpoint 
Directive, 8-42 

List Quick Breakpoint, 8-43 
List True Breakpoint, 8-44 
Preliminary Steps for Using 

Quick Breakpoints, 8-11 
Set Bound Unit Breakpoint, 
8-55, 8-56 

INDEX 

i-2 

Breakpoint (cont) 
Set Quick Breakpoint, 8-58 
Setting Breakpoints, 7-7 
Setting Global Breakpoints, 

8-11 
Setting Quick Breakpoints, 
8-11 

Setting True Breakpoints 
and Sound Unit 
Breakpoints, 8-10 

Set True Breakpoint, 8-61, 
8-62 

Buf fer 
Adding Lines to the Current 

Buffer, 5-123 
Auxiliary Buffer Directives 

and Escape Sequences, 5-65 
Buf f er Status (X) , 5-68 
Buffer Status, 5-68, 5-129 
Change Buffer (Bx), 5~70 
Current and Auxiliary 
Buffers, 5-125 

Deleting All Lines in 
Current Buffer, 5-118 

Deleting Lines in Current 
Buffer, 5-118 

Saving Modif ied Buffer 
Contents, 5-130 

Call 
Call Cancel, 6-21 

Chaining 
Message Chaining, 11-10 

Change 
Change, 5-27, 7-12 
Change (Change or C), 4-17 
Change All (Change All or 

Ca), 4-19 
Change Block (Change Block 

or Cb) , 4-21 
Change Buffer (Bx), 5-70 
Change Memory, 8-16 
Change Origin of Text 
Scroll Change (Scroll 
Change or Sc), 4-30 

Changing 
Changing All Occurrences of 

a String, 5-121 

09/86 
CZ15-02A 

\ 
! 

~----~ -~------·-·-----------------------------



Changing (cont) 
Changing an Existing Source 
Unit, 4-7, 5-22 

Changing Character Strings 
Within a Line, 5-120 

Changing Line Contents, 
5-120 

Changing Your Working 
Directory, 3-16 

Characters 
Special Characters, 4-13 
Use of Escape Characters, 

5-115 

Character String 
Changing Character· Strings 
Within a Line, 5-120 

Character String 
Addressing, 5-113 

Deleting Character Strings, 
5-122 

C1ear 
Clear Abnormal Trap Bit, 

8-17 
Clear All Bound Unit 

Breakpoints, 8-18 
Clear All Quick 
Breakpoints, 8-19 

Clear All True Breakpoints, 
8-20 

Clear Bound Unit 
Breakpoint, 8-21 

Clear Quick Breakpoint, 
8-22 

Clear System Bit, 10-8 
Clear True Breakpoint, 

8-23 

Command 
Command Level, 3-14 
Using System Commands in 
the Editor, 5-130 

Compiling 
Compiling a Program for Use 

With the Debbuger, 7-26 

Compound 
Compound Addresses, 5-11 

INDEX 

i-3 

Connecting 
Connecting a User to the 
Executive, 2-2 

Connecting the Terminal to 
the Central Processor, 2-1 

Control 
Directory Control, 3-16 
File Control, 3-19 
Printing Control, 3-25 
Taking a Dump Using a 
· Control Panel, 9-8 
Taking a Dump Using the 

System Control Facility 
( SCF) , 9-9 

Voiume Control, 3-15 

Copy 
Copy (K), 5-76 
Copy Block, 4-51 

Copy-Append 
Copy-Append (!k), 5-78 
Copy-Append, 5-79 

Copying 
Copying Files, 3-21 

Creating 
Creating a Dump Volume, 

9-31 

Creating a File, 5-110 
Creating a Source Unit, 
4-7, 5-21 

Creating Directories, 3-17 
Creating Files, 3-19 
Creating Volumes, 3-15 
Creating work Files, 5-108 
Sample Screen for Creating 
a File (Fig), 4-5 

Current 
Adding Lines to the Current 

Buffer, 5-123 
Current and Auxiliary 
Buffers, 5-125 

Deleting Lines in Current 
Buffer, 5-118 

New Current Line (N), 5-58 
Use of Period (.) for 
Current Line, 5-113 

09/86 
CZ15-02A 



Cursor 
Cursor Down, 4-70 
Cursor Left, 4-71 
Cursor Right, 4-72 
Cursor Up, 4-73 

Debugger 
Debugger and Break Key 
Functionality, 7-6, 8-10 

Debugger Directives, 7-8, 
8-13 

Debugger File Requirements, 
8-3 

Debugger Memory 
Requirements, 8-3 

Debugger Operation, 8-3 
Executing Your Program With 
the Debugger, 7-30 

Invoking the Debugger 
(Numeric Mode), 8-2 

Invoking the Debugger 
(Symbolic Mode), 7-2 

Invoking the Debugger, 7-28 
Linking an Object Unit With 
the Debugger, 7-27 

Multi-user Debugger 
(Numeric Mode) Procedures, 
8-70 

Multiuser Debugger 
(Symbolic Mode) 
Procedures, 7-26 

Debugging 
Debugging Multiple Bound 
Units, 7-30 

Line Editor Debugging 
Directives, 5-85 

Deferred 
Deferred Printing, 3-25 

Def ine 
Define Directive Line, 8-27 
Define Trace, 8-28 

Delete 
Delete (D), 5-35 
Delete, 5-36 
Delete Block, 4-53 
Global Delete, 5-124 

INDEX 

i-4 

Deleting 
Adding and Deleting Lines, 

5-120 
Deleting All Lines in 
Current Buffer, 5-118 

Deleting Character Strings, 
5-122 

Oeleting Directories, 3-19 
Deleting Files, 3-21 
Deleting Lines in Current 

· Buffer, 5-118 
Deleting Multiple Lines, 

5-118 

Designator 
Parameter Designator 

Format, 1·1-6 
Parameter Designators, 11-5 

Dialup 
Dialup Terminal, 2-2 

Direct 
Direct Login Terminal, 2-6 

Direct-Connect 
Direct-Connect Terminal, 

2-2 

Directives 
Auxiliary Buffer Directives 

and Escape Sequences, 5-65 
Controlling the Directive 
File, 6-6 

Debugger Directives, 7-8, 
8-13 

Def ine Directive Line, 8-27 
Directive Region, 4-6 
Edit Mode Description and 
Directives, 5-33 

Entering Directives, 8-4 
Entering Linker Directives, 

6-10 
Entering Screen Editor 
Directives, 4-9 

General Advanced Line 
Editor Directives, 5-50 

Global Directives, 5-124 
Input Mode Description and 
Directives, 5-22 

Line Editor Debugging 
Directives, 5-85 

09/86 
CZ15-02A 



( 

Directives (cont) 
Line Editor Directive 

Format Conventions, 5-3 
Line Editor Programming 
Directives, 5-92 

Linker Directive 
Categories, 6-3 

Linker Directives, 6-13 
List Bound Unit Breakpoint 
Directive, 8-42. 

Patch Directives, 10-7 
Screen Editor Directive 

Format Conventions, 4-9 
Screen Editor Directives, 

4-15 
Submitting Patch 
Directives, 10-4 

Summary of Line Editor 
Directives and Escape 
Sequence (Tbl), 5-16 

Summary of Line Editor 
Directives and Escape 
Sequences, 5-16 

Summary of Numeric Mode 
Directives (Tbl), 8-5 

Summary of Screen Editor 
Directives (Tbl), 4-14 

Summary of Screen Editor 
Directives, 4-13 

Summary of Symbolic Mode 
Directives (Tbl) , 7-3 

Symbols Used in Numeric 
Mode Directive Lines 
(Tbl) , 8-6 

Terms Used in Symbolic Mode 
Directives (Tbl), 7-4 

Directory 
Changing Your Working 
Directory, 3-16 

Creating Directories, 3-17 
Deleting Directories, 3-19 
Directories, 3-2 
Directory Control, 3-16 
Example of Disk File 
Directory Structure (Fig), 
3-2 

Intermediate Directories, 
3-3 

Listing Files and 
Directories, 3-23 

INDEX 

i-5 

Directory (cont} 
Locations of Disk 
Directories and Files, 3-5 

Renaming Directories, 3-19 
Root Directory, 3-3 
Sample Directory Listing 

(Fig} , 2-7 
Sample Directory Structure 

(Fig) , 3-4 
System Root Directory, 3-3 
User Root Directories, 3-3 
Working Directory, 3-4 

Disk 
Determining Available Disk 

Space, 9-5 
Disk File Conventions, 3-2 
Example of Disk File 
Directory Structure (Fig), 
3-2 

Locations of Disk 
Directories and Files, 3-5 

Renaming Disk Volumes, 3-16 

DPEDIT 
DPEDIT Command, 9-17 
Operating Procedure for 

DPEDIT, 9-19 

Dump 
Creating a Dump Volume, 

9-3 
Dump, 7-14 
Dump Memory, 8-30 
Hexadecimal Dump, 5-87 
Interpreting and Using 
Memory Dumps, 9-19 

Logical Dump, 9-12 
Physical Dump, 9-12 
Shared Dump and System 
Volumes, 9-7 

Signif icant Locations On 
Memory Dump (Tbl), 9-20 

Taking a Dump Using a 
Control Panel, 9-8 

Taking a Dump Using the 
System Control Facility 
(SCF), 9-9 

User Level Active at the 
Time of Dump, 9-22 

Using the Dump Utilities, 
9-2 

09/86 
CZ15-02A 



Dumpf ile 
Dumpf ile Format, 9-5 
Maximum Dumpf ile Size, 9-5 
Setting Dumpf ile Size, 9-4 

Edito.r 
Advanced Functions of the 

Line Editor, 5-50 
Entering Screen Editor 
Directives, 4;...9 

General Advanced Line 
Editor Directives, 5-50 

Initiating a Line Editor 
Se.ssion, 5-108 

Interrupting Screen Editor 
Processing, 4-8 

Line Editor Debugging 
Directives, 5-85 

Line Editor Directive 
Format Conventions, 5-3 

Line Editor Modes, 5-110 
Line Editor Programming 
Directives, 5-93 

Line Editor Suffix 
Conventions, 5-3 

Loading the Line Editor, 
5-14 

Loading the Screen Editor, 
4-3 

Quitting the Line Editor, 
5-109 

Screen Editor Directive 
Format Conventions, 4-9 

Screen Editor Directives, 
4-15 

Screen Editor Processing, 
4-2 

Screen Editor Suffix 
Conventions, 4-3 

Screen Editor Template for 
Microsystem 6/10 Keyboard 
(Fig), 4-46 

Screen Editor Template for 
VIP7200 Keyboard (Fig), 
4-46 

Screen Editor Template for 
VIP7201 Keyboard (Fig), 
4-46 

Screen Editor Template for 
VIP7300 Word Processing 
Keyboard (Fig), 4-46 

INDEX 

i-6 

Editor (cont) 
Screen Editor Template for 
VIP730x General Purpose 
and Data Entry Keyboard 
(Fig), 4-46 

Screen Editor Template for 
VIP780x General Purpose 
Keyboard (Fig), 4-46 

Summary of Line Editor 
Directives and Escape 
Sequences, 5-16 

Summary of Screen Editor 
Directives, 4-13 

Using System Commands in 
the Editor, 5-130 

Entering ~ 
'Entering Directives, 8-4 
Entering Linker Directives, 

6-10 
Entering Screen Editor 
Directives, 4-9 

Erase 
Erase Block, 4-54 
Erase EOL, 4-76 

Executive 
Connecting a User to the 

Executive, 2-2 

File 
9-Track Magnetic Tape File 
Organization, 3-11 

Controlling the Directive 
File, 6-6 

Copying Files, 3-21 
Creating a File, 5-110 
Creating Files, 3-19 
Creating work Files, 5-108 
Debugger File Requirements, 

8-3 
Deleting Files, 3-21 
Directing Output to a File, 

3-24 
Disk File Conventions, 3-2 
File Control, 3-19 
File In, 8-34 
File Out, 8-35 
Listing Files and 
Directories, 3-23 

Locating Files, 3-22 

09/86 
CZ15-02A 



(,,. 
File (cont) 

Locations of Disk 
Directories and Files, 3-5 

Magnetic Tape File and 
Volume Names, 3-11 

Magnetic Tape File 
Conventions, 3-11 

Moving Lines in a File, 
5-127 

Printing Files at Your 
Terminal, 3-25 

Reading File Contents, 
5-117 

Renaming Files, 3-21 
Repeating Lines in a File, 

5-126 
.Reserving Files o~ Devices, 

< 3-28 
Reset File, 8-53 
Sample Screen f or Creating 

a File (Fig), 4-5 
Sample Screen for Modifying 

a File (Fig), 4-5 
Saving File Contents, 5-117 
Specify File, 8-64, 8-66 
Standard I/O Files, 3-13 
Unit-Record Device File 
Conventions, 3-12 

Using Existing Files, 5-128 
Working With Files, 3-13 

Form 
Forms Login, 2-4 
Login Arguments Form (Fig), 

2-6 
Login Form (Fig), 2-5 

Format 
Dumpf ile Format, 9-4 
Line Editor Directive 

Format Conventions, 5-3 
Link Map Formats (Fig), 

6-56 
Message Format, 11-3 
Parameter Designator 

Format, 11-6 
Screen Editor Directive 

Format Conventions, 4-9 

Function 
Function Keys, 4-46 

INDEX 

i-7 

Global 
Global (G), 5-54 
Global, 5-55 
Global Delete, 5-124 
Global Directives, 5-124 
Global Print, 5-125 
Set Global Share Bit Off, 
10-35 

Set Global Share Bit On, 
10-36 

Setting Global Breakpoints, 
8-11 

Group 
Group Libraries, 11-2 
Task Group Structures, 9-15 

Halt 
Halt at Level 2, 9-21 

Header 
Print Header Line, 8-48 

Hexadecimal 
Hexadecimal Dump (ZDUMP) , 

5-86 
Hexadecimal Dump, 5-87 
Hexadecimal Patch, 10-18 
Print Hexadecimal Value, 
8-49 

History 

I/O 

Maintaining a Trace 
History, 7-7, 8-13 

Standard I/O Files, 3-13 

Input 
Change Origin of Text 
During Input Mode, 5-75 

Input Mode Description and 
Directives, 5-22 

Insert 
Insert, 5-30, 5-32 
Inserting Lines, 5-123 

Intermediate 
Intermediate Directories, 
3-3 

09/86 
CZ15-02A 



Interruptin9 
Interrupting a Task~ 2-9 
Interrupting Execution, 
3-22 

Interrupting Linker 
Execution, 6-93 

Interrupting Screen Editor 
Processing, 4-8 

J-Mode 
Start J-Mode Trace, 8-67 

Keys 
Correlation of Scorpeo's 

J:.abeled Keys (Tbl), 4-64 
Function Keys, 4-46 
Labeled Keys, 4-62 

Lef t 
Cursor Left, 4-71 
Left Margin (Left Margin or 

Lm) , 4-25 
Window Left, 4-59 

Level 
Command Level, 3-14 
Determining the Active 
Level, 8-12 

Halt at Level 2, 9-21 
User Level Active at the 
Time of Dump, 9-21 

Library 
Adding a Message to the 

Message Library, 11-15 
Message Libraries, 11-2 
Message Library Record 
Structure (Fig), 11-4 

Message Library Utilities, 
11-13 

Standard Messages in the 
System Message Library, 
11-12 

Updating the Message 
Library, 11-14 

Link 
Link, 6-46 
Link Map Formats (Fig), 
6-56 
Producing Link Map(S), 6-5 
Sample Link Sessions, 6-94 

INDEX 

i-8 

Linker 
Entering Linker Ditectives, 

6-10 
Interrupting Linker 
Execution, 6-93 

Linker Directive 
Categories, 6-3 

Linker Directives, 6-13 
Linker Functions, 6-1 
Linker Procedures, 6-93 
LOading the Linke~, 6-7 
Sample Linker Dialogs, 7-27 
Terminating the Linker, 6-7 

List 
List, 7-18 
List All Bound Unit 
Breakpoints, 8-39 

List All Quick Breakpoints, 
8-40 

List All True Breakpoints, 
8-41 

List Bound Unit Breakpoint 
Directive, 8-42 

List Group Patch Names, 
10-25 

Listing Files and 
Directories, 3-23 

List Patch Names, 10-30 
List Patches, 10-27 
List Patches Now, 10-29 
List Quick Breakpoint, 8-43 
List Specif ied Group 

Patch, 10-26 
List Specif ied Patch, 10-32 
List True Breakpoint, 8-44 
List Updates, 10-33 
Sample Directory Listin9 

(Fig) , 2-7 

Loading 
Loading Patch, 10-3 
Loading the Line Editor, 

5-14 
Loading the Linker, 6-7 
Loading the Screen Editor, 

4-3 

Locating 
Locating Files, 3-22 

09/86 
CZ15-02A 

-----------------~~- . ._ ___________ ------~--~-„-----

.„ 



( 

(: 

Logical 
Logical Dump, 9-12 

Login 
Banner Login, 2-3 
Direct Login Terminal, 2-6 
Forms Login, 2-4 
Login Arguments Form (Fig), 

2-6 
Login Form (Fig) , 2-5 
Login Terminal, 2-2 
Manual Login Terminal, 2-3 

Magnetic Tape 
9-Track Magnetic Tape File 
Organization, 3-11 

Magnetic Tape Device 
Pathname Construction, 
3-12 

Magnetic Tape File and 
Volume Names, 3-11 

Magnetic Tape File 
Conventions, 3-11 

Manual 

Map 

Manual Login Terminal, 2-3 

Link Map Formats (Fig), 
6-56 

Producing Link Map(s), 6-5 

Memory 
Change Memory, 8-16 
Debugger Memory 

Requirements, 8-3 
Display Memory, 8-29 
Dump Memory, 8-30 
Get Quick Memory, 8-36 
Interpreting and Using 

Memory Dumps, 9-19 
Memory Pool Structures, 

9-15 
Print Quick Memory Pointer, 

8-50 
Return Quick Memory, 8-54 
Signif icant Locations On 

Memory Dump (Tbl), 9-20 

Message 
Adding a Message to the 

Message Library, 11-15 

INDEX 

i-9 

Message (cont) 
Message Chaining, 11-10 
Message Code, 11-4 
Message Format, 11-3 
Message Libraries, 11-2 
Message Library Record 
Structure (Fig), 11-4 

Message Library Utilities, 
11-13 

Message Reporter, 11-1 
Message Structure, 11-14 
Message Text, 11-5 
Parameterized Messages, 
11-5 

Sending Messages to the 
Operator, 2-9 

Standard Messages in the 
System Message Library, 
11-12 

System Message Library, 
11-2 

Updating the Message 
Library, 11-14 

Move 
Move (M), 5-81 
Move, 5-81 
Move Block, 4-56 

Move-Append 
Move-Append (!m), 5-83 
Move-Append, 5-83 

Multiuser Debugger 
Multiuser Debugger 

(Numeric Mode) Procedures, 
8-70 

Multiuser Debugger 
(Symbolic Mode) 
Procedures, 7-26 

Non-Login 
Non-Login Terminal, 2-6 

Numeric Mode 
Invoking the Debugger 

(Numeric Mode), 8-2 
Multiuser Debugger 

(Numeric Mode) Procedures, 
8-70 

Summary of Numeric Mode 
Directives (Tbl) , 8-5 

09/86 
CZ15-02A 



Operator 
Sending Messages to the 
Operator, 2-9 

Output 
Directing Output to a 'File, 

3-24 
Directing Output to a 
Printer, 3-24 

Overlay 
Creating a Root and 
Optional Overlay(s), 6-4 

Using Overlays, 6-93 
Overlaytable, 6-66 

Parameterized 
Parameterized Messages, 
11-5 

Patch 
Applying the Patch, 10-7 
Data Patch, 10-10 
Eliminate Patch, 10-14 
Hexadecimal Patch, 10-18 
List Group Patch Narnes, 
10-25 

List Patch Names, 10-30 
List Patches, 10-27 
List Patches Now, 10-29 
List Specif ied Group Patch, 

10-25 
List Specif ied Patch, 10-32 
Loading Patch, 10-3 
Naming the Patch, 10-7 
Patch Directives, 10-7 
Submitting Patch 
Directives, 10-4 

Symbolic Data Patch, 10-40 
Symbolic,Patch, 10-43 

Pathname 
Absolute and Relative 

Pathnames, 3-8 
Magnetic Tape Device 

Pathname Construction, 
3-12 

Sample Pathnames (Fig), 3-9 
Symbols Used in Pathnames, 

3-6 

INDEX 

i-10 

Physical 
Physical Dump, 9-12 

Pool 
Memory Pool Structures, 

9-15 

Primary 
Primary Libraries, 11-3 

Print 
Global Print, 5-125 
Print (P), 5-37 
Print, 5-38, 5-40, 8-46 
Print All, 8-47 
Print Header Line, 8-48 
Print Hexadecimal V~lue, 

8-49 
Print Line Number (=/!p}, 

5-59 
Print Line Number, 5-59 
Print Quick Memory Pointer, 

8-50 
Print Trace, 8-51 
Print With Line Number 

(!p), 5-61 
Print With Line Number, 
5-61 

Printer 
Directing Output to a 
Printer, 3-23 

Writing to Line Printer, 
5-130 

Printing 
Deferred Printing, 3-25 
Printing Control, 3-25 
Printing Files at Your 
Terminal, 3-25 

Printing Line Numbers, 
5-112 

Quick 
Clear All Quick 
Breakpoints, 8-19 

Clear Quick Breakpoint, 
8-22 

Get Quick Memory, 8-36 
List All Quick Breakpoints, 

8-40 
List Quick Breakpoint, 8-43 

09/86 
CZ15-02A 



Quick (cont) 
Preliminary Steps for Using 

Quick Breakpoints, 8-11 
Print Quick Memory Pointer, 

8-50 
Return Quick Memory, 8-54 
Set Quick Breakpoint, 8-58 
Setting Quick Breakpoints, 
8-11 

Region 
Directive Region, 4-6 
Status Region, 4-6 
Text Region, 4-6 

Relative 
Absolute and Relative 

Pathnames, 3-7 

Reserving 
Reserving Files or Devices, 

3-28 

Right 
Cursor Right, 4-72 
Right Margin (Right Margin 
or Rrn), 4-29 

Window Right, 4-60 

Root 

SCF 

Creating a Root and 
Optional Overlay(S), 6-4 

Root Directory, 3-3 
System Root Directory, 3-3 
User Root Directories, 3-3 

Taking a Dump Using the 
System Control Facility 
( SCF), 9-9 

Screen Editor 
Description of the Screen, 

4-5 
Entering Screen Editor 
Directives, 4-9 

Interrupting Screen Editor 
Processing, 4-8 

Loading the Screen Editor, 
4-3 

Screen Editor Directive 
Format Conventions, 4-9 

INDEX 

Screen Editor (cont) 

Set 

i-11 

Screen Editor Directives, 
4-15 

Screen Editor Processing, 
4-2 

Screen Editor Suffix 
Conventions, 4-3 

Screen Editor Template for 
Microsystem 6/10 Keyboard 
(Fig), 4-46 

Screen Editor Template for 
VIP7200 Keyboard (Fig), 
4-46 

Screen Editor Template for 
VIP7201 Keyboard (Fig), 
4-46 

Screen Editor Template for 
VIP7300 Word Processing 
Keyboard (Fig), 4-46 

Screen Editor Template for 
VIP730x General Purpose 
and Data Entry Keyboard 
(Fig), 4-46 

Screen Editor Template for 
VIP780x General Purpose 
Keyboard (Fig), 4-46 

Summary of Screen Editor 
Directives (Tbl) , 4-14 

Summary of Screen Editor 
Directives, 4-13 

Guidelines for Setting 
Breakpoints, 8-12 

Set, 7-22 
Set Bound Unit Breakpoint, 
8-55, 8-56 

Set Global Share Bit Off, 
10-35 

Set Global Share Bit On, 
10-36 

Set Quick Breakpoint, 8-58 
Set Share Bit Off, 10-37 
Set Share Bit On, 10-38 
Set System Bit On, 10-39 
Setting Breakpoints, 7-7 
Setting Dumpf ile Size, 9-4 
Setting Global Breakpoints, 

8-11 
Setting Quick Breakpoints, 

8-11 

09/86 
CZ15-02A 



Set (cont1 
Setting True Breakpoints 

and Bound Unit 
Breakpoints, 8-10 

Set True Breakpoint, 8-61, 
8-62, 

Tab Set, 4-84 

Share 
Set Global Share Bit Off, 
10-35 

Set Global Share Bit On, 
10-36 

Set Share Bit Off, 10-37 
Set Share Bit On, 10-38 
Share, 6-82 

Subsystem Switcher 
Exiting the Subsystem 
Switcher, 2-8 

Procedures Under the 
Subsystem Switcher, 2-8 

Selecting a Subsystem, 2-8 
Switching Subsystems, 2-8 

Suffix 
Line Editor Suffix 
Conventions, 5-3 

Screen Editor Suffix 
Conventions, 4-3 

Swappool, 6-85 

Symbolic 
Invoking the Debugger 

(Symbolic Mode), 7-2 
Multiuser Debugger 

( Symbolic Mode) 
Procedures, 7-26 

Summary of Symbolic Mode 
Directives (Tbl), 7-3 

Symbolic Data Patch, 10-40 
Symbolic Mode Special 

Symbols (Tbl) , 7-5 
Symbolic Patch, 10-43 
Terms used in Symbolic Mode 
Directives (Tbl), 7-4 

System 
Clear System Bit, 10-8 
Set System Bit On, 10-39 

INDEX 

i-12 

System (cont) 

Tab 

Shared Dump and System 
Volumes, 9-7 

Standard Messages in the 
System Message Library, 
11-12 

System Facilities, 1-1 
System Message Library, 
11-2 

System Root Directory, 3-3 
System Summary, 9-12 
Taking a Dump Using the 

System Control Facility 
(SCF), 9-9 

Using System Commands in 
the Editor, 5-130 

Tab Clr, 4-83 
Tab Set, 4-84 

Task 
Interrupting a Task, 2-9 
Task Group Structures, 9-15 
Task Structures, 9-16 

Terminal 
Accept Single Line From a 

Terminal (!r), 5-67 
Connecting the Terminal to 
the Central Processor, 2-1 

Dialup Terminal, 2-2 
Direct Login Terminal, 2-6 
Direct-Connect Terminal, 

2-2 
Login Terminal, 2-2 
Manual Login Terminal, 2-3 
Non-Login Terminal, 2-6 
Printing Files at Your 
Terminal, 3-25 

Redirecting Output to Your 
Terminal, 3-25 

Trace 
Def ine Trace, 8-28 
End Trace, 8-31 
Maintaining a Trace 
History, 7-7, 8-13 

Print Trace, 8-51 
Start J-Mode Trace, 8-67 
Trace, 7-24 

09/86 
CZ15-02A 

... """' 
\ 

\ 
"'-, t 

\/ 
\~„.,.,,·· 



(_, 

.• 

c) 

Trap 
Clear Abnormal Trap Bit, 

8-17 
Turn On Abnormal Trap Bit, 

8-68 

Unit-Record 

Up 

Unit-Record Device File 
Conventions, 3-12 

Cursor. Up, 4-73 
Window Up, 4-61 

Utility 
Using the Dump Utilities, 

9-2 
ZXBTMG Utility, 11-13 
ZXDSMG Utility, 11-13 

Volume 
Automatie Tape Volume 

Recognition, 3-12 
Creating a Dump Volume, 9-3 
Creating Volumes, 3-15 
Magnetic Tape File and 
Volume Names, 3-11 

Renaming Disk Volumes, 3-16 
Shared Dump and System 

Volumes, 9-7 
Volume Control, 3-15 

Window 
Window Down, 4-58 
Window Left, 4-59 
Window Right, 4-60 
Window Up, 4-61 
Window Width (Window Width 

or Ww), 4-41 

Work 
Creating work Files, 5-108 
Changing Your working 
Directory, 3-16 

Working Directory, 3-4 
Working With Files, 3-13 

XRAY 
Operating Procedure f or 

XRAY, 9-27 
XRAY Command, 9-24 

INDEX 

i-13 

ZXBTMG 
ZXBYMG Utility, 11-13 

ZXDSMG 
Zxdsmg Utility, 11-13 

09/86 
CZ15-02A 



...... -

-~-



.( 
1 „ 

1 

w 
z 
_J 

(,::) 
z 
0 
_J 

~ 
1-
::;) 
u . 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

. ' 
1 ( •. „., 

HONEYWELL INFORMATION SYSTEMS 
Technical Publications Remarks Form 

TITLE 
DPS6 
GCOS 6 MOD 400 APPLICATION DEVELOPER'S GUIDE 
ADDENDUM B 

ERRORS IN PUBLICATION 

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION 

Your comments will be investigated by appropriate technical personnel 
and action will be taken as required. Receipt of all forms will be 
acknowledged; however, if you require a detailed reply, check here. 0 

FROM:NAME ---------------------~ 

TITLE -----------------------

COMPANY --------

ADDRESS--------------------~ 

ORDER N0.1 CZ15-02B 

DATED 1 MARCH 1987 



PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms 

1 II II 1 

BUSINESS . REPL V MAIL 
FIRSTCLASS PERMIT NO. 39531 WALTHAM, MA02154 

POSTAGE WILL BE PAIO BY ADDRESSEE 

HONEYWELL INFORMATION SYSTEMS 
200 SMITH STREET 
WALTHAM, MA 02154 

ATTN: PUBLICATIONS, MS486 

Honeywell 

------ ----·- -· ---

NOPOSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

J 
1 
1 
1 
1 

-\ 
' ' 

1 
1 
1 
1 
1 

J 

1 2 
1 
1 <.:: 

1 ~ 
-r~ 
1 c 
1 c 
1 ~ 
1 
1 
1 
1 
1 
1 
1 
1 
1 
~. 

------ i/--\) -----' ' ------~-~{ 
-----·· 1 1 

1 
1 
1 
1 
1 
1 ... 
1 2 
1 -
1 ~ .... ~ 

c:) 
1 
1 
1 
1 
1 
1 

<! 

c 
c 
~ 



• • 
1 

~·· 

w 
z 
::; 
<.:> z 
0 _, 
<( 

f.­
:> 
u . 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

(
1 ··,\. 

i 
,_,/ 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 C. 

\ 
i 

·, 
1 
1 
1 
1 
1 

HONEYWELL tNFORMATION SYSTEMS 
Technical Publications Remarks Form 

TITLE DPS6 
GCOS 6 MOD 400 APPLICATION DEVELOPER'S GUIDE 
ADDENDUMB 

ERRORS IN PUBLICATION 

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION 

Your comments will be investigated by appropriate technical personnel 
and action will be taken as required. Receipt of all forms will be 
acknowledged; however, if you require a detailed reply, check here. 0 

FROM:NAME -----------------------------~ 
TITLE ------------------------------

CDMPANY --------------------------­

AODRESS------------------------------------~ 

ORDER N0.1 CZ15-02B 

DATED 1 MARCH 1987 



PLEASE FOLO ANO TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms 

111111 

BUSINESS REPL V MAIL 
FIRSTCLASS PERMtT NO. 39531 WALTHAM, MA02154 

POSTAGE WILL BE PAID BY AOORESSEE 

HONEYWELL INFORMATION SYSTEMS 
200 SMITH STREET 
WAL THAM, MA 02154 

ATTN: PUBLICATIO.NS, MS486 

Honeywell 

-----·- ---- -------- ----~------------· 

NO POSTAGE 
NECESSARY 
IF MAILEO 

IN THE J 

UNITEO STATES 

1 
f 
1 
1 
1 
r 

1 
1 
1 
1 
1 
1 u. 
1 z 
1 <.: 
1 ~ 
i'~ 
1 c 
1 c 
1 ~ 
1 
1 
1 
1 
1 
1 
1 
1 
1 
l 

(---~. 
\'--( 

1 
1 
1 
1 
1 
1 
1 ~ 
1 z 
1 -
1 ~ 
~c 
1 ~ 

c 
c 
~ 

~­
} \ 
~· 

1 
1 
1 
1 
1 
1 



C' 
'. ' ,> 



Together. we can find the answers. 

Honeywell 
Honevwell lnfonnatlon Svstema 

U.S.A.: 200 Smith St., MS 486, Waltfiam, MA 02154 
Cllnada: 155 Gordon Baker Rd., Willowdale, ON M2H 3N7 

U.K.: Great West Ad., Brentford, Middtesex lWB 9DH . ltaly: 32 Via Pirelli, 20124 Milano 
Mexlco: Avenida Nuevo Leon 250, Mexico 11, O.F. Japan: 2-2 Kanda Jimbo-cho Chiyoda-ku, lbkyo 

Auatralla: 124 Walker St., North Sydney, N.S.W. 2060 S.E. Asla: Mandarin Plaza, Tsimshatsui East, H.K. 

45022, 0486, Printed in U.S.A. CZ15-02 


