DPS 6
GCOS 6 MOD 400
C USER’S GUIDE

SUBJECT
DPS 6 C Programming Language

SPECIAL INSTRUCTIONS

This manual supersedes the DPS 6 GCOS 6 MOD 400 C Users Guide,
Order No. CW35-01 dated September 1985. Change bars in the margins indicate
changes and additions, while asterisks indicate deletions.

- SOFTWARE SUPPORTED

The C compiler Release 2.0 executes running under Release 4.0 of the MOD 400
Executive,

ORDER NUMBER
CW35-02) March 1986

Honeywell

PREFACE

This mannal describes the C progr Trlng language as
implemented under MOD 400. The langu ge is described by noting
variations from a baseline version’ of C. The reader is assumed
to be familiar with C. This manual is not a language
specification, nor is it intended as a tutorial document.

The new C functions supported are:

getptcb putr runvp ucf_defr
getr runl setprint ucf_finish
gettch runlp tzset ucf_init
posr runv ucf_defc

The new C-related utilities supported are:

CSICK . DL_ENV ENV_DEF GET_ENV
LIST_ENV SET_ENV

Descriptions of the SL and FILE_OUT commands have been moved
to the DPS 6 GCOS 6 MOD 400 Commands manual.

Section 1 defines the version of C used as the basis for
comparison.

Section 2 notes all variations in the MOD 400 implementation
of the C language.

Section 3 describes the process of developing C programs
under MOD 400, including use of the C compilers and loading C
programs under MOD 400.

Section 4 lists the C standard library as implemented under
MOD 400.

USER COMMENTS FORMS are included at the back of this manual. These forms are to be used to record
any corrections, changes, or additions that will make this manual more useful.

Honeywell disclaims the implied warranties of merchantability and fitness for a particular
purpose and makes no express warranties except as may be stated in its written agreement
with and for its customer.

In no event is Honeywell liable to anyone for any indirect, special or consequential damages.
The information and specifications in this document are subject to change without notice.
Consuit your Honeywell Marketing Representative for product or service availability.

©Hone_vwell Information Systems Inc., 1986 File No.: 1R23, 1523, 1623 CW35-02

Appendix A is a list of C compiler diagnostic messages.
Appendix B lists the eight-bit ASCII character set.
A glossary defines UNIX, C, and MOD 400 terms.

Braces { } in this manual are used to enclose information
from which the user must make a choice.

The following conventions are used to indicate the relative
levels of topic headings used in this manual:

Level Format
1 (highest) ALL CAPITAL LETTERS, UNDERLINED
2 Initial Capital Letters, Underlined
3 ALL CAPITAL LETTERS, NOT UNDERLINED
4 Initial Capital Letters, Not Underlined

iii CwW35-02

MANUAL DIRECTORY

The following publications constitute the GCOS 6 MOD 400
manual set. See the "Software/Manual Matrix" of the Guide to
Software Documentation for the current revision number and
addenda (if any) of the manuals.

Manuals are obtained by submitting a Honeywell Publications
Order Form to the following address:

Honeywell Information Systems Inc.
47 Harvard Street

Westwood, MA 02090

Att: Publications Services

Honeywell software reference manuals are periodically updated
to support enhancements and improvements to the software. Before
ordering any manual listed below, the customer should refer to
the Guide to Software Documentation to obtain information
concerning the specific edition of the manual that supports the
software currently in use at the installation. When specifying
manuals on the Publications Order Form, a customer using the
4-digit base publication number listed below will obtain the
latest edition of the manual currently in stock. The
Publications Distribution Center can provide specific editions of
a publication only when supplied with the 7- or 8-character order
number described in the Guide to Software Documentation.

Honeywell applications software packages - such as INFO, the
Honeywell Manufacturing System (HMS), and TPS 6 - provide
specialized services. See your Honeywell representative for
information concerning the availability of applications software
and supporting documentation.

iv Cw35-02

Base

Publication
Number Manual Title
CwW35 GCOS 6 C User's Guide
Cz01 GCOS 6 MOD 400 Guide to Software
Documentation
Czo2 GCOS 6 MOD 400 System Building and
Administration
Cz03 GCOS 6 MOD 400 System Concepts
Cz04 GCOS 6 MOD 400 System User's Guide
CzZ05 GCOS 6 MOD 400 System Programmer's Guide -
Volume I
Cz06 ~ GCOS 6 MOD 400 System Programmer's Guide -
Volume II
Cz07 GCOS 6 MOD 400 Programmer's Pocket Guide
C209 GCOS 6 MOD 400 System Maintenance Facility
Administrator's Guide
CZlo GCOS 6 MOD 400 Menu System User's Guide
Czl1 GCOS 6 MOD 400 Software Installation Guide
CZ15 GCOS 6 MOD 400 Application Developer's Guide
Cz1l6 GCOS 6 MOD 400 System Messages
Cz217 GCOS 6 MOD 400 Commands
Ccz1l8 GCOS 6 Sort/Merge
Cz1l9 GCOS 6 Data File Organizations and Formats
Cz20 GCOS 6 MOD 400 Transaction Control Language
Facility
Cz21 GCOS 6 MOD 400 Display Formatting and Control
Cz22 GCOS 6 VISION Reference Manual
Cz23 DM6 AZ7 Reference Card
Cz224 Introduction- to DM6 AZ7 Query Writing
Cz25 DM6 AZ7 Reference Manual
Cz29 GCOS 6 VISION Reference Card
Cz31 GCOS 6 Advanced COBOL Compiler User's Guide
C232 GCOS 6 Multiuser COBOL Compiler Guide
Cz34 GCOS & COBOL 74 Language Reference
C235 GCOS 6 COBOL Quick Reference Guide
CZ36 GCOS 6 BASIC Reference
Ccz37 GCOS & BASIC Quick Reference Guide
Cz38 GCOS 6 Assembly Language (MAP) Reference
CZ39 GCOS 6 Advanced FORTRAN Reference
Cz40 GCOS 6 Pascal User's Guide
CZ42 GCOS 6 Ada Compiler System User's Guide
Cz52 DM6 I-D-S/II Programmer's Guide
Cz53 DM6 I-D-S/II Data Base Administrator's Guide
Cz54 DM6é I-D-S/II1 Reference Card
Cz70 Electronic Mail Facility Administrator's Guide
Cz71 DM6 TP Development Reference
cz72 - DM6 TP Application User's Guide
Cz73 DM6 TP Forms Processing
Cz74 GCOS 6 Data Base Augmented Real-Time Tracing
System User's Guide
CZ93 Electronic Mail Facility User's Guide
Gz13 GCOS 6 MOD 400 Release 4.0 Migration Guide

v CW35-02

Base
Publication
Number

HCO1
HC12
HC13

Manual Title

MOD 400 Application Development Overview v

Disk-Based Data Entry Facility-II User's Guide

Disk-Based Data Entry Facility-II Operator's
Quick Reference Guide

The following manuals describe the MOD 400 distributed
processing software components:

Base
Publication
Number

CB35
CFll

CG90
Cz59

CZ60
CZ61
Cz62
Cz63
CZ64
CZ65
CzZ66
GGl9
GG20
GT18

GT19

Manual Title

DPS 6éDPS 7 PVE File Transfer Facility User's
Guide -

DPS 6/DPS 7 PVE Remote Batch Facility User's
Guide ’

Interactive Entry Facility-II User's Guide

Level 6 to Level 6 File Transmission Facility
User's Guide

Level 6 to Level 66 File Transmission Facility
User's Guide

Level 6 to Level 62 File Transmission Facility
User's Guide

BSC Transport Facility User's Guide

2780/3780 Workstation Facility User's Guide

HASP Workstation Facility User's Guide

Programmable Facility/3271 User's Guide

Remote Batch Facility/66 User's Guide

Disk-Based VIP7305 Emulator Facility User's
Guide

Disk-Based Asynchronous Communications Facility
User's Guide

Disk-Based VIP7705 Emulator Facility User's
Guide

Disk-Based VIP7814 Emulator Facility User's
Guide

vi Cw35-02

The following manuals describe the ORACLE data base
management facility:

Base
Publication

Number Manual Title

GS61l GCOS 6 MOD 400 ORACLE Installation Guide

Gs62 GCOS 6 MOD 400 ORACLE Database Administrator's
Guide

GS63 GCOS 6 MOD 400 ORACLE Interactive Application
Facility (IAF) Terminal Operator's Guide

GS64 GCOS 6 MOD 400 ORACLE Interactive Application
. Facility (IAF) Terminal Operator's Reference
Manual

GS65 GCOS 6 MOD 400 ORACLE Interactive Application
Facility (IAF) Designer's Guide

GS66 GCOS 6 MOD 400 ORACLE Interactive Application
Facility (IAF) Designer's Reference Manual

GS67 GCOS 6 MOD 400 ORACLE HLI Precompiler Interface

GS68 GCOS 6 MOD 400 ORACLE Host Language Call

Interface Manual

GS69 GCOS 6 MOD 400 ORACLE RPF Report Text Formatter
User's Guide

GS70 GCOS 6 MOD 400 ORACLE RPT Report Generator

User's Guide

GS71 GCOS 6 MOD 400 ORACLE SQL/UFI Reference Manual

GS72 GCOS 6 MOD 400 ORACLE Terminal User's Guide

GS73 GCOS 6 MOD 400 ORACLE Utilities Manual

GS74 GCOS 6 MOD 400 ORACLE Error Messages and Codes

In addition, the following publications provide supplementary
information:

Base
Publication
Number Manual Title
AS22 . Level 6 Models 6/34, 6/36, and 6/43 Minicomputer
' Handbook
AT97 Level 6 Communications Handbook
CC71 Level 6 Minicomputer Systems Handbook
CD18 Level 6 MOD 400/600 Online Test and Verification
Operator's Guide
FQ41 Writable Control Store User's Guide

These five manuals are not covered by the Guide to Software
Documentation. See your Honeywell representative for information
concerning the versions of the manuals relevant to your
installation.

vii Cw35-02

Users should be aware that a software release bulletin
accompanies each software product ordered from Honeywell. Users
should consult the software release bulletin before using the
software. Users should contact their Honeywell representative if
a copy of the software release bulletin is not available.

viii Cw35-02

CONTENTS

Page
sECTIONl INTRODUCTION...I......‘-.........‘.......-...... 1-1

Definition of "Baseline”™ Cuiceecceeccccsscococooscsocscsssocsnse 1=l
Contents 0f This ManuUal.ececeeoecceccoccccccocsocsscscsscsscccss 1=2

SECTION 2 IMPLEMENTATION OF THE C LANGUAGE..cciceceoccosse

Lexical Conventions [2].cccececcscccccccccscssccccscoscass
Identifiers (NameS) [2.2] ccccececconccccocccoscccsacsccss
Keywords [2-3].¢oo.-o-oc-0.oooco--oo-co-oonﬁoin't-cuoco-
Constants [2.4] cccecececcscoccossocscccconcsssoscssossosscccscaes
Strings [2.5]....D.QQ....I....ll..ﬂ.‘...'......'I.‘.....
Hardware Characteristics [2.6].cccevccccccccccscccccsnnns

What's in aName? [4]..I..«.t...D.Q..Q.D...O...O..l..l.'...

Conversions [6]‘.Ol...........Q.l...‘.......Q...Q.’I.O.I..
Characters and Integers [6.]l]cccceccccccccsccccossoscccans
Float and Double [6.2].0..0'......'..I.‘Q.O....Q......I.
Floating and Integral [6.3]..0......0.0..'I...D.O...0...

EXpressions [7]ceeece cccccccccsscccccsssossossssssccsnscs
Additive Operators [7c.4]ccceccecccocesosccoscscscccoccscscs
Shift Operators [7.5]..0....'..l.b........l..l.....l....
Assignment Operators [7.l4].cccecocccccscscscsosccscnccs

Declarations [B] ccccccceococooccoscsscooccsocssscoascscsscascsa
Storage Class Specifiers [8.1]cccocecsocescccoscsccocscos
Type Specifiers [8.2] cceccscescscccsossoscsossocsscsscasans
Structure and Union Declarations [8.5].cccccccccsccscccs

Statements [9] ccceccecscscccscosonsccossasscssossonscascoscnss
Escape Statement [9.14].ccceccecccocassccccscscsccscsnsces

External Definitions [10]...lO..‘.O..O.....0......0.....0.
External Function Definitions [l0.l].cccecccoccscsccccas

Compiler Control LinesS [l12]..cceececoscscccscosccssscanass
Token Replacement [12.1]ccccccececcccescccccscosoconcncs
File Inclusion [12.2].I..l‘..I'.l.....'O.I.l.........‘..

Types Revisited £l4]...'.O........‘....l.........OI.O.....
Structures and Unions [l4.1].ceecccecesososossccscscascnsssco
Explicit Pointer Conversions [l4.4).ccceececcccccccccocns

Portability Considerations [16].ccccoccccccoccccsscsccoccn
Migration From MOD 400 Release 3.1 to MOD 400
Release 4.0..............0"....‘OGOOOOOBO.....I.COOQOO.
Register Conventions...‘...&.....u..6090.&0......0.0'.'..

Stack Frame..ceecceccecsscocsccsccoasssosssoscsscssascss
Register VariableS.oeceocecosscscooscccsescscsssccsssssscon
Saved Machine Stat@..ccecoccsccsccccsncssoscsscscccscsss 2

NNNNNNNNNNNNNNNR}JNNNNNNNNNNNNNN N
HOWVWYWOOOONIN~NNOaUTUTDE B BWWWRDNNDNDND -

(]

DR RN
| R D L
o b et e
WWHHO

ix Cw35-02

CONTENTS

Page
SECTION3DEVELOPINGCPRQGR—AMS*S.Giiii.b.'......’........ 3—1

Using the C Compiler (M4 CC)..0.'.........0...0....0...00. 3-1

C-Related Commands, Active Functions, and Utility

Progrms......‘.‘.........‘..l......l........"....’...... 3—6
CTaSk DU_TI!P (CSICK)--’v'..';COOQC..0..'6.....‘.0.0...0... 3-7
Delete C Variable (DL _ENV) c.ciecerecceocsccassanscaacaas 3-13
Check C Variable (ENV DEF)ccectecevcccsoscecssscccscssses 3-14
Getcvariable (GET_ENV)0'00-0-.c-.oo--o,o-o.o-n-oooao.oo 3-15
List C Variables (LIST ENV).ccceeececessoscsccccnscccoces 3-16
Load (LD)nooooo.oocoooonoooauooonoocoo-uoo-o-ooan.n--o.- 3-17
Old Load (OLDLD).0..0...0‘.....'0..00....0.100......0'00 3—22
Setcvariable (SET_ENV)-ooo-ooo.oo.o..oc...o-noooooocco 3_25

SECTION4THECSTANDARD LIBRARY.oo.oooc.noonoooooo-.oooc- 4—1

C SuppOIt Of MOd 400 File TYPeS...-.....-0.0.0..-.‘.00.0-.l 4-14
Subroutines and LibrarieS.ceeccccesceseccceccsccscccssesseccecs 4=15
Traps and Signals... 4—16
Error Returns.-......-........-........................... 4-19
Reporting Errors Via €IINO.:ccccesccsssccasccssccscscsasse 4-19
Reporting Errors Via m4_€rINO.ciecececcccsccsscscsancssses 4-19
UNIX Errors..-..........----.-..........¢............... 4-19
MOD 400 Extensions...O..Ql..l'...‘l....t..‘..'.....C..l. 4—23
Abandoning @ PrOCESS.ceccccsscscscesscsscscsssssscssancsacsscs 4=24
Run-Time Routines..l.l...lll..00...........Q.'.....O...... 4-26

a64l.'.....0.illl.0.‘....‘0...OOQO.CIQOICDOOCQQQOQOI 4-27
abort.....‘..........l'.............l......‘..Q..... 4-28
ADSeeeeteccsasececcccosnsseccenssacsssssccnsasscsacscas 4=29
QCCESSeeeectscosososssessssacossssscsssansassssscccssscccses 4=30
BCO0Seeescassssasassassososssscsscssosassssssssssssasssss 4=31
AlaArMecceoecsccccscscscssssossccoasscsaasncscsscsacssccsnces 4=32
allOCO..'......'O.DQ‘.......OQ........I‘..'.....I"I 4-33
aSCtime..............-......:T}..................... 4—34
asin.‘l...l..‘.".-0.0...0‘.....l.....l..’..'l..l... 4-36
atan..‘..l...Q'.Q....'.l...!0............0...0..!'.. 4-37
AtAN2 .cceetecesessccosscoscsosscscsoscccssssssssssassssssss 4-38
atOf....--...-..-.-......................-.......... 4-39
atoil..'..........Q..lOQIQ.l...O..Q.....l..o.l...... 4-40
atoll..“..l........OQ..'...QI..Q".....l.‘..l".... 4—41
brk......-..........-.-..-.-............--.......... 4-42

bsearChonooc.Q.co..o.t..ono.o..-.oooc.oc-..ooo.ot..o 4-44
CalIOC..no"..ool.'o"OO......onoono.o.oo.oooo'o.n.o 4-46

ceil--.-n..oo-.0_000.00-00.QQ.n.Ooo.oocoooo.o.uc.oo.o 4-47
chdir;o.o...onccoooocoaono-o....o.coo.o.t.'oooooaoco 4-48
Chown.......--..-.o..-.-................-o.-........ 4-49

Clearerr.-............-.-.......-....o.............. 4—50

x _ CW35-02

CONTENTS

Page

CIose. ® ® @ © 0 &0 0 S O O S O OO O @ G 2 C OO OO 6 O O OO 6O OO PO O 6 0 OO0 6 S S 4-51
COs. ® © 0 5 066 0 00 ¢ 00 & OO D OSSO S EE SO OO SO PSS OSO OO O S OO BSOSO DOPO OO OO O 4-52
COShu-oo.-.0-..-o-ooooooooo-no.-o.v--o-oooo--ooo.coc 4-53
Creat.................o.................;........... 4-54
crypt. e 6 ." ® ® ® » &6 0 6 © O 0 ¢ 5O O Qe O 5O OO G OO QOO OO e e OO0 0C OO O 0O S 6 S 4—55
CtimE..-.........-.-...-....-...................u... 4-56
dup. ® ® O 6 & 6 & 9O PO S B OGO O 06 G 0 e e s eSS0 e 0 s8OS e e 0 e e e 00 0 00 00 8 4_58
ecvt. ® & © 2 0 € © 0 0O O O ¢ O QPO OGO O OSSO O C O OO C©O 0O O OO O S OG0 e 600 @ 0O 4-59

enCIyptoobutoQ...00ol‘-O.ocloOo.ooo.....co.oo‘oo.oo. 4-60
endgrent.oocl.0.QO.'.‘0..00....-0.000..‘....-..00... 4-61
endpwent.o............c..a....-.oo.o...t..l.o.o..‘l. 4-62

€IINOcecceccscocnncoscanassnssnsossssssscoscosossocessosassscses 4—63
equal_name...-......-.-............................. 4_64
erf....@.. 4-67
erfc................................-....-.......... 4-68
EXECl.-.......................g...............u....- 4-69
exeCIE.....a.. 4’72
€XECVissocooooscassesoccoenononconsessecsesosoecsoossecssss 4-75
EXeCVe:ccoecsscosscososcccososesoeecconeacooosocscsasceocssoss 4-78
eXECIPcnonoontooo.st0oc..oonoo'ooooooooo:oonscoooowa 4-81
execvp........................a....-..............,. 4-83
eXit...oo-oo..c.....,....---o......--o.....»....o... 4_85
expo¢co.oauoooooao«oocooo..-.-.-c-oooooao--ua.-ooeo. 4-86
fabSeocoooo-cooa-mcooaovooo0occootooooc..oe.oooooooo 4’87
fClOSEanoocnoauaoooo-ocoaoooooo.ensoaooecaoeeooooouc 4“88
fcntlouaooooqoo-ao-oooo..eoo.-ooooea..ooooooooooooo- 4-89
fcvtbaa.aoooo-ooooeeo-uooowocuoocoooo-oooueoooo@ootc 4-91
depen.....o..¢..aw.............a.......o.o..-..o..a 4-92
feofq.o.oennca..onoowooooo--o-.ooooo-oooo.ooo..cosoo 4-94
ferror...e........-...a...-......................... 4_95
ffIUSh........................g....a.o..........e... 4‘96
fgetCo..-oocoo'--ooo--no.ooa.o.-o-oooooo-oo.ooouoo-o 4-97
fgets...-....- 4-98
fileno....-......a.--..a.................-.......... 4-99
find_file........-...............-.................o 4-100
flOOI...o.......................a..................o 4—102
med.. 4-103
fOpen..............--...........o................... 4’104
fOIk....e....a....................a.-............... 4—106
fprintf-o-oo--ooooooouooconocooooooooono».o-ooc.ooo- 4-108
fputc..............................‘.o.o....-....... 4'113
fputSoooo.ooaooouooocooooo‘oooooooo.oo.ao--.-o.ooo-o 4—114
freade.........o........e....eoea..oa............... 4-115
freeaoootonoocoooooc-oao-oooc.baooaooeoooooooco--o-o 4-116

freopen.o.oolnoao.....0...0..0000.00000.0.0."0..b.e 4-117
frexp.a..tc.Qooo..0..000..0.0.0000.00.‘00.o....o..o. 4-119
fSCanfoooooo.0.0..-&no.-o.o.o...c..Ol.....oo.oo.ooco 4-120

xi Cw35-02

CONTENTS

Page

fstat...‘..‘......'..‘..Q'CQQ.QE.QQ.G.QS..G'.GGCﬁhiﬁ 4-124
fwriteoalc....o-.-0...0Q....'...o..oco..'l‘la..tcoc. 4-126
gamac.oott‘aocciotiQOCQ'.Q'..Q‘0'0’0'.00...0..'.0.0.! 4-127
gcvt‘..'.‘.O."O.'.'........I.........C.....‘l".... 4—128
getc.oo0..‘..0.0.0'0.000000000to"oo...c.l".oo.-o-.. 4-129
getcha!ee!::¢=:=¢=9cii ---- " ® 420 0 e 00 0P G0N 000 PO 4_130

getCWd. ® © 8 0 0 0 9 O 0 G 6 P D SISO H S OO G E OSSO E S OO eSS N eSS e e 4—131
getdir.....".....0.'...-....'........'.....'.h.‘.l' 4—132
getegidooovoooooociooooo..t.oooo.cactoo.ooooa.o.otoo 4‘133
getenv............-.................‘......'..-.-... 4-134
getEUid...-oo.....-..-.....-.......¢.....-.;-..‘.-¢.. 4-135
getgidon.'oo..-00-0000.3’-0--.00...oo.ooocoo-apoooo;o 4—136
getgreNteecesaseecsocesscscaosnsassssacssasossscsscssacsscsse 4=137
getgrgid. © @ ® & 0 9 0 9 & O SO E OO N OO OSSO E OO NSO S S eSO 4-138
getgINAMas ceeeesccsccccsscassonasosassocscssnsesssccssee 4—-139
getlogin' ® ® 9 © O & 8 & 8 O 8 OO QS N E B S OO E OO B S H ST 0SSN e e S e 0 4-140
getopt. ® 0 & @ 9 6 9O O O OO TS OB O SR S0 s 0 ? @ & ¢ 6 & 5 8 % 860 Q@ 00 0 e O 4—1 41
getpgrp..........-.........-...................-.... 4—144
getpid.oco.ooo-oo--.oo.-oooooooo»n-nouccoo-cooo‘.o.o 4-145
getppid. ® © 0 8 © & O G0 OO S C OO NS C O L G O C SO OO E SN OS e e OO 4‘1 46
getptcb. ® 9 9 00 00 O 0 G 6 OO SO0 O O PO O C S 0T OB OO SL PN CO e 00 e 4’1 47
getpwent. LN] . ® © 0 @ @ 6 © 0 ¢ OO OO O PO PSS SO E O SO SO SN SO O e e N0 o 4-1 48
getpwnam. ® 8 6 & @ 6 8 @ 6 O G O O OB G OO O P E O N eSO E eSO ee e 4—149
getpwuid. @ ® & 5 @ 0 9 O 9 S A C OO O G OO L0 SO N OO SOOI OO0 B E OO 4‘1 50

getroo...oo..noooloot00.0.00.‘0'-c..ooo.o.o'o'.0..10 4-151

gets--Qo'QQO...C..'OOCI..’.I'.“0.00..'000".0..0'... 4_153

getth-... 4-154
getuid...............-.........¢.................... 4-155
getw..............-..o........................‘..... 4_156
OMEIMEe ccevsococoosccssosoconososocssscscsssossscscscsacsenasse 4=157
hypot.-..-oo..oo.oo..---oo-oon.o.o-.o-o--..oooooo;.o 4*159
init_mem.. 4—160
isalnum.....................'............¢.......... 4-161
isalpha................-.............o.............. 4‘162
iS&SCii... 4—163
15@5C1ii8ececcrecesecctcsncescccecccassscssnsocsncses 4-164
isatty............-................................. 4"165
iscntrl........................-.................... 4‘166
isdigitcoo-oo-o-o...ooooooo'nc-'.oc.o-o-oo.oonuo..o- 4-167
isgraph... 4"168
iSlower...............-........-.-.....-...........- 4-169
1SPrinteceeesesscccccescensscccanssssssaassscsccnssas 4=170
1SPUNCE . e eeeserscocsscosesscsscoossscnansssscsssscsases 4=-171
1SSPACEe ceeccseecccnsossossasssssnssaccsnsscncsansses 4=172
isupper... 4-173
isxdigit.ceeeeeeseccconessscsccnssscsasssosssssscccncas 4-174
jo, jll jﬂ.o......................-.....-........... 4_175

xii ‘ CW35-02

CONTENTS

Page

kill.....l........IQ.‘I..C....‘0‘.'.'...'........... 4-176
l3tolooot..-n-c...lnlo.o..to.oo..,-c.ooo...-0....00-0 4-178
164a0c.nlclnoon.-.lto...‘..o..l.ccolnoo.-oc.o.-.oo.- 4-179

lAEeXPeceeveccoasacscccoscscsssccssssssssscscccccssass 4-180
lgdiVoo-ooo-o.uo.ooooo-.o..o.ooooo.lo.oo.n.oo.co.o-o 4-181
lgmul.ceeeeecrsoescssacoooccosassccacssssssssossscscscces 4—182
lgreMeceeceeeocaeossocoscassssssasscssacsssosssacsnsasnsee 4-183

link.oloo.c...ooooo.nc.-loilnooooo.oooo..c.oooa...lo 4—184
IOCaltimei..l..l.ll....lC..l..l....l.ll...l'...'...‘ 4-186
log'n-oootocioc..---.a....n..onoo.ono..o.c......o..o 4-188

1091000.....0000..-.ot...n..-..nouoc.o.cc.o.u-‘--oco 4_189
longjmpcooooocoo.lco..o-...00....lo..o.!aﬁ.-..-aa-o- 4-190
lsearCh.o..--..-.--..--....-.......o.-.-...-o.-..... 4-192
ltolB-ooooocooolo.oo.oc..o..oon.on-..o....-.'oooooouo 4_194
malloc-ooo..-ooh.....o-oo--ooo...onaa-.oooo..c.o..oo 4_195
mcl.ocos..o-tooctocon.cnoco.oucc'eoco‘on.uoo'ooo.a0. 4_196
memccpy.......-..-....-.........-...-..-...o........ 4‘-199
memChr..noocoolll0000-...oo-ootoo-o0000-00.0.00000-0 4—201
memCmpa'lo.l...-..Ooancol.unoooa..aooo...o.l...o..oo 4—202
memCPYQQOu0-.-.-..o.o..Doabooooc.n.oaou..ooo.-o.o-o. 4-204
memsetooll..loloocCQQOQO.o.oo.o.ooo.loooon.--..o.ocn 4—205
mktemp-.0.«-000...."0.000.0-.00oacowooo-ot..-oo-'.uo 4-206
modf‘lcOOOOOCOO.Q.l...llo..l-lolucoco.o-...o.l-..-ooo 4—207

openooo.lccooc.ccQuo..0..000oooclcno.'oooconoontcoto 4-208

pauseocon..o.oc.'o..a.l-aoo.oo..olo.aooeeoe..c.-o.co 4—211
per[orootlo.occollo..occc..llo.b'0.-.0...0.-..0....0 4_212

plpe-.o.O.lI.'.tIOOOIOQ.Q..OUCQOOQCODOOE..0...‘.0‘.. 4_214
posrc..enuocﬁoc‘ch00.000.0'.oo.eoo.o..o.-a.ooﬁaoo-.- 4-215
pOWcoooc-oo.co--.....ocoool..ooc.».ln....ct‘n..'-oloc 4—217

printf..-.o...nha-..‘.o.o.oouuo...aco-oooo..n.uo.oi. 4—218
pthtoG-...cnoaono.o.-oo.o.ooo.co.'-0.00-.0....-..... 4_219

putc.............'.'l0.‘l....00.......0..-..0....... 4-220
putChar.-oooﬁnuan.o..o.looo.noo......o...oo..toc...o 4-221
putrolicc;ooolotil000.o.oo..ool.c.oocoo....to.o.oo.- 4-222
puts....oooalo...'.l..o..a-.ooo..c.l..-'o....ocooo-. 4-226
putw--.-o.-..-..--..-.o.-.o...-oo...-..-.-.-oo.-.-.. 4-227
qSOl’t.......‘.............-.......o--............... 4-228
rando.oo.oto...o.looa0.0...00.o.aoo-c-oo.-....ooctul 4-'229
readoobooeo.'..ooo.C..oa.oo....oloo.o.ooo.oooool...- 4_230
realloc'.o..o...oQo.olooo.co.l.olco..o.c..oeo.s...o. 4-232
runl-.ool.‘o..'00.00.Q.D.Q.l.ooQ..o...'o...ooo.-..ooo 4—233
runlpoooic.o.oool.Qoau'ooo.oo-.ooeaoooaa.-.ooalooo.‘ 4-235
IUDVICDQOOO!I.Qool.eoooooniocoollaon.lea.o.o.-ooco.o 4-237

runvp.;.u.t-0000a.o.oto.no.o‘..o.eoeoooaoo.oeo...l.- 4—239
same_file.-.o--.oco...o..oo.aoll..e0.009...0.000.0.0 4-241

sbrkt.'olo-oc.c.o...o".o..-ooo-o.o..-o..ooo.o.l-ooo 4-242

SCanfOQOO.o'.D'e.0.‘.0ld..n‘.....o..........-00...-. 4-244

xiii CW35-02

CONTENTS
Page

Send slg'.occtctocoltulo.Q...O0.0.....0.900-.0-0.019 4—245
setbuf.......Ql....'.’....'..‘......'...QC..O.....O. 4-246
setgrent'00‘9".0.00..00‘0.‘lQ.i....I‘....'Q.....I‘C 4-247
set]mp..&e.eeeo.ocso’e-.06inold&.ﬁdoooo.tl.-.o..tnoo 4“248
setkeYOootcoootlooonot00.00.0.!.'."!00..ov"co.'ot. 4-249
setprint;-—-onn-eeeeeeeeee::::c:::c:::;ea;aee-u--.-- 4’250
Setpwentoooo.olooooo..c.Qo.o.'o'cocoooooocooncl..... 4—251

signal.l..‘G..."....Q...0!'0.."'...01..‘060".."Q 4-252
sin.ol.o.o.on.o'o...ac'o...oo.ro.‘.o.'...o.lool..o' 4—256
sinh'oboo.'..n.ol.0..00000-.0.0.000..‘..000000006‘.0 4-257

sleep...l...l‘..."‘...‘..'.O.'.‘Q.........Q"...... 4—258
smopen..Q'...l..‘.I..I.‘.'.'Q....‘..........l‘....‘. 4-260
smread...c".ooo‘lo‘oQ..Qo....oo.ooo.ono.'ol..oo...o 4-262
smwrito.oc.loooooioo.loociot.oo.oooo.-.al.nlooool... 4—263
sprintf-...Qloottco.oooo.t...o'..oooc.lco..-..0..-.0 4—264

sqrtcta...‘o'o.0..0..00.0..00‘..t.c.'o.c....ﬁoo..o-. 4'—265

srand.oucﬁoooolloanuo..00.00..0o.'o'oooto.o.lootc.‘. 4-266

Sscanf...........-.c.-.-...........................- 4—267
Stat CheCk....-.-......¢.......a'............-.-.-.. 4_268
star‘-matChO ® 0o & 00 &0 ' ® 6 © 6 ©C © 9 08 09 0 SO OO EON SN NGO T O T O OO S OO 4—269
star name. @ ® ® © @ & O 6 5 C 0 6 & 0 O O O QO E O PO OO A L E O8O N OO E 80000 4-270
stat...'.'.‘..-..."...................'.'...‘.'...' 4—274
SErCaAtceceveencecsconccsocasceccanscscnscocssvssscsnscscce 4-276
strchr. ® € ® ® © 0 & 6 OO ¢ O 0 0 O S S O E 9SO OC E O OO O T OOV E PN OS e eSS NN 4—277
Strcmp..........o--.-o.-.-....-..................... 4_278
Strcpy. ® ® @ 0 9 0 & O 0 0 ST S O DO E OO B S OGS OO EAAE T O eSS e 4—279
strCSpn.. ® 9 0 0 0 9 00 8 8 O G Q T OO O L OO L N O OSSN S S0 S e 4-280
strlen....‘.......'.......".‘....................'. 4-281
Strncat... 4_282
strncmp. ® @ © 00 0@ & % 0 0 S 0T QOSSO NSNS AN As eSS 4-283
Strncpy.................--...........-.............. 4“284
strpbrk...'...... ® © & 0 9 0 8 0 0 0T O S G S OO0 SP 8 O e OO 9N 00 e 4—285
strrchr. ® ® 0 0 0 0 0 0O 0 O 00 GO O PSS SN C LSOO E SN OO eSO e SO OO0 e 4-286
strspn. ® ® 6 0 0 0 0 0 O 0 00 8 OO 0T OO QOO OO S OO OO OB 00O O EOe SN0 e 4‘287
strtok....‘.‘.....C.....................‘."....‘... 4-288
swab.....'.'....‘.'..............'...‘...."....'... 4-289
Sys_errlist..........-.-..........-.--........-..... 4"’290
Sys_nerr..o. 4-291
System...................-........-...........-..... 4_292

tano..o-0...00.0“0..000.0.0"0000000000000000-00000 4-293
tanh..Q...O.l..‘.....‘..Q..O....Q..IQO‘Q‘C.'..QQ."I 4’294
time..o.on.lvcooooooool0...‘..0.0.00000..0...0ooo.ca 4—295

tmpnam. ® © 0 2 08 08 0 2 00 C O 000 E OO E OB 0T Q0 P E LS SO e O eSS 000 0 4-296
toaSCii. ® © 0 90 60 00 QT OO 0O E OO S0 0SS OO Q O C0 RSPl e 000 4-298
toaSCiis © 8 0 96 00 ¢S C Q00O O T OO N O E OO OO 0RO D e BSOSO 4_299
tolower....QCQ..l....'.....t..'.‘.C..QCIQOOO0.000QO. 4-300
_tOlOWer.eeeeeeasetsosasassncncsssscsssassscscsansess 4=301

Xiv CwW35-02

CONTENTS
Page

LOUPPeL e tceeeecossacocscssosssosscssosssscsnsssssssscnsses 4=302
_toupper...................................o.....--- 4_303
ELYNAME et ecavscoossossassscccnsssssosssssssscsssssascecs 4-304
tZSet.eeeeeceeeesececccsccasceccsccncscescscnccncsnes 4-305
ucf_init, ucf_defc, ucf_defr, ucf finish............ 4-306
UldiVeeeeeeeoeoosococcososcscsccncscssscsnscsscsoscos 4-311
UIIem... 4-312
UMEMChIeeeeeeeecsocoescccccaosncsacccnscsccsccaccnsss 4-313
UMEMCIMP: e s ssoscsessscsossccsascsssacscscsscacssscccs 4-314
UMEMCPY e e oo acoecscosccssssssascsasssssssoessesscsssoccseccss 4-316
umemset..........-...-.................-............ 4-317
Ungetc.................-..-............-............ 4-318
UnlinKeeeeoesoososocsosssocccccoccosscccssssascsssas 4-319
Wailteeveoeoooseensscnosescccscecsocscasacssccscaansasnss 4-320
Write......,.....................s..............o.w- 4—322

yo, yl’ ynlnIDQCQCIOOIQOO.-.oo.-l..o.o..o.o.-oc.ooo.o 4-324
APPENDIX A C COMPILER DIAGNOSTIC MESSAGES.......Q....,..; A-1

APPENDIX B ASCII CHARACTER SET..ccccccccoscocscnscosccsscs B=l

GLOSSARY.....-.-o..cotco..'.e.ol..oso.--uo.oo.oo'o.o....la g-l

ILLUSTRATIONS
Figure Page

2-1 StaCk Layout.0-...-.-0-.c..oou.-.oaoc.nooou...oa-ooo 2-11

TABLES
Table ' _ Page
4-1 MOD 400 C Standard Library (Sorted by Name) ccoeeoess 4-2
MOD 400 C Routines (Sorted by Function Group)....... 4-8
C Rcutines Not Supported........ID...C....O....C...O 4-13

2

3

4 MOD 400 Trap Support of UNIX Signals...oooaoo-ooncoc 4—17
-5 SOftware-Generated Signals.-oooosaooooooc-ooooocn.oe 4-18

1

2

Ccompiler Error Messages..h0..09...0‘0...000.&..600 A-l
C Compiler Diagnostic MeSSageS..ecceccessceccccascccsce A—2

B-l Eight-Bit ASCII character Set."..O.D.CQ.QOO'....... B-s

xv | " CW35-02

Section 1
INTRODUCTION

C is a general-purpose, low-level programming language. It
was developed under UNIX,* but is now available for use with a
number of computers and operating systems.

This manual describes the C programming language as
implemented on DPS 6 systems under MOD 400. The language is
described by noting variations from a baseline version of C.

The MOD 400 C compiler provides a C program with an emulation
of the UNIX environment. The environment simulated is a single-
user system. Run-time routines, signals, messages, and traps all
appear to a C program as they do under UNIX.

The reader is assumed to be familiar with C, UNIX, and
MOD 400. This manual is not a' complete reference document; nor
is it intended as a tutorial document.

DEFINITION OF "BASELINE" C

The version of C used in this manual as the baseline for
comparison is as described in:

The C Programming Language, by Brian W. Kernighan and Dennis
M. Ritchie. 1978, Prentice-Hall, Inc., Englewood Cliffs, NJ

The phrase "baseline C" is used in this manual to refer to that
version of C.

*UNIX is a Trademark of Bell Laboratories.

1-1 CW35-02

You are assumed to have a copy of this book on hand when you
refer to this manual. .

CONTENTS OF THIS MANUAL

The rest of this manual is organized as follows:

Section 2 notes all variations in the MOD 400 implementation
of the C language. The section is organized to match
Appendix A of The C Programming Language.

Section 3 describes the process of developing C programs
under MOD 400, including use of the C compiler, various C
utilities, and loading of C programs.

Section 4 lists the C standard library of run-time routines.
Appendix A -lists the C compiler diagnostic messages.
Appendix B lists the eight-bit ASCII collating sequence.

A glossary defines UNIX, C, and MOD 400 terms.

1-2 Cw35-02

Section 2

IMPLEMENTATION OF
THE C LANGUAGE

This section lists variations from the baseline C as
described in The C Programming Language (see Section 1). This
section is organized and keyed to match Appendix A ("The C
Reference Manual®™) of that book. Bracketed numbers in level
heads appearing in this section correspond to headings in
Appendix A of that book. ‘

This section contains only statements of variations. 1If a
feature is not described in this section, it is fully supported
by the C compiler, and behaves exactly the same as in baseline C.

LEXICAL CONVENTIONS [2]

The following variations on baseline C lexical conventions
exist in MOD 400 C. '

Identifiers (Names) [2.2]

An identifier name can contain uppercase or lowercase
letters, digits, underscores, and dollar signs, in any order.
Only the first eight characters are significant. External
identifiers are mapped to six characters, in uppercase. The
MOD 400 C compiler treats external identifiers as follows:

l. All lowercase characters are changed to uppercase
characters.

2. All underscores are removed.

2=-1 Cw35-02

3. If more than six characters remain after eliminating
underscores, vowels are eliminated from right to left
until either: (1) there are only six characters left, or
(2) there are no more vowels.

4. If more than six characters remain after eliminating
underscores and vowels, the excess is truncated, right to
left.

Keywords [2.3]

The following additional identifiers are reserved for use as
keywords: ‘

void
enum
escape
const
Constants [2.4]

The following variations on baseline C constants exist in
MOD 400 C.

Strings [2.5]

A string has type "array of characters" and storage class
const, and is initialized with the given characters.

Hardware Characteristics [2.6]

The size of C data types are:

Data Type Size (bits)

char 8
unsigned char 8
int 16
unsigned int 16
short 16
long 32
unsigned long 32
float 32
double 64

WHAT'S IN A NAME? [4]

The C compiler supports all arithmetic types. C data types
are described below.

A character variable (char) is a one-byte, signed binary
integer consisting of seven significant bits and a high-order
sign .bit. It is always byte-aligned. A scalar char variable
that is not a component of a structure always occupies the

2-2 , CW35-02

high-order byte of a word of memory, and is followed by a fill
byte. 1In general, the signed character data type does not handle
eight-bit ASCII characters correctly. Use the unsigned character
data type for eight-bit data; use the signed character data type
for integer data with a domain of =128 to 127 (at most).

An unsigned character variable (unsigned char) is a one-byte,
unsigned binary integer consisting of eight significant bits. It
is never negative and always byte-aligned. A scalar unsigned
char variable that is not a component of a structure always
occupies the high-order byte of a word of memory, and is followed
by a fill byte.

An integer variable (int) is a two-byte, signed binary
integer consisting of 15 significant bits and a high-order sign
bit. It is always word-aligned. This is the default data type
for any variable.

An unsigned integer variable (unsigned int) is a two-byte,
unsigned binary integer consisting of 16 significant bits. It is
never negative and always word-aligned.

A long variable (long) is a four-byte, signed binary integer
consisting of 31 significant bits and a high-order sign bit. It
is always word-aligned.

An unsigned long variable (unsigned long) is a four-byte
~unsigned binary integer consisting of 32 significant bits. It is
always positive and always word-aligned.

A floating-point variable (float) is a four-byte, word-
aligned, signed real number. It can contain a value in the
approximate range 8.6E~-78 to 7.2E+75, with up to eight digits of
precision.

A double-precision variable (double) is an eight-byte,
word-aligned, signed real number. It can contain a value in the
approximate range 8.6E-78 to 7.2E+75, with up to 17 digits of
precision.

CONVERSIONS [6]

The following variations on baseline C operand conversion
exist in MOD 400 C. '

Characters and Integers [6.1]

The C compiler performs sign extension on characters.
Character variables range in value from =128 to 127..

Float and Double [6.2]

The C compiler converts a double-precision variable to a
floating-point variable by truncation.

2-3 Cw35-02

Floating and Integral [6.3]

In the conversion from floating point to integral, the C
compiler truncates the fraction part.

EXPRESSIONS [7]

The following variations on baseline C expressions exist in
MOD 400 C.

The C compiler computes subexpressions in the order the
compiler determines to be most efficient, even if the sub-
expressions involve side effects. The order in which side
effects take place is unspecified.

Additive Operators [7.4]

If the offset to be added to (or subtracted from) a pointer
is greater than 32767, an invalid pointer results, unless the
offset is type long.

Shift Operators [7.5]

When a right shift is performed on a signed quantity, the
sign is propagated. For instance, in the expression E1>>E2,
where El is a signed quantity, the vacated bit positions are
filled by a copy of the sign bit.

When a right shift is"performed on an unsigned quantity,
vacated bit positions are filled with zeros.

Assignment Operators (7.14]

There are two types of pointers: pointers to byte-aligned
data (char and unsigned char), and pointers to word-aligned data
(all others). A word pointer is a 32-bit DPS 6 pointer. A byte
pointer is a composite, consisting of a word pointer and an int
byte offset. Pointers of either type are always word aligned.
Therefore, a pointer to a pointer of any type is always a word
pointer. The size of a word pointer is four bytes; the size of a
byte pointer is six bytes.

The C compiler also allows you to assign a pointer to an
integer and an integer to a pointer; however, the conversion is
reversible only if the integer is type long.

When an offset is added to (or subtracted from) a character
pointer, only the integer byte offset is affected. The byte
offset may eventually overflow unless the character pointer is
normalized (by adjusting the word pointer and the byte offset so
that the byte offset is 0 or 1). You can do this by explicitly
casting the character pointer as a character pointer:

cp = (char *)cp;

2-4 Cw35-02

This happens implicitly if the character pointer is converted to
any other type.

You can use simple assignment (lvalue=expression) to copy one
occurrence of a structure or union to another. The expression
must have the same structure or union type as the lvalue.

DECLARATIONS [8]

The following variations on baseline C declarations exist in
MOD 400 C.

Storage Class Specifiers [8.1]

The C compiler does not use register declarations for
aggregate types or functions.

The C compiler accepts the first two register variables of
type int, unsigned, char, or unsigned char, plus the first two
register variables of type pointer. The remainder is treated as
storage class auto.

You can declare data (of any type) to be storage class
const. This instructs the C compiler to allocate space in the
code segment rather than in the data segment. You must declare
const data with initial values; once they are declared, you
cannot change them.

A const identifier declared within a function has block
scope. It is known and can be referenced only within the block
in which it is declared. 1Its storage class specifier must be
const or static const and it must have an initializer.

A const identifier declared outside any function has file
scope. It is known and can be referenced from the point of
declaration to the end of the file. 1If its storage class
specifier is const, it can be referenced by a separately compiled
function and must have an initializer. 1If its storage class
specifier is extern const, it is a declaration that references a
definition in a separately compiled function and must not have an
initializer. 1If its storage class specifier is static const, it
is a definition that can be referenced only within the current
source unit and must have an initializer. o

In reentrant code, an array of pointers to functions can be
initialized only if it is storage class const. It can be
referenced externally via the mechanism above. This is a
specific instance of the reentrant code rule that pointers in
data cannot be initialized to point to code (const or function)
and vice versa.

2=5 CwW35-02

Type Specifiers [8.2]

You can explicitly declare functions not returning a usable
value as returning type void. For example:

void £f1(); /* declaration */
goid £2() /* definition */
£1()

The compiler diagnoses any expression that requires the value of
a functicon returning veid as erronecus, provided the definition
or declaration of the function is in scope. If no declaration or
definition is in scope, the compiler follows the rules for
"implicit declaration [13] and assumes type function returning
int.

The enum is analogous to the scalar types of Pascél. The
format is

enum-specifier
with syntax

enum-specifier:
enum { enum-list }
enum identifier { enum=-list }
enum identifier

enum-list:
enumerator
enum-list , enumerator

enumerator:
identifier
identifier = constant-expression

The identifier in the enum-specifier is analogous to the
structure tag in a struct-specifier; it names a particular
enumeration. For example,

enum color { red, white, blue, green };

enum color *cp, col;
makes color the enumeration tag of a type describing various

colors, and then declares cp as a pointer to an object of that
type, and col as an object of that type.

2-6 Cw35-02

The identifiers in the enum-list are declared as constants,
and may appear wherever constants are required. If no enumer-
ators with = appear, then the values of the constants begin at 0
and increase by 1 as the declarations are read from left to
right. An enumerator with = gives the associated identifier the
value indicated; subsequent 1dent1f1ers continue the progression
from the assigned value. :

Enumeration tags and constants must all be distinct, and
unlike structure tags and members, are drawn from the same set as
ordinary identifiers.

Objects of a given enumeration type are regarded as having a
type distinct from objects of all other types. All enumeration
variables are treated as if they were int.

Structure and Union Declarations [8.5]

The C compiler only recognizes integer and character bit
fields. The compiler does not initialize structures containing

bit fields. The compiler assigns bit fields left to right within
the word.

STATEMENTS [9]

The following variations on baseline C statements exist in
MOD 400 C.

Escape Statement [9.14]

You can instruct the C compiler to pass information unchanged
to the Assembly language intermediate ccde. The format is

escape "char literal®™[, “"char literal®]... ;

where "char literal® is a character string constant delimited by
guotation marks. At least one string is required. Character
escapes such as \t and \n are translated into ASCII characters.
If a string does not end with a newline character (indicated by
\n), the compiler appends one. Commas between strings are
optional, but the closing semicolon is required.

The escape statement, up to and including the semicolon, is
syntactically eguivalent to white space.

EXTERNAL DEFINITIONS [10]

The following variations on baseline C external definitions
exist in MOD 400 C.

2-7 ' CW35-02

External Function Definitions [10.1]

The C compiler converts word pointer actual parameters to
character pointers by supplying a 0 byte offset. Word pointer
formal parameters consider the byte offset in the calculation of
formal parameter addresses but otherwise ignore it. Character
actual parameters are converted to integers. Character formal
parameters are converted back to characters by shifting their
value to the high-order byte of the word and setting the low-
order byte to 0. The entire contents of a structure or union
actual parameter is passed.

COMPILER CONTROL LINES [12]

The following variations on baseline C compiler control lines
exist in MOD 400 C.

Token Replacement [12.1]

The C compiler allows omissicn of arguments in #define
statements. For example, given the statement:

#define list(a,b,c) a:b:c

subsequent uses of the identifier yield these replacements:

list(x,,2) becomes X::2

: . list(x, ,z) becomes X: 2
list(, , g) becomes : g
list((w,x),y,2) becomes (wyx):y:z

Text inside a string or character constant is not subject to
replacement except in the token string forming the macrocall
body.

File Inclusion [12.2]

An include file can contain an #include statement; this is
called a "nested include."

By convention, UNIX C include files are referred to as
"header files™ and given a .h suffix. The C compiler does not
enforce this convention.

If the filename in an #include statement is a full or
relative pathname, the C compiler includes that file (or
generates a fatal diagnostic error).

If the filename is expressed as

#include <filename>

2-8 Cw35-02

then the C compiler searches these directories:

l. Directories named in -I control arguments
2. Standard library directories. :

If the filename is expressed as
#include "filename"
then the C compiler searches these directories:
1. The directory of the original source unit
2. Directories named in -I control arguments

3. Standard library directories.

The MOD 400 standard C libraries are defined as
>UDD>account_ID>INCLUDE and >LDD>INCLUDE.

The MOD 400 C run-time routines accept UNIX pathnames and
converts them to MOD 400 equivalents; for example:

Pathname type UNIX MOD 400
Simple header. h HEADER. H
Partial sys/params.h SYS>PARAMS. H
Relative ../f00.h <F0O0.H
Full /bin/hic.h >>BIN>HIC.H

TYPES REVISITED [14]

The following variations on baseline C types exist in
MOD 400 C.

Structures and Unions [14.1]

Structures can be assigned, passed as arguments to functions,
and returned by functions. The types of operands involved must
be the same.

If a signal occurs during the return seqguence, and the same
function is called reentrantly during processing of the signal,
the value returned from the first call can be corrupted. The
problem can occur only with signals; ordinary recursive calls
work properly. (See the description of the signal function in
Section 4.)

Explicit Pointer Conversions [14.4]

A char pointer-to-long-to-char pointer or word pointer-to-
long-to-word pointer conversion will produce the original pointer
value. A pointer-to-int-to-pointer conversion will lose the most
significant bits of the pointer value and produce an invalid
pointer.

2-9 CW35-02

PORTABILITY CONSIDERATIONS [16]

The first character is assigned to the high-order byte; a
character variable is byte aligned, but a pointer to a character
is word aligned.

The C compiler automatically defines the system names
"mod400" or "unix" (as appropriate),; the variety name "level§,"
and the macrocalls "_LINE__" and "__FILE_ " (using double
underscores). The macrocall "__ LINE__" is replaced by the
current line number (within the current file). The macrocall
" FILE_ " is replaced by the current file name. For example, if
line 10 of the program MYPROG.C contains:

printf("ss:3d\n",__FILE_ ,_ LINE_);
it would be changed to

printf("$s:%d\n","MYPROG.C",10) ;
If these macrocalls appear in an include file, they are replaced
by the current line number in the include file and the name of
the include file, respectively. '

The C compiler does not require either the Commercial or the
Scientific Processor. However, if you write a program that uses
date/time functions or floating-point arithmetic, you must
execute it on DPS 6 hardware that includes a Scientific Processor
or the Scientific Processor simulator.

Migration From MOD 400 Release 3.1 to MOD 400 Release 4.0

For a C program compiled under MOD 400 Release 4.0, using the
Release 2.0 C compiler and runtime routines, and linked using the
Release 4.0 Linker, there is no limit on size. Otherwise, the
program is limited to 64K bytes.

To port C programs from MOD 400 Release 3.1 to Release 4.0,
you must reload and relink them using the Release 2.0 C runtime
routines, but you can use either the Release 3.1 or the Release
4.0 Linker. If you relink a previously reentrant program using
the Release 3.1 Linker, do not use the -R or -SHARE arguments,
and ignore diagnostic messages concerning $AMASK, $CMASK, and
SLASTS. If you relink a reentrant program using the Release 4.0
Linker, specify the -R argument.

2-10 Cw35-02

Register Conventions

When a C program (including run-time routines) executes, the
registers it might use are:

Data registers (R1-R7)

Address registers (Bl-B7)

Program counter (P)

Stack address register (T)

CPU mode register (Ml)

SIP operating mode register (M4)
SIP trap enable register (M5)
System status/security register (S)
Indicator register (I)

Scientific accumulators (SAl-SA3).

STACK FRAME

Figure 2-1 shows the layout of a stack frame.

LOW MEMORY

BE =i ARGUMENT COUNT

AUTOMATIC VARIABLES

TEMPORARIES

B4

REGISTER CONTEXT

HIGH MEMORY
Figure 2-1. Stack Layout

Address registers B4, B6, and B7 are dedicated to uniqgue
uses. Register B6 contains a stack frame pointer to word zero of
the stack frame for the currently active function. Register B4
contains a pointer to a local push-down stack within the
function's stack frame. This local stack is used for compiler-
generated temporary values needed during expression evaluation,
and arguments to be passed to called functions. Register B7
contains a formal parameters pointer (a pointer to the argument
list prepared by the calling function).

2=11 Cw35-02

The contents of a stack frame are:

1. The number of arguments passed to the associated
function, stored in the first word (at offset zero from
the stack frame pointer)

2. Automatic variables, including any register variables not

allocated to registers; stored beginning in the second
word

3. Compiler—-generated temporaries and arguments

o e &

function was entered, stored at the end of the stack
frame. This register context is reloaded when the the
function exits.

4. A subset of the register context ag it existed when the

When control transfers from one function to another and back
again, register BS5 contains the return address. During the
transfer, register B4 contains the address of arguments being
passed to the called function, and register R6 contains the
argument count. The called function's entry sequence saves, in
the saved register context, the contents of registers B4 and B7.
Then it copies B4 into B7, and loads intoc B4 a pointer to the
first word of the saved register context in its own stack frame.

The register context saved by a function's entry sequence is:

e Data registers R1-R5 (a few functions do not save Rl)
e Indicator register (I)
e Address registers B2-B5 and B7.

Address register B6 is implicitly set and reset when a stack
frame is acquired or relingquished.

The C compiler generates code assuming that the SIP operating
mode register (M4) is set for double-word (32-bit) operands in
SAl and SA2 and a quad-word (64-bit) operand is set in SA3, with
the corresponding memory operands set to the same precision
whenever a function is entered. Register M4 is also assumed to
be set to truncate mode. Functions often change M4 during their
execution, but reset it to this standard state before returning
or calling another function. The code generated for functions
that use float or double variables assumes that any functions it
calls will overwrite the contents of the scientific accumulators.
(A function with no float or double variables does not use M4.)

The SIP trap enable register is not altered by the generated
code; however, it is set upon entry to a function, and determines
the behavior of that function in the presence of exceptions (such
as exponent overflow) during floating-point operations.

2-12 Cw35-02

REGISTER VARIABLES
Register variables are assigned as follows:

® RS contains the first register variable of type signed
int, unsigned int, signed char, or unsigned char.

® R4 contains the second register variable of type signed
int, unsigned int, signed char, or unsigned char.

e B3 and R3 contain the first register variable of type
pointer. R3 is used only for pointers to signed and
unsigned chars.

e B2 and R2 contain the first register variable of type
pointer. R3 is used only for pointers to signed and
unsigned chars.

Registers R1, R6, R7, Bl, B5, and any of the registers mentioned
previously that are not assigned to register variables are used
as working registers.

Registers R6, R7, Bl, SAl, and SA3 are also used to return
scalar (non-structure) values from a function to its caller.
Signed and unsigned integer and signed and unsigned character
values are returned in R7. Signed and unsigned long values are
returned in R6 and R7. Pointers to signed and unsigned chars are
returned in Bl and R7; other pointer values are returned in Bl
alone. Floating-point values are returned in SAl, and double-
word values are returned in SA3.

SAVED MACHINE STATE

The run-time routines save the machine state as it existed
when a signal was received before calling the appropriate signal
catcher. 1If the signal catcher returns, the saved machine state
is restored to resume execution. The saved machine state
consists of:

Data registers (R1-R7)

Address registers (Bl-B7)

Mode registers (M1-M6)

Scientific accumulators (SAl-SA3)
Indicator register (I)

Scientific indicator register (SI)
Commercial indicator register (CI).

If neither the Scientific Processor nor the Scientific
Processor simulator is present, registers SAl1-SA3, M4-M5, and SI
are not saved and restored.

If neither the Commercial Processor nor the Commercial

Processor simulator is present, register Cl is not saved and
restored.

2-13 CW35-02

Section 3

DEVELOPING C
PROGRAMS

This section describes the process of program development
under MOD 400. Included are descriptions of the MOD 400 C
compiler, C-related commands and active functions, and C utility
programs. :

-%

USING THE C COMPILER (M4_CC)

The MOD 400 C compiler can perform several operations on a C
source program in seguence:

l. Preprocessing

2. Compilation

3. Assembly of compiled code
4. Prelinking

5. Linking.

You can instruct the compiler to stop after any of these
operations.

The syntax of the M4_CC command is described on the following
pages.

3-1 Cw35-02

M4__CC

FORMAT:

M4_CC file list [ctl_arg]
ARGUMENTS::
file list

One or more pathnames, separated by spaces, of modules
the C compiler is to compile; assemble, and/or link.
Files can be C source units (name.C), Assembly language
source units (name.A or name.P), object units {(name.O),
or object directories (path). An object directory path
such as <IO is equivalent to the control argument -LIB
<I0. The compiler compiles, assembles, and/or links
files in the order given in the command line.

You can intermix control arguments and file names in any
order.

[ctl_arg]
Control arguments are processed in the order you enter
them, before any files are compiled, assembled, or
linked; therefore, arguments can override each other.
Control arguments with parameters do not require white

space separators; for example, -BU name and -BUname are
both syntactically correct.

One or more of the following control arguments can be
entered, in any order:

-AS

Stop after assembling the compiled code. Output is
placed in the corresponding file(s) name.O.

The arguments -PP, -CO, -AS, and -LD are mutually
exclusive.

-BU name
Assign name to the bound unit. Prelinker output-
files are named bu_name.Q and S$bu_name.O; Linker
output files are named bu_name.M and bu_name.

Default: The default name for C programs is A.OUT.

3-2 . CwW35-02

Mé_CC

Stop after compiling the preprocessed code. Output
is placed in the corresponding file(s) name.A.

The arguments -PP, -CO, -AS, and -LD are mutually
exclusive.

-COUT out_path

Instruct the Assembler to write source listing to the
file out_path.

Default: No listing is produced.

{name=def}
name

Enter name in the list of definitions as though
either "#define name def" or "#define name 1,"
respectively, had occurred in the source unit. Up to
20 such names can be entered. These definitions are
recorded before the first line of the C source unit
is processed.

Example: M4 _CC MYPROG.C -D "true=3"

-1 directory

Add directory to the list of include file directories
the C compiler will search. Up to eight include
directories can be added. Simple filenames in
#include statements are sought by the C compiler in:
(1) the directory of the source unit, (2) directories
named in -I control arguments, and (3) standard
include directories (see Section 4).

Stop after prelinking the assembled code. The C
compiler stores Linker commands in the work file
bu_name.Q, and external data declarations in the
Assembly language object unit $bu_name.O.

The arguments -PP, ~-CO, =-AS, and -LD are mutually
exclusive.

3-3 Cw35-02

M4_CC

Produce a listing of Assembler errors and error codes
only. Output is written to name.L if the -COUT
argument is not specified.
Default: No listing is produced.

-LIB directory
Search LIB directory for object units during the
prelinking process. If vou specify this argument;
the compiler will search LIB directories after the
working directory, but before the directory
>LDD>Z4CRT. This pathname is passed to the C
prelinker. Libraries are searched in the order
specified; so the placement of a -LIB control
argument is significant.

Example: The control argument -LIB <IO instructs the
prelinker to search the directory IO.

Produce a listing of the Assembler output. Listing
is written to name.L if the -COUT argument is not
specified.

Allow macrocall recursion.
-NL

Do not link the bound unit. This arqument is passed
to the C prelinker.

-OLDLD

Use the "o0ld" Load utility. (See the descriptions of
the Load and 014 Load utilities in this section.)

-0P
Optimize the compiled object code.
-PC
Pass comments through the preprocessor.

Default: Comments are stripped out.

3-4 Cw35-02

M4_CC

-PP

Stop after preprocessing the source unit(s).
Preprocessing involves all source code lines
beginning with #. Output is placed in the
correspending file(s) name.W.

The arguments -PP, -CO, -AS, and -LD are mutually

exclusive.
-R

Genérate reentrant code.
-SZ n

Request n additional 1024-word blocks of memory for
linking (where n can range from 1 to 32). Use of
this option can substantially reduce linking time for
large programs. Refer to the MOD 400 Application
Developer's Guide for suitable memory values for
linking.

«-U "name®”

Remove name from the list of definitions, as if
"#undef name® had occurred in the source unit. Up to
20 such names can be removed. These-definitions are
removed after the C compiler processes the -D control
arguments, but before the first line of the C source
unit is processed. Besides names defined by the -D
control argument, only implicitly defined names like
level6, unix, or mod400 can be undefined.

-UC
Change all scalars, arrays, and pointers of the type
char to the type unsigned char. Treat character-
string constants as if they had been declared "const
unsigned char []" rather than "const char []."

EXAMPLES:

This command line compiles, assembles, and links a single C
source unit, named OUT2.C. The bound unit is placed in
A.OUT; the object unit is deleted by default.

M4_CC OUT2.C

3-5 Cw35-02

M4_CC

This command line causes the C compiler to compile PROGl.C,

ignoring the listed object files and the Linker argument:

M4_CC -BU PROG PROG2.0 PROG3.0 PROGl.C -AS
This command line:

M4_CC -BU MYPROG A.C B.A C.P C.0O <OBJECT
canges the C compiler to:

1. Compile and assemble A.C, producing object unit A.O.

2. Assemble B.A, producing object unit B.O.

3. Assemble C.P, producing object unit C.O.

4. If there were no errors, perform a prelink edit on the
object units A.0, B.O, C.0, and D.O. The compiler
searches for undefined functions in the object directory
<OBJECT, and then follows standard search rules.

5. Link object files A.0, B.O, C.0, D.O, and the rest,
producing a bound unit named MYPROG and a link map named
MYPROG. M, ' :

This command line:

M4_CC <OBJECT D.O C.0 B.O A.O0 -BU MYPROG B.A A.C C.P
produces the same effect as the previous example, except that
the object units are produced in the order B.O, A.0O, and C.O,
and are linked in the order D.O, C.0, B.O, and A.O.

C-RELATED COMMANDS, ACTIVE FUNCTIONS, AND UTILITY PROGRAMS

C-related commands, active functions, and utilities are
described in the following pages. They are ordered alphabeti-
cally by name. They are all available for general MOD 400 use.

NOTE

The utility program lint, commonly found on UNIX
systems, is not available for MOD 400 C programs.

3-6 CW35-02

CSICK

C Task Dump (CSICK)

Display information about a C task.
FORMAT:

CSICK task [ctl_arg]
ARGUMENTS :

task

The task to be investigated. Specify a bound unit name,
a logical resource number, or a task control block
address.

[ctl_arg]

One or more of the following control arguments can be
entered, in any order:

{oat

The same as -CONTEXT -HISTORY -STACK -BOUND UNIT
~HEAP ~-FILES -DATA -GROUP_WRITABLE_SEGMENT
-GROUP DESCRIPTOR_ SEGMENT .

~APPEND
~APP
=EXTEND

Extend the output file. This is the default.

{-BOUND_UNIT}
-BU

List the bound units attached to the task being

investigated. The bound unit name, location of the

bound unit's code, and location of the bound unit's
" static data are given for each attached bound unit.

=COLLECTION_WORK_AREA
~C_WORK_ AREA
-CWa

Print the C work area. The C work area is a logical
extension of the task control block. It is user ring
writable, and contains information required to pro-
vide the facsimile UNIX environment for C programs.
The area's structure is defined in the <z4cwa.incl>
header file.

3-7 | © CW35-02

CSICK

{GCONSOLE~OUTPUT}
1-CO

Direct output to the user-out file. This is the
default.

When this argument is in effect, the ~-TRUNCATE
argument is ignored..

=CONTEXT
Print the process context. The process context is:

1. The reason the process has stopped

2. The address where it stopped and its TCB-address
3. The contents of its R-registers and B-registers
4. The contents of its top stack frame.

-FILES

Print the process file states. First the mapping c¢f
file descriptors onto streams is given. Then the I/0
block for each stream is listed. If a given stream
is open and is not attached to a MOD 400 standard
file (command-in, user-in, user-out, or error-out),
the file information block used to interface with the
MOD 400 file system is printed following the I/0
block. The buffer contents are dumped and the
pathname of the file or device to which the stream is
attached is also given for each open stream.

The I/0 block is defined in the type definition FILE
in the <z4cwa.incl> header file. The file
information block is defined in the fib structure
definition in the <dm_mcl.h> header file.

{-GROUP_DESCRIPTOR;SEGMENT}
-GDS

Print the process group descriptor segment.

{-GROUP_WRITABLE_SEGMENT}
-GWS

Dump the process group writable segment. The listing
is preceded by a list of the work space blocks for
the task group to which the process belongs. The
blocks are listed in order of increasing age,
including address and size.

3-8 Cw35-02

CSICK

The group writable segment is listed only for
processes executing in a swappool. Work space blocks
are listed regardless of memory pool type.

~HEAP

Print the heap state and the contents of the heap.
The heap state is a list of the busy (allocated)
blocks in the heap ordered by increasing address.
For each busy block, the block's address, size (in
bytes), type, and reference count are given. If a
given block is not under the control of a type
manager, its type is listed as "untyped" and its
reference count is meaningless but usually zero.

-HISTORY

Print the process history. The process history is
obtained by unwinding the process's stack in reverse
order (the most recent frame first). For each frame,
the return address to the caller of the activation
associated with the frame, the number of and location
of the arguments passed to the activation, and the
location of the stack frame are printed.

{-LOGICAL_RESOURCE_NUMBER} lrn
" \=LRN :

Logical resource number, in decimal, of the task to
be investigated.

{—OUTPUT@FILE} path
-OF

Direct the output to the file path. If path is
omitted, output is placed in a working-directory file
named buname.CSOUT, where buname is the bound unit
name of the task's lead bound unit.

Default: Direct output to the user-out file.
=STACK
Include the contents of the stack frame itself in the

- process history described above. This control
‘argument implies the -HISTORY control argument.

3-9 CwW35-02

CSICK

{-TASK_CONTROL_BLOCK} address
-TCB

Address of the task control block of the task to be
investigated. The address must be in hexadecimal
notation, in either uppercase or lowercase,
optionally enclosed in parentheses, and optionally
preceded by 0, x, or O0x. For example, all these
addresses are valid:

054da7 X054da7
054DA7 0x054DA7
x'054Da7"' 54DA7

-TRUNCATE
-TC
-RENEW
Truncate the output file, if it exists, before
placing output in it.

This argument is ignored when the -CONSOLE_OUTPUT
argument is in effect.

Default: Extend the output file.
DESCRIPTION:

The C Task Dump utility prints a detailed explanation of a
task running a C program. It does this by way of formatted
dumps of the process context, call history, stack frame
contents, attached bound units, heap state and contents, file
states, static data area, group writable segment, group
descriptor segment, or any combination of these options.

This utility is interactive; it accepts directives to alter
the information it displays.

The utility uses the bound unit symbol table produced by the
Linker when the Linker is invoked with the -SYMBOL control
argument, if it can be found, to provide compile unit names
and entry point names instead of numeric offset values when
printing the process history. The directories listed in the
PATH environment line are searched to find the bound unit
symbol table file. The default PATH environment line
corresponds to the directory from which the CSICK utility is
loaded, followed by the directories listed in the MOD 400
loader search rules. See the C environment commands and

~active functions for further information on manipulating
environment lines.

3-10 CW35-02

CSICK

Interactive Mode

When the -CONSOLE OUTPUT control argument is in effect, the
utility operates Interactively. The utility issues the
prompt "csick:"™ to the user-out file at the end of each page
of output and then reads a response from the user-in file.
For most directives, the prompt and response cycle is then
repeated.

The following directives are supported.

{ALL}

A
Equivalent to the successive responses CONTEXT, STACK,
BOUND_UNIT, HEAP, FILES, DATA, GROUP_WRITABLE_SEGMENT,
and GROUP_DESCRIPTOR_SEGMENT.

{BOUND_UNIT}
BU

Add the list of bound units attached to the task being
investigated to the list of information to be displayed.

CONTEXT

Add the process context to the list of information to be
displayed.

DATA

Add the static data area to the list of information to be
displayed.

{E } command_line

Pass command_line to the MOD 400 command processor.

FILES

Add the process's file states to the list of information
to be displayed.

{GROUP_DESCRIPTOR_SEGMENT}
GWS

Add the group descriptor segment to the list of
information to be displayed.

3-11 Cw35-02

CSICK
{GROUP_WRITABLE_SEGMENT}
GWS

Add the group writable segment to the list of information
to be displayed.

HEAP
Add the heap state and the confents of the heap to the
list of information to be displayed.

HISTORY
Add the process history to the list of information to be
displayed.

{QUIT}

Q
Terminate the utility immediately. The prompt and
response cycle is not repeated.

SKIP
Abandon the display of the set of information currently
in progress. The prompt and response cycle is not
repeated. To abandon the current display and request an
added display, you must request the added display at the
first prompt and request the skip at the second. 1If the
current display is requested, it will be done a second
time. Re-requesting the current display and then making
a skip response restarts the current display.

STACK

Add the process history with the contents of the stack
frames themselves included to the list of information to
be displayed.

The C Task Dump utility ignores all other responses.

Using CSICK

One way to use the C Task Dump utility is to set a breakpoint
at an interesting location using one of the MOD 400

debuggers. When the breakpoint is reached, execute the C
Task Dump utility using the debugger's escape (E) directive.

3-12 ' Cw35-02

DL_ENV

Delete C Variable (DL_ENV)

Delete C variable.

FORMAT:
DL_ENV name

ARGUMENT:

name
The name of the variable to be deleted from the C envi-
ronment. The name must begin with a dollar sign ($),

- underscore (), or letter. The rest of the characters

must be dollar signs, underscores, letters, or digits.
The name must not be more than 32 characters long.

DESCRIPTION:

The Delete C Variable command removes a variable from the
list of variables that you can pass to a C program.

3-13 CW35-02

ENV_DEF

Check C Variable (ENV_DEF)

Test for existence of C environment variable.
FORMAT (command):
ENV_DEF name
FORMAT (active function):
[ENV_DEF name]
ARGUMENT:
name

The name of the environment variable whose definition
state is to be returned.

The name must begin with a dollar sign ($), underscore
(_), or letter. The rest of the characters must be
dollar signs, underscores, letters, or digits. The name
must not be more than 32 characters long.

DESCRIPTION: v
The Check C Variable Command tests for the existence of a C
variable. This command/active function returns TRUE if name

is defined as an enviromment variable, and FALSE if name is
not defined as an environment variable.

3-14 CW35-02

GET_ENV

Get C Variable (GET_ENV)

Display C variable.
FORMAT (command) :
GET_ENV name
name
FORMAT (active function):
[GET_ENV name]
ARGUMENT: ' —~
name
The name of the variable to be displayed.
The name must begin with a dollar sign ($), underscore
(_)s or letter. The rest of the characters must be
dollar signs, underscores, letters, or digits. The name
must not be more than 32 characters long.

DESCRIPTION:

-+ The Get € Variable command/active function returns the
value of the named C variable.

3-15 CW35-02

LIST_ENV

List C Variables (LIST_ENV)

List C variables.
FORMAT:

LIST_ENV
DESCRIPTION:

pass

The List C Variables command lists the variables you can p
to a C program. This command writes the name and value of
each C variable to the user-out file. '

3-16 Cw35-02

Load (LD)

LD

Load program.

NOTES

l. The Load utility corresponds to the UNIX
Loader, and is a link editor. It is not to
be confused with the MOD 400 loader, which
causes execution of bound units.

2. The version of the Load utility originally
released with MOD 400 Release 3.1 is avail-
able as the bound unit OLDLD. While OLDLD is
significantly slower and supports fewer
features; it reguires significantly less
mMemory .

FORMAT:
LD buname {—LKIN} path [ctl_arg]
-LK
ARGUMENTS
buname

Name of the bound ufiit to be created.

=LK path

Specifies the names, separated by spaces, of one or
more object units to be linked into the bound unit.

Either this or the -~LKIN argument is regquired.

This argument and the -LKIN argument are mutually
exclusive.

-LKIN path

Specifies a file containing the names of one or more

object units to be linked into the bound unit.
Either this or the -LK argument is required.

This argument and the -LK argument are mutually
exclusive.

3-17 Cw35-02

LOAD

[ctl_arg]

One

or more of the following control arguments can be

entered, in any order:

-LB

path

Specifies a library directory pathname. The library
directory contains object units to be linked into the
bound unit.

Default: The utility searches the system C library
>LDD>Z4CRT.

This argument and the -LBIN argument are mutually
exclusive. ’

-LBIN path

-NL

Specifies a file containing pathnames of library
directories. Library directories contain object
units to be linked into the bound unit. The utility
searches directories in this order:

1. The current working directory
2. Directories specified by -LBIN argument
3. The system C library directory >LDD>Z4CRT.

This arqument and the -LB argument are mutually
exclusive. '

Produce a listing of Assembler errors and error
codes. Output is written to buname.L.

Produce a listing of Assembler output. Output is
written to buname.L.

path
Search load map specified by path before the default

system load map. (Load maps are described under
"Description.")

Do not link the bound unit. 1Instead, leave a Linker
directive file named buname.Q.

3-18 CW35-02

LOAD

~NO_MAIN

Generate the Linker directive LINKN Z4SUBR instead of
LINKN Z4ROOT. Useful when the main program is
written in FORTRAN or COBOL.

Generate reentrant code (that is, separate code and
data).

-SL

Suppress the Load utility banner (see the description
below).

-START symbol

Generate the Linker directive START symbol. This
allows multiple bound unit entry points. Also useful
when the main program is written in FORTRAN or COBOL.

-SYM

Generate a symbolic history file buname.V (this
argument is passed to the Linker).

=SZ n

Reguest n additional 1024-word blocks of memory for
linking (where n may range from 1 to 44). Use of
this option can substantially reduce linking time for
large programs. Refer to the MOD 400 Application
Developer's Guide for suitable memory-size values.

-V
Display in-progress messages as the Load utility
begins each phase.

-W
Save Linker directive file.

-XREF

Create a cross-reference listing named buname.XREF.

If you specify this control argument, the Load
utility calls the Sort; ignore the Sort messages.

3-19 Cw35-02

LOAD

DESCRIPTION:

The Load utility generates Linker directive files for C,
FORTRAN, or COBOL source units. If you don't wish to compile
and link directly from the C compiler (the default process),
you can use the Load utility to:

e Link C object units
e Prelink C object units.

The Load utility generates a Linker command file with a .Q
suffix, initializes external storage, and performs some
diagnostic checking.

When you invoke the utility, it displays this banner:

LOADER - n.n mm/dd/yy

where n.n is the release number and mm/dd/yy is the date on
which the Load utility bound unit was created.

Examples:
This is the minimum valid Load command:
LD OUTFILE -LK NAMEl

The following command line creates a Linker directive file
for the object units NAME1l and NAME2, but stops short of
creating the bound unit (by use of the -NL option). NAMEL
and NAME2 are in the directories named in the file LBDIR.
External names are resolved using the load map file MAPFILE.

LD OUTFILE -LK NAME1l NAME2 -LBIN LIBDIR -NL -MP MAPFILE

Load Maps:

A load map resolves external names when an object unit
contains more than one function definition, or when an object
unit has a name different from some function it contains.

For example, the default lcad map (>LDD>Z4CRT>Z4LDMP)
contains these entries:

Cos SIN
BRK Z4BRK

These entries specify that the cos function is located in the

object unit SIN.O, and that the brk function is located in
the object unit Z4BRK.O.

3-20 CW35-02

LOAD

When the Load utility locates an external name in an object
file, it searches the locad map (the one you specified in the
-MP argument, then the default system lcad map
>LDD>Z4CRT>Z4LDMP). If an entry for that external name is
found, the Load utility replaces it with the corresponding
name from the load map. It searches for an object unit by
that name in (1) the working directory, (2) any directories
specified in a -LB argument, and (3) the system directory
>LDD>Z4CRT.

To create your own load map, first create the file. A load
map must be a dynamic indexed sequential file with fixed-
length records. Here are sample commands to create such a
file and its index:

CR MYLOADMAP -DYN -LRSZ 256 -CISZ 512
CX MYLOADMAP.X MYLOADMAP -KLOC 1 -KSZ 6

MYLOADMAP is the data file; MYLOADMAP.X is the load map. To

use the load map, specify -MP MYLOADMAP.X in the Load command
line.

Then you can edit the data file to add entries, one per
line. Entries must correspond to this C structure:

struct loadmap_entry {
char external name[6];
char separator[2];

} char object_file[6];

where external name is the external name (the key field indi-
cated in the Create Index command above), separator is two
spaces, and object_file is the object unit name (NOT includ-
ing the .0 suffix). Therefore, the external names you enter
must be from one to six characters long, left-justified, and
blank-filled to six characters; two spaces must follow; and
the object unit name must be from one to six characters

long. All names must be in upper case.

Once you have populated the load map, you can print the data

file to view the entries in their original order, or the
index file to view the entries in key order.

3-21 Cw35-02

OLDLD

014 Load (OLDLD)

"01d" Load utility.

NOTES

1. The Load utility corresponds to the UNIX
Loader, and is a link editor. It is not to
be confused with the MOD 400 loader, which
causes execution of bound units.

2. This is the version of the Load utility
originally released with MOD 400 Release
3.1. While OLDLD is is significantly slower
and supports fewer features than LD, it
requires significantly less memory.

FORMAT:
OLDLD buname {-LKIN} path [ctl_arg]
-LK
ARGUMENTS:
buname

Name of the bound unit to be created.

-LK path

Specifies the names, separated by spaces, of one or
more object units to be linked into the bound unit.

Either this or the -LKIN argument is required.

This arqument and the -LKIN argument are mutually
exclusive.

-LKIN path

Specifies a file containing the names of one or more
object units to be linked into the bound unit.

Either this or the -LK argument is required.

This argument and the -LK argument are mutually
exclusive.

3-22 CW35-02

[ctl_arg]

OLDLOAD

One or more of the following control arguments can be

entered, in any order:

-LB path

Specifies a library directory pathname. The library
directory contains object units to be linked into the

bound unit.

Default: The utility searches the system C library

>LDD>Z4CRT.

This argument and the -LBIN argument are mutually

exclusive.

-LBIN path

Specifies a file containing pathnames of library
directories. Library directories contain object
units to be linked into the bound unit. The utility

searches directories in this order:

1. The current working directory

2. Directories specified by -LBIN argument
3. The system C library directory >LDD>Z4CRT.

This argument and the -IB argument are mutually

exclusive.

Do not link the bound unit. Instead,
directive file named buname.Q.

-SZ n

leave a Linker l

Request n additional 1024-word blocks of memory for
linking (where n may range from 1 to 44). Use of
this option can substantially reduce linking time for
large programs. Refer to the MOD 400 Application
Developer's Guide for suitable memory-size values.

=XREF

Create a cross-reference listing named buname.XREF. '

3-23

Cw35-02

OLDLOAD

DESCRIPTION:

The 01d Load utility prepares and uses Linker directive files
for C source units. You can create bound units from C source
units directly from the C compiler (the default action); link
C object units using the Load utility; or stop after
prelinking C object units using the Load utility. The Load
utility generates a Linker command file with a .Q suffix,
initializes external storage, and performs some diagnostic
checking.

Example:
This is the minimum valid 0ld Load command:

LD OUTFILE -LK NAMEl
The following command line creates a Linker directive file
for the object units NAMEl and NAME2, but stops short of
creating the bound unit (by use of the -NL argument). NAMEl
and NAME2 are in the directories named in the file LBDIR.

LD OUTFILE -LK NAMEl NAME2 -LBIN LIBDIR -NL

3-24 CW35-02

SET_ENV

Set C Variable (SET_ENV)

Set C variable.

FORMAT:
SET_ENV name [value]

ARGUMENTS:

name
The name of the variable to be set. The name argument
must begin with a dollar sign (§), an underscore (_), or
a letter. The rest of the characters must be dollar
signs, underscores, letters, or digits. The name
argument must not be more than 32 characters long.

[value]

The value to which name is set. If the value argument is
omitted, a null string is assumed.

DESCRIPTION:

The Set C Variable command sets a value which you can then
pass to a C program.

3=-25 Cw35-02

Section 4

THE C STANDARD
LIBRARY

This section lists the standard functions and subroutines
provided with the MOD 400 C compiler.

The routines provided with the C compiler attempt to present
C programs with the same interface they would enjoy under UNIX.
However, due to the inherent differences in the two operating
systems, some routines are altered, have restrictions not found
on UNIX, or are not supported at all. For instance, routines
that involve pathnames adhere to MOD 400 pathname conventions,
not UNIX pathname conventions; the process-management functions
(for example, fork) are available only to tasks running in a
MOD 400 swappool; and functions involving the UNIX "super user"
(for example, getpass and some elements of kill) are not allowed
under MOD 400 at all. Also excluded are these functions:

Data base

Multiplexed-£file

Multiprecision integer arithmetic
Plotter 1/0 .

Packet driver

Interprocess communication
Semaphore

Archive

X.25.

®6®0SOO®O OSSO

4-1 Cw35-02

Table 4-1 lists C system functions and subroutines, sorted by
name; Table 4-2 lists the same functions sorted by function
group. Table 4-3 lists commonly used UNIX system functions
(taken from System V UNIX) not supported under MOD 400 C.

... 'The MOD 400 standard C include directories are. located in _._

>UDD>account ID>INCLUDE and >LDD>INCLUDE.

Table 4-1. MOD 400 C Standard Library (Sorted by Name)

Function
Name Function Group

a641l Convert base-64 ASCII to long String
abort Generate IOT fault Process

abs Absolute value of integer Mathematical
access Determine accessibility of file File control
acos Arc cosine Mathematical
alarm Schedule signal after interval Process
alloc Main memory allocation Storage
asctime Convert time to ASCII System

asin Arc sin ‘Mathematical
atan Arc tangent Mathematical
‘atan2 Arc tangent Mathematical
atof Convert ASCII to floatlng-p01nt String

atoi Convert ASCII to integer String

atol Convert ASCII to long integer String

brk Change memory allocation Storage
bsearch Binary search String
calloc Main memory allocation Storage

ceil Ceiling function Mathematical
chdir Change working directory File control
chown Change owner Process
clearerr File status inquiry Input/output
close Close file File control
cos Cosine Mathematical
cosh Hyperbolic cosine Mathematical
creat Create new file File control
crypt DES encryption System
ctime Convert date/time to ASCII System

dup Duplicate open file descriptor File control

4-2

Cw35-02

Table 4-1 (cont). MOD 400 C Standard Library (Sorted by Name)

Function

Name Function Group
ecvt Output conversion String
encrypt DES encryption System
endgrent Close group file File control
endpwent Close password file System
equal_name | Equal-names convention File control
erf Return error function of arg Mathematical
erfc Return l=-erf(x) Mathematical
errno Error message number System
execl Execute a file Process
execle Execute a file Process
execlp Execute a file Process
execv Execute a file Process
execve Execute a file Process
execvp Execute a file Process
exit Terminate a process Process
exp Exponential function Mathematical
fabs Absolute value of real value Mathematical
fclose Close a file Input/output
fentl Control over open files File control
fevt Output conversion String
fdopen Open a file Input/output
feof File status inquiry Input/output
ferror File status inquiry Input/output
£flush - Flush a file Input/output
fgetc Get character from word or file Input/output
fgets Get string from file Input/output
fileno File status inguiry Input/output
find_file Find a file File control
floor Floor function Mathematical
fmod Return remainder function (a/b) Mathematical
fopen Open a file Input/output
fork Spawn a new process Process
fprintf Formatted output conversion Input/output
fputc Put character or word on file Input/output
fputs Put string on file Input/output
fread Buffered binary input Input/output
free Main memory allocation Storage
freopen Reopen a file Input/output
frexp Split into mantissa and exponent Mathematical
fscanf Formatted input conversion Input/output
fstat Get file status File control
fwrite Buffered binary output Input/output

4-3

CWw35-02

Table 4-1 (cont). MOD 400 C Standard Library (Sorted by Name)

Function

Name Function Group
gamma Log absolute value gamma function Mathematical
gcvt Output conversion String
getc Get character from word or file Input/output
getchar Get character from word or file Input/output
getcwd Get current working directory File control
getdir Get pathname of system directory System
getegid Get effective group ID Process
getenv Get environment name Process
geteuid Get effective user ID Process
getgid Get group ID Process
getgrent Get group file entry File control
getgrgid Get group file entry File control
getgrnam Get group file entry File control
getlogin Get login name Process
getopt Get option letter from arg String
getpgrp Get process group Process
getpid Get process ID Process
getppid Get parent process ID Process
getpwent Get password record entry System
getpwnam Get password record by login name System
getpwuid Get password record. by user ID System
getptcb Get parent TCB : System
gets Get string from file Input/output
getr Get record Input/output
gettcb Get TCB System
getuid Get user ID Process
getw Get word from file Input/output
gmtime Convert to Greenwich Mean Time System
hypot Euclidean distance Mathematical
init_mem Initialize memory Storage
isalnum Character classification String
isalpha Character classification String
isascii Character classification String
isascii8 Character classification String
isatty Get name of terminal System
iscntrl Character classification String
isdigit Character classification String
isgraph Character classification String
islower Character classification String
isprint Character classification String
ispunct Character classification String
isspace Character classification String
isupper Character classification String
isxdigit Character classification String

Cw35-02

Table 4-1 (cont). MOD 400 C Standard Library (Sorted by Name)

Function

Name Function Group
j0 Bessel function Mathematical
jl Bessel function Mathematical
jn Bessel function Mathematical
kill Send signal to process Process
13tol Convert 3-byte integer to long Storage
l64a Convert long to base-64 ASCII string | String
ldexp Split into mantissa and exponent Mathematical
lgdiv Long divide Mathematical
lgmul Long multiply Mathematical
lgrem Long remainder Mathematical
link Link to a file File control
localtime "Convert date/time to local time System
log Natural logarithm Mathematical
loglO Common logarithm Mathematical
longjmp Non-local goto System
lsearch linear search File control
ltol3 Convert long integer to 3-byte Storage
malloc’ Main memory allocator Storage
mcl Execute MOD 400 macrocall System
memccpy Memory-to-memory copy Storage
memchr Point to character in memory Storage
memcmp Compare memory areas Storage
memcpy Memory-to-memory copy Storage
memset Initialize memory Storage
mktemp Make unigue file name File control
modf Split into mantissa and exponent Mathematical
open Open file File control
pause Stop until signal Process
perror Print system error message System
pipe Interprocess communication Process
posr Position file record pointer. Input/output
pow Power function Mathematical
printf Formatted output conversion Input/output
pthtoé Convert UNIX pathname to MOD 400 System
putc Put character or word on file Input/output
putchar Put character or word on file Input/output
putr Put record on a file Input/output
puts Put string on file Input/output
putw Put word on file Input/output
gsort Quicker sort System

4-5

CW35=-02

‘Table 4-1 (cont). MOD 400 C Standard Library (Sorted by Name)

Function
Name Function Group
rand Random number generator Mathematical
read Read from a file Input/output
realloc Reallocate memory Storage
runl Create new process Process
runlp Create new process Process
runv Create new process Process
runvp Create new process Process
same_file Compare pathnames File control
sbrk Change memory allocation Storage
scanf Formatted input conversion Input/output
send_sig Send signal to process Process
setbuf Assign buffering to a file Input/output
setgrent Rewind group file Process
setjmp Prepare for non-local goto System
setkey DES encryption _ System
setprint Set print attribute of stream Process
setpwent Rewind password file System
signal Catch signal Process
sin Sine Mathematical
sinh Hyperbolic sine Mathematical
sleep Suspend execution for interval Process
smopen Open for block read/write File control
smread Read block ' File control
smwrit Write block File control
sprintf Formatted output conversion Input/output
sqrt Square root Mathematical
srand Random number generator Mathematical
sscanf Formatted input conversion Input/output

star_check
star_match
star_name
stat
strcat
strchr
strcmp
strcpy
strcspn
strlen
strncat
strncmp
strncpy
strpbrk
strrchr
strspn
strtok
swab

Validate star name

Validate and match star name
List star name matches

Get file status
Character-string concatenation
First C occurrence

Compare

Copy

Compare length of strings
Length

Concatenate N characters
Compare N characters

Copy N characters

Find first S; in Sy

First C occurrence

Length of S; substr of S chars
Token separator

Swap bytes

File control
File control
File control
File control
String
String
String
String
String
String
String
String
String
String
String
String
String
String

Cw35-02

Table 4-1 (cont).

MOD 400 C Standard Library (Sorted by Name)

. Function

Name Function Group
sys_errlist | Vector of system error messages System
sys_nerr Largest system error message number System
system Execute a command line System
tan Tangent : Mathematical
tanh Hyperbolic tangent Mathematical
time Get time Process
tmpnam Create temporary file name File control
toascii Character translation String
tolower Character translation String
toupper Character translation String
ttyname Get name of terminal System
tzset Set time zone System
ucf_defc Create file File control
ucf_defr Create file File control
ucf_finish | Create file File control
ucf_init Create file File control
uldiv Long unsigned divide Mathematical
ulrem Long unsigned remainder Mathematical
umemchr Point to character in memory Storage
umemcmp Compare memory areas Storage
umemcpy Memory-to-memory Copy Storage
umemset Initialize memory Storage
ungetc Push character back into input file Input/output
unlink<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>