
SUBJECT

DPS 6 C Programming Language

SPECIAL INSTRUCTIONS

DPS6
GCOS 6 MOD 400
C USER'S GUIDE

This manual supersedes the DPS 6 GCOS 6 MOD 400 C User's Guide,
Order No. CW35-0l dated September 1985. Change bars in the margins indicate
changes and additions, while asterisks indicate deletions.

·SOFTWARE SUPPORTED
,\

The C com?iler Release 2.0 executes running under Release 4.0. of the MOD .400
Executive.

ORDER NUMBER

CW35-02 March 1986

Honeywell

PREFACE

This manual describes the C progr~nmi.n9 language as
implemented under MOD 400. The language is described by noting
variations from a baseline version' of c. The reader is assumed
to be familiar with C. This manual is not a language
specification, nor is it intended as a tutorial document.

The new C functions supported are:

getptcb
getr
gettcb
posr

putr
runl
runlp
runv

runvp
setpr int
tzset
ucf_defc

The new C-related utilities supported are:

CSICK
LIST ENV

.. DL ENV
SET ENV

ENV DEF

ucf def r
ucf-f inish
ucf-init

GET ENV

Descriptions of the SL and FILE OUT commands have been moved
to the DPS 6 GCOS 6 MOD 400 Commands manual.

Section 1 defines the version of C used as the basis for
comparison.

Section 2 notes all variations in the MOD 400 implementation
of the C language.

Section 3 describes the process of developing C programs
under MOD 400, including use of the C compilers and loading C
programs under MOD 40 O.

Section 4 lists the C standard library as implemented under
MOD 400.

USER COMMENTS FORMS are included at the back of this manual. These forms are to be used to record
any corrections, changes, or additions that will make this manual more useful.

Honeywell disclaims the implied warranties of merehantability and.fitness for a particular
purpose and makes no eii;press warranties eii;cept as may be stated in its written agreement
with and for its customer.
In no event is Honeywell liable to anyone for any indirect, special or consequential damages.
The information and specifications in this document are subject to change without notice.
Consult your Honeywell Marketing Representative for product or service availability.

©Honeywell Information Systems Inc., 1986 File No.: 1R23, 1823, 1623 CW35-02

Appendix A is a list of C c~mpiler diagnostic messages.

Appendix B lists the eight-bit ASCII character set.

A glossary defines UNIX, C, and MOD 400 terms.

Braces { } in this manual are used to enclose information
from which the user must make a choice.

The following conventions are used to indicate the relative
levels of topic headings used in this manual:

Level

1 (highest)
2
3
4

Format

ALL CAPITAL LETTERS, UNDERLINED
Initial Capital Letters, Underlined
ALL CAPITAL LETTERS, NOT UNDERLINED
Initial Capital Letters, Not Underlined

iii CW35-02

MANUAL DlREC'l:ORY

The followinq publications constitute the GCOS 6 MOD 400
manual set. See-the "Software/Manual Matrix" of the Guide to
Software Documentation for the current revision number and
addenda (if any) of the manuals.

Manuals are obtained by submitting a Honeywell Publications
Order Form to the following address:

Honeywell Information Systems Inc.
47 Harvard Street
Westwood, MA 02090
Att: Publications Services

Honeywell software reference manuals are periodically updated
to support enhancements and improvements to the software. Before
ordering any manual listed below, the customer should ref er ta
the Guide to Software Documentation to obtain information
concerning the specific edition of the manual that supports the
software currently in use at the installation. When specifying
manuals on the Publications Order torm, a customer using the
4-digit base publication number listed below will obtain the
latest edition of the manual currently in stock. The
Publications Distribution Center can provide specific editions of
a publication only when supplied with the 7- or a-character order
number described in the Guide to Software Documentation.

Honeywell applications software packages - such as INFO, the
Honeywell Manufacturing System (HMS), and TPS 6 - provide
specialized services. See your Honeywell representative for
information concerning the availability of applications software
and supporting documentation.

iv CW35-02

Base
Publication

Number

CW35
CZOl

CZ02

CZ03
CZ04
czos

CZ06

CZ07
CZ09

CZlO
CZll
CZ15
CZ16
CZ17
CZ18
CZ19
CZ20

CZ21
CZ22
CZ23
CZ24
CZ25
CZ29
CZ31
CZ32
CZ34
CZ35
CZ36
CZ37
CZ38
CZ39
CZ40
CZ42
CZ52
CZ53
CZ54
CZ70
CZ71
CZ72
CZ73
CZ74

CZ93
GZ13

Manual Title

GCOS 6 C User's Guide
GCOS 6 MOD 400 Guide to Software

Documentation
GCOS 6 MOD 400 System Building and

Administration
GCOS 6 MOD 400 System Concepts
GCOS 6 MOD 400 System User's Guide
GCOS 6 MOD 400 System Programmer's Guide -

Volume I
GCOS 6 MOD 400 System Programmer's Guide -

Volume II
GCOS 6 MOD 400 Programmer's Pocket Guide
GCOS 6 MOD 400 System Maintenance Facility

Administrator's Guide
GCOS 6 MOD 400 Menu System User's Guide
GCOS 6 MOD 400 Software Installation Guide
GCOS 6 MOD 400 Application Developer's Guide
GCOS 6 MOD 400 System Messages
GCOS 6 MOD 400 Commands
GCOS 6 Sort/Merge
GCOS 6 Data File Organizations and Formats
GCOS 6 MOD 400 Transaction Control Language

Facility
GCOS 6 MOD 400 Display Formatting and Control
GCOS 6 VISION Reference Manual
DM6 M.7 Reference Card
Introduction· to DM6 AZ7 Query Writing
DM6 M.7 Reference Manual
GCOS 6 VISION Reference Card
GCOS 6 Advanced COBOL Compiler User's Guide
GCOS 6 Multiuser COBOL Compiler Guide
GCOS 6 COBOL 74 Language Reference
GCOS 6 COBOL Quick Reference Guide
GCOS 6 BASIC Reference
GCOS 6 BASIC Quick Reference Guide
GCOS 6 Assembly Language (MAP) Reference
GCOS 6 Advanced FORTRAN Reference
GCOS 6 Pascal User's Guide
GCOS 6 Ada Compiler System User's Guide
DM6 I-D-S/II Programmer's Guide
DM6 I-D-S/II Data Base Administrator's Guide
DM6 I-D-S/II Reference Card
Electronic Mail Facility Admin.istrator' s Guide
DM6 TP Development Reference
DM6 TP Application User's Guide
DM6 TP Forms Processing
GCOS 6 Data Base Augmented Real-Time Tracing

System user's Guide
Electronic Mail Facility User's Guide
GCOS 6 MOD 400 Release 4.0 Migration ~uide

v CW35-02

Base
Publication

Number

HCOl
HC12
HC13

Manual Title

MOD 400 Application Development Overview
Disk-Based Data Entry Facility-II User's Guide
Disk-Based Data Entry Facility-II Operator's

Quick Reference Guide

The following manuals describe the MOD 400 distributed
processing software components:

Base
Publication

Number

CB35

CFll

CG90
CZ59

CZ60

CZ61

CZ62
CZ63
CZ64
CZ65
CZ66
GG19

GG20

GT18

GT19

Manual Title

DPS 6/DPS 7 PVE File Transfer Facility User's
Guide

DPS 6/DPS 7 PVE Remote Batch Facility User's
Guide

Interactive Entry Facility-II User's Guide
Level 6 to Level 6 File Transmission Facility

User's Guide
Level 6 to Level 66 File Transmission Facility

User's Guide
Level 6 to Level 62 File Transmission Facility

User's Guide
BSC Transport Facility User's Guide
2780/3780 Workstation Facility User's Guide
HASP workstation Facility user's Guide
Programmable Facility/3271 User's Guide
Remote Batch Facility/66 User's Guide
Disk-Based·VIP7305 Emulator Facility User's

Guide
Disk-Based Asynchronous Communications Facility

User's Guide
Disk-Based VIP7705 Emulator Facility User's

Guide
Disk-Based VIP7814 Emulator Facility User's

Guide

vi CW35-02

The following manuals describe the ORACLE data base
management facility:

Base
Publication

Number

GS61
GS62

GS63

GS64

GS65

GS66

GS67
GS68

GS69

GS70

GS71
GS72
GS73
GS74

Manual Title

GCOS 6 MOD 400 ORACLE Installation Guide
GCOS 6 MOD 400 ORACLE Database Administrator's

Guide
GCOS 6 MOD 400 ORACLE Interactive Application

Facility (IAF) Terminal Operator's Guide
GCOS 6 MOD 400 ORACLE Interactive Application

. Facility (IAF) Terminal Operator's Reference
Manual

GCOS 6 MOD 400 ORACLE Interactive Application
Facility (IAF) Designer's Guide

GCOS 6 MOD 400 ORACLE Interactive Application
Facility (IAF} Designer's Reference Manual

GCOS 6 MOD 400 ORACLE HLI Precompiler Interface
GCOS 6 MOD 400 ORACLE Host Language Call

Interface Manual
GCOS 6 MOD 400 ORACLE RPF Report Text Formatter

User's Guide
GCOS 6 MOD 400 ORACLE RPT Report Generator

User's Guide
GCOS 6 MOD 400
GCOS 6 MOD 400
GCOS 6 MOD 400
GCOS 6 MOD 400

ORACLE
ORACLE
ORACLE
ORACLE

SQL/UFI Reference Manual
Terminal User's Guide
Utilities Manual
Error Messages and Codes

In addition, the following publications provide supplementary
information:

Base
Publication

Number

AS22

AT97
CC71
CD18

FQ41

These five
Documentation.
concerning the
installation.

Manual Title

Level 6 Models 6/34, 6/36, and 6/43 Minicomputer
Handbook

Level 6 Communications Handbook
Level 6 Minicomputer Systems Handbook
Level 6 MOD 400/600 Online Test and Verification

Operator's Guide
Writable Control Store User's Guide

manuals are not covered by the Guide to Software
See your Honeywell representative for information

versions of the manuals relevant to your

vii CW35-02

Users should be aware that a software release bulletin
accompanies each software product ordered from Honeywell. Users
should consult the software release bulletin before usin9 the
software. Users should contact their Honeywell representative if
a copy of the software release bulletin is not available.

viii CW35-02

CONTENTS

SECTION 1 INTRODUCTION ••• .
Definition of •Baseline• c
Contents of This Manual •••••••••••••••••••••••••••
SECTION 2 IMPLEMENTATION OF THE C LANGUAGE ••••••••••••••••

Lexical Conventions [2] •••••••••••••••••••••••••••••••••••
Identifiers (Names) [2.2) •••••••••••••••••••••••••••••••
Keywords [2 .3) ••••••••• •.••••••••••••••••••••••••••••••••
Constants [2.4] •••
Strings [2.5] •••
Hardware Characteristics [2.6) ••••••••••••••••••••••••••

What's in a· Nmne? [4) •••••••••••••••••••••••••••••••••••••
Conversions (6) •••••••••••••.•••••••••••••••••••••••••••••

Characters and Integers [6.1] •••••••••••••••••••••••••••
Float and Double [6.2) ••••••••••••••••••••••••••••••••••
Floating and Integral [6.3) •••••••••••••••••••••••••••••

Expressions [7] ••
Additive Operators [7.4) ••••••••••••••••••••••••••••••••
Shift Operators [7.5) •••••••••••••••••••••••••••••••••••
Assignment Operators [7.14) •••••••••••••••••••••••••••••

Declarations [8] ••
Storage Class Specifiers [8.1) ••••••••••••••••••••••••••
Ty'pe Specifiers [8.2]•...
Structure and Union Declarations [8.5] ••••••••••••••••••

Statements [9] ••
Escape Statement [9.14] •••••••••••••••••••••••••••••••••

External Definitions [10] •••••••••••••••••••••••••••••••••
External Function Definitions [10.1) ••••••••••••••••••••

Compiler Control Lines [12] •••••••••••••••••••••••••••••••
Token Replacement [12.1) ••••••••••••••••••••••••••••••••
File Inclusi·on [12.2]

Ty'pes Revisited [14] •.....•...............................
Structures and Unions [14.1] ••••••••••••••••••••••••••••
Explicit Pointer Conversions [14.4] •••••••••••••••••••••

Portability Considerations [16]
Migration From MOD 400 Release 3.1 to MOD 400
Rel ease 4 • O ••••••••••••••••••••••••••• e •••••••••••••••••

Register Conventions ••••••••••••••••••••••••••••••••.••••
Stack Frame •••
Register Variables ••••••.••••••••••...••••••.....••.••
Saved Machine State ••••••••••••••.•••.•.••••••.•••••.•

ix

Page

1-1

1-1
1-2

2-1

2-1
2-1
2-2
2-2
2-2
2-2
2-2
2-3
2-3
2-3
2-4
2-4
2-4
2-4
2-4
2-5
2-5
2-6
2-7
2-7
2-7
2-7
2-8
2-8
2-8
2-8
2-9
2-9
2-9
2-10

2-10
2-11
2-11
2-13
2-13

CW35-02

I
I

CONTENTS

SECTION 3 DEVELOPING C PROGRAMS:
Using the
C-Related

Compiler (M4 CC) •••••••••
Active Functions,

c
Commands,

.....................
Programs••..•.....•••.•.

C Task Oump {CS!CK) ••..•••••••••
Delete C Variable (DL ENV)
Check C Variable (ENV-DEF)
Get C Variable (GET ENv) ••
List C Variables (LIST ENV)
Load (LD} ••••••••••••• :.
Old Load (OLDLD) •••••••••
Set C Variable (SET_ENV)

.....

and Utility
...

•
.. . ..

SECTION 4 THE c STANDARD LIBRARY.
C Support of Mod 400 File Types. Subroutines and Libraries.
Traps and Signals •••••••••••••

.
Error Returns ••••••••••••••••••

Reporting Errors Via errno ••••••••••••••••••
Via Reporting Errors

UNIX Errors ••••••••••
MOD 400 Extensions.

m4 errno. Abandoning a Process.
Run-Time Routines ••• ••

a641 ••••
abort.
abs ••••
access •••
acos ••••
alarm •••
alloc •••
asctime.

. .
asin ••••••
atan •••
atan2.
atof ••
atoi.
atol.

.
br k • •••••••.
bsearch ••
calloc.
ceil •••
chdir ••••
chown •••••
clearerr.

.
..

. . . .
.

. ·-· ...

x

.
. ..

. ... ""
.
.

.
.

Page

3-1

3-1

3-6
3-7
3-13
3-14
3-15
3-16
3-17
3-22
3-25

4-1

4-14
4-15
4-16
4-19
4-19
4-19
4-19
4-23
4-24
4-26
4-27
4-28
4-29
4-30
4-31
4-32
4-33
4-34
4-36
4-37
4-38
4-39
4-40
4-41
4-42
4-44
4-46
4-47
4-48
4-49
4-50

CW35-02

CONTENTS

close ••
cos •••••••
cosh •••••••••

.
creat ••••••••••••••••
crypt
ctime..............
dup • ••••••••••••••••••• . ..
ecvt • • • • · • · • · · • · • · • · ·
encrypt.
endgrent ••••••••••••••••••••••••••••••• •. • • • • • • • • • • •
endpwent • •••••••••••••••••••••••
errno •••••••••••••••••••
equal name.
erf •. 7 •
erfc •••• . • ••
execl ••••••••••••••••••••••••• • • • • • •
execle •••••
execv ••• e •
execve • •••
execlp ••
execvp •••••••••••••••••••••••••••
.exit •••••••
exp. • . . . • •
f abs • •••
fclose ••
fcntl...................... • •••••••••••••••••••••
fcvt......... ••••••••••••••••••••••••••••••••••••
fdopen • ••...•.•.•••.•.•••....••...•..
feof ••••••••••••••
ferror.
fflush ••••••••
fgetc........... •• •• • ••••••••••
f gets
fileno..... • ••••••••••••••••••••••••••••••••••••
find file
floor
fmod ••••••• ••••••••••••••••••
£open ••••••••••••
fork ••••
fprintf •••••••••••••••••••••••• •••••••••••••••••••
fputc •••••••••••••
fputs • •.•••••••••••••.••••••••• G ••••••••••••••••••••

fr ead • ••
free ••••••••• • ••••••••••••
f reopen ...•..••..•.•....••.
fr exp••.•.•.••...•..•.••..•...•......•.....
fscanf ••

xi

Page

4-51
4-52
4-53
4-54
4-55
4-56
4-58
4-59
4-60
4-61
4-62
4-63
4-64
4-67
4-68
4-69
4-72
4-75
4-78
4-81
4-83
4-85
4-86
4-87
4-88
4-89
4-91
4-92
4-94
4-95
4-96
4-97
4-98
4-99
4-100
4-102
4-103
4-104
4-106
4-108
4-113
4-114
4-115
4-116
4-117
4-119
4-120

CW35-02

I

I
I

CONTENTS

. fstat ••
fwrite. ·•
g axnma • • ~ • ~ •••••••••••••••
gcvt ••••••
getc
getchar~

getcwd ••
getdir ••
getegid.

....
getenv •••••••

. .

.
•••

. . ..

.

.
.

•• 4
geteuid •••
getgid •••
getgrent •••
getgrgid.
getgrnam.
getlogin.
getopt ••••••••• . . .
getpgrp.
getpid ••••••••••••
getppid. getptcb.
getpwent •••
getpwnam.
getpwuid •••

. . . .

....
........

getr ••••
gets ••••

.
gettcb ••
getuid.
getw •••
gm time.
hypot ••
init mem.
isalnum.
i salpha ••••
isascii. •••
isascii8 ••
isa tty ••
iscntrl.
isdigi t.
isgraph ••
islower.
isprint.
ispunct.
isspace.
isupper.
isxdigit ••
jO, jl, jn.

..
.

.... . .

xii

.
.

.
.........
.....

.

Page

4-124
4-126
4-127
4-128
4-129 "' 't-J..>U

4-131
4-132
4-133
4-134
4-135
4-136
4-137
4-138
4-139
4-140
4-141
4-144
4-145
4-146
4-147
4-148
4-149
4-150
4-151
4-153
4-154
4-155
4-156
4-157
4-159
4-160
4-161
4-162
4-163
4-164
4-165
4-166
4-167
4-168
4-169
4-170
4-171
4-172
4-173
4-174
4-175

CW35-02

CONTENTS

kill •••
13tol.
164 a •••
ldexp.
lgdiv ••
lgmul.

. .

lg rem.
link ••
local time.
log ••••••
loglO •••
longjmp.
lsearch.
l tol3 •••
malloc ••
mcl ••..•

. ..
••• 0 •
. ..

.
. .

.
.

. ...

memccpy.
memchr.
memcmp ••
memcpy.
memset ••
mktemp.
modf •••

. • 0 •

open~·•o

pause.
perror&
pipe ••

..

posr
pow •••
printf.
pthto6 ••••
putc ••••
putchar.
putr.
puts •••••••
putw.
qsort.
rand •••
read •••
realloc.
runl ••
runlp.

. .

• • &

• • • e • • • s • • m e • • • •

• !It • • • e e • • • • • •

., ...

........ e • • • . .
•• 0 ••

. • 0 •• 0 • runv ••
runvp.
same file.

• •••• 0 •••••••••••••

....

. ..

. ..

.

. ..
. ..

sbrk7 ••• . . .
scanf •••••••••

• • • 0 ••••••
xiii

Page

4-176
4-178
4-179
4-180
4-181
4-182
4-183
4-184
4-186
4-188
4-189
4-190
4-192
4-194
4-195
4-196
4-199
4-201
4-202
4-204
4-205
4-206
4-207
4-208
4-211
4-212
4-214
4-215
4-217
4-218
4-219
4-220
4-221
4-222
4-226
4-227
4-228
4-229
4-230
4-232
4-233
4-235
4-237
4-239
4-241
4-242
4-244

CW35-02

I

I

I

I

CONTENTS

send sig •••••• • '!' ••

~etbiif •
setgrent ••• ••oc••~•••••• setjmp •• &e••••••
setkey ••••••••
setprint~
setpwent ••
signal.
sin •••••••••••••••••
sinh•.
sleep.
smopen ••••
smread ••
smwrit.
sprintf.

.
sq rt.
srand...... • •••

.
sscanf •.•••.•.•.••.• star check ••••••••••••••
star-match•.....•.

.
star-name.
stat7 ••••••••••••••••••
strcat •••••••••••
strchr •••••••••••••••
strcmp.

. strcpy ••••••
strcspn •••••••••••• strlen ••••
strncat •••
strncmp ••••
strncpy ••••

.
strpbrk ••••••••••
strrchr ••••••
strspn.
strtok.

.

. . .

. . .

.
.

swab ••••••
sys_errlist.
sys nerr.
system ••••
tan •••• . . .

.
tanh •••
time ••••
tmpnam.
toascii ••
toascii8 ••
tolower •••

.
tolower.

xiv

. ..
.

. ..

.
. ...

.
.

.

Page

4-245
4-246
4-247
4-248
4-249
4-250
4-251
4-252
4-256
4-257
4-258
4-260
4-262
4-263
4-264
4-265
4-266
4-267
4-268
4-269
4-270
4-274
4-276
4-277
4-278
4-279
4-280
4-281
4-282
4-283
4-284
4-285
4-286
4-287
4-288
4-289
4-290
4-291
4-292
4-293
4-294
4-295
4-296
4-298
4-299
4-300
4-301

CW35-02

CONTENTS

toupper ••
toupper.

ttyname •••

.
. tz set ••••

UCf init,
uldiv •••
ul rem •••
umernchr ••
umemcrnp.
urnemcpy ••
umemset.
ungetc.
unlink.
wait
write ••

ucf_defc, ucf_defr, ucf finish.

.
.

. ..
yo, yl, yn • • •· 0 ••

APPENDIX A c COMPILER DIAGNOSTIC MESSAGES.

. ...

.

APPENDIX B ASCII CHARACTER SET •••••••••••• oe•oeae•aeeeeci•

GLOSSARY ••••••••••• ••••••••t11@C11>oe••••••••ocii&•••0ee•l3••••••0

Page

4-302
4-303
4-304
4-305
4-306
4-311
4-312
4-313
4-314
4-316
4-317
4-318
4-319
4-320
4-322
4-324

A-1

B-1

g-1

ILLUSTRATIONS

Figure

2-1

Table

4-1
4-2
4-3
4-4
4-5

A-1
A-2

B-1

Page

Stack Layout • o ••••••••• o ••• ••••••••••• o .. o 2-11

TABLES

MOD 400 C Standard Library
MOD 400 C Routines (Sorted

(Sorted by Name) •••
by Function Group)

C Routines Not Supported ••••••••••••••• • 0

MOD 400 Trap Support of UNIX Signals.
Software-Generated Signals ••••••••••••••••••

...
••• ft

...
c
c

Compiler
Compiler

Error Messages ••• e •• o

Diagnostic Messages.
OOe•ee&C>9

D e ,e ...
Eight-Bit ASCII Character Set •• oeeo•oeiaoooeo••••••••e

xv

Page

4-2
4-8
4-13
4-17
4-18

A-1
A-2

B-5

CW35-02

I

I

Section 1
INTRODUCTION

C is a general-purpose, low-level programming language. It
was developed under UNIX,* but is now available for use with a
number of computers and operating systems •

..
This manual describes the C programming language as

implemented on DPS 6 systems under MOD 400e The language is
described by noting variations from a baseline version of c.

The MOD 400 C compiler provides a C program with an emulation
of the UNIX environment. The environment simulated is a single­
user system. Run-time routines, signals, messages, and traps all
appear to a C program as they do under UNIX.

The reader is assumed to be familiar with C, UNIX, and
MOD 400. This manual is not a· complete reference document; nor
is it intended as a tutorial document.

DEFINITION OF nBASELINE" C

The version of C used in this manual as the baseline for
comparison is as described in:

The C Programming Language, by Brian w .. Kernighan and Dennis
M. Ritchie .. 1978, Prentice-Ball, Inc., Englewood Cliffs, NJ

The phrase "baseline en is used in this manual to ref er to that
version of C.

*UNIX is a Trademark of Bell Laboratories.

1-1 CW35-02

You are assumed to have a copy of this book on hand when you
refer to this manual.

CONTENTS OF THIS MANUAL

The rest of this manual is organized as follows:

Section 2 notes all variations in the MOD 400 implementation
of the C language. The section is organized to match
Appendix A of The C Programming Language.

Section 3 describes the process of developing C programs
under MOD 400, including use of the C compiler! various c
utilities, and loading of C programs.

Section 4 lists the C standard library of run-time routines.

Appendix A ·lists the C compiler diagnostic messages.

Appendix B lists the eight-bit ASCII collating sequence.

A glossary defines UNIX, C, and MOD 400 terms •

..

1-2 CW35-02

Section2
IMPLEMENTATION OF

THE C LANGUAGE

This section lists variations from the baseline C as
described in The C Programming Language (see Section 1). This
section is organized and keyed to match Appendix A (8 The C
Reference Manual") of that book. Bracketed numbers in level
heads appearing in this section correspond to headings in
Appendix A of that book. ·

. This section contains onlt statements of variations. If a
feature is not described in t is section, it is fully supported
by the C compiler, and behaves exactly the same as in baseline c.

LEXICAL CONVENTIONS [2]

The following variations on baseline C lexical conventions
exist in MOD 400 C.

Identifiers (Names) [2.2)

An identifier name can contain uppercase or lowercase
letters, digits, underscores, and dollar signs, in any order.
Only the first eight characters are significant. External
identifiers are mapped to six characters, in uppercase. The
MOD 400 C compiler treats external identifiers as follows:

l. All lowercase characters are changed to uppercase
characters.

2. All underscores are removed.

2-l CW35-02

3. If more than six characters remain after eliminating
underscores, vowels are eliminated from right to left
until either: (1) there are only six characters left, or
(2} there are no more vowels.

4. If more than six characters remain after eliminating
underscores and vowels, the excess is truncated, right to
left.

Keywords (2.3J

The following additional identifiers are reserved for use as
keywords:

void
en um
escape
const

Constants [2.4]

The following variations on baseline C constants exist in
MOD 400 C.

Strings (2.5]

A string has type narray of charactersn and storage class
const, and is initialized with the given characters.

Hardware Characteristics (2.6]

The size of C data types are:

Data T¥Ee Size (bits)

char 8
unsigned char 8
int 16
unsigned int 16
short 16
long 32
unsigned long 32
float 32
double 64

WHAT'S IN A NAME? [4]

The C compiler supports all arithmetic types. C data types
are described below.

A character variable (char) is a one-byte, signed binary
integer consisting of seven significant bits and a high-order
sign_bit. It is always byte-aligned. A scalar char variable
that is not a component of a structure always occupies the

2-2 CW35-02

high-order byte of a word of memory, and is followed by a fill
byte. In general, the signed character data type does not handle
eight-bit ASCII characters correctly. Use the unsigned character
data type for eight-bit data; use the signed character data type
for integer data with a domain of -128 to 127 (at most).

An unsigned character variable {unsigned char) is a one-byte,
unsigned binary integer consisting of eight significant bits. It
is never negative and always byte-aligned. A scalar unsigned
char variable that is not a component of a structure always
occupies the high-order byte of a word of memory, and is followed
by a fill byte.

An integer.variable (int) is a two-byte, signed binary
integer consisting of 15 significant bits and a high-order sign
bit. It is always word-aligned. This is the default data type
for any variable.

An unsigned integer variable (unsigned int) is a two-byte,
unsigned binary integer consisting of 16 significant bits. It is
never negative and always word-aligned.

A long variable {long) is a four-byte, signed binary integer
consisting of 31 significant bits and a high-order sign bit. It
is always word-aligned.

An unsigned long variable (unsigned long) is a four-byte
. unsigned binary integer consisting of 32 significant bits. It is

always positive and always word-aligned.

A floating-point variable (float) is a four-byte, word­
aligned, signed real number. It can contain a value in the
approximate range 8.6E-78 to 7.2E+75, with up to eight digits of
precision.

A double-precision variable (double) is an eight-byte,
word-aligned, signed real number. It can contain a value in the
approximate range 8.6E-78 to 7.2E+75, with up to 17 digits of
precision.

CONVERSIONS [6]

The following variations on baseline C operand conversion
exist in MOD 400 C.

Charact~rs and Integers [6.1]

The C compiler performs sign extension on characters.
Character variables range in value from -128 to 127 •.

Float and Double [6.2]

The C compiler converts a double-precision variable to a
floating-point variable by truncation.

2-3 CW35-02

Floating and Integral [6.3]

In the conversion from floating point to integral, the C
compiler truncates the fraction part.

EXPRESSIONS [7]

The f ollowin9 variations on baseline C expressions exist in
MOD 400 C.

The C compiler computes subexpressions in the order the
compiler determines to be most efficient, even if the sub­
expressions involve side effects. The order in which side
effects take place is unspecified.

Additive Operators [7.41

If the offset to be added to (or subtracted from) a pointer
is greater than 32767, an invalid pointer results, unless the
offset is type long.

Shift Operators [7.5]

When a right shift is performed on a signed quantity, the
sign is propagated. For instance, in the expression El>>E2,
where El is a signed quantity, the vacated bit positions are
filled by a copy of the sign bit.

When a right shift is performed on an unsigned quantity,
vacated bit positions are filled with zeros.

Assignment Operators [7.141

There are two types of pointers: pointers to byte-aligned
data (char and unsigned char), and pointers to word-aligned data
(all others). A word pointer is a 32-bit DPS 6 pointer. A byte
pointer is a composite, consisting of a word pointer and an int
byte offset. Pointers of either type are always word aligned.
Therefore, a pointer to a pointer of any type is always a word
pointer. The size of a word pointer is four bytes; the size of a
byte pointer is six bytes.

The C compiler also allows you to assign a pointer to an
integer and an integer to a pointer; however, the conversion is
reversible only if the integer is type long.

When an offset is added to (or subtracted from) a character
pointer, only the integer byte offset is affected. The byte
off set may eventually overflow unless the character pointer is
normalized (by adjusting the word pointer and the byte offset so
that the byte offset is O or 1). You can do this by explicitly
casting the character pointer as a character pointer:

cp = (char *)cp;

2-4 CW35-02

This happens implicitly if the character pointe.r is converted to
any other type.

You can use simple assignment (lvalue=expression) to copy one
occurren9e of a structure or union to another. The expression
must have the same structure or union type as the lvalue.

DECLARATIONS [8]

The following variations on baseline C declarations exist in
MOD 400 C.

Storage Class Specifiers (8.1]

The C compiler does not use register declarations for
aggregate types or functions.

The C compiler accepts the first two register variaQles of
type int, unsigned, char, or unsigned char, plus the first two
register variables of type pointer. The remainder is treated as
storage class auto.

You can declare data (of any type) to be storage class
const. This instructs the C compiler to allocate space in the
code segment rather than in the data segment. You must declare
const data with initial values; once they are declared, you
cannot change them.

A const identifier declared within a function has block
scope. It is known and can be referenced only- within the block
in whiph it is d:eclared. Its storage class specifier must be
const or static const and it must have an initializer.

A const identifier declared outside any function has file
scope. It is known and can be referenced from the point of
declaration to the end of the file. If its storage class
specifier is const, it can be referenced by a separately compiled
function and must have an initializer. If its storage class
specifier is extern const, it is a decla~ation that references a
definition in a separately compiled function and must not have an
initializer. If its storage class specifier is static const, it
is a definition that can be referenced only within the curr~nt
source unit and must have an initializer.

In reentrant code, an array of pointers to functions can be
initialized only if it is storage class const. It can be
referenced externally via the mechanism above. This is a
specific instance of the reentrant code rule that pointers in
data cannot be initialized to point to code (const or function)
and vice versa.

2-5 CW35-02

TyPe Specifiers [8.2]

You can explicitly declare functions not returning a usable
value as returning type void. For example:

void fl() 1
void f2()
{

fl()
}

/* declaration */
/* definition */

The compiler diagnoses any expression that requires the value of
a function returning void as erroneous, provided the definition
or declaration of the function is in scope. If no declaration or
definition is in scope, the compiler follows the rules for

·implicit declaration [13] and assumes type function returning
int.

..
The enum is analogous to the scalar types of Pascal. The

format is

enum-specif ier

with syntax

enum-specif ier:
enum { enum-list }
enum identifier { enum-list }
enum identifier

enum-list:
enumerator
enum-list , enumerator

enumerator:
identifier
identifier = constant-expression

The identifier in the enum-specif ier is analogous to the
structure tag in a struct-specifier; it names a particular
enumeration. For example,

enum color { red, white, blue, green }7

•
enum color *cp, col;

makes color the enumeration tag of a type describing various
colors, and then declares cp as a pointer to an object of that
type, and col as an object of that type.

2-6 CW35-02

The identifiers in the enum-list· are declared as constants,
and may appear wherever constants are required. If no enumer­
ators with = appear, then the values of the constants begin at 0
and increase by l as the declarations are read from left to
right. An enumerator with = gives the associated identifier the
value indicated; subsequent identifiers continue the progression
from the assigned value.

Enumeration tags and constants must all be distinct, and
unlike structure tags and members, are drawn from the same set as
ordinary identifiers.

Objects of a given enumeration type are regarded as having a
type distinct from objects of all other types. All enumeration
variables are treated as if they were int.

Structure and Union Declarations [8.5]

The C compiler only recognizes integer and character bit
fields. The compiler does not initialize structures containing
bit fields. The compiler assigns bit fields left to right within
the word.

STATEMENTS [9]

The following variations on baseline C statements exist in
MOD 400 C*

Escape Statement [9.14]

You can instruct the C compiler to pass information unchanged
to the Assembly language intermediate code. The format is ·

escape "char literal w [, 81 char literal"] • ,. • 1

where 00 litera1 00 is a character string constant delimited by
quotation marks. At least one string is required. Character
escapes such as \t and \n are translated into ASCII characters.
If a string does not end with a newline character (indicated by
\n)(the compiler appends one. Commas between strings are
optional, but the closing semicolon is required.

The escape statement, up to and including the semicolon, is
syntactically equivalent to white space.

EXTERNAL DEFINITIONS [10]

The following variations on baseline C external definitions
exist in MOD 400 C.

2-7 CW35-02

External Function Definitions [10.11

The C compiler converts word pointer actual parameters to
character pointers by supplying a 0 byte offset. Word pointer
formal parameters consider the byte offset in the calculation of
formal parameter addresses but otherwise ignore it. Character
actual parameters are converted to integers. Character formal
parameters are converted back to characters by shifting their
value to the high-order byte of the word and setting the low­
order byte to 0. The entire contents of a structure or union
actual parameter is passed.

COMPILER CONTROL LINES (12]

The following variations on baseline C compiler control lines
exist in MOD 400 c.
Token Replacement [12.l]

The C compiler allows omission of arguments in #define
statements. For example, given the statement:

#define list(a,b,c) a:b:c

subsequent uses of the identifier yield these replacements:

list(x,,z) becomes
list(x, ,z) becomes
list (, , g)
list((w,x) ,y,z)

becomes
becomes

x::z
x: :z

: : g
(w,x) :y:z

Text inside a string or character constant is not subject to
replacement except in the token string farming the mac.rocall
body.

File Inclusion (12.2]

An include file can contain an #include statement: this is
called a "nested include."

By convention, UNIX C include files are referred to as
"header files" and given a .h suffix. The C compiler does not
enforce this convention.

If the filename in an #include statement is a full or
relative pathname, the C compiler includes that file (or
generates a fatal diagnostic error).

If the filename is expressed as

linclude <filename>

2-8 CW35-02

then the C compiler searches these directories:

1. Directories named in -I control arguments
2. Standard library directories.

If the filename is expressed as

#include •filename•

then the C compiler searches these directories:

1. The directory of the original source unit
2. Directories named in -I control arguments
3. Standard library directories.

The MOD 400 standard C libraries are defined as
>UDD>account_ID>INCLUDE and >LDD>INCLUDE.

The MOD 400 C run-time routines accept UNIX pathnames and
converts them to MOD 400 equivalents1 for example:

Pathname type

Simple
Partial
Relative
Full

TYPES REVISITED [14]

UNIX

header.h
sys/params.h
•• /foo.h
/bin/hic.h

MOD 400

HEADER.B
SYS>PARAMS.B
<FOO.B
>>BIN>HIC.B

The following variations on baseline C types exist in
MOD 400 C.

Structures and Unions [14.l]

Structures can be assigned, passed as arguments to functions,
and returned by functions. The types of operands involved must
be the same.

If a signal occurs during the return sequence, and the same
function is called reentrantly during processing of the signal,
the value returned from the first call can be corrupted. The
problem can occur only with signals1 ordinary recursive calls
work properly. (See the description of the signal function in
Section 4.)

Explicit Pointer Conversions (14.4]

A char pointer-to-long-to-char pointer or word pointer-to­
long.;.to-word pointer conversion will produce the original pointer
value. A pointer-to-int-to-pointer conversion will lose the most
significant b"its of the pointer value and produce an invalid
pointer.

2-9 CW35-02

PORTABILITY CONSIDERATIONS [16]

The first character is assigned to the high-order byte; a
character variable is byte aligned, but a pointer to a character
is word aligned.

The C compiler automatically defines the system names
•mod40o• or •unix• (as appropriate), the variety name •1evel6,"
and the macrocalls • LINE • and • FILE • (using double
underscores}. The macrocaII • LINS- n i'S-replaced by the
current line number {within the-current file). The macrocall
• FILE • is replaced by the current file name. For example, if
line 10-0f the program MYPROG~C contains~

printf("%s:%d\n•,~FILE~'~LINE~);

it would be changed to

printf(•%s:%d\n•,•MYPROG.c•,10};

If these macrocalls appear in an include file, they are replaced
by the current line number in the include file and the name of
the include file, respectively.

The C compiler does not require either the Commercial or the
Scientific Processor. However, if you write a program that uses
date/time functions or floating-point arithmetic, you must
execute it on DPS 6 hardware that includes a Scientific Processor
or the Scientific Processor simulator.

Migration From MOD 400 Release 3.l to MOD 400 Release 4.0

For a C program compiled under MOD 400 Release 4.0, using the
Release 2.0 C compiler and runtime routines, and linked using the
Release 4.0 Linker, there is no limit on size. Otherwise, the
program is limited to 64K bytes.

To port C programs from MOD 400 Release 3.1 to Release 4.0,
you must reload and relink them using the Release 2.0 C runtime
routines, but you can use either the Release 3.1 or the Release
4.0 Linker. If you relink a previously reentrant program using
the Release 3.1 Linker, do not use the -R or -SHARE arguments,
and ignore diagnostic messages concerning $AMASK, $CMASK, and
$LASTS. If you relink a reentrant program using the Release 4.0
Linker, specify the -R argument.

2-10 CW35-02

Register Conventions

When a C program (including run-time rou~ines) executes, the
registers it might use are:

• Data registers (Rl-R7)
• Address registers (Bl-B7)
• Program counter (P)
• Stack address register (T}
• CPU mode register (Ml)
• SIP operating mode register (M4)
• SIP trap enable register (MS)
• System status/security register (S)
• Indicator register (I)
• Scientific accumulators (SA1-SA3).

STACK FRAME

Figure 2-1 shows the layout of a stack frame.

es- ARGUMENT COUNT

AUTOMATIC VARIABLES

TEMPORARIES

REGISTER CONTEXT

HIGH MEMORY

Figure 2-1. Stack Layout

Address registers B4, B6, and B7 are dedicated to unique
uses. Register B6 contains a stack frame pointer to word zero of
the stack frame for the currently active function. Register B4
contains a pointer to a local push-down stack within the
function's stack frame. This local stack is used for compiler­
generated tempor~ry values needed during expression evaluation,
and arguments to be passed to called functions. Register B7
contains a formal parameters pointer (a pointer to the argument
list prepared by the calling function).

2-11

The contents of a stack frame are:

1. The number of arguments passed to the associated
function, stored in the first word (at off set zero from
the stack frame pointer)

2. Automatic variables, including any register variables not
allocated to registers, stored beginning in the second
word

3. Compiler-generated temporaries and arguments

4. A subset of the register context as it existed when the
function was entered, stored at the end of the stack
f ra.T.e. This register context is reloaded when the the
function exits.

When control transfers from one function to another and back
again, register BS contains the return address. During the
transfer, register B4 contains the ~ddress of arguments being
passed to the called function, and register R6 contains the
argument count. The called function's entry sequence saves, in
the saved register context, the contents of registers B4 and B7.
Then it copies B4 into B7, and loads into B4 a pointer to the
first word of the saved register context in its own stack frame.

The register context saved by a function's entry sequence is: ..
• Data registers Rl-RS {a few functions do not save Rl)
• Indicator register (I)
• Address registers B2-BS and B7.

Address register B6 is implicitly set and reset when a stack
frame is acquired or relinquished.

The C compiler generates code assuming that the SIP operating
mode register (M4) is set for double-word (32-bit) operands in
SAl and SA2 and a quad-word (64-bit) operand is set in SA3, with
the corresponding memory operands set to the same precision
whenever a function is entered. Register M4 is also assumed to
be set to truncate mode. Functions of ten change M4 during their
execution, but reset it to this standard state before returning
or calling another function. The code generated for functions
that use float or double variables assumes that any functions it
calls will overwrite the contents of the scientific accumulators.
(A function with no float or double variables does not use M4.)

The SIP trap enable register is not altered by the generated
code; however, it is set upon entry to a function, and determines
the behavior of that function in the presence of exceptions (such
as exponent overflow) during floating-point operations.

2-12 CW35-0.2

REGISTER VARIABLES

Register variables are assigned as follows:

• RS contains the first register variable of type signed
int, unsigned int, signed char, or unsigned char.

• R4 contains the second register variable of type signed
int, unsigned int, signed char, or unsigned char.

• B3 and R3 contain the first register variable of type
pointer. R3 is used only for pointers to signed and
unsigned chars.

• B2 and R2 contain the first register variable of type
pointer. R3 is used only for pointers to signed and
unsigned chars.

Registers Rl, R6, R7, Bl, BS, and any of the registers mentioned
previously that are not assigned to register variables are used
as working registers.

Registers R6, R7, Bl, SAl., and SA3 are also used to return
scalar (non-structure) values from a function to its caller.
Signed and unsigned integer and signed and unsigned character
values are returned in R7. Signed and unsigned long values are
returned in R6 and R7. Pointers to signed and unsigned chars are
returned in Bl and R7; other pointer values are returned in Bl
alone. Floating-point values are returned in SAl., and double­
word values are returned in SA3.

SAVED MACHINE STATE

The run-time routines save the machine state as it existed
when a signal was received before calling the appropriate signal
catcher. If the signal catcher returns, the saved machine state
is restored to resume execution. The saved machine state
consists of:

• Data registers (Rl-R7)
• Address registers (Bl-B7)
• Mode registers (M1-M6)
• Scientific accumulators (SA1-SA3)
• Indicator register (I)
• Scientific indicator register {SI)
• Commercial indicator register (CI).

If neither the Scientific Processor nor the Scientific
Processor simulator is present, registers SAl-SA3, M4-MS, and SI
are not saved and restored.

If neither the Commercial Processor nor the Commercial
Processor simulator is present, register Cl is not saved and
restored.

2-13 CW35-02

Section 3
DEVELOPING C

PROGRAMS

This section describes the process of program development
under MOD 400. Included are descriptions of the MOD 400 C
compiler, C-related commands and active functions, and C utility
programs. ..
USING THE C COMPILER (M4_CC)

The MOD 400 C compiler can perform several operations on a C
source program in sequence:

1. Preprocessing
2. Compilation
3. Assembly of compiled code
4. Prelinking
5. Linking.

You can instruct the compiler to stop after any of these
operations.

The syntax of the M4 CC command is described on the following
pages.

3-1 CW35-02

M4_CC

FORMAT:

M4 CC file_list [ctl_arg]

ARGUMENTS:

f ile_list

One or more pathnames, separated by spaces, of modules
the C compiler is to ·compile; assemble, and/or link.
Files can be C source units (name.C), Assembly language
source units (name.A or name.P), object units (name.o),
or object directories (path). An object directory path
such as <IO is equivalent to the control argument -LIB
<IO. The compiler compiles, assembles, and/or links
files in the order given in the' command line.

You can intermix control arguments and file names in any
order.

[ctl arg]

Control arguments are processed in the order you enter
them, before any files are compiled, assembled, or
linked: therefore, arguments can override each other.
Control arguments with parameters do not require white
space separators: for example, -BU name and -BUname are
both syntactically correct.

One or more of the following control arguments can be
entered, in any order:

-AS

Stop after assembling the compiled code. Output is
placed in the corresponding file(s) name.O.

The arguments -PP, -c6;--AS, and -LD are mutually
exclusive.

-BU name

Assign name to the bound unit. Prelinker output·
files are named bu name.Q and $bu name.O; Linker
output files are named bu_name.M and bu_name.

Default: The default name for C programs is A.OUT.

3-2 CW35-02

-co

M4 CC

Stop after compiling the preprocessed code. Output
is placed in the corresponding file(s) name.A.

The arguments -PP, -co, -AS, and -LD are mutually
exclusive.

-COOT out_path

Instruct the Assembler to write source listing to the
file out_path.

Default: No listing is produced.

-D {name=def}
name

Enter name in the list of definitions as though
either "tdefine name def" or •tdefine name l,•
respectively, had occurred in the source unit. Up to
20 such names can be entered. These definitions are
recorded before the first line of the C source unit
is processed.

Example: M4 cc MYPROG.C -D •true=3·

-I directory

-LD

Add directory to the list of include file directories
the C compiler will search. Up to eight include
directories can be added. Simple filenames in
tinclude statements are sought by the C compiler in:
(1) the directory of the source unit, (2) directories
named in -I control arguments, and (3) standard
include directories (see Section 4).

Stop after prelinking the assembled code. The C
compiler stores Linker commands in the work file
bu name.Q, and external data declarations in the
Assembly language object unit $bu name.o.

The arguments -PP, -co, -AS, and -LD are mutually
exclusive.

3-3 CW35-02

M4 CC

-LE

Produce a listing of Assembler errors and error codes
only. Output is written to name.L if the -COUT
argument is not specified.

Default: No listing is produced.

-LIB di rectory

-LO

-MR

-NL

Search LIB directory for object units during the
prelinking process. If you specify this argument,
the compiler will search LIB directories after the
working directory, but before the directory
>LDD>Z4CRT. This pathname is passed to the C
prelinker. Libraries are searched in the order
specified, so the placement of a -LIB control
argument is significant.

Example: The control argument -LIB <IO instructs the
prelinker to search the directory IO.

Produce a listing of the Assembler output. Listing
is written to name.L if the -COUT argument is not
specified.

Allow macrocall recursion.

Do not link the bound unit. This argument is passed
to the C prelinker.

-OLDLD

-OP

-PC

Use the "old" Load utility. (See the descriptions of
the Load and Old Load utilities in this section.)

Optimize the compiled object code.

Pass comments through the preprocessor.

Default: Comments are stripped out.

3-4 CW35-02

-PP

-R

Stop .after preprocessing the source unit(s).
Preprocessing involves all source code lines
beginning with #. Output is placed in the
corresponding f ile(s) name.w.

M4 CC

The arguments -PP, -co, -AS, and -LD are mutually
exclusive.

Generate reentrant code.

-sz n

Request n additional 1024-word blocks of memory for
linking {where n can range from 1 to 32). Use of
this option can substantially reduce linking time for
large programs. Refer to the MOD 400 Application
Developer's Guide for suitable memory values for
linking.

·- U 11 name"

-UC

Remove name from the list of definitions, as if
"tundef name" had occurred in the source unit. Up to
20 such names can be removed. These·definitions are
removed after the C compiler processes the -D control
arguments, but before the first line of the C source
unit is processed. Besides ·names defined by the -D
control argument, only implicitly defined names like
level6, unix, or mod400 can be undefined.

Change all scalars, arrays, and pointers of the type
char to the type unsigned char. Treat character­
string constants as if they had been declared nconst
unsigned char []n rather than "const char []."

EXAMPLES:

This command line compiles, assembles, and links a single C
source unit, named OUT2.C. The bound unit is placed in
A.OUT; the object unit is deleted by default.

M4_CC OUT2 .C

3-5 CW35-02

M4 CC

This command line causes the C compiler to compile PROGl.C,
ignoring the listed object files and the Linker argument:

M4_CC -BU PROG PROG2.0 PROG3.0 PROGl.C -AS

This command line:

M4_CC -BU MYPROG A.C B.A C.P C.O <OBJECT

causes the c compiler to:

l. Compile and assemble A.C, producing object unit A.O.

2. Assemble B.A, producing object unit B.O.

3. Assemble C.P, producing object unit c.o.
4. If there were no errors, perform a prelink edit on the

object units A.O, B.O, c.o, and D.O. The compiler
searches for undefined functions in the object directory
<OBJECT, and then follows standard search rules.

5. Link object files A.O, B.O, c.o, D.O, and the rest,
producing a bound unit named MYPROG and a link map named
MYPROG.M.

This command line:

M4_CC <OBJECT D.O C.O B.O A.O -BU MYPROG B.A A.C C.P

produces the same effect as the previous example, except that
the object units are produced in the order B.O, A.O, and c.o,
and are linked in the order D.O, c.o, B.O, and A.O.

C-RELATED COMMANDS, ACTIVE FUNCTIONS, AND UTILITY PROGRAMS

C-related commands, active functions, and utilities are
described in the following pages. They are ordered alphabeti­
cally by name. They are all available for general MOD 400 use.

NOTE

The utility program lint, commonly found on UNIX
systems, is not available for MOD 400 C programs.

3-6 CW35-02

CSICK

c Task Dump (CSICK)

Display information about a C task.

FORMAT:

CSICK task [ctl_arg]

ARGUMENTS:
•

task

The task to be investigated. Specify a bound unit name,
a logical resource number, or a task control block
address.

[ctl_arg]

One or more of the following control arguments can be
entered, in any order:

The same as -CONTEXT -HISTORY -STACK -BOUND UNIT
-HEAP -FILES -DATA -GROUP WRITABLE SEGMENT
-GROUP DESCRIPTOR SEGMENT7 -

{-APPEND}
-APP
-EXTEND

- -

Extend the output file. This is the default.

{-BOUND_UNIT}
-BU

List the bound units attached to the task being
investigated. The bound unit name, location of the
bound unit's code, and location of the bound unit's
static data are given for each attached bound unit.

{
-COLLECTION_WORK_AREA}
;.. C WORK AREA .
-CWA -

Print the C work area. The C work area is a logical
extension of the task control block. It is user ring
writable, and contains information required to pro­
vide the facsimile UNIX environment for C programs.
The area's structure is defined in the <z4cwa.incl>
header file.

3-7 . CW35-02

CS I CK

{-CONSOLE_OUTPUT}
-co

Direct output to the user-out file. This is the
default.

When this argument is in effect, the -TRUNCATE
argument is ignored ••

=CONTEXT

Print the process context. The process context is:.

l. The reason the process has stopped
2. The address where it stopped and its TCB•address
3. The contents of its R~registers and B-registers
4. The contents of its top stack frame.

-FILES

Print the process file.states. First the mapping of
file descriptors onto streams is given. Then the I/O
block for each stream is listed. If a given stream
is open and is not attached to a MOD 400 standard
file (command-in, user-in, user-out, or error-out),
the file information block used to interface with the
MOD 400 file system is printed following the I/O
block. The buffer contents are dumped and the
pathname of the file or device to which the stream is
attached is also given for each open stream .•

The I/O block is defined in the type definition FILE
in the <z4cwa.incl> header file. The file
information block is defined in the fib structure
definition in the <dm~mcl.h> header file.

{-GROUP_DESCRIPTOR_SEGMENT}
-GDS

Print the process group descriptor segment.

{-GROUP_WRITABLE_SEGMENT}
-GWS

Dump the process group writable segment. The listing
is preceded by a list of the work space blocks for
the task group to which the process belongs. The
blocks are listed in order of increasing age,
including address and size.

3-8 CW35-02

CS I CK

The group writable segment is listed only for
processes executing in a swappool. Work space blocks
are listed regardless of memory pool type.

-HEAP

Print the heap state and the contents of the heap.
The heap state is a list of the busy (allocated)
blocks in the heap ordered by increasing address.
For each busy block, the block's address, size (in
bytes), type, and reference count are given. If a
given block is not under the control of a type
manager, its type is listed as •untyped" and its
reference count is meaningless but usually zero.

-HISTORY

Print the process history. The process history is
obtained by unwinding the process's stack in reverse
order (the most recent frame first). For each frame,
the return address to the caller of the activation
associated with the frame, the number of and location
of the arguments passed to the activation, and the
location of the stack frame are printed.

{-LOGICAL_RESCXJRCE_NUMBER} lrn
-LRN .

Logical resource number, in decimal, of the task to
be investigated.

{-OUTPUT_FILE} path
-OF

Direct the output to the file path. If path is
omitted, output is placed in a working-directory file
named buname.CSOUT, where buname is the bound unit
name of the task's lead bound unit.

Default: Direct output to the user•out file.

-STACK

Include the contents of the stack frame itself in the
process history described above. This control
·argument implies the -HISTORY control argument.

3-9 CW35-02

CS I CK

{-TASK_CONTROL_BLOCK} address
-TCB

Address of the task control block of the task to be
investigated. The address must be in hexadecimal
notation, in either uppercase or lowercase,
optionally enclosed in parentheses, and optionally
preceded by O, x, or Ox. For example, all these
addresses are valid:

l-TRUNCATE}
-TC
-RENEW

054da7
054DA7
x'054Da7'

X054da7
Ox054DA7
54DA7

Truncate the output file, if it exists, before
placing output in it.

This argument is ignored when the -CONSOLE OUTPUT
argument is in effect.

Default: Extend the output file.

DESCRIPTION:

The C Task Dump utility prints a detailed explanation of a
task running a C program. It does this by way of formatted
dumps of the process context, call history, stack frame
contents, attached bound units, heap state and contents, file
states, static data area, group writable segment, group
descriptor segment, or any combination of these options.
This utility is interactive; it accepts directives to alter
the information it displays.

The utility uses the bound unit symbol table produced by the
Linker when the Linker is invoked with the -SYMBOL control
argument, if it can be found, to provide compile unit names
and entry point names instead of numeric offset values when
printing the process history. The directories listed in the
PATH environment line are searched to find the bound unit
symbol table file. The default PATH environment .line •
corresponds to the directory from which the CSICK utility is
loaded, followed by the directories listed in the MOD 400
loader search rules. See the C environment commands and
active functions for further information on manipulating
environment lines.

3-10 CW35-02

CS I CK

Interactive Mode

When the -CONSOLE OUTPUT control argument is in effect, the
utility operates Interactively. The utility issues the
prompt •csick:" to the user-out file at the end of each page
of output and then reads a response from the user-in file.
For most directives, the prompt and response cycle is then
repeated.

The following directives are supported.

Equivalent to the successive responses CONTEXT, STACK,
BOUND UNIT, HEAP, FILES, DATA, GROUP_WRITABLE_SEGMENT,
and GROUP_DESCRIPTOR_SEGMENT.

{:guND_UNIT}

Add the list of bound units attached to the task being
investigated to the list of information to be displayed.

CONTEXT

Add the process context to the list of information to be
displayed.

DATA

Add the static data area to the list of information to be
displayed.

{~.} command_line

Pass command_line to the MOD 400 command processor.

FILES

Add the process's file states to the list of information
to be displayed.

{GROUP_DESCRIPTOR SEGMENT}
GWS -

Add the group descriptor segment to the list of
information to be displayed.

3-11 CW35-02

CS I CK

{~~UP_WRITABLE_SEGMENT}

HEAP

Add the group writable segment to the list of information
to be displayed.

Add the heap state and the contents of the heap to the
list of information to be displayed.

HISTORY

SKIP

Add the process history to the list of information to be
displayed.

Terminate the utility immediately. The prompt and
response cycle is not repeated.

Abandon the display of the set of information currently
in progress. The prompt and response cycle is not
repeated. To abandon the current display and request an
added display, you must request the added display at the
first prompt and request the skip at the second. If the
current display is requested, it will be done a second
time. Re-requesting the current display and then making
a skip response restarts the current display.

STACK

Add the process history with the contents of the stack
frames themselves included to the list of information to
be displayed.

The C Task Dump utility ignores all other responses.

Using CSICK

One way to use the C Task Dump utility is to set a breakpoint
at an interesting location using one of the MOD 400
debuggers. When the breakpoint is reached, execute the C
Task Dump utility using the debugger's escape (E) directive.

3-12 CW35-02

DL_ENV

Delete C Variable (DL_ENV)

Delete C variable.

FORMAT:

DL ENV name

ARGUMENT:

name

The name of the variable to be deleted from the C envi­
ronment. The name must begin with a dollar sign ($),
underscore () , or letter. The rest of the characters
must be dollar signs, underscores, letters, or digits.
The name must not be more than 32 characters long.

DESCRIPTION:

The Delete C Variable command removes a variable from the
list of variables that you can pass to a C program.

. 3-13 CW35-02

ENV_.DEF

Check c variable (ENV_DEF)

Test for existence of C environment variable.

FORMAT (command):

ENV DEF name - .

FORMAT (active function):

[ENV_DEF name]

ARGUMENT:

name

The name of the environment variable whose definition
state is to be returned.

The name must begin with a dollar sign($), underscore
(), or letter. The rest of the characters must be
dollar signs, underscores, letters, or digits. The name
must not be more than 32 characters long.

DESCRIPTION: ..
The Check C Variable Command tests for the existence of a C
variable. This command/active function returns TRUE if name
is defined as an environment variable, and FALSE if name is
not defined as an environment variable.

3-14 CW35-02

Get C Variable (GET_ENV)

Display C variable.

FORMAT (command):

GET ENV name

name

FORMAT (active function):

[GET_ENV name]

ARGUMENT:

name

The name of the variable to be displayed.

GET_ENV

The name must begin with a dollar sign($), underscore
() , or letter. The rest of the characters must be
dollar signs, underscores, letters, or digits. The name
must not be more than 32 characters long.

DESCRIPTION:

, · The Get C Variable command/active function returns the
value of the named C variable.

3-15 CW35-02

LIST_ENV

List c Variables (LIST_ENV)

List C variables.

FORMAT:

LIST_ENV

DESCRIPTION:

The List C variables command lists the variables you can pass
to a C program. This command writes the name and value of
each C variable to the user-out file.

3-16 CW35-02

Load (LD)

Load program.

NOTES

1. The Load utility corresponds to the UNIX
Loader, and is a link editor. It is not to
be confused with the MOD 400 loader, which
causes execution of bound units.

2. The version of the Load utility originally
released with MOD 400 Release 3.1 is avail­
able as the bound unit OLDLD. While OLDLD is
significantly slower and supports fewer
features, it requires significantly less
memory.

FORMAT:

LD buname {-LKIN} path [ctl_arg]
-LK

ARGUMENTS:

buname

Name Of the bound unit to be created.

-LK path

LD

Specifies the names, separated by spaces, of one or
more object units to be linked into the bound unit.

Either this or the -LKIN argument is required.

I

This argument and the -LKIN argument are mutually I
exclusive.

-LKIN path

Specifies a file containing the names of one or more
object units to be linked into the bound unit.

Either this or the -LK argument is required.

This argument and the -LK argument are mutually
exclusive.

3-17 CW35-02

LOAD

[ctl_arg]

One or more of the following control arguments can be
entered, in any order:

I - -LB path

Specifies a library directory pathname. The library
directory contains object units to be linked into the
bound unit~

Default: The utility searches the system C l·ibrary
>LDD>Z4CRT.

This argument and the -LBIN argument are mutually
exclusive.

-LBIN path

-LE

-LO

Specifies a file containing pathnames of library
directories. Library directories contain object
units to be linked into the bound unit. The utility
searches directories in this order:

l. The current working directory
2. Directories specified by -LBIN argument
3. The system c library directory >LDD>Z4CRT.

This argument and the -LB .argument are mutually
exclusive.

Produce a listing of Assembler errors and error
codes. Output is written to buname.L.

Produce a listing of Assembler output. Output is
written to buname.L.

-MP path

-NL

Search load map specified by path before the default
system load map. (Load maps are described under
"Description.")

Do not link the bound unit. Instead, leave a Linker
directive file named buname.Q.

3-18 CW35-02

LOAD

-NO_MAIN

-R

-SL

Generate the Linker directive LINKN Z4SUBR instead of
LINKN Z4ROOT. Useful when the main program is
written in FORTRAN or COBOL.

Generate reentrant code (that is, separate code and
data).

Suppress the Load utility banner (see the description
below).

-START symbol

-SYM

Generate the Linker directive START symbol. This
allows multiple bound unit entry points. Also useful
when the main program is written in FORTRAN or COBOL.

Generate a symbolic history file buname.V (this
argument is passed to the Linker).,

-sz n

-v

-w

Request n additional 1024-word blocks of memory for
linking (where n may range f ro1n 1 to 44) • Use of
this option can substantially reduce linking time for
large programs. Refer to the MOD 400 Application
Developer's Guide for suitable memory-size values.

Display in-progress messages as the Load utility
begins each phase.

Save Linker directive file.

-XREF

Create a cross-reference listing named buname.XREFe

I

I

If you specify this control argument, the Load I
utility calls the Sort; ignore the Sort messages.

3-19 CW35-02

I

LOAD

DESCRIPTJ;ON:

The Load utility generates Linker directive files for C,
FORTRAN, or COBOL source units. If you don't wish to compile
and link directly from the C compiler (the default process),
you can use the Load utility to:

• Link C object units
• Prelink C object units.

The Load utility generates a Linker command file with a .Q
suffix, initializes external storage, and performs some
diagnostic checking.

When you invoke the utility, it displays this banner:

LOADER - n.n mm/dd/yy

where n.n is the release number and mm/dd/yy is the date on
which the Load utility bound unit was created.

Examples:

This is the minimum valid Load command:

LD OUTFILE -LK NAMEl

The following command line creates a Linker directive file
for the object units NAMEl and NAME2, but stops short of
creating the bound unit (by use of the -NL option) • NAMEl
and NAME2 are in the directories named in the file LBDIR.
External names are resolved using the load map file MAPFILE.

LD OUTFILE -LK NAMEl NAME2 -LBIN LIBDIR -NL -MP MAPFILE

Load Maps:

A load map resolves external names when an object unit
contains more than one function definition, or when an object
unit has a name different from some function it contains.
For example, the default load map (>LDD>Z4CRT>Z4LDMP)
contains these entries:

COS SIN
BRK Z4BRK

These entries specify that the cos function is located in the
object unit SIN.O, and that the brk function is located in
the object unit Z4BRK.O.

3-20 CW35-02

LOAD

When the Load utility locates an external name in an object
file, it searches the load map (the one you specified in the
-MP argument, then the default system load map
>LDD>Z4CRT>Z4LDMP). If an entry for that external name is
found, the Load utility replaces it with the corresponding
name from the load map. It searches for an object unit by
that name in (1) the working directory, (2) any directories
specified in a -LB argument, and (3) the system directory
>LDD>Z4CRT.

To create your own load map, first create the file. A load
map must be a dynamic indexed sequential file with fixed­
length records. Here are sample commands to create such a
file and its index:

CR MYLOADMAP -DYN -LRSZ 256 -CISZ 512
ex MYLOADMAP.X MYLOADMAP -KLOC l -KSZ 6

MYLOADMAP is the data file; MYLOADMAP.X is the load map. To
use the load map, specify -MP MYLOADMAP.X in the Load command
line.

Then you can edit the data file to add entries, one per
line. Entries must correspond to this C structure:

struct loadmap_entry {
char external name[6J;
char separator[2]1
char object_file[6]1

where external name is the external name (the key field indi­
cated in the Create Index command above), separator is two
spaces, and object file is the object unit name (NOT includ­
ing the .o suffix): Therefore, the external names you enter
must be from one to six characters long, left-justified, and
blank-filled to six characters: two spaces must follow; and
the object unit name must be from one to six characters
long. All names must be in upper case.

Once you have populated the load map, you can print the data I
file to view the entries in their original order, or the
index file to view the entries in key order.

3-21 CW35-02

I

OLDLD

Old Load (OLDLD)

•01d• Load utility.

NOTES

1. The Load utility corresponds to the UNIX
Loader, and is a link editor. It is not to
be confused with the MOD 400 loader, which
causes execution of bound units.

2. This is the version of the Load utility
originally released with MOD 400 Release
3.1. While OLDLD is is significantly slower
and supports fewer features than LD, it
requires significantly less memory.

FORMAT:

OLDLD buname {-LKIN} path [ctl_arg]
-LK

ARGUMENTS:

buname

Name of the bound unit to be created.

-LK path

Specifies the names, separated by spaces, of one or
more object units to be linked into the bound unit.

Either this or the -LKIN argument is required.

This argument and the -LKIN argument are mutually
exclusive.

-LKIN path

Specifies a file containing the names of one or more
object units to be linked into the bound unit.

Either this or the -LK argument is required.

This argument and the -LK argument are mutually
exclusive.

3-22 CW35-02

OLD LOAD

[ctl_arg]

One or more of the following control arguments can be
entered, in any order:

-LB path

Specifies a library directory pathname. The library
directory contains object units to be linked into the
bound unit.

Default: The utility searches the system C library
>LDD>Z4CRT.

This argument and the -LBIN argument are mutually
exclusive.

-LBIN path

-NL

Specifies a file containing pathnames of library
directories. Library directories contain object
units to be linked into the bound unit. The utility
searches directories in thi"s order:

1. The current working directory
2. Directories specified by -LBIN argument
3. The system C library directory >LDD>Z4CRT.

This argument and the -LB argument are mutually
exclusive.

Do not link the bound unit. Instead, leave a Linker I
direc~ive file named buname.Q.

-sz n

Request n additional 1024-word blocks of memory for
linking {where n may range from 1 to 44). Use of
this option can substantially reduce linking time for
large programs. Ref er to the MOD 400 Application
Developer's Guide for suitable memory-size values.

-XREF

Create a cross-reference listing named buname.XREF. I

3-23 CW35-02

OLD LOAD

DESCRIPTION:

The Old toad utility prepares and uses Linker directive files
for C source units. You can create bound units from C source
units directly from the C compiler (the default action); link
c o.bject units using the Load utility; or stop aft~r
prelinking c object units using the Load utility. The Load
utility generates a Linker command file with a .Q suffix,
initializes. external storage, and performs some diagnostic
checking.

E~ample:

This is the minimum valid Old Load command:

LD OUTFILE -LK NAMEl

The following command line creates a Linker directive file
for the object units NAMEl and NAME2, but stops short of
creating the bound unit (by use of the -NL argument). NAMEl
and NAME2 are in the directories named in the file LBDIR.

LD OUTFILE -LK NAMEl NAME2 -LBIN LIBDIR -NL

3-24 CW35-02

SET_ENV

Set C variable (SET_ENV)

Set C variable.

FORMAT:

SET ENV name [value]

ARGUMENTS:

name

The name of the variable to be set. The name argument
must begin with a dollar sign ($),an underscore (), or
a letter. The rest of the characters must be dollar
signs, underscores, letters, or digits. The name
argument must not be more than 32 characters long.

[value]

The value to which name is set. If the value argument is
omitted, a null string is assumed.

DESCRIPTION:

The Set C Variable command sets a value which you can then
pass to a C program.

3-25 CW35-02

Section4
THE C STANDARD

LIBRARY

This section lists the standard functions and subroutines
provided with the MOD 400 C compiler.

The routines provided with the C compiler attempt to present
C programs with the same interface they would enjoy under UNIX.
Howeverw due to the inherent differences the two operating
systems, some routines are altered, have restrictions not found
on UNIX, or are not supported at all. For instance, routines
that involve pathnames adhere to MOD 400 pathname conventions,
not UNIX pathname conventions; the process-management functions
(for example, fork) are available only to tasks running in a
MOD 400 swappool; and functions involving the UNIX "super user"
(for example, getpass and some elements of kill) are not allowed
under MOD 400 at all. Also excluded are these functions:

• Data base
• Multiplexed-file
• Multiprecision integer arithmetic
• Pl otter I/O
• Packet driver
• Interprocess communication
• Semaphore
• Archive
• X.25.

4-1 CW35-02

Table 4-1 lists C system functions and subroutines, sorted by
name; Table 4-2 lists the same functions sorted by function
group. Table 4-3 lists commonly used UNIX system functions
(taken from System V UNIX) not supported under MOD 400 c.

,_ The MOD 400 standard C include directories are located in
>UDD>account_ID>INCLUDE and >LDD>INCLUDE.

Table 4-1. MOD 400 C Standard Library (Sorted by Name)

Name

a641
abort
abs
access
a cos
alarm
alloc
asctime
as in
atan
atan2
atof
atoi
atol

brk
bsearch

calloc
ceil
chdir
ch own
clear err
close
cos
co sh
creat
crypt
ctime

dup

Function

Convert base-64 ASCII to long
Generate !OT fault
Absolute value of integer
Determine accessibility of file
Arc cosine
Schedule signal after interval
Main memory allocation
Convert time to ASCII
Arc sin
Arc tangent
Arc tangent
Convert ASCII to floating-point
Convert ASCII to integer
Convert ASCII to long integer

Change memory allocation
Binary search

Main memory allocation
Ceiling function
Change working directory
Change owner
File status inquiry
Close file
Cosine
Hyperbolic cosine
Create new file
DES encryption
Convert date/time to ASCII

Duplicate open file descriptor

4-2

Function
Group

String
Process
Mathematical
File control
Mathematical
Process
Storage
System
Mathematical
Mathematical
Mathematical
String
String
String

Storage
String

Storage
Mathematical
File control
Process
Input/output
File control
Mathematical
Mathematical
File control
System
System

File control

CW35-02

Table 4-1 (co.nt). MOD 400 C ·standard Library (Sorted by Name)

Name

ecvt
encrypt
endgrent
endpwent
equal name
erf -
erfc
errno
ex eel
execle
execlp
execv
execve
execvp
exit
exp

f abs
f close
f cntl
f cvt
f dopen
feof
f error
ff lush
f getc
fgets
f ileno
find file
floor
f mod
f open
fork
fprintf
f putc
fputs
f read
free
f reopen
f rexp
f scanf
f stat
fwrite

-

Function

Output conversion
DES encryption
Close group file
Close password file
Equal-names convention
Return error function of arg
Return 1-erf (x)
Error message number
Execute a file
Execute a file
Execute a file
Execute a file
Execute a file
Execute a file
Terminate a process
Exponential function

Absolute value of real value
Close a file
Control over open files
Output conversion
Open a file
File status inquiry

l File status inquiry
Flush a file

· Get character from word or file
Get string from file
File status inquiry
Find a file
Floor function
Return remainder function {a/b)
Open a file
Spawn a new process
Formatted output conversion
Put character or word on file
Put string on file
Buffered binary input
Main memory allocation
Reopen a file
Split into mantissa and exponent
Formatted input conversion
Get file status
Buffered binary output

4-3

Function
Group

String
System
File control
System
File control
Mathematical
Mathematical
System
Process
Process
Process
Process
Process
Process
Process
Mathematical

Mathematical
Input/output
File control
String
Input/output

I. Input/ output
: Input/ out.put
. Input/ output

Input/output
Input/output
Input/output
File control
Mathematical
Mathematical
Input/output
Process
Input/output
Input/output
Input/output
Input/output
Storage
Input/output
Mathematical
Input/output
File control
Input/output

CW35-02

I

I

Table 4-1 (cont). MOD 400 C Standard Library (Sorted by Name)

Name

gamma
gcvt
getc
get char
getcwd
getdir
getegid
getenv
geteuid
getgid
getgrent
getgrgid
getgrnam
getlogin
get opt
getpgrp
getpid
getppid
getpwent
getpwnam
getpwuid
getptcb
gets
getr
gettcb
getuid
getw
gmtime

hypot

init rnem
isalnum
isalpha
isascii
isascii8
isatty
iscntrl
isd.igit
isgraph
islower
isprint
ispunct
isspace
isupper
isxdigit

Function

Log absolute value gamma function
Output conversion
Get character from word or file
Get character from word or file
Get current working directory
Get pathname of system directory
Get effective group ID
Get environment name
Get effective user ID
Get group ID
Get group file entry
Get group file entry
Get group file entry
Get login name
Get option letter from arg
Get process group
Get process ID
Get parent process ID
Get password record entry
Get password record by login name
Get passward record.by user ID
Get parent TCB
Get string from file
Get record
Get TCB
Get user ID
Get word from file
Convert to Greenwich Mean Time

Euclidean distance

Initialize memory
Character classification
Character classification
Character classification
Character classification
Get name of terminal
Character classification
Character classification
Character classification
Character classification
Character classification
Character classification
Character classification
Character classification
Character classification

4-4

Function
Group

Mathematical
String
Input/output
Input/output
File control
System
Process
Process
Process
Process
File control
File control
File control
Process
String
Process
Process
Process
System
System
System
System
Input/output
Input/output
System
Process
Input/output
System

Mathematical

Storage
String
String
String
String
System
String
String
String
String
String
String
String
String
String

CW35-02

Table 4-1 (cont). MOD 400 C Standard Library (Sorted by Name)

jO
jl
jn

Name

kill

13tol
164a
ldexp
lgdiv
lgmul
lg rem
link
local time
log
10910
longjmp
lsearch
ltol3

malloc ·
mcl
:memccpy
memchr
memcmp

' memcpy
memset
mktemp
modf

open

pause
perror
pipe
posr
pow
printf
pthto6
putc
putchar
putr
puts
putw

qsort

Function

Bessel function
Bessel function
Bessel function

Send signal to process

Convert 3-byte integer to long
Convert long to base-64 ASCII string
Split into mantissa and exponent
Long divide
Long multi ply
Long remainder
Link to a file
Convert date/time to local time
Natural logarithm
Common logarithm
Non-local goto
linear search
Convert long integer to 3-byte

Main memory allocator
Execute MOD 400 macrocall
Memory-to-memory copy
Point to character in memory
Compare memory areas
Memory-to-memory copy
Initialize memory
Make unique file name
Split into mantissa and exponent

Open file

Stop until signal
Print system error message
Interprocess communication
Position file record pointer.
Power function
Formatted output conversion
Convert UNIX pathname to MOD 400
Put character or word on file
Put character or word on file
Put record on a file
Put string on file
Put word on file

Quicker sort

4-5

Function
Group

Mathematical
Mathematical
Mathematical

Process

Storage
String
Mathematical
Mathematical
Ma th ema ti cal
Mathematical
File control
System
Mathematical
Mathematical
System
File control
Storage

Storage
I System

!!.I Storage
Storage

I Storage
Storage
Storage
File control
Mathematical

File control

Process
System
Process
Input/ output I
Mathematical
Input/output
System
Input/output
Input/output
Input/output I
Input/output
Input/output

System

CW35-02

I

I

·Table 4-1 (cont). MOD 400 C Standard Library (Sorted by Name)

Name

rand
read
realloc
runl
runlp
runv
runvp

same file
sbrk­
scanf
send sig
setbiif
setgrent
setjmp
set key
setprint
setpwent
signal
sin
sinh
sleep
smopen
smread
smwrit
sprintf
sqrt
srand
sscanf
star check
star-match
star-name
stat-
strcat
strchr
strcmp
strcpy
strcspn
~trlen
strncat
strncmp
strncpy
strpbrk
strrchr
strspn
strtok
swab

Function

Random number generator
Read from a file
Reallocate memory
Create new process
Create new process
Create new process
Create new process

Compare pathnames
Change memory allocation ·
Formatted input conversion
Send signal to process
Assign buffering to a file
Rewind group file
Prepare for non-local goto
DES encryption
Set print attribute of stream
Rewind password file
Catch signal
Sine
Hyperbolic sine
Suspend execution for interval
Open for block read/write
Read block
Write block
Formatted output conversion
Square root
Random number generator
Formatted input conversion
Validate star name
Validate and match star name
List star name matches
Get file status
Character-string concatenation
First C occurrence
Compare
Copy
Compare length of strings
Length
Concatenate N characters
Compare N characters
Copy N characters
Find first S1 in S2
First C occurrence
Length of S1 substr of S2 chars
Token separator
Swap bytes

4-6

Function
Group ---· ----·--·--·----·-!-

Mathematical
Input/output
Storage
Process
Process
Process
Process

File control
Storage
Input/output
Process
Input/output
Process
System
System
Process
System
Process
Mathematical
Mathematical
Process
File control
File control
File control
Input/output
Mathematical
Mathematical
Input/output
File control
File control
File control
File control
String
String
String
String
String
String
String
String
String
String
String
String
String
String

CW35-02

Table 4-1 (cont). MOD 400 C Standard Library (Sorted by Name)

Name

sys_errlist
sys nerr
system

tan
tanh
time
tmpnam
toascii
tolower
toupper
ttyname
tzset

ucf def c
ucf-def r
ucf finish
ucf-init
uldiv
ulrem
umemchr
umemcmp
umemcpy
um em set
ungetc
unlink

wait
write

yo
yl
yn

Function

Vector of system error messages
Largest system error message number
Execute a command line

Tangent
Hyperbolic tangent
Get time
Create temporary file name
Character translation
Character translation
Character translation
Get name of terminal
Set time zone

Create file
Create file
Create file

I Create file
Long unsigned divide
Long unsigned remainder
Point to character in memory
Compare memory areas
Memory-t~memory copy
·Initialize memory

! Push character back into input file
Remove directory entry

Wait for process to terminate
Write on file

Bessel function
Bessel function
Bessel function

4-7

Function
Group

System
System
System

Mathematical
Mathematical
Process
File control
String
String
String
System
System

File control
File control
File control
File control
Mathematical
Mathematical
Storage
Storage
Storage
Storage
Input/output
File control

Process
Input/output

Mathematical
Mathematical
Mathematical

CW35-02

I

Table 4-2. MOD 400 C Routines (Sorted by Function Group)

Group Name
,-,v-··-' ,, ·--·

File control access
chdir
close
creat
dup
endgrent
equal name
fcntl-
f ind file
f stat
getcwd
getgrent
getgrgid
getgrnam
link
!search
mktemp
open
same file
stat
tmpnam
ucf def c
ucf-def r
ucf finish
ucf-init
unlink

Input/output clearerr
f close
f dopen
f eof
f error
ff lush
f getc
f gets
f ileno
f open
fprintf
fputc
fputs
f read
f reopen
f scanf
fwrite

Function

Determine accessibility of file
Change working directory
Close file
Create new file
Duplicate open file descriptor
Close group file
Equal-names convention
Control over open files
Find a file
Get file status
Get current.working directory
Get group file entry
Get group ID
Get group name
Link to a file
linear search
Make unique file name
Open file
Compare pathnames
Get file status
Create name for temporary file
Create file
Create file
Create file
Create file
Remove directory entry

File status inquiry
Close a file
Open a file
File status inquiry
File status inquiry
Flush a file
Get character from word or file
Get string from file
File status inquiry
Open a file
Formatted output conversion
Put character or word on file
Put string on file
Buffered binary input •
Reopen a file
Formatted input conversion
Buffered binary output

4-8 CW35-02

Table 4-2 (cont). MOD 400 C Routines (Sorted by Function Group)

Group

Input/output
(cont)

Name

getc
getchar
getr
gets
getw
posr
printf
putc
put char
putr
puts
putw
read
scanf
setbuf
sprintf
sscanf
ungetc
write

Mathematical abs
a cos
as in
atan
atan2
ceil
cos
cosh
erf
erfc
exp
f abs
floor
f mod
f rexp
gamma
hypot
jO
jl
jn
ldexp
lgdiv
lg rem
lgmul
log
loglO
modf

Function

Get character from word or file
Get character from word or file
Get record from file
Get string from file
Get word from file
Position file record pointer
Formatted output conversion
Put character or word on file
Put character or word on file
Put record on file
Put string on file
Put word on file
Read from file
Formatted input conversion
Assign buffering to file
Formatted output conversion
Formatted input conversion
Push character back into input file
Write on file

;

Absolute value of integer
Arc cosine
Arc sin
Arc tangent
Arc tangent
Ceiling £unction
Cosine
Hyperbolic cosine
Return error function of arg
Return 1-erf (x)
Exponential function
Absolute value of real value
Floor function
Return remainder function (a/b)
Split into mantissa and exponent
Log absolute value gamma function
Euclidean distance
Bessel function
Bessel function
Bessel function
Split into mantissa and exponent
Long divide
Long remainder
Long multiply
Natural logarithm
Common logarithm
Sp1 it into mantissa and exponent

4-9 CW35-02

I

I

I

Table 4-2 (cont). MOD 400 C Routines (Sorted by Function Group)

Group Name Function
' ···-~-· "<",_ -~--- -

~··-·· ~.---· ----- ______________, __________________ ~

I
I

Mathematical
(cont)

Process

pow
rand
sin
sinh
sqrt
srand
tan
tanh
uldiv
ulrem
yO
yl
yn

abort
alarm
ch own
execl
execle
execlp
execv
execve
execvp
exit
fork
getegid
getenv
geteuid
getgid
getlogin
getpgrp
getpid
getppid
getuid
kill
pause
pipe
runl
runlp
runv
runvp
send sig
setgrent
setprint
signal
sleep
time
wait

Power function
Random number generator
Sine
Hyperbolic sine
Square root
Random number generator
Tangent
Hyperbolic tangent
Long unsigned divide
Long unsigned remainder
Bessel function
Bessel £unction
Bessel function

Generate IOT fault
Schedule signal after interval
(No function)
Execute a file
Execute a file
Execute a file
Execute a file
Execute a file
Execute a file
Terminate a process
Spawn a new process
Get effective group ID
Get environment name
Get effective user ID
Get group ID
Get login name
Get process group
Get process ID
Get parent process ID
Get user ID
Send signal to process
Stop until signal
Interprocess communication
Create new process
Create new process
Create new process
Create new process
Send signal to process
Rewind group file
Set print attribute of stream
Catch signal
Suspend execution for interval
Get time
Wait for process to terminate

4-10 CW35-02

Table 4-2 (cont). MOD 400 C Routines (Sorted by Function Group)

Group

Storage

String

Name

alloc
brk
calloc
free
init mem
13toI
ltol3
malloc
memccpy
memchr
memcmp
memcpy
memset
realloc
sbrk
umemchr
umemcmp
umemcpy
umemset

a641
atof
atoi
atol
bsearch
ecvt
fcvt
gcvt
getopt
isalnum
isalpha
isascii
isascii8
iscntrl
isdigit
isgraph
islower
isprint
ispunct
is space
isupper
isxdigit
l64a
strcat
strchr
strcmp
strcpy
strcspn

Function

Main memory allocation
Change memory allocation
Main memory allocation
Main memory allocation
Initialize memory
Convert 3-byte to long integer
Convert long to 3-byte integer
Main memory allocator
Memory-to-memory copy
Point to character in memory
Compare memory areas
Memory-to-memory copy
Initialize memory
Reallocate memory
Change memory allocation
Point to character in memory
Compare memory areas
Memory-to-memory copy
Initialize memory

Convert base-64 ASCII to long
Convert ASCII to floating point
Convert ASCII to integer
Convert ASCII to long integer
Binary search .
Output conversion
Output conversion
Output conversion
Get option letter from arg
Character classification
Character classification
Character classification
Character classification
Character classification
Character classification
Character classification
Character classification
Character classification
Character classification
Character classification
Character classification
Character classification
Convert long to base-64 ASCII string
Character-string concatenation
First C occurrence
Compare
Copy
Compare length of strings

4-11 CW35-02

Table 4-2 (cont). MOD 400 C Routines (Sorted by Function Group)

Group

String
(cont)

System

Name

strlen
strncat
strncmp
strncpy
strpbrk
strrchr
strspn
strtok
swab
toascii
toascii8
tolower

tolower
toupper
_toupper

asctime
crypt
ctime
encrypt
endpwent
errno
getdir
getptcb
getpwent
getpwnam
getpwuid
gettcb
gm time
isatty
local time
longjmp
mcl
perror
pthto6
qsort
setjmp
set key
setpwent
sys_errlist
sys nerr
system
tty name
tzset

Function

Length
Concatenate N characters
Compare N characters
Copy N characters
Find first S1 in S2
First C occurrence
Length of S1 substring of S2
Token separator
Swap bytes
Character conversion
Character conversion
Character conversion
Character conversion
Character conversion
Character conversion

Convert time to ASCII
DES encryption
Convert date/time to ASCII
DES encryption
Close password file
Error message number
Get pathname of system directory
Get parent TCB
Get password record entry
Get password record by login name
Get password record by user ID
Get TCB
Convert date/time to Greenwich Time
Get name of terminal
Convert date/time to local time
Non-local goto
Execute MOD 400 macrocall
Print system error message
Convert UNIX pathname to MOD 400
Quicker sort
Prepare for non-local goto
DES encryption
Rewind password file
Vector of system error messages
Largest system error message number
Execute a command line
Get name of terminal
Set time zone

4-12 CW35-02

Table 4-3. C Routines Not Supported

Name Function

acct
assert

chmod
ch root
clock
ctermid
cuserid

dbminit
delete
dial

edata
end
etext

fetch
f irstkey
f seek
ft ell
ftw

getpass
ssignal

hcreate
hdestroy
hsearch

logname
lseek

math err
mknod
monitor
mount
mpx et al

next key
nice
nlist

Enable or disable process a·ccounting
Program verification

Change mode of file
Change root directory
Report CPU time used
Get terminal ID
Get user ID

Data base subroutine
Data base subroutine
Dial· external line

End of program initialized data location
End of program data location
End of program code location

Data base subroutine
Data base subroutine
Reposition a file
Reposition a file
File tree walk

Read password
Get signal

Create heap
Destroy heap
Search heap

Login name of user
Change file currency

Math routine error handler
Make node (directory or file)
Prepare execution profile
Mount volume
Create and manipulate multiplexed files

Data base subroutine
Change priority of a process
Get entries from name list

·----··----··-· ~--·-··-··---··-----.L-----------------------'

4-13 CW35-02

*

*

I

Table 4-3 (cont). C Routines Not Supported

Name Function

pclose
plock
po pen
prof il
ptrace
putpwentry

regcmp
regx

setgid
setpgrp
setuid
sgetl
sig
sputl
stime
store
strtol
stty
synch

tdelete
tell
times
tmpfile
tmpnam
tsearch
twalk
tzname

unmount
utime

Close a pipe
Process lock
Open a pipe to/from process
Execution profile
Trace a process
Write password entry

Compile regular expression
Execute regular expression

Set group ID
Set process group
Set user ID
Get long numeric
Signal
Put long numeric
Set time
Data base subroutine
Convert string to long integer
Set terminal characteristics
Update superblock

Delete tree
Change file currency
Get process times
Create temporary file
Temporary name
Search tree
Walk tree
Get time zone

Dismount volume
Set file time stamps

C SUPPORT OF MOD 400 FILE TYPES

C supports sequential files with most functions. The getr
and putr functions ·support relative, random, dynamic, and indexed
files.

The creat function creates a sequential file. Sequential
processing of pre-existing string-relative files will be compat­
ible with UNIX. The functions smopen, smread, and smwrit support
block-mode processing. The lseek function is not supported.

4-14 CW35-02

SUBROUTINES AND LIBRARIES

C subroutines and libraries include input/output and
mathematical functions. While these functions are not directly
callable. f rem C, you can use these functions with include
statements of the form:

t include <stdio.h>
t include <math.h>

Functions in the math library may return conventional values
O or HUGE (largest size precision floating number) when the
function is undefined for the given arguments or when the value
is not representable. In these cases, the external variable
errno is set to the value EDOM or ERANGE.

The descriptions of some functions refer to the null pointer
(NULL). This value will not match that of any legitimate
pointer, so many functions that return pointers return it, for
example, to indicate an error. NULL is defined in <stdio.h> as
(int*)O; you can include your own definition if you are not using
<stdio.h>.

The standard I/O package consists of the stdio.h header file
and a set of functions. The inline macrocalls getc and putc
handle characters quickly. The macrocalls getchar, putchar, and
the higher level routines fgetc, fgets, fprintf, fputc, fputs,
fread, fscanf, fwrite, gets, getw, print£, puts, putw, and scanf
all use getc and putc1 they can be freely intermixed.

A file with associated buffering is declared to be a pointer
to a defined type FILE. The fopen function creates certain ·
descriptive data for a file and returns a pointer to designate
the file in all further transactions. Normally, there are three
open files with constant pointers declared in the "include" file
and associated with the standard open files:

stdin Standard input file (MOD 400 user-in)
stdout -- Standard output file (MOD 400 user-out)
stderr -- Standard error file (MOD 400 error-out).

An integer constant EOF C-1) is returned when a function
encounters the end of a file or an error (see the individual
descriptions for details).

Any application that uses this package must include the
header file of pertinent macrocall definitions, as follows:

t include <stdio.h>

4-15 CW35-02

The functions and constants mentioned in the input/output
functions are declared in that nincluden file and need no further
declaration. The constants and the following nfunctionsn are
macrocalls (redeclaration of these names is perilous):

• clearerr
• f eof
• f ileno
• getc
• getchar
• putc
• putchar.

TRAPS AND SIGNALS

Generally, MOD 400 traps are mapped to their UNIX
equivalents, to provide an emulation of the UNIX environment.
After catching a signal in UNIX, a program can continue as if the
signal had not been sent merely by returning from the signal
catcher (as opposed to calling exit.) In MOD 400, this is not
always possible. For this reason, these (MOD 400) traps cause
the task to be terminated upon return from the signal catcher:

Meaning

O Cleanup
3 Uninstalled SIP operation

12. Recursive remote descriptors
13 Unprivileged use of privileged operation
15 Reference to unavailable resource
17 Bus parity or memory error
24 Uncorrectable memory error or Megabus error
32 CIP/SIP reference to protected memory
33 Invalid SIP argument

MOD 400 traps will be mapped into UNIX signals as described
in Table 4-4.

4-16 CW35-02

Table 4-4. MOD 400 Trap Support of UNIX Signals

MOD 400 Trap UNIX Signal

0 Cleanup
1 MCL instruction
l PI conunand
2 BRK instruction
2 Trace trap
3 Uninstalled SIP instruc.
4 RSU
5 Other uninstalled instr.
6 Integer arith. overflow
7 SIP divide by zero
8 SIP exponent overflow
9 Stack underflow

10 Stack overflow
12 Recursive remote

descriptor usage
13 Unprivileged use of priv-

ileged instruction
14 Out of ring bracket
15 Unavailable resource
16 Program error
17 ~us/memory parity error
19 SIP exponent underflow
20 SIP program error
21 SIP significance error
22 SIP precision error
23 SIP/CIP unavail. resource
24 Uncorrectable memory

error
25 CIP divide by 0
26 CIP bad specification
27 CIP bad character
28 CIP truncation error
29 CIP arithmetic overflow
30 CIP self-test fault
31 SIP self-test fault
32 CIP/SIP reference to

protected memory
33 Invalid SIP argument
48 BREAK key
49 Unwind command
51 Intergroup signal
53 Power-fail restart

Not applicable
Not applicable
Not applicable

8 0n some processors

15 Software termination signal
Filtered out by support routines

2 Interrupt
5 Trace trap
5 Trace trap
4 Invalid instruction

Trap disabled
4 Invalid instruction

Trap disabled
8 Floating-point exception
8 Floating-point exception

Used by support routines only
used by support routines only

4 Invalid instruction

4 Invalid instruction

ll Segmentation violation
11 Segmentation violation

4 Invalid instruction
10 Bus error

8 Floating-point exception
4 Invalid instruction
8 Floating-point exception
8 Floating-point exception

11 Segmentation violation
10 Bus error

Not applicable
Not applicable
Not applicable
Not applicable
Not applicable
Trap disabled
Trap disabled

11 Segmentation violation

4 Invalid instruction
Trap disabled

3 Quit
Depends on message content

19 Power-fail restart
1 Hangup
6 IOT instruction8

7 EMT instruction8

4-17 CW35-02

Table 4-5 lists software-generated signals. Note that •pid"
is the process ID.

Table 4-5.

C Calling Sequence

kill (pid, 0)
kill (pid, SIGHUP)
kill (pid, SIGINT)
kill (pid, SIGQOIT)
kill (pid, SIGILL)
kill (pid, SIGTRAP)
kill (pid, SIGIOT}
kill (pid, SIGEMT)
kill (pid, SIGFPE)
kill (pid, SIGKILL)
kill (pid, SIGBOS)
kill (pid, SIGSEGV)
kill (pid, SIGSYS)
kill (pid, SIGPIPE)
kill (pid, SIGALRM)
alarm (delta)
kill (pid, SIGTERM)
kill (pid, SIGUSRl)
kill (pid, SIGUSR2)
kill (pid, SIGCLD)
kill (pid, SIGPWR)

aon some processors

Software-Generated Signals

Meaning

Test signal, always ignored
l Hangup
2 Interrupt
3 Quit
4 Invalid instruction

.5 Trace trap
6 !OT instructiona
7 EMT instructiona
8 Floating-point exception

. 9 Kill
10 Megabus error
11 Segmentation violation
12 Bad argument to function
13 Write to pipe having no readers
14 Alarm clock
14 Alarm clock (after delta secs)
15 Terminate
16 User defined signal 1
17 User defined signal 2
18 Death of a child
19 Powet--fail restart

In UNIX, the interrupt and quit signals are sent to every
process in the process group that is not ignoring the signal.
Processes created to run a command in the background
(asynchronously) are created with these signals being ignored.
Processes created to run a command in the foreground
(synchronously) are created with default handling of these
signals unless otherwise specified via the trap command. All
other processes inherit the handling of these (and all other)
signals from their parent.

I To emulate this handling of interrupt and quit signals, the
converted program interrupt trap is broadcast to the entire pro­
cess group instead of being sent only to the receiving process.
MOD 400 broadcasts the unwind trap to the entire process group.

4-18 CW35-02

ERROR RE'lURNS

Most functions have one or more error returns. An error
condition is indicated by an otherwise impossible returned
value. This is almost always -1; the individual descriptions
specify ·the details.

Reporting Errors Via errno

A UNIX error number is returned in the external integer
variable errno. The variable errno is not cleared on successful
calls, so it should be tested only after an error has been
indicated.

Reporting Errors.Via m4 errno

If an error is returned by a MOD 400 system service
macrocall, the MOD 400 error number is returned via the external
integer variable m4 errno. Any time an error is reported (for
example, by returning a null pointer), both of these variables
are set. The errno external variable is set to the appropriate
UNIX error number and m4 errno is set to the MOD 400 error code
that led the runtime routine to report the error. In situations
when there is no MOD 400-detected error leading to the error
being reported, m4 errno is set to 1800 hexadecimal plus the UNIX
error number. -

UNIX Errors

All of the possible er.ror numbers are not listed in each
function description because many errors are possible for most of
the calls. The following is a complete list of the error
numbers, manifest constants, and names as defined in <error.h>.

1 EPERM Not owner.

In UNIX, this error typically indicates an attempt to modify
a file in some way forbidden except to its owner or super-user.

2 ENOENT No such file or directory.

This error occurs when a file name is specified and the file
should exist but doesn't, or when one of the directories in a
pathname does not exist.

3 ESRCB No such process.

No process can be found correspondin9 to that specified by
the process ID in kill.

4-1·9 CW35-02

4 EINTR Interrupted process.

An asynchronous signal (such as interrupt or quit), which the
user has elected to catch, has occurred during a function. If
execution is resumed after processing the signal, it appears as
if the Jnterrupted function returned this error condition. This
is a UNIX error only; it never occurs in MOD 400.

5 EIO I/O error.

Some physical I/O error. This error may in some cases occur
on a call following the one to which it actually applies.

6 ENOIO No such device or address.

In UNIX, this occurs when I/O on a special file refers to a
device that does not exist, or is beyond the limits of the
device. It may also occur when, for example, a tape drive is not
online or no disk pack is loaded on a drive.

7 E2BIG Argument list too long.

An argument list longer than 5120 characters is presented to
a member of the exec family.

8 ENOEXEC Exec format error.

In UNIX, this occurs when a req~est is made to execute a file
which, although it has the appropriate access, does not start
with a valid magic number. This is a UNIX error only; it never
occurs in MOD 400.

9 EBADF Bad file number.

A file descriptor refers to no open file, a read request is
made to a file that is open only for writing, or a write request
is made to a file that is only open for reading.

10 ECHILD No children.

A wait was executed by a process that has no existing child
processes; or by a process already waiting for all its children.

11 EAGAIN No more processes.

A fork failed because you are not allowed to create any more
processes.

12 ENOMEM Not enough memory.

During an exec, brk, sbrk, or other function, a program asks
for more space than MOD 400 can supply. This is not a temporary
condition; the maximum space is a system parameter. The error
can also occur if the arrangement of text, data, and stack
segments requires too many segments.

4-20 CW3 5-0.2

13 EACCES Permission denied.

An attempt has been made to access a file to which you have
insufficient access.

14 EFAULT Bad address.

MOD 400 has encountered a hardware fault while using a
function argument.

15 ENOTBLK Block device required.

In UNIX, this occurs when a nonblock file is mentioned where
a block device is required; for example, in mount.

16 EBUSY Mount device is busy.

In UNIX, this occurs when an attempt is made to mount a
device that is already mounted, or an attempt is made to dismount
a device on which there is an active file (open file or current
directory) • It also occurs if an attempt is made to enable
accounting when it is already enabled.

17 EEXIST File already exists.

An existing file is mentioned in an inappropriate context;
for example, link.

18 EXDEV Cross-device link.

In UNIXu this occurs when a link to a file on another device
is attempted.

19 ENODEV No such device ..

An attempt has been made to apply an inappropriate function
to a device; for example, read a write-only device.

20 ENOTDIR Not a directory.

A file is specified where a directory is required, for
example in a path pref ix or as an argument to chdir.

21 EISDIR Is a directory.

An attempt bas been made to write on a directory.

22 EINVAL Invalid argument.

Some invalid argument has occurred: for example, mentioning
an undefined signal in signal, or kill. This error is also set
by the mathematical functions.

4-21 CW35-02

23 ENVILE File table overflow.

The system's table of open files is full, and temporarily no
more opens can be accepted.

24 EMFILE Too many open files.

No process can have more than 20 file descriptors open at a
time.

25 ENOTTY Not a typewriter.

The device is not a terminal.

26 ETXTBSY Text file busy.

In UNIX, this occurs when an attempt has been made to execute
a pure procedure program that is currently open for writing (or
reading); or an attempt has been made to open for writing a pure
procedure program that is being executed.

27 EFBIG File too large.

In UNIX, this occurs when the size of a file exceeds the
maximum file size or ULIMIT. In MOD 400, this occurs when the
file size limit is exceeded.

.
28 ENOSPC No space left on device.

During a write to an ordinary file, there is no free space
left on the device.

29 ESPIPE Illegal se'ek.

In UNIX, this occurs when an lseek has been issued to a pipe.

30 EROFS Read-only file system.

An attempt was made to modify a file or directory on a device
mounted read-only; that is, with the write-protect switch set.

31 EMLINK Too many links.

In UNIX, this occurs on an attempt to make more than the
maximum number of links (1000) to a file.

32 EPIPE Broken pipe.

In UNIX, this occurs when a write has been attempted on a
pipe for which there is no process to read the data. This
condition normally generates a signal; the error is returned if
the signal is ignored.

4-22 CW35-02

33 EDOM Math argument not in function's domain.

The argument of a function in the math package is out of the
domain of the £unction.

34 ERANGE Math function's result too large.

The value of a function in the math package is not
representable within machine precision.

35 ENOMSG No message of desired type.

An attempt was made to receive a message of a type that does I
not exist on the specified queue. This is a UNIX error only; it
never occurs in MOD 400.

36 EIDRM Identifier removed.

This error is returned to processes that resume execution due
to the removal of an identifier from the file system's name
space. This is a UNIX error only; it never occurs in MOD 400.

MOD 400 Extensions

Error numbers greater than 36 are MOD 400 extensions to the
basic UNIX set.

59 ENOSWP Fork attempted from a non swap memory pool.

The fork function was attempted by a process executing in a
non-swappool.

60 syntax in an equal name.

An equal name does not conform to the equal-name syntax
was presented to the equal-name function.

61 EONMEQ Unmatched percent sign or equal sign in an equal
name.

An equal name presented to the equal-name function contains a
percent or equal sign that has no matching component in the
source name.

62 EBIGEQ Equal name too long.

An equal name and source name presented tv the equal-name
function resulted in a target name more than 12 characters long.

64 EBADSTAR Bad syntax in star name.

A star name that does not conform to the star-name syntax was
presented to one of the star-name functions.

4-23 CW35-02

ABANDONING A PROCESS

The procedure for abandoning a process is only available to
assembly language routines. It is invoked by calling the c rtn
macrocall with the parameter dead. This macrocall generates code
to call the dead routine which in turn abandons the process by
sending a trap 16 (10 hexadecimal) to itself. The B3, BS and B7
registers in the error message displayed by the MOD 400 default
trap handler have the following values:

B3 = The return address to dead's caller; somewhere in Z4DMA
when heap management. abandons the process.

BS = The return address to the caller of dead's caller.

B7 = The address of the argument list passed to dead's
caller. This is not meaningful if dead's caller was
called without arguments. ·

Registers Bl, B6, R3, R4 and RS contain whatever dead's
caller left in them. Normally, B6 points to the stack frame
of dead's caller. This is the top stack frame since dead
does not use a stack frame itself.

Registers B2, B4, RI, R2, R6 and R7 are destroyed while
abandoning the process.

The heap management routines print one of three error
messages on the MOD 400 error-out file before abandoning the
process. These messages are:

1834 Heap Format error. Process abandoned.

This message indicates that a block listed in the heap's free
list is not marked "free" in its status word. For this message,
Bl points at the status word of the block involved and R3
contains its quad-word off set within the heap.

l83S Block format error detected by free. Process abandoned.

This message indicates that free; grow, or realloc was given
a pointer that: (1) doesn't point somewhere within the heap, I (2) isn't congruent to 2 modulo N (counting in bytes}, or (3) is
marked free in its status word (grow and realloc only) • Under
MOD 400 Release 3.1, N is 8; under MOD 400 Release 4.0, N is 16.
See the character pointer pointed to by B7 for the cause.

1836 Attempt to free an already free block. Process
abandoned.

This indicates that-free was called with a pointer to a block
already marked "free" in its status word. No check of the heap's
free list has been made. Bl contains the address of the block's
status word. Notice that free checks for block format error
before checking _for block already free.

4-24 CW3S-02

The stack overflow trap handler abandons the process if it is
unable to obtain sufficient memory to eliminate the condition.
If the process is running in a swappool, the memory is obtained
by expanding the stack segment. In a non-swappool, the memory is
obtained from the heap (this may cause a heap overflow). Before
attempting to obtain the needed memory, a check is made to see if
the stack size limitation placed on the bound unit when it was
linked would be exceeded. If it would, the process is abandoned
without attempting to obtain any additional memory. {The stack
size limitation is 256 times $ISS plus $INCMX times two to the
$INCSS power words where $ISS, $INCMX and $INCSS are Linker value
definitions created by the LD command.)

Before abandoning the process, the stack overflow trap
handler prints the following message on the MOD 400 error-out
file:

1833 Stack overflow. Unable to grow stack further.

The trap 16 error message displayed by the MOD 400 default
trap handler has the following values:

B3 = The return address to dead's caller1 somewhere in
Z4TRAP when the process is abandoned due to stack
overflow.

BS = The address of the instruction following the ACQ
instruction which caused the stack overflow trap.

B7 = The address of the A word in the process' copy of the
trap save ar~a.

The initialize memory routine init mem sends the SIGSYS
signal to the calling process when it Is given (char *) O as the
pointer to the memory to be initialized and the size given is not
zero. If the SIGSYS signal is ignored or its signal catcher
returns, the initialize memory routine calls the dead routine to
abandon the process. The values displayed for BS and B7 in the
error message from the MOD 400 default trap handler identify the
initiali~e memory routine's ·caller and the arguments passed by
the caller.

The long jump routine sends the SIGSYS signal to the calling
process when it is given an environment pointer which does not in
fact point to a saved environment. If the SIGSYS signal is
ignored or its signal catcher returns, the long jump routine
calls the dead routine to abandon the process. The values
displayed for BS and B7 in the error message from the MOD 400
default trap handler identify the long jump routine's caller and
the arguments passed by the caller.

4-.25 CW35-02

RUN-TIME ROUTINES

The rest of this section describes the run-time routines
(either functions or macrocalls) available under MOD 400 c. The
descriptions are arranged alphabetically by routine name. Refer
to Tables 4-1 and 4-2 for a complete list of routines.

4-26 CW35-02

a641

Convert between long and base-64 ASCII.

FORMAT:

long a6·41 (s)
char *s;

ARGUMENTS:

s

Value to be converted.

DESCRIPTION:

a641

The a641 function is used to maintain numbers stored in
base-64 ASCII. This is a notation by which long integers can
be represented by up to six characters; each character
represents a digit in a radix-64 notation.

The characters used to represent "digits" are 0 for O,
/for 1, o through 9 for 2-11, A through z for 12-37, and
a through z for 38-63.

RETURN VALUE:

This function returns a long value.

RELATED FUNCTIONS:

164a.

4-27 CW35-02

abort

abort

Terminate a C program.

FORMAT:

int abort ()

ARGUMENTS:

None.

DESCRIPTION:

The abort function causes an IOT signal to be sent to its own
process. The default signal catcher causes program
termination with a memory dump.

It is possible for abort to return control if SIGIOT is
caught or ignored. In this case, the value returned is that
of the kill function.

DIAGNOSTICS:

The following message is displayed:

Unclaimed signal 6 (SIGIOT) from process pid received by
process pid.

where pid is the process ID.

RELATED FUNCTIONS:

exit, signal.

4-28 CW35-02

abs

Integer absolute value.

FORMAT:

int abs (i)
int i;

ARGUMENTS:

i

abs

Integer value whose absolute value is to be returned.

DESCRIPTION:

The abs function returns the absolute value of its integer
operand.

RELATED FUNCTIONS:

fabs.

4-29 CW35-02

access

access

Determine access rights or existence of a file.

FORMAT:

int access (path, amode)
char *path;
int amode1

ARGUMENTS:

path

Pointer to a pathname naming a file.

amode

Bit pattern constructed as a sum of the following:

04 Read
02 -- Write
01 -- Execute (search)

DESCRIPTION:

The access function checks the access rights of the named
file according to the bit pattern contained in the amode
argument.

The file has access checked with respect to the read, write,
and execute mode bits.

No access to the file is indicated if the information request
of the file system returns an error. Error codes returned
are associated with the MOD 400 Get File Access Rights system
service macrocall. ·

RETURN VALUE:

If the requested access is permitted, a value of O is
returned. Otherwise, a value of -1 is returned. The
variable errno is set to indicate the UNIX error.

4-30 CW35-02

a cos

Arc cosine function.

FORMAT:

include <math.h>

double acos (x)
double x;

ARGUMENTS:

x

Double value of the cosine.

DESCRIPTION:

a cos

The acos function returns the arc cosine in the range O to
pi.

DIAGNOSTICS:

Arguments of magnitude greater than l cause acos to return
value O. .
RELATED FUNCTIONS:

asin, atan, atan2, cos, sin, tan.

4-31 CW35-02

alarm

alarm

Set a process alarm clock.

FORMAT:

unsigned alarm (sec)
unsigned sec;

ARGUMENTS:

sec

Number of seconds until alarm.

DESCRIPTION:

The alarm function instructs the calling process's alarm
clock to send the signal SIGALRM to the calling process after
the number of real-time seconds specified by the sec argument
have elapsed; see signal.

Alarm requests are not stacked; successive calls replace the
calling task's alarm clock.

If sec is 0, any previously made alarm request is canceled.

RETURN VALUE:

The alarm function returns the amount of time, possibly O,
previously remaining in the calling process's alarm clock.

DIAGNOSTICS:

If alarm is unable to set the alarm clock for any reason,
errno and m4 errno are set to indicate the reason and the
hexadecimal value FFFF is returned. The first call to alarm
may fail because the task is unable to obtain memory for the
alarm clock or because it is unable to create an auxiliary
task to listen for the alarm to go off. Reasons for failure
are:

• Lack of group work segment memory--errno set to ENOMEM
• Lack of available LRN--errno set to EAGAIN

RELATED FUNCTIONS:

pause, signal.

4-32 005-02

alloc

The alloc function is a synonym for malloc. See the
description of the malloc function.

alloc

4-33 CW35-02

I

asctime

asctime

Convert date and time to ASCII.

FORMAT:

t include <time.h>

char *asctime (tm)
struct tm *tm;
extern long timezone;
extern int daylight;
extern char *tzname(2];

ARGUMENTS:

tm

Time, in military notation.

DESCRIPTION:

The asctime function converts the components of the time to
ASCII and returns a pointer to a 26-character string in the
following form (all fields have constant width):

Fri Aug 10 10:24:54 1984\n\O

The structure declaration from the include file is:

struct tm {
int tm sec;
int tm-min;
int tm-hour;
int tm:mday;
int tm_mon;
int tm_year;
int tm_wday;
int tm yday;
int tm:isdst;

} ;

These quantities give the time on a 24-hour clock, day of
month (1-31), month ·of year (0-11), day of week (Sunday - 0),
year - 190 0, day of year (0-365} , and a flag that is nonzero
if daylight saving time is in effect.

The external long variable timezone contains the difference,
in seconds, between GMT and local standard time (in EST,
timezone is 5*60*60); the external variable daylight is
nonzero if and only if the standard U.S. daylight savings
time conversion should be applied.

4-34 CW35-02

asctime

If the envirorunent variable TZ is not present, the asctime
function assumes the local time zone is the same as the
syst·em time zone. The external variable daylight is set to
zero in this case.

If TZ is present, the asctime function uses it to determine
the local time zone. The value of TZ must be a time zone
acronym, a time offset, and an optional daylight-savings time
zone acronym.

• The time zone acronym is up to four characters long.

• The time off set represents the difference between
local time in the designated time zone and GMT. The
difference is represented by a string of digits with
an optional leading minus sign (for locations east of
Greenwich, England) and with an optional trailing .5
{for locations some odd number of half-hours from
Greenwich).

• The optional daylight savings time zone acronym is up
to four characters long.

For example, the setting for Boston would be ESTSEDT.

Setting TZ changes the values of the external variables
timezone and daylighti in addition, time zone acronyms
contained in the exterhal variable tzname are set:

char *tzname [2] = {•EST ", •EDT "};

NOTE

The return values point to static data whose
contents are overwritten by each call.

RELATED FUNCTIONS:

ctime, gmtime, localtime, time, tzseti see also the
list stz and set stz commands. - ' -

4-35 CW35-02

I

as in

a sin

Arc sine function.

FORMAT:

t include <math.h>

double asin (x)
double x;

ARGUMENTS:

x

Double-precision value of the sin.

DESCRIPTION:

The asin function returns the arc sine in the range -pi/2 to
pi/2.

DIAGNOSTICS: ..
Arguments of magnitude greater than 1 cause asin to return
value 0.

RELATED FUNCTIONS:

acos, atan, atan2, cos, sin, tan.

4-36 CW35-02

atan

Arc tangent function.

FORMAT:

t include· <math. h>

double atan (x)
double x;

ARGUMENTS:

x

Double-precision value of the tangent.

DESCRIPTION:

a tan

The atan function returns the arc tangent of x in the range
-pi/2 to pi/2.

RELATED FUNCTIONS:

acos, asin, atan2, cos, sin, tan.

4-37 CW35-02

atan2

atan2

Arc tangent of y/x.

FORMAT:

i include <math.h>

double atan2 (y, x)
double x, y;

ARGUMENTS:

x
.

Double-precision value.

y

Double-precision value.

DESCRIPTION:

The atan2 function returns the arc tangent of y/x in the
range -pi to pi.

RELATED FUNCTIONS:

acos, asin, atan, cos, sin, tan.

4-38 CW35-02

atof ·

Convert ASCII to floating point.

FORMAT:

double atof (aptr)
char *aptr1

ARGUMENTS:

aptr

atof

A string of tabs and spaces, then an optional sign, then
a string of digits optionally containing a decimal point,
then an optional e or E following by an optionally signed
integer.

DESCRIPTION:

The atof function converts a string to floating-point
representation. The first unrecognized character ends the
string.

NOTE

There are no provisions for overflow.

RELATED FUNCTIONS:

atoi, atol, scanf.

4-39 CW35-02

atoi

Convert ASCII to integer.

FORMAT:

int atoi (aptr)
char * aptr; ·

ARGUMENTS:

aptr

A string of tabs and spaces, then an optional sign, then
a string of digits.

DESCRIPTION:

The atoi function converts a string to integer
representation. The first unrecognized character ends the
string.

NOTE

There are no provisions for overflow.

RELATED FUNCTIONS:

atof, atol, scanf.

4-40 CW35-02

atol

Convert ASCII to long.

FORMAT:

long atof (aptr)
char * apt'r 1

ARGUMENTS:

aptr

atol

A string of tabs and spaces, then an optional sign, then
a string of digits.

DESCRIPTION:

The atol function converts a string to long integer
representation. The first unrecognized character ends the
string.

NOTE

There are no provisions for overflow.

RELATED FUNCTIONS:

atof, atoi, scanf.

4-41 CW35-02

brk

Change break se9ment space allocation.

FORMAT:

int brk (endds)
char *endds;

ARGUMENTS:

endds

New address of break value.

DESCRIPTION:

The brk function dynamically changes the amount of space
allocated for the callin9 process's break segment. The
change is made by resetting the process's break value. The
break value is the address of the first location beyond the
end of the break segment. The amount of allocated space
increases as the break value increases.

The brk function sets the break value to endds and changes·
the allocated space accordingly.

DIAGNOSTICS:

The brk function fails without making any change in the
allocated space if such a change would result in more space
being allocated than can be mapped to the segments available
to the calling process [ENOMEM].

RETURN VALUE:

Upon successful completion, brk returns a value of O.
Otherwise, errno and m4 errno are set to indicate the error
and -1 is returned. -

RELATED FUNCTIONS:

exec family, sbrk

4-42 CW35-02

NOTES

1. The first call to brk creates a break
segment. It may be a giant segment (larger
than 128K characters). If this segment cannot
be created for any reason, errno is set to
ENOMEM and -1 is returned. The segment number
in its formal parameter determines where in
the caller's address space the break segment
resides.

2. When a C task runs outside of a swappool,
MOD 400 allocates memory from the task's
memory pool instead of creating a segment;
subsequent calls cannot increase the size of
the break segment.

4-4·3

brk

CW35-02

bsearch

bsearch

Binary search.

FORMAT:

char *bsearch (key, base, nelem, width, compar)
char *key;
char *base1
int nelem, width;
int (*compar}();

ARGUMENTS:

key

Pointer to the datum to be located in the table.

base

Pointer to the base of the table.

nelem

Number of elements in the table. -

width

Width of an element in characters.

compar

Name of the comparison routine.

DESCRIPTION:

The bsearch function is a binary search routine generalized * from Knuth Algorithm B. The table must be previously sorted
in increasing order.

I The comparison routine indicated by compar is called with two
character-pointer (char *) arguments that point to the table
elements being compared. This comparison routine must return
an integer less than, equal to, or greater than 0 depending
on whether the first argument is less than, equal to, or
greater than the second.

I
RETURN VALUE:

The bsearch routine returns a pointer into the table indica­
ting the location of the table.element that matches the key.

4-44 CW3S-0·2

bsearch

DIAGNOSTICS:

A null pointer is returned if the key cannot be found in I
the table.

RELATED FUNCTIONS:

1 search, · qsort.

4-45 CW35-02

calloe

calloc

Heap memo~y allocation.

FORMAT:

char *calloc (nelem, elsize}
unsigned nelem, elsize;

ARGUMENTS:

nelem

Number of elements.

elsize

Size of each element in characters.

DESCRIPTION:

The calloc function allocates space for an array of
elements. The space is initialized to zeros.

RETURN VALUE:

The calloc function returns a pointer to space suitably
aligned {after possible pointer coercion) for storage of any
type of object.

DIAGNOSTICS:

If the heap contains insufficient memory to allocate the
requested block and cannot be expand sufficiently, the
variable errno is set to ENOMEM, the variable rn4 errno is set
to 1800 (hexadecimal) plus ENOMEM, and (char *) O, a null
characte~ pointer, is returned.

RELATED FUNCTIONS:

free, malloc, realloc.

4-46 CW35-02

Ceiling function.

FORMAT:

double ceil (x)
double x;

ARGUMENTS:

x

Double-precision value to be compared.

DESCRIPTION:

The ceil function returns the smallest integer not less
than x.

RELATED FUNCTIONS:

abs,· fabs, floor, fmod.

cell

4-47 CW35-02

chdir

chdir

Change working directory.

FORMAT:

int chdi r (pa th)
char *path;

ARGUMENTS:

path

Pointer to the pathname of a directory.

DESCRIPTION:

The chdir function changes the current working directory to
the named directory.

RETURN VALUE:

Upon successful completion, a value of O is returned.
Otherwise, a v~lue of -1 is returned and the variable errno
is set to indicate the error.

4-48 CW35-02

chown

Change owner.

FORMAT:

int chown (path, owner, group)
char *path;
int owner, group;

DESCRIPTION:

ch own

The chown function has no effect in MOD 400. It is provided
to be able to satisfy calls to the function and not require
their deletion.

RETURN VALUE:

The success value of 0 is always returned.

4-49 CW35-02

clearerr

clear err

File status inquiry -- clear error indicator.

FORMAT:

t include <stdio.h>

clearerr (file)
FILE *file;

ARGUMENTS:

file

File pathname.

DESCRIPTION:

The clearerr function resets the error indication on the
named file.

The clearerr function is a macrocall; it cannot be
redeclared.

RELATED FUNCTIONS:

feof, ferror, fileno, fopen, open.

4-50 CW35-02

close

Close a file.

FORMAT:

t include <stdio.h>

int close (fildes)
int fildes;

ARGUMENTS:

f ildes

close

File descriptor obtained from a create, dup, fcntl, or
pipe £unction.

DESCRIPTION:

The close function closes and deletes a file. The close
function closes the file descriptor indicated by fildes. A
shared file is not removed until the last user executes a
close.

RETURN VALUE:

Upon successful completion, a value "of O is returned.
Otherwise, a value of -1 is returned. The variable errno is
set to indicate the error.

DIAGNOSTICS:

The close function fails if f ildes is not a valid, open file
descriptor.

RELATED FUNCTIONS:

creat, dup, exec family, fcntl, open, pipe.

4-51 CW35-02

cos

cos

Cosine function.

FORMAT:

t include <math.h>

double cos (x)
double x1

ARGUMENTS:

x

Double-precision value of the angle in radians.

DESCRIPTION:

The cos function returns the cosine of a radian argument.
The magnitude of the argument should be checked by the caller
to ensure that the result is meaningful.

RELATED FUNCTIONS: ..
acos, asin, atan, atan2; sin, tan.

4-52 CW35-02

co sh

Hyperbolic function.

FORMAT:

i include <math.h>

double cosh (x)
double x1

ARGUMENTS:

x

Double-precision value.

DESCRIPTION:

co sh

The cosh function computes the hyperbolic cosine function for
real arguments.

DIAGNOSTICS:

The·cosh function returns a huge value of appropriate sign
when the correct value would overflow.

RELATED FUNCTIONS:

sinh, tanh.

4-53 ·cw3s-02

creat

creat

Create a new file or rewrite an existing one.

FORMA'l':

int creat (path, mode)
char *path;
int mode;

ARGUMEN'l'S:

path

File pathname.

mode

File access--ignored (see below).

DESCRIPTION:

The creat function creates a new sequential file or prepares
to rewrite an existing file named by the pathname pointed to
by the path argument.

The mode argument (which in UNIX sets file access) is
ignored. Access control li.st (ACL) rights for the file are
determined by whatever ACLs and Common Access Control Lists
(CACLs) currently apply to the file.

If the file exists, the length is truncated to 0 and the mode
and owner are unchanged.

RETURN VALUE:

Upon successful completion, the file descriptor (a non­
negative integer) is returned and the file is opened for
writing. The file descriptor is set to remain open across
exec functions (see fcntl). The file pointer is set to the
beginning of the file. No process can have more than 20
files open simultaneously.

Otherwise, a value of -1 is returned, and the variable errno
is set to indicate the error.

RELATED FUNCTIONS:

close, dup, open, read, write.

4-54 CW35-02

crypt

DES encryption.

FORMAT:

char *crypt (key, salt)
char *key, *salt1

ARGUMENTS:

key

User's typed password.

salt

crypt

Two-character string chosen from the lowercase letters,
the uppercase letters, the digits 0 through 9, the slash
(/), and the period (.).

DESCRIPTION:

The crypt function is a password encryption routine based on
the National Bureau of Standards Data Encryption Standard
(DES) , with variations intended (among other things) to
frustrate use of hardware implementations of the DES for key
search.

The salt string is used to perturb the DES algorithm in one
of 4096 different ways, after which the password is used as
the key to encrypt repeatedly a constant string.

RETURN VALUE:

The returned value points to the encrypted password, in the
same alphabet as the salt. The first two characters are the
salt itself.

RELATED FUNCTIONS:

crypt, encrypt, setkey.

NOTE

The·return value points to static data that is
overwritten by each call.

4-55 CW35-02

I

ctime

ctime

Convert date and time to ASCII.

FORMAT:

include <time.h>

char *ctime (clock)
long *clock;

ARGUMENTS:

clock

Long integer pointer to the time in seconds since
midnight GMT, Jan. l, 1970 (such as returned by time).

DESCRIPTION:

The ctime function converts a time into ASCII and returns a
pointer to a 26-character string in the following form (all
fields have constant width} :

Sat Aug 10 10:24:54 1985\n\0

The structure declaration from the include file is:

struct tm {
int tm sec;
int tm-min;
int tm-hour;
int tm:mday;
int tm_mon;
int tm_year;
int tm wday;
int tm-yday;
int tm:isdst;

} ;

These quantities give the time on a 24-hour clock, day of
month (l-31), month of year (0-11), day of week (Sunday - 0),
year - 1900, day of year (0-365), and a flag that is nonzero
if daylight saving time is in effect. •

The external long variable timezone contains the difference,
in seconds, between GMT and local standard time (in EST,
timezone is 5-60-60); the external variable daylight is
nonzero if, and only if, the standard U.S. daylight savings
time conversion should be applied.

4-56 CW35-02

NOTE

The return values point to static data whose
contents are overwritten by each call.

RELATED FUNCTIONS:

ctime

asctime, ·gmtime, local time, time, tzset, see also the
list_stz and set stz commands.

4-57 CW35-02

I

dup

Duplicate an open file descriptor.

FORMAT:

int dup (fildes)
int f ildes1

ARGUMENTS:

f ildes

File descriptor obtained from a creat, open, dup, fcntl,
or pipe function.

DESCRIPTION:

The dup function duplicates an open file descriptor.

RETURN VALUE:

This function returns a new file descriptor having the
following in common with the original:

• Same open file

• Same file pointer (that is, both file descriptors
share one file pointer)

• Same access (read, write, execute).

The new file descriptor is set to remain open across exec
functions (see fcntl).

The file descriptor returned is the lowest one available.

If an error occurs, a value of -1 is returned.

RELATED FUNCTIONS:

creat, close, exec, fcntl, open, pipe.

4-58 CW35-02

ecvt

Output conversion.

FORMAT:

char *ecvt (value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

ARGUMENTS:

value

Double-precision value to be converted.

ndigit

Number of digits in output string.

dee pt

ecvt

Pointer to position of the decimal point relative to the
beginning of the string (negative means to the left of
the returned digits).

sign

If the sign of the result is negative, the word pointed
to by sign is nonzero; otherwise it is zero.

DESCRIPTION:

The ecvt function converts a value to a null-terminated
string of ndigit digits and returns a pointer thereto. If
the sign of the result is negative, the word pointed to by
sign is nonzero; otherwise it is zero. The low-order digit
is rounded.

NOTE

The return values point to static data whose
contents are overwritten by each call.

RELATED FUNCTIONS:

fcvt, gcvt, printf.

4-59 CW35-02

encrypt

encrypt

DES encryption.

FORMAT:

encrypt (block, edflag)
char *block;
int edflag;

ARGUMENTS:

block

Sixty-four-character binary a.r ray.

edflag

If the value of edflag is o, the argument is encrypted;
if nonzero, it is decrypted.

DESCRIPTION:

The encrypt function is based on the National Bureau of
Standards Data Encryption Standard (DES) ; with variations
intended (among other things) to frustrate use of hardware
implementations of the DES for key search. The encrypt
function provides access to the actual DES algorithm.

The argument array is modified in place to a similar array
representing the bits o.f the argument after having been
subjected to the DES algorithm using the key set by the
setkey function.

RELATED FUNCTIONS:

crypt, setkey.

NOTE

The return value points to static data that is
overwritten by each call.

4-60 CW35-02

endgrent

End group record entry.

FORMAT:

i include <grp.h>

void endgrent ()

ARGUMENTS:

None.

DESCRIPTION:

endgrent

A call to endgrent has the effect of making the next call to
getgrent a "first" call.

RELATED FUNCTIONS:

getgrent, getgrgid, getgrnam, getlogin, getpwent, group,
setgrent.

4-61 CW35-02

endpwent

endpwent

Close passwo~d file.

FORMAT:

i include <pwd.h>

void endpwent ()

ARGUMENTS:

None.

DESCRIPTION:

A call to the endpwent function has the effect of making the
next call to getpwent a "first" call.

RELATED FUNCTIONS:

getpwent, getpwnam, getpwuid, setpwent.

4-62 CW35-0 2

errno

errno

System error message number.

FORMAT:

extern int errno~

ARGUMENTS:

None.

DESCRIPTION:

The external variable errno is set when errors occur but not
cleared when nonerroneous calls are made. The variable errno
can be used as an index into the table of system error
messages (see sys errlist} to get the message string without
the newline character.

RELATED FUNCTIONS:

perror, sys_errlist, sys_ner·r.

4-63 CW35-02

I

equal_name

equal_name

Equal-names convention.

FORMAT:

int equal_name ();

equal_name (equal,
equal_name (equal,
equal_name (equal)

unsigned char file

ARGUMENTS~

equal

Input equal name.

file

Input file name.

target

file, target)
file)

[13] I equal [13] I target

Output target name which is constructed.

DESCRIPTION:

[13 J;

This subroutine implements the MOD 400 equal-names
convention. A target name is constructed by combining
components and subcomponents from a file name and an equal
name which are supplied as arguments.

The target name is constructed whenever the file name is
present. The absence of a target argument merely means it is
not returned to the caller.

An equal name is constructed according to the following
rules:

1. An equal nam~ is a file name. Therefore it is
composed of a string of 12 or fewer ASCII printing
graphics, none of which can be the greater than(>),
less than(<), circumflex(-), exclamation point(!)
or slash mark (/) characters.

4-64 CW35-02

equal_ name

2. An equal name is composed of one or more nonnull
components. This means an equal name cannot begin or
end with a period (.) and cannot contain two or more
consecutive periods.

3. Each percent sign (%) appearing in an equal name
component is treated as a special character.

4. Each equal sign (=) appearing in an equal name
component is treated as a special character.

5. An equal name component consisting of only a double
(==) or triple equal sign (===) is treated as a
special component.

An equal name maps characters from a given file name into
another file name, the target name, according to the
following rules:

1. Each percent sign (%) in the equal name represents
the single character in the corresponding component
and character position of the given file name. An
error occurs if the corresponding character does not
exist.

2. An equal sign (=) in an equal name component
represents the corresponding component of the given
file name. An error occurs if the corresponding
component does not exist. An error also occurs if an
equal sign appears in a component that also contains
a percent sign. Only one equal sign can appear in
each equal name component, except for the double or
triple equal sign component, as noted below.

3. The double equal sign (==) component of an equal name
represents all components of the given file name that
have no other corresponding components in the equal
name. Often, the double equal sign component
represents more than one tomponent of the given file
name. If so, the number of components ·represented by
the entire equal name is the same as the number of
components in the file name. When the the equal name
contains the same number of components or more
components than the file name, the double equal sign
is meaningless and, therefore, ignored. Only one
double equal sign component can appear in an equal
name.

4. The triple equal sign (===) component of an equal
name represents the entire given file name. The
triple equal sign component is used to add

4-65 CW35-02

equal_name

c.omponents to a name. Only one triple equal sign
component may appear in an equal name and no other
component of that equal name may contain percent
signs or equal signs.

RETURN VALUE:

The return value is one of the following:

2 The equal name is ===, ==, ==.=, or =.== and the
target name, if the file name is present, has been
constructed without error.

1 The equal name is some other valid equal name
containinq at least one = or ~ and the target n~~et
if the f iie name is present, has been constructed
without error.

O The equal name is valid but contains no equal or
percent signs, and the target name, if the file name
is present, has been constructed without error.

-1 An error has been detected.

DIAGNOSTICS:

If an error is detected, the external variable errno is set
to one of the values listed below. The external variable
m4 errno is set to that value plus 1800 (hexadecimal).

60 The equal name has an invalid format.

61 There was no letter or component in the file name
that corresponds to a % or = in the equal name. A
null string is used for the missing letter or
component in the target name that is returned. This
can only occur when the file name is present.

62 The target name to be constructed is longer than 12
characters. Only the first 12 characters are
returned. This can only occur when the file name is
present.

4-66 CW35-02

Error function.

FORMAT:

i include <math.h>

double erf (x)
double x;

ARGUMENT:

x

Double-precision value.

DESCRIPTION:

erf

The erf function returns the error function of x. The error
function is:

x
erf(x} = ..LJexp

"""' 0

RELATED FUNCTIONS:

erfc, exp. ..

4-67 CW35-02

erfc

Complimentary error function.

FORMAT:

include <math.h>

double erfc (x)
double x;

ARGUMENT:

x

Double-precision value.

DESCRIPTION:

The erfc function is defined as:
x

erfc(x) =1-_LJexp (-t2) dt
..r;;-

0

This function is provided because of the 'extreme loss of
relative accuracy of the error function erf (x) fot large
values of x.

RELATED FUNCTIONS:

erfc, exp.

4-68 CW35-C>-2

ex eel

Execute a bound unit.

FORMAT:

int execl(path,argo,arg1,•••1argn,Cunsigned char*) O)
unsigned char'*path, *argo, *arg1, ••• , *argn;

ARGU.MENTS:

path

execl

Pointer to a pathname that identifies the new process
bound unit.

argo, arg1, ••• , argn

Pointers to null-terminated strings. These strings
constitute the argument list available to the new
process. By convention, at least argo must be present
and point to a string that is the same as path (or its
file-name component).

DES.CRIPTION:

The execl function transforms the calling process into a new
process. The new process is constructed from an ordinary
bound unit called the new process bound unit. There can be
no return from a successful exec because the calling process
is overlaid by the new process. ·

When a C program is executed, it is called as follows:

int main (argc, argv, envp)
int argc; ·
unsigned char **argv, **envp:

where argc is the argument count and argv is an array of
character pointers to the arguments themselves. By
convention, argc is at least one and argv[O] points to a
string containing the name of the file.

This function allows MOD 400 pathname syntax to be used in
the path formal parameter in addition to the UNIX syntax. In
fact, MOD 400 and UNIX syntax can be mixed in a given path;
for example, <LIST/PROG.L is permitted.

4-69 CW35-02

I

I

I

execl

A pointer to the environment of the calling process is placed
in the global cell:

extern unsigned char **environ1

It is used to pass the environment of the calling process to
the new process.

File descriptors open in the calling process remain open in
the new process, except for those whose close-on-exec flag is
set. For those file descriptors that remain open, the file
currency (read or write) is unchanged.

Signals set to be ignored by the calling process, or set to
terminate the calling precess, remain so set. Signals set to
be caught by 'the calling process are set to terminate the new
process.

The new process also inherits the following attributes from
the calling process:

• Process ID
• Parent process ID
• Process group ID
• TTY group ID
• Time left until an alarm signal
• Current working directory
• Root directory
• File mode creation mask
• File size limit
• Task self-delete switch.

The execl function fails and returns to the calling process
if:

• One or more components of the pathname do not exist
[EN<?ENT].

• A directory-name component of path is not a directory
[ENOTDIR].

• List access is denied for a directory named in path
[EACCES].

• The new process bound unit is not a bound unit, or the
calling process lacks execute access to it [EACCES].

• The new process requires more memory than is allowed
[ENOMEM].

4-70 CW35-02

execl

• The number of characters in the argument list for the
new process is greater than 5120 characters [E2BIG].

• The path, argv, or envp argument points to an invalid
address [EFAULT].

RETURN VALUE:

If execl returns to the calling process, an error has
occurred; the return value is -1, and the variables m4 errno
and errno are set to indicate the error.

RELATED FUNCTIONS:

execle, execv, execve, exit, fork, getenv: see also the I
dl_env, get_env, list_env, and set env commands.

4-71 CW35-02

I

I

execle

execle

Execute a bound unit.

FORMAT:

int execle(path,argo,arg1, ••• ,argn,(unsigned char *)O) ,envp)
unsigned char *path, *argo, *arg1, ••• , *argn, *envp [];

ARGUMENTS:

path

Pointer to a pathname that identifies the new process
bound unit.

argo, arg1, ••• , argn

envp

Pointers to null-terminated strings. These strings
constitute the argument list available to the new
process. By convention, at least argo must be present
and point to a string that is the same as path (or its
file name component) •

Array of character pointers to null-terminated strings.
These strings constitute the environment for the new
process. The array is terminated by a null c.haracter
pointer.

DESCRIPTION:

The execle function transforms the calling process into a new
process. The new process is constructed from an ordinary
bound unit called the new process bound unit. There can be
no return from a successful exe~ ___ because the calling process
is overlaid by the new process.

When a C program is executed, it is called as follows:

int main (argc, argv, envp)
int argc;
unsigned char **argv, **envp;

where argc is the argument count and argv is an array of
character pointers to the arguments themselves. By
convention, argc is-at least one and argv[O] points to a
string containing the name of the file. ·

4-72 CW35-02

execle

This function allows MOD 400 pathname syntax to be used in
the path formal parameter in addition to the UNIX syntax. In
fact, MOD 400 and UNIX syntax ·can be mixed in a given path;
for example, <LIST/PROG.L is permitted.

File descriptors open in the calling process remain open in
the new process, except for those whose close-on-exec flag is
set. For tnose file descriptors that remain open, the file
currency (read or write) is unchanged. I
Signals set to be ignored by the calling process, or set to
terminate the calling process, remain so set. Signals set to
be caught by the calling process are set to terminate the new
process.

The new process also inherits the following attributes from
the calling process:

• Process ID
• Parent process ID
• Process group ID
• TTY qroup ID
• .Time left until an alarm signal
• Current working directory
• Root directory
• File mode creation mask
• File size limit
• Task self-delete switch.

4-73 CW35-02

I

execle

The execle function fails and returns to the calling process
if:

• One or more components of the pathname do not exist
[ENOENT].

• A directory-name component of ·path is not a directory
[ENOTDIR].

• List access is denied for a directory named in path
[EACCES].

• The new process bound unit is not a bound unit, or the
calling process lacks execute access to it [EACCES].

• The new process requires more memory than is allowed
[ENOMEM].

• The number of characters in the argument list for the
new process is greater than 5120 characters [E2BIG].

• The path, argv, or envp argument points to an invalid
address [EFAOLT].

RETURN VALUE:

If execle returns to the calling process, an error has
occurred; the return value is -1, and the variables m4 errno
and errno are set to indicate the error.

RELATED FUNCTIONS:

execl, execv, execve, exit, fork, getenv; see also the
dl_env, get_env, list_env, and set env commands.

4-74 CW35-02

execv

execv

Execute a bound unit.

FORMAT:

int execv (path, argv)
unsigned char *path, *argv (];

ARGUMENTS:

path

argv

Pointer to a pathname that identifies the new process
bound unit.

Array of character pointers to null-terminated strings.
These strings constitute the argument list available to
the new process. By convention, argv must have at least
one member, and it must point to a string that is the
same as path (or its file name component). The array is
terminated by a null character pointer.

DESCRIPTION:

The execv function transforms the calling· process into a new
process. The new process is constructed from an ordinary
bound unit called the new process bound unit. There can be
no return from a successful exec because the calling process
is overlaid by the new process.

When a C program is executed, it is called as follows:

int main (argc, argv, envp)
int argc;
unsigned char **argv, **envp;

where argc is the argument count and argv is an array of
character pointers to the arguments themselves. By
convention, argc is at least one and argv(O] points to a
string containing the name of the file.

This function allows MOD 400 pathname syntax to be used in
the path formal parameter in addition to the UNIX syntax. In
fact, MOD 400 and UNIX syntax can be mixed in a given path;
for example, <LIST/PROG.L is permitted.

4-75 CW35-02

I

I

I

I

execv

A pointer to the envirornnent of the calling process is placed
in the global cell:

extern unsigned char **environ;

It is used to pass the e.nvironrnent of the calling process to
the new process.

File descriptors open in the calling process remain open in
the new process, except for those whose close-on-exec flag is
set. For those file descriptors that remain open, the file
currency (read or write) is unchanged.

Signals set to be ignored by the calling process, or set to
terminate the calling processr remain so set. Signals set to
be caught by the calling process are set to terminate the new
process.

The new process also inherits the following attributes from
the calling process:

• Process ID
• Parent process ID
• Process group ~D
• TTY group ID
• Time left until an ala.rm signal
• Current working directory
• Root directory
• File mode creation mask
• File size limit
• Task self-delete switch.

The execv function fails and returns to the calling process
if:

• One or more components of the pathname do not exist
[ENOENT].

• A directory-name component of path is not a directory
[ENOTDIR].

• List access is denied for a directory named in path
[EACCES].

• The new process bound unit is not a bound unit, or the
calling process lacks execute access to it [EACCES].

• The new process requires more memory than is allowed
[ENOMEM].

4-76 CW35-02

execv

• The number of characters in the argument list for the
new process is greater than 5120 characters [E2BIG].

• The path, argv, or envp argument points to an invalid
address [EF'AULT].

RETURN VALUE:
•

If execv returns to the calling process, an error has
occurred; the return value is -1, and the variables m4 errno
and errno are set to indicate the error.

RELATED FUNCTIONS:

execl, execle, execve, exit, fork, getenv~ see also the I
dl_env, get_env, list_env, and set env commands.

4-77 'CW35-02

I

I

execve

execve

Execute a bound unit.
'

FORMAT:

int execve (pa th, argv, envp);
unsigned char *path, *argv [], *envp [J;

ARGUMENTS:

path

argv

envp

Pointer to a pathname that identifies the new process
bound unit.

Array of character pointers to null-terminated strings.
These strings constitute the argument list available to
the new process. By convention, argv must have at least
one member, and it must point to a string that is the
same as path (or its file name component). The array is
terminated by a null character pointer.

Array of character pointers to null-terminated strings.
These strings constitute the environment for the new
process. The array is terminated by a null character
pointer.

DESCRIPTION:

The execve function tr"ansf orms the calling process into a new
process. The new process is constructed from an ordinary
bound unit called the new process bound unit. There can be
no return from a successful exec because the calling process
is overlaid by the new process.

When a C program is executed, it is called as follows:

int main (argc, argv, envp)
int argc;
unsigned char **argv, **envp;

where argc is the argument count and argv is an array of
character pointers to the arguments themselves. By
convention, argc is at least one and argv[O] points to a
string containing the name of the file.

4-78 CW35-02

execve

-This function allows MOD 400 pathname syntax to be used in
the path formal parameter in addition to the UNIX syntax. In
fact, MOD 400 and UNIX syntax can be mixed in a given path;
for example, <LIST/PROG.L is permitted.

A pointer to the environment of the calling process is placed
in the global cell:

exter,n unsigned char **e·nviron1

It is used to pass the environment of the calling process to
the new process.

File descriptors open in the calling process remain open in

I

the new process, except for those whose close-on-exec flag is
set. For those file descriptors that remain open, the file I
currency (read or write) is unchanged.

Signals set to be ignored by the calling process, or set to
terminate the calling process, remain so set. Signals set to
be caught by the calling process will be set to terminate the
new process.

The new process also inherits the following attributes from
the calling process:

• Process ID
• Parent process ID
• Process group ID
• TTY group ID
• Time left until an alarm signal
• Current working directory
• Root directory
• File mode creation mask
• File size limit
• Task self-delete switch.

The execve function fails and returns to the calling process
if:

• One or more components of the pathname do not exist
[ENOENT].

• A directory-name component of path is not a directory
[ENOTDIR].

• List access is denied for a directory named in path
[EACCES].

• The new process bound unit is not a bound unit, or the
calling process lacks execute access to it [EACCES].

4-79 CW35-02

I

execve

• The new process requires more memory than is allowed
[ENOMEM].

• The number of characters in the argument list for the
new process is greater than 5120 characters [E2BIG].

• The path, argv, or envp argument points to an invalid
address [EFAULT].

RETURN VALUE:

If execve returns to the calling process, an error has
occurred; the return value is -1, and the variables m4 errno
and errno are set to indicate the error.

RELATED FUNCTIONS:

execl, execle, execv, exit, fork, getenv; see also the
dl_env, get_env, list_env, and set env commands.

4-80 CW35-02

execlp

execlp

Execute a bound unit.

FORMAT:

int execlp(file,argo,arg1,•••rargn(unsigned char *)O) I
unsigned.char *file, *argo, *arg1, ••• , *argn1

ARGUMENTS:

file

Pointer to the filename of the new process bound unit.

argo, arg1, ••• , argn

Pointers to null-terminated character strings.
strings constitute the argument list available
process. By convention, at least argo must be
and point to a string that is the same as path
filename component).

DESCRIPTION:

These
to the new
present
(or its

The execlp function transforms the calling process into a new
process. The new process is constructed from an ordinary ·
bound unit called the new process bound unit. There can be
no return from a successful exec because the calling process
is overlaid by the new process.

The directory containing the new process bound unit is found
by searching the directories passed as the environment line
nPATB= ••• n. The PATH environment generated for a program
loaded by the MOD 400 command processor specifies the
referencing directory, the working directory, >>SYSLIBl, and
>>SYSLIB2, in that order.

A pointer to the environment of the ·calling process is placed
in the global cell:

extern unsigned char **environ~

It is used to pass the environment of the calling process to
the new process.

File descriptors open in the calling process remain open in

I

the new process, except for those whose close-on-exec flag is
set1 see fcntl. For those file descriptors that remain open, I
the file currency (read or write) is unchanged.

4-81 CW35-02

I

·execlp

Signals set to be ignored by the calling process, or set to
terminate.the calling process, remain so set. Signals set to
be caught by the calling process are set to terminate the new
process.

The new process also inherits the following attributes from
the calling process:

• Process ID
• Parent process ID
• Process group ID
• TTY grQup ID
• Time left until an alarm signal
• Current working directory
• Root directory
• File mode creation mask
• File size limit.

The execlp function fails and returns to the calling process
if:

• One or more components of a directory named .in the
environment line •PATH= ••• • does not exist [ENOENT].

e A directory~pa th component of "PATH= • • • " is not a
directory [ENOTDIR].

• List access is denied for a directory named in
•PATH• ••• • [EACCES].

• The new process bound unit is not a bound unit, or the
calling process lacks execute access to it [EACCES].

• The new process requires more memory than is allowed
[ENOMEM].

• The argv argument points to an invalid address
[EFAULT].

RETURN VALUE:

If execlp returns to the calling process, an error has
occurred; the return value is -1, and the variables m4_errno
and errno are set to indicate the error.

RELATED FUNCTIONS:

execvp, getenv; see also the dl_env, get_env, list_env,
and set_env commands.

4-82 CW35-02

execvp

execvp

Execute a bound unit.

FORMAT:

int execvp (file, argv)
unsigned char *file, *argv []

· ARGUMENTS:

file

argv

Pointer to the filename of the new process bound unit.

Array of character pointers to null-terminated strings.
These strings constitute the argument list available to
the new task. By convention, argv must have at least one
member, and it must point to a string that is the same as
path (or its file name component). The array is
terminated by a null character pointer.

DESCRIPTION:

The execlp function tr.ansf orms the calling ·process into a new
process. The new process is constructed from an ordinary
bound unit called the new process bound unit. There can be
no return from a successful exec because the calling process
is overlaid by the new process. ·

The directory containing the new process bound unit is found
by searching the directories passed as the environment line
nPATH= ••• n. The PATH environment generated for a program
loaded by the MOD 400 ·command processor specifies the
referencing directory, the working directory, >>SYSLIBl, and
>>SYSLIB2, in that order.

· A pointer to the enviromnent of the calling process is placed
in the global cell:

extern unsigned char **environ;

It is used to pass the environment of the calling. process to
the new process.

I

I

File descriptors open in the calling process remain open in
the new process, except for those whose close-on-exec flag is
set; see fcntl. For those file descriptors that remain open,
the file currency (read or write) is unchanged. I

4-83 CW35-02

I

execvp

Signals set to be ignored by the calling process, or set to
terminate the calling process, remain so set. Signals set to
be caught by the calling process are set to terminate the new
process.

The new process also inherits the following attributes from
the calling process:

• Process ID
• Parent process ID
• Process group ID
• TTY group ID
• Time left until an alarm signal
• Current working directory
• Root directory
• File mode creation mask
• File size limit.

The execvp function fails and returns to the calling process
if:

• One or more components of a directory named in the
environment line "PATH= ••• "does not exist [ENOENT].

• A directory-pa th component of =PATH= • ii is not a
directory [ENOTDIR].

• List access is denied for a directory named in
"PATH= ••• " [EACCES].

• The new process bound unit is not a bound unit, or the
calling process lacks execute access to it [EACCES].

• The new process requires more memory than is allowed
[ENOMEM].

• The argv argument points to an invalid address
[EFAULT] •

RETURN VALUE:

If execvp returns to the calling process, an error has
occurred; the return value is -1, and the variables m4_errno
and errno are set to indicate the error.

RELATED FUNCTIONS:

execlp, getenv; see also the dl_env, get_env, list_env,
and set env commands.

4-84 CW35-02

Terminate a process.

FORMAT:

exit (status)
int stattisr

ARGUMENTS:

status

Status of operation.

DESCRIPTION:

The exit function terminates the calling process with the
following consequences:

• All of the file descriptors open in the child
(calling) process are closed.

• If the parent process of the calling process is
executing a wait, it is notified of the calling
process's termination and the process's content of
status is made available to it.

exit

• Any wait timer request of the parent process or alarm
request of the child process is stopped and deleted.

• If the process was created by a fork (that is, a
process compatible with UNIX and not MOD 400), it is
made dormant if its parent process is alive. The
child process deletes itself.

• The child process deletes any of its child processes
that are dormant. Any of its child processes that are
not dormant are made to appear to be children of the
UNIX initialization process by changing.their parent
process ID to one.

• . A native MOD 400 process severs relations with its
parent without need for further action.

RELATED FUNCTIONS:

signal, wait.

4-85 CW35-02

exp.

Exponential function.

FORMAT:

t include <math.h>

double exp (x)
double x1

ARGUMENTS:

x

Double-preci$ion value to be operated on.

DESCRIPTION:

The exp function returns ex.

DIAGNOSTICS:

The exp function returns a huge value when the correct value
would overflow. A very large argument can also result in
errno being set to ERANGE.

RELATED FUNCTIONS:

hypot, log, pow, sinh, sqrt.

4-86 CW35-02

f abs

Absolute value function.

FORMAT:

double fabs (x)
double x;

ARGUMENTS:

x

Double-precision value to be operated on.

DESCRIPTION:

fabs

•

The fabs function returns lxl. (that is, the absolute value
of x).

RELATED FUNCTIONS:

abs, ceil, floor, £mod.

4-87 CW35-02

fclose

f close

Close a file.

FORMAT:

t include <stdio.h>

int fclose (file)
FILE *file;

ARGUMENTS:

file

File pathname.

DESCRIPTION:

The fclose function causes any buffers for the named file to
be written to that file, and the file to be closed. Buffers
allocated by the standard input/output system are freed.

The f close function is performed automatically upon calling
exit.

RETURN VALUE:

This function returns 0 for success, and EOF if any errors
were detected.

RELATED FUNCTIONS:

close, fflush, fopen, setbuf.

4-88 CW35-02

fcntl

f cntl

File control.

FORMAT:

t include <fcntl.h>

int fcntl (f ildes, cmd, arg)
int fildes, cmd, arg;

ARGUMENTS:

f ildes

Open file descriptor obtained from a creat, open, dup, or
f cntl function.

cmd

Command (see below) •

arg

Argument to cmd.

DESCRIPTION:

The fcntl function provides f~r control over open files. I
Acceptable values for cmd are as follows:

F DUPFD

F GETFD

F_SETFD

F GETFL

F SETFL

Duplicate the lowest-numbered available file
descriptor greater than or equal to arg. The file
descriptor shares the same open file(s), file
pointer, access mode, and file status flags as the
original 1 The close-on-exec· flag associated with
the new file descriptor is set to remain open across
exec £unctions.

Get the close-on-exec flag associated with the file
descriptor f ildes. If the low-order bit is zero,
the file remains open across exec functions;
otherwise, the file·is closed on execution of exec.

Set the close-on-exec flag associated with the file
descriptor fildes to the low-order bit of arg.

Get the status flags of file.

Set the status flags of file to arg.

4-89 CW35-02

f cntl

RETURN VALUE:

Upon successful completion, the value returned depends on the
cmd argument, as follows:

A new file descriptor F DUPFD
F-GETFD
F-SETFD
F-GETFL
F:SETFL

Value of flag (only low-order bit defined)
Value other than -1
Value of file flags
Value other than -1.

Otherwise, a value of -1 is returned and the variables errno
and m4 errno are set to indicate the error.

DIAGNOSTICS:

The fcntl function fails if:

• The fildes argument does not point to a valid, open
file descriptor [EBADF].

• The cmd argument is F DUPFD and twenty file
descriptors are currently open [EMFILE].

• The cmd argument is F DOPFD and the arg argument is
negative or greater than twenty [EINVAL] •

RELATED FUNCTIONS:

close, exec, open.

4-90 CW35-02

f cvt

Output conversion.

FORMAT:.

char *fcvt (value, ndigit, decpt, sign)
double value:
int ndigit, *decpt, *sign:

ARGUMENTS:

value

Double-precision value to be converted.

ndigit

Number of digits to be returned.

decpt

fcvt

Pointer to position of the decimal point relative to the
beginning of the string (negative means to the left of
the returned digits).

sign

If the sign of the result is negative, the word pointed
to by sign is nonzero: zero otherwise.

DESCRIPTION:

The ecvt function converts a value to a null-terminated
string of ndigit digits and returns a pointer thereto. The
correct digit has been rounded for FORTRAN F-format output of
the number of digits specified by the ndigit argument •

. NOTE

The return values point to static data whose con­
tents are overwritten by each call.

RELATED FUNCTIONS:

ecvt, gcvt, printf.

4-91 CW35-02

*

fdopen

f dopen

Open a file.

FORMAT:

i include <stdio.h>

FILE *fdopen (fildes, type)
int fildes;
char *type;

ARGUMENTS:

f ildes

Number of a file descriptor.

type

Access type (see below) •

DESCRIPTION:

The fdopen function opens a file descriptor obtained from the
open, dup, or creat function. The read/write indicator is
set according to the type argument.

When a file is opened for update, both input and output are
allowed.

The type argument consists of all valid combinations of r, w,
a, +, and b. The argument has these meanings:

r Open text file for reading only
w Create text file for writing
a Append to text file
r+ Update (read/write) text file
w+ Create text file for update (read/write)
a+ Append (read/write) at end of text file
rb Open binary file for reading only
wb Open binary file for writing
ab Append to binary file
rb+ Update (read/write) binary file
wb+ Create binary file for update (read/write)
ab+ Append (read/write) at end of binary file.

If the file is empty, the type arguments a+ and ab+ are
treated as w+ and wb+, respectively.

4-92 CW35-02

f dopen

An operation on a text file converts each record to a
character stream ending with a newline character, and vice
versa. An operation on a binary file transfers fixed-length
records directly. In either case, the file is treated as a
stream of characters processed by the getc and putc
rnacrocalls. (The buffering required precludes using both
getc and putc: on a file opened for updating.)

RELATED FUNCTIONS:

fclose, £open, £reopen, open.

4-93 CW35-02

feof

File status inquiry

FORMAT:

t include <stdio.h>

int feof (file)
FILE *file;

ARGUMENTS:

file

File pathname.

DESCRIPTION:

check for end of file.

The f eof function returns nonzero when EOF is read on the
named input file; otherwise, it returns zero.

The feof function is a macrocall; it cannot be redeclared.

RELATED FUNCTIONS:

clearerr, ferror, fileno, fopen, open.

4-94 CW35-02

f error

File status inquiry -- check for I/O error.

FORMAT:

include <stdio.h>

int ferror (file)
FILE *file

ARGUMENTS:

file

File pathname.

DESCRIPTION:

ferror

The ferror function returns a nonzero value when an error has
occurred while reading or writing the named file; otherwise,
it returns zero. Unless cleared by the clearerr function,
the error indication remains until the file is closed.

The ferror function is a macrocall1 it cannot be redeclared.

RELATED FUNCTIONS:

clearerr, feof, f ile"no, fopen; open.

4-95 CW35-02

mush

ff lush

Flush a file.

FORMAT:

i include <stdio.h>

int fflush (file)
FILE *file;

ARGUMENTS:

file

File pathname.

DESCRIPTION:

The fflush function.causes any buffered data for the named
output file to be written to that file.

RETURN VALUE:

This function returns O ·for success, and EOF if any errors
were detected.

RELATED FUNCTIONS:

close, fclose, fopen, setbuf.

4-96 CW35-02

f getc

Get character from file.

FORMAT:

t include <stdio.h>

int fget.c (file)
FILE *file;

ARGUMENTS:

file

File pathname.

DESCRIPTION:

fgetc

The fgetc function returns the next character from the named
input file. The fgetc function behaves like getc, but is a
genuine function, not a macrocall; it can therefore be used
as an argument. The fgetc macrocall runs more slowly than
getc, but takes less space per invocation.

DIAGNOSTICS:

This function returns the value -1 at end of file.

RELATED FUNCTIONS:

ferror, fopen, fread, getc, getchar, gets, getw, putc,
scanf.

4-97 CW35-02

fgets

f gets

Get characters from a file.

FORMAT:

t include <stdio.h>

char *f9ets (s, n, file)
char *s1
int n1
FILE *f ile1

ARGUMENTS:

s

n

Pointer to string of characters returned, including a
newline character.

Number of characters to get -1~

file

File pathname.

DESCRIPTION:

The fgets function reads n-1 characters, or up to a newline
character (which is retained), whichever comes first, from
the file into the string s. The last character read into s
is followed by a null character.

RETURN VALUE:

The fgets function returns its first argument.

DIAGNOSTICS:

The fgets function returns the constant pointer NULL upon the
end of file or on an error.

NOTE

The fgets function retains in string s a newline
character that ends input.

RELATED FUNCTIONS:

ferror, fopen, fread, getc, gets, puts, scan.

4-9 8 CW35-0 2

f ileno

File status inquiry -- get file descriptor.

FORMAT:

i include <stdio.h>

f ileno (file)
FILE *file;

ARGUMENTS:

file

File pathname.

DESCRIPTION:

The fileno function returns the integer file descriptor
associated with the file (see open).

fileno

The f ileno function is a macrocall; it cannot be redeclared.

RELATED FUNCTIONS:·

clearerr, feof, ferror, fopen, open. ..

4-99 CW35-02

I

tind_tile

find_f ile

Find a file.

FORMAT:

int find file (file, path [, model)
unsigned-char *file, *path;
[int mode; l

ARGUMENTS:

file

path

Pointer to a null-terminated string naming the file
sought.

Pointer to a character string of at least 59 characters
into which the pathname of the found file is returned.
This pathname is terminated by a blank followed by a
null.

[mode] ..
Optional bit pattern giving the access required on the
file, constructed as follows:

04 Read
02 Write
01 Execute
00 Check file existence only

The default value is 00.

DESCRIPTION:

The directory containing this file is found by searching the
directories passed as the environment line "PATH= ••• •.
The PATH environment generated for a program loaded by the
MOD 400 command processor specifies the referencing
directory, the working directory, >>SYSLIBl, and >>SYSLIB2,
in that order.

4-100 CW35-02

find file

You can specify a directory in the "PATH= " environment
line by giving its absolute or relative pathname or by giving
one of the keywords listed below. Relative pathnames are
expanded each time the find file function is invoked.
Likewise, the keywords are Interpreted by find file. There
is no restriction as to the position of these keywords within
the environment line. The acceptable keywords are:

-hd Home directory
-rd Referencing directory
-wd Working directory
-sll >>SYSLIBl
-sl2 >>SYSLIB2

The find file function fails if:

• One or more of the components of a directory named in
the environment line "PATH= ••• " does not exist
[ENOENTJ.

e A component of a directory pathname listed in the
environment line "PATH= •e• n does not name a
directory [ENOTDIR] *

• List permission is denied for a directory named in the
environment line "PATH= o *. " [EACCES].

• The Access Control List' on the file denies the
requested permi [EACCES] ..

RETURN VALUE:

If find file successful, it returns the value zero. If an
error occurs, the return value is -1, and errno and m4 errno
are set to indicate the error.

4-101 CW35-02

floor

floor

Floor function ..

FORMAT:

double floor (x)
double x;

ARGUMENTS:

x

Double-precision value for comparison.

DESCRIPTION:

The floor function returns the largest integer (as a double­
precision number) not greater than x.

RELATED FUNCTIONS:

abs, ceil, fabs, fmod.

4-102 CW35-02

f mod

Remainder function.

FORMAT:

double fmod (x, y)
double x, y;

ARGUMENTS:

x

Double-precision value.

y

Double-precision value.

DESCRIPTION:

fmod

The fmod function returns x if y is 01 otherwise, it returns
the number f with the same sign as x such that x = i*y + f,
for some integer i, and O < f < y.

RELATED FUNCTIONS:

abs, ceil, fabs, flooro

4-103 CW35-02

fopen

f open

Open a file.

FORMAT:

include <stdio.h>

FILE *fopen (filename, type)
char *filename, *type;

ARGUMENTS:

filename

File pathname.

type

Access type (see below).

DESCRIPTION:

The fopen function opens the file named by filename and
associates a file with it.

The fopen function returns a file pointer that identifies the
file in sqbsequent operations.

When a file is opened for update, both input and output are
allowed.

The type argument consists of all valid combinations of r, w,
a, +, and b. The argument has these meanings:

r Open text file for reading only
w Create text file for writing
a Append to text file
r+ Update (read/write) text file
w+ Create text file for update (read/write)
a+ Append (read/write) at end of text file
rb Open binary file for reading only
wb Open binary file for writing
ab Append to binary file
rb+ Update (read/write) binary file
wb+ Create binary file for update (read/write)
ab+ Append (read/write) at end of binary file.

4-104 CW35-02

NOTE

If the file is empty, the type arguments a+ and
ab+ are treated as w+ and wb+, respectively.

f open

An operation on a text file converts each record to a
character stream ending with a newline character, and vice
versa. An operation on a binary file transfers fixed-length
records directly. In either case, the file is- treated as a
stream of characters processed by the getc and putc
macrocalls. (The buffering required precludes using both
getc and putc on a file opened for updating.)

DIAGNOSTICS:

The fopen function returns a null pointer if the file cannot
be accessed.

RELATED FUNCTIONS:

f close, fdopen, f reopen, opena

4-105 CW35-02

fork

fork

Create a new process.

FORMAT:

int fork ()

ARGUMENTS:

None.

DESCRIPTION:

The fork function creates a new process. The new process
(child process) is an exact copy of the calling process
(parent pr-0cess) except for the following:

• The child process has a unique process ID.

• The child process has a different parent process ID.

• The child process has its own copy of the parent's
file descriptors. Each of the child's open file
descriptors shares currency with the corresponding
parental file descriptor.

In MOD 400, all users share a single user root directory
definition and all tasks in a task group share a single
current working directory definition. Thus they are properly
inherited by a child process; but neither the child nor
parent can subsequently change the working directory without
affecting the other and neither can do anything to change the
user root directory.

RETURN VALUE:

The fork function returns the process ID of the child to the
parent.

4-106 CW35-02

fork

DIAGNOSTICS:

The fork function fails and no child process is created if:

• There is not enough group sharable memory available
[ENOMEM].

• There is not an available logical resource number
[EAGAIN].

• A fork is attempted when running outside of a swappool
[ENOSWPJ.

The fork subroutine can only be used by bound units running
in a swappool. If a fork is attempted when running outside a
swappool, errno is set to ENOSWP and -1 is returned.

RETURN VALUE:

Upon successful completion, fork returns a value of 0 to the
child process and returns the process ID of the child process
to the parent process. Otherwise, a value of -1 is returned
to the parent process, no child is created, and the variables
errno and m4 errno are set to indicate the error.

RELATED FUNCTIONS:

exec family, wait.

4-107 CW35-02

fprintf

fprintf

Format output to file.

FORMAT:

i include <stdio.h>

int fprintf (file, format [, argJ •••)
FILE *file~
char *format;

ARGUMENTS:

file

Pathname of file to receive output.

format

Format string (see below).

arg

Optional argument to be printed.

DESCRIPTION:

The fprintf function places output on the named output file.
This function converts, formats, and prints its arguments
under control of the format. The format is a character
string that contains two types of objects: plain characters,
which are simply copied to the output file, and conversion
specifications, each of which results in the fetching of zero
or more arguments. The results are undefined if there are
insufficient arguments for the format. If the format is
exhausted while arguments remain, the excess arguments are
simply ignored.

Each conversion specification is introduced by the percent
(%) character• After the percent character, the following
appear in sequence:

• Zero or more flags, which modify the meaning of the
conversion specification.

4-108 CW35-02

•

fprintf

• An optional decimal digit string specifying a minimum
field width. If the converted value has fewer char­
acters than the field width, it is blank-padded on the
left (or right, if the left-adjustment flag has been
given) to make up the field width.

• A precision that gives the minimum number of digits to
appear for the d, o, u, x, or x conversions, the
number of digits to appear after the decimal point for
the e and f conversions, the maximum number of
significant digits for the g conversion, the maximum
number of characters to -be printed from a string in s
conversion, or the minimum number of digits to appear
in the word address portion of a converted pointer for
the p or P conversions. The precision takes the form
of a period (.) followed by a decimal digit string; a
null digit string is treated as zero.

• An optional 1 specifying that a following d, o, u, x, I
or X conversion character applies to a long integer
argument. .

• A character that indicates the type of conversion to
be applied.

A field width or precision can be indicated by an asterisk
(*) instead of a digit string. In this case, an integer
argument supplies the field width or precision. The argument
that is actually converted is not fetched until the conver­
sion letter is seen, so the arguments specifying field width
or precision must appear before the argument (if any) to be
converted.

The flag characters and their meanings are:

+

blank

The result of the conversion is left-justified
within the field.

The result of a signed conversion always
begins with a sign (+ or -) •

If the first character of a signed conversion
is not a sign, a blank precedes the result.
This implies that if the blank and + flags
both appear, the blank flag is ignored. The p
and P conversions ignore this flag.

4-109 CW35-02

fprintf

The value is to be converted to an "alternate
form." For c, d, s, and u conversions, the
flag has no effect. For o conversions, it
increases the precision to force the first
digit of the result to be a zero. For x (X)
conversion, a nonzero result will have Ox (OX)
preceding it. For e, E, f, g, and G conver­
sions, the result always contains a decimal
point, even if no digits follow the point
(normally, a decimal point appears in the
result of these conversions only if a digit
follows it). For g and G conversions, trail­
ing zeros are not removed from the result (as
they normally are). For p or P conversions,
the word-address and character-address por­
tions of the converted pointer will each be'
preceded by Ox or OX, except when the
portion's value is zero.

The conversion characters and their meanings are:

d,o,u,x,X The integer argument is converted to signed
decimal, unsigned octal, unsigned decimal, or
unsigned hexadecimal notation (x and X) ,
respectively; the letters abcdef are used for
x conversion and the letters ABCDEF for X
conversion. The precision specifies the
minimum number of digits to appear, if the
value being converted can be represented in
fewer digits, it is expanded with leading
zeros. The default precision is 1. The
result of converting a 0 value with a
precision of O is a null string (unless the
conversion is o, x, or X and the # flag is
present) •

f The float or double argument is converted to
decimal notation in the style ·11 [-]ddd.ddd",
where the number of digits after the decimal
point is equal to the precision specification.
If the precision is missing, six digits are
output; if the precision is explicitly O, no
decimal point appears.

e,E The float or double argument is converted in
the style 11 (-]d.ddde+dd", where there is one
digit before the decimal point and the number
of digits after it is equal to the precision;
when the precision is missing, six digits are
produced; if the precision is O, no decimal
point appears. The E f orrnat code produces a

4-110 CW3 5-02

g, G

c

s

p,P

'

fprintf

number with E instead of e introducing the
exponent. The exponent always contains
exactly two digits.

The float or doubl·e argument is printed in
style e (or in style E in the case of a G
format code), with the precision specifying
th.e number of significant digits. The style
used depends on the value converted9; style e

·is used only if the exponent resulting from
the conversion is less than -4 or greater than
the precision. Trailing zeros are removed
from the result1 a decimal point appears only
if it is followed by a digit.

The character argument is printed.

The argument is taken to be a string
(character pointer) and characters from the
string are printed until a null character (\0)
is encountered or the number of characters
indicated by the precision specification is
reached. If the precision.is missing, it is
taken to be infinite, so all characters up to
the first null character are printed.

The pointer argument is printed with the
word-address portion. of the pointer taken as a
long integer converted to unsigned hexadecimal
notation, followed immediately by the
character-offset portion taken as an integer
converted to signed hexadecimal notation and
enclosed within parentheses. The letters
abcdef are used for the digits greater than
nine in the p conversion. The letters ABCDEF
are used for the digits greater than nine in
the P conversion. The precision specifies the
minimum number of digits to· appear in the
converted word-address portion of the pointer.
If the converted value can be represented with
fewer digits, it is expanded with leading
zeros. The precision has no effect on the
conversion of the character-off set portion of
the pointer. The default precision is one.
An explicit precision of zero is treated as if
one was specified.

Print a %1 no argument is converted.

4-111 CW35-02

I

f printf

In no case does a nonexistent or small field width cause
truncation of a field; if the result of a conversion is wider
than the field width, the field is simply expanded to contain
the conversion result. Characters generated by fprintf are
printed as if putchar had been called.

RETURN VALUE:

This function returns the number of characters transmitted.

DIAGNOSTICS:

If this function encounters an invalid string pointer, it
behaves as if it has encountered a valid pointer to a null
string. An error condition is indicated to the calling
function by a negative return value.

EXAMPLES:

To print a date and time in the form •sunday, July 3, lO:o2n,
where weekday and month are pointers to null-terminated
strings:

fprintf(temp,•%s, %s %d, %.2d:%.2d•,weekday,month,day~hour,rnin);

To print pi to five decimal places:

fprintf(output,npi =%.st•, 4*atan(l.O)):

RELATED FUNCTIONS:

ecvt, printf, putc, scanf, sprintf.

4-112 CW35-02

f putc

Put a character on a file.

FORMAT:

i include <stdio.h>

fputc (c, file)
FILE *file:

ARGUMENTS:

c

Character to write to file.

file

File pathname.

DESCRIPTION:

fputc

The fputc function appends the character c to the named
output file. Unlike putc, it is a genuine function rather
than a macrocall: it can therefore be used as an argument.
The fputc function run$ more slowly than putc, but takes less
space per invocation.

VJ5i,.LUE:

The function returns the character written.

DIAGNOSTICS:

The fputc function returns the constant EOF when it
encounters an error. Since this is a good integer, ferror
should be used to detect putw errors.

RELATED FUNCTIONS:

ferror, fopen, fwrite, getc, printf, putc, putchar, puts,
putw.

4-113 CW35-02

fputs

fputs

Put a string on a file.

FORMAT:

i include <stdio.h>

int fputs (s, file)
char *s;
FILE *file;

ARGUMENTS:

s

String to be written to the file.

file

File pathname.

DESCRIPTION:

·The fputs function copies the null-terminated string s to the
named output file.

This function does not copy the terminating null character.

DIAGNOSTICS:

This function returns EOF if it encounters an error.

NOTE

The fputs function does not append a newline
character.

RELATED FUNCTIONS:

£error, fopen, £write, gets, printf, putc, puts.

4-114 CW35-02

f read

Buffered input.

FORMAT:

include <stdio.h>

fread (buf ptr, size, nitems, file)
int size; -
int nitems;
char *buf ptr;
FILE *file~

ARGUMENTS:

buf _ptr

Buffer address pointer.

size

Item size in characters.

nitems

Number of items to read.

file

File pathname ..

DESCRIPTION;

fread

The fread function reads, into an array beginning at buf ptr,.
nitems of size characters each from the named input f ile7

RETURN VALUE:

The £read function returns the number of items actually read.

RELATED FUNCTIONS:

fopen, £write, getc, gets, printf, putc, puts, read,
scanf, write@

4-115 CW35-02

free

Free heap memory.

FORMAT:

void free (ptr)
char *ptr;

ARGUMENTS:

ptr

Pointer to a block previously allocated by calloc. or
malloc; this space is made available for further
allocation.

DESCRIPTION:

The malloc and free functions together provide a simple,
general-purpose memory allocation package.

DIAGNOSTICS:

Unspecified results occur if free acts on some random number.

RELATED FUNCTIONS:

calloc, malloc, realloc.

4-116 CW35-02

f reopen

Reopen a file.

FORMAT:

t include <stdio.h> .
FILE *£reopen (filename, type, file)
char *filename, *type;
FILE *file;

ARGUMENTS:

filename

New file pathname.

type

Access type (see below) •

file

Old file pathname.

DESCRIPTION:

freopen

The freopen function substitutes the named file in place of
the open file. It returns the original value of file. The
original file is closed, regardless of whether the open
ultimately succeeds.

The freopen function is used to attach the pre-opened
constant names stdin, stdout, and stderr to specified files.

When a file is opened for update, both input and output are
allowed.

The type argument consists of all valid combinations of r, w,
a, +, and b. The argument has these meanings:

r Open text file for reading only
w Create text file for writing
a Append to text file
r+ Update (read/write) text file
w+ Create text file for update (read/write)
a+ Append (read/write) at end of text file
rb Open binary file for reading only
wb Open binary file for writing
ab Append to binary file

4-117 CW35-02

f reopen

rb+ Update (read/write) binary file
wb+ Create binary file for update (read/write)
ab+ Append (read/write} at end of binary file.

If the file is open, the type arguments a+ and ab+ are
treated as w+ and wb+, respectively.

An operation on a text file converts each record to a
character stream ending with a newline character, and vice
versa. An operation on a binary file transfers fixed-length
records directly. In either case, the file is treated as a
stream of characters processed by the getc and putc
macrocalls. (The buffering required precludes using both
getc and putc on a file opened for updating.)

DIAGNOSTICS:

The f reopen function returns a null pointer if filename
cannot be accessed.

RELATED FUNCTIONS:

f close, fdopen, f open, open.

4-118 CW35-02

f rexp

Split into mantissa and exponent.

FORMAT:

double frexp (value, eptr)
double value1
int *eptr1

ARGUMENTS:

value

Double-precision value to be processed.

eptr

Pointer to exponent.

DESCRIPTION:

frexp

The frexp function returns the mantissa, x, of the
double-precision value as a double-precision quantity. The
magnitude of x is less than 1 and greater than 1/16. It
stores the exponent at the location pointed to by eptr. The
exponent is the integer n such that value = x•2n.

RELATED FUNCTIONS:

ldexp, mod£.

4-119 CW35-02

fscanf

f scanf

Formatted input conversion.

FORMAT:

include <stdio.h>

fscanf (file, format [,pointer] •••)
FILE *file;
char *f ormat1

ARGUMENTS:

file

Input file pathname.

format

Control string format (see below) •

pointer

Set of arguments indicating w.here the converted input
should be stored.

DESCRIPTION:

The fscanf function reads from the named input file. This
function reads characters, interprets them according to a
format, and stores the results in its arguments. It requires
a control string format described below, and an optional set
of pointer arguments indicating where the converted input
should be stored.

The control string usually contains conversion
specifications, which are used to direct interpretation of
input sequences. The control string may contain:

l. Blanks, tabs, or newline characters, which cause
input to be read up to the next non-white-space
character.

2. An ordinary character (not %) , which must match the
next character of the input file.

3. Conversion specifications, consisting of the
character %, an optional assignment suppressing
character *, an optional numerical maximum field
width, and a conversion character.

4-120 CW35-02

f scanf

A conversion specification directs the conversion of the next
input field; the result is placed in the variable pointed to
by the corresponding argument, unless assignment suppression
was indicated by *· An input field is defined as a string of
nonspace characters; it extends to the next inappropriate
character or until the field width, if specified, is
exhausted.

The conversion character indicates the interpretation of the
input field; the corresponding pointer argument must usually
be of a restricted type. The following conversion characters
are valid:

% A single % is expected in the input at this point;
no assignment is done.

d A decimal integer is expected; the corresponding
argument should be an integer pointer.

o An octal integer is expected; the corresponding
argument should be an integer pointer.

x A hexadecimal integer is expected; the corresponding
argument should be an integer pointer.

s A character string is expected: the corresponding
argument should be a character pointer pointing to

·an array of characters large enough to accept the
string and a terminating \0, which is added
automatically. The input field is terminated by a
space or newline character.

c A character is expected; the corresponding argument
should be a character pointer. The normal skip over
space characters is suppressed in this case; to read
the next npnspace character, use %ls. If a field
width is given, the corresponding argument should
refer to a character array; the indicated number of
characters is read.

e,f A floating-point number is expected; the next field
is converted accordingly and stored through the
corresponding argument, which should be a pointer to
a float. The input format for floating-point
numbers is an optionally signed string of digits,
possibly containing a decimal point, followed by an
optional exponent field consisting of an E or an e,
followed by an optionally signed integer.

4-121 CW35-02

f scanf

Indicates a string that is not to be delimited by
space characters. The left bracket is followed by a
set of characters and a right bracket; the charac­
ters between the brackets define a set of characters
making up the string. If the first character is not
a circumflex (4

), the input field consists of all
characters up to the first character that is not in
the set between the brackets; if the first character
after the left bracket is a circumflex, the input
field consists of all characters up to the first
character that is in the set of the remaining
characters between the brackets. The corresponding
argument must point to a character array.

The conversion characters d, o, and x can be capitalized
and/or preceded by 1 to indicate that a pointer to long
rather than to int is in the argument list. Similarly, the
conversion characters e and f may be capitalized and/or
preceded by 1 to indicate that a pointer to double rather
than to float is in the argument list.

The fscanf conversion terminates at EOF, at the end of the
control string, or when an input character conflicts with the
control string. In the latter case, the offending character
is left unread in the input file.

RETURN VALUE:

The fscanf function returns the number of successfully
matched and assigned input items; this number can be zero in
the event of an early conflict between an input character and
the control string. If the input ends before the first
conflict or conversion, EOF is returned.

NOTE

Trailing white space (including a newline
character} is left unread unless matched in the
control string.

DIAGNOSTICS:

This function returns EOF at the end of input and a short
count for missing or illegal data items.

NOTE

The success of literal matches and suppressed
assignments is not directly determinable.

4-122 CW35-02

EXAMPLES:

The call:

int i; float x; char name[50]·;
fscanf (names, "%d%f%s", &i, &x, name);

with the input line:

25 54.32E-l brenda

f scanf

assigns to i the value 25, to x the value 5.432, and name
contains brenda\O. Or:

inti; float x; char name[50];
fscanf (data, "%2d%f%*d%[1234567890]", &i, &x, name);

with input:

56789 0123 56a72

assigns 56 to i, 789.0 to x, skip 0123, and places the string
56\0 in name. The next call to getchar returns a.

RELATED FUNCTIONS:

atof, getc, printf, scanf, sscanf.

4-123 CW35-02

fstat

f stat

Get file status.

FORMAT:

i include <types.h>
t include <stat.h>

int fstat (fildes, buf)
int f ildes;
struct stat *buf;

ARGUMENTS:

f ildes

File descriptor of the open file.

buf

Pointer to a static structure into which information is
placed concerning the file.

DESCRIPTION:

The fstat function obtains information about an open file
known by the file descriptor fildes, obtained from a
successful open, creat, or dup function.

The contents of the structure pointed to by buf include the
following members:

ushort
ino t
dev-t

st mode;
st-ino;
st::::dev;

/*File mode
/*Inode number (N/A in MOD 400)
/*ID of device containing
/*a directory entry for this file

*/
*/
*I
*/

dev t st_rdev; /*ID of device
/*This entry is defined only
/*character special or block

*I
for */
special

short
us ho rt
ushort
off t
time t
time-t

st nlink;
st-uid;
st-gid;
st-size;
st-atime;
st:=mtime;

files
/*Number of links (N/A in MOD 400)
/*User ID of the file's owner
/*Group ID of the file's group
/*File size in characters (N/A)
/*Time of last access
/*Time of last data modification
/*Times measured in seconds since

00:00:00 GMT, Jan. 1, 1970

*/
*/
*/
*/
*/
*I
*/

*/

4-124 CW35-02

£stat

The st atime member is the date/time when the file was last
accessed. It is changed by the functions creat, pipe, and
read •.

The st mtime member is the date/time when the file was last
modified. It is changed by the functions creat, pipe, and
write.

The st ctime member is the date/time when the file was
created. It is changed by the functions creat, link, pipe,
unlink, and write.

Information is not available in the members st_ino, st_nlink,
and st_size.

The fstat function fails if:

• The fildes argument is not a valid open file
descriptor [EBADF].

• The buf argument points to an invalid address
[EFAULTJ.

RETURN VALUE.:

Upon successful completion a value of 0 is returned.
Otherwise, a value of -1 is returned and errno and m4 errno
are set to indicate the error.

RELATED FUNCTIONS:

creat, link, stat, time, unlink.

4-125 CW35-02

fwrite

fwrite

Buffered output.

FORMAT:

i include <stdio.h>

£write (buf ptr, size, nitems, file)
int size; -
int nitems;
char *buf ptr;
FILE *f ile1

ARGUMENTS:

buf _ptr

Buffer address pointer.

size

Item size in characters.

nitems

Number of items to write.

file

File pathname.

DESCRIPTION:

The fwrite function appends at most nitems of size size
beginning at buf ptr to the named output file. It returns
the number of items actually written.

RELATED FUNCTIONS:

fopen, fread, gets, printf, putc, puts, read, scanf,
write.

4-126 CW35-02

gamma

Log gamma function.

FORMAT:

t include <math.h>
extern int signgam;

double gaTCtma (x)
double x;

ARGUMENTS:

x

Double-precision positive value to be processed.

signgam

Returned sign of gamma function.

DESCRIPTION:

gamma

The gamma {x) function computes the natural logarithm of the
absolute value of the gamma function. The sign of the gamma
function is returned in the external variable signgam. X
must be a positive value.

The gamma function is defined as:

(x) = exp (-t) tX-1 dt

DIAGNOSTICS:

For nonpositive integer arguments, a huge value (HUGE) is
returned, and the variable errno is set to EDOMc

4-127 CW35-02

gcvt

Output conversion.

FORMAT:

char *gcvt (value, ndigit, buf)
double value;
int ndigit;
char *buf;

ARGUMENTS:

value

Value to be converted.

ndigit

Number of significant digits.

buf

Pointer to output string.

DESCRIPTION:

The gcvt fµnction converts the argument value to a
null-terminated string pointed to by buf and returns buf. It
attempts to produce ndigit significant digits in FORTRAN
F-format if possible; otherwise it produces output in
E-format, ready for printing. Trailing zeros are suppressed.

NOTE

The return values point to static data whose
contents are overwritten by each call.

RELATED FUNCTIONS:

ecvt, fcvt, printf.

4-128 CW35-02

Get character from file.

FORMAT:

t include <stdio.h>

int getc (file)
FILE *f ile1

ARGUMENTS:

file

File pathname.

DESCRIPTION:

getc

The getc function returns the next character from the buffer
associated with the named input file. The function obtains a
new buffer's worth of characters whenever all the characters

been returned ••

DIAGNOSTICS:

This function returns the value -1 when it encounters the end
of a file@

NOTE

Because it is a macrocall, getc treats incorrectly
a file argument with side effects; for example:

getc(*f++)~

RELATED FUNCTIONS:

ferror, fgetc, fopen, fread, getchar, gets, getw, putc,
scanf.

4-129 CW35-02

getchar

getchar

Get character from stdin file.

FORMAT:

include <stdio.h>

int getchar (}

ARGUMENTS:

None.

DESCRIPTION:

The getchat function is identical to getc(stdin). This
function is implemented as a macrocall; it cannot be
redefined.

DIAGNOSTICS:

This function returns the value -1 when it encounters the end
of a file. ..
RELATED FUNCTIONS:

ferror, fgetc, fopen, fread, getc, gets, getw, putc, scanf.

4-130 CW35-02

getcwd

Get current working directory.

FORMAT:

char *getcwd (buf, size)
char *buf 1
int size1

ARGUMENTS:

buf

Returned current working directory string.

size

Buffer size in characters.

DESCRIPTION:

getcwd

The getcwd function returns a pointer to the null-terminated
character string of the current working directory.

The value of the size argument must be at least one character
longer than the pathname to be returned. Under MOD 400, the
maximum length of a directory path is.44 characters.

If the buf argument is a null pointer, getcwd obtains size
·characters of space using the malloc function. In this case,
you can use the returned pointer in a subsequent call to the
free function.

If the buf argument is not a null pointer, the string is
placed in buf, and the pointer to buf is returned.

DIAGNOSTICS:

If an error occurs, a null pointer is returned.

4-131 CW35-02

I

I

getdir

getdir

Get pathname of a system directory.

FORMAT:

unsigned char *getdir (buf, dir)
unsigned char *buf;
int dir;

ARGUMENTS:

buf

Pathname of returned directory.

dir

Specifies directory whose pathname is to be returned:

-2 Referencing directory
-1 Home directory

0 Working directory
+l >>SYSLIBl
+2 >>SYSLIB2.

DESCRIPTION:

The getdir function stores the pathname of the specified
system directory in buf and returns buf plus the length of
the stored pathname (not including the terminating null).

RETURN VALUE:

If the getdir function is successful, it returns a pointer to
the null character terminating the pathname stored in buf.
If it is unsuccessful, errno and m4 errno are set to indicate
the error and (unsigned char *) O is returned.

4-132 CW35-02

•

getegid

Get effective group ID.

FORMAT:

int gete~id ()

ARGUMENTS:

None.

DESCRIPTION:

getegid

The getegid function returns the effective group ID of the
calling process. The sum of the characters of the MOD 400
account ID is used as the effective group ID.

RELATED FUNCTIONS:

getuid, geteuid, getgid.

4-133 CW35-02

getenv

getenv

Get environment name.

FORMAT:

char *getenv (name)
char *name;

ARGUMENTS:

name

Environment name.

DESCRIPTION:

The getenv function searches the environment list for a
string of the form name and returns a pointer to that value
if such a string is present; otherwise, it returns a null
pointer.

4-134 CW35-02

geteuid

Get effective user ID.

FORMAT:

int geteuid ()

ARGUMENTS:

None.

DESCRIPTION:

geteuid

The geteuid function returns the effective user ID of the
calling process. The MOD 400 task group ID is used for this
identifier.

RELATED FUNCTIONS:

getuid, getgid, getegid.

4-135 CW35-02

getgid

getgid

Get real group ID.

FORMAT:

int getgid ()

ARGUMENTS:

None.

DESCRIPTION:

The getgid function returns the real group ID of the calling
process. The sum of the characters of the MOD 400 account ID
is used as the group ID.

RELATED FUNCTIONS:

getuid, geteuid, getegid.

4-136 CW35-02

getgrent

Get group record entry.

FORMAT:

I include <grp.h>

struct group *getgrent ()

ARGUMENTS:

None.

DESCRIPTION:

getgrent

The getgrent function returns a pointer to a static object of
the type struct group as defined in the grp.h header file.
The MOD 400 account ID is used for the group name, and the
sum of its characters as the group ID; a null string is used
as the encrypted password; and the caller is listed as the
only member of the group.

When first called, the getgrent function returns a pointer to
the group structure as described above7 thereafter, it
returns a null pointer.

This causes· the caller to perceive the· system as a
single-user UNIX system with only one group defined.

RELATED FUNCTIONS:

endgrent, getgrgid, getgrnam, getlogin, getpwent, group,
setgrent.

4-137 CW35-02

getgrgid

getgrgid

Get group record by group ID.

FORMAT:

t include <grp.h>

struct group *getgrgid (gid)
int gid;

ARGUMENTS:

gid

Group ID.

DESCRIPTION:

The getgrgid function returns a pointer to a static object of
the type struct group as defined in the grp.h header file.
The MOD 400 account ID is used for the group name, and the
sum of its characters as the group ID; a null string is used
as the encrypted password; and the caller is listed as the

.only member of the group.

This causes the caller to perceive the system as a
single-user UNIX system with only one group defined.

DIAGNOSTICS:

This function returns a null pointer if the group ID given as
the argument is not the group ID of the caller.

RELATED FUNCTIONS:

endgrent, getgrent, getgrnam, getlogin, getpwent, group,
setgrent.

4-138 CW35-02

getgrnam

Get group record by group name.

FORMAT:

include <grp.h>

struct group *getgrnam (name)
char *name1

ARGUMENTS:

name

Group name.

DESCRIPTION:

getgrnam

The getgrnam function returns a pointer to a static object of
the type struct group as defined in the grp.h header file.
The MOD 400 account ID is used for the group name, and the
sum of its characters as the group ID1 a null string is used
as the encrypted password1 and the caller is listed as the
only member of the group.

This causes the caller to perceive the system as a
single-user UNIX system with only one group defined.

DIAGNOSTICS:

This function returns a null pointer if the group name given
as the argument is not the group name of the caller.

RELATED FUNCTIONS:

endgrent, getgrent, getgrgid, getlogin, getpwent, group,
setgrent.

4-139 CW35-02

getlogin

getlogin

Get login name.

FORMAT:

char *getlogin ()1

ARGUMENTS:

None.

DESCRIPTION:

The getlogin function returns a pointer to a static string
containing the login name of the calling process (the MOD 400
person ID). It can be used in conjunction with getpwnarn to
locate the correct password file entry when the same user ID
is shared by several login names.

If getlogin is called within a process that is not attached
to a typewriter, it returns (char *) 0 (a null pointer). The
correct procedure for determining the login name is to call
getlogin; if it fails, call getpwent.

DIAGNOSTICS:

This function returns a null pointer if the name is not
found.

NOTE

The return values point to static data whose
contents are overwritten by each call.

RELATED FUNCTIONS:

getgrent, getpwent.

4-140 CW35-02

get opt

Get option letter from argument.

FORMAT:

int ge~o~t (argc, argv, optstring)
int ar9c1
char **ar9v7
char *optstring;
extern char *optarg;
extern int optind;

ARGUMENTS:

argc

Index into *argv.

argv

Input string of options.

optstring

String of valid options.

DESCRIPTION:

getopt

The getopt function returns the next option letter in argv
that matches a letter in optstring. The argument optstring
is a string of recognized option letters; if a letter is
followed by a colon, the option is expected to have an
argument that may or may not be separated from it by white
space. The pointer optarg is set to point to the start of
the option argument on return from getopt~

The getopt function places in optind the argv index of the
next argument to be processed. Because optind is external,
it is normally initialized to zero automatically before the
first call to getopt.

RETURN VALUE:

When all options have been processed (that is, up to the
first nonoption argument), getopt returns EOF. The special
option minus (-) can be used to delimit the end of the
options: EOF is returned, and minus {-) is skipped.

4-141 CW35-02

get opt

DIAGNOSTICS:

The getopt function displays an error message and returns a
question mark (?) when it encounters an option letter not
included in optstring.

EXAMPLE:

The following code fragment shows how one might process the
arguments for a command that can take the mutually exclusive
options a and b, and the options f and e, both of which
require arguments:

4-142 CW35-02

main (argc, argv)
int argc;
~har **argv;
{

int c;
extern int optind;
extern char *optarg;

• .

get opt

while ((c = getopt {argc, argv, nabf:o:n)) != EOF) I
switch {c) {

}

}

if (bfg)

else

break;
case nb":

if {afg)

else

break;
case "fn:

errf g++;

af9++1

errf 9++1

bproc{);

if ile = . optarg;
break;

case 11 0•;
ofile == optarg;
bufsize = 512;
break;

case n1•:
errfg++;

if (errfg) {

}

fprintf (stderr,
exit;

11 usage: 11) ;

for (; optind < argc; optind++) {
if (access (argv[optind], 4)) {

• .
}

•
•
•
}

4-143 CW35-02

getpgrp

getpgrp

Get process group ID.

FORMAT:

int getpgrp ()

ARGUMENTS:

None.

DESCRIPTION:

The getpgrp function returns the process group ID of the
calling process.

RELATED FUNCTIONS:

getpid, getppid.

4-144 CW35-02

getpid

Get process ID.

FORMAT:

getpid ()

ARGUMENTS:

None.

DESCRIPTION:

getpid

The getpid function returns the process ID of the calling
process.

This function is useful for generating uniquely named
temporary files.

RELATED FUNCTIONS:

getpqrp, getppid.

4-145 CW35-02

I

I

getppid

Get parent process ID.

FORMAT:

getppid {)

ARGUMENTS:

None.

DESCRIPTION:

The getppid function returns the parent (creating) process ID
if the calling process was created by fork or one of the run
functions and the parent process is still alive. Otherwise
the parent process is reported to be process 1 (corresponding
to the initialization process of UNIX).

If the calling task was created by the fork subroutine or one
of the run functions and the creating task still exists, the
creating task's process ID (task control block address
shifted five bits right) is returned. In all other cases,
the calling task is reported to be a child of proce~s 1 (the
initialization process in UNIX).

RELATED FUNCTIONS:

getpid, getpgrp, getptcb.

4-146 CW35-02

getptcb

Get parent TCB pointer.

FORMAT:

int *getptcb ()

ARGUMENTS:

None.

DESCRIPTION:

getptcb

The getptcb function returns an integer pointer to the task
control block of the calling process's parent process (if its
parent is known). The parent process is known only if the
calling process was created by the fork function or one of
the run functions, and the parent process has not yet
terminated. Otherwise a null integer pointer is returned.

RELATED FUNCTIONS:

fork, gettcb, g~tppid, run family.

4-147 CW35-02

getpwent

getpwent

Get password record entry.

FORMAT:

include <pwd.h>

struct passwd *getp-went (

ARGUMENTS:

None.

DESCRIPTION:

The getpwent function returns a pointer to a static structure
as defined in the pwd.h header file. The MOD 400 person ID
is used as the login name. A null string is given as the
encrypted password. The MOD 400 task group ID is given as
the user ID. The sum of the characters in the MOD 400
account ID is given as the group ID. Null strings are given
for the password age, comment, and gecos strings. The task
group's home directory is given as the process initial
working directory. A null string is given as the name of the
(UNIX) shell program.

Subsequent calls to getpwent return a null pointer, unless
reinitialized by setpwent.

The effect is to cause the caller to perceive the system as a
single-user UNIX system.

RELATED FUNCTIONS:

endpwent, getpwnam, getpwuid, setpwent.

4-148 CW35-02

..

getpwnam

Get password record by login name.

FORMAT:

include <pwd.h>

struct passwd *getpwnam (name)
char *name;

ARGUMENTS:

name

Login name.

DESCRIPTION:

getpwnam

The getpwnam function returns a pointer to a static structure
as defined in the pwd.h header file. The MOD 400 person ID
is used as the login name. A null string is given as the
encrypted password. The MOD 400 task group ID is given as the
user ID. The sum of the characters in the MOD 400 account ID
is given as the group ID. Null strings are given for the
password age, comment, and gecos strings. The task group's
home directory is given as the process initial working
directory. A null string is given as the name-of the (UNIX)
shell program.

The effect is to cause the caller to perceive the system as a
single-user UNIX system.

DIAGNOSTICS

This £unction returns a null pointer if the login name
argument is not the login name of the caller.

RELATED FUNCTIONS:

endpwent, getpwent, getpwuid, setpwent.

4-149 CW35-02

getpwuid

getpwuid

Get password record by user ID.

FORMAT:

I include <pwd.h>

struct passwd *getpwuid (uid)
int uid;

ARGUMENTS:

uid

User ID.

DESCRIPTION:

The getpwuid function returns a pointer to a static structure
as defined in the pwd.h header file. The MOD 400 person ID
is used as the login name. A null string is given as the
encrypted password. The MOD 400 task group ID is given as the
user ID. The sum of the characters in the MOD 400 account ID
is given as the group ID. Null strings are given for the
password age, comment, and gecos strings. The task group's
home directory is given as the process initial working
directory. A null string is given as the name of the (UNIX)
shell program.

The effect is to cause the caller to perceive the system as a
single-user UNIX system.

RELATED FUNCTIONS:

endpwent, getpwent, getpwnam, setpwent.

4-150 CW35-02

getr

Get record.

FORMAT:

i include <ufas.h>

int getr(cmd,fildes,rptr,rlen,rtype,[keyptr,keytype])
int cmd, fildes, rlen, rtype[, keytype};
char *rptr;
record_key *keyptr;

ARGUMENTS:

cmd

Command (see "Description").

f ildes

rptr

rlen

Open file descriptor obtained from a creat, open, dup, or
f cntl function.

Pointer to a record area into which the record is to be
read.

Number of characters to reada

rtype

Input record type: -1 if any type is acceptable, or a
decimal value from O through 3999.

keyptr

Pointer to key value.

keytype

Optional key type:

PRIMARY

RELATIVE

For indexed files; keyvalue type is (char *)

For relative files; keyvalue type is
(long *)

4-151 CW35-02

getr

CALC For random files; keyvalue type is (char *)

SIMPLE For sequential or dynamic files; keyvalue
type is (long *)

ALT For alternate index; keyvalue type is
(char *)

CURRENT -- Current key of usage.

DESCRIPTION:

The getr function reads a single record from a MOD 400 data
management file into memory, according to a key value.

Acceptable values for cmd are as follows:

RD NXT Read next record
RD-KEY -- Read keyed record
RD-DUP -- Read random file with key.

The last two arguments (keyptr and keytype) are optional for
sequential read operations.

The record_key data type is defined in ~he ufas.h file as:

typedef union {
unsigned long n;
unsigned char s[J;

} record_key;

The member n (32 bits) is used for simple or relative keys.
The member s (variable) is used for other keys.

A simple key is constructed from the control-interval number
and line number of a record according to this formula:

key = (256 * CI) + (line)

For a relative key, n is the value directly. For a primary
or CALC key, s is the key value directly. Always specify an
alternate key where appropriate.

RETURN VALUE:

Upon successful completion, a value of O is returned.
Otherwise, the variables errno and m4 errno are set to
indicate the error, and a value of -1 is returned.

RELATED FUNCTIONS:

posr, putr.

4-152 CW35-02

Get string from stdin file.

FORMAT:

i include <stdio.h>

char *gets (s)
char *s1

ARGUMENTS:

s

Pointer to buffer that will hold string.

DESCRIPTION:

gets

The gets function reads a string into s from the standard
input file stdin. The string is terminated by a newline
character, which is replaced in s by a null character. The
gets function returns its argument.

DIAGNOSTICS:

The gets function returns a null pointer if it encounters the
end of a file or an error.

NOTE

The gets function deletes the newline character
ending its input.

RELATED FUNCTIONS:

£error, fgets, fopen, fread, getc, puts, scan.

4-153 CW35-02

gettcb

gettcb

Get TCB pointer.

FORMAT:

int *gettcb ()

ARGUMENTS:

None.

DESCRIPTION:

The gettcb function returns an integer pointer to the task
control block of the calling process.

RELATED FUNCTIONS:

fork, getpid, getptcb, run family.

4-154 CW35-02

getuid

Get real user ID.

FORMAT:

int getuid ()

ARGUMENTS:

DESCRIPTION:

getuid

The getuid £unction returns the real user ID of the calling
process. The MOD 400 task group ID is used for this
identifier.

RELATED FUNCTIONS:

geteuid, getgid, getegid.

4-155 CW35-02

getw

Get word from file.

FORMAT:

t include <stdio.h>

int getw Cf ile)
FILE *file;

ARGUMENTS:

file

File pathname.

DESCRIPTION:

The getw function returns the next word from the named input
file. It returns the constant EOF when it encounters the end
of a file or an error, but since that is a valid integer
value, feof and ferror should be used to check the success of
getw. The getw function assumes no special alignment in the
file.

DIAGNOSTICS:

This function returns the value -1 when it encounters the end
of a file.

RELATED FUNCTIONS:

feof, ferror, fgetc, fopen, fread, getc, getchar, gets, putc,
putw, scanf.

4-156' CW35-02

•

gm time

Convert date and time to ASCII.

FORMAT:

struct tm *gmtime {clock)
long *clock;

ARGUMENTS:

clock

Military time.

DESCRIPTION:

gm time

The gmtime function returns a pointer to a structure
containing the components of the time. The gmtime function
converts directly to Greenwich Mean Time {GMT) •

The structure declaration from the include file is:

struct tm {
int tm sec;
int tm-min;
int tm-hour;
int tm-mday;
int tm_mon;
int tm year;
int tm:wday;
int tm yday;
int tm:isdst;

}J

These quantities give the time on a 24-hour clock, day of
month (1-31), month of year (0-11), day of week (Sunday - 0),
yea.r - 190 0, day of year (0-365) , and a flag that is nonzero
if daylight saving time is in effect.

Th~ external long variable timezone contains the difference,
in seconds, between GMT and local standard time (in EST,
timezone is 5*60*60); the external variable daylight is
nonzero if, and only if, the standard U.S. daylight savings
time conversion should be applied.

4-157 CW35-02

*
I

gmtime

NOTE

The return valQes point to static data whose
contents are overwritten by each call.

RELATED FUNCTIONS:

asctime, ctime, localtime, time, tzsetf see also the
list stz and set stz commands.

4-158 CW35-02

hypot

Euclidean distance.

FORMAT:

include <math.h>

double hypot (x, y)
double x, YJ

ARGUMENTS:

x

Double-precision value.

y

Double-precision value •

. DESCRIPTION:

The hypot function returns

(x2 + y2)

taking precautions against unwarranted overflows.

RELATED FUNCTIONS:

sqrt.

4-159

hypot

CW35-02

init_mem

init mem

Initialize memory.

FORMAT:

void init mem (ch_ptr, char_count, fill_char)

ARGUMENTS:

ch_ptr

Pointer to the starting location.

char count

Number of characters to be initialized.

fill char

Character used to initialize memory.

DESCRIPTION:

This is an obsolete function. It is provided only to
maintain compatibility with past releases.

The init rnem function initializes a block of memory to the
specif iea value.

4-160 CW35-02

isalnum

Character classification (alphanumeric).

FORMAT:

t include <ctype.h>

int isalnum (c)
int c;

ARGUMENTS:

c

Single-character value.

DESCRIPTION:

isalnum

The isalnum macrocall classifies ASCII-coded integer values
by table lookup. The macrocall is a predicate returning
nonzero for true, zero for false. The isalnum function is
defined only where isascii8 is true and on the single
non-ASCII value EOF (see isascii8) • The function is nonzero
if c is an alphanumeric (letter or digit).

RELATED FUNCTIONS:

isalpha, isascii, isascii8; iscntrl, isdigit, isgraph,
islower, isprint, ispunct, isspace, isupper, isxdigit.

4-161 CW35-02

isalpha

isalpha

Character classification (alphabetic).

FORMAT:

t include <ctype.h>

int isalpha (c)
int c;

ARGUMENTS:

c

Single-character value.

DESCRIPTION:

The isalpha rnacrocall classifies ASCII-coded integer values
by table lookup. The macrocall is a predicate returning
nonzero for true, zero for false. The isalpha function is
defined only where isascii8 is true and on the single
non-ASCII value EOF. The function is nonzero if c is a

. letter. •.

RELATED FUNCTIONS:

isalnum, isasc11, isascii8, iscntrl, isdigit, isgraph,
islower, isprint, ispunct, isspace, isupper, isxdigit.

4-162 CW35-02

isascii

Character classification (7-bit ASCII).

FORMAT:

i include <ctype.h>

int isascii (c)
int c;

ARGUMENTS:

c

Single-character value.

DESCRIPTION:

isascii

The isascii macrocall classifies 7-bit ASCII-coded integer
values by table lookup. The macrocall is a predicate
returning nonzero for true, zero for false. The isascii
function is defined on all integer values. The function is
nonzero if c is a 7-bit ASCII character, that is, a
nonnegative integer less than hexadecimal 80.

RELATED FUNCTIONS:

isalnum, isalpha, isascii8, iscntrl, isdigit, isgraph,
islower, isprint, ispunct, isspace, isupper, isxdigit.

4-163 CW35-02

isascii8

isascii8

Character classification (8-bit ASCII).

FORMAT:

i include <ctype.h>

int isascii8 (c)
int c;

ARGUMENTS:

c

Single-character valu~.

DESCRIPTION:

The isascii8 macrocall classifies 8-bit ASCII-coded integer
values by table lookup. The macrocall is a predicate
returning nonzero for true, zero for false. The isascii8
function is defined on all integer values. The function is
nonzero if c is an ASCII character, code less than
hexadecimal 100.

RELATED FUNCTIONS:

isalnum, isalpha, isascii, iscntrl, isdigit, isgraph,
islower, isprint, ispunct, isspace, isupper, isxdigit.

4-164 CW35-02

..

isatty

Determine if association is to a terminal.

FORMAT:

int isatty (fildes)

int f ildes;

ARGUMENTS:

f ildes

File descriptg_r.

DESCRIPTION:

isatty

The isatty function returns 1 if f ildes is associated with a
terminal device; otherwise, it returns a O •

4-165 0135-02

iscntrl

iscntrl

Character classification (control character).

FORMAT:

t include <ctype.h>

int iscntrl {c)
int c;

ARGUMENTS:

c

Single-character value.

DESCRIPTION:

The iscntrl macrocall classifies ASCII-coded integer values
by table lookup. The macrocall is a predicate returning
nonzero for true, zero for false. The iscntrl function is
defined only where isascii8 is true and on the single
non-ASCII value EOF. The function is nonzero if c is a
delete character (hexadecimal 7F) or ordinary conttol
character (hexadecimal 0 through 17, 84 through 97, and 9B
through 9F).

RELATED FUNCTIONS:

isalnum, isalpha, isascii, isascii8, isdigit, isgraph,
islower, isprint, ispunct, isspace, isupper, isxdigit.

4-166 CW35-02

isdigit

Character classification (digit).

FORMAT:

I include <ctype.h>

int isdigit (c)
int C7

ARGU MEN'l'S :

c

Single-character value.

DESCRIPTION:

isd.igit

The isdigit macrocall classifies ASCII-coded integer values
by table lookup. The macrocall is a predicate returning
nonzero for true, zero for false. The isdigit function is
defined only where isascii8 is true and on the single
non-ASCII value EOF. The function is nonzero if c is a digit
[O through 9).

RELATED FUNCTIONS:

isalnum, isaipha, isascii, isasciiB, iscntrl, isgraph,
islower, isprint, ispunct, isspace, isupper, isxdigit.

4-167 CW35-02

isgraph

isgraph

Character classification (nonspace printing character).

FORMAT:

t include <ctype.h>

int isgraph (c)
int c1

A,RGOMENTS:

c

Single-character value.

DESCRIPTION:

The isgraph macrocall classifies ASCII-coded integer values
by table lookup. The macrocall is a predicate returning
nonzero for true, zero for false. The isgraph function is
defined only where isascii8 i's true and on the single
non~ASCII value EOF. The function is nonzero if c is a
printing character.

RELATED FUNCTIONS:

isalnum, isalpha, isascii, isascii8, iscntrl, isdigit,
islower, isprint, ispunct, isspace, isupper, isxdigit.

4-168 CW35-02

islower

Character classification (lowercase alphabetic).

FORMAT:

i include <ctype.h>

int islower (c)
int CJ

ARGUMENTS:

c

Single-character value.

DESCRIPTION:

· islower

The islower macrocall classifies ASCII-coded integer values
by table lookup. The macrocall is a predicate returning
nonzero f.or true, zero for false. The islower function is
defined only where isasciiS is true and on the single

·non-ASCII value EOF. The function is nonzero if c is a
lowercase letter. The lowercase letters are hexadecimal 61
through 7A, EO through F6, and FS through FF.

RELATED FUNCTIONS:·

isalnum, isalpha, isascii, isasciiS, iscntrl, isdigit,
isgraph, isprint, ispunct, isspace, isupper, isxdigit.

4-169 CW35-02

*

isprint

isprint

Character classification (printing character).

FORMAT:

include <ctype.h>

int isprint (c)
int c;

ARGUMENTS:

c

Single-character value.

DESCRIPTION:

The isprint macrocall classifies ASCII-coded integer values
by table lookup. The macrocall is a predicate returning
nonzero for true, zero for false. The isprint function is
defined only where isascii8 is true and on the single
non-ASCII value EOF. The function is nonzero if c is a
printing character; that is, hexadecimal 20 (space) through
7E (tilde), or hexadecimal AO (no-break space) through FF
(small letter y with diaeresis).

RELATED FUNCTIONS:

isalnum, isalpha, isascii, isascii8, iscntrl, isdigit,
isgraph, islower, ispunct, isspace, isupper, isxdigit.

4-170 CW35-02

ispunct

Chaiacter classification (punctuation character).

FORMAT:

include <ctype.h>

int ispunct (c)
int c;

ARGUMENTS:

c

Single-character value.

DESCRIPTION:

ispunct

The ispunct macrocall classifies ASCII-coded integer values
by table lookup. The macrocall is a predicate returning
nonzero for true, zero for false. The ispunct function is
defined only where isascii8 is true and on the single
non-ASCII value EOF. The function is nonzero if c is a
punctuation character (neither control nor alphanumeric).

RELATED FUNCTIONS:

isalnum, isalpha, isascii, isascii8, iscntrl, isdigit,
isgraph, islower, isprint, isspace, isupper, isxdigit.

4-171 CW35-02

isspace

isspace

Character classification (whitespace character).

FORMAT:

i include <ctype.h>

int isspace (c)
int c:

ARGUMENTS:

c

Single-character value.

DESCRIPTION:

The isspace macrocall classifies ASCII-coded integer values
by table lookup. The macrocall is a predicate returning
nonzero for true, zero for false. The isspace function is
defined only where isascii8 is true and on the single
non-ASCII value EOF. The function is nonzero if c is a
space, tab, carriage return, newline character, vertical tab,
f ormfeed, or no-break space.

RELATED FUNCTIONS:

isalnum, isalpha, isascii, isascii8, iscntrl, isdigit,
isgraph, islower, isprint, ispunct, isupper, isxdigit.

4-172 CW35-02

isupper

Character classification (uppercase alphabetic).

FORMAT:

t include <ctype.h>

int isupper (c)
int C7

ARGUMENTS:

c

Single-character value.

DESCRIPTION:

is.upper

The isupper macrocall classifies ASCII-coded integer values
by table lookup. ·The macrocall is a predicate returning
nonzero for true, zero for false. The isupper function is

·defined only where isasciiS is true and on the single
non-ASCII value EOF. The function is nonzero if c is an
uppercase letter. The uppercase letters are hexadecimal 41
through SA, CO through D6, and DB through DE.

RELATED FUNCTIONS:

isalnum, isalpha, isascii, isascii8, iscntrl, isdigit,
isgraph, islower, isprint, ispunct, isspace, isxdigit.

4-173 CW35-02

isxdigit

isxdigit

Character classification (hexadecimal).

FORMAT:

t include <ctype .. h>

int isxdigit (c)
int c1

ARGUMENTS:

c

Single-character value.

DESCRIPTION:

The isxdigit macrocall classifies ASCII-coded integer values
by table lookup. The macrocall is a predicate returning
nonzero for true, zero for false. The isxdigit function is
defined only where isascii8 is true and on the single
non-ASCII value EOF (see isascii8) • The function is nonzero
if c is a hexadecimal digit ([0 through 9], [A through F], or
[a through f]).

RELATED FUNCTIONS:

isalnum, isalpha, isascii, isascii8, iscntrl, isdigit,
isgraph, islower, isprint, ispunct, isspace, isupper.

4-174 CW35-02

jO,

jO,jl,jn

jl I jn

Bessel functions.

FORMAT:

I include <math. h>

double jO (x)
double x;

double jl (x)
double x;

double jn, (n, x);
double x;
int n;

ARGUMENTS:

x

Double-precision value.

n

Order of Bessel function.

DESCRIPTION:

These functions calculate Bessel functions of the first and
second kinds for real arguments and integer orders. The jn
function returns the Bessel function of x of the first kind
of order n.

RELATED FUNCTIONS:

yO, yl, yn.

4-175 CW35-02

kill

kill -
Send a signal to a process or a group of processes.

FORMAT:

int kill (pid, sig)
int pid, sig;

ARGUMENTS:

pid

Process ID to be signaled.

sig

Signal to be sent.

DESCRIPTION:

The kill function sends a signal to a process or a group of
processes. The process or group of processes to which the
signal is to be sent is specified by pid. The signal that is
to be sent is specified by sig and is either one from the
list given in the signal function, or d. If sig is 0 (the
null signal), error checking is performed but no signal is
actually sent. This is useful to check the validity of pid.
The concept of a super-user is not simulated.

The sending and receiving processes must belong to the same
MOD 400 task group unless pid <= O.

If pid is greater than zero, sig is sent only to the process
whose ID is equal to pid.

If pid is O or -1, sig is sent to all processes of the
sender's process group that are UNIX processes.

If pid is negative but not -1, sig is sent to all processes
other than the sender whose MOD 400 task group ID is equal to
the absolute value of pid and which are processes compatible
with UNIX.

The kill subroutine considers a process group to be that set
of tasks in a MOD 400 task group that have a trap handler
connected and have the Intergroup Signal trap enabled. This
is the trap used by the kill subroutine to send signals. All
C programs enable this trap.

4-176 CW35-02

kill

Because there is no super-user and the real and effective
user IDs of a process are always the same; the definition of
process group given above means that specifying -1 for the
pid (process ID) formal parameter has the same results as
specifying zero. That is, the signal is broadcast to the
caller's process group.

DIAGNOSTICS:·

The kill function fails and no signal is sent if:

• Sig is not a valid signal number [EINVAL].
• No process can be found corresponding to pid [ESRCH].

RETURN VALUE:

Upon successful completion, a value of 0 is returned.
Otherwise, a value of -1 is returned and the variables
m4 errno and errno are set to indicate the error.

RELATED FUNCTIONS:

getpid, signal..

4-177 CW35-02

13tol

13tol

Convert between three-byte integers and long integers.

FORMAT:

13tol (lp, cp, n)
long *lp;
char *cp:
int n;

ARGUMENTS:

lp

Pointer to a list of long integers (output) •

cp

Pointer to a list of three-byte integers (input).

n

Number of integers to be converted.

DESCRIPTION:
..

The 13tol function converts a list of n three-byte integers
(packed into a character string pointed to by cp) into a list
of long integers pointed to by lp.

RELATED FUNCTIONS:

1 tol3.

4-178 CW35-02

164a

Convert between long and base-64 ASCII.

FORMAT:

char *164a(l)
long l;

ARGUMENTS:

1

Long value to be converted.

DESCRIPTION:

IB4a

The 164a function is used to maintain numbers stored in
base-64 ASCII. This is a notation by which long integers can
be represented by up to six characters~ each character
represents a ndigit" in a radix-64 notation.

The characters used to represent digits are • for O, I for 1,
0 through 9 for 2-11, A through Z for 12-37, and a through z
for 38-63.

The l64a function takes a long argument and returns a pointer
to the corresponding base-64 representation.

NOTE

The value returned by 164a is a pointer into a
static buffer, the contents of which are over­
written by each call.

RELATED FUNCTIONS:

a641.

4-179 CW35-02

ldexp

ldexp

Exponential function.

FORMAT:

double ldexp (value, exp)
double value:
int exp;

ARGUMENTS:

value

Double-precision value.

exp

Exponent.

DESCRIPTION:

The ldexp function returns the quantity value*2exp.

RELATED FUNCTIONS:

frexp, modf.

4-180 CW35-02

•

lg div

lgdiv

..

Divide long values.

FORMAT:

long lgdiv (a, b)
long a, b·;

ARGUMENTS:

a

Long dividend.

b

Long divisor.

DESCRIPTION:

The lgdiv function· performs division of the long value a by
the long value b.

RELATED FUNCTIONS:

lgrnul, lgrem, uldiv, ulrern •

4-181 CW35-02

lgmul

lgmul

Multiply long values.

FORMAT:

long lgmul (a, b)
long a, b;

ARGUMENTS:

a

Long multiplier.

b

Long multiplicand.

DESCRIPTION:

The lgmul function performs multiplication of the long value
a by the long value b.

RELATED FUNCTIONS:

lgdiv, lgrem, uldiv, ulrem.

4-182 CW35-02

lg rem

Remainder function.

FORMAT:

long lgrem (a, b)
long a, b~

ARGUMENTS:

a

Long dividend.

b

Long divisor.

DESCRIPTION:

The lgrem function returns the remainder of a/b.

RELATED FUNCTIONS:

lgdiv, lgmul, uldiv, ulrem.

4-183

lgrem

•

CW35-02

link

link

Link to a file.

FORMAT:

int link (pith1, path2J
char *path1, *path2;

ARGUMENTS:

Pathname of an existing file.

Pathname of the new directory entry to be created.

DESCRIPTION:

The link function creates a new link (directory entry) for an
existing file.

The link function fails and no link is created if:

• A component of either path pref ix is not a directory
[ENOTDIR] •

• A component of either path pref ix does not exist
[ENO ENT] •

• A component of either path pref ix denies search access
[EACCES].

• The file named by path1 does not exist [ENOENT] •

• The link named by path2 exists [EEXIST] •

• Pointer path2 points to a null pathname [ENOENT].

• The requested link requires writing in a directory
without write access [EACCES].

• The directory space limit has been reached [hex 0224] •

• There is a media error [hex OlXXJ.

• There is not enough memory for buffers and structures
[ENOMEMJ •

4-184 CW35-02

link

RETURN VALUE:

Upon successful completion, a value of 0 is returned.
Otherwise, a value of -1 is returned and the variable errno
is set to indicate the error.

RELATED FUNCTIONS:

unlink.

4-185 CW35-02

local time

local time

Convert date and time to ASCII.

FORMAT:

include <time.h>

struct tm *localtime (clock)
long *clock;

ARGUMENTS:

clock

Long integer pointer to the time in seconds since Jan. l,
1970 (such as returned by time).

DESCRIPTION:

The localtime function returns a pointer to a structure
containing the components of the time. The localtime
function corrects for the time zone and possible daylight
savings time.

The structure declaration from the include file is:

struct tm {
int
int
int
int
int
int
int
int
int

} ;

tm sec;
trn-min;
tm-hour;
tm-mday;
tm-mon;
tm-year;
tm-wday;
tm-yday;
tm=isdst;

These quantities give the time on a 24-hour clock, day of
month (1-31), month of year (0-11), day of week (Sunday - 0),
year - 1900, day of year (0-365), and a flag that is nonzero
if daylight saving time is in effect.

The external long variable timezone contains the difference,
in seconds, between GMT and local standard time (in EST,
timezone is 5*60*60); the external variable daylight is
nonzero if and only if the standard U.S. daylight savings
time conversion should be applied.

4-186 CW35-02

local time

NOTE

The return values point to static data whose
contents are overwritten by each call.

RELATED FUNCTIONS:

asctime, ctime, gmtime, time, tzset; see also the
list stz and set stz commands.

4-187 CW35-02

I

log

Natural logarithm function.

FORMAT:

include <math.h>

double 109 (x)
double x;

ARGUMENTS:

x

Double-precision value.

DESCRIPTION:

The 109 function returns the natural logarithm of x. X must
be positive.

DIAGNOSTICS:

The 109 function returns a huge negative value and sets errno
to EDOM when x is nonpositive.

RELATED FUNCTIONS:

exp, hypot, 10910, pow, sinh, sqrt.

4-188 CW35-02

loglO

Common logarithm function.

FORMAT:

include <rnath.h>

double loglO (x)
double x;

ARGUMENTS:

x

Double-precision value.

DESCRIPTION:

loglO

The loglO function returns the common logarithm of x. X must
be positive.

DIAGNOSTICS:

The log function returns a huge negative value and sets errno
to EDOM when x is nonpositive.

RELATED FUNCTIONS:

exp, hypot, log, pow, sinh, sqrt.

4-189 CW35-02

I

longjmp

longjrnp

Non-local goto.

FORMAT:

i include <setjrnp.h>

void longjmp (env, val)
jmp buf env;
int-val;

ARGUMENTS:

env

Pointer to the stack frame associated with the function
that called setjrnp and these registers:

• B7 , BS I B4 , B3 , B2
• I
• R6 I RS I R4 , R3 , R2 I Rl •

val

Value to be returned.

DESCRIPTION:

The longjmp function restores the environment saved by the
most recent call to setjmp having env as its argument. It
then returns in such a way that execution continues as if the
call to setjmp had returned with the value val instead of
zero (as is the case with the true return from setjmp) • The
function that called setjmp must not itself have returned in
the interim. If longjmp is invoked with a val argument of
zero, it behaves as if 1 had been used instead.

All accessible objects have values as of the time longjmp was
called, except for objects of storage class register whose
values have changed between the setjmp and longjmp calls.
Variables allocated in registers retain the values they had
when setjmp was called, while variables not allocated in
registers retain the values they had when longjrnp was
called. Any program that relies on this treatment of
register variables is implementation-dependent and,
therefore, nonportable.

4-190 CW35-02

longjmp

DIAGNOSTICS:

If the env argument does not contain a valid stack frame
pointer, SIGSYS is signaled, without releasing any stack
frames.

RELATED FUNCTIONS:

kill, setjmp, signal.

4-191 CW35-02

I search

lsearch

Linear search and update.

FORMAT:

char *lsearch (key, base, nelp, width, compar)
char *key;
char *base;
int *nelp;
int width;
int (*cornpar) () ;

ARGUMENTS:

key

Pointer to the datum to be located in the table.

base

Pointer to the base of the table.

nelp

Address of an integer containing the number of items in
the table. It is incremented if the item is added to the
table.

width

Width of an element in characters.

com par

Name of the comparison routine.

DESCRIPTION:

The lsearch function is a linear search routine generalized
from Knuth Algorithm Q. It returns a pointer into a table
indicating the location at which a datum can be found. If
the item does not occur, it is added at the end of the table.

The comparison routine is called with two character pointer
arguments that point to the elements being compared. The
routine must return zero if the items are equal and nonzero
otherwise.

4-192 CW35-02

NOTE

Unspecified results can occur if there is not
enough room in the table to add a new item.

RELATED FUNCTIONS:

bsearch, qsort.

4-193

. lsearch

CW35-02

ltol3

ltol3

Convert between long integers and three-byte integers.

FORMAT:

1 tol3 (cp, lp, n)
char *cp;
long *lp;
int n;

ARGUMENTS:

cp

"Pointer to a list of three-byte integers (output).

lp

Pointer to a list of long integers (input).

n

Number of integers to be converted.

DESCRIPTION:
,.

The ltol3 function converts a list of n long integers
(pointed to by lp) into a list of three-byte integers (packed
into a character string pointed to by cp) .

RELATED FUNCTIONS:

13tol.

4-194 CW35-02

rnalloc

Heap memory allocator.

FORMAT:

char *malloc (size)
unsigned int size;

ARGUMENTS:

size

Size of the desired memory block in characters.

DESCRIPTION:

malloc

The malloc function is part of a general-purpose heap memory
alloca.tion package. The malloc function returns a character
pointer to the beginning of a double-word-aligned block of at
least size characters. Such block are suitable for storing
objects of any type.

The heap is manage~ by the C functions malloc, callee,
realloc, and free, and by the MOD 400 macrocalls Create
Segment and Expand Segmento The heap is managed using a
modified boundary-tag algorithm. This algorithm suffers
little from memory fragmentation losses, yet is nearly as
fast as a buddy-system algorithm.

The heap consists of one or more areas, each consisting of
one or more segments. Heap areas are expanded, or new areas
are created, as the need arises. Heap areas are never shrunk
or deleted. However, when running in a fixed memory pool,
the heap is restricted to a single, nonexpandable area whose
size is specified by a Linker directive.

Memory is allocated in blocks of 16 bytes, plus 14 bytes for
each allocated block. The block is not initialized.

DIAGNOSTICS:

If the heap does not contain enough memory, and cannot be
sufficiently expanded, to meet the request, the variable
errno is set to ENOMEM, the variable m4 errno is set to
hexadecimal l800+ENOMEM, and (char *) o; a null character
pointer, is returned.

RELATED FUNCTIONS:

calloc, free, realloc.

4-195 CW35-02

1ncl

mcl

I

Execute MOD 400 system service macrocall.

FORMAT:

i include <XX mcl.incl>

int mcl {function, context)
int function;
struct mcl_psb *context;

ARGUMENTS:

function

MOD 400 macrocall number.

context

Pointer to register context structure.

DESCRIPTION:

The mcl function performs the MOD 400 system service macro­
call specified by the function argument. System service
calls are defined in the MOD 400 System Programmer's Guide-:
Volume II.

The mcl function first loads the register context contained
in the structure pointed to by the context argument. Then it
executes the call with the function code given by the
function argument. High-order bits of the context for base
registers are ignored when loading the register context, so
registers not used by the call need not be initialized.

The mcl function expects the address of the "fixed parameter
block" for the Request Group macrocall to be made available
in register B3's image (reg b3) instead of in register BS's
image (which does not exist), as is indicated in the System
Programmer's Guide. Other macrocalls that require a
parameter value in register BS cannot be invoked via the mcl
function.

The mcl function does not protect registers B6 and B7 from
change. To invoke a macrocall that changes register B6,
reset register B6 after return from mcl by calling an
arbitrary (and possibly trivial) function, passing it no
arguments that are not constants.

4-196 CW35-02

The XX mcl.h include files are:

cl mcl.h
dm-mcl.h
fm-mcl.h
gp-mcl.h
id-mcl.h
io-mcl. h
mm-mcl. h
mr-mcl. h
op-mcl. h
rq-mcl.h
sf-mcl.h
sm-mcl.h
sw-mcl.h
sy-mcl. h
ts-mcl. h

Clock functions
Data management functions
File management functions
Task group control functions
Identification and information functions
Input/output functions
Memory management functions
Message reporter functions
Operator interface functions
Request and return functions
System file functions
Storage management functions
External switch functions
Semaphore functions
Task control functions.

mcl

The include files also contain structure definitions for the
argument and parameter structure blocks used by the various
macrocalls. Each .of the XX mcl.h include files automatically
includes the mcl.h include Iile if it has not already been

.included •

..

4-197 CW35-02

mcl

I

I

RETURN VALUE:

The mcl function returns the status code it received from the
call. (Ref er to the MOD 400 System Messages manual for a
list of return status code values.) A value of zero always
indicates successful completion of the call. Nonzero values
usually indicate an error, but in some cases are informative
only. Nonzero values are stored in the external variable
m4 errno.

Upon return from the call, the mcl function saves the
(possibly altered) register context in the structure pointed
to by context.

NOTES

1. The XX mcl.incl include file defines manifest
constants for most macrocalls. The manifest
constant for a macrocall named $XXX in the
System Programmer's Guide--Volume II is named
MCL$XXX in the include file. If the
macrocall has a name longer than five
characters (including the dollar sign), the
name is shortened.

2. The include file also contains structure
definitions for the argument and parameter
structure blocks used by the various
macrocalls. It includes these declarations
of the parameter structure block used by the
mcl function itself:

struct
int
int
int
int
int
int
int
int
int
int

} ;

mcl psb {
*reg b4;
*reg-b3;
*reg-b2;
*reg-bl;
reg r7;
reg-r6;
reg-rS;
reg-r4;
reg~ r3;
reg:r2;

4-198 CW35-02

rnernccpy

Memory-to-memory copy.

FORMAT:

include <mernory.h>

unsigned char *memccpy (s1, s2, c, n)
unsigned char *s1, *s2;
unsigned char c;
int n;

ARGUMENTS:

Pointer to target memory area (output).

Pointer to source memory area (input).

c

Last character to copy (if found in s2>·

n

Number of characters to copy.

DESCRIPTION:

memccpy

The rnemccpy function copies characters from memory area s2
into s1, stopping after the first occurrence of character c
has been copied, or after n characters have been copied,
whichever comes first. If n is less than or equal to zero,
no characters are copied.

This function operates efficiently on memory areas (arrays of
characters bounded by a count, not terminated by a null
character) • This function does not check for the overflow of
any receiving memory area.

4-199 CW35-02

I

I

I

memccpy

RETURN VALUE:

This function returns a pointer to the character after the
copy of c in s1 1 or {unsigned char *) 0 if c was not found in
the first n characters of s2.

NOTE

This function is declared in the <memory.h>
header file.

RELATED FUNCTIONS:

memchr, rnemcmp, rnemcpy, memset, urnemchr, urnemcmp,
umerncpy, urnemset.

4-200 CW35-02

memchr

Locate character in memory.

FORMAT:

include <memory.h>

unsigned char *memchr (s, c, n)
unsigned ch~r *s;
unsigned char c:
int n;

ARGUMENTS:

s

Pointer to memory area to check.

c

Character to seek.

n

Size of memory area in characters.

DESCRIPTION:

memchr

I

The memchr function returns a pointer to the first occurrence
of character c within the first n characters of memory area I
s, or (unsigned char *) O if c does not occur.

This function operates efficiently on memory areas (arrays of
characters bounded by a count, not terminated by a null
character).

NOTE

This function is declared in the <memory.h>
header file.

RELATED FUNCTIONS:

memccpy, memcmp, memcpy, memset, umemchr, umemcmp,
urnemcpy, umemset.

4-201 CW35-02

I

I

memcmp

memcmp

Memory-to-memory compare.

FORMAT:

i include <memory.h>

int memcmp (s1, s2, n)
unsigned char *s1, *s2;
int n;

ARGUMENTS:

Pointer to first memory area to be compared.

Pointer to second memory area to be compared.

n

Size of memory areas in characters.

DESCRIPTION:

The memcmp function compares its arguments, looking at the
first n characters only

This function operates efficiently on memory areas (arrays of
characters bounded by a count, not terminated by a null
character). It executes without a stack frame of its own,
and it makes use of commercial instructions.

RETURN VALUE:

This function returns an integer less than, equal to, or
greater than zero, depending on whether s1 is less than,
equal to, or greater than s2. If n is less than or equal to
zero, equality is indicated.

4-202 CW35-02

NOTES

·1. This function is declared in the <memory .• h>
header file.

2. The memcmp function uses 8-bit ASCII
comparisons. Comparison proceeds from left
to right until an unequal pair of characters
is found or until all ·characters have been
compared without finding an unequal pair. 'If
an unequal pair is found, their ordering in
the 8-bit ASCII code set determines the
ordering of the two operands.

RELATED FUNCTIONS:

memccpy, memchr, memcpy, memset, umemchr, umemcmp,
umemcpy, umemset.

memcmp

4-203 CW35-02

I

I

memcpy

memcpy

Memory-to-memory copy.

FORMAT:

include <memory.h>

unsigned char *memcpy (s1, s2, n)
unsigned char *s1, *s2;
int n;

ARGUMENTS:

Pointer to target memory area (output).

Pointer to source memory area (input).

n

Number of characters to copy.

DESCRIPTION:

The memcpy function copies n characters from memory area s2
to s1.

This function operates efficiently on memory areas (arrays of
characters bounded by a count, not terminated by a null
character) • This function does not check for the overflow of
any receiving memory area. It executes without a stack frame
of its own.

RETURN VALUE:

This function returns s1.

NOTES

1. This function is declared in the <memory.h>
header file.

2. The memcpy function produces unspecified
results if the memory areas overlap but are
not identical.

4-204 CW35-02

memset

Initialize memory.

FORMAT:

include <memory.h>

unsigned char *memset (s, c, n)
unsigned char *s;
unsigned char c;
int n;

ARGUMENTS:

s

Pointer to memory area to initialize.

c

Character to fill memory area.

n

Size of memory area in characters.

DESCRIPTION:

memset

The memset function sets the first n bharacters in memory
area s to the value of character c. If n is less than or
equal to zero, no characters are set.

This function operates efficiently on memory areas (arrays of
characters bounded by a count, not terminated by a null
character). This function does not check for the overflow of
any receiving memory area. It executes without a stack frame
of its own, and it makes use of comme.rcial instructions.

RETURN VALUE:

This function returns *s.

NOTE

This function is declared in the <memory.h>
header file.

4-205 CW35-02

I

mktem_p

mktemp

Make a unique file name.

FORMAT:

char *mktemp (template)
char *template;

ARGUMENTS:

template

Template character string plus six trailing Xs.

DESCRIPTION:

The rnkternp function replaces template by a unique file name,
and returns the address of the template. The template should
look like a file name with six trailing Xs, which will be
replaced with a letter and the current process ID. The
letter is chosen so that the resulting name does not
duplicate an existing file.

NOTE

It is possible to run out of letters.

RELATED FUNCTIONS:

getpid.

4-206 CW35-02

modf

Return fraction part of value.

FORMAT:

double modf {value, iptr)
double value, *iptr;

ARGUMENTS:

value

Double-precision value.

iptr

Pointer to integer part of.value.

DESCRIPTION:

modf

The modf function returns the signed fractional part of value
and stores the integer part indirectly, through iptr.

RELATED FUNCTIONS:

f rexp, ldexp.

4-207 CW35-02

open

Open for reading or writing.

FORMAT:

include <s.tdio. h>

int open (path, oflag)
char *path;
int oflag;

ARGUMENTS:

path

Pathname of file to open.

of lag

Access flag (see below) •

DESCRIPTION:

The open function opens a file descriptor for the named file
and sets the file status flags according to the value of
oflag. The path pointer refers to a pathname naming a file.
Oflag values are constructed by performing a logical OR
operation on flags from the following list:

0 RDONLY

0 WRONLY

0 RDWR

0 CREAT

0 EXCL

0 RDBIN

0 WRBIN

0 RDWRBIN

0 ABIN

Open for reading only.

Open for writing only.

Open for reading and writing.

Create a new file. If the file already
exists, this flag has no effect.

Only meaningful in combination with O CREAT;
these flags together specify that the-file
must not already exist.

Open binary file for reading only.

Open binary file for writing only.

Open binary file for reading and writ~ng.

Same as O WRBIN.

4-208 CW35-02

open

The file pointer (used to mark the current position within
the file) is set to the beginning of the file.

This function also works with dynamic and device files. To
open an interactive device file (such as a terminal), use the
0 RDWR flag; to open a noninteractive device file (such as a
printer), use O_RDONLY or O_WRONLY, as appropriate.

An I/O operation on a text file maps length-delimited records
(MOD 400) to newline-delimited character streams (UNIX) and
vice versa. An I/O operation on a binary file transfers a
length-delimited record.

The new file descriptor remains open across exec calls.

No process can have more than 20 file descriptors open
simultaneously.

The open function does not allocate a buffer until it is
needed. When eventually needed, 136-character buffers are
allocated for the user-in, user-out, and error-out files, and
512-character buffers for other files. The number of buffers
ul located for a f e is as follows:

e Binary files processed only by low-level I/O (read and
write) get no buffers

e A user­
buf

® String-r
no

file processed only by low-level I/O gets no

files processed only by low-level I/O
ers

• All other files processed only by low-level I/O get
one buff er each

e Files processed by high-level I/O get one more buffer
than they would if processed only by low-level I/O.

An operation on a text file converts each record to a
character stream ending with a newline character, and vice
versa. An operation on a binary file transfers fixed-length
records directly. In either case, the file is treated as a
stream of characters processed by the getc and putc
macrocalls. (The buffering required precludes using both
getc and putc on a file opened for updating.)

4-209 CW35-02

open

RETURN VALUE:

Upon successful completion, a file descriptor (a nonnegative
integer) is returned. Otherwise, a value of -1 is returned
and the variables errno and m4 errno are set to indicate the
error returned from MOD 400.

RELATED FUNCTIONS:

close, creat, dup, fcntl, read, write.

4-210 CW35-02

pause

pause

Suspend process until signal.

FORMAT:

pause ()

ARGO MEN'l'S :

None.

DESCRIPTION:

The pause function suspends the calling process until it
receives a signal. The signal must be one that is not
currently set to be ignored by the calling process.

The default response to the receipt of a signal is the
termination of the receiving process. The call to signal
specifies alternatives:

• Ignore a signal
• Call a function with the signal number as the argument
o Designate or reinstate the default (termination).

If the signal causes termination of the calling process,
pause will not return.

If the signal is caught and control is returned from the
signal-catching function (see signal), the calling process
resumes execution from point of suspension (the call to
pause), with a return value of -1 from pause, the value of
errno set to EINTR, and the value of m4 errno set
appropriately.

RELATED FUNCTIONS:

alarm, kill, signal, wait.

4-211 CW35-02

perror

perror

Print system error message.

FORMAT:

void perror (s[, a[, b[, c]]])

char *s[, *a[, *b[, *cJJ]1

extern int errno;

ARGUMENTS:

s

Name of the program that incurred the error.

a, b, c

Optional parameters to specialize the text of the
message. Refer to the MOD 400 System Messages manual.

errno

Error number.

DESCRIPTION:

The perror function produces a.short error message on the
error-out file, describing the last error encountered during
a function. Text appears as follows:

l. The argument string s
2. A colon
3. A blank
4. The message text
5. A newline character.

The argument string should be the name of the program that
incurred the error. The error number is taken from the
external variable errno, which is set when errors occur but
not cleared when nonerroneous calls are made.

The text of the message is obtained from the MOD 400 error
message libraries. If errno has a value in the range l to
255, hexadecimal 1800 is added to it to obtain the MOD 400
error number. If errno is not in this range, it is used as
is. If the MOD 400 error message libraries do not contain a
message for that error code, the text "Error number X.",
where X is the value of errno, is used instead.

4-212 CW35-0 2

perror

RELATED FUNCTIONS:

errno, sys_errlist, sys_nerr •

..

4-213 CW35-02

pipe

Intergroup channel.

FORMAT:

int pipe (fildes)
int fildes[2];

ARGUMENTS:

f ildes

File descriptor.

DESCRIPTION:

The pipe function creates a pipe and returns two file
descriptors, fildes[OJ (for reading) and fildes[l] (for
writing).

Write operations are buffered up to 5120 characters and
blocked. A read operation on fildes[O] receives data written
to fildes[l] on a first-in, first-out basis.

No group can have more than 20 file descriptors open
simultaneously.

RETURN VALUE:

Upon successful completion, the pipe function returns a value
of 0. Otherwise, a value of -1 is returned, and the variable
errno is set to indicate the error.

DIAGNOSTICS:

The pipe function fails if it is called and 19 or more file
descriptors are currently open [EMFILE].

RELATED FUNCTIONS:

read, write.

4-214 CW35-02

posr

Position record pointer.

FORMAT:

i include <ufas.h>

int posr(cmd,fildes,rtype,keyptr,keytype)
int cmd, f ildes, rtype, keytype1
record_key *keyptr1

ARGUMENTS:

cmd

Command (see noescriptionn).

f ildes

Open file descriptor obtained from a creat, open, dup, or
f cntl function.

rtype

Record type: O for read-pointer operations, or -1 for
write-pointer operations.

keyptr

Pointer to key value.

keytype

Optional key type:

PRIMARY

RELATIVE

CALC

SIMPLE

ALT

For indexed f iles1 keyvalue type is (char *)

For relative files: keyvalue type is (long *)

For random files; keyvalue type is (char *)

For sequential or dynamic files; keyvalue
type is (long *)

For alternate index; keyvalue type is
(char *)

CURRENT -- Current key of usageo

4-215 CW35-02

posr

DESCRIPTION:

The posr function positions a read or write pointer within an
open file, according to a key value.

Acceptable values for cmd are:

RD EQ Position read pointer equal to
RD-GR Position read pointer greater than
RD-GE Position read pointer greater than or equal to
RD FWD Position read pointer forward
RD-BWD Position read pointer backward
WR-EQ Position write pointer equal to
WR-GR Position write pointer greater than
WR-GE Position write pointer greater than or equal
WR-FWD Position write pointer forward
WR-BWD Position write pointer backward

The record_key data type is defined in the ufas.h file as:

typedef union {
unsigned long n;
unsigned char s[];

} record_key;

The member n (32 bits) is used for· simple or relative keys.
The member s (variable) is used for other keys.

to

A simple key is constructed from the control-interval number
and line number of a record according to this formula:

key = (256 * CI) + (line)

For a relative key, n is the value directly. For a primary
or CALC key, s is the key value directly. Always specify an
alternate key where appropriate.

RETURN VALUE:

Upon successful completion, a value of O is returned.
Otherwise, the variables errno and m4 errno are set to
indicate the error, and a value of -1-is returned.

RELATED FUNCTIONS:

getr, putr, ucreat.

4-216 CW35-02

Power function.

FORMAT:

include <math.h>

double pow (x, y)
double x, y;

ARGUMENTS:

x, y

Double-precision values.

DESCRIPTION:

pow

The pow function returns xY. The values of x and y cannot
both be zero. If x is less than or equal to zero, y must be
an integere

DIAGNOSTICS:

The pow function returns a huge value when the correct value
would overflow. A truly outrageous argument can also result
in errno being set to ERANGE.

The pow function returns a huge negative value and sets errno
to EDOM when x is nonpositive and y is not an integer, or
when x and y are both zero.

RELATED FUNCTIONS:

exp, hypot, log, sinh, sqrt.

4-217 CW35-02

printf

printf

Format output.

FORMAT:

i include <stdio.h>

int printf (format [, arg] •••)
char *format;

ARGUMENTS:

format

Format string.

arg

Optional argument to be printed.

DESCRIPTION:

The printf function writes output to the user-out file. It
is equivalent to a call to fprintf with the argument stdout
inserted before the arguments to fprintf.

For more information on this function, refer to the
description of fprint.

RELATED FUNCTIONS:

ecvt, fprintf, putc, scanf, sprintf.

4-218 CW35-02

pthto6

Convert UNIX pathname to MOD 400.

FORMAT:

int pthto6 (inpath, outpath)
char *inpath, *outpath;

ARGUMENTS:

inpath

pthto6

Pointer to a null-terminated character string. The
string can be a UNIX pathname, a MOD 400 pathname, or a
combination of both.

outpath

Pointer to a string at least 60 characters long.

D'EsCRIPTION:

The pthto6 function maps pathnames compatible with UNIX to
pathnames compatible with MOD 400. It detects invalid
characters, invalid directory names, and overlong pathnames.

RETURN VALUE:

If no error is encountered, a space and null character are
appended to the output pathname. The return value is the
length of the output pathname, including the space and null
terminators. {Therefore, pthto6, when successful, always
returns a value greater than zero.)

DIAGNOSTICS:

The pthto6 function terminates when it encounters an error, a
space, or a null character. The input and output strings can
be the same.

If pthto6 finds an error, it returns a value of -1. A space
and null character are appended to the output path up to that
point, and the variable errno is set to ENOENT. The variable
m4 errno is set to 0201 ("The pathname violates naming
conventions").

4-219 CW35-02

putc

Put a character on a file.

FORMAT:

i include <stdio.h>

int putc (c, file}
char c1
FILE *f ile7

ARGUMENTS:

c

Character to be appended to the file.

file

File pathname.

DESCRIPTION:

The putc function appends the character c to the buff er
associated with the named output file, writing the buffer
whenever it is full.

RETURN VALUE:

The putc function returns the character appended.

DIAGNOSTICS:

This function returns the constant EOF when it encounters an
error. Since this is a good integer, ferror should be used
to detect putw errors.

NOTE

Because it is a macrocall, putc treats incorrectly
a file argument with side effects, for e~ample,
putc(c, *f++)1 •

RELATED FUNCTIONS:

ferror, fopen, fputc, fwrite, getc, printf, putchar, puts,
putw.

4-220 CW35-02

put char

Put character on stdout file.

FORMAT:

i include <stdio.h>

putchar (c)

ARGUMENTS:

c

Character to be appended to the file.

DESCRIPTION:

putchar

The putchar(c) function is defined as putc(c, stdout).

DIAGNOSTICS:

This function returns the constant EOF when it encounters an
error. Since this is a good integer, £error should be used
to detect putw errors.

RELATED FUNCTIONS:

ferror, fopen, fputc, fwrite, getc, printf, putc, puts, putw.

4-221 CW35-02

putr

Put record.

FORMAT:

t include <ufas.h>

int putr(cmd,fildes,rptr,rlen,rtype[,keyptr,keytypeJ)
int cmd, f ildes, rlen, rtype [, keytypeJ;
char *rptr;
record_key *keyptr;

ARGUMENTS:

cmd

Command (see "Description").

f ildes

rptr

rlen

Open file descriptor obtained from a creat, open, dup, or
f cntl function.

Pointer to a record area from which the record to be
written is obtained.

Number of .characters to write.

rtype

Output record type: a decimal value from 0 through 3999;
set to 0 if no specific record type is desired.

keyptr

Pointer to key value.

keytype

Optional key type:

PRIMARY

RELATIVE

CALC

For indexed files; keyvalue type is (char *)

For relative files; keyvalue type is (long *)

For random files; keyvalue type is (char *)

4-222 CW3 5-0 2

SIMPLE

ALT

CURRENT

DESCRIPTION:

For sequential or dynamic files: keyvalue
type is (long *)

For alternate index; keyvalue type is
(char *)

For current key of usage.

The putr function writes or updates .a record in a file,
according to a key value.

Acceptable values for cmd are:

WR NXT
WR-KEY
RW-CURR -­
RW-KEY

Write next record
Write with key
Rewrite current record
Rewrite record with key.

putr

The last two arguments (keyptr and keytype) are optional for
sequential write operations.

If you omit the keytype argument, the key type is determined
by the file organization:

File organization

Sequential ·
Relative (all types)
Random
Dynamic
Indexed

Key type

SIMPLE
RELATIVE
RANDOM
SIMPLE
PRIMARY

The record_key data type is define9 in the ufas.h file as:

typedef union {
unsigned lon9 n;
unsigned chars[];

} record_key;

The member n (32 bits) is used for simple or relative keys.
The member s (variable) is used for other keys.

A simple key is constructed from the control-interval number
and line number of a record according to this formula:

key = {256 * CI) + (line)

For a relative key, n is the value directly. For a primary
or CALC key, s is the key value directly. Always specify an
alternate key where appropriate.

4-223 CW35-02

putr

When dealing with indexed files, specify record types that
are a subset of record types specified when the files were
created. You cannot change a record type by rewriting it.

Example:

The following sample fragment of code modifies the file
MYREL.

include <stdio.h>
include <ufas.h>
main()
{

long key; /* RelatiYe key */
int fildes;
register k;
fildes=open("MYREL",O WRONLY);
for (k=O; k<S; k++) -/* Write 5 successive records */

putr(WR NXT,fildes,"aaa",3,0);
/* Write records-7 and 9 */

key = 7;
putr(WR KEY,fildes,"bbb",3,0,&key); /*Relative key*/
key = 9T /* is default, or you can specify*/
putr(WR KEY,fildes,"ccc",3,0,&key,RELATIVE); /*it*/

/* Reposition pointer to record 8; write next record (8)*/
key = 7;
posr(WR GR,fildes,O,&key);
putt"(WR-NXT, fildes, "qqq" ,3 ,o);

/* Move pointer 3 records forward f rorn current position */
key = 3;
posr(WR FWD,fildes,O,&key);
putr(WR-NXT,fildes,"qqq",3,0);

/* Now use simple key (you must specify) to write a record */
key = Ox020F;
putr(WR KEY,fildes,"kkk",3,0,&key,SIMPLE);
close(fTldes);

}

After this code executes, the file MYREL contains:

aaa
aaa
aaa
aaa
aaa
bbb
qqq
CCC
qqq
kkk

4-224 CW35-02

RETURN VALUE:

Upon successful completion, a value of O is returned.
Otherwise, the variables errno and m4 errno are set to
indicate the error, and a value of -1-is returned.

RELATED FUNCTIONS:

getr, posr, ucreat.

putr

4-225 CW35-02

puts

Put string on stdout file.

FORMAT:

include <stdio.h>

int puts (s}
char *s;

ARGUMENTS:

s

String to be written to the file.

DESCRIPTION:

The puts function copies the null-terminated string s to the
user-out file and appends a newline character.

This function does not copy the terminating null character.

DIAGNOSTICS:

This function returns EOF on error.

NOTE

The puts function appends a newline character.

RELATED FUNCTIONS:

ferror, fflush, fopen, fputs, fwrite, gets, printf, putc.

4-226 CW35-02

Put a word on a file.

FORMAT:

i include <stdio.h>

putw (w, file)
int w;
FILE *£ ile;

ARGUMENTS:

w

Integer to be written to the file.

file

File pathname.

DESCRIPTION:

putw

The putw function appends the integer w to the output file.
The putw function neither assumes nor causes special
alignment in the file.

DIAGNOSTICS:

This function returns the constant EOF when it encounters an
error. Since this is a good integer, ferror should be used
to detect putw errors.

RELATED FUNCTIONS:
.

ferror, £open, fputc, £write, getc, printf, putc, putchar,
puts.

4-227 CW35-02

qsort

qsort

Quicker sort.

FORMAT:

qsort (base, nelem, width, compar)
char *base:
unsigned nelem;
int width;
int (*compar)();

ARGUMENTS:

base

Pointer to the base of the data.

nelem

Number of elements.

width

Width of each element in characters.

compai:

Name of the comparison routine.

DESCRIPTION:

The qsort function is an implementation of the quicker-sort
algorithm. The comparison routine is called with two
character pointer arguments, which are pointers to the
elements being compared. The routine must return an integer
less than, equal to, or greater than 0 depending on whether
the first argument is less than, equal to, or greater than
the second.

RELATED FUNCTIONS:

sort, bsearch, lsearch, strcmp.

4-228 CW35-02

rand

rand

Generate random numbers.

FORMAT:

int rand()

ARGUMENTS:

None.

DESCRIPTION:

The rand function uses a multiplicative congruential random
number generator with period 232 to return successive
pseudorandom numbers in the range from O to 215 -1.

RELATED FUNCTIONS:

srand.

4-229 CW35-02

read

read

Read from a file.

FORMAT:

int read (fildes, buf, nchar)
int f ildes~
char *buf;
unsigned nchar;

ARGUMENTS:

f ildes

File descriptor obtained from a creat, open, dup, fcntl,
or pipe function call.

buf

Pointer to buffer.

nchar

Number of characters to read.

DESCRIPTION:

The read function attempts to read nchar characters from the
file associated with fildes into the buffer pointed to by
buf.

The read function recognizes EOT (Control-D) as an
end-of-file character when received at the beginning of a
line read from an interactive device. This is consistent
with UNIX practice.

Text file enO-of~f ile processing is compatible with UNIX.
End-of-file conditions for binary files are the same as for
text files.

The read function does not allocate a buffer until it is
needed. The functiori allocates 136-character buffers for the
user-in, user-out, and error-out files and 512-character
buffers for other files. The number of buffers ultimately
allocated for a file is as follows:

• Binary files processed only by low-level I/O (read and
write) get no buffers

4-230 CW35-02

read

• A user-in file processed only by low-level I/O gets no
buffer

• String-relative files processed only by low-level I/O
get no buffers

• All other files processed only by low-level I/O get
one buff er each

• Files processed by high-level I/O get one more buffer
than they would if processed only by low-level I/O.

RETURN VALUE:

Upon successful completion, a nonnegative integer is returned
indicating the number of characters actually read and placed
in the buffer. A value of 0 is returned when an end of file
has been reached. Otherwise, a -1 is returned and the
variables errno and m4 errno are set to indicate the error.

RELATED FUNCTIONS:

creat, dup, fcntl, open, pipe.

4-231 CW35-02

realloc

realloc

Reallocate heap memory.

FORMAT:

char *realloc {ptr, size)
char *ptr;
assigned size;

ARGUMENTS:

ptr

Pointer to memory area to be reallocated.

size

New size, in characters.

DESCRIPTION:

The realloc function changes the size of the block pointed to
by ptr to size characters and returns a pointer to the
(possibly moved) block. The contents are unchanged up to the
lesser of the new and old sizes.

The realloc function returns a pointer to space suitably
aligned (after possible pointer coercion) for storage of any
type of object.

DIAGNOSTICS:

If the heap does not contain enough memory, and cannot be
sufficiently expanded to meet the request, the variable errno
is set to ENOMEM, the variable m4 errno is set to hexadecimal
1800+ENOMEM, and {char *) O, a nuil character pointer, is
returned. When realloc returns a null pointer, the block
pointed to by ptr may have been destroyed.

RELATED FUNCTIONS:

callee, free, malloc.

4-232 CW35-02

runl

Create a new process.

FORMAT:

int runl(path,argo,arg1, ••• ,argn,Cunsigned char*) 0)
unsigned char *path, *argo, *arg1, ••• , *argn~

ARGUMENTS:

path

runl

Pointer to a pathname that identifies the new process
bound unit.

argo, arg1, ••• , argn

Pointers to null-terminated strings. These strings
constitute the argument list available to the new
process. By convention, at least argo must be present
and point to a string that is the same as path (or ~ts
file-name component).

DESCRIPTION:

The runl function creates a new process. The new process is
constructed from an ordinary ·bound uni"t called the new
process bound unit.

When a C program is executed, it is called as follows:

int main (argc, argv, envp)
int argc~
unsigned char **argv, **envp;

where argc is the argument count and argv is an array of
character pointers to the arguments themselves. By
convention, argc is at least one and argv{OJ points to a
string containing the name of the file.

When a run function or the MOD 400 command processor creates
a process, a pointer to the environment of the calling
process is placed in the global cell:

extern unsigned char **environ;

It is used to pass the environment of the calling process to
the new process.

4-233 CW35-02

runl

The environment provided is the C environment lines of the
MOD 400 task group with the environment lines for HOME and
PATH appended. (If the task group's C environment already
contains an environment line for HOME or PATH, that
environment line will take precedence.) The default PATH
environment line specifies the referencing directory, the
working directory, >SYSLIBl, and >SYSLIB2, in that order.
The referencing directory is the directory from which the
main program itself was loaded.

File descriptors open in the calling process remain open in
the new process, except for those whose close-on-exec flag is
set. For those file descriptors that remain open, the file
currency (read or write) is unchanged.

The new process inherits nothing else from the calling
process.

The runl function fails and returns to the calling process
if:

• One or more components of the pathname do not exist
[ENOENT].

• A directory-name component of path is not a directory
[ENOTDIR].

• List access is denied for a directory named in path
[EACCESJ.

• The new process bound unit is not a bound unit, or the
calling process lacks execute access to it [EACCES].

• The new process requires more memory than is allowed
[ENOMEM].

• The number of characters in the argument list for the
new process is greater than 5120 characters [E2BIG].

• The path, argv, or envp argument points to an invalid
address [EFAULT].

RETURN VALUE:

Upon successful completion, runl returns the process ID of
the new process to the calling process. Otherwise, the
return value is -1, and the variables m4 errno and errno are
set to indicate the error.

RELATED FUNCTIONS:

runlp, runv, runvp, exit, fork, getenv; see also the
dl_env, get_env, list_env, and set env commands.

4-234 CW35-02

runlp

runlp

Create a new process.

FORMAT:

int runlp(file,argo,arg1, ••• ,argn(unsigned char *)0)
unsigned char *file, *argo, *arg1, ••• , *argn;

ARGUMENTS:

file

Pointer to the filename of the new process bound unit.

argo, arg1, ••• , argn

Pointers to null-terminated character strings.
strings constitute the argument list available
process. By convention, at least argo must be
and point to a string that is the same as path
filename component) ..

DESCRIPTION:

These
to the new
present
(or its

The runlp function creates a new process. The new process is
constructed from an ordinary bound unit called the new
process bound unit.

When a C program is executed, it is called as follows:

int main {argc, argv, envp}
int argc;
unsigned char **argv, **envp;

.·where argc is the argument count and argv is an array of
character pointers to the arguments themselves. By
convention, argc is at least one and argv[O] points to a
string containing the name of the. file.

When a run function or the MOD 400 command processor creates
a process, a pointer to the enviromnent of the calling
process is placed in the global cell:

extern unsigned char **environ;

It is used to pass the environment of the calling process to
the new process.

4-235 CW35-02

runlp

The environment provided is the C environment lines of the
MOD 400 task group with the environment lines for HOME and
PATH appended. {If the task group's C environment already
contains an environment line for HOME or PATH, that
environment line will take precedence.) The default PATH
environment line specifies the referencing directory, the
working directory, >SYSLIBl, and >SYSLIB2, in that order.
The referencing directory is the directory from which the
main program itself was loaded.

File descriptors open in the calling process remain open in
the new process, except for those whose close-on-exec flag is
set. For those file descriptors that remain open, the file
currency (read or write) is unchanged.

The new process inherits nothing else from the calling
process.

The runlp function fails and returns to the calling process
if:

• One or more components of the pathname do not exist
[ENO ENT].

• A directory-name component of path is not a directory
[ENOTDIR].

• List access is denied for a directory named in path
[EACCES].

• The new process bound unit is not a bound unit, or the
calling process lacks execute access to it [EACCESJ.

• The new process requires more memory than is allowed
[ENOMEM].

• The number of characters in the argument list for the
new process is greater than 5120 characters [E2BIGJ.

• The path, argv, or envp argument points to an invalid
address [EFAULT].

RETURN VALUE:

Upon successful completion, runlp returns the process ID of
the new process to the calling process. Otherwise, the
return value is -1, and the variables m4 errno and errno are
set to indicate the error.

RELATED FUNCTIONS:

runl, runv, runvp, exit, fork, getenv; see also the
dl_env, get_env, list_env, and set env commands.

4-236 CW35-02

runv

Execute a bound unit.

FORMAT:

int runv (path, argv)
unsigned char *path, *argv [];

ARGUMENTS:

path

runv

Pointer to a pathname that identifies the new process
bound unit.

argv

Array of character pointers to null-terminated strings.
These strings constitute the argument list available to
the new process. By convention, argv must have at least
one member, and it must point to a string that is the
same as path (or its file name component). The array is
terminated by a null character pointere

DESCRIPTION:

The runv function creates a new process. The new process is
constructed from an ordinary bound unit called the new
process bound unit.

When a C am is executed, it is called as follows:

int main (argc, argv, envp)
int argc;
unsigned char **argv, **envp;

where argc is the argument count and argv is an array of
character pointers to the arguments themselves. By
convention,·argc is at least one and argv[O] points to a
string containing the name of the file.

When a run function or the MOD 400 command processor creates
a process, a pointer to the environment of the calling
process is placed in the global cell:

extern unsigned char **environ;

It is used to pass the environment of the calling process to
the new process@

4-237 CW35-02

runv

The environment prov.ided is the C environment lines of the
MOD 400 task group .with the environment lines for HOME and
PATH appended. (If the task group's C environment already
contains an environment line for HOME or PATH, that
environment line will take precedence.) The default PATH
environment line specifies the referencing directory, the
working directory, >SYSLIBl, and >SYSLIB2, in that order.
The referencing directory is the directory from which the
main program itself was loaded.

File descriptors open in the calling process remain open in
the new process, except for those whose close-on-exec flag is
set. For those file descriptors that remain open, the file
currency {read or write} is unchanged.

The new process inherits nothing else from the calling
process.

The runv function fails and returns to the calling process
if:

• One or more components of the pathname do not exist
[ENOENT].

• A directory-name component of path is not a directory
[ENOTDIR].

• List access is denied for a directory named in path
[EACCES].

• The new process bound unit is not a bound unit, or the
calling process lacks execute access to it [EACCES].

• The new process requires more memory than is allowed
[ENOMEM].

• The number of characters in the argument list for the
new process is greater than 5120 characters [E2BIG].

• The path, argv, or envp argument points to an invalid
address [EFAULT].

RETURN VALUE:

Upon successful completion, runv returns the process ID of
the new process to the calling process. Otherwise, the
return value is -1, and the variables rn4 errno and errno are
set to indicate the error.

RELATED FUNCTIONS:

runl, runlp, runvp, exit, fork, getenv: see al so the
dl_env, get_env, list_env, and set env commands.

4-238 CW35-02

runvp

runvp

Create a new process.

FORMAT:

int runvp (file, argv)
unsigned char *file, *argv []

ARGUMENTS:

file

argv

Pointer to the filename of the new precess bound unit.

Array of character pointers to null-terminated strings.
These strings constitute the argument list available to
the new task. By convention, argv must have at least one
member, and it must point to a string that is the same as
path (or its file name component). The array is
terminated by a null character pointer.

DESCRIPTION:

The runvp function creates a new process. The new process is
constructed from· an ordfnary bound unit called the new
process bound unit.

When a C program is executed, it is called as follows:

int main (argc, argv, envp)
int argc1
unsigned char **argv, **envp1

where argc is the argument count and argv is an array of
character pointers to the arguments themselves. By
convention, argc is at least one and argv[O] points to a
string containing the name of the file.

When a run function or the MOD 400 command processor creates
a process, a pointer to the environment of the calling
process is placed in the global cell:

extern unsigned char **environ;

It is used to pass the environment of the calling process to
the new process.

4-239 CW35-02

runvp

The environment provided is the C environment lines of the
MOD 400 task group with the environment lines for HOME and
PATH appended. (If the task group's C environment already
contains an environment line for HOME or PATH, that
environment line will take precedence.) The default PATH
environment line specifies the referencing directory, the
working directory, >SYSLIBl, and >SYSLIB2, in that order.
The referencing directory is the directory from which the
main program itself was loaded.

File descriptors open in the calling process remain open in
the new process, except for those whose close-on-exec flag is
set. For those file descriptors that remain open, the file
currency (read or write) is unchanged.

The new process inherits nothing else from the calling
process.

The runvp function fails and returns to the calling process
if:

• One or more components of the pathname do not exist
[ENOENT].

• A directory-name component of path is not a directory
[ENOTDIR].

• List access is denied for a directory named in path
[EACCES].

• The new process bound unit is not a bound unit, or the
calling process lacks execute access to it [EACCESJ.

• The new process requires more memory than is allowed
[ENOMEMJ.

• The number of characters in the argument list for the
new process is greater than 5120 characters [E2BIG] •

• The path, argv, or envp argument points to an invalid
address [EFAULT].

RETURN VALUE:

Upon successful completion, runvp returns the process ID of
the new process to the calling process. Otherwise, the
return value is -1, and the variables m4 errno and errno are
set to indicate the error.

RELATED FUNCTIONS:

runl, runlp, runv, exit, fork, getenv; see also the
dl_ env, get_env ,. list_env, and set env commands.

4-240 CW35-02

same file

Determine if two pathnames designate the same file.

FORMAT:

int same file (path1, path2)
unsigned-char *path1, *path21

ARGUMENTS:

path1

First (null-terminated) pathname to be checked.

path2

same_ftle

Second (null-terminated) pathname to be checked.

DESCRIPTION:

The same file function determines whether two strings naming
files name the same file or different files.

RETURN VALUE:

If path1 names a file that exists and path2 also names that
file, the value l is returned. If path1 and path2 both name
files that exist but are not the same file, the value zero is
returned. If path1 does not name an existing file, m4_errno
is set appropriately and the value -1 is returned. If path1
names an existing file but path4 does not, m4_errno is set
appropriately and the value -2 is returned.

4-241 CW35-02

sbrk

sbrk

Change data segment space allocation.

FORMAT:

char *sbrk (incr)
int incr;

ARGUMENTS:

incr

Number of characters to add to brk value.

DESCRIPTION:

The sbrk function is used to dynamically change the amount of
space allocated for the calling process's break segment (see
exec). The change is made by resetting the process's break
value. The break value is the address of the first location
beyond the end of the break segment. The amount of allocated
space increases as the break value increases.

The sbrk function adds incr characters to
changes the allocated space accordingly.
can be negative, in which case the amount
is decreased.

RETURN VALUE:

the break value and
The argument incr
of allocated space

Upon successful completion, sbrk returns the old break
value. Otherwise, a value of (char *) -1 is returned and the
variables errno and m4 errno are set to indicate the error.

DIAGNOSTICS:

The sbrk function fails without making any change in the
allocated space if such a change would result in more space
being allocated than is allowed by MOD 400 [ENOMEM] •

NOTES

1. The first call to sbrk creates a break segment. It may
be a giant segment (larger than 128K characters). If
this segment cannot be created for any reason, errno is
set to ENOMEM and {char *) -1 is returned. MOD 400
chooses where to place it.

4-242 CW35-02

sbrk

2. When a C task runs outside of a swappool, MOD 400
allocates memory from the task's memory pool instead of
creating a segment~ subsequent calls cannot increase the
size of the break segment.

RELATED FUNCTIONS:

brk, exec family.

4-243 CW35-02

scanf

scanf

Formatted input conversion.

FORMAT:

t include <stdio.h>

scanf (format [,pointer] •••)
char *f crmat;

ARGUMENTS:

format

Control string format.

pointer

Set of arguments indicating where the converted input
should be stored.

DESCRIPTION:

The scan£ function reads from the standard input file stdin.
This function reads characters, interprets them according to
a format,· and stores the results in its arguments. It
requires a control string format and a set of optional
pointer arguments indicating where the converted input should
be stored. ·

The scanf function is equivalent to a call to fscanf with the
argument stdout inserted before the arguments to scanf.

For more information on this function, refer to the
description of the fscanf function.

RELATED FUNCTIONS:

atof, fscanf, getc, printf, sscanf.

4-244 CW35-02

send_sig

Send a signal to a process.

FORMAT:

int send sig, (group, task, sig)
int group, *task, sig;

ARGUMENTS:

group

send_sig

Task group ID of process to receive signal. A value of
-1 means the caller's own group.

task

Address of task control block of process to receive
signal.

sig

Signal number to be sent.

DESCRIPTION:
,,

The send sig function sends a signal. to a process. The
signal to be sent is either one from the list given in the
description of the signal function or zero. If sig is zero,
error checking is performed but no signal is actually
delivered to the specified process. This can be used to
determine if the specified process exists.

RETURN VALUE:

This function returns zero if the signal is successfully
delivered to the' specified process. Otherwise, the external
variables errno and m4 errno are set to indicate the cause of
the error, and -1 is returned.

DIAGNOSTICS:

The send_sig function fails if:

• The sig argument is an invalid signal number [EINVAL].
• The specified process does not exist [ESRCB].

RELATED FUNCTIONS:

exec family, fork, getpgrp, getptcb, gettcb, run familyo I

4-245 CW35-02

setbuf

setbuf

Assign buffering to a file •

.FORMAT:

include <stdio.h>

setbuf (file, buf)
FILE *file~
char *buf;

ARGUMENTS:

file

File pathname.

buf

Pointer to buffer address.

DESCRIPTION:

The setbuf function is used after a file has been opened but
before it is read or written. It causes the character array
buf to be used instead of an automatically allocated buffer.

A manifest constant BUFSIZ tells how big an array is needed:

char buf[BUFSIZ];

RELATED FUNCTIONS:

fopen, getc, putc.

4-246 CW3 5-0 2

setgrent

Set group record entry.

FORMAT:

include <grp.h>

void setgrent ()

ARG.UMENTS:

None.

DESCRIPTION:

setgrent

A call to setgrent has the effect of making the next call to
getgrent a "first" call.

RELATED FUNCTIONS:

endgrent, getgrent, getgrgid, getgrnam, getlogin,
getpwent, group.

4-247 CW35•02

..

setjmp

setjmp

Non-local goto.

FORMAT:

include <setjmp.h>

int setjmp (env)
jmp buf env;

ARGUMENTS:

env

Pointer to the stack frame and these registers:

• B7 , BS , B4 , B3 , B2
• I
• R6 , RS , R4 , R3 , R2 , Rl •

DESCRIPTION:

The setjmp function saves its stack environment in env for
later use by longjmp.

This routine is useful for dealing with errors and interrupts
encountered in a low-level subroutine of a program.

RETURN VALUE:

This function returns the value zero.

RELATED FUNCTIONS:

kill, longjmp, signal.

4-248 CW35-02

setkey

DES encryption.

FORMAT:

setkey (key)
char *key;

ARGUMENTS:

key

Sixty-four-character binary array.

DESCRIPTION:

setkey

The setkey function is based on the National Bureau of
Standards Data Encryption Standard (DES), with variations
intended {among other things) to frustrate use of hardware
implementations of the DES for key search. The setkey and
encrypt function provides access to the actual DES
algorithm. The key argument is a 64-character binary array.
If this string is divided into groups of eight, the low-order
bit in each group is ignored, leading to a 56-bit key which
is set into the machine.

RELATED FUNCTIONS:

crypt, encrypt.

NOTE

The return value points to static data that is
overwritten by each call.

4-249 CW35-02

setprint

setprint

Set the print attribute of a stream.

FORMAT:

include <stdio.h>

void setprint (stream)
FILE *stream;

ARGUMENTS:

stream

Name of the file.

DESCRIPTION:

The setprint function is used after a stream is opened but
before it is written. It turns on the print attribute of a
stream. This attribute is meaningful only for text mode
output files (that is, opened without the O BINARY open flag
or the "b" fopen type). It causes the stream to be written
with MOD 400 print control characters.

The print attribute is implicitly set for the stdin, stdout,
and stderror files open at the time main is called. It is
also implicitly set for serial and line printer device
files. String-relative files are always in binary mode.

RELATED FUNCTIONS:

f open, open, write.

4-250 CW35-02

setpwent

Rewfnd password file.

FORMAT:

include <pwd.h>

void setpwent ()

ARGUMENTS:

None.

DESCRIPTION:

setpwent

The setpwent function resets the password file. A call to
setpwent has the effect of making the next call to getpwent a
"first" call.

The effect is to cause the caller to perceive the system as a
single-user UNIX system.

RELATED FUNCTIONS:

endpwent, getpwent, getpwnam, getpwuid.

4-251 CW35-02

signal

signal

Specify what to do upon receipt of a signal.

FORMAT:

t include <signal.h>

int (*signal (sig, func)) ()
int sig;
int (*func) () ;

ARGUMENTS:

sig

Signal to be processed.

f unc

SIG DFL, SIG_IGN, or a function address (see below).

DESCRIPTION:

The signal function allows the calling process to choose one
of three ways to handle the receipt of a specific signal.
The sig argument specifies the signal and the func argument
specifies the choice.

A signal is generated by some abnormal event, such as a
Megabus error, receipt of a kill, or your pressing Break.
Normally, all signals terminate the process. The signal
function allows a process to ignore a signal or cause an
interrupt to a specified location.

The sig argument can be assigned from the following:

SIGHUP
SIG INT
SIGQUIT
SIG ILL
SIG TRAP
SIGIOT
SIG EMT
SEGFPE
SIGKILL
SIGBUS
SIGSEGV
SIGSYS
SIGALRM

01
02
03*
04*
05*
06*
07*
08*
09
10*
11*
12*
14

Hangup
Interrupt
Quit
Invalid instruction
Trace trap (not reset when caught)
,!OT instruction
EMT instruction
Floating-point exception
Kill (cannot be caught or ignored)
Megabus error
Segmentation violation
Invalid argument to function
Alarm clock

4-252 CW35-02

Software termination signal
User-defined signal 1
Oser-defined signal 2
Death of a child (see note)

signal

SIG TERM
SIGOSRl
SIGOSR2
SIGCLD
SIGPWR

15
16
17
18
19 Power failure recovery (not reset

when caught)

The signals with an asterisk cause a memory dump to the file
CORE (generated by the MOD 400 Dump Edit utility invoked with
the argument -ME) in the working directory of the receiving
process unless caught or ignored.

NOTE

There are two signals that behave differently:

SIGCLD 18 death of a child process
SIGPWR 19 power failure recovery

SIGCLD (18) is always reset when caught. SIGPWR
(19) is not reset when caught. Their use in new
programs is strongly discouraged.

For both signals, SIG_DFL is treated as SIG IGN.

A parent process may use the signal function to
ignore the receipt of the SIGCLD signal. When a
child process terminates, this change of state is
used to initiate actions such as the handling of
the wait of the parent process. Sending the
SIGCLD signal is neither needed nor used in the
child process termination actions.

The actions prescribed by the sig argument are:

• SIG DFL -- Set the default that terminates process
upon receipt of signal. Opon receipt of the signal
sig, the receiving process is to be terminated with
the following consequences:

- All of the receiving process's open file descriptors
are closed.

If the parent process of the receiving process is
executing a wait, it is notified of the termination
of the receiving process and the signal's number is
made available to the parent.

4-253· CW35-02

signal

If the parent process of the receiving process is
not executing a wait, the receiving process is made
dormant.

- The parent process ID of each of the receiving
process's existing child processes is set to 1.
Dormant child processes are deleted.

• SIG IGN -- The signal sig is to be ignored; the
setting of func remains as SIG IGN. Note that the
signal SIGKILL cannot be ignored.

• function address -- Upon receipt of the sign~l sig,
the receiving process is to execute the signal­
cat~hing function pointed to by func. The signal
number sig, is passed as the first argument to the
signal-catching function; other arguments are
unspecified.

Upon return from the signal-catching function, the
receiving process resumes from the point where it was
when the signal was caught. The value of func for a
caught signal is reset to SIG DFL unless the catching
function executes a call to the signal function to set
it otherwise.

Since the signal SIGKILL always causes process
termination, its appearance in the signal function is
not allowed.

RETURN VALUE:

Upon successful completion, signal returns the previous value
of func for the specified signal sig. Otherwise, a value of
-1 is returned and the variable errno is set to indicate the
error.

DIAGNOSTICS:

The signal function fails if:

• The argument sig is an illegal signal number,
including SIGKILL [EINVAL] •

• The argument func points to an illegal address
[EFAULT].

If a signal catcher is invoked while a process is executing a
heap management function, and that signal catcher causes a
recursive invocation of a heap management function by calling
(even indirectly) any heap management function, the heap can

4-254 CW35-02

signal

be left in an inconsistent state. The heap can also be left
in an inconsistent state if such a signal catcher abandons
the beap management function using a nonlocal goto. The
default signal catcher does neither of these things. (For
the purpose of this note, the heap management functions are
callee, malloc, and free.)

RELATED FUNCTIONS:

kill, pause, setjmp, wait.

4-255 CW35-02

sin

sin

Sine function.

FORMAT:

include <math.h>

double sin (x}
double x;

ARGUMENTS:

x

Double-precision value.

DESCRIPTION:

The sin function returns the sine of a radian argument. The
magnitude of the argument should be checked by the caller to
make sure the result is meaningful.

RELATED FUNCTIONS:

acos, asin, atan, atan2, cos, tan.

4-256 CW35-02

sinh

Hyperbolic sine function.

FORMAT:

include <math.h>

double sinh (x)
double x;

ARGUMENTS:

x

Doubl~precision value.

DESCRIPTION:

sinh

The sinh function computes the hyperbolic sine function for
real arguments.

DIAGNOSTICS:

The sinh function returns a huge value of appropriate sign
when the correct value would overflow •

..
RELATED FUNCTIONS:

cosh, tanh.

4-257 CW35-02

sleep

sleep

Suspend execution for interval.

FORMAT:

unsigned sleep (seconds)
unsigned seconds;

ARGUMENTS:

seconds

Number of seconds to suspend execution.

DESCRIPTION:

The sleep function suspends the current process from
execution for a specified number of seconds. The actual
suspension time may be less than that requested for two
reasons: because scheduled wakeups occur at fixed I-second
intervals, and because any caught signal terminates the sleep
following execution of that signal's catching routine. Also,
the suspension time may be longer than requested by an
arbitrary amount due to the scheduling of other activity in'
the system. The value returned by sleep is the "unslept"
amount (the requested time minus the time actually slept) in
case the caller had an alarm set to go off earlier than the
end of the requested sleep time, or premature arousal due to
a caught signal.

The routine is implemented by setting an alarm signal and
pausing until it (or some other signal) occurs. The previous
state of the alarm signal is saved and restored. The calling
program may have set up an alarm signal before calling sleep;
if the sleep time exceeds the time till such alarm signal,
the process sleeps only until the alarm signal would have
occurrea,-and the caller's alarm catch routine is executed
just before the sleep routine returns, but if the sleep time
is less than the time till such alarm, the prior alarm time
is reset to go off at the same time it would have without the
intervening sleep.

4-258 CW35-02

sleep

DIAGNOSTICS:

If the sleep function is unable to set the alarm clock for
any reason, the variables m4 errno and errno are set to
indicate the reason and the hexadecimal value FFFF is
returned. The first call to sleep may fail because the task
is unable to obtain memory from the group work segment for
the alarm clock or because it is unable to create the
auxiliary task to listen for the alarm to go off. Reasons
for failure are:

• Lack of group work segment memory--errno set to ENOMEM
• Lack of available LRN--errno set to AGAIN.

RELATED FUNCTIONS:

alarm, pause, signal.

4-259 CW35-02

I

smopen

smopen

Open file for storage management I/O.

FORMAT:

i include.<stdio.h>

int smopen (path,. oflag [, bsize])
unsigned char *path;
int oflag, bsize;

ARGUMENTS:

path

Pathname of file to be opened.

of lag

Access mode. Values are constructed by OR-ing flags from
the following list:

bsize

O RDONLY Open for reading only.

0 WRONLY Open for writing only.

O RDWR Open for reading and writing.

O APPEND Is allowed, but is ignored.

O BINARY Is allowed, but is ignored. The distinction
between text and record mode accesses is
meaningless at the storage management level.

Optional block size in characters. This is the maximum
block size, not necessarily the actual block size. The
default is 1024 characters.

DESCRIPTION:

The smopen function opens a file descriptor for the named
file and sets the file status flags according to the value of
oflag. The file is opened for storage management level I/O
via the smread and smwrit functions.

The smopen function returns with the file pointer used to
mark the current position in the file pointing to the first
block of the file.

4-260 CW35-02

smopen

The new file descriptor is set to remain open across exec
function calls.

No process can have more than 20 file descriptors open at
once.

RETURN VALUE:

Upon successful completion, a nonnegative integer, the file
descriptor is returned. Otherwise, errno and m4 errno. are
set to indicate the cause of failure and -1 is returned.

RELATED FUNCTIONS:

smread, smwrit.

4=261 CW35-02

smread

smread

Read a block from a file.

FORMAT:

int smread (fildes, buf, nchars)
int f ildes;
char *buf;
unsigned int nchars;

ARGUMENTS:

f ildes

File descriptor obtained from an smopen function call.

buf

Buffer pointer.

nchars

Number of characters to read from file to buffer.

DESCRIPTION:

The smread function reads a block from the file associated
with f ildes into the buffer pointed to by buf. The block
read is designated by the current value of the file's file
pointer.

Upon successful completion, smread increments the file
pointer by one block.

RETURN VALUE:

Upon successful completion a positive integer is returned
indicating the size of the block read. If smread fails
because the specified file is not open, errno and m4_errno
are set to EBADF and OxlBOO+EBADF, respectively, and -1 is
returned. If smread fails for any other reason, errno is set
to EFAULT, m4 errno is set to indicate the reason, and -1 is
returned. -

RELATED FUNCTIONS:

smopen, smwrit.

4-262 CW35-02

smwrit

Write a block to a file.

FORMAT:

int smwrit (fildes, buf, nchars)
int fildes;
char *buf;
unsigned int nchars;

ARGUMENTS:

f ildes

smwrit

File descriptor obtained from an smopen function call.

buf

Buffer address.

nchars

Number of characters to write from buffer to file.

DESCRIPTION:

The smwrit function writes a block of size nchars characters
from the buffer pointed to by buf to the file associated with
f ildes. The file block written is the one designated by the
current value of the file's file pointe~.

Upon successful completion, smwrit increments the file
pointer by one block.

RETURN VALUE:

Upon successful completion a positive integer is returned
indicating the size of the block written.

DIAGNOSTICS:

If smwrit fails because the specified file is not open, errno
and m4 errno·are set to EBADF and Oxl800+EBADF, respectively,
and -1-is returned. If smwrit fails for any other reason,
errno is set to EFAULT, m4 errno is set to indicate the
reason, and -1 is returned:

RELATED FUNCTIONS:

smopen, smread.

4-263 CW35-02

sprintf

sprintf

Format output.

FORMAT:

include <stdio.h>

int sprintf (s, format [, arg] •••)
char *s, format;

ARGUMENTS:

format

Format string.

arg

Optional argument to be printed.

s

Address of location to begin output.

DESCRIPTION:

The sprintf function places "output," followed by the null
character (\0) in consecutive characters starting at *s; you
must ensure that enough storage is available.

This function is equivalent to a call to fprintf, except that
the argument s specifies an array into which the generated
output is written instead of a file.

For more information on this function, ref er to the
description of printf.

RELATED FUNCTIONS:

ecvt, fprintf, printf, putc, scanf.

4-264 CW35-02

Square root function.

FORMAT:

I include <math.h>

double sqrt (x)
double x;

ARGUMENTS:

x

Double-precision value.

DESCRIPTION:

sqrt

The sqrt function returns the square root of Xo X cannot be
negative.

DIAGNOSTICS:

The sqrt function returns zero and sets errno to EDOM when x
is negative.

RELATED FUNCTIONS: .

exp, hypot, log, pow, sinh.

4-265 CW35-02

srand

srand

Reset random number generator.

FORMAT:

srand (seed)
unsigned seed;

ARGUMENTS:

seed

Seed value.

DESCRIPTION:

The srand function reinitializes the random number generator
function. It can be set to a random starting point by
calling srand with any argument.

RELATED FUNCTIONS:

rand •
..

4-266 CW35-02

sscanf .

Formatted input conversion.

FORMAT:

i include <stdio.h>

sscanf .(s, format [,pointer] •••)
char *s, *format;

ARGUMENTS:

s

Input character string.

format

Control string format.

pointer

sscanf

Set of arguments indicating where the converted input
should be stored.

DESCRIPTION:

The sscanf function reads from the character string s. This
function reads characters, interprets them according to a
format, and stores the results in its arguments. It requires
a control string format and a set of optional pointer argu­
ments indicating where the converted input should be stored.

The sscanf function is equivalent to a call to fscanf, except
that the argument s specifies an array from which input is
obtained rather than a file.

For more information on this function, refer to the
description of fscanf.

RELATED FUNCTIONS:

atof, fscanf, getc, printf, scanf.

4-267 CW35-02

I

star_check

star check

Validate star names.

FORMAT:

include <star name.h>

int star check (star)
unsigned-char *star1

ARGUMENTS:

star

Null-terminated string containing the star name to be
validated.

DESCRIPTION:

The star check function validates a star name to ensure that
it has been formed according to the rules for constructing
star names. For information on star names, see the Commands
manual.

RETURN VALUE:

If star contains a validly constructed star name, one of the
values STAR NOT, STAR SOME, or STAR ALL is returned.
STAR. NOT is-returned when star is valid but is not a star
name-(does not contain asterisks or question marks).
STAR ALL is returned when star is a star name that matches
every entry name (either **, *·**, or **.*). STAR SOME is
returned for all other valid star names. -

If star does not contain a validly constructed star name,
errno and m4 errno are set to EBADSTAR and Oxl800+EBADSTAR
respectively-and -1 is returned.

NOTE

For user convenience, all of the star name func­
tions are declared in the <star name.h> header
file. The various STAR ••• return values are
also defined in this header file. EBADSTAR is
defined in the <errno.h> header file.

RELATED FUNCTIONS:

star_match, star name.

4-268 CW35-02

star_match

star match

Validate and match star names.

FORMAT:

include <star name.h>

int star match (star, source)
unsigned-char *star, *source;

ARGUMENTS:

star

Null-terminated string containing the star name to be
validated and matched with a source name.

source

Null-terminated string containing the entry name to be
compared with the star name.

DESCRIPTION:

The star match ftmction implements the star convention by
comparing an entry name with a name possibly containing stars
or question marks (called a star name). Refer to the
Commands manual for a description of the star convention and
a definition of acceptable star name formats&

RETURN VALUE:

If star contains a validly constructed star name, either
STAR UNMATCH or STAR MATCH is returned. STAR UNMATCH is
returned when star is valid but does not match source.
STAR MATCH is returned when star is valid and matches source.

If star does not contain a validly constructed star name,
errno and m4 errno are set to EBADSTAR and Oxl800+EBADSTAR
respectively-and -1 is returned.

NOTE

Ref er to the description of star name to see how
to list the directory entries that match a given
star name.

RELATED FUNCTIONS:

star_check, star name.

4-269 CW35-02

I

I

star_name

star name

List directory entries matching star name.

FORMAT:

unsigned char *star name (star, dir_path [, flags])
unsigned char *star; *dir_path;
[long flags;]

ARGUMENTS:

star

Null-terminated string containing the star name to be
matched with the directory entries.

dir_path

Null-terminated string containing the pathname of the
directory to be searched. If dir path is null or points
to a null string, the working dirictory is aisumed.

flags

Optional bit pattern indicating which types of directory
entries are to be considered for matching with the sta~
name (see below) • If flag is not present, all types of
directory entries are considered.

DESCRIPTION:

The star name function lists directory entries matching a
star name. The function is called with a star name, a
directory pathname, and an optional set of flags restricting
the type of directo~y entries the star name is matched with.
The directory is searched for all entries that match the star
name and are not excluded by the flags. Information about
these entries is returned in a "string of strings." For
information on star names, see the Commands manual.

4-270 CW3 5-0 2

star name

The value for flags is constructed by OR-ing values from the
list. below. The bit is set to cause the corresponding type
of directory entry to be considered. Resetting a bit causes
the corresponding type of directory entries to be ignored.

OxOOOOOOOl

Ox00000002

Ox00000004

Ox00000008

OxOOOOOOlO

Ox00000020

OxOOOOOlOO

Ox00000200

Ox00000400

OxOOOOOSOO

OxOOOOlOOO

Ox00002 0

Ox00004000

Ox00008000

Ox00020000

Sequential files that are members of a
multi volume set but are not the last member
in the set.

Sequential files that are either the last
member of a multivolume set or are not a
member of a multi volume set.

Relative files

Primary indexed files

Primary indexes

Alternate indexes

Dynamic files

Random files

IDS/II data base areas

Disk volumes

Fixed-relative files without deletable
records

Director

Links to pathnames

Fixed-relative files with deletable records

String-felative files

NOTE

The star name function obtains memory for the
string of strings containing its results from
the heap via malloc and realloc. The caller
is expected to return this memory to the heap·
via free.

4-271 CW35-02

star name

RETURN VALUE:

If star name is successful, it returns a pointer to a string
of strings specifying the types and names of the matched
directory entries. The star name function can be successful
and still match no names, in-this case a null string of
strings is returned. The string for each matched directory
entry consists of a single character giving the type of the
directory entry followed immediately by a null-terminated
sequence of characters giving the directory entry's name.

The type characters are chosen from the following list:

'\000'

'\001'

'\002'

'\003'

'\004'

'\005'

'\006'

'\011'

'\012'

'\013'

'\014'

I \015 I

'\016'

'\017'

I \020 I

'\022'

End of string of strings

Sequential files that are members of a multivolume
set but are not the last member in the set.

Sequential files that are either the last member of
a multivolume set or are not a member of a
multivolume set.

Relative files

Primary indexed files

Primary indexes

Alternate indexes

Dynamic files

Random files

IDS/II data base areas

Disk volumes

Fixed-relative files without deletable records

Directories

Links to pathnames

Fixed-relative files with deletable records

String-relative files

A null string of strings has the value: \000\000

4-272 CW35-02

star name

DIAGNOSTICS:

If star name fails, errno and m4 errno are set to indicate
the reason and (unsigned char *)-0 is returned. The more I
common reasons for failure are:

• The dir path argument does not name a directory
[ENOTDIR].

• The star argument does not contain a validly
constructed star name [EBADSTAR].

• Unable to obtain sufficient memory from the heap
[ENOMEM].

Errors detected by open and read may also be encountered.

EXAMPLE:

If star is *.c and the matching directory entries are the
sequential files foo.c and bar.c, star name returns a pointer
to the string of strings:

\002foo.c\000\002bar.c\OOO\OOO

RELATED FUNCTIONS: ..
star~check, star match.

4-273 CW35-02

stat

stat

Get file status.

FORMAT:

include <types.h>
include <stat.h>

int stat {path, buf)
char *path;
struct stat *buf;

ARGUMENTS:

path

buf

File pathname. Read, write or execute access to the
named file is not required, but all directories listed in
the pathname leading to the file must be searchable.

Pointer to a static structure into which inf orrnation is
placed concerning the file.

DESCRIPTION:

The stat function obtains information about the named file.

The contents of the structure pointed to by buf include the
following members:

ushort
ino t
dev-t

dev t

short
us ho rt
us ho rt
off t
time t
time -t

time t

st mode;
st-ino;
st=dev;

st_rdev;

st nlink;
st-uid;
st-gid;
st-size;
st-atime;
st=mtime;

st_ctime;

/*File mode
/*!node number (N/A in MOD 400)

*/
*/
*/ /*ID of device containing

/*a directory entry for this
/*ID of device

file */

/*This entry is defined only
/*character special or block

*/
for */
special

files
/*Number of links (N/A in MOD 400)
/*User ID of the file's owner
/*Group ID of the file's group
/*File size in characters (N/A)
/*Time of last access
/*Time of last data modification
/*Time measured in seconds since

00:00:00 GMT, Jan. 1, 1970
/*Time of creation

*/
*/
*/
*/
*/
*/
*/

*/
*/

4-274 CW35-02

stat

The st atime member is the date/time when the file was last
acce.ssed. It is changed by the functions creat and read.

The st mtime member is the date/time when the file was last
modified. It is changed by the functions creat and write.

The st ctime member is the date/time when the file was
createa. It is changed by the following functions: chown,
creat, link, unlink, and write.

Information is not available in the members st ino, st_nlink,
and st size.

RETURN VALUE:

Upon successful completion a value of 0 is returned.
Otherwise, a value of -1 is returned and errno and m4 errno
are set to indicate the error.

DIAGNOSTICS:

The stat function fails if:

• A component of the path pref ix is not a directory
[ENOTDIRJ.

• The named file does not exist [ENOENT].

• Search access is denied for a component of the path
pref ix [EACCES].

RELATED FUNCTIONS:

creat, fstat, link, stat, time, unlink.

4-275 CW35-02

strcat

strcat

Concatenate strings.

FORMAT:

char *strcat (s1, s2)
char *s1, *s2;

ARGUMENTS:

s1, s2

Null-terminated strings.

DESCRIPTIONi

The strcat function appends a copy of string s2 to the end of
string s1. It returns a pointer to the null-terminated
result. This function does not check for overflow of any
receiving string.

NOTE

All string movement is performed character by
character, starting at the left. Thus overlapping
moves toward the left work as expected, but
overlapping moves to the right may not.

RELATED FUNCTIONS:

strchr, strcmp, strcpy, strcspn, strlen, strncat,
strncmp, strncpy, strpbrk, strrchr, strspn, strtok.

4-276 CW35-02

strchr

Find character in string.

FORMAT:

char *strchr (s, c)
char *s, c;

ARGUMENTS:

s

String to search.

c

Character to seek.

DESCRIPTION:

strchr

The strchr function returns a pointer to the first occurrence
of character c in string s, or NULL if c does not occur in
the string. The null character terminating a string is
considered to be part of the string.

The strchr function operates on null-terminated strings.
This function does not check for overflow of any rece1ving
string.

RELATED FUNCTIONS:

strcat, strcmp, strcpy, strcspn, strlen, strncat,
strncmp, strncpy, strpbrk, strrchr, strspn, strtok.

4-277 CW35-02

strcmp

strcmp

Compare strings.

FORMAT:

int strcmp (s1, s2)
char *s1, *s2;

ARGUMENTS:

s1, s2

Null-terminated strings.

DESCRIPTION:

The strcmp function compares its arguments and returns an
integer greater than, equal to, or less than zero, according
to whether s1 is lexicographically greater than, equal to, or
less than s2. This function does not check for overflow of
any receiving string.

RELATED FUNCTIONS:

strcat, strchr, strcpy, str.cspn, strl en, strncat,
strncmp, strncpy, strpbrk, strrchr, strspn, strtok.

4-278 CW35-02

strcpy

Copy string.

FORMAT:

char *strcpy (s1, s2)
char *s1, *s2;

ARGO MEN'!'S:

s1' s2

Null-terminated strings.

DESCRIPTION:

strcpy

The strcpy function copies string s2 to s1, stopping after
the null character has been moved. It returns s1. '!'his
function does not check for overflow of any receiving string.

NOTE

All string movement is performed character by
character, starting at the left. Thus overlapping
moves toward the left work as expected, but over­
lapping moves to the right may not.

RELATED FUNCTIONS:

strcat, strchr, strcmp, strcspn, strlen, strncat,
strncmp, strncpy, strpbrk, strrchr, strspn, strtok.

4•279 CW35-02

strcspn

strcspn

Substring operatione

FORMAT:

int strcspn (s1, s2)
char *s1, *s2

ARGUMENTS:

s1, s2

Null-terminated strings.

DESCRIPTION:

The strcspn function returns the length of the initial
segment of string s1 which consists entirely of characters
not from string s2. This function does not check for
overflow of any receiving string.

RELATED FUNCTIONS:

·strcat, strchr, strcmp, strcpy, strlen, strncat, strncmp,
strncpy, strpbrk, strrchr, strspn, strtok.

4-280 CW35-02

strlen

Find length of string.

FORMAT:

int strlen (s)
char *sr

ARGUMENTS:

s

Null-terminated string.

DESCRIPTION:

strlen

The strlen function returns the number of non-null character
in s. This function does not check for overflow of any
receiving string.

RELATED FUNCTIONS:

strcat, strchr, strcmp, strcpy, strcspn, strncat,
strncmp, strncpy, strpbrk, strrchr, strspn, strtok.

4-281 CW35-02

strncat

strncat

Concatenate portion of string.

FORMAT:

char *strncat (s1, s2, n)
char *s1, *s2;
int n;

ARGUMENTS:

s1' s2

Null-terminated strings•

DESCRIPTION:

The strcat function appends at most n characters of string s2
to the end of string s1. It returns a pointer to the
null-terminated result. This function does not check for
overflow of any receiving string.

NOTE

All st'ring moveme·nt is performed character by
character, starting at the left. Thus overlapping
moves toward the left work as expected, but over­
lappinq moves to the right may not.

RELATED FUNCTIONS:

strcat, strchr, strcmp, strcpy, strcspn, strlen, strncmp,
strncpy, strpbrk, strrchr, strspn, strtok.

4-282 CW35-02

strncmp

Compare to portion of string.

FORMAT:

int strncmp {s1, s2, n)
char *s1, *s2;
int n:

ARGUMENTS:

s1, s2

Null-terminated strings.

n

Number of characters to check.

DESCRIPTION:

strncmp

The strncmp function looks at up to n characters of string s1
and compares it to argument s2, and returns an integer
greater than, equal to, or less than zero, according to
whether s1 is lexicographically greater than, equal to, or
less than s2. This function does not check for overflow of
any receiving string.

RELATED FUNCTIONS:

strcat, strchr, strcmp, strcpy, strcspn, strlen, strncat,
strncpy, strpbrk, strrchr, strspn, strtok.

4-283 CWJS-02

strncpy

strncpy

Copy n characters.

FORMAT:

char *strncpy (Sir s2, n)
char *s1, *s2;
int n;

ARGUMENTS:

s1, s2

Null-terminated strings.

n

Number of characters to copy.

DESCRIPTION:

The strncpy function copies exactly n characters of string s2
to s1, truncating or null-padding s2; the target might not be
null-terminated if the length of s2 is n or more. It returns
s1. This function does not check for overflow of any
receiving string.

NOTE

All string movement is performed character by
character, starting at the left. Thus overlapping
moves toward the left work as expected, but
overlapping moves to the right may not.

RELATED FUNCTIONS:

strcat, strchr, strcmp, strcpy, strcspn, strlen, strncat,
strncmp, strpbrk, strrchr, strspn, strtok.

4-284 CW35~02

strpbrk

Locate substring.

FORMAT:

char *strpbrk (s1, s2)
char *s1, *s2;

ARGUMENTS:

s1, s2

Null-terminated strings.

DESCRIPTION:

strpbrk

The strpbrk function returns a pointer to the. first
occurrence in string s1 of any character from string s2, or
NOLL if no character from s2 exists in s1. This function
does not check for overflow of any receiving stringo

RELATED FUNCTIONS:

strcat, strchr, strcmp, strcpy, strcspn, strlen, strncat,
strncmp, strncpy, strrchr, strspn, strtoke

4-285 CW35-02

strrchr

strrchr

Find last occurrence of substring.

FORMAT:

char *strrchr (s, c)
char *s, c~

ARGUMENTS:

s

Null-terminated string.

c

Character to check for.

DESCRIPTION:

The strrchr function returns a pointer to the last occurrence
of character c in string s, or NULL if c does not occur in
the string. The null character. terminating a string is
considered to be part of the string. This function does not
check.for overflow of any receiving string.

RELATED FUNCTIONS:

strcat, strchr, strcmp, strcpy, strcspn, strlen, strncat,
strncmp, strncpy, strpbrk, strspn, strtok.

4-286 CW35-02

strspn

Get length of substring.

FORMAT:

int strspn Cs1, s2)
char *s1, *s21

ARGUMENTS:

s1, s2

Null-terminated strings.

DESCRIPTION:

strspn

The strspn function returns the length of the initial segment
of string s1 which consists entirely of characters from
string s2. This function does not check for overflow of any
receiving string.

RELATED FUNCTIONS:

strcat, strchr, strcmp, strcpy, strcspn, strlen, strncat,
strncmp, strncpy, strpbrk, strrchr, strtok.

4-287 CW35-02

strtok

strtok

String token operation.

FORMAT:

char *strtok (s1, s2)
char *s1, *s2;

ARGUMENTS:

s1, s2

Null-terminated strings.

DESCRIPTION:

The strtok function considers the string s1 to consist of a
sequence of zero or more text tokens separated by spans of
one or more characters from the separator string s2. The
first call (with pointer s1 specified) returns a pointer to
the first character of the first token, and will have written
a NULL character into s1 immediately following the returned
token. Subsequent calls with zero for the first argument
work through the string s1 in this way until no tokens
remain. The separator string s2 may be different from call
to call. When no token remains in s1, a NULL is returned.
This function does not check for overflow of any receiving
string.

NOTE

All string movement is performed character by
character, starting at the left. Thus overlapping
moves toward the left work as expected, but
overlapping moves to the right may not.

RELATED FUNCTIONS:

strcat, strchr, strcrnp, strcpy, strcspn, strlen, strncat,
strncmp, strncpy, strpbrk, strrchr, strspn.

4-288 CW35-02

swab

Swap bytes.

FORMAT:

swab (fr, to, nbytes)
char *fr, *to;
int nbytes;

ARGUMENTS:

fr

•

Pointer to memory area from which bytes are taken.

to

Pointer to memory area in which bytes are placed.

nbytes

Number of bytes to move; argument should be an even
number.

DESCRIPTION: ..

swab

The swab function copies nbytes bytes pointed to by fr to the
position specified by to, exchanging adjacent even and odd
bytes.

This function is useful on machines where strings of
characters are stored from right to left within words and
from left to right from word to word, and where words are two
characters wide. It is not particularly useful on DPS 6
machines.

4-289 CW35-02

sys_errlist

sys_errlist

System error messages.

FORMAT

char *sys_errlist [];

ARGUMENTS:

None.

DESCRIPTION:

To simplify variant formatting cf error messages, the vector
of message strings sys errlist is provided; the variable
errno can be used as an index in this table to get the
message string without the newline character. The variable
sys nerr is the largest message number provided for in the
table; it should be checked because new error codes may be
added to the system before they are added to the table.

RELATED FUNCTIONS:

errno,· perror, sys_nerr.

4-290 CW35-02

sys_nerr

sys_nerr

Number of largest system error message.

FORMAT:

int sys nerr;
char *sys_errlist [];

ARGUMENTS:

None.

DESCRIPTION:

To simplify variant formatting of messages, the vector of
message strings sys errlist is provided; the variable errno
can be used as an index in this table to get the message
string without the newline character. The variable sys nerr
is the largest message number provided for in the table; it
should be checked because new error codes may be added to the
system before they are added to the table.

RELATED FUNCTIONS:

e~rno, perror, sys_errlist.

4-291 CW35-02

I

system

system

Issue a MOD 400 command.

FORMAT:

include <stdio.h>

int system (string)
char *string;

ARGUMENTS:

string

Command line.

DESCRIPTION:

The system function causes the string to be given to MOD 400
as input as if the string had been typed as a command at a
terminal. The current proc·ess waits until the command has
completed, then returns the exit status of the command.

The MOD 400 command processor is used to process the string
instead of /bin/sh. Command pathnames can be in MOD 400 or .
UNIX syntax. This function uses the search rules defined in
the PATH environment line. The default PATH environment line
specifies the referencing directory, the working directory,·
>>SYSLIBl, and >>SYSLIB2, in that order.

DIAGNOSTICS:

An exit status return of 127 is returned if the command
processor could not be called successfully, and the variable
m4 errno is set to indicate the reason.

4-292 CW35-02

tan

Tangent function.

FORMAT:

t include <math.h>

double tan (x)
double x;

ARGUMENTS:

x

Double-precision value.

DESCRIPTION:

tan

The tan function returns the tangent of a radian argument.
The magnitude of the argument should be checked by the caller
to make sure the result is meaningfulo

RELATED FUNCTIONS:

acos, asi-n, atan, atan2, cos, sin.

4-293 CW35-02

tanh

tanh

Hyperbolic tangent function.

FORMAT:

i include <math.h>

double tanh (x)
double x;

ARGUMENTS:

x

Double-precision value.

DESCRIPTION:

The tanh function computes the hyperbolic tangent function
for real arguments.

RELATED FUNCTIONS:

cash, sinh.

4-294 CW35-02

time

Get time.

FORMAT:

long time {(long*) 0)

long time (tloc)
long *tloc;

ARGUMENTS:

tloc

time

Pointer to memory area in which result is returned.

DESCRIPTION:

The time function returns the value of time in seconds since
00:00:00 GMT, January 1, 1970.

If tloc is not null, the return value is also stored in the
location to which tloc points.

RETURN VALUE:

Upon successful completion,· time returns the value of timeo
Otherwise, a value of -1 is returned, and the variable errno
is set to indicate the error.

DIAGNOSTICS:

The time function fails if tloc points to an invalid address
[EFAULT].

4-295 CW35-02

*

tmpnam

tmpnam

Create a name for a temporary file.

FORMAT:

i include <stdio.h>

char *tmpnam (s)
char *s:

ARGUMENTS:

s

Address of array to receive result.

DESCRIPTION:

The tmpnam function generates a file name that can safely be
used for a temporary file. If (int) s is zero, tmpnarn leaves
its result in an internal static area and returns a pointer
to that area. The next call to tmpnam destroys the contents
of the area. If (int)s is nonzero, s is assumed to be the
address of an array of at least L tmpnam characters, where
L tmpnam is a constant defined in-stdio.h; tmpnam places its
result in that array and returns s as its value.

The tmpnam function generates a different file name each time
it is called.

Files created using trnpnam and either fopen or creat are only
temporary in the sense that they reside in a directory
intended for temporary use, and their names are unique. You
must use unlink to remove the file when its use is ended.

NOTES

1. If called more than 17,576 times in a single
task group, tmpnam starts recycling pre­
viously used names.

2. Between the time a file name is created and
the file is opened, it is possible for some
other task group to create a file with the
same name. This can never happen if that
other task group is using tmpnam or mktemp,
and the file names are chosen so as to render
duplication by other means unlikely.

4-296 CW35-02

tmpnam

RELATED FUNCTIONS:

create, unlink, fopen, mktempo

4-297 CW35-02

toascii

toascii

Character translation.

FORMAT:

include <ctype.h>

int toascii (c)
int c:

ARGUMENTS:

c

Character to translate.

DESCRIPTION:

The toascii function translates a character into 7-bit ASCII.

The toascii function yields its argument with all bits turned
off that are not part of a standard 7-bit ASCII character; it
is intended for compatibility with other systems.

RELATED FUNCTIONS:

ctype, getc, toascii8, tolower, toupper.

4-298 CW35-0 2

toascii8.

8-bit character translation.

FORMAT:

include <ctype.h>

int toascii8 (c)
int c;

ARGUMENTS:

c

Character to translate.

DESCRIPTION:

toasciiS

The toascii8 function translates a character into 8-bit
ASCII.

RELATED FUNCTIONS:

ctype, getc, toascii8, tolower, toupper5

4-299 CW35-02

tolower

tolower

Character translation.

FORMAT:

t include <ctype.h>

int tolower (c)
int c1

ARGUMENTS:

c

Character to translate.

DESCRIPTION:

The tolower function has as a domain all 8-bit ASCII codes
(hexadecimal 0 through FF). If the argument represents an
uppercase letter, the result is the corresponding lowercase
letter. All other arguments in the domain are returned
unchanged.

RELATED FUNCTIONS:

ctype, getc, toascii, toascii8, toupper.

4-300 CW35-02

tolower

Character translation.

FORMAT:

t include <ctype.h>

int tolower (c)
int c1

ARGUMENTS:

c

Character to translate.

DESCRIPTION:

_tolower

The tolower macrocall takes as an argument an uppercase
letter. The result is the corresponding lowercase letter.
All other arguments cause unspecified results.

REL~TED FUNCTIONS:

ctype, getc, toascii, toascii8, toupper.

4-301 CW35-02

toupper

toupper

Character translation.

FORMAT:

i include <ctype.h>

int toupper (c)
int c1

ARGUMENTS:

c

Character to translate.

DESCRIPTION:

The toupper function has as a domain all 8-bit ASCII codes
(hexadecimal O through FF). If the argument represents a
lowercase letter that has a corresponding uppercase letter,
the result is that uppercase letter. All other arguments in
the domain are returned unchanged.

RELATED FUNCTIONS:

ctype, getc, toascii, toascii8, tolower.

4-302 CW35-02

toupper

Character translation.

FORMAT:

include <ctype.h>

int toupper (c)
int c;

ARGUMENTS:

c

Character to translate.

DESCRIPTION:

_to upper

The toupper macrocall takes as an argument a lowercase
letter that has a corrseponding uppercase letter. The result
is the corresponding uppercase letter. All other arguments
in the domain cause unspecified resultso

RELATED FUNCTIONS:

ctype, getc, toasci i, toasci_i8, tolower.

4-303 CW35-02

ttyname

ttyname

Find name of a terminal.

FORMAT:

char *ttyname (fildes)

ARGUMENTS:

f ildes

File descriptor of terminal.

DESCRIPTION:

The ttyname function returns a pointer to the null-terminated
pathname of the terminal device associated with file
descriptor fildes.

DIAGNOSTICS:

The ttyname function returns a null pointer (0) if fildes
does not describe a terminal device.

4-304 CW35-02

tzset

tzset

Set time zone.

FORMAT:

void tzset ()

DESCRIPTION:

The tzset function sets the external variables timezone,
daylight, and tzname, using either the external variable TZ
(if present) or the system time zone. It is called by the
asctime function, but you can also call it directly.

The value of TZ must be a time zone acronym, a time off set,
and an optional daylight-savings time zone acronym.

• The time zone acronym is up to four characters long.

• The time off set represents the difference between
local time in the designated time zone and GMT. The
difference is represented by a string of digits with
an optional leading minus sign (for locations east of
Greenwich, England) and with an optional trailing .5
(for locations some odd number of half-hours fro:m
Greenwich) • · .•

e The optional daylight savings time zone acronym is up
to four characters long.

For example, the setting for Boston 'l!i'OUld be ESTSEDT.

RELATED FUNCTIONS:

asctime, ctime, gmtime, localtime, times see also the
list stz and set stz commands.

4-305 CW35-02

ucf_init, ucf_defc, ucf_defr, ucf_tinish

ucf init, ucf defc, ucf defr, ucf finish

Create a file.

FORMAT:

include <ufas.h>

int ucf init (path,org,[lrsz,cisz,iasz,grsz,mxszJ)
unsigned char path[];
char org;
int lrsz, cisz, iasz, grsz, mxsz;

int ucf defc (cmpl, cmp2)
int cmpf, cmp2;

int ucf defr (rtype, [dup, ktype, ksize, kloc])
char ktype;
int rtype, dup, ksize, kloc;

int ucf_f inish ()

ARGUMENTS (for ucf_init):

path

org

File pathname.

File organization:

F SEQ
F-REL
F-IND
F-DYN
F-CALC
F-ALT
F-FIXREL
F-STREL

Sequential
Relative
Indexed
Dynamic
Random
Alternate index
Fixed-relative
String-relative

4-306 CW35-02

lrsz

cisz

iasz

ucf init, ucf defc, ucf defr, ucf finish

For fixed-relative files, the logical record size, in
characters; for other file organizations, the maximum
record size, in characters. This number does not include
record control information.

Default: Undefined for relative files; 216 characters
for sequential, indexed, dynamic, and random files; 255
characters for string-relative files; and 256 characters
for fixed-relative files.

Control interval size, in characters. This value must be
a multiple of 256.

Default: For fixed-relative files, one physical sector;
for other file organizations, 512 characters.

·Initial allocation size. For sequential, relative,
dynamic, random, and indexed files, the unit is control
intervals; for fixed-relative files, the unit is

grsz

mxsz

records. You must specify either iasz or mxsz for random
files.

Default: No initial allocation.

Size of additional space to be added to the file as it
expands. For sequential, relative, dynamic, random, and
indexed files, the unit is control intervals; for
fixed-relative files, the unit is records.

Default: 40 physical sectors.

Maximum file size. For sequential, relative, dynamic,
random, and indexed files, the unit is control intervals;
for fixed-relative files, the unit is records.

Default: No initial. allocation.

4-307 CW35-02

ucf_init, ucf_defc, ucf_defr, ucf finish

ARGUMENTS (for ucf_defc):

cmpl, cmp2

For indexed files, cmpl is the number of free characters
per control interval; cmp2 is the frequency of local
overflow control intervals (for example, 10 means one in
l 0) •

For random files, cmpl is the percentage of a data
control interval that must be filled before inventory is
updated (the default is 75 percent); cmp2 is the number
of possible hash results, not more than the number of
control intervals allocated to the file (the default is
one per control interval). ,•

For dynamic files, cmpl is the percentage of a data
control interval that must be filled before inventory is
updated (the default is 75 percent); cmp2 must be zero.

For alternate-index files, cmpl is the number of free
characters per control interval; cmp2 must be zero.

ARGUMENTS (for ucf_defr):

rtype

dup

A digit connecting a record descriptor to the record
being processed, allowing different records in a file to
have different record descriptors or key definitions.
For indexed and alternate-index files, this argument must
be zero.

Duplicate key:

l Duplicate keys allowed
0 -- Duplicate keys not allowed.

4-308 CW35-02

ucf init, ucf defc, ucf defr, ucf finish

ktype

Key component data type:

BINARY
CHARSTR -­
DECIMAL -­
DECPCK
UDECPCK.--

Signed binary
Character string
Signed unpacked decimal
Signed packed decimal
Unsigned packed decimal.

Specify a key type in uppercase for ascending key
sequence; specify in lowercase for descending key
sequence.

ksize

Size of the key field in characters.

kloc

Position of the first character of the key field within
the record. (The first character of a record is
number 1.)

DESCRIPTION:

The ucf init, ucf defc, ucf defr, and ucf finish functions
create a file. You ca_n create a sequential, relative,
indexed, alternate index, dynamic, random, fixed-relative, or
string-relative file. You must call ucf init and ucf finish
to create a file; ucf defc and ucf defr are optional,
depending on the file-type. For more information on file
creation, refer to the System Programmer's Guide--Volume I.

The ucf init function constructs a create file descriptor.
If you specify any Of the optional arguments, you must
provide a value for all of them, though you can specify zeros
to take defaults. You must call this function first in the
sequence.

The ucf defc function collects more information needed for
creating indexed, alternate index, random, or dynamic files.
You must call ucf_init before calling this function.

The ucf defr function is required for creating keyed files
(indexea, alternate index, and random files). You must call
ucf init before calling this function. Call this function
once for each key component or record type.

The ucf finish function is required for all file types. You
must call this function l~st in sequence.

4-309 CW35-02

ucf init, ucf defc, ucf_defr, ucf finish

RETURN VALUE:

Upon successful completion, these functions return a value
of O.

If these functions encounter an error, they set errno and
m4 er rno to indicate the error and return a value of -1.

4-310 CW35-02

uldiv

Divide unsigned long values.

FORMAT:

unsigned long uldiv (a, b)
unsigned long a, b;

ARGUMENTS:

a

Unsigned long dividend.

b

Unsigned long divisor.

DESCRIPTION:

uld.iv

The uldiv function performs division of the unsigned long
value a by the unsigned long value b.

RELATED FUNCTIONS:

lgdiv, lgmul, lgrem, ulrem.

4-311 CW35-02

ulrem

ulrem

Remainder function for unsigned long values.

FORMAT:

unsigned long ulrem (a, b)
unsigned long a, b;

ARGUMENTS:

a

Unsigned long dividend.

b

Unsigned long divisor.

DESCRIPTION:

The ulrem function returned the remainder function of a/b for
unsigned long values.

RELATED FUNCTIONS:

lgdiv, lgmul, lgrem, uldiv.

4-312 CW35-02

umemchr

Locate character in memory.

FORMAT:

i include <memory.h>

unsigned char *umemchr (s, c, m)
unsigned char *s;
unsigned char c;
unsigned int m; ·

ARGUMENTS:

s

Pointer to memory area to check.

c

Character to seek.

m

Size of memory area in characters. .

DESCRIPTION:

The umemchr function returns a pointer to the first

umemchr

I

occur.rence of character c within the first m characters of
memory area s, or (unsigned char *) 0 if c does not occur. I
This function operates efficiently on memory areas (arrays of
characters bounded by a count, not terminated by a null
character).

NOTE

This function is declared in the <memory.h>
header file.

RELATED FUNCTIONS:

memccpy, memchr, memcmp, memcpy, memset, umemcmp,
umemcpy, umemset.

4-313

I

I

umemcmp

umemcmp

Memory-to-memory comparison.

FORMAT:

t include <memory.h>

int umemcmp Cs1, s2, m)
unsigned char *s1, *s2;
unsigned int m;

ARGUMENTS:

First memory area to be compared.

Second memory area to be compared.

m

Size of memory area in characters • ..
DESCRIPTION:

The umemcmp function compares its arguments, looking at the
first m characters only.

This function operates efficiently on memory areas (arrays of
characters bounded by a count, not terminated by a null
character) • It executes without a stack frame of its own,
and it makes use of commercial instructions.

RETURN VALUE:

This function returns an integer less than, equal to, or
greater than zero, depending on whether s1 is less than,
equal to, or greater than s2. If m is zero, equality is
indicated.

4-314 CW35-02

NOTES

t. This function is declared in the <memory.h>
header file.

2. The umemcmp function uses 8-bit ASCII
comparisons. Comparison proceeds from left
to right until an unequal pair of characters
is found or until all characters have been
compared without finding an unequal pair. If
an unequal pair is found, their ordering in
the 8-bit ASCII code set determines the
ordering of the two operands.

4-315

umemcmp

CW35-02

I

umemcpy

umemcpy

Memory-to-memory copy.

FORMAT:

include <memory.h>

unsigned char *umemcpy (s1, s2, m)
unsigned char *s1, *s2;
unsigned int m;

ARGUMENTS:

Pointer to target memory area (output).

s2

Pointer to source memory area (input).

m

Size of memory area in characters.

DESCRIPTION:

The umemcpy function copies the first m characters from
memory area s1 to sz.

This function operates efficiently on memory areas (arrays of
characters bounded by a count, not terminated by a null
character) • This function does not check for the overflow of
any receiving memory area. It executes without a stack frame
of its own.

RETURN VALUE:

This function returns s1.

NOTES

1. This function is declared in the <memory.h>
header file.

2. The umemcpy function produces unspecified
results if the memory areas overlap but are
not identical.

4-316 CW35-02

umemset

umemset

Initialize memory.

FORMAT:

t include <memory.h>

unsigned char *umemset (s, c, m)
unsigned char *s;
unsigned char c;
unsigned int m;

ARGUMENTS:

s

Pointer to memory area to initialize.

c

Character to fill memory area.

m

Size of memory area in characters.

DESCRIPTION:

The umemset function sets the first m characters in memory
.area s to the value of character c.

This function operates efficiently on memory areas (arrays of
characters bounded by a count, not terminated by a null
character) • This function does not check for the overflow of
any receiving memory area. It executes without a stack frame
of its own, and makes use of commercial instructions.

RETURN VALUE:

This function returns *s.

NOTE

This function is declared in the <memory.h>
header file.

RELATED FUNCTIONS:

memccpy, memchr, memcmp, memcpy, memset, umemchr,
umemcmp, umemcpy.

4-317 CW35-02

I

I

ungetc

ungetc

Push character back into input file.

FORMAT:

int ungetc (c, file)
char c;
FILE *file;

ARGUMENTS:

c

Character to push~·

file

Pathname of input file.

DESCRIPTION:

The ungetc function pushes the character c back on an input
file. That character is returned by the next getc call on
that file. The ungetc function returns c.

One character of pushback is guaranteed provided something
has been.read from the file and the file is actually
buffered. Attempts to push EOF are rejected.

DIAGNOSTICS:

The ungetc function returns EOF if it cannot push a character
back.

RELATED FUNCTIONS:

getc, setbuf.

4-318 CW35-02

unlink

Remove directory entry.

FORMAT:

int unlink (path)
char *pat.h;

ARGUMENTS:

path

Pathname of directory entry.

DESCRIPTION:

unlink

The unlink function deletes the file entry named by the path
argument. If path is a link, the link is removed. If path
is a file, the file is deleted.

RETURN VALUE:

Upon successful completion, a value of 0 is returned.
Otherwise, a value of -1 is returned and the variable errno
is set to indicate the error.

DIAGNOSTICS:

The unlink function fails if:

• The volume is write protected [EROFS].

• The path argument points outside the task group's
allocated address space [EFAULT].

RELATED FUNCTIONS:

close, link, open.

4-319 CW35-02

wait

wait

Wait for event.

FORMAT:

int wait (stat loc)
int *stat loc;­
int wait T(int *)O)

ARGUMENTS:

stat loc

Pointer to memory area containing status information.

DESCRIPTION:

The wait function suspends the calling process until it
receives a signal or, if a parent process, until one of its
child processes terminates. If a child process terminates
prior to the call on wait, there is an immediate return.

If stat lac is not null, 16 bits of information called status
are stored in the integer pointed to by stat loc. The status
argument can be used to differentiate .between.receipt of a
signal and a terminated child process. If a child process
terminates, status identifies the cause of termination and
passes useful information to the parent. This is
accomplished in the following manner:

• If the child process terminates due to an exit call,
the low-order eight bits of status is zero and the
high-order eight bits contain the low-order eight bits
of the argument that the child process passed to exit.

• If the child process terminates due to a signal, the
high-order eight bits of status is zero and the
low-order eight bits contain the number of the signal
that caused the termination. In addition, if a memory
dump was produced, the hexadecimal value 0080 is moved
into status.

If a parent process terminates without waiting for its child
processes to terminate, the parent process ID of each child
is set to 1.

4-320 CW35-02

wait

DIAGNOSTICS:

The first call to wait causes an interval timer to be
created. If the process is unable to obtain memory from the
group work segment for this timer, errno is set to ENOMEM,
and -1 is returned.

The wait function fails and returns immediately if:

• The calling process has no existing child processes
for which it is waiting [ECHILD].

• The pointer stat loc refers to an illegal address
[EFAULT].

RETURN VALUE:

If wait returns due to the receipt of a signal, a value of -1
is returned to the calling process, the variable errno is set
to EINTR, and the variable m4 errno is set accordingly. If
wait returns due to a terminated child process, the process
ID of the child is returned to the calling process.
Otherwise, a value of -1 is returned and the variables errno
and m4 errno are set to indicate the error.

RELATED FUNCTIONS:

exec. family, exit, fork, pause, signal.

4-321 CW35-02

write

write

Write on a file.

FORMAT:

int write (fildes, buf, nchars)
int fildes1
char *buf;
unsigned nchars;

ARGUMENTS:

f ildes

File descriptor obtained from a creat, dup, open, or pipe
£unction.

buf

Address of buffer containing characters to be written.

nchars

Number of characters to write.

DESCRIPTION:

The write function attempts to write nchars characters from
the buffer pointed to by buf to the file associated with the
file descriptor f ildes.

On devices capable of seeking, the actual writing of data
proceeds from the position in the file indicated by the file
pointer. Upon return from write, the file pointer is
incremented by the number of characters actually written.

On devices incapable of seeking, writing always takes place
starting at the current position. The value of a file
pointer associated with such a device is unspecified.

If the O APPEND file status flag is set, the file pointer is
set to the end of the file before each write.

If a write requests that more characters be written than
there is room for (ULIMIT or the physical end of a medium),
only as many characters as there is room for will be
written. For example, if there is space for 20 characters
more in a file reaching a limit, a write of 512 characters
returns 20. The next write of a nonzero number of characters
gives a failure return (except as noted below).

4-322 CW35-02

write

The write function does not allocate a buffer until it is
needed. The function allocates 136-character buffers for the
user-in, user-out, and error-out files and 512-character
buffers for other files. The number of buffers ultimately
allocated for a file is as follows:

• Binary files processed only by low-level I/O (read and
write) get no buffers

• A user-in file processed.only by low-level I/O gets no
buff er

• String-relative files processed only by low-level I/O
get no buffers

• All other files processed only by low-level I/O get
one buff er each

• Files processed by high-level I/O get one more buffer
than they would if processed only by low-level I/O.

RETURN VALUE:

Upon successful completion, the number of characters actually
written is returned. Otherwise, -1 is returned and the
variable errno is set to indicate the error.

DIAGNOSTICS:

The write function fails and the file pointer is unchanged
if:

• The f ildes argument is not a valid file descriptor
open for writing [EBADF].

• An attempt was made to write a file that exceeds the
task group's file size limit or the maximum file size
[~FBIG] •

• The buf argument points outside the task group's
allocated address space [EFAULT].

RELATED FUNCTIONS:

creat, dup, open, pipe.

4-323 CW35-02

yO,yl,yn

'i.,0 ' 't..l ' 'i..n

Bessel functions.

FORMAT:

t include <math.h>

double yO {x)
double x;

double yl (x)
double x;

double yn, (n, x) ;
double x;
int n;

ARGUMENTS:

x

Double-precision value.

n

Order of Bessel function.

DESCRIPTION:

These functions calculate Bessel functions of the first and
second kinds for real arguments and integer orders. The yn
function returns the Bessel function of x of the second kind
of order n; the value of x must be positive.

DIAGNOSTICS:

Zero and negati11e arguments cause yo, yl, and yn to return a
huge negative value; the variable errno is set to EDOM.

RELATED FUNCTIONS:

jO, jl, jn.

4-324 CW35-02

Appendix A
C COMP."4ER DIAGNOSTIC

MESSAGES

Thi~ appendix lists the C compiler diagnostic messages in
alphabetical order. I~ messages, <---> indicates a variable.

Table A-1 lists C compiler error messages that pertain to the
arguments of the M4 CC command. These messages are written to
the user-out file. -The messages fall into two categories:

w -- warning error1 the compiler discards the offending
argument and continues

F -- Fatal error; the compiler terminates.

Table A-1. C Compiler Error Messages

Message Class

Bad -SZ option (<---» w
-BU name <---> is too long F
Can't execute <---> (errno=eeeee) F
Fatal error in <---> (status=ssss, errno=eeeee) F
Missing name after option <---> F
Missing path after option <---> F
Scientific Instruction Processor (SIP) required F
·Too many assembler options w
Too many loader options w
Too many preprocessor options w
Try again F
Unknown option <---> F

A-1 CW35-02

Table A-2 lists the C compiler diagnostic messages. These
messages are written to the error-out file and appear in this
format:

prog_name: line 111: message

where prog name is the name of the source unit containing the
error, 111-is the line number within the source unit, and message
is the text of the message. The messages fall into three
categories:

W Warning error; compilation continues

F Fatal error; compilation of the source unit terminates

O Optimization error; compilation continues with
un-optimized assembly language.

Table A-2. C Compiler Diagnostic Messages

Message

'? :'operator, types do not match across':'
a-length row: <--->
<---> is not a register operand
<---> is not an entry point
<---> is not an opcode
<---> is not an option
<---> is not implemented
<---> may not have an initial value
<---> multiply defined
<---> must have an initial value
<---> operands missing
<---> redeclared
<---> undefined
<---> undefined; func. <--->
<--->: actuals too long
<--->: macro recursion
<--->: missing)
<--->: too many recursive calls
<--->: unterminated macro call

A CONST initializer in reentrant code cannot
reference STATIC or EXTERN data

A static initializer cannot reference an AUTO
A static initializer cannot reference a REGISTER
A static initializer cannot reference a CONST

in reentrant code
Ambiguous structure reference for <--->
Arg count

A-2

Class

F
F
0
0
0
0
0
F
F
F
0
F
F
F
F
F
F
F
F

F
F
F

F
F
F

CW35-02

Table A-2 (cont}. c Compiler Diagnostic Messages

Message

Bad formal: <--->
Bad f uhc. storage class
Bad include syntax
Bad structure/union/enum name
Bad type for field
Binary expression botch
Botch in outcode
Branch label too complex
Break/continue error

CO internal error: tree not active
Call of non-function
Can't create <--->
Can't create work files
Can't find <--->
Can't find include file <--->
Can't read include file <--->
Cannot open <--->
Cannot open source file <--->
cannot rewind workf ile <--->
Case not in switch
Commercial instructions not implemented
Compiler botch: argument type
Compiler botch: call
Compiler botch: odd size
Compiler error (length)
Compiler error: all buffers in-use
Compiler error: pname
Compiler error: too many active labels
Compound statement required
Conflict in storage class

Data cannot directly reference function <--->
in reentrant code

Declaration syntax
Default not in switch
Disallowed conversion
Divide by zero
Divide check
Duplicate case «--->)
Excessive -I file (<--->) ignored
Expression input botch
Expression overflow
Expression syntax·
Extended Integer instructions not implemented
Extended Mode instructions not implemented
External definition syntax
Extraneous name <--->

A-3

Class

F
F
F
F
F
F
F
0
F

F
F
F
F
F
F
F
0
F
0
F
0
F
F
F
F
0
F
0
F
F

F
F
F
F
F
F
F

F
F
F
F
0
0
F
F

CW35-02

Table A-2 (cont). C Compiler Diagnostic Messages

Message

Floating %% not defined
Floating point size undefined
Freopen of stdin != stdin
Freopen of stdout != stdout
IF not implemented, true assumed
If-less else
If-less endif
Ignoring -D option (<--->)
Ignoring -u option (<--->)
Illegal t
Illegal character c in preprocessor if
Illegal character in <---> field
Illegal conditional
Illegal conversion
Illegal en um constant for <--->
Illegal enumeration <--->
Illegal indirection
Illegal initialization
Illegal l value
Illegal number <--->
Illegal operation on structure
Illegal operator in constant expression
Illegal register

. Illegal storage class
Illegal structure operation
Illegal structure ref
Illegal type of operand
Illegal use of register
Illegal use of type
Illegal use of type name
Illegal use of void object
Inappropriate 'else'
Inappropriate parameters
Incompatible structures
Integer constant overflow, expression converted

to long
Integer constant required
Intermediate file error (op=hhhh}

Long character constant
Lvalue required

Mask field missing
Masked and indexed bit instruction
Misplaced 'long'
Misplaced 'unsigned'
Missing '}'
More than 1 'default'

A-4

Class

F
F
F
F
F
F
F
F
F
F
F
0
F
F
F I
F
F
F
F
F
F
F
0
F
F
F
F
F
F
F
F
F
F
F

F
F
F

F
F

0
0
F
F
F
F

CW35-02

Table A-2 (cont). C Compiler Diagnostic Messages

Message

Names <---> and <---> conflict
Negative field width
No END statement
No auto. aggregate initialization
No code table for op: <--->
No field initialization
No match for op <--->
No space
No strings in automatic
Nonterminated comment
Nonterminated string
Not an argument: <--->
Null dimension

Out of space
Out of space-- cl

Pow2 botch
Program too large

Rank too large
Register overflow: simplify expression
Required file name is missing
RESV out- of pl ace

Shift distance too large
Stack overflow botch
Statement syntax
Struct/union cited for <---> is undefined
Structure redeclaration
Switch table overflow

TITLE statement misplaced
TITLE statement missing
Token too long
Too many -D options, ignoring <--->
Too many -u options, ignoring <--->
Too many defines
Too many files
Too many formals: <--->
Too many initializers: <--->
Too many operands
Too many structure initializers
Too many structure members
Too many } 's
Too much declaring in an expression
Too much defining
.Type clash
Type is too complicated

A-5

Class

F
F
0
F
F
F
F
F
F
F
F
F
F

0
F

F
F

F
F
0
0

F
F
F
F
F
F

0
0
F
F
F
F
0
F
F
0
F
F
F
F
F
F
F

CW35-02

Table A-2 (cont). C Compiler Diagnostic Messages

Message

Undefined control
Undefined structure
Undef i ne.d str uct ur e i ni ti al iz a ti on
Unexpected EOF
Unexpected end of line
Unexpected end-of-file
Unimplemented field operator
Unimplemented structure assignment
Unknown character
Unknown flag <--->
Unknown keyword
Unreasonable include nesting

Warning: ' & '· requires lval ue but an array is
not an lvalue, '&' ignored

Warning: <---> has zero length", cs->name
warning: <---> may conflict with compiler

generated labels
warning: <---> redefined
warning: ·<---> used for type punning
Warning: EQUAL operator, '==', may have been

mistyped
Warning: Explicit 'extern' indicates

declaration, defi~ition accepted
warning: c= operator assumed.
warning: char converted to unsigned char
warning: char pointer converted to word pointer
Warning: extern int <---> implicitly declared
Warning: field may overflow
Warning: field may underflow
Warning: illegal macro name
Warning: incomplete qualification,

all struct/union members named <---> off set
Warning: int converted to pointer
warning: int converted to unsigned
Warning: module name <---> would cause

assembly errors, default names are used
warning: no struct/union cited
warning: non-portable pointer operation
Warning: overflow in constant expression
warning: pointer converted to int
warning: very large data structure
warning: zero length array
Write error on temp

A-6

Class

F
F
F
F
0
0
F
F
F
F
F
F

I
I w

w

w
w
w

w

·w
w
w
w
w
w
w
w

w
w
w

w
w
w
w
w
w
w
F

CW35-02

AppendixB
ASCII CHARACTER SET

This appendix lists the 8-bit ASCII character set.

B-1 CW35-02

The control characters appearing in the 8-bit ASCII character
set are defineq as follows:

ACK

BEL
BS

CAN
CR

DCl
DC2
DC3
DC4
DEL
OLE

EM
ENQ
EOT
ESC
ETB

ETX
SYN

Acknowledge

Bell
Backspace

Cancel
Carriage Return

Device Control l
Device Control 2
Device Control 3
Device Control 4
Delete
Data Link Escape

End of Medium
Enquiry
End of Transmission
Escape
End of Transmission

Block
End of Text
Synchronous Idle

FF Form Feed

B-2

FS File Separator

GS Group Separator

HT Horizontal Tab

LF
LSO
LSl

NAK

NUL

Line Feed
Locking Shift O
Locking Shift 1

Negative Acknowledge­
ment

Null

RS Record Separator

SOH
STX
SUB

us

VT

Start of Heading
Start of Text
Substitute

Unit Separator

Vertical Tab

CW35-02

The graphic characters in the 8-bit ASCII character set are
defined as follows:

SP
1
n

i
$
%
&
I

(
)

*
+

'
•
I . . .
I

<
=
>
?
@

c
\
] ..

{
I
}

NBSP

' ¢
£

ll
'(

§

©
!

<<
SHY

@

Space
Exclamation Mark
Quotation Mark
Number Sign
Dollar Sign
Percent Sign
Ampersand
Apostrophe
Left Parenthesis
Right Parenthesis
Asterisk
Pl us Sign
Comma
Minus Sign, Hyphen
Period, Decimal Point
Solidus, Slash
Colon
Semicolon
Less-than Sign
F.q ual s Sign
Greater-than Sign
Question Mark
Commercial At Sign
Left Square Bracket
Reverse Solidus
Right Square Bracket
Circumflex Accent
Underline
Grave Accent
Left Curly Bracket
Vertical Line
Right Curly Bracket
Tilde
No-Break Space
Inverted Exel ama ti on Mark
Cent Sign
Pound Sign
Currency Sign
Yen Sign
Broken Bar
Paragraph Sign, Section

Sign
Diaeresis, Umlaut
Copyright Sign
Feminine Ordinal

Indicator
Left Angle Quotation Mark
Not Sign
Soft Hyphen
Registered Trade Mark

Sign

B-3

Macron, OVerline, OVerbar
0 Degree Sign

± Pl us-Minus Sign
2 Superscript Two
3 Superscript Three
"' Acute Accent

µ Small Greek Letter
Mu, -Micro Sign

~ Pilcrow (Paragraph Symbol)
• Middle Dot
., Cedilla

1 Superscript One
a Masculine Ordinal

Indicator
» Right Angle Quotation

Mark
~ Vulgar Fraction

One Quarter
% Vulgar Fraction

One Half
% Vulgar Fraction

Three Quarters
f Inverted Question Mark
A capital A With Grave
,. Accent
A capital A With Acute

Accent
A capital A With Circumflex

Accent
A Capital A With Tilde
A capital A With Diaeresis
A Capital A With Ring Above
JlE ca.pi tal Dipthong A with E
!;; capital C With Cedilla
E capital E With Grave
.. Accent
E capital E With Acute
.. ·Accent
E capital E With Circumflex

Accent
~ capital E With Diaeresis
I capital I With Grave
, Accent
I capital I With Acute

Accent
f Capital I With Circumflex

Accent
i Capital I With Diaeresis

-B- Capital Icelandic Eth
N Capital N With Tilde

86-060

CW35-02

\ ..
0 Capital 0 With Grave 0 Small o With Grave Accent

Accent "' Small o With Acute Accent , 0
Capital 0 With Small o With Circumflex 0 Acute 0

... Accent Accent
0 Capital 0 With Circum- 0 Small o With Tilde

- flex Accent 0 Small o With Diaeresis
0 Capital 0 With Tilde + Division Sign
0 Capital 0 With Diaeresis ¢ Small o With Oblique
x Multiplication Sign Stroke
¢ Capital 0 With Oblique ..

Small u With Grave Accent u
Stroke

,.
Small u With Acute Accent u

\

Capital U With u Small u With Circumflex u Grave
, Accent Accent
u Capital U With Acute i.i Small u With Diaeresis

Accent
,.

Small y With Acute Accent u y
Capital U With Circum- p Small Icelandic Thorn

flex Accent y Small y With Diaeresis
q Capital U With Diaeresis
y Capital Y With Acute

Accent
p Capital Icelandic Thorn
{j Small German Sharp s
\
a Small a With Grave Accent ,

Small a With Acute Accent a
" Small a With Circum-a

flex Accent a Small a With Tilde
a Small a With Diaeresis
! Small a With Ring Above
ae Small Dipthong a With e
~ Small c With Cedilla
e Small e With Grave Accent ,
e Small e With Acute Accent ...

Small e With Circum-e
flex Accent ..

~ Small e With Diaeresis
~ Small i With Grave Accent
l Small i With Acute Accent .,.

Small i With Circum-1

.. flex Accent
i Small i With Diaeresis
d Small Icelandic Eth ,,.,

Small n With Tilde n

86-061

B-4 CW35-02

tJ.1
I

01

g
V1
I

0
N

b4
b3
b2
b1

Table B-1. Eight-Bit ASCII Character Set

0 0
0 0
0 0
0 1

0 0
0 0
1 1
0 1

0 0
1 1
0 0
0 1

0. 0
1 1
1 1
0 1

1 1
0 0
0 0
0 1

1 1
0 0
1 1
0 1

1 1
1 1
0 0
0 1

1 1
'.I 1
1 1
0 1

b4 b3 b2 b1 ~1 2
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

o o o o oo NuL oLe sP o @ P .. p NBsP 0 A -a- a -a·
0 0 0 1 01 SOH DC1 ! 1 A Q a q i ± A N a n
0 0 1 0 02 STX DC2 II 2 B R b r ~ 1 A 6 a 0

0 0 1 1 03 ETX DC3 # 3 c s c s £ 3 A 6 ft 6 I

o 1 o o 04 eoT oc4 s 4 o T d t tt # A. o a o
0 1 0 1 05 ENO -NAK-- 0/o 5 E U e u y µ. l 6 ~ o
0 1 1 0 06 ACK SYN & 6 F V f V ! 1f IE 0 m o
0 1 1 1 07 BEL ETB ' 7 G W g W § • ~ X S .

1 o o o 08 Bs cAN < a H x h x •• " E 9) e P
1 0 0 1 09 HT EM) . 9 I Y i y C> 1 f4 U e u
1 o 1 o 1 o LF suB • : J z j z ! Q. e u e u
1 o 1 1 11 VT esc + : K c k { « » E u e u
1 1 0 0 12 FF FS • < L \ I I --, 1/4 i 0 l u
1 1 0 1 13 CR GS - = M] m } SHY 1/2

1 1 1 0 14 LS1 RS > N A n <8 3/4

1 1 1 1 15 LSO US I ? 0 0 DEL l

,
I y
..
I :P

i fJ

t
I

t­
i

f

y
p

y
86-004

GWSSAllY
•

byte

A DPS 6 byte is eight bits long. In this manual, the terms
byte and character ~re synonymous. ..

character

In this manual, the terms character and byte are synonymous.

character array

A sequence of characters.

control terminal

dot

See standard file.

At the beginning of a pathname, this specifies the current
working directory, equivalent to the UNIX link. (period).
See link.

dot-dot

The UNIX link •• (period period), referring to the
immediately superior directory. The MOD 400 equivalent
is <• See link.

g-1 CW35-02

effective group ID

This concept applies to UNIX, not MOD 400. An active process
has an effective user ID and an effective group ID that are
used to determine file access rights. The effective user ID
and effective group ID are equal to the task's real user ID
and real group ID, respectively, unless the task or one of
its ancestors evolved from a file that had the set-user-ID
bit or set-group-ID bit set. These bits do not exist in, and
are not set by, MOD 400.

effective user ID

file

See effective group ID.

File names consisting of up to 12 characters (in contrast to
14 characters in UNIX) are allowed to name an ordinary file,
special file, or directory. The MOD 400 file naming
conventions are listed in the MOD 400 Concepts manual.

file access

Read, write, and execute search rights on a file are granted
to a process in accordance with MOD 400 access control.

file descriptor

An integer from 0 to 19 that designates a file to be
processed by low-level I/O. See low-level I/O.

group

Each user is a member of a group, corresponding to the
MOD 400 account. The group is identified by a group name,
equivalent to the MOD 400 account ID, and by a positive
integer called the real group ID (which has no MOD 400
equivalent) • An active process has a real user ID and real
group ID that are set to the real user ID and real group ID,
respectively, of the user responsible for the creation of the
process.

group name

See group.

group work segment (GWS)

In MOD 400, the area of memory from which Get Memory system
service macrocalls obtains memory.

g-2 CW35-02

heap

An area of memory from which the functions malloc and callee
obtain storage.

high-level I/O

Functions (such as fopen and fprint) that return a pointer to
a file. See low-level I/Oo

initial user-in file

The first file designated as user-in. Generally, this is an
interactive terminal or a batch input file.

initial user-out file

link

The first file designated as user-out. Generally, this is an
interactive terminal or a batch output file.

A UNIX directory entry. By convention, a UNIX directory
contains at least two links, • and •• , referred to as dot and
dot-dot, respectively. Dot refers to the directory itself
and dot-dot refers to its parent directory.

login name

See user.

low-level I/O

Functions (such as close, open, read, and write) that use
file descriptors. See high-level I/O.

null character (NUL)

The ASCII character 00. In C, it is represented as \0.

null pathname

Unless specifically stated otherwise, the null pathname is
treated as if it named a nonexistent file.

null pointer

The value obtained by casting O into a pointer. This value
never matches any legitimate pointer, so many functions that
return pointers will return a null pointer to indicate an
error.

g-3 CW35-02

parent process ID

The parent process ID of a process is the process ID of its
creator.

pathname

A null-terminated character string starting with an optional
slash, followed by zero or more directory names separated by
slashes, optionally followed by a file name. If a patbname
begins with a slash, the path search begins at the root
directory. Otherwise, the search begins from the current
working directory. A slash by itself names the root
directory.

process

A process corresponds to a MOD 400 task. Each a-ctive process
in the system is uniquely identified by a positive integer
called a process ID. A new process is created by .a currently
active process.

process ID

The process ID is derived from the address of the MOD 400
task control block as follows:

pid=(int)(address of TCB>>S)

process group

Each active process is a member of a process group. The
process group corresponds to .the MOD 400 task group. Each
process group is identified by a positive integer called the
process group ID. This grouping permits signaling to related
processes.

process group ID

The process group ID is derived from the two-character task
group ID of MOD 400 as follows:

(int) (task group ID)

real group ID

See group.

real user ID

See user.

g-4 CW35-02.

referencing directory

The directory in which the program's bound unit was found. I
root directory

Each process has associated with it a root directory and a
current working directory for the purpose of resolving
pathname searches. A process's root directory need not be
the root directory of the root file system.

search rules

A list of directories MOD 400 examines to locate a file in:
(1) exec calls to file names, (2) system calls to a simple
pathname, and (3) all references to bound units. The search
rules are:

1. Any directories in a PATH environment variable
2. The referencing directory
3. The working directory
4. >SYSLIBl
5. >SYSLIB2

Refer to the description of the find file function.

signal catcher

A function invoked when a specified signal is received by the
function's process. Refer to the description of the signal
£unction.

standard file

The standard input file stdin corresponds to the MOD 400 file
user-in. The standard output file stdout corresponds to the
MOD 400 file user-out. The standard error file stderr
corresponds to the MOD 400 file error-out. The control
terminal is equivalent to the MOD 400 initial file
command-in.

stderr file

See standard file.

stdin file

See standard file.

stdout file

See standard file.

g-5 CW35-02

string

A sequence of characters ending with a null character.

terminal

The concept of a terminal is the same in UNIX and MOD 400.
The ttyname is equivalent to the MOD 400 symbolic peripheral
device name of the terminal (for example, !TTY12). The
control terminal is equivalent to the MOD 400 initial
command-in file, while the terminal ID is equivalent to the
MOD 400 pathname of the initial command-in file.

terminal ID

See terminal.

tty name

user

See terminal.

The concept of a user is the same under UNIX and MOD 400.
Each user allowed on the system is identified by a login
name, equivalent to the MOD 400 person ID, and by a positive
integer called a real user ID (which has no MOD 400
equivalent). Under MOD 400, the login name can be up to 12
characters in length. It is possible for several users to
share a single user ID; however, they have·unique login
names. ~ultiple logins are also supported.

g-6 CW35-02

INDEX

a641
Convert Between Long and
Base-64 ASCII (a641)
Function, 4-27, 4-179

Abandoning a Process, 4-24

abort

abs

Terminate a C Program
(abort) Function, 4-28

Integer Absolute Value
(abs) Function, 4-29

Absolut.e Value (fabs)
Function, 4-87

Access, 4-30
Access Control List, 4-101
Determine Access Rights

(access) Function, 4-30
File Access, g-2

Access Control List, 4-101

a cos
Arc Cosine (acos) Function,

4-31

Additive Operators, 2-4

alarm
Alarm Clock (alarm)

Function, 4-32

Alarm Clock (alarm) Function,
4-32

alloc
Allocate Memory {alloc)
Function, 4-33

Allocate Memory (alloc)
Function, 4-33

Arc Cosine (acos) Function,
4-31

Arc Sine (asin) Function, 4-36

I Arc Tangent (atan) Function,
4-37

i-1

Arc Tangent of Y/X (atan2)
Function, 4-38.

Array
Character Array, g-1

ASCII Functions
Convert ASCII to Floating
Point (atof), 4-39

Convert ASCII to Integer
(atoi) , 4-40

Convert ASCII to Long
(atol) , 4-41

Convert Between Long and
Base-64 ASCII (a641),

4-27, 4-179
Convert Date and Time to

ASCII (asctime) , 4-34
Convert Date and Time to

ASCII (ctime), 4-56
Convert Date and Time to
ASCII (gmtime), 4-157

Convert Date and Time to
ASCII (localtime), 4-186

ASCII Character set
Eight-Bit ASCII Character
Set (Tbl), B-5

asctime
Convert Date and Time to

ASCII (asctime) Function,
4-34

as in
Arc Sine (asin) Function,

4-36

Assign Buffering (setbuf)
Function, 4-246

Assignment Operators, 2-4

atan
Arc Tangent Catan)
Function, 4-37

CW35-02

atan2
Arc Tangent of Y/X (atan2)
Function, 4-38

at of
Convert ASCII to Floating

Point (atof) Function,
4-39

atoi
Convert ASCII to Integer

(atoi) Function, 4-40

atol
Convert ASCII to Long

(atol) Function, 4-41

Baseline C
Definition, 1-1

Bessel Functions
jO, jl, jn, 4-175
yo, yl, yn, 4-324

Binary Search (bsearch)
Function, 4-44

Break Segment
Change Break Segment Space
Allocation (brk) Function,
4-42

Break Value, 4-42

brk
Change Break Segment Space
Allocation (brk) Function,
4-42

bsearch
Binary Search (bsearch)
Function, 4-44

Buffered Input (fread)
Function, 4-115

Buffered Output (fwrite)
Function, 4-126

Byte, g-1

INDEX

c

i-2

Calling a C Program, Code,
4~69, 4-72, 4-75, 4-78,
4-233, 4-235, 4-237, 4-239

Definition of "Baseline" c,
1-1

Diagnostic Messages (Tbl) ,
A-2

Error Messages (Tbl), A-1
Routines (Sorted by

Function Group) (Tbl) , 4-8
Routines Not Supported

(Tbl) I 4-13
Standard Library (Sorted by

Name) (Tbl) , 4-2
Support of MOD 400 File
Types, 4-14

Terminate (abort) Function,
4-28

Calling a C Program, Code,
4-69, 4-72, 4-75, 4-78,
4-233, 4-235, 4-237, 4-239

calloc
Heap Memory Allocation

(calloc) Function, 4-46

'Catcher
Signal Catcher, g-5

ceil
Ceiling (ceil) Function,

4-47

Ceiling (ceil) Function, 4-47

Change Break Segment Space
Allocation (brk) Function,
4-42

Change Data Segment Space
Allocation (sbrk) Function,
4-242

Change Owner (chown) Function,
4-49

Change Working Directory
(chdir) Function, 4-48

CW35-02

char, 2-2
unsigned char, 2-3

Character, g-1
(See also Character
Classification Functions}

And Integers, 2-3
Character Array, g-1
Copy Characters (strncpy}
Function, 4-284

E.ight-Bit ASCII Character
Set (Tbl), B-5

Eight-Bit Character
Translation (toascii8)
Function, 4-299

Find Character in String
(strchr) Function, 4-277

Get Character From File
(fgetc) Function, 4-97,
4-98

Get Character (getc)
Function, 4-129

Get Character From stdin
File (getchar} Function,
4-130

Locate Character in Memory
(memchr) Function, 4-201

Locate Character in Memory
(umemchr) Function, 4-313

Null Character (NUL), g-3
Push Character Back Into

Input File (ungetc)
Function, 4-318

Put Character (putc)
Function, 4-220

Put Character On File
(fputc) Function, 4-113

Put Character On stdout
File (putchar) Function,
4-221

Character Classification
Functions
isalnum, 4-161
isalpha, 4-162
isascii, 4-163
isascii8, 4-164
iscntrl, 4-166
isdigit, 4-167

INDEX

i-3

Character Classification
Functions (cont)
isgraph, 4-168
islower, 4-169
isprint, 4-170
ispunct, 4-171
isspace, 4-172
isupper, 4-173
isxdigit, 4-174

Character Translation
Functions

tolower, 4-301
-toupper, 4-303
toascii, 4-298
tolower, 4-300
toupper, 4-302

chdir
Change Working Directory

(chdir) Function, 4-48

Check for End of File (feof)
Function, 4-94

Check for I/O Error (ferror)
Function, 4-95

chown
Change Owner (chown)
Function, 4-49

clearerr
Clear Error Indicator

(clearerr) Function, 4-50

Close, 4-51
Close a File (close)
Function, 4-51

Close a File (fclose)
Function, 4-88

Close Password File
(endpwent) Function, 4-62

Close a File (close) Function,
4-51

Close a File (fclose)
Function, 4-88

CW35-02

Close Password File (endpwent)
Function, 4-62

Code Segment, 2-5

Common Logarithm (loglO)
Function, 4-189

Compare Strings (strcmp)
Function, 4-278

Compare to Portion of String
(strncmp) Function, 4-283

Compiler
Control Lines, 2-8
Diagnostic Messages (Tbl),

A-2
Error Messages (Tbl), A-1

Complimentary Error Function
(erfc) Function, 4-68

Concatenate Portion of String
(strnc~t) Function, 4-282

,.
Concatenate Strings (strcat)

Function, 4-276

const Storage Type, 2-5

Constants, 2-2

Control
Access Control List, 4-101
Compiler Control Lines, 2-8
Control Terminal, g-1
File Control (fcntl)
Function, 4-89

Conversions, 2-3
Explicit Pointer
Conversions, 2-9

Convert ASCII Functions
To Floating Point (atof) ,

4-39
To Integer (atoi), 4-40
To Long (atol) , 4-41

INDEX

i-4

Convert Between Long and
Base-64 ASCII (a641)
Function, 4-27, 4-179

Convert Between Long Integers
and Three-Byte Integers
(13to1) Function, 4-194

Convert Between Three-Byte
Integers and Long Integers
(13tol) Function, 4-178

Convert Date and Time to ASCII
asctime Function, 4-34
ctime Function, 4-56
gmtime Function: 4-157
localtime Function, 4-186

Convert UNIX Pathname to MOD
400 (pthto6) ~unction,
4-219

Copy Characters (strncpy)
Function, 4-284

Copy String (strcpy} Function,
4-279

cos
Cosine (cos) Function, 4-52

co sh
Hyperbolic (cosh) Function,

4-53

Cosine (cos) Function, 4-52

creat
Create New File (creat)

Function, 4-54

Create File (ucf) Function,
4-306

Create Name for Temporary File
(tmpnam) Function, 4-296

Create New File (creat)
Function, 4-54

CW35-02

Create New Process Functions
fork, ·4-106
runl, 4-233
runlp, 4-235
runvp, 4-239

crypt
DES Encryption (crypt)
Function, 4-55

ctime
Convert Date and Time to

ASCII (ctime) Function,
4-56

Data Segment, 2-5
Change Data Segment Space
Allocation (sbrk}
Function, 4-242

Data Type, 2-2

Declaration, 2-5
Structure and Union
Declarations, 2-7

DES Encryption Functions
crypt, 4-55
encrypt, 4-60
setkey, 4-249

Descriptor, File
(See File Descriptor)

Diagnostic Messages (Tbl), A-2

Directory
Change Working Directory

(chdir) Function, 4-48
Get Current Working
Directory (getcwd)
Function, 4-131

Get Pathname of System
Directory (getdir)
Function, 4-132

Library Directory, 2-9
List Directory Entries

Matching Star Name
(star name) Function,
4-270-

Referencing Directory, g-5

INDEX

i-5

Directory (cont)
Remove Directory Entry

(unlink) Function, 4-319
Root Directory, g-5

Divide Long Values (lgdiv)
Function, 4-181

Divide Unsigned Long Values
(uldiv) Function, 4-311

Dot, g-1

Dot-dot, g-1

Double

dup

Float and Double, 2-3

Duplicate Open File
Descriptor (dup) Function,
4-58

Duplicate Open File Descriptor
(dup) Function, 4-58

Output Conversion (ecvt)
Function, 4-59

Effective
Group ID, g-2
Group ID (getegid)

Function, 4-133
User g-2
Get Effective User ID

(geteuid) Function, 4-135

Eight-Bit ASCII Character Set
(Tbl), B-5

encrypt
DES Encryption (encrypt)

Function, 4-60
End Group Record Entry

(endgrent) Function, 4-61

endgrent
End Group Record Entry

(endgrent) Function, 4-61

CW35-02

endpwent
Close Password File

(endpwent) Function, 4-62

enum Type Specifier, 2-6

equal name

erf

Equal-Names Convention
(equal name) Function,
4-64 -

Error Function (erf)
Function, 4-67

erf c
Complimentary Error
Function (erfc) Function,
4-68

errno, 4-63
Reporting Errors Via errno,

4-19
System Error Message Number

(errno) Function, 4-63

Error
(See Also Error Names)
C Compiler Error Messages

(Tbl) , A-1
Check for I/O Error

(ferror) Function, 4-95
Complimentary Error

Function (erf c} Function,
4-68

Error Function (erf)
Function, 4-67

Error Returns, 4-19
File Status ___ !nquiry --
Clear Error Indicator
(clearerr) Function, 4-50

Number of Largest System
Error Message (sys nerr)
Function, 4-291 -

Print System Error Message
(perror) Function, 4-212

System Error Message Number
(errno) Function, 4-63

System Error Messages
(sys errlist) Function,
4-290

INDEX

i-6

Error Function (erf) Function,
4-67

Error Names
(See Also Error)
EACCES, 4-21
EAGAIN, 4-20
EBADEQ, 4-23
EBADF, 4-20
EBADSTAR, 4-23
EBIGEQ, 4-23
EBUSY I 4-21
ECHILD, 4-20
ECVT, 4-59
EDOM, 4-23
EEXIST, 4-21
EFAULT, 4-21
EFBIG, 4-22
EIDRM, 4-23
EINTR, 4-20
EINVAL, 4-21
EIO, 4-20
EISDIR, 4-21
EMFILE, 4-22
EMLINK, 4-22
ENODEV, 4-21
ENO ENT, 4-19
ENOEXEC, 4-20
ENOIO, 4-20
ENOMEM, 4-20
ENOMSG, 4-23
ENOSPC, 4-22
ENOSWP, 4-23
ENOTBLK, 4-21
ENOTDIR, 4-21
ENOTTY, 4-22
ENVILE, 4-22
EPERM, 4-19
EPIPE, 4-~2
ERANGE, 4-23
EROFS, 4-22
ESPIPE, 4-22
ESRCH, 4-19
E2BIG, 4-20
ETXTBSY, 4-2 2
EUNMEQ, 4-23
EXDEV, 4-21

CW35-02

escape Statement, 2-7

Euclidean Distance (hypot)
Function, 4-159

execl
Execute Bound Unit (execl)
Function, 4-69

execle
Execute Bound Unit (execle)
Function, 4-72

execlp
Execute Bound Unit (execlp)
Function, 4-81

Execute Bound Unit Functions
execl, 4-69
execle, 4-72
execlp, 4-81
execv, 4-75
execve, 4-78
execvp, 4-83
runv,· 4-237

Execute MOD 400 System Service
Macrocall (mcl) Function,
4-196

execv
Execute Bound Unit (execv)
Function, 4-75

execve
Execute Bound Unit (execve)
Function, 4-78

execvp
~xecute Bound Unit (execvp)
Function, 4-83

exit

exp

Terminate a Process (exit)
Function, 4-85

Exponential (exp) Function,
4-86

INDEX·

i-7

Explicit Pointer Conversions,
2-9

Expression, 2-4

External
Definitions, 2-7
Function Definitions, 2-8
Identifier, 2-1
Identifier, Restriction,

2-1

f abs
Absolute Value (fabs)

Function, 4-87

fclose
Close File (fclose)
Function, 4-88

fcntl
File Control (f cntl)
Func~ion, 4-89

f cvt
output Conversion (fcvt)
Function, 4-91

f dopen
Open File (fdopen)
Function, 4-92

feof
Check for End of File

(feof) Function, 4-94

ferror
·check tor I/O Error

(£error) Function, 4-95

£flush
Flush a File (fflush)
Function, 4-96

f getc
Get Character From File

(fgetc) Function, 4~97

£gets
Get String From stdin File

(fgets) Function, 4-153

CW35-02

File, g-2
Assign Buffering to File

(setbuf) Function, 4-246
C Support of MOD 400 File

Types, 4-14
Check for End of File

(feof) Function, 4-94
Close File (close)

Function, 4-51
Close File (fclose)

Function, 4-88
Close Password File

(endpwent) Function, 4-62
Create File (ucf) Function,

4-306
Create Name for Temporary
File (tmpnam) Function,
4-296

Create New File (creat)
Function, 4-54

Determine If Two Pathnames
Designate Same File
(same file) Function,
4-241-

Duplicate Open File
Descriptor (dup) Function,
4-58

File Access, g-2
File Control (fcntl)

Function, 4-89
File Descriptor, g-2
File Inclusion, 2-8
File Status Inquiry --
Clear Error Indicator
(clearerr) Function, 4-50

File Status (fstat)
Function, 4-124

Find File (find file)
Function, 4-100

Flush File (fflush)
Function, 4-96

Format Output to File
(fprintf) Function, 4-108

Get Character From File
(fgetc) Function, 4-97

Get Character From File
(getc) Function, 4-129

Get Character From stdin
File (getchar) Function,
4-130

INDEX

File (cont)

i-8

Get Characters From File
(fgets) Function, 4-98

Get File Descriptor
(fileno) Function, 4-99

Get File Status (stat)
Function, 4-274

Get String From stdin File
(fgets) Function, 4-153

Get Word From File (getw)
Function, 4-156 ·

Initial user-in File, g-3
Initial user-out File, g-3
Link to File (link)
Function, 4-184

Make Unique File Name
(mktemp) Function, 4-206

Open File (fdopen)
Function, 4-92

Open File (fopen) Function,
4-104

Open File for Storage
Management I/O (smopen)
Function, 4-260 .

Push Character Back Into
Input File (ungetc)
Function, 4-318

Put Character On File
(fputc) Function, 4-113

Put Character On File
(putc) Function, 4-220

Put Character On stdout
File (putchar) Function,
4-221

Put String On File (fputs)
Function, 4-114

Put String On stdout File
(puts) Function, 4-226

Put Word On File (putw)
Function, 4-227

Read Block From File
(smread) Function, 4-262

Read From File (read)
Function, 4-230

Reopen File (freopen)
Function, 4-117

Rewind Password File
(setpwent) Function, 4-251

Standard File, g-5
stderr File, g-5

CW35-02

File (cont)
stdin File, g-5
stdout File, g-5
Write Block to File

(smwrit) Function, 4-263
Write On File (write)

Function, 4-322

File Control (fcntl) Function,
4-89

File Status Inquiry -- Clear
Error Indicator {clearerr)
Function, 4-50 ·

File Status (fstat) Function,
4-124

f ileno
Get File Descriptor

(fileno) Function, 4-99

Find
Character in String

(strchr) Function, 4-277
File (find file) Function,

4-100 -
find file, 4-100
Last-Occurrence of
Substring (strrchr)
Function, 4-286

Length of String (strlen)
Function, 4-281

Name of a Terminal
(ttyname) Function, 4-304

Float and Double, 2-3

Floating
Convert ASCII to Floating

Point (atof) Function,
4-39

Floating and Integral, 2-4

Floor Function (floor)
Function, 4-102

Flush a File (fflush)
Function, 4-96

INDEX

i-9

f mod
Remainder Function (frnod)
Function, 4-103

fopen
Open a File (fopen)
Function, 4-104

fork
Create New Process (fork)
Function, 4-106

Format Output Functions
fprintf, 4-108
print£, 4-218
sprint£, 4-264

Formatted Input Conversion
Functions
fscanf, 4-120
scanf, 4-244
sscanf, 4-267

fprintf
Format Output to File .

(fprintf) Function, 4-108

fputc
· Put Character On File

(fputc) Function, 4-113

£puts
Put String On File (fputs)
Function, 4-114

Frame
Stack Frame, 2-11

fread
Buffered Input (fread)

Function, 4-115

free
Free Heap Memory (free)
Function, 4-116

Free Heap Memory (free)
Function, 4-116

CW35-02

f reopen
Reopen File (freopen)
Func~ion, 4-117

f rexp
Split Into Mantissa and

Exponent (frexp) Function,
4-119

f scanf
Formatted Input Conversion

(fscanf) Function, 4-120

fstat
File Status (fstat)
Function, 4-124

Functions, List of
Absolute Value (fabs), 4-87
Alarm Clock (alarm), 4-32
Allocate Memory (alloc),

4-33
Arc Cosine (acos) , 4-31
Arc Sine (asin), 4-36
Arc Tangent (atan) , 4-37
·Arc Tangent of Y/X (atan2),

4-38
Assign Buffering to File

(setbuf) , 4-246
Bessel (jO, jl, jn), 4-175
Bessel (yO, yl, yn), 4-324
Binary S~arch (bsearch),

4-44
Buffered Input (fread),

4-115
Buffered Output (fwrite),

4-126
Ceiling (ceil), 4-47
Change Break Segment Space
Allocation (brk) , 4-42

Change Data Segment Space
Allocation {sbrk) , 4-242

Change Owner (chown), 4-49
Change Working Directory

(chdir), 4-48
Character Classification

(isalnum) , 4-161
Character Classification

(isalpha), 4-162
Character Classification

{ isascii) , 4-163

INDEX

i-10

Functions, List of (cont)
Character Classification

(isascii8), 4-164
Character Classification

(iscntrl) , 4-166
Character Classification

(isdigit), 4-167
Character Classification

(isgraph), 4-168
Character Classification

(islower), 4-169
Character Classification

(isprint), 4-170
Character Classification

(ispunct), 4-171
Character Classification

{isspace), 4-172
Character Classification

(isupper), 4-173
Character Classification

(isxdigit), 4-174
Character Translation (

tolower) , 4-301
Character Translation
toupper), 4-303

Character Translation
(toascii) , 4-298

Character Translation
(tolower), 4-300

Character Translation
(toupper), 4-302

Check for End of File
(f eof) , 4-94

Check for I/O Error
(f error) , 4-95

Close File (close), 4-51
Close File (fclose), 4-88
Close Password File

(endpwent) , 4-62
Common Logarithm (l ogl 0) ,

4-189
Compare Strings (strcmp),

4-278
Compare to Portion of
String (strncmp), 4-283

Complimentary Error (erfc),
4-68

Concatenate Portion of
String (strncat), 4-282

CW35-02

Functions, List of (cont)
Concatenate Strings

(strcat), 4-276
Convert ASCII to Floating

Point (atof), 4-39
Convert ASCII to Integer

(atoi} , 4-40
Convert ASCII to Long

(atol) , 4-41
Convert Between Long and

Base-64 ASCII (a641),
4=27, 4=179 .

Convert Between Long
Integers and Three-Byte
Integers (13tol} , 4-194

Convert Between Three-Byte
Integers and Long Integers
(13tol) , 4-178

Convert Date and Time to
ASCII (asctime), 4-34

Convert Date and Time to
ASCII (ctime), 4-56

Convert Date and Time to
ASCII (gmtime), 4-157

Convert Date and Time to
ASCII (localtime), 4-186

Convert UNIX Pathname to
MOD 400 (pthto6), 4-219

Copy Characters (strncpy),
4-284

Copy String (strcpy), 4-279
Cosine (cos), 4-52
Create File (ucf), 4-306
Create Name for Temporary
File (tmpnam), 4-296

Create New File (creat),
4-54 .

Create New Process (fork) ,
4-106

Create New Process (runl},
4-233

Create New Process (runlp),
4-235

Create New Process (runvp),
4-239

DES Encryption (crypt),
4-55

DES Encryption (encrypt),
4-60

INDEX

i-11

Functions, List of (cont)
DES Encryption (setkey) ,

4-249
Determine Access Rights

(access) , 4-30
Determine If Association is
to Terminal (isatty),
4-165

Determine If Two Pathnames
Designate Same File
(same file), 4-241

Divide-Long Values (lgdiv) ,
4-181

Divide Unsigned Long Values
(uldiv) , 4-311

Duplicate Open File
Descriptor (dup), 4-58

8-bit Character Translation
(toascii8), 4-299

Effective Group ID
(getegid), 4-133

End Group Record Entry
(endgrent) , 4-61

Equal~Names Convention
(equal name), 4-64

Error Function Cerf), 4-67
Euclidean Distance (hypot),

4-159 ·'
Execute Bound Unit (execl) ,
4-69

Execute Bound Unit
(execle), 4-72

Execute Bound Unit
(execlp) , 4-81

Execute Bound Unit (execv) ,
4-75

Execute Bound Unit
(execve), 4-78

Execute Bound Unit
{execvp) , 4-83

Execute Bound Unit (runv),
4-237
Execut~ MOD 400 System
Service Macrocall (mcl),
4-196

Exponential Function (exp) ,
4-86

Exponential Function
(ldexp), 4-180

File Control (fcntl), 4-89

CW35-02

Functions, List of (cont)
File Status Inquiry -­
Clear Error Indicator
(clearerr) , 4-50

File Status (fstat) , 4-124
Find File (find file),
4-100 -

Find Character in String
(strchr), 4-277

Find Last Occurrence of
Substring (strrchr) , 4-286

Find Length of String
(strlen), 4-281

Find Name of Terminal
(ttyname), 4-304

Floor (floor), 4-102
Flush File (fflush), 4-96
Format Output to File

{fprintf) , 4-108
Format Output (print£) ,

4-218
Format Output (sprint£) ,

4-264
Formatted Input Conversion

(fscanf), 4-120
Formatted Input Conversion

(scanf) , 4-244
Formatted Input Conversion

(sscanf) , 4-267
Free Heap Memory (free),

4-116
Generate Random Numbers

(rand) , 4-229
Get Character From File

(fgetc) , 4-97
Get Character From File

(getc), 4-129
Get Character From stdin
File (getchar), 4-130

Get Characters From File
(fgets) , 4-98

Get Current Working
Directory (getcwd), 4-131

Get Effective User ID
(geteuid), 4-135

Get Environment Name
(getenv) , 4-134

Get File Descriptor
(fileno), 4-99

INDEX

i-12

Functions, List of (cont)
Get File Status (stat),

4-274
Get Group Record by Group

ID {getgrgid) , 4-138
Get Group Record by Group

Name (getgrnam) , 4-139
Get Group Record Entry

(getgrent), 4-137
Get Length of Substring

(strspn), 4-287
Get Login Name (getlogin),

4-140
Get Option Letter From

Argument (getopt), 4-141
Get Parent Process ID

(getppid)! 4-146
Get Parent TCB Pointer

(getptcb), 4-147
Get Password Record by

Login Name (getpwnam),
4-149

Get Password Record by User
ID (getpwuid), 4-150

Get Password Record Entry
(getpwent), 4-148

Get Pathname of System
Directory (getdir) , 4-132

Get Process Group ID
(getpgrp) , 4-144

Get Process ID (getpid) ,
4-145

Get Real Group ID (getgid),
4-136

Get Real User ID (getuid},
4-155

Get Record (getr} , 4-151
Get String From stdin File

.(fgets) , 4-153
Get TCB Pointer (gettcb) ,

4-154
Get Time (time), 4-295
Get Word From File (getw) ,

4-156,
Heap Memory Allocation

(callee) , 4-46
Heap Memory Allocator

(malloc) , 4-195
Hyperbolic (cash), 4-53

CW3 5-0 2

Functions, List of (cont)
Hyperbolic Sine (sinh),

4-257
Hyperbolic Tangent (tanh) ,

4-294
Initialize Memory
(init mem), 4-160

Initialize Memory {memset),
4-205

Initialize Memory
. (umemset) , . 4-317
Integer Absolute Value

(abs) , 4-29
Intergroup Channel (pipe),

4-214
Issue MOD 400 Command

(system), 4-292
Linear Search and Update

(lsearch), 4-192
Link to File (link), 4-184
List Directory Entries

Matching Star Name
(star name), 4-270

Locate-Character in Memory
{memchr) , 4-201

Locate Character in Memory
(umemchr), 4-313

Locate Substring (strpbrk),
4-285

Log Gamma (gamma), 4-127
Make Unique File Name

(mktemp) , 4-206
Memory-·to-Memory Compare

(memcmp), 4 02
Memory-to-Memory Comparison

{umemcmp) , 4-314
Memory-to-Memory Copy

(memccpy) , 4-199
Memory-to-Memory Copy

(memcpy) , 4-204
Memory-to-Memory Copy

(umemcpy) , 4-316
Multiply Long Values

(lgrnul), 4-182
Natural Logarithm (log),

4-188
Non-local Goto (longjmp),
4-190

Non-local Goto (setjmp),
4-248

INDEX

i-13

Functions, List of (cont)
Number of Largest System
Error Message (sys nerr),
4-291 -

Open File (fdopen), 4-92
Open File (fopen), 4-104
Open File for Storage

Management I/O (smopen) ,
4-260

Open for Reading or Writing
(open) , 4-20 8

Output Conversion (ecvt),
4-59

Output Conversion (fcvt) ,
4-91

Output Conversion (gcvt) ,
4-128

Position Record Pointer
(posr) , 4-215

Power (pow), 4-217
Print System Error Message

(perror), 4-212
Push Character Back Into

Input File (ungetc), 4-318
Put Character On File

(fpiJtc), 4-113
Put Character On File

(putc),. 4-220
Put String On File (fputs),

4-114
Put Word On File (putw),

4-227
Put Character On stdout
File {putchar), 4-221

Put Record (putr) , 4-222
Put String On stdout File

{puts) , 4-226
Quicker Sort (qsort), 4-228
Read Block From File

(smread) , 4-262
Read From File (read),

4-230
Reallocate Heap Memory

(realloc), 4-232
Remainder for Unsigned Long

Values (ulrem), 4-312
Remainder (fmod), 4-103
Remainder (lgrem), 4-183
Remove Directory Entry

(unlink), 4-319

CW35-02

Functions, List of (cont}
Reopen File (freopen},

4-117
Reset Random Numbe.r
Generator (srand}, 4-266

Return Fraction Part of
Value (modf}, 4-207

Rewind Password File
(setpwent} , 4-251

Send Signal to Process
(kill), 4-176

Send Signal to Process
(send sig}, 4-245

Set Group Record Entry
(setgrent}, 4-247

Set Print Attribute of
Stream (setprint), 4-250

Set Time Zone (tzset} ,
4-305

Signal (signal), 4-252
Sine (sin), 4-256
Split Into Mantissa and

Exponent (frexp), 4-119
Square Root (sqrt), 4-265
String Token Operation

(strtok), 4-288
Substring Operation

(strcspn), 4-280
Suspend Execution for
Interval (sleep), 4-258

Suspend Process Until
Signal (pause) , 4-211

Swap Bytes (swab) , 4-289
System Error Message Number

(errno), 4-63
System Error Messages

(sys errlist), 4-290
Tangent (tan), 4-293
Terminate C Program

(abort), 4-28
Terminate Process (exit),

4-85
Validate and Match Star

Names (star match) , 4-269
Validate Star Names

(star check), 4-268
Wait for Event (wait),

4-320

INDEX

i-14

Functions, List of (cont)
Write Block to File

(smwrit) , 4-263
Write On File (write},

4-322

fwrite
Buffered Output (fwrite)
Function, 4-126

gamma
Log Gamma (gamma) Function,

4-127

gcvt
Output Conversio~ (gcvt)
Function, 4-128

Generate Random Numbers (rand)
Function, 4-229

Get Character Functions
From File (fgetc), 4-97
From File (getc) , 4-129
From stdin File (getchar),

4-130
From File (fgets), 4-98

Get Current Working Directory ·
(getcwd) Function, 4-131

Get Effective User ID
(geteuid) Function, 4-135

Get Environment Name (getenv)
Function, 4-134 ·

Get File Descriptor (fileno)
Function, 4-99

Get File Status (stat)
Function, 4-274

Get Group Record Functions
By Group ID (getgrgid),
·4-138 .
By Group Name (getgrnam) ,

4-139
Entry (getgrent), 4-137

CW35-02

Get Length of Substring
(strspn) Function, 4-287

Get Login Name (getlogin)
Function, 4-140

Get Option Letter From
Argument (getopt) Function,
4-141

Get Parent Process ID
(getppid) Function, 4-146

Get Parent TCB Pointer
(getptcb) Function, 4-147

Get Password Record Functions
By Login Name (getpwnam) ,

4-149
By User ID (getpwuid),

4-150
Entry (getpwent), 4-148

Get Pathname of System
Directory (getdir)
F1.:mction, 4-132

Get Process Group ID (getpgrp)
Function, 4-144

Get Process ID (getpid)
Function, 4-145

Get Real Group ID (getgid)
Function, 4-136

Get Real User ID (getuid)
Function, 4-155

Get Record {getr) Function,
4-151

Get String From stdin File
(fgets) Function, 4-153

Get TCB Pointer {gettcb)
Function, 4-154

Get Time (time} Function,
4-295

INDEX

i-15

Get Word From File (getw)
Function, 4-156

getc
Get Character From File

(getc) Function, 4-129

getchar
Get Character From stdin
File {getchar) Function,
4-130

getcwd
Get Current Working
Directory (getcwd)
Function, 4-131

getdir
Get Pathname of System
Directory (getdir)
Function, 4-132

getegid
Effective Group ID

(getegid) Function, 4-133

getenv
Get Environment Name

(getenv) Function, 4-134

geteuid
Get Effective User ID

(geteuid) Function, 4-135

getgid
Get Real Group ID (getgid)

Function, 4-136

getgrent
Get Group Record Entry

(getgrent) Function, 4-137

getgrgid
Get Group Record by Group

ID (getgrgid) Function,
4-138

getgrnam
Get Group Record by Group

Name (getgrnam) Functionu
4-139

CW35-02

getlogin
Get Login Name (getlogin)
Function, 4-140

getopt
Get Option Letter From

Argument (getopt)
Function, 4-141

getpgrp
Get Process Group ID

(getpgrp) Function, 4-144

getpid
Get Process ID (getpid)

Functionr 4-145

getppid
Get Parent Process ID

(getppid) Function, 4-146

getptcb
Get Parent TCB Pointer

(getptcb) Function, 4-147

getpwent
Get Password Record Entry

(getpwent) Function, 4-148

getpwnam
Get Password Record by

Login Name (getpwnam)
Function, 4-149

getpwuid
Get Password Record by Oser

ID (getpwuid) Function,
4-150

getr
Get Record (getr) Function,

4-151

gets
Get string (gets) Function,

4-153

gettcb
Get TCB Pointer (gettcb)

Function, 4-154

INDEX

i-16

getuid
Get Real User ID (getuid)
Function, 4-155

getw
Get Word From File (getw)

Function, 4-156

gm time
Convert Date and Time to

ASCII (gmtime) Function,
4-157

Group, g-2
Effective Group ID, g-2
Effective Group ID

{getegid) Function, 4-133
End Group Record Entry

(endgrent) Function, 4-61
Get Group Record by Group

ID {getgrgid) Function,
4-138

Get Group Record by Group
Name (getgrnam) Function,
4-139

· Get Group Record Entry
(getgrent) Function, 4-137

Get Process Group ID
(getpgrp) Function, 4-144

Get Real Group ID (getgid)
Function, 4-136

Group Name, g-2
Group work Segment (GWS) ,

g-2
Process Group, g-4
Process Group ID, g-4
Real Group ID, g-4
Set Group Record Entry

(setgrent) Function, 4-247

Hardware Characteristics, 2-2

Heap, 4-195, g-3
Free Heap Memory (free)

Function, 4-116
Heap Management, 4-254
Heap Memory Allocation

(calloc) Function, 4-46

CW35-02

Heap (cont)
Heap Memory Allocator

(malloc) Function, 4-195
Reallocate Heap Memory

(realloc) Function, 4-232

High-Level I/O, g-3

HUGE, 4-15

Hyperbolic Cosine (cosh)
Function, 4-53

Hyperbolic Sine (sinh)
Function, 4-257

Hyperbolic Tangent (tanh)
Function, 4-294

hypot
Euclidean Distance (hypot)
Function, 4-159

Identifiers (names), 2-1

Inclusion
File Inclusion, 2-8

init mem
Initialize Memory

(init_mem) Function, 4-160

Initial
user-in File, g-3
user-out File, g-3

Initialize Memory Functions
init mem, 4-160
memset, 4-205
umemset, 4-317

int, 2-3
unsigned int, 2-3

Integers
Characters and, 2-3
Convert Between Long
Integers and Three-Byte
Integers (13tol) Function,
4-194

INDEX

i-17

Integers (cont)
Convert Between Three-Byte

Integers and Long Integers
(13tol) Function, 4-178

Integer Absolute Value
(abs) Function, 4-29

Integral
Floating and Integral, 2-4

Intergroup Channel (pipe)
Function, 4-214

isalnum
Character Classification

(isalnum) Function, 4-161

isalpha
Character Classification

(isalpha) Function, 4-162

isascii
Character Classification

(isascii) Function, 4-163

isascii8
Character Classification

(isasciiS) Function, 4-164

isatty
Determine If Association is
to Terminal (isatty)
Function, 4-165

iscntrl
Character Classification
(iscntrl) Function, 4-166

isdigi t
Character Classification

(isdigit) Function, 4-167

isgraph
Character Classification

(isgraph) Function, 4-168

islower
Character Classification

(islower) Function, 4-169

CW35-02

isprint
Character Classification

(isP,rint) Function, 4-170

ispunct
Character Classification

(ispunct) Function, 4-171

is space
Character Classification

(isspace) Function, 4-172

Issue MOD 400 Command (system)
Function, 4-292

is upper
Character Classification

(isupper) Function, 4-173

isxdigit

jO

jl

jn

Character Classification
(isxdigit} Function, 4-174

Bessel Functions (jO' jl,
jn) , 4-175

Bessel Functions (jO' jl,
jn), 4-175

Bessel Functions (jO, jl,
jn} , 4-175

Keyword, 2-2

kill
Send Signal to Process

(kill) Function, 4-176

13tol
Convert Between Three-Byte

Integers and Long Integers
(13tol} Function, 4-178

164a
Convert Between Long and
Base-64 ASCII (164a)
Function, 4-179

INDEX

ldexp

i-18

Exponential Function
(ldexp) , 4-180

Lexical Conventions, 2-1

lgdiv
Divide Long Values (lgdiv}

Function, 4-181

lgmul
Multiply Long Values

(lgmul) Function, 4-182

lg rem
Remainder Function (lgrem)
Function, 4-183

Library
Library Directory, 2-9
MOD 400 C Standard Library

(Sorted by Name) (Tbl),
4-2

Subroutines and Libraries,
4-15

Linear Search and Update
(lsearch) Function, 4-192

Link, g-3
Link to File (link}
Function, 4-184

List Directory Entries
Matching Star Name
(star_name) Function, 4-270

local time
Convert Date and Time to

ASCII (localtime)
Function, 4-186

Locate Character in Memory
(memchr} Function, 4-201

Locate Character in Memory
(umemchr) Function, 4-313

Locate Substring (strpbrk)
Function, 4-285

CW35-02

log
Natural Logarithm Function

(log) Function, 4-188

Log Gamma (gamma) Function,
4-127

loglO
Common Logarithm (loglO)
Function, 4-189

Login Name, g-3
Get Login Name (getlogin)

Function, 4-140
Get Password Record by

Login Name (getpwnam)
Function, 4-149

longjmp
Non-Local Goto (longjmp)
Function, 4-190

Low-Level I/O, g-3

lsearch
Linear Search and Update

(lsearch) Function, 4-192

ltol3
Convert Between Long

Integers and Three-Byte
Integers (ltol3) Function,
4-194

m4 errno
-Reporting Errors Via

m4_errno, 4-19

Machine State
Saved Machine State, 2~13

Make Unique File· Name (mktemp)
Function, 4-206

malloc
Heap Memory AllocatQr

(malloc) Function, 4-195

INDEX

mcl
Execute MOD 400 System
Service Macrocall (mcl)
Function, 4-196

memccpy
Memory-to-Memory Copy

(memccpy) Function, 4-199
•

memchr
Locate Character in Memory

(memchr) Function, 4-201

memcmp
Memory-to-Memory Compare

(memcmp) Function, 4-202

memcpy
Memory-to-Memory Copy

(memcpy) Function, 4-204

Memory-to-Memory Functions
Compare (memcmp) , 4-202
Comparison (umemcmp), 4-314
Copy (memccpy) , 4-199
Copy (memcpy), 4-204
Copy (umemcpy), 4-316

memset
Initialize Memory (memset)
Function, 4-205

Message
Diagnostics {Tbl) , A-2
Error (Tbl) , A-1
System Error Messages

(sys_errlist) Function,
4-290

Migration From MOD 400 Release
3.1 to MOD 400 Release 4.0,
2-10

mktemp
Make Unique File Name

(mktemp) Function, 4-206

modf
Return Fraction Part of
Value (modf) Function,
4-207

i-19 CW35~02

Multiply Long Values (lgmul)
Function, 4-182 .

Natural Logarithm (log)
Function, 4-188

Nested Include, 2-8

New Process Bound Unit, 4-69,
4-7 2 I 4-7 5 I 4-7 8 I 4- 81 I

4-83, 4-233, 4-235, 4-237,
4-239

New Process Inheritance, 4-70,
4-73, 4-76, 4-79, 4-82,
4-84 .

Non-local Goto Functions
longjmp, 4-190
setjmp, 4-248

NUL
Null Character (NUL), g-3

Null
Character (NUL), g-3
Pathname, g-3
Pointer, 4-15, g-3

..

Number of Largest System Error
Message (sys nerr}
Function, 4-291

oflag Values, 4-208

Open Functions
open, 4-208
Open File (fdopen), 4-92
Open File (fopen}, 4-104
Open File for Storage

Management I/O (smopen),
4-260

Open for Reading or Writing
(open), 4-208

Operator
Additive, 2-4
Assignment, 2-4
Shift, 2-4

INDEX

i-20

Output Conversion Functions
ecvt, 4-59
fcvt, 4-91
gcvt, 4-128

Parent
Get Parent Process ID

(getppid} Function, 4-146
Get Parent TCB Pointer

(getptcb) Function, 4-147
Parent Process ID, g-4

Path Environment, 4-81, 4-83,
4-100, 4-292

Pathname, g-4
Convert UNIX Pathname to

MOD 400 (pthto6) Function,
4-219

Get Pathname of System
Directory (getdir)
Function, 4-132

Null Pathname, g-3

pause
Suspend Process Until
· Signal (pause) Function,

4-211

perror
Print system Error Message

(perror) Function, 4-212

pipe
Intergroup Channel (pipe)
Function, 4-214

Pointer, 2-4
Explicit Pointer
Conversions, 2-9

Get Parent TCB Pointer
(getptcb) Function, 4-147

Get TCB Pointer (gettcb)
Function, 4-154

Null Pointer, 4-15, g-3
Position Record Pointer

(posr) Function, 4-215

Portability Considerations,
2-10, 4-190

CW35-02

Position Record Pointer (posr)
Func~ion, 4-215

posr

pow

Position Record Pointer
(posr) Function, 4-215

Power (exp) Function, 4-217

Power Function (exp) Function,
4-217

Print System Error Message
(perror) Function, 4-212

printf
Format Output (printf)
Function, 4-218

Process, g-4
Abandoning, 4-24
Create New (fork) Function,

4-106
Create New (runl) Function,

4-233
Create New (runlp)
Function, 4-235

Create New (runv~)
Function, 4-239

Get Parent ID (getppid)
Function, 4-146

Get Group ID (getpgrp)
Function, 4-144

Get ID (getpid) Function,
4-145

Group, g-4
Group ID, g-4
ID, g-4
New Bound Unit, 4-69, 4-72,
4-75, 4-78, 4-81, 4-83,
4-233, 4-235, 4-237, 4-239

New Inheritance, 4-70,
4-73, 4-76, 4-79, 4-82,
4-84

Parent ID, g-4
Send Signal to (kill)
Function, 4-176

Send Signal to (send sig)
Function, 4-245 -

INDEX

i-21

Process (cont)
Suspend Until Signal

(pause) Function, 4-211
Terminate (exit) Function,

4-85

pthto6
Convert UNIX Pathname to

MOD 400 (pthto6) Function,
4-219

Push Character Back Into Input
File (ungetc) Function,
4-318

Put Functions
Character On File (fputc),

4-113
Character On File (putc) ,

4-220
String On File (fputs),

4-114
Word O~ File (putw) , 4-227
Character On stdout File

(putchar), 4-221
Record (putr), 4-222
String On stdout File

(puts), 4-226

putc
Put Character On File

(putc) Function, 4-220

put char
Put Character On stdout
File (putchar) Function,
4-221

putr
Put Record (putr) Function,

4-222

puts
Put String On stdout File

(puts) Function, 4-226

putw
Put Word On File (putw)
Function, 4-227

CW35-02

qsort
Quicker Sort (qsort)

Func.tion, 4-228

Quicker Sort (qsort} Function,
4-228

rand
Generate Random Numbers

(rand) Function, 4-229

Read Functions
Read Block From File

(smread) , 4-262
Read From File (read),

4-230

Real
Get Real Group ID (getgid)

Function, 4-136
Get Real User ID (getuid)
Function, 4-155

Real Group ID, g-4
Real User ID, g-4

realloc
Reallocate Heap Memory

(realloc) Function, 4-232

Reallocate Heap Memory
(realloc) Function, 4-232

Referencing Directory, g-5

Register
Conventions, 2-11
Variable, 2-5, 2-13

Remainder Functions
fmod, 4-103
lg rem, 4-183
ul rem, 4-312

Remove Directory Entry
(unlink) Function, 4-319

Reopen File (freopen)
Function, 4-117

INDEX

i-22

Reset Random Number Generator
(srand) Function, 4-266

Return Fraction Part of Value
(modf) Function, 4-207

Return Value
Error Returns, 4-19

Rewind Password File
(setpwent) Function, 4-251

Root
Root Directory, g-5

· Square Root (sqrt)
Function, 4-265

Run-Time Routines, 4-26

runl
Create New Process {runl)

Function, 4-233

runlp
Create New Process (runlp)
Function, 4-23 5

runv
Execute Bound Unit (runv)
Function, 4-237

runvp
Create New Process (runvp)

Function, 4-239

same file
Determine If Two Pathnames

Designate Same File
(same file) Function,
4-241-

Saved Machine State, 2-13

sbrk
Change Data Segment Space
Allocation (sbrk)
Function, 4-242

CW35-02

scanf
Formatted Input Conversion

(scanf) Function, 4-244

Search
Binary Search (bsearch)

Function, 4-44
Linear Search and Update

(lsearch) Function, 4-192
Search Rules, g~S

Segment
Break Segment, 4-42
Change Break Seg~ent Space
Allocation (brk) Function,
4-42

Change Data Segment Space
Allocation (sbrk)
Function, 4-242

Code Segment, 2-5
Data Segment, 2-5
Group Work Segment (GWS),

g-2

send sig
(See Also kill)
send Signal to Process

(send_sig} Function, 4-245

Set Group Record Entry
(setgrent} Function, 4-247

Set Print Attribute of Stream
(setprint) Function, 4-250

Set Time Zone (tzset)
Function, 4-305

setbuf
Assign Buffering to File
(~etbuf) Function, 4-246

setgrent
Set Group Record Entry

(setgrent) Function, 4-247

setjmp
Non-local Goto (setjmp)
Function, 4-248

INDEX

i-23

setk.ey
DES Encryption (setkey)

Function, 4-249

setprint
Set Print Attribute of

Stream (setprint)
Function, 4-250

setpwent
Rewind Password File

(setpwent) Function, 4-251

Shift Operator, 2-4

Side Effects, 2-4

Sign Extension, 2-3

Signal, 4-252
Catcher, g-5
List, 4-252
MOD 400 Trap Support of

UNIX Signals (Tbl), 4-17
Send to Process (kill)
Function, 4-176

sin

send to Process (send sig}
Function, 4-245 -

Software-Generated (Tbl) 11

4-18
Suspend Process Until

(pause) Function, 4-211
'!'raps and, 4-16

Sine (sin) Function, 4-256

Sine '(sin) Function, 4-256

sinh
Hyperbolic Sine (sinh)
Function, 4-257

sleep
Suspend Execution for
Interval (sleep} Function,
4-258

CW35-02

smopen
Open File for Storage

Management I/O (smopen)
Function, 4-260

smread
Read Block From File

(smread) Function, 4-262

smwrit
Write Block to File

{smwrit) Function, 4-263

_oftware-Generated Signals
(Tbl) , 4-18

Specifier
Storage Class, 2-5
Type, 2-6

Split Into Mantissa and
Exponent (frexp) Function,
4-119

sprintf
Format Output (sprintf)
Function, 4-264

sqrt .
Square Root Function (sqrt)
Function, 4-265

Square Root Function (sqrt)
Function, 4-265

srand
Reset Random Number
Generator (srand)
Function, 4-266

sscanf
Formatted Input Conversion

(sscanf) Function, 4-267

Stack
Frame, 2-11
Layout (Fig), 2-11

INDEX

i-24

star.check
Validate Star Names

(star check) Function,
4-268-

Star Name
List Directory Entries

Matching Star Name
(star name) Function,
4-270-

star match, 4-269
Star-name, 4-270
Validate and Match Star

stat

Names (star match)
Function, 4=269

Get File Status (stat)
Function, 4-274

Statement, 2-7
Escape Statement, 2-7

stder r, 4-15
stderr File, g-5

stdin, 4-15
stdin File, g-5

stdout, 4-15
· stdout File, g-5

Storage
const Storage Type, 2-5
Open File for Storage

Management I/O (smopen)
Function, 4-260

Storage Class Specifiers,
2-5

strcat
Concatenate Strings

(strcat) Function, 4-276

strchr
Find Character in String

(strchr) Function, 4-277

strcmp
Compare Strings (strcmp)
Function, 4-27 8

CW35-02

strcpy
Copy String (strcpy)
Function, 4-279

strcspn
Substring Operation

(strcspn) Function, 4-280

String, 2-2, g-6

String Functions
Compare (strcmp), ·4-278
Compare to Portion of

(strncmp) , 4-283
Concatenate (strcat), 4-276
Con~_atenate Portion of

(strncat), 4-282
Copy (strcpy), 4-279
Find Character in (strchr) ,

4-277
Find Length of (strlen),

4-281
Get From stdin File

(£gets) , 4-153
Put On File (fputs), 4-114
Put On stdout File (puts) ,

4-226
Token Operation (strtok),

4-288

strlen
Find Length of String

(strlen) Function, 4-281

strncat
Concatenate Portion of
String {strncat) Function,
4-282

strncmp
Compare to Portion of
String (strncmp) Function,
4-283

strncpy
Copy N Characters (strncpy)
Function, 4-284

strpbrk
Locate Substring (strpbrk)
Function, 4-285

INDEX

i-25

strrchr
Find Last Occurrence of

Substring (strrchr)
Function, 4-286

strspn
Get Length of Substring

(strspn) Function, 4-287

strtok
String Token Operation

(strtok) Function, 4-288

Structure and Union, 2-9
Declarations, 2-7

Subexpression, 2-4

Subroutines and Libraries,
4-15

Substring Operation (strcspn)
Function, 4-280

Suspend Execution for Interval
{sleep) Function, 4-258

Suspend Process Until Signal
(pause) Function, 4-211

swab
Swap Bytes (swab) Function,

4-289

Swap Bytes (swab) Function,
4-289

sys_errlist, 4-290

sys_nerr, 4:..291

System Error Message Functions
Number (errno), 4-63

tan

Number of Largest
{sys_nerr), 4-291
Print (perror), 4-212
sys_errlist, 4-290

Tangent Function (tan)
Function, 4-293

CW35-02

Tangent Function (tan)
Function, 4-293

tanh
Hyperbolic Tangent Function

(tanh) Function, 4-294

Terminal, g-6
Control Terminal, g-l
Determine If Association is
to Terminal (isatty)
Function, 4-165

Find Name of Terminal
(ttyname) Function, 4-304

Terminal ID, g-6

Terminate Program (abort)
Function, 4-28

Terminate Process (exit)
Function, 4-85

Time, 4-295
Convert Date and Time to

ASCII (asctime) Function,
4-34

Convert Date and Time to
ASCII (ctime) Function,
4-56

Convert Date and Time to
ASCII (gmtime) Function,
4-157

Convert Date and Time to
ASCII (localtime)
Function, 4-186

Get Time (time) Function,
4-295

Set Time Zone (tzset)
Function, 4-305

Time Zone, 4-35

tmpnam
Create Name for Temporary
File (tmpnam) Function,
4-296

toascii
Character Translation

(toascii) Function, 4-298

INDEX

i-26

toascii8
8-bit Character Translation

(toasci.i8) Function, 4-299

Token
String Token Operation

(strtok) Function, 4-288
Token Replacement, 2-8

tolower
Character Translation (

tolower) Function, 4-301
Character Translation

(tolower) Function, 4-300

toupper
Character Translation (

toupper) Function, 4-303
Character Translation

(toupper) Function, 4-302

Trap
MOD 400 Trap Support of

UNIX Signals (Tbl), 4-17
Traps and Signals, 4-16

tty name
Find Name of a Terminal

(ttyname) Function, 4-304

tzset

ucf

Set Time Zone (tzset)
Function, 4-305

Create a File (ucf)
Function, 4-306

ucf init, ucf defc,
ucf defr, ucf finish,
4-306 -

uldiv
Divide Unsigned Long Values

(uldiv) Function, 4-311

ulrem
Remainder Function for

Unsigned Long Values
(ulrem) Function, 4-312

CW35-02

umemchr
Locate Character in Memory

(umemchr) Function, 4-313

umemcmp
Memory-to-Memory Comparison

(umemcmp) Function, 4-314

umemcpy
Memory-to-Memory Copy

(umemcpy) Function, 4-316

umemset
Initialize Memory (umemset)
Function, 4-317

ungetc
Push Character Back Into

Input File (ungetc)
Function, 4-318

Union
(See Structure and Union)

UNIX
Convert UNIX Pathname to

MOD 400 (pthto6) Function,
4-219

MOD 400 Trap support of
"UNIX Signals (Tbl) , 4-17

UNIX Errors, 4-19

unlink
Remove Directory Entry

(unlink) Function, 4-319

unsigned char, 2-3

unsigned int, 2-3

unsigned long, 2-3
Divide Unsigned Long Values

(uldiv) Function, 4-311
Remainder Function for

Unsigned Long Values
{ulrem) Function, 4-312

user-in
Initial user-in File, g-3

INDEX

i-27

user-out
Initial user-out File, g-3

Validate and Match Star Names
(star match) Function,
4-269-

Validate Star Names
{star check) Function,
4-268-

void Type Specifier, 2-6

wait
Wait for Event (wait)

Function, 4-320

Wait for Event (wait)
Function, 4-320

write
Write On File (write)

Function, 4-322

Write Block to File {smwrit)
Function, 4-263

Write On File (write)
Function, 4-322·'

yO, yl, yn, 4-324
(See Also jO, jl, jn)
Bessel (yO, yl, yn)

Functions, 4-324

CW35-02

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

TITLE DPS-6
GCOS 6 MOO 400
C USER'S GUIDE

ERRORS IN PUBLICATION

SUGGESTIONS FOR tMPAOVEMENT TD PUBLICATION

Your comments will be investigated by appropriate technical personnel
and action will be taken as required. Receipt of all forms will be O
acknowledged; however, if you require a detailed reply, t''"'!Ck here.

FROM: NAME----------------------~

TITLE ----------------------

COMPANY --------

ADDRESS---------------------~

ORDER NO. , CW35-02

DATED I Marci1 1986

PLEASE FOLD AND TAPE-
NOTE: U. S."Postal Service will not deliver ~tapled forms

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WAL THAM, MA 02154

ATTN: PUBLICATIONS, MS486

Honeywell

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

TITLE DPS 6
GCOS 6 MOD 400
C USER'S GUIDE

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be investigated by appropriate technical personnel
and action will be taken as required. Receipt of all forms will be
acknowledged; however, i·f you require a detailed reply, c"·'!Ck here. 0

FROM: NAME------------------~--------------------~

TITLE ----------------------

COMPANY --------

ADDRESS---------------------------------~------

ORDER NO. CW35-02

DATED Marci1 1986

DATE

PLEASE FOLD ANO TAPE-
NOTE: U.S. Postal Service wiB not deliver stapled forms

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154

POSTAGE WILL BE PAIO BY AOOAESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

Honeywell

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

