


SUBJECT 

SERIES 60 (LEVEL 6) 
GCOS 6 MOD 400 PROGRAM 

EXECUTION AND CHECKOUT MANUAL 

Detailed Description of Series 60 (Level 6) GCOS Program Execution and 
Checkout Procedures 

SOFrWARESUPPORTED 

This pUblication supports Release 0100 of the Series 60 (Level 6) MOD 400 
Operating System; see the Manual Directory of the latest GCOS 6 MOD 400 
System Concepts manual (Order No. CB20) for information as to later release 
supported by this manual. 

ORDER NUMBER 

CB21, Rev. 0 November 1977 

Honeywell 



PREFACE 

This manual describes the GeOS 6 MOD 400 program execution and 
checkout procedures. Unless stated otherwise herein, the term GeOS refers 
to the GeOS 6 MOD 400 software; the term Level 6 refers to the Series 60 
(Level 6) hardware on which the software executes. 

Section I summarizes how to access files via pathnames, and describes in 
detail the suffixes that are appended to file names. It is important that you 
understand these concepts before proceeding with the manual. 

Section 2 describes how to load the Linker, Linker functions, and 
directives that control execution of the Linker. 

Section 3 provides a summary of the procedures and commands used in 
program execution. 

Section 4 describes how to load Patch, and includes detailed descriptions 
of Patch directives. 

Section 5 describes how to debug programs using Debug and other 
methods. 

Section 6 describes how to load and use the MDUMP and Dump Edit 
utility programs. 

Appendix A describes, in detail, how to interpret memory dumps. This 
appendix includes procedures for determining where a trap occurred, finding 
the location in memory of your code, and determining where execution of 
your code terminated. 

© 1977, Honeywell Information Systems Inc. 

j 

File No.: IS23 

CB21 



( 

MANUAL DIRECTORY 
The following publications comprise the GCOS 6 manual set. The Manual 

Directory in the latest GCOS 6 MOD 400 System Concepts manual lists the 
current revision number and addenda (if any) for each manual in the set. 

Order 
No. 

COOl 
COO2 
COO3 
CB04 
COO5 
COO6 
CB07 
CB08 
CB09 
CBIO 
CB20 
CB21 
CB22 
CB23 
CB24 
CB25 
CB26 
CB30 
CB31 
CB33 
CB34 
CB35 
CB36 
CB37 
CB38 
CB39 

Manual Title 

GCOS 6 Program Preparation 
GCOS 6 Commands 
GCOS 6 Communications Processing 
GCOS 6 Sort/Merge 
GCOS 6 Data File Organizations and Formats 
GCOS 6 System Messages 
GCOS 6 Assembly Language Reference 
GCOS 6 System Service Macro Calls 
GCOS 6 RPG Reference 
GCOS 6 Intermediate COBOL Reference 
GCOS 6 MOD 400 System Concepts 
GCOS 6 MOD 400 Program Execution and Checkout 
GCOS 6 MOD 400 Programmer's Guide 
GCOS 6 MOD 400 System Building 
GCOS 6 MOD 400 Operator's Guide 
GCOS 6 MOD 400 FORTRAN Reference 
GCOS 6 MOD 400 Entry-Level COBOL Reference 
Remote Batch Facility User's Guide 
Data Entry Facility User's Guide 
Level 6/Level 6 File Transmission 
Level 6/Level 62 File Transmission 
Level 6/Level 64 (Release 0300) File Transmission 
Level 6/Level 66 File Transmission 
Level 6/Series 200/2000 File Transmission 
Level 6/BSC 2780 File Transmission 
Level 6/Level 64 (Release 0220) File Transmission 

In addition, the following documents provide general hardware information: 

Order 
No. Manual Title 

AS22 Honeywell Level 6 Minicomputer Handbook 
AT04 Level 6 System and Peripherals Operation Manual 

iii CBZl 



I 
. ./ 

/ 



CONTENTS 
Page 

Section 1. Overview of Program 
Execution and Checkout ..... 1-1 

Symbols Used in This Manual ......... 1-3 

Section 2. Linker .................... 2-1 
Suffix Conventions ................. 2-2 
Functions of the Linker ............. 2-2 

Creating a Bound Unit ............ 2-2 
Resolving External References ...... 2-3 
Creating a Symbol Table ........... 2-3 
Producing a Link Map ............. 2-3 

Functional Groups of Linker Directives .. 2-3 
Specifying Object Unites) to be 

Linked ....................... 2-3 
Specifying Location(s) of Object 

Unites) to be Linked ............. 2-4 
Creating a Root and Optional 

Overlay(s) ..................... 2-4 
Producing Link Map(s) ............ 2-5 
Defining External Symbol(s) ....... 2-5 
Protecting or Purging Symbol(s) ..... 2-6 
Designating that the Last Linker 
has been Entered ............... 2-6 

Loading the Linker ................. 2-6 
Entering Linker Directives ........... 2-8 
Procedure for Creating Only a Root .... 2-8 
Procedure for Creating a Root and One 

or More Overlays ................. 2-8 
Procedure for Creating a Shareable 

Bound Unit Using a High Level 
Language ....................... 2-9 

Obtaining Summary Information of a 
Linker Session .................... 2-10 

Linker Directive Descriptions ......... 2-11 
BASE Directive .................. 2-11 
Call-Cancel Directive (CC) .......... 2-15 
COMM Directive ................. 2-15 
CPROT Directive ................ 2-15 
CPURGE Directive ............... 2-15 
EDEF Directive ................. 2-16 
FLOVLY Directive ............... 2-17 
IN Directive ............. ....... 2-18 
1ST Directive ................... 2-19 
LDEF Directive .................. 2-20 
LIB Directive ................... 2-21 
LIB (2, 3, or 4) Directive ........... 2-22 
LiNK Directive .................. 2-23 
LINKN Directive ................. 2-24 
LINKO Directive ................. 2-25 
LSR Directive ................... 2-25 
MAP and MAPU Directives ......... 2-25 
OVLY Directive ................. 2-28 
PROTECT Directive ................ 2-32 

v 

Page 

PURGE Directive ................ 2-33 
QUIT Directive .................. 2-34 
SHARE Directive ................ 2-35 
START Directive ................ 2-35 
SYS Directive ................... 2-35 
VAL Directive ................... 2-36 
VDEF Directive ................. 2-36 
VPURGE Directive ............... 2-36 

Example lllustrating Usage of the 
Linker .......................... 2-37 

Programming Considerations .......... 2-38 

Section 3. Program Execution .......... 3-1 
Designating Files ................... 3-1 

ASSOC Command ............... 3-1 
GET Command .................. 3-1 

Setting Switches ................... 3-2 
MSW Command ................. 3-2 

Requesting Program Execution ........ 3-3 
Program Preparation and Execution 

in the Same Task Group .......... 3-3 
Program Execution in a Different 

Task Group from Program 
Preparation .................... 3-3 

Using the CG and EGR Commands. 3-3 
CG Command ............... 3-4 
EGR Command ............. 3-5 

Using the SG Command ......... 3-6 
Using the LOGIN Command ...... 3-8 

Section 4. Patch ..................... 4-1 
Loading Patch . . . . . . . . . . . . . . . . ..... 4-1 
Submitting Patch Directives .......... 4-2 
Patching Techniques ................ 4-2 

Naming the Patch ................ 4-2 
Applying the Patch ............... 4-2 

Patch Directives ................... 4-3 
Data Patch Directive .............. 4-3 
Eliminate Patch Directive .......... 4-5 
Hexadecimal Patch Directive ...... ~ 4-6 
List Patches Directive ............. 4-8 
Quit Directive ................... 4-9 
Comment Directive ............... 4-9 

Section 5. Debugging Programs ......... 5-1 
Debug ....................... ' .... 5-1 

Debug File Requirements .......... 5-1 
Loading the Debug Task Group ...... 5-1 
Debug Directives ................. 5-2 

Planning Considerations ......... 5-4 
Setting Breakpoints . . . . . . . . . . . 5-4 
Controlling Output Using a 

Breakpoint ................ 5-4 

CB21 



Page 

Determining/Setting the Active 
Level ....................... 5-4 

Maintaining a Trace History ....... 5-6 
All Registers Directive ........... 5-6 
Assign Directive ............... 5-6 
Clear All Directive ............. 5-7 
Change Memory Directive ........ 5-7 
Clear Directive ................ 5-8 
Clear Bound Unit Directive ....... 5-8 
Clear All Bound Unit Directive .... 5-8 
Define Directive ............... 5-8 
Display Memory Directive ....... 5-9 
Dump Memory Directive ......... 5-10 
Define Trace Directive .......... 5-10 
Execute Directive .............. 5-11 
End Trace Directive ............ 5-11 
Redirect Debug Output Directive .. 5-12 
GO Directive ................. 5-1 2 
Conditional Execution Directive ... 5-13 
Prin t Header Line Directive ....... 5-14 
List All Breakpoints Directive ..... 5-15 
List Breakpoint Directive ........ 5-15 
List All Bound Unit Breakpoints 

Directive .................... 5-15 
List Bound Unit Breakpoint 

Directive .................... 5-16 
Line Length Directive ........... 5-16 
Prin t All Directive ............. 5-16 
Print Directive ....... 0 ••• 0 •• 0 • 5-1 7 
Print Trace Directive ... 0 •• 0 0 •• 0 5-17 
Quit Directive 0 0 • 0 0 • 0 0 0 •• 0 ••••• 5-17 
Reset File Directive .. 0 0 0 • 0 0 • 0 0 0 • 5-17 
Set Breakpoint Directive ... 0 0 • 0 0 • 5-18 
Set Bound Unit Breakpoint 

Directive 0 •• 0 ••••••••••••••• 5-19 
Specify File Directive ........... 5-20 
Set Level Directive ............. 5-20 
Start j-mode Trace Directive ...... 5-21 
Set Temporary Level Directive .... 5-21 
Print Hexadecimal Value 

Directive .................... 5-22 
Example Illustrating Usage of Debug 

Directives .... 0 •••••••••••••••••• 5-22 
Debugging Programs Without Using 

Debug .......................... 5-24 
Deactivating Real-TimeClock ...... 0 5-24 

Section 6. MDUMP and Dump Edit Utility 
Programs . 0 • 0 ••••••••••••• 6-1 

MDUMP Utility Program ............. 6-1 
Preparing for MD UMP ............. 6-1 

Page 

Procedure for Using MDUMP .... 0 •• 6-1 
MDUMP Halts .. 0 0 .00.000. 0 0 0 0 0 0 • 6-2 

Dump Edit Utility Program 0 0 •• 000 .0 0 • 6-2 
Operating Procedure for Dump Edit 0 0 6-3 
DPEDIT Command . 0 •• 0 0 •• 0 • 0 0 0 •• 6-4 
In terpreting Dump Edit Dumps " 0 0 0 6-6 

Dump Edit Line Format o. 0 •• 0 0 •• 6-6 
Logical Dump Format 0 0 • 0 0 ••• 0 0 • 6-6 
Physical Dump Format. 0 00 ••• o •• 6-10 

Appendix A. Interpreting and Using 

vi 

Memory Dumps .. 0 •• 0 • 0 0 A-I 
Significant Locations on Memory 

Dumps .. 0 •••• 0.0 ••• 0 0 0 0 0 0 •••• 0 0 A-I 
Locations Relative to the System 
Control Block or Group Control 
Block 0 •••••• 0 ••••• 0 ••• 0 ••••• 0 A-3 

Locations Relative to the Task 
Control Block (TCB) Pointer for the 
Desired Priority Level ... 0 ••••• 0 • 0 A-3 

Interpreting the Contents of a DPEDIT 
Dump .. o •••••••••••••••• 0 ••• 0 •• A-4 

Finding the Location in Memory of 
Your Code ... 0 ••••••••••• 0 •••• A-4 

Determining the State of Execution 
of Your Code at the Time of the 
Dump 0 •••••• 0 ••• 0 •••••••••••• A-4 

Halt at Level 2 0 •••••••• 0 0 0 • 0 •• A-4 
User Level Active at the Time of 

Dump ...................... A-5 
No Level Active at the Time of 

Dump, Except for Level 63 00 0 0 0 0 A-5 
Determining Where a Trap Processed by 

the System Default Handler Occurred 
in Your Code ............... 0 o ••• A-5 

Finding the Location in Memory of 
Your Code . 0 •••••• 0 0 0-' ••• 0 ••• 0 0 0 A-6 

Interpreting the Monitor Call Number 
on Memory Dumps . 0 •••••• 0 •••••• 0 A-6 

CB21 

/ 



ILLUSTRATIONS TABLES 

Figure Page Table Page 

1-1. Program Execution and Checkout 2-1. Designating File Names .......... 2-2 
Procedures ..... : ............. 1-2 5-1. Symbols Used in Debug Directive 

2-1. Schematic of Previous Example Lines ....................... 5-3 
Illustrating Usage of BASE 5-2. Summary of Debug Directives, by 
Directives ................... 2-13 Function .................... 5-5 

2-2. Link Map Formats ............. 2-27 6-1. MDUMP Halts ................. 6-2 
2-3. Sample Link Maps ............. 2-29 6-2. DPEDIT - Specific Fatal Error 
6-1. Format of Logical Dumps Produced Messages .................... 6-3 

by Dump Edit ............... 6-7 6-3. Supplemental Information that may 
6-2. Sample Logical Memory Dump .... 6-8 Occur in Logical Dumps Produced 
6-3. Sample Physical Memory Dump ... 6-11 by Dump Edit ................ 6-10 
A-I. Data Structure Map ............. A-2 6-4. Supplemental Information that may 

Occur in Physical Dumps 
Produced by Dump Edit ........ 6-10 

A-I. Significant Locations on Memory 
Dump ...................... A-1 

A-2. Summary of Executive Monitor 
Calls ....................... A-7 

vii CB21 





SECTION 1 

OVERVIEW OF PROGRAM EXECUTION 
AND CHECKOUT 

Honeywell supplies the necessary tasks to create a source unit and convert it into an 
executable format (including error detection and correction) or to apply a patch. These 
tasks are described in subsequent sections of this manual and in the Program Preparation 
manual. 

Program checkout can be performed after you first perform both the initial system 
startup procedure and a specialized system startup procedure. The initial and specialized 
startup procedures are described in the "Startup and Configuration" section of the System 
Building manual. The equipment required for program preparation is described in the 
"Equipment Requirements" section of the Systems Concepts manual. 

Program checkout is described below and illustrated in Figure 1-1. A source file is edited, 
then compiled or assembled as described in the Program Preparation manual. Before 
execution, separately assembled and/or compiled object units must be linked by the Linker 
to form a bound unit. A bound unit comprises a root, or a root and one or more overlays. A 
root is the portion of a bound unit that is loaded into memory when the Loader is requested 
to load a bound unit. 1 The root remains in memory as long as there are tasks executing on 
its behalf, unless the LDBU configuration directive was specified; if LDBU was specified, the 
root remains in memory until the system is reinitialized. An overlay is loaded into memory 
whenever it is required. 

After linking and loading the bound unit, you can control execution of a program and 
make desired changes while the program is executing by using Debug. Breakpoints can be set 
to determine which code is executing, and specified registers and memory locations can be 
displayed and, if desired, changed. If there is not enough memory for Debug, you can 
perform debugging by using Patch to append monitor points. Patch permits you to add 
patches to and/or delete patches from object units and bound units. 

There are three methods of obtaining memory dumps. While a program is executing, you 
can obtain a memory dump by using either Debug or the Dump Edit utility program; dumps 
produced by Dump Edit are in edited format and are much easier to interpret. If an 
executing program encounters a problem and it aborts or a halt occurs, to obtain a memory 
dump you may use just Dump Edit or you may first dump memory to a disk file by using 
the MDUMP utility program and then print the memory dump by using Dump Edit. To 
dump the contents of all or part of the Multiline Communications Processor memory, you 
can use the DUMCP dump routine, which is described in the Communications Processing 
manual. 

NOTES 
1. If you are going to perform program checkout while simultaneously executing other 

online tasks in the foreground, you must be familiar with the System Concepts 
manual. 

2. Throughout this manual there are references to the create group, enter group 
request, spawn group, and enter batch request commands; these commands are 
described in the Commands manual. 

I The root is loaded when an -EFN argument is specified in a create group or spawn group command, or an LDBU config­
uration directive is specified (see the System BUilding manual). 

OVERVIEW 1-1 CB21 



-----------~--------

MACRO 
PREPROCESSOR 

OUTPUT 
LISTING 

MAP LISTING 

ASSEMBLER 

LINKER 

PROGRAM 
EXECUTION 

-_-_1-._PAT_CH -----II 

--_:j~ _____ D_E_BU_G ____ ~ 

Figure 1-1. Program Execution and Checkout Procedures 

OVERVIEW 1-2 

./ 

CB21 



( 

SYMBOLS USED IN THIS MANUAL 

D 
EJ 

( 

D 
cJ 

UPPERCASE 
CHARACTERS 

lower case 
characters 

brackets [ 

braces { } 

ellipses ... 

OVERVIEW 

Processing; indicates any kind of processing function. 

Online storage of information; e.g., diskette or cartridge disk. 

Input from card reader. 

Document; e.g., printer output. 

Manual input; i.e., operator's terminal or another terminal. 

Mandatory; indicates that the designated flow of 
information, type of processing, input, or output is required. 

Reserved words or symbols, must be entered or used exactly 
as shown. 

Symbolic name or value; you must supply the exact value. 

Optional information. 

An enclosed entry must be selected. 

There may be multiple entries of the immediately preceding 
type of information. 

1·3 CB21 



-----------~ ------- ------

/ 



SECTION 2 

LINKER 

The Linker combines separately assembled and/or compiled object units, which can also 
be called compile units (CUs), and produces a bound unit. An object unit can only be 
executed if it is first linked by the Linker. The Linker executes in either Short Address 
Form (SAF) mode (4 byte-address) or Long Address Form (LAF) mode (8 byte-address). It 
can create, in either mode, a SAF, LAF or SLIC bound unit. A SLIC bound unit can 
execute in either LAF or SAF mode. 

Object units may contain external references to symbols. 1 While linking object units, the 
Linker resolves external references to symbols by referring to and updating a Linker-created 
symbol table. A link map of defined and/or undefined symbols can be produced. 

To load the Linker into memory, enter the LINKER command (see "Loading the Linker" 
later in this section). 

Linking is controlled by directives entered to the Linker through the directive input 
device. The directive input device is the device specified in the in_path argument of the 
"enter batch request" or "enter group request" command (normally, the in_path represents 
a terminal). This device can be reassigned in the command that loads the Linker. 

If the Linker command specifies the -PT argument, the Linker prompter character "L?" 
will appear each time the Linker expects a directive. 

The Linker processing can be interrupted by: 

o Depressing the "QUIT", "INTERRUPT", or "BREAK" key on the user terminal 
o Entering ~C~B group-id on the operator terminal, where group-id is the two-character 

group identification code associated with the group containing the task to be 
interrupted. A **BREAK** message appears on the user's terminal when the system 
interrupts the Linker.' One of the commands SR (start), PI (program interrupt), UW 
(unwind) or NEW-PROC may be entered at this point. SR causes the interrupted task 
to resume at the point where the interrupt occurred (Le., to continue as if no interrupt 
had occurred). If a MAP or MAPU directive has been issued and the PI command is 
used, the map operation is terminated at its current location and processing jumps to 
the next Linker directive. The UW command causes an orderly termination of the 
Linker processing (i.e., files are closed) and processing continues with some other task 
in the group containing the Linker. 

The NEW-PROC command causes an orderly termination of the task group and the task 
group is reinitialized. 

Each object unit to be processed during a single execution of the Linker must be a 
variable sequential file. The input files may reside in the same directory or in different 
directories. Unless specified otherwise, all of the object units are in the working directory 
(see "Specifying Location(s) of Object Unit(s) to be Linked" later in this section). 

Each bound unit to be linked requires a separate execution of the Linker. A bound unit 
may consist of only a root, or a root and one or more overlays. The root and each overlay 
may be up to 64K words (128K bytes). The root and each overlay is called a load unit; a 
load unit is loaded into memory by the Loader. When you use a create group or spawn 

I An external reference is a reference to a symbol defined in another object unit as an external symbol. 

LINKER 2-1 CB21 



group command, or an LDBU configuration directive, to request that a bound unit be 
loaded, the root is the portion of the bound unit that is loaded by the Loader. The root 
remains in memory as long as there are tasks executing on its behalf, unless LDBU was 
specified; if LDBU was specified, the root remains in memory until the system is 
reinitialized. An overlay is loaded into memory whenever it is required. Refer to the 
Commands manual for a discussion of the create group and spawn group commands, and the 
LDBU configuration directive. 

Each bound unit has an attribute table associated with it; an attribute table contains 
information about the bound unit's characteristics and symbol definitions. The attribute 
table is loaded into memory immediately preceding the root. 

SUFFIX CONVENTIONS 

The Linker requires that each of its input file names contain a .0 suffix. When you 
specify a file name in a link directive, or in the LINKER command name of a file that will 
contain the bound unit, suffixes are omitted, the Linker will not append a suffix to the 
bound unit name. If a list file is designated (Le., the -COUT argument is specified in the 
LINKER command), the Linker does not append a suffix to the specified name; otherwise, 
the Linker forms the name of its list file (Linker maps) by appending .M to the specified or 
default base name. 

It is important to note that the Linker appends suffixes to specified file names. 
Table 2-1 summarizes how file names are designated. 

TABLE 2-1. DESIGNATING FILE NAMES 

Program Preparation 
Task Input File(s) Output File(s) 

Linker Omit suffix. Linker Omit suffixes. The Linker appends .M to specified 
appends .0 to each bound unit file name to form the name of the list file 
specified file name. if the -COUT argument was not specified in the LINKER 

command. The Linker does not append a suffix to the 
name designated in the -COUT argument. 

FUNCTIONS OF THE LINKER 

Creating a Bound Unit 
The Linker produces a bound unit file whose pathname is specified in the name argument 

of the LINKER command. 
The bound unit comprises only a root unless an OVL Y or FLOVLY directive is entered. 

Each time an OVL Y or FLOVL Y directive is entered, the Linker initiates creation of a 
nonfloatable or floatable overlay, respectively. A nonfloatable overlay is loaded by the 
Loader into the same memory location (relative to the root) each time it is requested. A 
floatable overlay is linked at relative 0 (see "BASE Directive" later in this section), and can 
be loaded by the Loader into any available memory location. A floatable overlay must have 
the following characteristics: 

LINKER 

1. External location definitions in the overlay are not referenced by the root or any other 
overlay. 

2. There cannot be external references between floatable overlays. 
3. The overlay does not contain external references that are not resolved by the Linker. 
4. The overlay must be linked after all desired nonfloatable overlays have been linked. 
5. The overlay cannot contain P+DSP references to any other overlay or the root. 
6. The overlay cannot contain IMA (immediate memory address) references within itself. 
7. There can be IMA references (with or without offsets) to locations in the root or any 

nonfloatable overlay. 

2-2 

---./ 

CB21 

.-._.-._------_ .. _--



( 

Resolving External References 
The Linker resolves the addresses or values of external symbol references it finds in object 

units being linked. The references can be between object units comprising the root, between 
object units comprising an overlay, between overlays, or between the root and an overlay. A 
symbol can be defined in one bound unit and referenced in another bound unit. (The 
symbol must exist in the system symbol table, as the result of an LBDU configuration 
directive performed for the module in which the symbol is defined. Refer to the System 
Building manual.) 

Creating a Symbol Table 
A symbol table is a data structure created by the Linker for resolving external references. 

When the Linker encounters external references to symbols or definitions of symbols, it 
creates an entry in the symbol table. When that entry is defined, the Linker updates the 
symbol's entry in the symbol table and all references to the symbol. A symbol can be 
defined within an object unit, or by an LDEF or VDEF directive. (LDEF and VDEF are 
explained later in this section under "Linker Directive Descriptions.") A list of defined 
and/or undefined symbols can be obtained by producing a link map. 

Producing a Link Map 
A link map is a listing of information in the symbol table. A symbol can be defined in an 

object unit as a value or location, in the LDEF directive as a location, or in the VDEF 
directive as a value. If a symbol is defined as a location, the map contains the symbol name 
and its relative address. If a symbol is defined as a value, the map contains the symbol name 
and its value. The map also lists the name of each undefined symbol and the relative address 
of the latest reference to it. 

A link map can be produced at any time during the linking process by specifying the MAP 
or MAPU directive. It is written to the file name .M in the working directory, unless the 
-COUT argument was specified in the LINKER command. (-COUT permits you to assign the 
list file to disk, a printer, the operator's terminal, or another terminal.) If maps are assigned 
to disk, a disk file with variable length records is created; the first character of each record is 
a print control character. 

FUNCTIONAL GROUPS OF LINKER DIRECTIVES 

The general functions of Linker directives are listed and described below. For more 
detailed information, see "Linker Directive Descriptions" later in this section. 

o Specify object unites) to be linked 
o Specify location(s) of object unites) to be linked 
o Create root and optional overlay(s) 
o Produce link map(s) 
o Define external symbols 
o Protect or purge symbols 
o Designate that the last Linker directive has been entered 

Specifying Object Unit(s) to be Linked 

Directives: 
LINK 
LINKN 
LINKO 

LINK, LINKN and LINKO designate that one or more specified object units are to be 
linked. Object units specified in LINK directives are not linked immediately; their names are 
put into a link request list. Once a directive has been entered which requires that all 

LINKER 2-3 CB21 



preceding link requests are honored, linking begins. Specified object units in the primary 
input directory are linked before specified object units in the secondary input directory; 
within each directory, the object units are linked in the order in which they were requested. 

LINKN causes the Linker to link object units already named in the link request list, and 
then to link object units specified in the LINKN directive, in the order in which they were 
requested. 

LINKO is essentially the same as LINKN, except that all embedded directives in the 
named object unit(s) are ignored by the Linker. 

The order in which object units are linked may be important if overlays exist. 

NOTE: The Linker appends the suffix .0 to each specified object unit name; when the 
Linker searches for an object unit name, it searches for the name including the 
suffix. 

Specifying Location(s) of Object Unit(s) to be Linked 

Directives: 
IN 
LIB 
LIB2 
LIB3 
LIB4 
LSR 

Object units to be linked must be in at least one directory. The primary directory is the 
first directory searched by the Linker; the secondary directory, if there is one, is the second 
(last) directory searched; and so on. When the Linker is loaded into memory, the primary 
directory is the working directory, and there are no other directories. 

IN permits you to designate a different directory as the primary directory. 
LIB designates a directory as the secondary directory 
LIB2 designates the third directory to be searched. 
LIB3 designates the fourth directory to be searched. 
LIB4 designates the fifth directory to be searched. 
LSR produces a list of the directories in the order they are to be searched. 
Each of these directives may be specified any number of times. 

Creating a Root and Optional Overlay(s) 

Directives: 
BASE 
START 
1ST 
SHARE 
SYS 
LINK 
LINKN 
LINKO 
OVLY 
FLOVLY 
CC 
QUIT 

The BASE directive defines, for subsequent object units to be linked, the relative load 
address within the bound unit. 

LINKER 2-4 

'/ 

CB21 



( 

( 

NOTE: When the lowest address of a root or overlay has been established (Le., an object 
unit has been linked), it is illegal to define a lower BASE address within that root 
or overlay. 

START specifies the relative address at which the root or overlay will begin executing 
when it is loaded into memory by the Loader. 

1ST identifies the beginning of initialization code in the root. 
SHARE designates that the bound unit is shareable. 
SYS designates that the bound unit can be loaded into the system area as part of the 

system. 
LINK, LINKN and LINKO specify which object units will be linked. The order in which 

specified object units are linked, and when they are linked, is determined by which link 
directive is specified. 

OVL Y names and assigns a number to the next non floatable overlay that follows, and 
designates the end of the preceding root or overlay. 

FLOVL Y names and assigns a number to the next floatable overlay that follows, and 
designates the end of the preceding root or overlay. 

Call-cancel (CC) permits a COBOL program that used CALL and CANCEL statements to 
call overlays by their names. 

QUIT designates that the last Linker directive has been entered. Execution of the Linker 
terminates after the bound unit has been created. 

Producing Link Map( s) 

Directives: 
MAP 
MAPU 

A link map is written to the list file by specifying the MAP or MAPU directive. MAP 
creates a map that lists both defined and undefined symbols, whereas MAPU lists undefined 
symbols only. 

Defining External Symbol(s) 

Directives: 
COMM 
LDEF 
VAL 
VDEF 
EDEF 

The COMM directive defines a symbol as being labelled or unlabelled common. 2 

A symbol can be defined as a relative location or value by specifying the LDEF or VDEF 
directive, respectively. The symbol's definition is then put into the symbol table by the 
Linker. 

The V AL directive specifies a value definition at LINK time. This value is equivalent to 
the difference between two external locations. 

The EDEF directive permits definitions in the Linker symbol table to be made part of the 
bound unit so they are available to the Loader at execution time. 

2 For discussions of "common" see the appropriate language reference manual. 

LINKER 2-5 CB21 



Protecting or Purging Symbol(s) 

Directives: 
CPROT 
CPURGE 
PROT 
PURGE 
VPURGE 

The CPROT and CPURGE directives, respectively, protect and remove symbols associated 
with labeled and unlabeled common. 

The PROT and PURGE directives, respectively, protect and remove symbols and object 
unit names from the symbol table. 

The protect (PROT) directive prevents certain symbols and/or object unit names from 
being removed from the symbol table. Symbols are protected if they identify a specified 
address or an address within a specified range; object unit names are protected if they are 
equated to a specified address or an address within a specified range. 

The PURGE directive removes from the symbol table unprotected symbols that define a 
specified address or an address within a specified range, and/or object unit names equated to 
a specified address or an address within a specified range. 

The VPURGE directive removes a specified value definition from the symbol table. 

Designating That the Last Linker Directive Has Been Entered 

Directive: 
QUIT 

QUIT must be the last Linker directive entered. 
If a bound unit is being created, execution of the Linker terminates after the bound unit 

has been created. 
If no bound unit is being created, QUIT terminates execution of the Linker. 

LOADING THE LINKER 

To load the Linker, enter the LINKER command, which is described below. 
After the Linker is loaded, there is a typeout to the error output file of the revision also 

in the following format: 

LINKER-nnnn-mm/dd/hhmm 

where nnnn is a release identification, mm/dd is the month and day the Linker component 
was linked, and hhmm the time (hour, minutes) at which that link took place. 

FORMAT: 

LINKER bound-unit-path [ctl_arg] 

ARGUMENT DESCRIPTIONS: 

bound-unit-path 
Pathname of the relative disk bound unit file. The pathname can be simple, relative, or 
absolute and must be preceded by a space. If the specified file already exists, the 
existing information in the file is deleted and replaced with the new bound unit. 
Required. 

LINKER 2-6 CB21 



ctl_arg 
Control arguments; none or any number of the following control arguments may be 
entered, in any order: 

-IN path 
Pathname of the device through which Linker directives will be read; can be disk, 
card reader, operator's terminal, or another terminal. 

Error messages are written to the error output file. Linker error messages are 
described in the System Messages manual. 

Default: Device specified in the in_path argument of the "enter batch request" or 
"enter group request" command. 

-PT 
If the -IN argument is not specified, -PT can be specified in order to produce a 
prompter character on the user terminal. A prompter character is issued only if -PT 
is specified. 

-COUT list-path-name 
Designates the list file. The list file can be sent to a disk, another terminal, or a 
printer. The list-path-name is associated with this list file. If -COUT is not specified, 
the list-path-name has a default value of bound-unit-path .M. 

(-LAF 1 
l-SAF 
l-SLIC 

LAF and SAF are addressing modes in one of which the bound unit is to execute; 
-LAF designates long address form (two-word addresses); -SAF designates short 
address ~orm (one-word addresses); -SLIC designates that either a SAF or a LAF 
machine may be used with no reassembly or link necessary. 

Default: Bound unit executed in SAF (short address form) mode. 

-SIZE nn 
-SZ nn 

-w 

-R 

nn designates the maximum number of 1024-word (1 K) blocks of memory available 
for the Linker symbol table; nn must be from 1 to 32. At least 1024 words must be 
available. 

Default: 

Specifies that the implicit Linker work files are to be saved. 

Default: Implicit Linker work files are automatically released by the Linker upon 
Linker termination .. 

Designates that a bound unit is to be created, where all data areas defined as 
common are separated from all other code. Required for shareable CU's (object 
units). 

Example: 

LINKER MYPROG -IN"'MYDISK>CNL -COUT >SPD>LPTOO -SIZE 06 

LINKER 2-7 CB21 



This LINKER command loads the Linker and designates the following: 

o Bound unit will be a relative file named MYPROG in the working directory. 
o Linker directives will be entered through disk file "MYDISK>CNL. 
o List file goes to a line printer (configured as LPTOO), rather than to a variable 

sequential file named MYPROG.M in the working directory. 
o The symbol table will be a maximum of 6K words of memory. 

NOTE: LPTOO must have been previously defined in the DEVICE configuration 
directive, which is described in the "Startup and Configuration Procedures" 
section of the System Building manual. 

ENTERING LINKER DIRECTIVES 

Linker directives are entered through the directive input device, except for the following 
directives which may be embedded in assembly language CTRL statements: LINK, LINKN, 
LINKO, SHARE, EDEF, and SYS. 

Linker directives comprise only a directive name or a directive name followed by one or 
more parameters. Each directive name may be preceded by 0, I, or more blank spaces. If 
one or more parameters are to be specified in a Linker directive, the directive name must be 
immediately followed by one or more blank spaces. 

Multiple directives can be entered on a line by specifying a semicolon(;) after each 
directive, except for the last directive on the line. 

The last ·(or only) directive on a line can be followed by a comment; to include a 
comment, specify a space and a slash (/) after the last (or only) parameter and then enter 
the comment. 

If the directive input device is the operator's terminal or another terminal, press 
RETURN at the end of each line (i.e., at the end of the comment, or at the end of the last 
directive if there is no comment). 

If an error occurs when entering a directive, an error message is written to the error 
output file. Linker error messages are described in the System Messages manual. Determine 
what caused the error, and then reenter the directive correctly. If multiple directives are 
entered on a line and an error occurs, the error does not affect the execution of previously 
designated directives. The directive that caused the error and subsequent directives on that 
line are not executed. 

PROCEDURE FOR CREATING ONLY A ROOT 

To link object units and create only a root, load the Linker and then enter the following 
directives: 

J
LINK 13 
LINKN 
LINKO 

QUIT 

Links object units. 

Designates that the last Linker directive has been entered. After the 
bound unit has been created, execution of the Linker terminates. 

All other directives are optional. 

PROCEDURE FOR CREATING A ROOT AND ONE OR MORE OVERLAYS 

When creating a root and overlays, the following rules must be followed: 

o The root must be created before its overlays. 
o A root and all of its overlays must be created during the same execution of the Linker. 

3 Multiple LINK and/or LINKN and/or LINKO directives may be entered. 

UNKER 2-8 CB21 



o Nonfloatable overlays must be created before floatable overlays. 
o Overlays may contain references to symbols defined in the root or other overlays. 
o A root or overlay can be up to 64K words of memory. 

To link object units and create a root and one or more overlays, load the Linker and then 
enter the following required directives: 

{
LINK }4 
LINKN 
LINKO 

JOVLY } 
\FLOVLY 

{LINK I 
LINKN 

Links object units that will constitute the root. 

Designates end of the root, and names and numbers the overlay that 
immediately follows. 

Links object units that will constitute an overlay. 

NOTE: An OVLY or FLOVL Y directive and at least one link directive must be specified 
for each overlay associated with the root. 

QUIT Designates that the last Linker directive has been entered. After the 
bound unit has been created, execution of the Linker terminates. 

All other directives are optional. 

NOTE: It is advisable to specify a MAP directive before each FLOVLY directive. The 
base address of a floatable overlay is relative 0, so all unprotected symbols that 
define locations will be purged from the symbol table. 

PROCEDURE FOR CREATING A SHAREABLE BOUND UNIT 
USING A HIGH-LEVEL LANGUAGE 

A shareable bound unit (BU) is one in which the code portion resides in system memory 
and can be used on behalf of one or more groups to manipulate data in that group. To 
accomplish this, the following factors must be present: 

1. The pure (i.e., code) portion of the bound unit must be separated from the impure 
(i.e., data) portion. 

2. The BU must be declared shareable. 
3. Space must exist in the System pool to allow loading of the pure portion of the BU. 

These factors are processed respectively as follows: 

1. Using the capability to declare pure portions from impure portions (e.g., Intermediate 
COBOL), specify the -R argument on the Linker command line. This will cause the 
Linker to separate all those items declared as impure from the rest of the program. 

2. Specify the SHARE directive for the BU at link time. 
3. If both of the preceding conditions are specified, the Loader will automatically load 

the pure section of the BU into the System space in memory. If not enough room 
exists in the System space, the pure section will go into the group with the impure 
section and will no longer be shareable. 

Using the Intermediate COBOL compiler, which automatically puts data in "Local 
Common", or using the Assembly Language pseudo-operator ($LOCOMW), the capability to 
share a pure code portion of a program exists. If the -R argument is specified at link time, 
the resultant BU can be up to 128K (up to 64K for pure code and up to 64K for data). 

4 Multiple LINK and/or LINKN and/or LINKO directives may be entered. 

UNKER 2-9 CB21 



No overlays are pennitted in a shareable/separated BU. 
When the -R argument is specified, all data which the compiler defines in common is 

separated from executable code. All references in the code to this data are made via register / - " 
$B6. The data does not directly reference the code. 

When the -R argument is not specified, overlays are permitted. In this case, the maximum 
size of the root or of any individual overlay is 64K (including both code and data). 

OBTAINING SUMMARY INFORMATION OF A LINKER SESSION 

The Linker designates on the list file summary information regarding the bound unit 
created during the current execution of the Linker. 

The list file includes the name of the bound unit and date and time of link, the name and 
revision number of each object unit linked, the name of the assembler/compiler, the 
assembler or compiler error count, and the sections described below: 

ROOT 

HIGHEST OVL Y 

/NUM OF SYMS 

/~~~ I 
lSLIC 

ro~~~} 
BASE 
ST 

SFUI 

S 
Shareable bound unit. 

F 
Floatable overlay(s) included. 

U 

Name of the root. 

Number of the last overlayS; if there are no 
overlays HIGHEST OVL Y is followed by a 
blank. 

Number of symbols specified in EDEF 
directives. 

Type of addressing fonn used in the bound 
unit; SAF is short-address form, and LAF is 
long-address form. 

A SLIC bound unit may be executed in either 
SAF or LAF mode. 

Name of the root or overlay. 

Base address of the root or overlay. 

Start address of the root or overlay. 

Specifies characteristics of the bound unit, as 
follows: 

There are resolved or unresolved forward references between the root and overlays or 
between overlays. 

I 
IMA addresses are present. 

HIGH 

*SIZE OF ROOT AND STATIC OVLYS 

HI REL RCD 

LINK DONE 

Highest address in the root or overlay. 

Highest address in either the root or the 
largest overlay. (Indicates the amount of 
memory needed to load the bound unit.) 

The number of the highest relative record of 
the bound unit file. (Indicates the number of 
control intervals used for storage.) 

Designates that execution of the Linker has been successful. 

SThe Linker assigns numbers to overlays. The first overlay is 00; subsequent overlays are numbered sequentially in ascending 
order. 

LINKER 2·10 CB21 

.1' 
l 
""-... / 

------ .... _----------------



(- .. 

BASE 

The format for this information is illustrated below: 

ROOT rootname 
HIGHEST OVLY number/NUM OF SYMS number 
*********** 

lSAF j 
LAF 
SLIC 

*********** 
jCMMN6 jrootname BASE address ST address - .... HIGH = high address of data 7 

1 ~~~~ dirname {! overlay number} BASE address ST address - {~} {~ } {~}{ ~ } 

HIGH = high address of root or overlay 
*********** 
*SIZE OF ROOT AND STATIC OVLYS = number 16 HI REL RCD = number 10 

*********** 
LINK DONE 
*********** 

LINKER DIRECTIVE DESCRIPTIONS 

Linker directives are described below, alphabetically. Some examples are provided to 
illustrate directive usage. 

BASE Directive 
The BASE directive defines, for subsequent object units to be linked, the relative link 

address within the bound unit. At load time, all addresses are relative to the beginning of 
available memory (relative 0) in the memory pool of the task group. When a task group is 
created, you specify the memory pool into which its bound units are to be loaded. 

Unless BASE directives specify otherwise, the root will be linked, by default, at relative 0, 
and subsequent object units are linked at successive relative addresses. A BASE directive can 
be used at any point during linking to change the relative locations of the root, overlays, or 
individual object units. A floatable overlay always begins at relative 0; therefore, in a 
floatable overlay, BASE can be specified only after the first (or only) LINK, LINKN or 
LINKO directive. A BASE parameter can specify a previously used or defined location, or 
an address relative to the beginning of the available memory. 

If unprotected symbols define locations that are equal to or greater than the location 
designated in the BASE directive, those symbols are removed from the symbol table. 

FORMAT: 

BASE 

6 If -R argument is specified and common exists. 
'This line is repeated for each overlay. 

LINKER 

$ 
% 
X'address' 
=object-unit-name 

xdef [ I ~ } X'offset' ] 

# The current address. 

2-11 CB21 



BASE 
PARAMETER DESCRIPTIONS 

$ 
Next location after the highest address of the linked root or previously linked nonfloat­
able overlay. 

% absolute 
Highest address+ 1 ever used in the linked root or any previously linked nonfloatable 
overlay. 

address 
Hexadecimal address compnsmg one to four integers enclosed in apostrophes and 
preceded by X. The specified address is relative to the beginning of available memory 
(relative 0) in the memory pool at load time. 

=object-unit-name 
Specified object unit's base address; the subsequent root, overlay, or object unit will be 
linked at the same relative address as the specified object unit, which must have already 
been linked. Furthermore, the object unit name must still exist in the symbol table 
(i.e., it is not purged). 

xdef[{~ }X'offset'] 

Address of any previously defined external symbol. If an offset is specified, it must be 
a hexadecimal integer with an absolute value less than 7FFF (32768 decimal). 

Default: 
Root-O 
Nonfloatable overlay-Next location after the highest address of the preceding root or 
nonfloatable overlay 
Floatable overlay-O 

Example: 

This example illustrates usage of BASE directives in a bound unit that comprises a root and 
overlays. In this example, assume that the bound unit being created is going to be executed 
as part of task group AI, and memory pool AA is to be used by this task group. Figure 2-1 
illustrates memory pool AA's location in memory relative to the system pool and another 
pool, and the locations within that memory pool to which each object unit specified in the 
following directives will be loaded. 

LINKER TEXT -COUT >SPD>LPTOO 
ST ART TEXTEN 

1ST INIT 

LINK OBJ 1,OBJ2 
MAP 

OVLY ABLE 

liNKER 

Designates address at which execution will begin 
when the root is loaded. 

Defines IN IT as the beginning of initialization 
code. 

Request that OBJ 1.0 and OBJ2.0 be linked. 
Causes OBJ 1.0 and OBJ2.0 to be linked, and 
produces a link map. 

Designates end of the root, and that a nonfloat­
able overlay named ABLE immediately follows. 
The Linker assigns the number 00 to this 
overlay. 

2-12 

._7 

CB21 



ADDRESS 

RELATIVE 0 FOR ROOT 

RELATIVE 0 OF ROOT 

o 

LINKER 

HIGH MEMORY 

ADDITIONAL TASK 
GROUP INFORMATION --------
ROOT AND OVERLAY AREA 

r-------
TASK GROUP CONTROL 
STRUCTURES 

ADDITIONAL TASK 
GROUP INFORMATION 
r-------

ROOT AND OVERLAY AREA 

r---------
TASK GROUP CONTROL 
STRUCTURES 

SYSTEM POOL 

~--------
OPERATING SYSTEM 

LOW MEMORY 

RELATIVE LOCATION IN MEMORY 
OF MEMORY POOL AA 

MEMORY POOL 
AB (TASK 
GROUPA2 
WILL USE 
THIS AREAl 

MEMORY POOL 
AA(TASK 
GROUP Al 
WILL USE 
THIS AREAl 

LOCATION 1105 

OBJ5.O 

RELATIVE 0 OF 
ROOT 

ADDITIONAL TASK 
GROUP INFORMATION 

OBJE.O 

OBJD.O 

OBJA.O 

OBJ6.0 

--------

OBJ2.0 

OBJ1.0 

TASK GROUP CONTROL 
STRUCTURES 

CONTENTS OF MEMORY POOL AA 

Figure 2·1. Schematic of Previous Example Illustrating Usage of BASE Directives 

2·13 

BASE 

OVERLAY ZEBRA 

OVERLAY FOX 

OVERLAY ABLE 

ROOT 

CB21 



BASE 

BASE=OBJ2 

LINK OBJ5 

MAP 

LINK OBJ6 

OVLYFOX 

BASE $ 

LINK OBJA 

LINK OBJB 

MAP 

OVLY ZEBRA 

BASE X'1l05' 

LINK OBJC 

LINK OBJD 

MAP 

FLOVL Y FLOAT 

LINK OBJE 

MAP 

QUIT 

LINKER 

Subsequent object unites) constituting overlay 
ABLE will be linked starting at the base address 
of the object unit OBJ2.0; this address can be 
determined from the map. Unprotected symbols 
that define locations equal to or greater than the 
address of OBJ2 are removed from the symbol 
table. 

Requests that OBJ5.0 be linked. 

Requests that OBJ6.0 be linked. 

Designates the end of the above overlay, and 
specifies that a nonfloatable overlay named FOX 
immediately follows .. The Linker assigns the 
number 01 to this overlay. 

Subsequent object unites) constituting the over­
lay named FOX will be linked starting at one 
location higher than the ending address of 
OBJ6.0. This is the default BASE address, so 
BASE $ need not be specified. 

Requests that OBJA.O be linked. 

Requests that OBJB.O be linked. 

Designates end of above overlay Oland names 
subsequent nonfloatable overlay. The Linker 
assigns the number 02 to this overlay. 

Designates that subsequent object units con­
stituting overlay ZEBRA will be linked starting 
at relative location 1105. 

Object unit OBJC.O will be linked starting at 
relative location 1105. 

Requests that OBJD.O be linked. 

Designates end of above overlay, and that a 
floatable overlay named FLOAT immediately 
follows. The Linker assigns the number 03 to 
this overlay. This overlay will be linked starting 
at the default base address of O. 

Requests that OBJE.O be linked. 

2-14 CB21 

(' 
\ 
~. 



CALL-CANCEL/COMM/CPROT/CPURGE 

Call-Cancel Directive (CC) 
The call-cancel directive (CC) must be used when linking COBOL programs that contain 

CALL/CANCEL statements that reference overlays. The Linker will place each overlay 
name and its associated Linker-generated overlay number into the bound unit attribute table 
so that the COBOL program can call/cancel overlays by name. 

To support the CALL/CANCEL facility, the object unit ZCCEC is required. ZCCEC will 
be automatically linked into the root by COBOL; it requires no link directive. 

The CC directive must be specified before the first LINK, LINKN or LINKO directive in 
the root. 

FORMAT: 

CC 

COMM Directive 
The COMM directive defines a labelled or unlabelled "common" area of a specified size. 

FORMAT: 

COMM symbol, size 

ARGUMENT DESCRIPTION: 

symbol 
Identifies the external symbol which is to be treated as common. 

size 
Size is specified as a 1- to 4-character hexadecimal number bound by single quotes and 
preceded by the letter X (i.e., X'size'). 

CPROT Directive 
The CPROT directive prevents specified symbols from being removed from the common 

area. 

FORMAT: 

CPROT symbol 

ARGUMENT DESCRIPTION: 

symbol 
Name of the external symbol, as originally specified in the COMM directive, which is to 
be protected. 

CPURGE Directive 
The CPURGE directive causes the Linker to remove an unprotected symbol from the 

common area. 

FORMAT: 

CPURGE symbol 

ARGUMENT DESCRIPTION: 

symbol 
Identifies the external symbol which is to be removed from the common area. 

LINKER 2-15 CB21 



EDEF 
EDEF Directive 

The EDEF directive causes the transfer of a symbolic definition from the Linker to the 
Loader at load time. The bound unit attribute table is part of the bound unit. 

An EDEF directive can only specify a symbol that has been defined using XDEF, LDEF, 
or VDEF. When EDEF is specified, the symbol's definition must already be in the symbol 
table. 

Secondary entry points of bound units, whose code is to execute under control of a task, 
must be defined in an EDEF directive. This includes secondary entry points of overlays and 
the root entry point when it will be explicitly used in a create group command. The start 
address of the root and of each overlay is placed by the Linker in the bound unit attribute 
table and does not need an EDEF definition. 

If a bound unit is memory resident, symbols (entry points and references) can be defined 
by EDEF so that they can be referenced by any bound unit loaded by the system. At 
system configuration time, when the resident bound units are loaded using the LDBU 
system configuration directive, these symbols are placed in the system symbol table. When 
the Loader loads other bound units that contain unresolved references, it tries to resolve 
them with the list of symbols defined for resident bound units. 

If the bound unit is transient (shareable or not shareable), the symbols in the attribute 
table of the bound unit are meaningful only as definitions of secondary entry points. 
Although shared bound units can be in the address space of more than one task group, the 
bound unit attribute table is available to the Loader only when the bound unit is being 
loaded. Unresolved references in any bound unit will be resolved only to symbols defined in 
attribute tables of resident bound units. 

The EDEF directive can be embedded in assembly language CTRL statements. 

FORMAT: 

{ EDEF} EF symbol 

ARGUMENT DESCRIPTION: 

symbol 
Any external definition comprising one to six characters. The symbol must have been 
defined. If the symbol was multiply defined, the first definition is used. 

Example: 

This example illustrates usage of EDEF directives in bound units. 

LINKER MYPROG 

LINK A 
LINKN B 

MAP 

EDEFB 

LDEF SYM,X'1234' 

OVLYFIRST 

liNKER 

Loads the Linker. The bound unit named MYPROG 
will be created on the working directory. The list file 
MYPROG.M is also created on the working directory. 

B is a symbol defined as an external location or value 
in B.O. 
Assigns relative location 1234 to external symbol 
named SYM. 

Designates end of root, and names nonfloatable 
overlay that immediately follows. 

2·16 

./ 

CB21 



(' 
... 

EDEF/FLOVLY 
LINKX,Y 

EDEF SYM 

QUIT 

LINKER PROG2 -COUT >SPD> 
LPTOO -SIZE 02 

BASE X'2222' 

LINKNW 

MAP 

QUIT 

Designates that the last Linker directive has been 
entered. Execution of the Linker terminates after the 
bound unit has been created . 

Loads the Linker; the bound unit to be created is 
named PROG2. The list file is the printer. The 
symbol table is a maximum of 2K words of memory. 

Subsequent object units will be loaded into memory 
starting at the relative address 2222. 

Requests that object unit W.O be linked. 

Produces a link map; in this map, it is determined 
that object unit W.O contains an unresolved reference 
to the symbol SYM, which was defined in the root of 
the bound unit MYPROG. 

If MYPROG is loaded into memory via an LDBU configuration directive, when the 
Loader loads PROG2 the Loader will resolve the unresolved reference in PROG2 to the 
symbol SYM, which was defined in the root of MYPROG. 

NOTE: An EDEF directive cannot be entered on the directive line in which the object 
unit is specified. For example, if the symbol TAG is defined in object unit A, the 
following directive line is not allowed: 

LINK A;EDEF TAG 

FLOVL Y Directive 
The FLOVL Y directive assigns the specified name and a number to the floatable overlay 

that immediately follows, and designates the end of the preceding root or overlay. The 
characteristics of floatable overlays are described earlier in this section under "Creating a 
Bound Unit." 

FLOVL Y must be specified as the first directive of each floatable overlay. Floatable 
overlays must be linked after all desired nonfloatable overlays have been linked. 

The Linker assigns a two-digit number to each overlay. Overlays are numbered 
sequentially, in ascending order; the first overlay is 00. 

FORMAT: 

FLOVLY name 

ARGUMENT DESCRIPTION: 

name 
Name of the floatable overlay that immediately follows. The overlay name must 
comprise one to six alphanumeric characters; the first character must be alphabetic. 

liNKER 2-17 CB21 



FLOVLY/IN 

Example: 

LINKERBU 

LINK A 
LINKB 
MAP 

FLOVLYGR 

LINK X 
LINKY 
MAP 
FLOVLYBR 

LINK R6 
MAP 
QUIT 

IN Directive 

Loads the Linker and designates BU as the bound 
unit name. 

Produces a link map. The link map should be 
referenced to determine if there are any unprotected 
symbols that define locations. These symbols, if any, 
will be removed from the symbol table since the 
floatable overlay that immediately follows has a 
default base address of O. 

Designates the end of the root (which comprises 
object units A.O and B.O), and specifies that the next 
overlay is a floatable overlay named GR. The Linker 
assigns the number 00 to this overlay. 

Designates the end of floatable overlay GR, and 
designates that the floatable overlay that immediately 
follows is named BR. The Linker assigns the number 
o 1 to this overlay. 

The IN directive designates a different directory as the primary directory. 8 This directive 
permits the linking of object units that are in directories other than the default primary 
directory or secondary directory (if any). If the IN directive is not specified, the working 
directory is the primary directory. (The secondary directory is designated in the LIB 
directive.) 

NOTE: The IN directive must be specified before the first LINK, LINKN or LINKO 
directive that requests the linking of an object unit that is in the specified 
directory. 

The specified directory remains the primary directory until another IN directive is 
entered. If the primary directory is changed via an IN directive and at a later time you want 
the task group's working directory to be the primary directory, you must enter the IN 
directive and specify in that directive the working directory's pathname. 

FORMAT: 

IN path 

8 The primary directory is the first directory that the Linker searches for the specified object unit(s) to be linked. 

LINKER 2-18 

- -~-. -- --.-.--.-- .. ~~~~-

CB21 

"..r , 



( 

ARGUMENT DESCRIPTION: IN/1ST 

path 
Pathname of the directory being designated as the primary directory. The pathname 
may comprise a maximum of 64 characters. A simple, relative, or absolute pathname 
may be specified (methods of designating pathnames are described in the Program 
Preparation manual.) 

Example I: 

INADIR>PRIM 

This directive designates thatADIR>PRIM is the primary directory. 

Example 2: 

This example illustrates usage of the IN directive in conjunction with directives that request 
the linking of object units. Assume the primary directory is the working directory, whose 
pathname is WORK>CURR; object units X.O, Y.O, and Z.O are in the working directory. 

LINKER OUTPUT 

LINK X 

IN"'NEW>PRIM 

LINK A 

LINKC 

IN WORK>CURR 

LINKNY 

MAP 
QUIT 

1ST Directive 

Loads the Linker; a bound unit named OUTPUT will 
be created on the working directory. 
Requests the linking of object unit X.O; X.O is in the 
working directory • 
Designates that ANEW>PRIM is now the primary 
directory. 
Requests the linking of object unit A.O, which is in 
the primary directory. "'NEW>PRIM>A.O is the 
pathname of A.O, as expanded by the Linker. 
Requests the linking of object unit C.O, which is in 
the primary directory. ANEW>PRIM>C.O is the 
pathname of C.O, as expanded by the Linker. 
Designates that the primary directory is now the 
working directory. 
Requests the linking of object unit Y.O, which is in 
the working directory. WORK>CURR>Y.O is the 
pathname of Y.O, as expanded by the Linker. 

The 1ST directive identifies the beginning of initialization code in the root. Initialization 
code is code that you want to execute only once immediately after the root is loaded. After 
initialization code is executed, the space is made available for overlays. 

The external symbol must be specified in an EDEF directive. 

FORMAT: 

ARGUMENT DESCRIPTION: 
external symbol 

{ I~i } external symbol 

Symbol defined within the root as an external location. 

UNKER 2·19 CB21 



LDEF 
LDEF Directive 

LDEF assigns a relative location to an external symbol. A symbol should be defined only 
once, either as a location or as a value. When a symbol is defined, its definition is put into 
the Linker symbol table so that it can be used to resolve references to the symbol during 
linking. When a symbol defined as a location is no longer referenced, its symbol table entry 
can be cleared by specifying the PURGE directive. PURGE has no effect if a protect 
(PROT) directive was previously specified. 

FORMAT: 

{ LDEF} LF symbol, 

ARGUMENT DESCRIPTIONS: 

symbol 

$ 
% 
X'address' 
=object-unit-name 

xdef [{ ~ } X'offset'] 

# 

One to six alphanumeric characters. 

$ 
Next location after the highest address of the linked root or previously linked 
nont1oatable overlay. 

% 
Highest address+ I ever used in the linked root or any previously linked nont1oatable 
overlay. 

address 
Hexadecimal address compnsmg one to four integers enclosed in apostrophes and 
preceded by X. The specified address is relative to the beginning of available memory 
(relative 0) in the memory pool. 

=object-unit-name 
Specified object unit's base address. 

xder[e} X'offset~ 
Address of any previously defined external symbol. If an offset is specified, it must be 
a hexadecimal integer with an absolute value less than 7FFF (32768 decimal). 

# 
The current address. 

Example: 

This example illustrates usage of each format of the LDEF directive. 

LINKER BOUND 

LINK A 
LINK B,C 
MAP 
LDEF SYM,X'1234, 
OVLY FIRST 

LINKER 

Loads the Linker and designates BOUND as the 
bound unit name. 

SYM assigned relative location 1234 
Designates end of root and names first nonfloatable 
overlay 

2-20 .CB21 



( 

LINKR 
MAP 
LDEF QUIZ,=C 

OVLY SECOND 
LINKND 
LINKF 
MAP 
LDEF NEW,SYM 

OVLYNEXT 
BASE X'1300' 
LINKW,X 
MAP 
LDEF ANY,$ 

OVLYTHIRD 
LINKZ 
LINKQ 
MAP 
LDEF FIND,% 

QUIT 

LIB Directive 

LDEF/LIB 

QUIZ assigned base location of the previously linked 
object unit named C.O. 

NEW assigned same location as the symbol SYM, 
which was defined in the root; i.e., NEW is assigned 
relative location 1234. 

ANY assigned next location after highest address of 
the previously linked nonfloatable overlay, SECOND. 

FIND assigned next location after highest address of 
the root or any previously linked nonfloatable 
overlay. (A previous non floatable overlay was named 
SECOND; if it ended at location 1566 and this is the 
highest address ever reached during the linking of 
object units constituting this bound unit, FIND 
would be assigned location 1567.) 

The LIB directive designates a directory as the secondary directory. This directory 
permits the linking of object units that are in a directory other than the primary directory. 
If an object unit specified in the LINK, LINKN or LINKO directive cannot be found in the 
primary directory, the Linker then searches the secondary directory. 

If LIB is not specified, there is no secondary directory; the Linker searches only the 
primary directory. 

The specified secondary directory remains in effect until the LIB directive is respecified 
with a different directory name. 

NOTE: The LIB directive must be specified before the first LINK, LINKN or LINKO 
directive that requests the linking of an object unit that is in the secondary 
directory. 

FORMAT: 

LIB path 

ARGUMENT DESCRIPTION: 

LINKER 

path 
Pathname of the directory being designated as the secondary directory. A simple, 
relative, or absolute pathname may be specified. (Methods of specifying pathnames are 
described in Section 1.) 

2-21 CB21 



LIB/LIB(2, 3, or 4) 
Example I: 

LIB DIR>SECND 

This directive designates that DIR>SECND is the relative pathname of the secondary 
directory. 

Example 2: 

This example illustrates usage of a secondary directory that contains object units W.O, Y.O, 
and Z.O. 

LIB DIR>SECND Designates that DIR>SECND is the relative pathname 
of the secondary directory. 

LINKB Requests the linking of object unit B.O; B.O resides 
in the primary directory. 

LINK A Requests the linking of object unit A.O; A.O resides 
in the primary directory. 

LINKW Requests the linking of object unit W.O; W.O resides 
in the secondary directory. DIR>SECND>W.O is the 
full pathname of W.O, as expanded by the Linker. 

All specified object units in the primary directory are linked first; then all specified object 
units in the secondary directory are linked, and so on. To cause object units to be linked in 
a specific order, the LINKN or LINKO directive must be used. 

UB m Drr-clive 

The LIB (2, 3, or 4) directive designates directories as the third, fourth or fifth directory. 
If an object unit specified in the Linker directive cannot be found in the primary or 
secondary directory, then the third directory is searched and so on. 

The specified directories remain in effect until another LIB (2, 3 or 4) statement is given. 

NOTE: The LIB (2, 3 or 4) directive must be specified before the first LINK, LINKN or 
LINKO directive that requests the linking of an object unit that is in one of these 
directories. 

FORMAT: 

ARGUMENT DESCRIPTION: 

LINKER 

path 
Pathname of the third, fourth or fifth directory to be searched (if LIB is specified) if 
the object unit specified in a Linker directive is not found in the preceding directories. 
A simple, relative or absolute pathname may be specified. -

2·22 CB21 



( 

LINK 
LINK Directive 

The LINK directive specifies that the Linker link one or more specified object units. Each 
specified object unit name is put into the link request list. The object units are linked when 
the first subsequent directive other than LINK or START is encountered. When this occurs, 
the Linker searches the primary directory and links the specified object units in the order in 
which they were requested. If all of the object units are not found and there is a secondary 
directory, the Linker searches the secondary directory and links specified object units, in 
the order in which they were requested. If there is a copy of an object unit in both the 
primary and secondary directory, the copy in the primary directory is linked. 

The order in which object units are linked is important for the following reasons: (1) it 
determines which object units will be in memory simultaneously and which object units will 
overlay other object units and (2) within the root and each overlay, the first start address 
encountered by the Linker (either in an END statement or a START directive) is used as the 
start address for that root or overlay. 

During each execution of the Linker, at least one LINK, LINKN or LINKO directive must 
be entered for each root or overlay. Multiple LINK directives can be specified within a single 
root or overlay. If LINK and/or LINKN and/or LINKO directives request that the same 
object unit be linked more than once within a single bound unit, only the first request is 
honored. 

LINK directives can be embedded in assembly language CTRL statements; the specified 
object unites) are added to the link request list immediately following the object unit in 
which they were embedded. See "LINKN Directive" and "LINKO Directive" for the order 
in which object units are linked if there are embedded LINK directives and/or LINKN 
and/or LINKO directives. 

FORMAT: 

LINK obj-unit 1 [,obj-unit2 ] ••• 

ARGUMENT DESCRIPTION: 

object-unitn 
Name of an object unit to be linked. An object unit name must be one to six 
alphanumeric characters and must not include a suffix; the first character must be a 
letter or a dollar sign ($). The Linker will search for the specified object unit name, 
with a .0 suffix. 

Example l: 

LINK FIRST 

This directive causes the Linker to link the object unit names FIRST.O. The. primary 
directory is searched first; if FIRST.O is not found, the secondary directory, if any, is 
searched. 

Example 2: 

LIB SECOND>FILE 
LINKR 
LINKT 

The above LIB directive designates that SECOND>FILE is the pathname of the secondary 
directory. In this example, object unit R.O is in the secondary directory, and object unit 
T.O is in the primary directory. 

The above LINK directives will link T.O before R,O, since T.O is in the primary directory. 

LINKER 2·23 CB21 



LINK/LINKN 
Example 3: 

LINK A,B,C,D 

This directive causes the Linker to link the object units named A.O, B.O, C.O, and D.O. If 
the primary directory contains B.O, and the secondary directory contains A.O, C.O, and 
D.O, the object units are linked in the following order: 

B.O 
A.O 
C.O 
D.O 

LINKN Directive 
The LINKN directive causes object units to be linked in the following order: 

1. Object units previously specified in LINK directives, and any object units requested in 
embedded LINK directives. The object units are linked in the order in which they are 
found by the Linker. 

2. First (or only) object unit specified in the LINKN directive. 
3. Object units specified in LINK and/or LINKN directives that are embedded in the 

object unit linked as a result of step 2 above. 
4. Additional object units, if any, specified in the LINKN directive; the object units are 

linked in the order in which they were specified in LINKN, regardless of whether they 
are in the primary or secondary directory. If an object unit contains an embedded 
directive to link another object unit, the object unit designated in the embedded 
directive is linked after the object unit that contains the embedded directive. 

If directives designate that an object unit be linked more than once within a single bound 
unit, only the first request is honored. 

During each execution of the Linker, at least one LINKN, LINK or LINKO directive must 
be specified for each root or overlay. 

Multiple LINKN directives can be specified within a single root or overlay. 
LINKN directives can be embedded in assembly language CTRL statements; the specified 

object unit(s) are added to the link request list immediately following the object unit in 
which they were embedded. 

FORMAT: 

{ ~~KN} obj-unitl [,obj-unit2]'" 

ARGUMENT DESCRIPTION: 

obj-unitn 
Name of an object unit to be linked. An object unit name must be one to six 
alphanumeric characters and must not include a suffix; the first character must be a 
letter or dollar sign ($). The Linker appends the suffix .0 to each object unit name, 
and searches for the specified object unit name, including the suffix. 

Example 1: 

LINKNX,W 

This directive designates that the Linker link the object unit named X.O and then link the 
object unit named W.O. 

UNKER 2·24 CB21 

-------- -----



( 

LINKN/LINKO/LRS/MAP/MAPU 
Example 2: 

This example illustrates the order in which object units are linked if LINKN directives are 
used in conjunction with LINK directives, and there are embedded LINKN directives. 

LINK A Requests the linking of object unit A.O; this name is 
put into the link request list. 

LINKB Requests the linking of object unit B.O; this name is 
put into the link request list. In this example, B.O 
contains an embedded LINK directive to link object 
unit C.O. 

LINKND,G Requests the linking of object units 0.0 and G.O. 

In this example, all of the specified object units are in the primary directory, and 0.0 
contains an embedded LINK directive to link object unit E~O. 

When the LINKN directive is executed, the Linker will link' the object units in the 
following order: 

A.O(requested in first LINK directive) 
B.O (requested in second LINK directive) 
C.O (requested in a LINK directive embedded in object unit B.O) 
0.0 (first object unit requested in LINKN) 
E.O(requested in an embedded directive in object unit 0.0) 
G.O (second object unit requested in LINKN) 

LINKO Directive 
The LINKO directive is essentially the same as the LINKN directive, except that all 

embedded link directives in the named object units are ignored. 
Only the object units named are linked. 

FORMAT: 

LINKO obj-unitl [,obj-unit2 ] ••• 

ARGUMENT DESCRIPTION: 

obj-unitn 
Name of an object unit to be linked. An object unit name must be one to six 
alphanumeric characters and must not include a suffix; the first character must be a 
letter or dollar sign ($). The Linker appends the suffix .0 to each object unit name, and 
searches for the specified object unit name including the suffix. 

LSR Directive 
The LSR directive lists the Linker search rules; that is, the directories to be searched by 

the Linker for the object unites) are listed in the order in which they will be searched. 

FORMAT: 

LSR 

MAP and MAPU Directives 
The MAP directives cause a link map of defined symbols that were not purged and of 

undefined symbols to be written to the list-file (see -COUT in the LINKER command). The 
MAPU directive is the same, but only applies to undefined symbols. 

LINKER 2-25 CB21 



MAP/MAPU 

If MAP is specified, each defined and undefined symbol generated by the linking of 
object units is listed in the map and preceded by the name of the object unit in which it is 
located. A map also includes the names of object units that were linked because of 
embedded Linker directives, and the symbols contained in those object units. If the MAP 
directive precedes a QUIT directive, the link map will contain all the defined symbols and 
undefined symbols of the completed bound unit that have not been removed (i.e., purged). 

If MAPU is specified, the map contains each undefined symbol and the object unit in 
which it is located. 

MAP and MAPU directives can be interspersed among other Linker directives. When these 
directives are encountered, all object units named in the link request list are linked before a 
map is produced. Maps are useful for determining whether all required object units have 
been linked, and whether all symbols referenced in those object units have been defined. 

FORMAT: 

Default: No map produced. 

{
MAP t 
EtPUj 

A full link map (a map generated by the MAP directive) comprises the following sections: 

START 

LOW 

HIGH 

$COMM 

CURRENT 

EXT DEFS 

UNDEF 

Address at which execution of the root or overlay 
will begin; specified in the START directive or in a 
linked object unit. 
Lowest memory address at which the current root or 
overlay was based. 
Next location after the highest address of the current 
root or overlay. 
Address assigned to unlabeled COMMON for the 
bound unit. 
Next location after the current address of the root or 
overlay (when the map was created). 
All external symbols currently defined in the symbol 
table.9 

If an object unit contains no references to undefined 
symbols, the object unit name is listed and no symbol 
names are specified. 
If object units contain references to undefined 
symbols, the map indicates, for the root and each 
overlay, the first object unit 10 in which each symbol 
was referenced and the relative address of the last 
reference to each symbol; i.e., if an undefined symbol 
is referenced in the root and an overlay or in two or 
more overlays, the symbol will appear more than 
once in the map. The last reference need not be in the 
same object unit. 

• Unprotected symbols defined in the root or a previously linked overlay will appear in the map unless the symbols are 
purged via a PURGE or BASE directive. Symbols erroneously defined as both a value and a location will appear 
twice under EXT DEFS. 

1 0 The first reference may occur in the root or a previously linked overlay. 

LINKER ~-26 CB21 



( 

MAP/MAPU 
If there are external references in both P-relative and 
immediate memory address forms to an undefined 
symbol, the symbol is listed twice under UNDEF. 

Figure 2-2 illustrates the formats of maps generated by the MAP and MAPU directives. In 
a single-word (SAF) system, each address or value is specified in four hexadecimal digits; in 
a double-word (LAF) system, each address or value is specified in eight hexadecimal digits. 

NOTE: The date and time at which the bound unit was created is automatically put in 
the bound unit's attribute section. 

* * bound unit name LINK MAP yyyy/mm/dd hhmm:ss.s 

* * START address 

* * LOW address 

* * HIGH address 

[**$COMM address] 

* * CURREfn address 

* * EXT DEFS 

P ZHC0I4Ma 

P ZHRELa 

* * ROOT 

[pJ* object unit name 

[p][~] symbol nameb 

0000 [0000] 

0000 [0000] 

base address of root 

base address of object unit 

[p]* object unit name base address of object unit 

[p][~J symbol nameb addressc or value 

* * overlay name 

[p]* object unit name 

[p][~] symbol nameb 

[p]* object unit name 

[p][~J symbol nameb 

base address of overlay 

base address of object unit 

addressc or value 

base address of object unit 

addressc or value 

OMITTED IF MAPU SPECIFIED 

[* * COMMON 

* * UNDEF 

common definitions are separated on the map as well as in the bound] 
unit when -R is specified 

Figure 2-2. Link Map Fonnats 

UNKER 2-27 CB21 



MAP/MAPU/OVLY 

[P]* object unit named base address of object unit 

[SymbOl nameb address of most recent referencee] 

. 
[p]* object unit named base address of object unit 

[symbol nameb address of most recent referencee] 

P - Protected symbol 

M - Multiply defined symbol 

C - Symbol defines labeled or unlabeled common 

aZHCOMM and ZHREl are reserved symbol names; they appear on every map as protected symbols. 
ZHCOMM is located at unrelocatable zero. ZHREl is located at relocatable zero. 

bThe map contains the names of all external symbols currently defined in the symbol table. 
If there are external references in both P-relative and immediate memory address forms to 
an undefined symbol, the symbol is listed twice under UNDEF. Each map line contains up to 
four (SAF) or three (LAF) external symbols. . 

cTo find a location definition, add the relocation factor at load time to the address shQwn 
on the map. 

dAll object units linked are listed under UNDEF, even if they contain no unresolved references. 

eWithin the root or a single overlay, the latest reference to an undefined symbol need not be 
in the object unit that contained the first reference to the symbol. Por each undefined 
symbol, the following information is given under UHDEF: name of the first object unit that 
contains a reference to the designated symbol, and the relative address of the most recent 
reference. 

Figure 2-2 (cont.) Link Map Formats 

Figure 2-3 presents sample link maps. 

OVLY Directive 
The OVLY directive assigns the specified name and a number of the nonfloatable overlay 

that immediately follows, and designates the end of the preceding root or overlay. 
OVL Y must be specified as the first directive of each non floatable overlay. 
The Linker assigns a two-digit number to each overlay. Overlays are numbered 

sequentially, in ascending order; the first overlay is 00. 

FORMAT: 

OVLYname 

LINKER 2·28 

--_ .. -.- .. _ .... __ .. _----_._----

CB21 



(-

( 

LINKER-nnnn-l1'III/dd/hhl1'lll (.Cll~b ~I)I)"OO-'IOV-IIIlI/"~v~ 
~Ij= ItSI UNKtll 0'·" IHIIII/~; IHt;:O~.~ -SLle-w 

.. Its I 
**~ r Aln 
.... LUw 
•• "JbM 
**l.UNl(t"', 

•• txr ()HS .. lHCUf'I'IM 
I> lH~tL 

Xl 

•• (u,..,..u'" 

•• ItS, 
"sIAN' 
··LOft 
**"UwH 
"Cutt~tNI 

**1:.". Ot>lj 
p lHCO"" 
p LHtltL 

U 
p C~ 

uouo 
UUlIU 
I)OUO 

VUUU 
uouu 
UUUlI 

!JUUU 

UUUU 
uouu 
UOUU 

uuuu 
\lUUU 
uouu 
UUUU 

olJon 
0000 
ouOO 

UOUU 
OfJUU 
OOlil 

oouo 

LINK 

OUOU 
UUOU 
OUUU 

uuuu 
UUUU 
UO~I 

OUtlU 

UUUU UUUU 

VAL UUJ)U 

.. A" 1~1/11j;~; UI~:U~.~ 

VAL UOlll) 

•• It.SI LINK "A" 1~/1111/23 ljl~:O~.c 

"SIAN, 
**LU" UOUO UUOO 
**"I«iH UUUU UUtll 
.*tUNWtNI UUUU UUtll 

.. t.x, UHS 
p LHCU .... uouu oouu .. lt1"tL UUUU uuuo 

VAL uuuu 
p CL UUOO OUIW 

.. Cu .... u .. 
I> x UUUU uuuu 

._UNlIt" 

OVLY 

nnnn is the release identification 
nvn/dd/hhrrm identify the link date and time 
This is a SLIC bound unit with separated code. 

Map #1 
XX is an external location definition 

VAL is an external value definition 
X is a common location definition 

Map #2 
The cOlll1lOn definition, X, is protected 
The external location definition, CC, 
is defined as XX + hex '6' 

Comnand errors 

Map #3 
Based at XX 
All unprotected location definitions 
with addresses ~87 are purged. 

lLKtI~" 111111 
~RS AS5tMtlLtH c.~u 11/11111 Utllb.b tSI IHU } LINK ZLKBGN 

Figure 2-3. Sample Link Maps 

LINKER 2-29 CB21 



- ------"-------

OVLY 

•• I~SI LINo( ~A~ Iqll/ll1<!3 131~:0~.~ 

"SIA"I 0000 00H1 
.*LU~ 0000 OOHI 
.*H!I"H 0000 0010 
*.CUIo(NtNl 0000 0010 

" 
•• UNOt,fo 

L~K~t;' 0000 OOHI 
L~~~t; uuuo O~~I ~xll UUO!) OOH'I ~S'~IO 0000 0~41 

"UH'~l.'" UUUO o IIC IA"btl 0000 OIIA SAt" S~ 0000 0lH1 
Mt,MNMl UUUU OIHO .. Ut<tCN r UUUO OO~, ~v 0000 Oi~1 Map #4 r~APU 

CU uuvu 03b~ f INtX 0000 o 1H~ ZS~ 0000 01'15 
LSW~A ouou 01'110 IIIIUL)t,. OUOO 051~ ~LOtNI 0000 0lt4 
CIUP uuuu Oltb I ouou OltM "UCt< 0000 01. ~ 
SUMb uuuo 01. I tNISL uuuo 01"'1 LHCMAU 0000 01.0 
MUCHIP uuuo Ol~. MV~I)::S 0000 OUI SUAt) oOUV o~oe 

I'CIMt,.M 0000 Olot Mjo'DAlt ooou O~H lUAli 0000 Oab 
CUNSUL uuou 02C' e"'lu 0000 05b" MAIo'Y,S 0000 U~5" 

LSlt"" uuuo 02,1 LUlofflj'V! uuoo 0~'1~ lJUINAM 0000 0~~'1 

PU"NM uuuu 02A> P"'IC>1 ouou O~UI LlIbUUI 0000 OlD .. 

"tAU uuuu Uj,1 LLVtl< UUIJO 05'10 lL"tV 0000 OHI 

•• ItSI ~INo( MAl-' 1'I""IU~ 1~le:o,.~ 

"SIA"I OOUO ou~1 

•• LO" ~uuo OOHI 
•• rtlGH ouoo Uhtb 

**('U~"'t.NI ouoo uolb 

_.tx.t ~t.b 
p ltot'UMM uuou 0000 

" LM"tL UUUU 0110U 

VA~ uUUP 
p CC YUIIU OOHU .. "UUI uuuu OOMI 

LLKt!bN uuuu OOHI 

AlTA\;" uouu 03\;U ~I uoou OOHU HI" OUVU OUI:iIj 

IH~ QUOU 001l'l HI" ouOO OOHI ~~ UOuu 0115 
H.!H uuuu 0111 ~~L uuuo o I O~ ~l" uouu 0100 
U OOOU 01'1'1 Hjt 0000 Oil'l o~" 0000 01'11 
II.S~ UOOU 01'1, oj" ooou Ol'l~ HEblN 0000 UOHI 
CILHUf uuuu OUj UAIM OUUO 05~t ~lb~~G UOUO u~C'l 

~lbW"H uuuo O~CI> flH~Nb uooo O~t~ flHW"" UoOO u~t6 

HHOI uuuu o~oo floOl uOOO O,Ho f1HU~ 0000 O~Al 

~lI1U, uoou OSI~ flHOI> ouuo 0,L4 FIHUH OuOu U~tb Map #5 
FIHU~ uuuu O~jl> FllilO UUOO 05,1 flH11 OOUu O~I>C External value VAL2 is defined 
INP uuuo 03U IN~~ OUUO Ol~ I lN~~ UOUO 0"1" 
INPA uuuu 04H I~~H 0000 04~A INPI"I OOOU O~Cf 

INPI"~ ooou Ol.~ INP,"'1 UOOO U.I~ IN~I"A 0000 04.16 
INPI"~ uuuu O.,H ~HLAw OUOO U~lIb P'''I OOUO U"f" 
"IH.! UUOO OS'U ~IH~ OUOO O~'1H PIM, OUOU 0~1I 

"'HI> UUOO O!>U~ "IHH 0000 O~. I I'rH'I uouu O,<!C 
"IH. ouuu 0541 I'I"H UOOO O,b.! lLUAlt ooou O.lQ2 
VA~i UOUl 

•• CUMMON 
P X 0000 OOUO 

l~KIIGN UUUU OOHI 

.. UNOH 
l~KIII;N uuou OOHI 
l~lItl; uuuu 00111 tXlf OUOO 006'1 USKCIO OUOO o ~4 I 
~OR"'CM UUUO OIlC IA"Gt I OUOO 011A SAf 5 .. OOOU UIK7 
"'~"'NMl UUOU OIIlU ~U"CN I UUOO OOFS "V 0000 U<!~I 

CO UUUO O~bH FI"'~X ouoo O~Il.l zs. 0000 01'13 
lSi'll. UUUO 01'11> MUOt OUOO OlIH U~Ut"'l ooou OlE" 
crop uuou 01~1> I uuuo OltH "OCH OOOU OIFl 
80M" uuuu oln ~NISl 0000 01 f 'I l"CMAU 0000 OIFI) 
HUC"'I' uuou 01H MVWIlS 0000 OUI SUAIi OuUO O<!OC 
HrM~'" uuuu 020~ MI'IlAlt. 0000 0<11. lOAll ooou OUo 
CONSUL OUUO 02CI CHKIU 0000 031>4 MAPO~ OOOU Ol~. 

~81~NN UUUU 02,1 L.UloINHI uuou 0<!'13 UUTN"M 0000 02'1'1 
PORNM UOOO O~A~ "HNIC" 0000 0~1l1 ~UI;OUI OOUO O<!O" 
"tAO uuuu 03~1 Z~VE" 0000 0.1'10 lLNtv UOOO 0.1'11 

Figure 2·3 (cont.) Sample Link Maps j 

LINKER 2·30 CB21· 



(-
"-

;,.; ,t 
'1 

OVLY 

** TEST LINK "A~ 1""/11/23 1316:05.2 
**SUNT UOOO UOH7 
**LU" UUOU OOHI 
**'11&1< 0000 UI>II> 
.. CUNNtNl OUOO 01>11> 

**EXT Otl'5 
P ZI1CO"" UUUO 0000 
P lHHlL UOUU 0000 

V_L UUUU 
P CC UUOO 0061) .. NUUT uuuu 0061 

* lLKliliN OUOU 0061 _ T TAI;H uuUU 03CI) 
IHL UUUU 006" 
IIlH UUUU 0111 
til UUUU OIQ" 

115L UUOO 01'" 115H 
CTLIIU~ uooo OU5 DA 101 
HI>W .. " UUUU O,CI> fl6LNG 
fIIiOI uuuu 0,00 fIIiOl 
flIlO!> UUUU O~I~ FI 110 I> 
flllO'l uuuu 055" FIIIIU 
INP uuuo O.5Ct 11'11''> 
INPl OUOo 0.51 INI'~ 

INI'IH'> uuuo 031'. INP1H'I 
INPTH~ UUOO 0.'>11 I'HLAIi 
I'THe OUOO O',U PIH.5 
PTHI> UOUU 051), I'IH6 
PTHl ouou os., I'IHII 

**COMMON 
P X uuuu OOUO 

* ZLKIiIiN uuuu 0061 

".U~Dt.,. 

* lLKllliN uuuo 006/ 
lLlltIO ouou 0061 tXII 
~OMMI;H UUUU OIIC TANGtl 
Mt.MN"l uuuu 0180 ~UIlCNI 

CD OUOO 03bM ~IN~' 
lS".l ouou 01'1" MUU~ 

CTUI' UUUU Oltb I 
SOMb uuuu OHI tNTSl 
HUCHII' UUOO OIH OIV~US 

IlIMtOl uuou 02Ut. MI'UArt 
CUNSUL uuuu OlC I I;H~IU 

L8TtNI< uuuu 02'>1 LUH~M 

I'UIlN" uuuu OlA'> t'NNICH 
NtlO UUUO 05!!1 lLVtH 

*.***.**** 
II0UT TEST 
•• ******** 
HI&Ht.ST UVLY INUM U~ SYMS 
********** 
SLIt 

********** 
C'4MN rESI KASt UOOO 
********** 
ROOT TtSI !lAst oouu 
********** 
*SlU OF HUOI ANU SIlIIC UVLYS= 
********** 
LIIIIK UONt. 
•• ******** 

LINKER 

0000 
OUOO 
UOOO 
OUOO 

UOOO 
0000 
0000 
0000 
0000 
uuoo 
0000 
0000 
ouuo 
0000 
0000 
0000 
OUOO 

0000 
0000 
UOOO 
0000 
OUUO 
OUOO 
U~OO 

ouoo 
OUOU 
ouoo 
0000 
OUOO 
OUOO 

0000 

UUll1 

OUUO 

0060 
0061 
DIUI' 
021" 

01".5 
U3~t 

O'>t~ 

0~6b 

O'>C. 
0'>'>1 
051'1 
OO,A 
041'> 
0.581> 
05"6 
O,~ 1 
OSb.! 

0011'1 
OIIA 
001''> 
03«13 
0.5111 
Oltll 
o IF" 
oal 
O~H 
03I>Q 
Ol"5 
OlUI 
0.1'10 

SI OUUO 

ST uuou 

Ublb HI 

dt(;l~ 

~I"L"G 
FI6~"N 
FI~05 
~16U8 

1'1611 
INP'I 
INI'IHI 
IN~lHA 

PIHI 
~IH' 

PT"" 
lLUAlt 

USKCIO 
SAf5~ 
MV 
lS~ 

OLUtNI 
HUCH 
l"CMAU 
SUAU 
lllAll 
MA .. U.5 
uurNAM 
LOGUUI 
lLHt V 

OOOU 
OOUO 
UOOU 
OOUU 

0000 
uOOU 
OOUO 
0000 
0000 
0000 
0000 
0000 
ooou 
0000 
OUOO 
0000 
0000 

OUOO 
0000 
ouuo 
OOUO 
uoou 
uouu 
OOOU 
oouo 
0000 
OOOU 
oouu 
Qoud 
oouo 

006B 
0115 
0100 
01"7 

UOBI 
O,cq 
0'>E8 
O'>Ai 
O'>E& 
O'>bC 
0.14 
U5CF 
U458 
O"H 
U'>II 
0,2C 
OH2 

05., 
0161 
O~~I 

0lQ5 
01~4 

0lf3 
UIH 
U~OC 

Olib 
Ul!!. 
Ol<;9 
OlUb 
0.5"1 

UOOO ..... "16>1=0000 

OOlll - •• U1 H[GH=OOOO 

MEL RCU= I. 

Map #6 
Externa 1 value VAL 2 is purged by a 
VPURGE directive 

• QUIT directive entered 

0011 This infonnation always 
appears on a 1 ist file. 

0&113 

Figure 2-3 (cont.) Sample Link Maps 

2-31 CB21 



OVL Y /PROTECT 
ARGUMENT DESCRIPTION: 

name 
Name of the nonfloatable overlay that immediately follows; the overlay name must 
comprise one to six alphanumeric characters; the first character must be alphabetic. 

Example: 

LINKERBU 

LINK A 
LINKB 
MAP 
OVLY A2 

LINK X 
LINKY 
MAP 
QUIT 

PROTEeT Directive 

Loads the Linker and designates BU as the bound 
unit name. 

Designates the end of the root (which comprises 
object units A.O and B.O) and specifies that the next 
overlay is a nonfloatable overlay named A2. The 
Linker assigns the number 00 to this overlay. 

The protect directive prevents certain symbols and/or object unit names from being 
removed from the symbol table. Symbols that identify addresses from the first operand 
through the second operand are protected, and object unit names equated to addresses 
within that range are protected. If a second operand is not specified, the symbol at the 
address of the first operand and any other symbols or object unit names equated to that 
address are protected. Once a symbol or object unit name is protected, it cannot later be 
purged. 

FORMAT: 

$ 
% 
X'address' 
=object-unit-name 
xdef 
# 

$ 
% 
X'address' 
=object-unit-name 
xdef 
# 

ARGUMENT J)ESCRIPTIONS: 

$ 

% 

Next location after the highest address of the linked root or previously linked 
nonfloatable overlay. 

Highest address+ I ever used in the linked root or any previously linked nonfloatable 
overlay. 

address 

liNKER 

Hexadecimal address compnsmg one to four integers enclosed in apostrophes and 
preceded by X. The specified address is relative to the beginning of available memory 
(relative 0) in the memory pool. 

2-32 CB21 



( 

PROTECT/PURGE 
=object-unit-name 

Specified object unit's base address. 

xdef 
Address of any previously defined external symbol. 

# 
The current address. 

Example I: 

PROT X'1234',X'4565' 

This directive protects symbols and object unit names that identify addresses from 1234 
through 4565. 

Example 2: 

PT =FIRST 

This directive protects symbols that identify the base address of the object unit FIRST, and 
all symbols equated to that address. The base address of FIRST is determined by producing 
a link map (see "MAP and MAPU Directives"). 

Example 3: 

PROT SYM,X'5555' 

This directive protects symbols that identify addresses from the address of the previously 
defined external symbol named SYM through 5555; object unit names equated to those 
addresses also are protected. 

PURGE Directive 
The PURGE directive causes the Linker to remove from the symbol table unprotected 

symbols that define addresses from the first operand through the second operand, and/or 
object unit names equated to addresses within that range. If a second operand is not 
specified, the symbol at the address of the first operand and any other symbols or object 
unit names equated to that address are purged. 

An object unit currently being linked may contain definitions used for previously linked 
object units that won't be used for subsequent object units to be linked. By removing from 
the symbol table symbols that are no longer required, there is more room for symbols that 
will be required by subsequently-linked object units. 

NOTES: 
1. Undefined symbols cannot be purged. 
2. Symbols and object unit names that are protected by a protect directive cannot be 

purged. 
3. Only symbol addresses (not values) can be purged. 

FORMAT: 

UNKER 

$ 
% 
X'address' 
=object-unit-name 
xdef 
# 

2-33 

$ 
% 
X 'address' 
=object-unit-name 
xdef 
# 

CB21 



PURGE/QUIT 
ARGUMENT DESCRIPTIONS: 

$ 
Next location after the highest address of the linked root or previously linked 
nonfloatable overlay. 

% 
Highest address+ I ever used in the linked root or any previously linked nonfloatable 
overlay. 

address 
Hexadecimal address compnsmg one to four integers enclosed in apostrophes and 
preceded by X. The specified address is relative to the beginning of available memory 
(relative 0) in the memory pool. 

=object-unit-name 
Specified object unit's base address. 

xdef 
Address of any previously defined external symbol. 

# 
The current address. 

Example I: 

PURGE X'1234',X'4565' 

This directive purges unprotected symbols that identify addresses from 1234 through 4565, 
and unprotected object unit names equated to addresses within that range. 

Example 2: 

PE =FIRST 

This directive purges unprotected symbols that identify the base address of the load unit 
FIRST, and any other unprotected symbol names equated to that address. The base address 
of FIRST is determined by producing a link map (see "MAP and MAPU Directives"). 

Example 3: 

PURGE SYM,X'5555' 

This directive purges unprotected symbols that identify addresses from the address of the 
previously defined external symbol SYM through 5555; unprotected object unit names 
equated to addresses within that range also are purged. 

QUIT Directive 
The QUIT directive designates that the last Linker directive has been entered. Specify 

QUIT after the last overlay, or at the end of the root ifthere are no overlays. 
If a bound unit is being created, execution of the Linker terminates after the bound unit 

has been created. 

LINKER 

If no bound unit is being created, QUIT terminates execution of the Linker. 
The QUIT directive is required. 

2-34 

\",,- ./ 

CB21 



QUIT/SHARE/START /SYS 
FORMAT: 

SHARE Directive 
The SHARE directive designates that the bound unit is shareable; i.e., it will be loaded 

into the system pool. If another task requests that the bound unit be loaded, instead of 
another copy of the bound unit being loaded, the existing copy in memory is used. The 
bound unit must have reentrant code, but the system does not check to see that it does. 

SHARE must be specified in the definition of the root before the first overlay is defined. 
SHARE directives can be embedded in assembly language CTRL statements. 

FORMAT: 

{~~ARE} 

ST ART Directive 
The START directive designates the relative location within a root or overlay at which 

execution of the root or overlay will begin once it is loaded into memory by the Loader. 
If a linked object unit contains a start address (an Assembler or compiler END statement 

was specified) and the START directive is specified, the first start address encountered (in 
either a START directive or an END statement) is used by the Linker for that root or 
overlay. 

FORMAT: 

{ START} ST symbol 

ARGUMENT DESCRIPTION: 

symbol 
Name of the external symbol whose address designates the relative address at which the 
root or overlay will begin executing. 
Default: Start address specified in the first linked object unit that has a start address. If 
the symbol is never defined or a start address is not found, the start address is 
relocatable O. 

SYS Directive 
The SYS directive designates that the bound unit being created can be used as a system 

task in the system task group. To use the bound unit in a system task group, it must be 
loaded during system configuration using the LDBU configuration directive, which is 
described in the "Startup and Configuration Procedures" section of the System Building 
manual. If SYS is not specified, the CLM Loader will not load the bound unit. The SYS 
directive can be embedded in assembly language CTRL statements. 

FORMAT: 

SYS 

UNKER 2-35 CB21 



SYS/VAL/VDEF/VPURGE 
Example: 

SYS 

If source units are written to create a function not provided by the operating system and the 
SYS directive is specified during linking, the bound unit created can be loaded during 
system configuration and the capability it provides can be used. 

VAL Directive 
The VAL directive creates a value definition at link time which is equivalent to the 

difference between two external location definitions. 

FORMAT: 

VAL value-definition, external-location} - external-Iocation2 

ARGUMENT DESCRIPTIONS: 

value-definition 
Assigns a name to the value of the distance between two locations. 

external-Iocationn 
A location defined externally. 

VDEF Directive 
The VDEF directive assigns a value to an external symbol. A symbol should be defined 

only once, as a value or as a location. When a symbol is defined, its definition is put into the 
Linker symbol table so that it can be used during linking to resolve external references. 

FORMAT: 

{~~EF} symb 01 ,X'value , 

ARGUMENT DESCRIPTION: 

symbol 
One to six alphanumeric characters. 

value 
Value of the designated symbol; must be a one-word hexadecimal integer enclosed in 
single apostrophes and preceded by X. 

Example: 

VDEF XMP,X'12' 

This directive assigns the value 12 to the symbol XMP. 

VPURGE Directive 
The VPURGE directive causes the removal of the specified external value definition. 

FORMAT: 

VPURGE value-definition 

UNKER 2-36 CB21 , 



( 

VPURGE 
ARGUMENT DESCRIPTION: 

value-definition 
The external symbol associated with a particular value. 

EXAMPLE ILLUSTRATING USAGE OF THE LINKER 

LINKER TEST -COUT >SPD>LPTOO 

START LOC 
1ST INITST 
LINK OBJI 
LIB "DSK03 
LINK OBJ2 
OVLY ABLE 

LINKN OBB 
LINKNOBJ4 
PROT=OBB 

MAP 
OVLYBAKER 

LINKN OBJS 
LINKN OBJ6 
PROT=OBJS 
MAP 
OVLY DOG 

BASE =OBJS 

LINKOBJ7 
MAP 
OVLYFOX 

BASE=OBJ3 

IN "DSKO 1>MYFILE 

LINKER 

The bound unit will be a relative file named 
TEST created in the working directory. Link 
maps will be printed on the printer configured 
as LPTOO. 

Defines the beginning of initialization code. 
Requests that OBJ 1.0 be linked. 
Names secondary directory. 
Requests that OBJ2.0 be linked. 
Causes OBJ 1.0 and OBJ2.0 to be linked, 
designates the end of the root, and specifies 
that a nontloatable overlay named ABLE 
immediately follows. The Linker assigns the 
number 00 to this overlay. 

Protects the symbol OBB. This symbol is 
protected because a subsequent overlay may 
be loaded starting at the base address of 
OBB.O. 
Requests a link map. 
Designates the beginning of the nontloatable 
overlay named BAKER. The Linker assigns 
the number 01 to this overlay. 

Protects the symbol OBJS. 

Designates the beginning of the nontloatable 
overlay named DOG. The Linker assigns the 
num ber 02 to this overlay. 
The overlay named DOG will be loaded 
starting at the address where overlay BAKER 
began. 

Designates the beginning of the nontloatable 
overlay named FOX. The Linker assigns the 
number 03 to this overlay. 
FOX will be loaded at starting address of 
overlay ABLE. 
Designates that the primary directory now is 
the directory named "DSK01>MYFILE. 

2·37 CB21 



VPURGE 

LIB "DSK02>MYLIB Designates that the new secondary directory 
is named ""DSK02>MYLIB; if necessary, this 
directory will be searched after the primary 
directory. 

LINK OBJA 
LINKOBJB 
MAP 
OVLYX-RAY A nonfloatable overlay named X-RA Y 

immediately follows. The Linker assigns the 
number 04 to this overlay. 

BASE =OBJ5 X-RA Y will be loaded starting at the 
beginning address of BAKER. 

LINKOBJe 
MAP 
FLOVL Y FLOAT Designates that a floatable overlay named 

FLOAT immediately follows. The Linker 
assigns the number 05 to this overlay. 

LINKOBJE 
MAP 
QUIT 

PROGRAMMING CONSIDERATIONS 

LINKER 

1. While processing object units, the Linker creates a work file LNKWRK.W in the 
working directory. This file is a variable sequential file. It is initially allocated with four 
control intervals of 256 bytes each, but it can be expanded to the amount of space 
available in the working directory. 

2. If the relative output file is preallocated, it must have the same name as that specified 
in the name argument of the LINKER command, it must be a fixed, relative file, and it 
must have a record size of 256 bytes. 

3. If multiple object units contain labeled and unlabeled common, the object units will be 
linked with common blocks appearing in the following order (~R is not specified): 
a. Labeled or unlabeled common (defined in first object unit linked) 
b. First object unit (including external references and definitions) 
c. Labeled common (defined in second object unit linked) 
d. Second object unit (including external references and definitions) 
e. Object unit n 

4. A root or any overlay may reference any symbol defined in any other root or overlay 
including "common" symbol definitions. A common area cannot, however, be 
initialized in any overlay other than the one in which it initially occurs (is made known 
to the Linker). That is, a common area defined in a root or an overlay can be initialized 
only in the root or overlay in which it is defined. 

5. Relocation can occur during one or both of the following procedures: 
a. Assembly; by specifying an ORG statement, subsequent object text within the 

object unit is relocated. (See the Assembly Language Reference manual.) 
b. Linking; by specifying the BASE directive, subsequent object units to be linked 

within the root or overlay have a specified relative load address. (See "BASE 
Directive" earlier in this section.) 

2·38 CB21 



( 

VPURGE 
Example: 

Described below are three methods of relocating a unit so that it is executed at relative 
location 100 within the memory assigned to the bound unit. This unit will constitute a root. 

Assembly Linking 

Method I: ORG X'OlOO' Don't specify 
before the first line BASE directive. 
of executable code. 

Method II: Don't specify ORG. Specify 
(Default is 0.) BASE X'IOO' 

Method III: ORG X'lO' BASE X'FO' 

6. When relocating object units or nonfloatable overlays during the assembly or linking 
procedure, it is your responsibility to ensure that code is not inadvertently overwritten. 

7. If more than six characters are specified for an object unit name or symbol name, or 
more than 12 characters are designated for a bound unit name, subsequent characters 
are truncated. 

8. Forward external references with offsets are not permitted. If the Linker encounters 
them, an error message is issued and execution of the Linker terminates. 

9. Common definitions may appear more than once in object units being linked. Only the 
first occurrence of either a labeled or unlabeled common definition block is used to 
reserve the defined amount of memory. Therefore, the largest definition of labeled or 
unlabeled common should be linked first. Common blocks are allocated space by the 
Linker by assigning the current location counter (address) to the symbol name, and 
then incrementing the current location counter by the size of memory specified for the 
common block. 

10. A BASE directive in the root or an overlay cannot specify an address less than the 
beginning of that root or overlay; i.e., it cannot be less than the first word of the first 
object unit linked in that root or overlay. 

11. If BASE $ or BASE % is specified in the root, it is equivalent to BASE O. 
12. The start address of the root or an overlay must be in the first 3 2K -1 words. 
13. Preallocated bound unit files and preallocated work files will decrease the execution 

time of the Link session. If the -W command line argument is specified for the first link 
of a bound unit, the work files will be saved and reused for subsequent links. 

LINKER 2-39 CB21 





( 

SECTION 3 

PROGRAM EXECUTION 

This section presents a summary of the procedures followed and the commands used in 
executing a program. 

DESIGNATING FILES 

Prior to executing an application program, an ASSOC (associate) or GET command must 
be entered to associate the program's logical file numbers (LFNs) with physical files. For a 
detailed description of the ASSOC and GET commands, see the Commands manual. 

ASSOC Command 
The ASSOC command establishes the relationship between a specified pathname of a file 

in a task and the LFN by which the task refers to this file. 

FORMAT: 

ASSOC lfn path 

ARGUMENT DESCRIPTION: 

lfn 
The logical file number by which a task is to refer to a file. 

path 
The pathname of the file to which the task is to refer. 

GET Command 
The GET command reserves a file system entity (Le., a tape or disk file or volume, a disk 

directory or file, or a card, print, or terminal device file) and establishes an association 
between the reserved entity and a logical file number, if such an association does not already 
exist. 

FORMAT: 

GET path lfn [ctl_arg] 

ARGUMENT DESCRIPTION: 

path 
The pathname of the file being reserved; can be any valid pathname form for file- or 
volume-level access. 

lfn 
The logical file number (lfn) by which this file is referenced during access. 

[ctl_arg] 
Control arguments used in the reservation of a file are described under the GET 
command in the Commands manual. 

PROGRAM EXECUTION 3-1 CB21 



SETTING SWITCHES 

The order of execution of a task group can be controlled by optionally using the MSW 
command (e.g., for an RPG program). 

MSWCommand 
The MSW command modifies selected external switches associated with the issuing task 

group to control the execution of that task group. 

FORMAT: 

MSW ctl_arg 

ARGUMENT DESCRIPTION: 

ctl_arg 
One or more control arguments chosen from the following list: 

-ON Si[Si] ... 
Set the external switch indicated by Si ON. Each Si is a hexadecimal digit from 0 
through F. 

-OFF Si[Si] ... 
Set the external switch indicated by Si OFF. Each Si is a hexadecimal digit from 0 
through F. 

-ALL v 
Set all switches to the value v. The value v can be either ON or OFF. 

PROGRAM EXECUTION 3-2 CB21 



REQUESTING PROGRAM EXECUTION 

Programs can be prepared and executed in the same or in different task groups. The 
following paragraphs summarize the appropriate methods of initiating program execution in 
each case. 

Program Preparation and Execution In the Same Task Group 
Assume that the program preparation is done in a task group with the command 

processor as the lead task. If the task group memory pool is large enough to accommodate 
the application program, program execution can be initiated simply by entering the bound 
unit pathname. For example, if the bound unit's relative pathname in the working directory 
is INVENT, enter INVENT. 

Program Execution In a Different Task Group From Program Preparation 
If the application program cannot run in the task group used for program preparation, 

e.g., if the memory pool is too small or if the lead task is not the command processor, then a 
new task group must be created. 

This is accomplished from an existing task group that has the command processor as its 
lead task by using one of the following procedures: 

l. The Create Group (CG) command followed by the Enter Group Request (EGR) 
command 

2. The Spawn Group (SG) command 

If the installation supports the LOGIN function, then the application program can be 
executed using the LOGIN command. 

For detailed descriptions of these commands, see the Commands manual. 

Using the CG and EGR Commands 
The CG and EGR commands must be used in conjunction with each other. A description 

follows on the purpose and use of each command. 

PROGRAM EXECUTION 3-3 CB21 



CG Command 
The CG command allocates and creates the data structures required to define and control 

the execution of an online task group. The -EFN argument specifies the name of the bound 
unit to be executed. 

FORMAT: 

CG id base-lvl [ctl_arg] 

ARGUMENT DESCRIPTION: 

id 
The group identification of the new task group. It is a two-character name that cannot 
have the $ as its first character. 

base_lvl 
A base priority level, relative to the highest system level, at which all tasks in this task 
group will execute. 

[ ctl_arg] 
One or more control arguments chosen from the following list. 

{-EFN root } 
-EFN root?entry 

The name of a bound unit root segment to be loaded as the lead task if it is not 
already loaded. The root segment name can be suffixed with ?entry, where entry is a 
symbolic start address within the root segment. If ?entry is not given, the start 
address established when the bound unit was linked is assumed. 

-ECL 
The root segment of the command processor is to be loaded as the lead task. 

-LRNn 
Used to override the default maximum logical resource num ber (LRN) value for the 
task group spawned as a result of this login procedure. 

n 
Maximum LRN value to be used for the spawned task group. (The maximum 
possible LRN value is 252.) If this argument is omitted, the maximum LRN value 
is the highest value in the system group. 

-LFNn 
Specifies the highest logical file number used by any task in the task group. The 
maximum value is 255. If -LFN is not specified, n assumes the value 15. 

-POOL id 
id is a two-character ASCII identifier and is the name of the memory pool from 
which all dynamic memory required by this task group is to be taken. If specified, id 
must have been defined at system building. If not specified, the issuing task group's 
memory pool is used. 

NOTE: In any invocation of the CG command, -EFN or -ECL, but not both, can be 
specified. If neither is specified, -ECL is assumed. 

PROGRAM EXECUTION 34 

/( '''" 

\", j 

CB21 



(/ 

EGR Command 
The EGR command activates the lead task of an online task group previously created by a 

CREATE GROUP command. 

FORMAT: 

ARGUMENT DESCRIPTION: 

id 
The group identification of a task group previously created by a CG command 
specifying the same id. 

[in_path] 
The name of the fIle from which commands and user input are to be read by the task 
group during execution. This argument is set to null if it is not specified. It is required 
if the CG command specified the control argument -ECL. 

[ctl_arg] 
One or more control arguments chosen from the following list. 
-OUT out_path 

Defines the path name of the fIle which is to receive user output and error output 
from the task group. If not specified, one of the following assumptions is made: 

If in_path specifies a disk fIle, out_path = in_path.AO 
If in_path specifies an interactive terminal, out_path = in_path 
If in_path is not specified, out_path is null 
If in_path specifies an input-only device, out_path is null. 

-WD path 
Specifies that path is to be used as the working directory pathname. 

-ARG arg arg ... arg 
Indicates that additional arguments required by the task group during execution 
follow. These additional arguments are passed to the lead task to be used as 
necessary and are substituted for parameters in the command-in fIle. If used, the 
-ARG control argument must appear last. Refer to the Commands manual for an 
explanation of the use of additional arguments. 

PROGRAM EXECUTION 3-5 CB21 



Using the SG Command 
The spawn group command creates, requests the execution of, and then deletes a task 

group. 

FORMAT: 

ARGUMENT DESCRIPTION: 

id 
The group identification of the task group to be spawned. It is a two-character name 
that cannot have the $ as its first character. 

base_Ivl 
A base priority level, relative to the highest system level, at which all tasks in this task 
group will execute. 

in_path 
The name of the file from which commands and user input are to be read by the task 
group during its execution. The file name is set to null if the in_path argument is not 
specified; in_path must be specified if the control argument -ECL (see below) is used 
or implied. 

[ctl_arg] 
One or more control arguments chosen from the following list: 
-OUT out_path 

Defines the pathname of the file which is to receive user output from the task group. 
If not specified, one of the following assumptions is made: 
If in_path specifies a disk file, out_path = in_path.AO 
If in_path specifies an interactive terminal, out_path = in_path 
If in_path is not specified, out_path is null 
If in_path specifies an input-only device, out_path is null. 

-WD path 
Specifies that path is to be used as the working directory pathname. 

{-EFN·root } 
-EFN root?entry 

The name of a bound unit root entry which is to be loaded as the lead task. The root 
segment name can be suffixed with ?entry, where entry is a symbolic start address 
within the root segment. If ?entry is not given, the start address established when 
the bound unit was linked is assumed. 

-EeL 
The root segment of the command processor is to be loaded as the lead task. 

-LRNn 
Used to override the default maximum logical resource number (LRN) value for the 
task group spawned as a result of this login procedure. 

n 
Maximum LRN value to be used for the spawned task group. (The maximum 
possible LRN value is 252.) If this argument is omitted, the maximum LRN value 
is the highest value in the system group. 

-LFNn 
Specifies the highest logical file number used by any task in the spawned task group. 
(The maximum value is 255). If -LFN is not specified, n assumes the value 15. 

PROGRAM EXECUTION 3-6 CBll 



-POOL id 
id is a two-character ASCII identifier and is the name of the memory pool from 
which all memory required by the spawned task group is to be taken. If specified, id 
must have been defined at system building time. If not, the issuing task group's 
memory pool is used. 

-ARG arg arg ... arg 
Indicates that additional arguments required by the spawned task group during 
execution follow. These additional arguments are passed to the lead task of the 
spawned group to be used as necessary, and are substituted for parameters in the 
command-in file. If used, the -ARG control argument must appear last. Refer to the 
Commands manual for an explanation of the use of additional arguments. 

NOTE: In any invocation of the SG command, -EFN or ECL, but not both, can be 
specified. If neither is specified, -ECL is assumed and the in_path argument 
is required. 

PROGRAM EXECUTION 3-7 CB21 



Using the LOGIN Command 
The LOGIN command is used to gain access to the system. When the login procedure has 

been executed, it spawns the task group to be associated with the user's terminal. Once 
having access to the system, the user can only re-invoke login after first issuing the BYE 
command. The user employs the LOGIN command from a direct-login terminal. 

FORMAT: 

ARGUMENT DESCRIPTION: 

login_id 
Identifies the user who is attempting to access the system. Provides an identification 
for the spawned task group. The login_id argument has one of the following forms: 

person One to 12 alphanumeric characters, beginning with a 
letter. 

person.accoun t One to 12 alphanumeric characters, beginning with a 
letter. 

person.account.mode Mode is one to five alphanumeric characters, beginning 
with a letter. 

The login_id argument is not specified if the terminal allows the login procedure to be 
initiated by abbreviation. In this case, a single character is typed following the L. 

destination_id 
Optionally allows the user to specify additional information about the login procedure. 
This information is not processed by the system. The destination_id has one of the 
following forms: 

field_c 

field_b. field c 

One to five alphanumeric characters. 

Field b is decimal; a through 65536. 

Field a is decimal; a through 65536. field a.field_b.field c 

ctl_arg 
One or more of the following control arguments can be selected: 

-PO path [endpoint] 
Used to override the default lead task and group id/pool id specifications for the 
task group spawned as a result of this login procedure. 

path 
Pathname of the bound unit to be executed as the lead task of the spawned task 
group. If this argument is omitted, the lead task is the command processor. 

endpoint 
Group id/pool id of the spawned task. The group id and the pool id are 
represented by the same two-character value. If this argument is not specified, the 
group id is a two-character value whose left (first) character was generated by the 
login procedure while connecting the terminal and whose right (second) character 
is the next unused character in the sequence a through 9 and A through Z as 
selected by the system. 

PROGRAM EXECUTION 3-8 CB21 



.:[ 

( 

-HD path 
Used to override the default working directory specification for the task group 
spawned as a result of the login procedure. 

path 
Pathname of the working directory for the spawned task group. If this argument 
is omitted, the working directory pathname is null. 

-LRNn 
Used to override the default maximum logical resource num ber (LRN) value for the 
task group spawned as a result of this login procedure. 

n 
Maximum LRN value to be used for the spawned task group. (The maximum 
possible LRN value is 252.) If this argument is omitted, the maximum LRN value 
is the highest value in the system group. 

-LFNn 
Used to override the default logical file number (LFN) value for the task group 
spawned as a result of the login procedure. 

n 
Maximum LFN value to be used for the spawned task group. (The maximum 
possible LFN value is 255.) If this argument is omitted, the maximum LFN value 
is 15. 

-ARG arg arg ... arg 
Passes additional arguments to the task group spawned as a result of this login 
procedure. These additional arguments are passed to the spawned task in an 
extension of the task request block, and are substituted for parameters in the 
command input file. If used, the -ARG control arguments must appear last. Refer to 
the Commands manual for an explanation of the use of the additional arguments. 

The arguments will be substituted in the following manner: 

o Argument I will always be null 
o If the lead task is the command processor, argument 2 will be the pathname of the 

user-in file (Le., >SPD>terminal) and arguments 3 through n will be the arguments 
following -ARG. 

o If the lead task is not the command processor, arguments 2 through n will be those 
arguments following -ARG. 

PROGRAM EXECUTION 3-9 CB21 





( 

( .... ~ 

SECTION 4 

PATCH 

The Path utility program applies patches to and removes patches from object units and 
bound units. Patches are identified by patch-id's; (Patch also can be used to list, by patch­
id,) all patches for an object unit or bound unit. The listing is written to the user output file. 

Execution of Patch is controlled by directives entered to Patch through the operator's 
terminal, another terminal, or a card reader. Each directive is listed below, followed by its 
function; these directives are described in detail later in this section. 

Directive 
Name Function 

EP Eliminate patch(es) 
HP Apply hexadecimal patch(es) 
DP Data patch 
LP List patches 
Q Execute previously specified Patch directives, and then terminate execution of 

Patch 
*b,. List a comment on the user output file. 

LOADING PATCH 

To load Patch, enter the PATCH command, as follows: 

FORMAT: 

PATCH filenm[ctl_arg] 

ARGUMENT DESCRIPTIONS: 

PATCH 

filenm 
Pathname of the object unit file or bound unit file to be patched. If an object unit is 
being patched, the last two characters of the pathname must be .0. 

ctl_arg 
The following control arguments may be entered: 

-IN path 
Pathname of the device through which Patch directives will be entered; can be the 
operator's terminal, another terminal, or a card reader. Error messages are written to 
the error output file. Patch error messages are described in the System Messages 
manuaL 

Default: Device specified in the in_path argument of the "enter batch request" or 
"enter group request" command. 

4-1 CB21 



PROMPT argument 

{:~OMPT } 

If input is from the operator terminal or another terminal, each time the PATCH 
utility program is ready to accept an input line the typeout P? appears on the input 
device. 
Default: The string P? is not printed. 

SUBMITTING PATCH DIRECTIVES 

Each Patch directive consists of only a directive name or a directive name followed by 
one or more parameters. If one or more parameters are to be specified in a Patch directive, 
the directive name must be immediately followed by a space. Each parameter, except for 
the last, must be followed by a comma. 

Multiple Patch directives may be specified for the fIle named in the fIlenm agrument of 
the PATCH command. 

Patch directives may be entered in any order, except for quit, which must be entered last. 
If directives are being entered through the operator terminal or another terminal, press 

RETURN at the end of each line. Each time RETURN is pressed, except after quit, the 
typeout P? is reissued if the Prompt Control argument was specified in the command line. 

To enter Patch directives for a different fIle, you must reload Patch, specifying a different 
fIle in the fIlenm argument. 

PATCHING TECHNIQUES 

Naming the Patch 
Each patch has a patch-id by which it is identified. When you designate in hexadecimal 

patch (HP) directives that one or more patches are to be applied to a specified object unit or 
bound unit, you must specify a patch-id; the patch-id identifies the patch(es) and designates 
whether the patch(es) are to be applied to an object unit or to the root, or to an overlay of a 
bound unit. To eliminate patches from an object unit or bound unit, you must specify in 
the eliminate patch directive the patch-id with which the patch(es) are associated. See 
"Hexadecimal Patch Directive (HP)" for a description on how to designate patch-id's. 

Applying the Patch 
If an object unit is being patched, object records are created for the specified patches and 

appended to the end of the object file. When the object unit is processed by the Linker, 
existing values are replaced with the specified patch values. 

If a bound unit is being patched, each specified patch value is applied directly to the 
proper image record in the bound unit. The previous value, the patch-id, and the patch value 
are saved in a Patch history record that is written at the end of the file area allocated to the 
bound unit. This record is referred to each time a list patch directive or eliminate patch 
directive is specified. 

PATCH 

NOTE: Use caution when patching running programs. If a program or one of its overlays 
is loaded while in the process of being patched, results are unspecified. 

4-2 CB21 



( 

PATCH DIRECTIVES 

Data Patch Directive 
For bound units the data patch directive (DP) applies one or more hexadecimal patches, 

by relative location, to the data section of the bound unit. The bound unit must have 
separate code and data sections. 

For object files, the DP directive causes patches to be applied to common areas. 

FORMAT: 
(For bound units) 

DP patchid b,./adrl b,. patchvalll [b,. patchval12 ... b,. patchvalml 

[b,./adr2 b,. patchval21 [b,. patchval22' .. b,. patchval2nl I 

(For object files - local common block) 

DP patchid b,./offsetI 1 b,. patchvall b,./offsetl2 b,. patchval2 

(For object files - named common block - one blockname per directive) 

DP patchid b,. blockname b,./offset b,. patchvalu [b,. patchval12' .. patchvalml 

ARGUMENT DESCRIPTIONS: 

PATCH 

patchid 
Eight-character patch-id, which identities the subsequent patch(es). The last two 
characters must identify the root or overlay to which the patch(es) are being applied. If 
an object unit or the root of a bound unit is being patched, the last two characters 
must be RT. If an overlay is being patched, the last two characters identify the 
hexadecimal overlay number; the first overlay is 00, and subsequent overlays are 
numbered consecutively in ascending order. There may be no embedded blanks. Within 
the root and each overlay, patch-id's must be unique. 

/adrn 
Relative location at which the tirst (or only) subsequent patch value will be applied. 
Each address must comprise one to six right-justified, hexadecimal characters, and 
must be preceded by the slash character /. Subsequent patch values, if any, are applied 
to succeeding memory locations. 

NOTE: Care must be taken in specifying an address to be patched in either an 
object unit or a bound unit. If the address of a location to be patched is 
identified when a bound unit is being executed, that memory address 
contains three possible factors: 
1. The original address of the location in the bound unit relative to the 

beginning of the bound unit 
2. The linking relocation factor 
3. The loader relocation factor 
If the address is identified at execution time and the bound unit is to be 
patched, the loader relocation factor must be subtracted from the address 
identified in the executing bound unit. If the object unit is to be patched, 
both the linking and loader relocation factors must be subtracted. Object 
unit locations can also be obtained through examination of the listing 
produced during assembly of the object member. 

4-3 CB21 



PATCH 

offsetl l ,offsetl2 

Non-negative offset from the beginning of $LCOMW. 

patchval . 
Specilles a value of one to six hexadecimal characters to insert into $LCOMW. 
Relocatable values are not permitted and only one patch value can be specified for 
each patch. 

blockname 
Symbolic name of the common block. The name can contain one to six characters. 

offset 
Offset from the symbol name of the common block. 

/patchvalm ' 
The value to be inserted at an address, replacing the contents of that location. The 
value must be specified as one of the following: 

1. Data, represented by one to four hexadecimal characters. 
2. Relocatable address, represented by one to six hexadecimal characters, preceded 

by the character <. 

44 CB21 . 



( 

Eliminate Patch Directive 
The eliminate patch directive (EP) eliminates all patches associated with a specified 

patch-id from the designated object unit or bound unit. The patch(es) must have been 
previously applied by a hexadecimal patch (HP) directive. To determine what patches have 
been applied, and their patch-id's, enter the list patch (LP) directive, which is described later 
is this section. 

FORMAT: 

EP pat chid 

ARGUMENT DESCRIPTION: 

PATCH 

patchid 
Patch-id of the patch(es) to be removed. A patch-id comprises eight characters; the last 
two characters must identify the root or overlay to which the patch(es) are being 
applied. If an object unit or the root of a bound unit is being patched, the last two 
characters must be RT. If an overlay is being patched, the last two characters identify 
the hexadecimal overlay number; the first overlay is 00, and subsequent overlays are 
numbered consecutively in ascending order. There may be no embedded blanks. Within 
the root and each overlay, patch-id's must be unique. 

4-5 CB21 



Hexadecimal Patch Directive 
The hexadecimal patch directive (HP) applies one or more individual patches, by relative 

location, to an object unit or bound unit. 
If a bound unit is being patched, you can designate that specified p<Jtch(es) be applied 

only if specified location(s) currently contain specified value(s); these are called verification 
values. Within a single HP directive, verification values may be specified for some or all of 
the locations. If any of the verification values do not match the values currently at the 
locations for which verification values were specified, none of the patches specified in the 
HP directive are applied. 

FORMAT: 
Without Verification Values: 

HP patchid,/ adrl ,patchvall [,patchval2 ... patchvaln ] [,/ adr2 ,patchvall ,patchval2 ... 

patchvaln] ... 

With Verification Values: 

HP patchid,/adrl ,(vervall patchvall [,vervaln,patchvaln] ) [,/adr2 ,(vervall ,patchvall 

[,vervaln,patchvaln) ] 

NOTES: 
I. One or more lines of parameters may be specified. When two or more lines of 

parameters are entered for an HP directive, the last character on each line must be a 
valid hexadecimal character. Individual fields, values, and addresses must not be split 
between lines. The entry of a patch directive name (e.g., EP, LP) at the beginning of 
a line designates the end of the previous patch directive. 

2. A space may be used in lieu of a comma as a separator. 

ARGUMENT DESCRIPTIONS: 

PATCH 

patchid 
Eight-character patch-id, which identifies the subsequent patch(es). The last two 
characters must identify the root or overlay to which the patch(es) are being applied. If 
an object unit or the root of a bound unit is being patched, the last two characters 
must be RT. If an overlay is being patched, the last two characters identify the 
hexadecimal overlay number; the first overlay is 00, and subsequent overlays are 
numbered consecutively in ascending order. There may be no embedded blanks. Within 
the root and each overlay, patch-id's must be unique. 

ladr 
R~lative location at which the first (or only) subsequent patch value will be applied. 
Each address must comprise one to six right-justified, hexadecimal characters, and 
must be preceded by the character I. Subsequent patch values, if any, are applied to 
succeeding memory locations. 

4-6 CB21 



( 
.... 

NOTE: Care must be taken in specifying an address to be patched in either an 
object unit or a bound unit. If the address of a location to be patched is 
identified when a bound unit is being executed, that memory address 
contains three possible factors: 
I. The original address of the location in the bound unit relative to the 

beginning of the bound unit. 
2. The linking relocation factor 
3. The loader relocation factor 
If the address is identified at execution time and the bound unit is to be 
patched, the loader relocation factor must be subtracted from the address 
identified in the executing bound unit. If the object unit is to be patched, 
both the linking and loader relocation factors must be subtracted. Object 
unit locations can also be obtained through examination of the listing 
produced during assembly of the object member. 

patchvaln 
The value to be inserted at an address, replacing the contents of that location. The 
value must be specified as one of the following: 

1. Data, represented by one to six hexadecimal characters 
2. Relocatable address, represented by one to six hexadecimal characters, preceded 

by the character < 

vervaIn 
Verification value; one to four hexadecimal characters specifying value that currently 
should be in location at which subsequent patch will be applied. 

NOTES: 
1. Each verval must be immediately followed by a patchval (see above). 
2. The verification value(s) and patch value(s) associated with each address 

parameter must be enclosed within parentheses. 

Example I: 

HP PTCHIDRT,/lB2A,IFFF,IDFC,<2BFC,2D4E,<ABF2 

This hexadecimal patch (HP) directive requests that the subsequent patches, identified by 
the name PTCHIDRT, be applied to the root. Patches I FFF 16 through <ABF21 6 are to 
be inserted in successive locations, with the first patch I FFF 16 to be located at address 
I B 2A 1 6' The hexadecimal patches are to replace any previous values in these locations. 
The value to be inserted in address IB2C 16 is the global address 2BFC1 6, which is to be 
relocated at load time; the relocatable address ABF216 is to be inserted in address 
IB2EI6 · 

Example 2: 

PATCH 

HP VPATCHOI/IFEA,(lAI, IB7,IA 7, IB8),/IE72,8900 

This example illustrates the usage of verification values in a hexadecimal patch (HP) 
directive requesting that specified patches, identified by the name VPATCHOI, be applied 
to overlay 01. Patch will check location IFEA16 for the value IA1 16 , and location 
I FEB 1 6 for the value I A 7 1 6 ; if the values are at those locations, then the contents of 
locations are changed as follows: location IFEA16 will contain IB716 , location IFEB 16 
will contain IB816 , and location IE7216 will contain 890016 , If either of the 
verification values is incorrect, none of the three locations will be changed. 

4-7 CB21 



List Patches Directive 
The list patches directive (LP) produces a listing of all patches within the object unit or 

bound unit being patched. The listing is produced on the user output file. 
If a bound unit is being patched, the listing designates, for each patch, the following 

information in the order listed: full patch-id, address at which the patch was applied, 
contents of the location before the patch was applied, and the patch value. 

NOTES: 
1. In the listing, the last two characters of each patch-id (i.e., the characters that 

identify the root or overlay) appear first, and are separated from the other 
characters constituting the id by spaces. When a bound unit is being patched in a 
common area, the letters CM are printed rather than RT. 

2. If termination of the listing of patches is desired before normal completion of the 
list process, use the BREAK facility followed by a NEW_PROC command. The 
PATCH program must then be reloaded. 

FORMAT: 

LP 

Example: 

01 NOHLT3 02E2 0000 OF02 

The above printout is one line of a listing of patches applied to a bound unit being 
patched. The printout has the following meaning: A patch identified by the patch-id 
NOHLT301 was applied to overlay 01. The patch was applied to location 02E2; this 
location previously contained 0000, and now contains OF02. 

If an object unit is being patched, the listing designates, for each patch, the following 
information in the order listed: patch-id (excluding the last two characters, which identify 
the root), address at which the patch was applied, and the patch value. 

Example: 

NUMBRF 

NUMBRH 

0162 
0163 
01A6 
01A7 
01A8 
01A9 
OIAA 

0444 
0222 
0333 
0444 

<0221 
0004 

<0321 

The above typeout is a listing of patches applied to an object unit being patched. The 
first line designates that patch 0444, whose patch-id is NUMBRF, was applied to location 
0162. Note that the last two characters of the patch-id (e.g., RT) were omitted from the 
printout. 

PATCH 4-8 

/ 

CB21 

-~---~-----~ ~----



( 

( 

Quit Directive 
The quit directive (Q) informs Patch that the last Patch directive has been entered, and 

initiates processing of the specified Patch directives. This directive should be preceded by at 
least one other Patch directive. When the directive(s) have been executed, execution of 
Patch terminates. 

FORMAT: 

Q 

Comment Directive 
The comment directive (*~) causes the accompanying text to be listed on the user output 

file. The contents of the comment directive are not saved. 

FORMAT: 

* ~comment-text 

PATCH 4-9 CB21 



/ 



( 

SECTION 5 

DEBUGGING PROGRAMS 

While a program is executing, it can be monitored by using Debug. If there is not enough 
room in memory for Debug, you can monitor a program by temporarily leaving space in the 
program or by using Patch to append monitor points. (See "Debugging Programs Without 
Using Debug" later in this section.) 

DEBUG 

Debug provides patching and testing facilities for application programs running under the 
operating system. Debug runs as its own task group. 

Program testing and error correction is performed as an interactive dialogue between the 
operator and Debug. Execution of Debug is controlled by directives entered to Debug. 
Addresses used with Debug are system-wide absolute memory addresses; therefore, Debug 
directives are effective across task and task group boundaries. Debug directives are entered 
through the device specified as user-in in the request to establish the Debug task group (Le., 
a user-specified terminal). 

The following functions can be performed using Debug: 

o Define, store, and execute a sequence of directives either entered through the input 
device, or referenced when a breakpoint directive or trace trap (BRK generic 
instruction) is encountered in the load unit being tested. 1 

o Set or clear breakpoints in task code to monitor task status. (Breakpoints are described 
in detail later in this section.) 

o Set or clear breakpoints in bound units, to gain control of bound units as they are 
loaded. 

o Display, change, and dump either memory or registers; information may be printed on 
a line printer, the operator terminal, or another terminal. 

o Evaluate expressions. 

Debug File Requirements 
Debug directives stored for later execution reside in a preallocated, relative disk file 

DEBUG.WORK (these directives are identified and described in Table 5-2, "Summary of 
Debug Directives, by Function," later in this section). The file DEBUG.WORK must be in 
the volume major directory of the disk device referenced in the specify file (SF) directive. 
(The SF directive is described later in this section.) 

Loading the Debug Task Group 
Debug requires a minimum memory area or pool of 2000 words in which to execute. Use 

the MH.;t:P?OL. dire~tive during initialization to create such a memory pool and to specify 
the pool s IdentIficatIon (see the Commands manual for details about MEMPOOL). 

Example: 

MEMPOOL ,AB,2000 

This MEMPOOL directive creates a nonexclusive memory pool comprising 2000 words that 
can be specified when the Debug task group is loaded into memory. 

I Breakpoints. and trace traps either .cause a specified Debug directive line to be executed, or interrupt execution of the 
task so that Its status can be determined. 

DEBUGGING PROGRAMS 5-1 CB21 



----- ------------------

Debug is loaded into the system as the lead task of a dedicated task group named $D. The 
base level number of the Debug task group is treated as a physical level instead of a value 
relative to the configured system, so that Debug may have priority over system tasks. The 
Debug task group must be assigned two priority levels which are not assigned to other tasks 
or task groups. 

The following examples illustrate methods of loading Debug. Example I illustrates a 
spawn group command. Example 2 illustrates a create group request and an enter group 
request. The following description applies to both examples: 

The Debug task group's identification is $D, your identification is GALE. TECH, and the 
base priority level of Debug is 7. Debug will use levels 7 and 8. Directives to Debug will be 
entered through the operator terminal, which is identified by its pathname 
>SPD>CONSOLE. The bound unit DEBUGDB will be loaded, if necessary, and execute 
as the task group's lead task. 

Example I: 

Loading Debug by a spawn group command. 

SG $D GALE.TECH 7 >SPD>CONSOLE - POOL AB - EFN DEBUGDB 

Example 2: 

Loading Debug by create group request and enter group request commands: 

CG $D 7 - EFN DEBUGDB 

EGR $D GALE.TECH 7 >SPD>CONSOLE -EFN 

NOTE: The operator terminal is controlled by a system software component called 
the operator interface manager (OIM) that provides a standard means by 
which all tasks can communicate with an operator. OIM identifies the 
messages sent to the operator terminal by providing the task group 
identification in the prefix to each message; OIM requires you to identify all 
input by task group. If you are entering Debug directives through the 
operator terminal, it is recommended that you designate Debug as the OIM 
default task group; otherwise, each Debug directive must be preceded by 
~$D~. To designate Debug as the OIM default task group, enter the 
following command at any time prior to entering the first Debug directive: 

~C~:$D: 

Example 3: 

Loading Debug with a directive terminal, not the operator terminal: 

SG $D GALE.TECH 7 >SPD>KSROI -EFN DEBUGDB 

Debug Directives 
Debug directives consist of only a directive name or a directive name and one or more 

arguments. Within a directive, arguments are separated from each other by one or more 
spaces. Except where specified otherwise, all argument values are entered using hexadecimal 
notation. 

Multiple Debug directives can be entered on a single line. Each directive, except the last, 
must be followed by a semicolon (;). 

Press RETURN at the end of each line (Le., immediately after the last or only directive). 
Symbols used in Debug directive lines are described in Table 5-1. 

DEBUGGING PROGRAMS 5-2 CB21 



Symbol Type 

Arithmetic Operators 
plus sign (+) 
minus sign ( -) 
K 

Address Operators 
period (.) 

ampersand (&) 

bracke ts [ 1 a 

Reserved Symbols 
$Bn 

$Rn 

$P 
$1 
$IV 

$S 

$SL 
$E 

G through Z 

Notational Symbols 
braces{ } a 

ellipses ... 
delta (6) 
Vertical bar I 

Debug Language 

{A}< I 
~A~ = 
{A} > 
parentheses ( ) 

exp 
rexp 

* 

TABLE 5-1. SYMBOLS USED IN DEBUG DIRECTIVE LINES 

Meaning 

Performs addition. 
Performs subtraction. 
Multiplies a hexadecimal integer by 1024 decimal (400 in hexadecimal) when 
K is the last character of an integer expression. 

Represents the last start address used in a previous memory reference 
directive (DH,CH,DP). 
Represents the address of the next location beyond the last one used by a 
previous memory reference directive (DH,CH,DP). 
Signifies the contents of the location defined by the expression within the 
brackets. Three levels of nesting may be used. 

Contents of base register n of the active level. The values 1 through 7 can 
be used for n. 
Contents of the data register n of the active level. The values 1 through 7 
can be used for n. 
Contents of the program counter of the active level. 
Contents of the indicator register of the active level. 
Address of the Task Control Block of a trapped task which is currently 
at the head of the active level's trap queue. 
Contents of the system status register (level number and privilege bit only) 
of the active level. 
Represents the value of the level number of the active level. 
Used with set bound units breakpoint directive to represent the entry point 
as defined in the bound unit or by the caller. Used in place of $P associated 
with ordinary breakpoints. 
Twenty single-character symbols having initial values of zero. Values may be 
assigned using the AS directive. 

For a single enclosed argument, indicates that the argument is optional. 
If more than one argument is enclosed by the braces in a vertical listing, 
the braces indicate a choice is to be made. In this case, optional arguments 
are identified in the text. 
Indicates the ability to repeat within braces. 
Indicates one or more spaces. 
Indicates a choice between two or more arguments. 

Specify the condition to be satisfied in an IF directive for continual proc­
essing of the directive line. {A} indicates a logical 'NOT' which may 
optionally be used. 
Indicate directive or header information to be stored for later use. Unmatched 
right parenthesis results in an error. A right parenthesis that is paired with the 
first left parenthesis terminates the directive definition. 
Indicates a valid expression formed using expression elements. 
Consists of eXPI /exp2, where eXPI is a hexadecimal number that is a value or 
a location; exp2 is an optional hexadecimal repeat factor whose value must 
be between 1 and 32,767. If exp2 is omitted, the value of eXPI is assumed. 
Separation character between directives on the same line. 
Signifies "all" in certain print, clear, and list directives. 

aIn this section, brackets and braces have special meanings, as described above. In each other section, they are interpreted 
differently (see "Symbols Used in This Manual," in the "Overview" section). 

DEBUGGING PROGRAMS 5-3 CB21 



Table 5-2 summarizes Debug directives by function. These directives are described in 
detail alphabetically on the following pages. In each directive's format, it is assumed that 
Debug was previously designated as the OIM default task group when the operator terminal 
is specified as user-in, so .6.$D.6. is not specified before each directive name. 

NOTES: 
1. Pay careful attention to the format of each directive, because the usage of 

delimiters, if any, between a directive name and the first (or only) parameter varies 
according to which directive is being specified. 

2. If a directive has a parameter in which you may specify the logical resource number 
(lm) of the device on which information will be printed, Debug uses the specified 
device without first determining whether the device has been reserved for exclusive 
use by another task; i.e., Debug bypasses the file system. 

Planning Considerations 

Setting Breakpoints 
Breakpoints can be set to trap at selected task code locations. At breakpoints, memory 

and register values can be displayed and changed. In this way, a task can be executed, the 
values of its variables checked as execution proceeds, code modified, and if necessary, 
variable values changed in order to test the sequence of code up to the next breakpoint. 

Following are guidelines for setting breakpoints: 

1. Breakpoints can be set in a task group (or in an overlay in a task group) only when the 
task group/overlay currently is memory resident. The SB (set bound unit breakpoint) 
directive should be used to gain control of a task group bound unit/overlay when it is 
loaded, to allow ordinary breakpoints to be properly set. 

2. Breakpoints may not be set in code that will be executed at the inhibit level. 
3. If shareable code contains breakpoints, each task that uses the code encounters the 

breakpoint, regardless of which task group the task is in. 

Breakpoints are set in task groups by specifying the set breakpoint directive (Sn); the 
detailed description of Sn includes additional rules for specifying breakpoints. 

Controlling Output Using a Breakpoint 
Output can be redirected from an operator terminal by using a breakpoint. When the 

breakpoint condition occurs, the FO directive can be used to redirect the Debug output. 
In the discussions which follow, the terminology "current Debug output device" refers to 

either an interactive terminal specified for a Task Group or the device defined by an FO 
directive. 

Determining/Setting the Active Level 
The active level is the priority level currently in effect. Directives relating to specific task 

context are effective only on the active level. You must establish a level as the active level 
by specifying the set level directive before using these directives from the directive input 
device. Thereafter, the active level assumes the value that will most probably be needed, 
based on the Debug action in progress; i.e., breakpoint, trace trap, or temporary reference to 
a different level. 

If you want to reference specific task context on another priority level from the directive 
device, you can change the active level by respecifying the set level directive (SL) or 
temporarily designate another level as the active level by specifying the set temporary level 
directive (TL); in the latter case, the level is considered the temporarily active level. After 
the desired actions are performed on the temporarily active level, the active level reverts to 
the level specified in the previous set level directive. 

DEBUGGING PROGRAMS 5-4 

/ 

CB21 



( 
TABLE 5-2. SUMMARY OF DEBUG DIRECTIVES, BY FUNCTION 

Function 

Directive line definition 
and handling 

Breakpoint control 

Bound unit breakpoint 
control 

Trace trap control 

Active level control 

Memory and 
register control 

Symbol control 

General execution 

Directive 
Name 

Dn 
En 
p* 
Pn 

C* 
Cn 
GO 
L* 
Ln 
Sn 

CB* 
CBn 
LB* 
LBn 
SBn 

DT 
PT 
ST 
£T 
SL 
TL 

AR 
CH 
DH 
DP 

AS 
VH 

FO 
Hn 
IF 
LL 

RF 
SF 
QT 

Meaning 

Define directive line n 
Execute directive line n 
Print all predefined directive lines 
Print directive line n 

Clear all breakpoints 
Clear breakpoint n 
Proceed form breakpoint 
List all breakpoints 
List breakpoint n and associated directive line 
Set breakpoint n 

Clear all bound unit breakpoints 
Clear breakpoint n in bound unit 
List all bound unit breakpoints 
List breakpoint directive lines for bound unit 
Set bound unit breakpoint n 

Define trace directive line 
Print trace directive line 
Start-j-mode trace 
End j-mode trace 

Set active level 
Set temporarily active level 

Print contents of all active level registers 
Change memory 
Display memory in hexadecimal 
Dump memory in hexadecimal and ASCII 

Assign a hexadecimal value to symbol 
Print value of expression in hexadecimal 

Redirect output 
Print header line 
Conditional execution 
Specify line length of operator's terminal or another terminal 
currently in use 
Reset file location 
Specify file location 
Abort Debug task group 

NOTES: 1. The memory and register control directives (AR, CH, DH, and DP) apply to registers on the 
active level. To determine which level is the active level and/or to set the active level to a 
specified value, see "Determining/Setting the Active Level" below. 

2. The following directives are predefined or delayed execution directives and directive lines 
associated with them are stored in the file DEBUG, WORK: Sn, Hn, Dn, DT,ISBn. 

DEBUGGING PROGRAMS 5-5 CB21 



Following are guidelines for determining which level is the active level, and methods of 
setting the active and temporarily active level. 

1. The set level directive (SL) sets (or changes) the active level. The specified level 
becomes the default level accessible by the operator terminal or another terminal that 
is the directive input device. 

2. The set temporary level directive (TL) designates a level as the temporarily active level; 
this permits you to display or alter registers of a level different from the default 
terminal level without permanently changing the default terminal level. 

3. Whenever a break or trace point is processed for a task, the active level is set to the 
level of that task for the duration of any stored-directive line execution. After this 
duration, the last operator-specified value of "active level," if any, is again in force. 

Maintaining a Trace History 
When using Debug with disk-stored directive lines that execute upon encountering a trap 

or a breakpoint, a trace history may be maintained on a line printer. 
Also, while at a Debug breakpoint from a given breakpoint stall, a particular task may be 

set to run in jump-trace mode. In this case, every departure from the current sequence of 
instructions generates a trace trap. 

All Registers Directive 
The all registers directive (AR) causes the printing of all registers for the active level. 

FORMAT: 

AR {/lml 

ARGUMENT DESCRIPTION: 

11m 
Logical resource number of the device on which the printout will occur. 
Default: Current Debug output device 

Example: 

AR/3 

This example causes the contents of all the registers for the active level to be printed on the 
device referred to as logical resource number 3. 

NOTE: References to registers on the active level are valid only if the task has come to a 
breakpoint. The AR directive cannot be used otherwise (e.g., for tasks that are 
suspended or that have executed a trap that produced a default trap handler 
error). 

Assign Directive 
The assign directive (AS) assigns a specified hexadecimal value to a specified symbol; this 

directive is used to alter registers of the active level, and to define reserved symbols. Bound 
unit breakpoints lie within the Exec Loader, not in your task context. As a result, the assign 
directive is refused by Debug, if the current level's task is stalled on a bound unit 
breakpoint. 

FORMAT: 

ASf:.symf:.exp {6symf:.exp ... f 

DEBUGGING PROGRAMS 5-6 

./ 

CB21 



( 

( 

ARGUMENT DESCRIPTIONS: 

sym 
Register or reserved symbols G through Z. 

exp 
A 16-bit hexadecimal value that will be assigned to the specified register or symbol. 

Example: 

AS $R1 -2 X 1408 $B7 X+1S 

This example causes - 2 to be assigned to data register 1, 1408 to be assigned to the reserved 
symbol X, and 141D to be assigned to base register 7. 

Clear All Directive 
The clear all directive (C*) clears all defined breakpoints. 

FORMAT: 

C* 

Change Memory Directive 
The· change memory directive (CH) changes the contents of a single specified memory 

location, or consecutive locations starting at that location, to specified value(s). 

FORMAT: 

CHflexpflrexp /fuexp ... 1 

ARGUMENT DESCRIPTIONS: 

exp 
First or only location whose contents will be changed. 

rexp 
Value(s) to be put in memory location(s). 

Example 1: 

CH 200 4FFF 1716 

Execution of this directive 'puts the value 4FFF into location 200 and 1716 into location 
201. 

Example 2: 

CH 100 0/10 

In this example, locations 100 to 10F will be zero-filled. 

Example 3: 

CH 2000 0/10 1/10 2/10 

This example shows how multiple repeat factors can be used: execution of this directive 
causes locations 2000 to 200F to be given a value of zero; locations 2010 to 201 F to be 
given a value of 1, and locations 2020 to 202F to be filled with 2's. 

DEBUGGING PROGRAMS 5-7 CB21 



Clear Directive 
The clear directive (Cn) clears a specified breakpoint. 

FORMAT: 

Cn 

ARGUMENT DESCRIPTION: 

n 
Number of the breakpoint; can be from 0 through 9. 

Example: 

C3 

This directive causes breakpoint number 3 to be cleared. 

Clear Bound Unit Directive 
The clear bound unit breakpoint directive (CBn) clears a specified breakpoint for a bound 

unit. 

FORMAT: 

CBn 

ARGUMENT DESCRIPTION: 

n 
Specifies the breakpoint to be cleared; must be a decimal digit from 0 to 9. 

Example: 

CB3 

This directive causes breakpoint number 3 to be cleared for the bound unit previously 
defined by SB3. 

Clear All Bound Unit Directive 
The clear all bound unit directive (CB*) clears all bound unit breakpoints. 

FORMAT: 

CB* 

Define Directive 
The define directive (Dn) defines a specified directive line for future use and associates 

that line with a specified number. The directive line is stored on the file DEBUG.WORK and 
can be referred to by specifying in an execute (En) directive the number with which it was 
associated. 

When you reuse a disk that has predefined directive lines from a previous execution, the 
lines may be referred to without redefining them. (See "Set Breakpoint Directive (Sn).") 
This prevents complex predefined directive lines from being respecified each time the 
system is reloaded for debugging the same problem. 

DEBUGGING PROGRAMS 5-8 CB21 

'- / 

« -" i ' 
,""j 



( 

FORMAT: 

Dn.6.( directive line) 

ARGUMENT DESCRIPTIONS: 

n 
Number with which the specified directive line is associated; must be from a through 9. 

(directive line) 
Directive line; can comprise a maximum of 126 characters. 

Example 1: 

D3 (CH 100 0) 

This example associates the number 3 with the directive within the parentheses. Hereafter, 
each time the directive E3 (see "Execute Directive (En)" below) is executed, the 
parenthetical directive will be executed and location 100 will be zero-filled. 

Example 2: 

D4 () 

By storing a null directive, this example deactivates a previously defined directive line 4 
which no longer is required. 

Display Memory Directive 
The display memory directive (DH) causes one or more specified memory location(s) to 

be displayed in hexadecimal notation either on the operator terminal or on another 
specified device. 

FORMAT: 

ARGUMENT DESCRIPTIONS: 

11m 

DH /llm.6.j rexp !.6.rexp ... j 

Logical resource number of the device on which the information will be displayed. 
Default: Current Debug output device. 

rexp 
Location(s) whose contents will be displayed. A minimum of one location may be 
displayed. 

Example 1: 

DH 200 

Execution of this directive causes a typeout on the operator terminal of the contents of 
location 200. 

Example 2: 

DH/2200/100 

Execution of this directive displays the contents of location 200 to 2FF on the device 
associated with LRN2. 

DEBUGGING PROGRAMS 5-9 CB21 



Dump Memory Directive 
The dump memory directive (DP) causes a printout on the operator terminal or another 

specified device of an area of memory starting at a specified location. The printout 
comprises a minimum of eight locations, and is in hexadecimal and ASCII notations. 

If the printout is written to a terminal and a value equal to or greater than 121 decimal 
was specified in the LL directive, 16 locations will be printed on each line. 

NOTE: Up to 32K words of memory can be dumped in response to a single DP directive. 
Dumps of more than 32K must be performed as separate operations. 

FORMAT: 

ARGUMENT DESCRIPTIONS: 

/lm 

DP /11m! fuexp jfuexp ... ! 

Logical resource number of the device on which the display will occur. 
Default: Current Debug output device. 

rexp 
Memory location(s) whose contents will be displayed. The display always is in a 
multiple of eight locations. 

Example 1: 

DP 200 

Execution of this directive displays one line of memory in both hexadecimal and ASCII, 
starting at location 200. 

Example 2: 

DP/4 80/3C 200/240 

This directive causes the contents of locations 80 to BB, and 200 to 43F to be displayed on 
the device associated with LRN 4. Although location 3C was specified in the directive, the 
display is through location BF because displays always are in multiples of eight locations. 

Define Trace Directive 
The define trace directive (DT) associates the directive line within the parentheses with 

the occurrence of a trace trap or a BRK instruction not already defined as a breakpoint. The 
specified directive line is stored in the file DEBUG.WORK for future use. 

When you reuse a disk that has predefined directive lines from a previous execution, the 
lines may be referred to without redefining them. (See "Set Breakpoint Directive (Sn).") 

FORMAT: 

DT il( directive line) 

ARGUMENT DESCRIPTION: 

(directive line) 
Directive line comprising maximum of 126 characters. 

DEBUGGING PROGRAMS 5-10 

/ 

CB21 



Example I: 

DT (AR) 

This directive causes all registers to be displayed each time a trace trap occurs. (See "All 
Registers Directive (AR).") 

Example 2: 

DT () 

This directive cancels usage of the predefined trace directive line. 

Execute Directive 
The execute directive (En) retrieves and executes a specified predefined directive line. 

This directive may not be embedded in define directive (Dn) lines; it is permitted in set 
breakpoint (Sn), define trace (DT), and print tract (PT) lines. 

FORMAT: 

En 

ARGUMENT DESCRIPTION: 

n 
Number of the line to be executed; must be from 0 through 9. 

Example 1: 

D3 (CH 100 0) 
E3 

The directive E3 causes the retrieval and execution of line 3, which was previously defined 
in the define directive as CH 100 O. 

Example 2: 

D3 (CH 100 0) 
Sl 100 (E3) 

In this example, the execute directive (E3) is embedded in a set breakpoint directive line. 
The execute directive will cause the retrieval and execution of line 3, which was previously 
defined in the define directive as CH 100 O. 

End Trace Directive 
The end trace directive (ET) disables the j-mode trace for a specific task on the next trap. 

FORMAT: 

ET LVL 

ARGUMENT DESCRIPTION: 

LVL 
The Debug active level, as previously specified by an SL directive. LVL is preceded by 
one space. The trace must first have been enabled using the ST directive. 

DEBUGGING PROGRAMS 5-11 CB21 



Redirect Debug Output Directive 
The redirect debug output directive (FO) redirects output from the default debug user-in 

terminal to an alternate device, which must be either a printer or another KSR-compatible 
terminal. This directive allows messages, that result when a breakpoint or other condition 
occurs, to be sent to a device other than the terminal. It has no effect on input to debug. 

FORMAT: 

FOlm 

ARGUMENT DESCRIPTION: 

1m 
Logical resource number associated with the printer or terminal to which Debug 
output is to be redirected. The 1m specified overrides any previously specified, and 
remains in effect until another FO directive is issued or until Debug is terminated. 
However, stored directive lines that include 11m parameters take precedence over the 
FO directive. That is, the value specified for 11m is used instead of the 1m specified in 
FO. 

NOTE: There is no validation of the 1m specified. Thus, if an inappropriate device 
(e.g., diskette) is specified, no error message is issued to inform the user. 

Example: 

F02 

Output is redirected from the terminal to the device associated with 1m 2. 

GO Directive 
The GO directive resumes execution on the current active level after a breakpoint and can 

optionally specify a limit-to-pause counter value which applies only to j-mode trace traps 
(see the Start j-mode Trace Directive). 

FORMAT: 

GO [VLLLL] 

ARGUMENT DESCRIPTION: 

[VLLLL] 
Optionally specifies an ASCII expression of 1 to 4 hexadecimal digits greater than zero. 
The ASCII expression is preceded by one space. 
Default: 1 

Example: 

SO 100 (DH 200/l0;GO) 

The task encountering breakpoint 0 will trap; the associated directive line will be executed 
by Debug and the last directive of the directive line (GO) will cause the task to be 
reactivated. 

DEBUGGING PROGRAMS 5-12 

\"" / 

CB21 



( 

Conditional Execution Directive 
The conditional execution directive (IF) allows a set of conditions to be tested prior to 

execution of other debug directives. The IF directive is intended to be used in a stored 
breakpoint directive line. It permits breakpoints to be reported without suspending the 
active level if the specified condition does not exist. When a breakpoint occurs for which an 
IF directive has been specified, the following actions occur: 

o Any directive preceding IF are executed 
o The IF conditions are evaluated, as follows: 

If TRUE, a line in the following format is displayed on the current debug output 
device 

"exp{/\} {;}(,)hhhh ... " 

and any directives following IF are executed. If a GO directive does not follow, the 
active level is suspended. 
If FALSE, no display occurs, and the directives following IF are not executed. The 
active level continues processing. 

FORMAT: 

IF exp{/\} {;}(,)hhhh ... , 

ARGUMENT DESCRIPTIONS: 

exp 

(,) 

The memory address of a byte string argument. This must specify an address; $R 
cannot be used for expo (No check for this error is performed however.) 

Specify the condition to be tested i.e., comparing the memory byte string value to the 
test parameter {/\}optionally specifies logical negation; i.e., not less than, not equal, 
not greater than. 

Indicates that the argument is right-byte aligned. 

hhhhhh ... 
The test parameter, expressed in ASCII as a dense string of pairs of hexadecimal digits; 
each pair represents one byte. The test parameter may not be an assigned symbol (see 
assign directive). The length of the parameter is limited by the maximum size of a 
debug stored directive (127 bytes). The parameter's ASCII value must consist of pairs 
of hexadecimal values. If an odd number of hexadecimal values are specified, a 
command error is reported when the directive is executed and the task remains 
suspended to allow for correction. 

The IF directive terminator must be either a semicolon or a right parenthesis. 

DEBUGGING PROGRAMS 5-13 CB21 



Example: 

Assume that breakpoint 2, as defined below, is encountered, and that $B7 points to 
memory location 555F: 

S2 l35E (IFVIOOO /\ ,3E;IFV$B7=42Dl ;DP/5V$B7/100;GO) 

In this example two conditions must be true before the dump (DP) directive will be 
executed: 

1. The rightmost byte at memory location 1000 must be less than or equal to 3E; 
2. The byte string found at memory location 555F must be equal to 42D1. 

If both conditions are met, the dump will be executed, and the active level will continue, 
in response to the GO directive. If either condition is not satisfied, the dump will not 
occur, and the active level will continue without suspension. 

NOTE: The IF directive can be entered from the terminal, in which case its action 
corresponds to its entry in a stored directive line. However, using the IF 
directive from the terminal is of limited usefulness, since the conditions to be 
tested can be checked by using other directives (e.g., DH). 

Print Header Line Directive 
The print header line directive (Hn) causes a specified header line to be printed starting at 

the head of form or after a specified number of lines are skipped. The main uses of the print 
header line directive are to document printed information related to breakpoint or trace 
trap debugging, and to annotate a line printer memory dump. 

FORMAT: 

Hn {11m} l\(headerl\) 

ARGUMENT DESCRIPTIONS: 

n 
Number of lines skipped before header line is printed; can be 1 through 9, or O. 0 
causes header to be printed at head of form. 

/Im 
Logical resource number of device on which printout will occur. 
Default: Current Debug output device. 

(headerl\) 
Any ASCII characters and/or expressions; each expression must be preceded by a 
percent (%) sign. If a percent sign is to be printed, two percent signs must be used 
(%%). A header line must end with a space character; i.e., there must be a space 
immediately before the right parenthesis. 

Example: 

HO/2(DUMP OF BREAKPOINT FOR LEVEL %$Sl\) 

This example illustrates a way to document dumps. As soon as a carriage return is typed, the 
above header will be printed at the top of a new page on the device identified by logical 
resource number 2. 

DEBUGGING PROGRAMS 5-14 CB21 



(' 

List All Breakpoints Directive 
The list all breakpoints directive (L *) causes a listing of all currently-defined breakpoints 

and their locations in memory. Stored directive lines, if any, are not displayed. 

FORMAT: 

L*{/lm} 

ARGUMENT DESCRIPTION: 

11m 
Logical resource number of the device on which printout will occur. 
Default: Current Debug output device. 

Example: 

L* 

This directive causes a display of all breakpoints. 

List Breakpoint Directive 
The list breakpoint directive (Ln) causes the display of a particular breakpoint number 

that was set by a set breakpoint (Sn) directive, and its associated directive line. 

FORMAT: 

Ln{ 11m} 

ARGUMENT DESCRIPTIONS: 

n 
Number of breakpoint whose directive line will be listed. 

11m 
Logical resource number of device on which printout will occur. 
Default: Current Debug output device. 

Example: 

L2/4 

This directive causes the display of the directive line of breakpoint 2 on the device 
associated with LRN 4. 

List All Bound Unit Breakpoints Directive 
The list all bound unit breakpoints directive (LB*) causes all currently active bound unit 

breakpoints to be displayed. 

FORMAT: 

LB* {(11m)} 

ARGUMENT DESCRIPTION: 

lIm 
Logical resource number of the device on which the listing will occur. 
Default: Current Debug output device. 

DEBUGGING PROGRAMS 5-15 CB21 



Example: 

LB* 

All currently active bound unit breakpoints are listed at the current Debug output device. 

List Bound Unit Breakpoint Directive 
The list bound unit breakpoint directive (LBn) causes the directive line associated with a 

specified bound unit breakpoint to be displayed. 

FORMAT: 

LBn {(fIm)} 

ARGUMENT DESCRIPTIONS: 

n 
The number of the bound unit breakpoint for which the directive line is to be listed. 

11m 
Logical resource number of the device on which the directive line will be listed. 
Default: Current Debug output device. 

Example: 

LB3/4 

This directive results in the listing of the directive line associated with bound unit 
breakpoint 3. The listing occurs on the device associated with logical resource number 4. 

Line Length Directive 
The line length directive (LL) specifies the maximum line length of each line entered 

through the operator's terminal or another terminal in use. 

FORMAT: 

LL.6.value 

ARGUMENT DESCRIPTION: 

value 
Number, in hexadecimal notation; must be between 1 E (decimal 30) and 7E (decimal 
126); e.g., 48, which is decimal 72. 

Example: 

LL48 

This directive signifies that the operator terminal or other terminal in use has a maximum 
line length of 72 decimal characters. 

Print All Directive 
The print all directive (P*) causes a printout of all lines predefined by Dn directives. 

DEBUGGING PROGRAMS 5-16 . 

/' 

.~./ 

CB21 



FORMAT: 

ARGUMENT DESCRIPTION: 

11m 

p* {11m} 

Logical resource number of device on which printout will occur. 
Default: Current Debug output device. 

Print Directive 
The print directive (Pn) causes a printout of specified lines predefined by Dn directives. 

FORMAT: 

Pn {11m} 

ARGUMENT DESCRIPTIONS: 

n 
Number of line to be printed; can be 0 through 9. 

11m 
Logical resource number of device on which printout will occur. 
Default: Current Debut output device. 

Print Trace Directive 
The print trace directive (PT) causes a printout of a define trace directive line. 

FORMAT: 

ARGUMENT DESCRIPTION: 

11m 

PT {11m} 

Logical resource number of device on which printout will occur. 
Default: Current Debug output device. 

Quit Directive 
The quit directive (QT) clears breakpoints and disables the Debug trap handler before 

effectively aborting the Debug task group. 

FORMAT: 

QT 

Reset File Directive 
The reset file directive (RF) prohibits execution of directives that use the file 

DEBUG. WORK, until another specify file (SF) directive is issued. The directives that use 
DEBUG.WORK are: P*, Pn, PT, Sn, Hn, Dn, DT and SBn. 

FORMAT: 

RF 

DEBUGGING PROGRAMS 5-17 CB21 



Set Breakpoint Directive 
The set breakpoint directive (Sn) sets a numbered breakpoint at a specified location. 

When the breakpoint is encountered, the stored, specified directive line, if any, is executed; 
otherwise, there is a typeout indicating the contents of the location counter and the active 
priority level, and task execution is suspended. The "Set File" directive (SF), is a 
precondition for directive line execution. 

If there is a preexisting directive line associated with a given breakpoint and that directive 
line is no longer applicable, specify in the define directive (Dn) a different directive line or 
clear the line by designating empty parentheses ( ). 

The message format is: 

($D) BPn $P=OOxxxx $SL=OOxx 

$P=OOxxxx 
Designates location counter 

$SL=OOxx 
Designates priority level 

NOTES: 
l. Ira breakpoint is set in any of the following types of instructions, the breakpoint 
',' , ", cleared (CIt directive) before .~ntinuingexecution (GO directive): ... ' . 

" ' .. , (BRK),scientiflc;,.;;!-EV,invaJ.id. 01" instructift.~h ~:,';. 
ess;'.lVlllaNre~ Vou.y av~.t,·<'~ clearing ~'~stitig: 

"ilf,tlCS'~':' ,t,t'iIl' Ie, it~ ali.lpnt, ,';'b~jHrint directi~~·,\V ,"l'~ .'. 
tM~.,fl!.~fC, ,~,d itt anSndiiecl~:ti~'atlo~'task execution,;tolio~j" 
iles~l'." operations : ftavebeeil perfoime4. ,'. without furth~ operatof'k{~~\'Y' 

lIttenel~~'n. 

Sft~exp {.6(directive line)} 

Number of breakpoint; can be a through 9. 
exp 

Location at which breakpoint will occur . 
. (directive line) 

Directives that will be executed when breakpoint is encountered. Directive line can be 
a maximum of 126 characters. 

Example I: 

SO 100 (DH 200/10;GO) 

This directive will cause the display of locations 200 to 20F when location lOa is executed. 

Example 2: 

SO 100 () 

This directive cancels any line previously associated with breakpoint O. 

DEBUGGING PROGRAMS 5-18 CB21 

.;./ 



( 

Example 3: 

SO 1000 (AR;CO;GO) 
SI 1003 (SO 1000;GO) 

The first directive line sets breakpoint number a at location 1000, causes a printout of all 
registers on the active level, and then clears breakpoint number a because the instruction at 
location 1000 is restricted (see Note 1 above). 

The second directive line sets breakpoint number I at location 1003 and then reestablishes 
breakpoint a at location 1000; the second breakpoint line causes no visible action. 

Set Bound Unit Breakpoint Directive 
The set bound unit breakpoint directive (SBn) sets a numbered breakpoint for a specified 

bound unit or bound unit overlay. A given bound unit (BU) breakpoint refers to either roots 
or to overlays, but not to both. This directive informs the user that a bound unit or overlay 
has been loaded into memory, so that breakpoints can then be set at specified locations in 
the program. Because a bound unit is loaded at the time the task associated with it is 
created, the level number displayed when a BU breakpoint occurs is not necessarily the one 
used when requests for that task are later executed. 

FORMAT: 

{
bound-unit-name } 
bound-unit-name/overlay-number 

SBn~ ~ound-unit-name/* ~(directive line) 

*/* 

ARGUMENT DESCRIPTIONS: 

n 
Breakpoint number; can be from a to 9. 

bound-unit-name 
Name of the bound unit to which the breakpoint applies; up to six ASCII characters 
(first six characters of the file name). 

overlay-number 
Hexadecimal number of the bound unit overlay. 

* 
Stands for "all" roots or "all" overlays, depending on context. 

(directive line) 
Directives to be executed when the bound unit/overlay is loaded; can be up to 127 
characters long. 

Example: 

SB6 SOOZ/A (IF 3D02=5354;VH $RI -2;GO) 

This directive sets breakpoint 6 for overlay number At 6 of the bound unit named SOOZ. 
The directive line specifies that if the condition indicated is true (location 3D02 equals 
5354), then the value of Rl is displayed. When overlay A is loaded into memory, its 
location is displayed on the operator terminal, and the directive line associated with 
breakpoint 6 is executed. 

DEBUGGING PROGRAMS 5-19 CB21 



Specify File Directive 
The specify file directive (SF) identifies the device on which the file DEBUG.WORK is 

located. Since the function of the SF directive is to find the work file, it should be the first 
directive executed; failure to do this results in the issuing of an error message as soon as a 
directive that requires the work file is used. Debug accesses the work file by using physical 
I/O, bypassing the file system. 

FORMAT: 

SF~lm 

ARGUMENT DESCRIPTION: 

1m 
Logical resource number of the disk device on which the file DEBUG. WORK is 
located; must be specified in hexadecimal notation. 

Example: 

SF B 

This example specifies that the work file is on the device whose logical resource number is 
11 (decimal). 

Set Level Directive 
The set level directive (SL) sets the active priority level to a specified value. This level 

remains in effect until another SL directive is issued. The level may be temporarily changed 
via the set temporary level directive (TL). 

FORMAT: 

ARGUMENT DESCRIPTION: 

exp 
Number of active priority level. 
Default: 0 

Example I: 

SL C 

SUexp 

This directive sets the active priority level to 12 (decimal). If the AR directive is entered 
after the above SL directive, the registers on level 12 are displayed. 

Example 2: 

This example designates how the active level can be designated, permanently changed, and 
temporarily changed. 

\ DEBUGGING PROGRAMS 5-20 CB21\ 



( 

( 

SL C The active level is 12 (decimal) 

SL A The active level is 10 (decimal) 

TL B;AR The active level temporarily is 11 (decimal) 

After the desired action(s) are performed, the active level reverts to level 10 (the level 
specified in the last SL directive). 

Start j-mode Trace Directive 
The start j-mode trace directive (ST) sets the given task's Ml register j-bit on. As a result, 

any departure from the current processing sequence will cause a trap. Debug treats the trap 
as a "trace trap. " The following points apply: 

oj-mode trace can only be started for a task which is currently suspended due to a true 
breakpoint. 

o The "start j-mode trace" directive will be refused if the task is suspended due to a 
bound unit breakpoint. 

oj-mode processing is specific to a given task and is shut off or restored at the monitor 
call interfaces. 

o When a task is running in j-mode, debug's handling of successive traps is governed by 
the "limit-to-pause" counter of the GO directive. 

o Limit-to-pause has a default value of 1, but may be set to an arbitrary value via the GO 
directive. Debug decrements the limit-to-pause once for each occurrence of a trace 
trap. When limit-to-pause assumes the value zero, the trapped task is suspended to 
permit operator action. When the task is reactivated (GO[ LLLL]) the limit-to-pause 
is reset to the default value or to a user-specified value. 

FORMAT: 

ST LVL 

ARGUMENT DESCRIPTION: 

LVL 
The Debug activity level. The SL directive must first specify Debug's active level. This 
in turn must correspond to the level of the task in question. 

Set Temporary Level Directive 
The set temporary level directive (TL) sets the active priority level to a temporary, 

specified value. The level specified in the TL directive remains in effect until an SL or 
another TL directive is issued, or until the end of the directive line. If the end of the line is 
reached before another SL or TL directive is encountered, the value specified in the last SL 
directive becomes the active priority level. 

FORMAT: 

TLb.exp 

ARGUMENT DESCRIPTION: 

exp 
Value designating the temporarily active priority level. 

DEBUGGING PROGRAMS 5-21 CB21 



Example: 

SL 20 
TL A;AR 
TL B;AR 

The first TL directive designates level 10 as the temporarily active priority level so that all 
registers on that level can be displayed via the subsequent AR directive. 

The second TL directive designates level 11 as the temporarily active priority level so that all 
registers on that level can be displayed via the subsequent AR directive. 

After the last TL directive is executed, the active level will be 20 (the level specified in the 
last set level directive (SL». 

Print Hexadecimal Value Directive 
The print hexadecimal value directive (VH) causes a printout, in hexadecimal, of the 

value of each specified expression. 

FORMAT: 

ARGUMENT DESCRIPTIONS: 

11m 

VH {11m} .0.exp {.0.exp ... ~ 

Logical resource number of device on which printout will occur. 
Default: Current Debug output device. 

exp 
Location whose value will be displayed; if more than one expression is specified, the 
display will be of the value resulting from the computation of the expressions. A value 
is always a l6-bit quantity, not an address, so VH cannot be used for LAF address 
computations. 

Example: 

VH .+100-M 

This directive causes the display of the result of the computation defined by the last 
referenced memory location plus 100 (hexadecimal) minus the value assigned to the 
temporary symbol M. 

EXAMPLES ILLUSTRATING USAGE OF DEBUG DIRECTIVES 

The following examples contain typical operations that may be performed using the 
Debug program. 

Example 1: 

1. Establish header. 

HO (DUMP &M OF AREA 0) 

The header will be :printed on the current debug output device. 

DEBUGGING PROGRAMS 5-22 CB21 

(' " 
~ ... / 



( 

( 

2. Predefine a directive line. 

DO (HO/3;AR/3;DH/3 20/4 [8A] /lA [8B] /lA Y/lOO) 

There will be displays of the following information: 
Header (requested by HO/3) 
Registers (requested by AR/3) 
Specified memory locations: 

Four locations beginning at location 20; designated by 20/4 
ISA information for level I 0 (designated by [8A]), level 11 (designated by [8B]), 
and 256 locations beginning at the location assigned to variable Y. 

3. Initialize header variable to O. 

ASMO 

4. Set breakpoints in code being tested. 

SO 300 (AS M M+I) 
SI 4A6 (AS M M+l) 

'"~.,, Setavtiv¢k:v~l. to 18l(j; start j-mode trace; pause after l'iut,nlps. * st,' 18' S:'t~:~il' 8' 

/.\~ll; ,,]! . .. . .. .. . . .... ·.;i '.;':: "~' 
, ,"~~~n the breakpoint o~, execute predefined dirff{;tive~tle (l,'.~ then~ntinue'~~;~ ',," "", ","" '~;t 

EO 
GO 

Example 2: 

1. Set Breakpoint at the entry point of a subroutine used by multiple application 
programs. 

SO 300 () 

2. Set the next breakpoint to the address that contains the instruction that should be 
executed immediately after the subroutine. The address should appear in register $B5. 

Sl $B5 0; GO 

3. When the first breakpoint occurs, display registers. 

AR 

Example 3: 

Proceed from HALT instruction. 

AS $P $P+l 

DEBUGGING PROGRAMS 5-23 CB21 



DEBUGGING PROGRAMS WITHOUT USING DEBUG 

If there is not enough memory for Debug, there are several ways of monitoring the 
system to verify proper sequencing of memory and/or register contents within routines, or 
proper task sequencing, without using Debug. Each method requires manual insertion of 
monitoring code, and implies that space exists within the system for it. 

There are two ways of creating space to insert monitor points: 

o Leave space temporarily in various application units 
o Append monitoring points using Patch. (Patch is described in Section 7.) 

The sophistication of the monitoring performed depends on the stage of the application 
development and testing. The monitoring routine can be a simple halt instruction, a Debug 
breakpoint, or your own routine. In each case, you may construct what is required at the 
time. 

When single-word halt instructions are used as monitoring points, the use of the DO single 
instruction capability is convenient. The instruction word replaced by the halt may be 
entered into the instruction register (DO) when the halt occurs, even if the full instruction 
occupies more than one word in memory. However, the halt must replace the first word of 
the instruction. 

Example: 

Source Line 
LAB $B2,$B4,TAG 

Object Text 
10c/ABC4 
10c+l/0004 

instruction word 
tag value 

ABC4 may be replaced by a halt (all zeros). When the P-register (EO) halts at loc+ 1, the 
instruction register (DO) may be changed back to ABC4 and execution continued. Since this 
does not change the content of loc, the halt will reoccur the next time the code sequence at 
loc is executed. 

If space is allocated in application units, it may be used by invoking Debug or Patch. 

Deactivating Real-Time Clock 
Some applications require that the real-time clock (RTC) be activated at load time. While 

the clock is turned on, the CPU is difficult to use in single instruction mode because the 
RTC is continually generating an interrupt at clock level 4. In the early stages of application 
debugging, it may be useful to turn off the clock to facilitate "stepping" through a code 
sequence without interference. This is easily done using the capability of executinga single 
instruction from the DO register, as described in the following procedure. 

To turn off the clock, use the capability of executing one instruction from the instruction 
register (whose selection code is DO) to execute an RTCF instruction while in single 
instruction mode. Perform the following steps: 

1. Press Stop, and record value in EO 
2. Select DO; change to 0005 
3. Press Execute (this turns off clock) 
4. Select DO; change to 0000 
5. Select EO; change to recorded EO halt address 
6. Press Ready and Execute 

After "stepping" through a code sequence, repeat this procedure using an RTCN 
instruction. Some system functions require that the clock be on. (Specify 0004 for step 2.) 

DEBUGGING PROGRAMS 5-24 CB21 

~. , 

"' .. ,/ 



( 

SECTION 6 

MDUMP AND DUMP EDIT 
UTILITY PROGRAMS 

The MDUMP utility program allows a memory dump to be obtained with no requirement 
that system functions be available. Thus, MDUMP may be used when it is not possible or 
practical to use the dump facility of debug. 

To use MDUMP, you need a disk that contains an MDUMP record on sector 0, and a file 
(DUMPFILE) to contain the memory dump. Use the create volume command to prepare 
this disk (see "Preparing for MDUMP," below). 

To dump memory to the disk file, bootstrap the prepared disk as described under 
"Procedure for Using MDUMP," below. This causes the MDUMP record to be loaded and 
executed. When MDUMP terminates, an image of memory is contained in DUMPFILE. This 
file can be edited and printed by means of the Dump Edit utility, described later in this 
section. 

MDUMP UTILITY PROGRAM 

Preparing for MDUMP 
Before loading a program for which a memory dump may be required, enter the create 

volume command, as follows: 

FORMAT: 

{CREATE_VOL} ath{-MDUMP nn} 
CV p -MD nn 

ARGUMENT DESCRIPTIONS: 

path 
Designates the pathname to the disk volume being prepared for MDUMP. The 
pathname may be >SPD>sympd or >SPD>sympd>volid. If >volid is specified, the 
volume label is checked. The volume must have been previously formatted via a create 
volume command. (This command is described in detail in the Commands manual.) 
The volume can contain other data. 

{-MDUMPnn} 
-MDnn 

Writes the MDUMP bootstrap record to the volume specified in the path argument and 
allocates a file (DUMPFILE) large enough to contain nn 4K modules to be dumped. 
The value of nn should be no larger than the number of 4K modules contained in the 
system being used. 

Procedure for Using MDUMP 
Once an executing program encounters a problem or a halt occurs, you can obtain a 

memory dump by taking the following actions: 

1. Bootstrap MDUMP, which then performs the memory dump to the disk file 
DUMPFILE. 

2. Use the Dump Edit utility program to print all or a portion of the memory dump from 
the disk volume that contains MDUMP's output. 

MDUMPANDDUMPEDIT 
UTILITY PROGRAMS 6-1 CB21 



To bootstrap the MDUMP bootstrap record into memory, perform the procedure listed 
below. MDUMP 'then transfers to the disk file DUMPFILE the amount of memory image 
specified in the -MDUMP argument of the create volume command. 

1. Mount the disk containing MDUMP on the channel to be used in bootstrapping. 
2. Press ~top and CLear. 
3. Set the P-register to 000416 • 

4. Enter in register Bl the initial address of the memory area into which MDUMP is to be 
read. MDUMP requires one sector of the disk device type on which it is stored. The 
initial address of B 1 should be greater than 10016 to insure that hardware dedicated 
locations are not overlayed. 

5. Enter in register Rl the channel number of the bootstrap device (i.e., the disk mounted 
in step 1). 

6. Press Load, then Execute. The bootstrap record MDUMP is read into the memory 
location specified in step 4 above, and dumps the amount of memory image that fills 
DUMPFILE. The dump is complete when an end-of-job halt occurs (see Table 6-1). 

NOTE: The size of DUMPFILE is limited by the capacity of the storage device. A 
maximum of l20K of memory can be stored on a diskette file. 

MDUMP Halts 
No messages are issued during execution of MDUMP. If a halt occurs during execution, 

the contents of the P-register and R6 register must be displayed to determine the 
significance of the halt, as indicated in Table 6-1. 

TABLE 6-1. MDUMP HALTS 

Register Contents 

P-register R6 register Condition Operator Action 

003E16 a =0 End of job No operator action required. 
For information only. 

003E16 a =i=O Disk error Rebootstrap MDUMP. 
(R6 contains the disk status 
word.) 

03nn *0 Trap handler For a description of trap 
error has messages, see the "Trap 
occurred. Handling" section of the 

Monitor and I/O Service 
Calls manual. 

a Address relative to the initial address of MDUMP as stored in memory. 

DUMP EDIT UTILITY PROGRAM 

The Dump Edit utility program produces, on the user output file, a dump of some or all 
of the contents of a file that contains a dump resulting from a previous execution of the 
MDUMP utility program, or a dump of main memory so that you can determine the 
configuration under which Dump Edit is executing. 1 

lit is recommended that the user output file be a suitable file for the amount of memory that will be dumped; the user 
output file must be capable of receiving a 132-character line. 

MDUMPAND DUMP EDIT 
UTIUTY PROGRAMS 6-2 CB21 



( 

Dump Edit produces a logical (edited format) and a physical (image format) dump; if 
desired, you can request in the DPEDIT command (described below) that only one of those 
dumps be produced. A logical dump comprises, in edited format, the location and contents 
of hardware-dedicated memory locations, the system control block, memory pool 
definitions, each group control block (GCB), and each task control block (TCB), the work 
space blocks associated with each GCB and the indirect request blocks (lRBs) and trap save 
areas (TSAs) associated with each TCB. Logical and physical dumps of a disk file are printed 
in both hexadecimal and ASCII notation, with duplicate lines indicated as suppressed. 

DPEDIT processing can be stopped at any time by depressing the "BREAK" key. A 
"QUIT" message appears on the user's terminal when the processing stops. At this point, the 
start command (SR) unwind command (UW), the program interrupt command (PI) or the 
NEW-PROC command may be specified. The end-of-processing details are automatically 
handled and control returns to the ECL processor (command level) with a successful 
sub-task completion status. 

Dump Edit error messages are described in the System Messages manual and summarized 
in Table 6-2. 

NOTE: When Dump Edit is used to print MDUMP output, the address mode that was in 
effect for MDUMP must be used for Dump Edit; i.e., they both must be either 
short-address form (SAF) or long-address form (LAF). 

TABLE 6-2. DPEDIT - SPECIFIC FATAL ERROR MESSAGES 

Infonnation Meaning 

2502 ILLEGAL NUMBER OF ARGUMENTS The number of arguments specified in the DPEDIT 
command is excessive. 

2503 NON-NUMERIC CHARACTER IN A non-numeric character was found in a DPEDIT 
NUMERIC ARGUMENT argument where a numeric argument is required. 

2507 ARGUMENT NOT RECOGNIZED An argument has been specified in the DPEDIT 
command which does not conform to the 
defined list of control arguments. 

2512 REQUIRED ARGUMENT MISSING In certain situations a DPEDIT argument may be 
required. If such a situation occurs and the argu-
ment is misSing, this message is produced. 

2513 ADDRESS MODE INCOMPATIBILITY The address mode (SAF or LAF) of the dump file 
differs from that of the executing DPEDIT utility. 

2514 DUMP FILE IS INCORRECT The dump file must be a BES-200 Relative file 
FILE-TYPE with no deletable records created by the CREATE_ 

VOL (CV) utility. 

2515 DUMP FILE IS INCOMPLETE The dump file, when filled by MDUMP, did not 
attain a successful end-of-job condition (see 
Table 6-1). The dump file is therefore incomplete. 

Operating Procedure for Dump Edit 
1. Mount the disk volume containing Dump Edit. 
2. If Dump Edit is being used to print MDUMP output, mount the disk volume that 

contains the memory image obtained from the MDUMP memory dump. 
3. Load Dump Edit by specifying the DPEDIT command, described below. 

MDUMP AND DUMP EDIT 
UTILITY PROGRAMS 6-3 CB21 



DPEDIT Command 
The DPEDIT command loads the Dump Edit utility program. Immediately after Dump 

Edit begins executing, there is a typeout to the error output file of the version number and 
revision number, in the following format: DPEDIT nnnn mm/dd/hhmm. The message 
"DUMP COMPLETE" is issued immediately to the error-out file before the execution of 
Dump Edit terminat~s. 

FORMAT: 

DPEDIT [path] [ctl_arg] 

ARGUMENT DESCRIPTIONS: 

path 
Pathname of the memory dump file to be printed. 

ctl_arg 
Control arguments; zero, one, or more of the following control arguments may be 
entered, in any order: 

{ -NO _LOGICAL} 
-NL 

No logical dump of system control structures produced. 

Default: Logical dump produced. 

{ -NO _PHYSICAL} 
-NP 

No physical dump of memory produced. 

Default: Physical dump produced. 

{ -FROM X'address'} 
-FM X'address' 

Low-memory address (up to four hexadecimal digits for SAF and five for LAF) of 
area that will appear in physical dump; must be specified in hexadecimal. This must 
be a real (not a virtual) address. 

Default: Absolute O. 

-TO X'address' 
High-memory address (up to four hexadecimal digits for SAF and five for LAF) of 
area that will appear in physical dump; must be specified in hexadecimal. This must 
be a real address . • 
Default: High memory address of the dump file. 

{-MEMORY} 
-MEM 

Produces a dump of main memory. If both the path argument and this argument are 
specified, the path argument is ignored. 

Default: A dump is produced of the file specified in the path argument. 

{ -GROUP} ·d [ ·d] -GP group 1 grOUp-l ... 

Requests the logical dump to contain task group-related information for the 
specified group(s) only. 

Default: Task group information for all groups is included in the logical dump. 

NOTE: Either the path argument or the -MEMORY control argument must be specified. 

MDUMPANDDUMPEDIT 
UTILITY PROGRAMS 6-4 CB21 



Example 1: 

DPEDIT ADMPVOL> DUMPFILE -NL -TO X'3000' 

This command loads the Dump Edit utility program and requests only a physical dump of 
the first 12K locations of the specified dump file. 

Example 2: 

DPEDIT -MEM 

This command loads the Dump Edit utility program and requests a logical and physical 
dump of current main memory. 

Example 3: 

DPEDIT -MEM -GROUP $S $D -NP 

This command invokes DPEDIT and is requesting a logical dump of only the System and 
Debugger groups from current main storage. 

Example 4: 

DPEDIT -MEM -GROUP AB -NP 

Assume there is no task group whose name is AB. This command invokes DPEDIT and is 
requesting a very abbreviated logical dump consisting of only Hardware Dedicated 
Locations, Memory Pool Data, and System Control Block. 

MDUMP AND DUMP EDIT 
UTIUTY PROGRAMS 6-5 CB21 



Interpreting Dump Edit Dumps 

Dump Edit Line Format 
The format of each Dump Edit line is as follows: 

Print position(s): 

3 through 6 
Four hexadecimal digits designating the starting address of the line of dump 
information; the hexadecimal digit in print position 6 always is O. 

7 
Slash (/). 

8 through 10 
Blanks. 

11 through 91 
Contents of 16 consecutive words; each word is represented by four hexadecimal 
digits and is foHowed by a blank space. 

92 through 95 
Blanks. 

96 through 127 
ASCII representation of the previous group of 16 consecutive words. If a byte is not 
an ASCII character, a period (.) is designated. 

128 through 132 
Blanks. 

If a duplicate line is encountered, it is indicated as follows: 

Print positions: 

1 through 11 Blanks 
12 through 93 * * * * * * * * * * * * 
94 through 132 Blanks 

Logical Dump Format 
Figure 6-1 illustrates the format of logical dumps produced by Dump Edit. 
Table 6-3 describes supplemental information that may occur in logical dumps. This 

information occurs at the locations where applicable. (The dump and supplemental 
information are written to the user output file.) 

Figure 6-2 contains a sample logical dump, which was requested by the command: 

MDUMP AND DUMP EDIT 
UTILITY PROGRAMS 

DPEDIT -MEMORY -TO X'2000' 

6·6 

\ ..... / 

/' 

CB21 



( MAIN STORAGE DUMP year/month/day hour:minute.tenths-of-minute DUMPEDT-nnnn-mm/dd/hhmm 
a 1 2 345 6 789 ABC D E F 

HARDWARE DEDICATED LOCATIONS 
one or more lines in the "standard" Dump Edit format (see "Dump Edit Line Format" above). 
SYSTEM TIME OF DUMP year/month/day hour:minute:second 
SYSTEM CONTROL BLOCK nnnna (where nnnn are four hexadecimal digits for SAF and 

five for LAF, designating the starting address of the 
named block) 

one or more lines in the "standard" Dump Edit format (see "Dump Edit Line Format" above) . 
. 

MEMORY POOL DEFINITIONS 
POOL NAME START ADDRESS END ADDRESS SIZE (WORDS) UNUSED(WORDS) NUMBER OF USERS 

TD nnnn nnnn nnnn nnnn nnnn 

GROUP CONTROL BLOCK 
TASK CONTROL BLOCK 
WORK SPACE ~LOCK 

nnnna (where nnnn are four (SAF) or five (LAF) hexadecimal 
digits designating the starting address of the named 
block) 

one or more lines in the "standard" Dump Edit format (see "Dump Edit Line Format" above). 
b 

SYSTEM CONTROL BLOCK nnnna (where nnnn are four hexadecimal digits for SAF and 
five for LAF, designating the starting address of the 
named block) 

one or more lines in the "standard" Dump Edit format (see "Dump Edit Line Format" above). 

MEMORY POOL DEFINITIONS 
POOL NAME START. ADDRESS END AQDRESS SIZE (WORDS) UNUSED(WORDS) NUMBER OF USERS 

TD nnnn nnnn nnnn nnnn nnnn 

GROUP CONTROL BLOCK 
TASK CONTROL BLOCK 
IND REQUEST BLOCK 
TRAP SAVE AREA 

nnnna [bound-unit-name]C [GG]d (where nnnn are four (SAF) or 
five (LAF) hexadecimal digits designating the starting 
address of the named block and GG designates the group id) 

WORK SPACE BLOCK 
one or more 1 i nes in the "standard" Dump Edit format (see "Dump Edi t Line Format" above). 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - -b 

. 
DUMP COMPLETE 

aThere can be multiple occurrences of this line for each task group. 
bDashes indicate that subsequent information is for another task group. 
cFor TASK CONTROL BLOCK, nnnn is followed by the first six characters of the BU name 
associated with the TCB. 

dFor GROUP CONTROL BLOCK, nnnn is followed by a two-character group id. 

MDUMP AND DUMP EDIT 
UTIliTY PROGRAMS 

Figure 6-1. Format of Logical Dumps Produced by Dump Edit 

6-7 CB21 



c::a::: 
~o 
t::~ 
~'"C 
-<> 
'"Cz 

~o 
00 

~i 
tIltTJ 

o 
~ 

~ 

("') 

~ -

MAIN STORAGE DUMP 1971/11/28 1142:10.3 a CUMPEDIT-Ol00-11/09/0943 GCOSb MOD400-l100-11/21/0810 PAGE 0001 

tiARDWARI: 
000001 
000101 
000201 
000301 
000401 
000501 
OOObOI 
000701 
000801 
000901 
OOOAOI 
OOOBOI 

001001 

o 2 3 4 5 b 7 

DEDICATED lOCATIONS 
0000 0000 0000 0000 0000 0000 0000 0000 
0000 44~2 0000 OOuO OOOC OOOb Ou04 UOUO 
0000 0100 0000 OOot 0000 0101 ouOO 0103 
0000 0100 0000 010F OOOU 0111 ouOO 0113 
0000 0110 0000 011F 0000 01~1 0000 0123 
0000 0120 0000 012F 0000 u131 0000 0133 
0000 0130 0000 013F 0000 0141 0000 0143 
0000 0140 0000 014F OOOu 0151 0000 5850 
0000 0000 0000 0000 0000 019E 0000 38EO 
0000 0000 0000 3711 0000 uOOO 0000 0000 
0000 0000 0000 0000 0000 3810 0000 3A28 
0000 0000 0000 OOuO 0000 OO·uO 0000 0000 

* * * * * * * * OFFE 8A03 OF02 SAU3 OF02 bA03 OF02 cAD3 

SYSTEM TIME OF uUMP 1977111/28 1142:12.5 

SYSTEM CONTROL SlaCK 001AB 
001AOI 0000 0000 01A4 4000 0000 OFFF 3131 2F32 
001BOI 09B8 0000 79b3 0000 0000 0000 099b 0000 
001COI SAFO 0235 1580 BE08 00b4 0000 0000 020A 
001001 0000 bFE3 0000 099b 0000 0303 0000 OA84 
001EOI 0000 0000 0000 0002 0000 0000 0000 ~442 
001FOI 0000 lOCO 0001 FFFF 0000 0000 0002 0000 

tI 

0000 
0000 
0000 
0000 
0000 
0000 
ouOO 
0000 
0000 
0000 
0000 
0000 

9 

UOUO 
01AB 
ul05 
1/115 
0125 
013S 
0145 
0155 
0433 
3B9C 
0000 
0000 

A 

0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 

B 

UOOO 
IHSO 
ot07 
0117 
0127 
0137 
0147 
SlAB 
35£3 
3C7b 
0000 
0000 

C 

0000 
0000 
0000 
0000 
ouOo 
0000 
0000 
0000 
0000 
OOou 
0000 
0000 

D 

0000 
lD9C 
0109 
0119 
0129 
uU9 
0149 
0159 
ObF9 
3050 
OO()O 
0000 

E 

0000 
0000 
0000 
0000 
OuOO 
0000 
0000 
0000 
0000 
0000 
0000 
OOou 

* * * * * * * 

F 

0000 
0000 
010B 
ull8 
0121:1 
013B 
o 1I4B 
001B 
0000 
3E2A 
SBDC 

o~go 

OF02 6AD3 OF02 8AD3 OF02 8AD3 OF02 8AD3 

312F 3038 3130 0000 4500 OOUO 0000 0000 
SA03 0000 091:1B 0000 7643 0015 222A 0000 
0000 0000 0000 5A29 0001 FFFF 00b8 0035 
0015 FE4F 3uOO 0000 0000 0001 0000 0000 
FFFE 0523 007A 00b7 0000 tAl4 0000 033b 
0000 0000 0000 0000 0000 0000 0000 0000 

MEMORY POOL 
POOL-NAME 

$I 
A8 

DEFINITIONS 
START-ADDRESS 

05A20 
079bO 

END-AODRESS 
0795F 
IFFFF 

SIZE(wOROS) 
01F40 
18bAO 

UIllUSEO(fiORDS) 
OlAOO 
172bO 

NUMBER-UF-USERS 
00001 
00001 

· .............................. . 
•• 0 ••••••••••••••••••••••••••••• · .............................. . · .............................. . 
••••••••••• 1 ••••••• % ••• • ••• ) ••• + 
••• - ••• / ••• 1 ••• 3 ••• 5 ••• 7 ••• q ••• 1 
... = ... ? •• A ••• C ••• E ••• G ••• I ••• K 
••• M ••• O ••• Q •• xl ••• U •• Q •••• y ••• ·• 
•••••••••••••• 8 •••• 3 •• 5 ••••••••• 
•••••• 1 ••••••••••• i ••• <V •• =P •• >* 
•••••••••• 8 ••• :( •••••••••••••••• · .............................. . 
· .............................. . 

•••••••••••• 11/21/Q810 •• E ••••••• 
•••• YC •••••••••• z ••••••• xc •• ·* .. 
z •• s ••••• O •••••••••••• Z) ••••• H.S 
•• 0 •••••••••••••••• 00 ••••••••••• 
•••••••••••••• SB ••• #.Z.G ••• S ••• b · .............................. . 

c --- - - - - - -- - - -- - - - - - -- - - - - - - - - - - -- - - -- - - -- - - - - - - - - --- - - --- -- - ------

Figure 6-2. Sample Logical Memory Dump 

;:~, " 
,/ -\ 

'" "-
I J "'-



·~ 

SiS:: 
E~ 
,..;j'"CI 

-<> 
'"CI Z ::tI o 
80 
~~ 
tflt'I1 0 -,..;j 

'?' 
\0 

("') 

~ ..... 

.,~: ~4:'·' 

MAIN STORAGE uUMP 1'117/11/28 114.:10.3 OU~PEDIT-0100-II/Oq/uq43 GCOS& MOU4~0-LI0~-11/21/U810 PAGE UOu2 

3 4 5 & II 'I A 8 C 0 f 

GRUUP CONTwOL bLOC~ 07qb3 $H 

fJ7~bUI 0004 0000 OOOU 0000 037B .448 ROb] 0000 OOOU 0000 '1718 uouO OUOO 0000 5140 OOUO 
07~701 OuOU 1'I~2 0000 1'1'1'1 0000 d8AI 0000 7AE3 0000 0000 0000 BooC 0000 Oq~8 0001 fE03 
U79801 0001 fE~3 0000 0000 OOOU UooO OOOU UOlb ooou UOUO OUOO 0000 000. oouo 0000 0000 
u7qQui lAIC UOOI OOOU OOUO OUOO OOuo 0000 00u2 OOOA OOuo 0000 0000 OUOU OOuo OOOU UOuo 

lAS. CONT~OL ~LUCK 06BOC uPEOIT 
08b_ul OU04 oouo 7&AI OOUO BboC uOl7 0000 uooo nuoo 40UO 0000 0000 4000 UOOO 711EC uOC3 
UAb601 OUOU 16Db ouOO 0000 100b uOoO 3002 uOOO 0017 uOOO OIAb Ooul fEq3 UOOO OA55 UOUI 
08~COI fFI3 UOOI fFI; uOOI F~13 0000 OOOU SCu4 aDDU 78b2 0000 Id~2 OOOU UOUO 0000 0224 
U8~oUI OUOO 0;>24 OUOU Iqb3 0000 lAIC 0000 BBUC OUOU OOUO OUOO UOoO 0000 ffFf Oi03 UOOO 
ORbE u I IC2~ b003 0000 04E4 0000 OIAb noou OOuO nooo 74;4 0000 38Eo 0000 i8C7 0000 458F 
URbF 01 OuOO oou5 OOOu OOH. 0001 u02D OU2& 0012 F~OO ffOO ffOO fF03 fF2u ffOO FFOO 0000 
URLOOI QUOO 0000 0000 oouo 0000 0000 OOOU 0000 OOOU uOuo OOOU oOuo OUOU UOUO OOOU UOuo 
UBC I 01 OoOU 0000 OOOU 0000 0000 OOuo OUOU 0000 OUoo 0000 0000 0000 0000 OOuo 0000 uouo 

INU "EwUESI OLOCK 00224 
002201 OOOU U217 OUOU 0204 0000 uOOO noou lHb3 OOOU IQb3 OuOu 45A3 OOO~ UOOO esoc 0000 
uO.301 OOOu Uouo 023E OOUO QuOO uOOO ouOU UOOO 0000 uOUO 0000 Uouo ouou OOUO OOou U248 

TAS. CONTkOL ~LUC. OIAIC EC 
u79Eui 0000 UOUO OuOO uOOO OUOo OOuo ooOU 0000 OOOU 0000 ouOO OOuo OUOO Uouo OuOU OOb7 
079FOI OOOu ~R.l 0000 uOuo 560. OOUO 30Kb UOoo 0010 uOOO 7AE3 0000 4~F7 UOUO 7087 0001 
07AOUI ffl; OOUI Ffl; UOOI ffl3 0000 0000 0000 0000 5AFO 0000 SAfD 0000 0000 ooou 45C3 
U7AIUl OuOU 45C3 OUoo l'Ib3 0000 0000 0000 7AIC OUoo UOUO ouou 43£2 OOOu FFFF 030i uOOO 
u7A?UI 1280 oOU3 OOOu 15~0 OUOu OIAB 0000 14C5 OUOU 45A5 0000 UOOO aDDU uOdO 0000 4500 
U7A5ul OuOO uO/O 0017 U08Q OuOI oOUO FFFF OOlb FFOO FFOO FFOU fFu5 Ff2u FfuO Ff03 uOUO 
0]A4UI ouOU UOuo 0000 UOUO OUOo OOUO OUOo OOUO OUou 0000 0000 UOOO OUOU UOOO OOOu OOUO 
07A5UI 0000 uOOO 0000 0000 0000 0000 ouOO 0000 0000 uOOO OUOO OOuo OuOU 0000 OuOU UOuO 

INO HE"UtSI [jLUCI\ 045C3 
UO~CUI 36EU UOoO OuOo ooon 0000 uOoO 7Ab3 0000 79b5 UOUO OUUO uou2 0000 7AIC OUOU uOOO 
04~OUI nooo 0000 OUOo oOUO OOOu 7903 0000 7AIC n021 uOuo 4~OU OOuo OUOu UOuo 4~R2 uOuO 

I RAP SAn ARtA 043E2 
043EUI lOCI UOoO OOOu UOuO 3~Oc oOUI 0001 ~Ool OOOU ~~f3 0000 ~ijf5 OUOO IRu9 OOOu 14A3 
u45F 01 OUOu 7A97 ouOU OOUO OuOO 13Lf ooOU 78u3 OOOU 40,0 FfOU UOuO OuOU UOOO OUOU UOUO 
0440UI ooOU UOuO OUOU UOuO OOOU UOUO OOOU UOuO OUOO UOUO OUOU 19fD OOOU Ift8 ooOu .00" 
U441UI 0000 UEE2 OUOU OIAH OUOu 76&3 ouOU ijHDC OUOO 6RAS OUOO 1300 Ou24 0070 DUll FFuo 
"Q4t?U/ OUII~ uouo o~o~ uOUO nuoa ~OO~ OOOu lSq~ OUOu 7Bb3 OOOu 180& Oul/ UO~7 0005 uO£O 
u443UI OuOH 0000 5U40 UOOO 7~0~ lij09 OOOU oouO 7~o3 206C OUOO UOUU 7682 0017 f~Ff 0017 
044401 0004 OOIF OOOU 0000 IURD uOOO ~UO I OOUO I~Bu 0000 OOUU 437A 3f24 UO.5 0001 ~OCI 

""OHI\ SPACt uLuC~ O~HAI 

u8~Aul nuoo uOUO 78A1 UOuO ShOC uOl7 OOOu UOuO OuOU 4000 OUOU UOUO 400U UOUO luEt 00e3 
OB0801 OuUO lHUb OUOo OOuO 7~ob 0000 3002 UOOO OUII oOuo OIAb 0001 fEq3 UOOO OA5~ UOOI 
U80Cui fflj OOUI FFI5 0001 ffli OOUO OoOu 8Cu4 OUOO 18d2 0000 7862 ooou UOUO 0000 u224 
u800UI 0000 02.4 OOOu 1'103 OuOO lAIC OOOu ~BUC 0000 uOOO OOou oOuO OUOu FffF 050i uOOO 
OB~EUI IC2t &OU3 OoOu "4t4 OOOU UI'~ OOOU OOUO OOOU 1434 0000 58tO OuOo j8L7 OUOU oSbf 
"Ref 01 noou uou~ 0000 UO~4 0001 UO~O 002s 0012 fFOU ~fUO F~Ou FFU5 fF2u ~fUO FfOO 00.0 

aIndicates in the fonnat hhnm:ss.s, the hour, minute, and second at which the dump was taken. 

bEach duplicate line is indicated by a row of asterisks * • * *. 

cA dashed line _ - - - - - indicates the end of information for the above group and the 
beginning of information for the next group. 

Figure 6-2. Sample Logical Memory Dump (Cont.) 

••••••••• X$H.G •••••••••••••• WN •• 
•• Y ••• Y •••••• • i ••••••••••••••••• ................................ 
z ••••••••••••••••••••••••••• • ••• 

......................... ~ ••••• QI ......... 

•••••••••••• 0 ................. u •• ............................... ~ 
••• 5 •• YC •• z ••••••••••••••••••••• 
•• ~ ••• u ••••••••••• I4 •• H ••• d ••• E. 
••••••••••• -.+ .................. ................................ ................................ 

••••••••••••••• C •• lC •• t ••••••••• 
••••• " ••••••••••••••••••••••••• K 

••••••••••••••••••••••••••••••• G 
•• IB •••• 18 •• u ••••••• i .•. t ••••••• 
••••••••••••••••.• i ••• l ••••••• L 
•• t ••• yC •• , ••• L ••••••• L ••••••••• 
•• caI ••• U ••••••••••• E. ••••••••••• t.. ......................... ...... ................................ ................................ 

~ ••••••••••• LC •• lC •••••••• L ••••• 
•••••••••• yc •• l •• ! •• t. ••••••• t. ••• 

•••••••• / ••••••••• 1 ••• 1 ••••••• 1. 
•• t •••••••••••••• • o)p •••••••••••• .............................. 
••••••••••• C ••••••••••••• ' •••••• 
•••••••••• ~ •••••••• C ••••••• 
.... ~F ••••••••••• C ••••••••••••• 
•••••••••••••••••••••• C11$.I •••• 

•••••••••••••••••• 'v .............. 
•••••••••••• U •••••••••••••••• U •• 
••••••••••••••••••••••••••••••• $ 
••• s •• vt • • l ••••••••••••••••••••• 
•• ~ ••• u ••••••••••• tq •• n ••• n ••• t. 
••••••••••• -. + ••••••••••• ...... 

~ 



TABLE 6-3. SUPPLEMENTAL INFORMATION THAT MAY OCCUR 
IN LOGICAL DUMPS PRODUCED BY DUMP EDIT 

Infonnation Meaning 

ADDRESS POINTER IS INY ALID An address contained in the dump file is invalid for 
(LAF mode only) LAFmode. 

DATA NOT READABLE Dump Edit tried to read the contents of a non-
existent location on the dump file, or an 
uncorrectable read error was encountered. 

DUPLICATE GCB STARTING ADDRESS The specified group control block starting address 
has already been displayed. 

DUPLICATE TCB STARTING ADDRESS The specified task control block starting address 
has already been displayed. 

DUPLICATE WORK SPACE BLOCK The specified work space block starting address has 
already been displayed. 

NUMBER OF ALLOCATED WORK SPACE More than 60 work space blocks have been allocated 
BLOCKS EXCEEDS 60 for the current group control block. 

NUMBER OF GCBS EXCEEDS 40 There are more than 40 group control blocks. 

NUMBER OF TCBS EXCEEDS 40 There are more than 40 task control blocks for the 
current group control block. 

NUMB-ER OF IRBS EXCEEDS 25 There are more than 25 indirect request blocks for 
the current task control block. 

NUMBER OF TSAS EXCEEDS 10 There are more than 10 Trap save areas for the 
current task control block. 

Physical Dump Format 
The format of physical dumps is illustrated below: 

DUMPEDIT year/month/day hour:minute.seconds 

MAIN STORAGE DUMP GCOS6/MDTSIIO Page nnnn 

o 123456789ABCDEF 

one or more lines in the "standard" Dump Edit format (see "Dump Edit Line Format" 
above). 

Table 6-4 describes supplemental information that may occur in physical dumps 
produced by Dump Edit. This information occurs at the location(s) where applicable. (The 
dump and supplemental information are written to the user output file.) 

Figure 6-3 illustrates a sample physical dump produced by Dump Edit which was 
requested by the command: 

DPEDIT -MEMORY -TO X'2000' 

TABLE 6-4. SUPPLEMENTAL INFORMATION THAT MAY OCCUR IN 
PHYSICAL DUMPS PRODUCED BY DUMP EDIT 

Information 

DATA NOT READABLE 

MDUMP AND DUMP EDIT 
UTILITY PROGRAMS 

Meaning 

Dump Edit tried to read the contents of a nonexistent location on the 
dump me, or an uncorrectable read error was encountered. This 
message is preceded by the line's starting address. 

6-10 

./ 

, / 

- ;,/ 

CB21 



c::s;:: 
0-30 ...... c:: t:s;:: 
~"'d 
"'d~ 
~o 

~~ 
CIlt'rj 

'?' --

(") 
ttl 
N -

S 
0-3 

~ 
... !h.-,"',,' 

MAIN STURAGt UUMP lq71111/28 114~:IO.3 uUMPtD1T-OIOO-II/09/0943 GCUSb ~OUQOO-LIOU-11/21/0610 PAGt UOl4 

000001 
OOOlul 
UOU?UI 
OOu~OI 

u004UI 
000501 
OOubUI 
u00701 
OaOilOI 
OOU'IOI 
UOIlAul 
uOO~UI 

OOIOUI 
uOllOI 

0015uI 
OOlbOI 
uOI1UI 
UOlllul 
OOlqUI 
uOIAUI 
OOIBul 
OOICUI 
0011)01 
OOIEOI 
uOI~UI 

uO~OUI 

u021uI 
00~2UI 

uO,,3UI 
uO.?4UI 
OO~5ul 
OO.?bUI 
u027UI 
uO"IIOI 
uO~qOI 

uO"AUI 
uO~BUI 
OO<,(ul 
UOc'tJul 
002Eui 
UO"FOI 
003001 
u051uI 
u05i?01 
uOHul 
005401 
U{)5501 
u031>01 
uO.Hul 
u05~UI 

OOHul 
uOSAul 
005'1UI 
OOSCul 

t!. 3 4 5 o 1 

oUOu 0000 OOOu UOOO 0000 uOUO OuOU 0000 
OUOO '4~2 OOOu UOOO Dooe 00U4 0004 uOOO 
OOOu OlvO OUOo 0001 OUOu ulul OOOU 0lU3 
0000 UIOD OOOu ulOF 0000 ulll OOOu 0111 
01100 0110 OOOU OIIF OOOu ul<'1 OOOu ul,,3 
0000 01,,0 0000 OI.?F OOOu 0131 0000 0133 
PuOo 0150 OoOu ul5F Ooou u141 OuOU Ul43 
Ouoo 0140 Dono ul4F ooOu 0151 0000 585D 
OOOU UOOO 0000 UOOO 0000 ul'lE 0000 5RtD 
0000 0000 DOOU 3111 OUOO 0000 OOOu uOOO 
OuOO UOOO OuOO UOOO OOOU SStD OUOu SAc'S 
OOOU 0000 OOOU uOOO DUO v uOUO OuOO 0000 

* * * 
OFFt bAU3 OFO~ ~Au~ OF02 bAu3 OF02 bAU3 
o~o~ bAUJ OFO<' bAD] OF02 bA~3 0~02 dAD3 

* 
OrO~ dAU3 O~Oc bA~3 OFOc dAu3 OF02 8AU3 
FrOU b243 FFFO bDC3 FFFA oq98 DdFd fFLD 
~FC3 00u8 EFEF q070 bOOU b2L3 FFFF OObO 
Fblu u3uO F453 C&51 3e03 oCOO FdC5 OObl 
DUO I ul03 8flb fF~D 4U80 ~A78 FFCC 0001 
0000 OOuO OlA4 40uO OUOU OFfF 1111 ~F32 
O~Hb 0000 7963 OOUO 0000 uOUO 0~9b UOuo 
5AFu u235 158c bbl~ OU04 vOuo OuOO u20A 
OuOO bFt3 OOOu 09~b 0000 u303 0000 OAb4 
0000 UOOO OOOu 00U2 OUOO 0000 0000 c442 
ooOu 10LD OUOI rfFf 0000 uOOO 0002 0000 
0000 OOuo 037b ~.5b FFFF 0000 OOOu 0217 
0000 OFC) 8041 u25~ 158t oC54 0000 0000 
ouOU 0211 OoOU u2u4 0000 0000 ouOO 7~b3 
ouoo OOuO O~3t 0000 ooou uOOO OOOU 0000 
Ouou UDuO 0001l 0000 Ouoo OouO 0000 UOOO 
ouOU UOIlO 0000 OOuo 0000 0000 OuOO uOOO 
Ouoo 0000 OOOU OOUO OUOO uOuo 0.?1~ 0000 
ouOu UOOO DUOU 027F 0000 0000 DOOu 0000 
O~8L 0000 Ouou uOUO 0000 OOUO ooou oouo 
nunu oOuO OUOU UOOO 0000 vOuO 0000 0000 
0000 uOuO 0000 oouo OuOU uUuo OUOO 02b3 
OuOu vOuo 0000 OOUO 02CO OOuO Ouou uooo 
o~uu U2CD ouou UOuO OOOU OOUO ooou UOUO 
nuou uOuO 0000 uOOO 0000 UOOO OuOO unoo 
0000 oouO OOOU UOOO OOOu uOuO OUOO 0000 
DuOu uOuO OOOu uOUO ooou UOUO 0000 UOUO 
OOOU ~qll O~~~ QC91 8uDI 0902 R381 9~10 

85Cu ID~F k854 ~3CO lu7A b8~4 ~SCO 097~ 
41~A cA42 524~ 4146 2A2A uOOO It4t 0000 
OUOU uOuo 0000 OOUO OOOU UOOO 0001 0000 
0000 q5bb 0001 uOOI OuOO u3~4 0025 u050 
DUUd 0010 0000 0000 4144 5D45 4449 545A 
,02u 5150 3030 2050 3030 30~0 202u c020 
202u ~OcO 202u c020 2020 ,,020 2u2u 2020 
CoCI uOUO OuOO AD}E OOOU uOOO 0387 OOUO 
3t~A oOuO 09A8 uOOO 7815 uOuO 7~13 OOuO 
DIFu 0000 0000 fFfF 0000 0000 0009 0000 
OUOU UOUO OOOU uOOO 0000 uOOO OuOf OOUO 
OuOO OOuO OoOu OOUO 0000 uOOO OOOu 0000 

tl 

ouOO 
0000 
0000 
0000 
0000 
OuOO 
OuOO 
0000 
0000 
0000 
0000 
0000 

q 

vOOO 
OIAS 
0lu5 
0115 
0125 
0lS5 
UI45 
ul55 
04H 
.>B9C 
OOUo 
uooo 

ouou 
OOOu 
OOOU 
0000 
0000 
OOUO 
OUOO 
OOOU 
OOvu 
OVOO 
OUOU 
OuOU 

6 

0000 
83tlO 
ul07 
0111 
0127 
UUl 
uI47 
SlAB 
.>51::3 
5C7b 
0000 
uOOO 

c 

0000 
ooou 
OOOu 
OuOO 
OUOO 
OUOO 
01100 
OOOU 
ouou 
ooou 
0000 
OUOO 

o 

UOUO 
ID9C 
0lu9 
ullQ 
012'1 
uUII 
OlqQ 
ul:,Q 
ObF'l 
3D50 
oouO 
OOuO 

* * * 

f. 

0000 
0000 
0000 
OUOO 
OUOO 
OOOU 
0000 
OUOU 
OUOO 
0000 
OuOO 
o~ou 

F 

uOUO 
OOuO 
iIlOIl 
011H 
012t1 
UI3~ 
ulllA 
UOIB 
0000 
3EcA 
tlRUC 
0000 

*a 
O~Oc tlAu3 OFOc 8Au3 OFOc 8Au, OfO~ ~A03 
OF02 84u3 0~02 SAu5 OF02 8Av3 OF02 dAu3 

* * 
OF02 8A~3 OFO~ blu3 8F45 UOU8 EFEF '1070 
R"B5 u5~1 DCfb fFUI 8DD~ uq13 DFC5 vOIC 
050S ~BCO 0001 8FC3 FfFC OObO 85C~ ODIC 
D3eo 1901 0001 OFOO 881d FFuA 2UOu A854 
Ouoo 0001 OCOtl 8585 ooou 0000 0000 oouO 
312F 3058 3150 0000 458F uOOO 0000 0000 
~A03 Oouo O~~o OOUO 1845 UOl5 2~2A unDo 
0000 ODOO OUOo 5A<,Q 00U1 FFFF OUbb 0055 
OulS FE4F 3uGO uOUO Ouou OOul OUOO uooO 
f~Ft 07bB Ou7A UOb7 OuOO IA~q ouOO 033b 
0000 0000 0000 UOOO 0000 OOUO 0000 0000 
ouOO OOuO 0000 0000 ouOO oFbO OUOu 0318 
0000 0000 0527 0000 0378 uOuo It4~ UO~7 
OOOU 7Qb3 0000 45A3 OUOB UOuO ~80C 0000 
0000 0000 OuOO 0000 0000 uOilO ouOO 024S 
QOOO 0000 0000 0000 025tl OOuo 0000 OOUO 
OuOO 0~b5 OOOu 0000 0000 UOOO OUOO 0000 
OuOO oouo OUOO oouo OuOO UOOO 0000 0000 
ouOO 0000 OUOU 0000 ouou OOuO OOou 0000 
OOOu 0000 0000 0000 0000 ui?~q 0000 uOOO 
0000 uOOO OcAb uOOO 0000 uOuO OUOO UOOO 
OuOO 0000 0000 uOuo OuOu OOuO 0000 UOUO 
Ouou UOUO nooo 0000 oonu uOuO 0000 0000 
DOUO uuuo Ouou uOUO Ouuu UOuo OiDA UOUO 
OUOu 0000 OUOO u2tl OuOU uOuO DUOU uOvO 
O~F~ 0000 0000 uooo OuOU UOuO oUOO 0000 
nuou uOuo OUUu UOOO OUOO OOuo ooou UOOO 
n~11 8385 nssl d7~3 83CO IO~1 0851 87~3 
Rtl54 ~3CO 0~/0 0854 ~3CO Oq •• OuOO 5AI4 
Oi?17 00C5 FFOI 0000 0204 OOuO OIA~ 0001 
OuOO 0000 0001 0000 0000 uOuO ooou uOOO 
Ouoo 0000 0"00 45~b 0001 uOOI OUOU 78L3 
2u28 5032 ~u51 3035 292u JI37 2031 33J8 
?u20 20.?0 202u 20~0 ?02u ~OcO 2U20 20~0 
Dono 0000 245] .U31 bJAB AD/O OUOU (lA7 
59ED 0000 74AI 0000 0000 OOUO OODU 0000 
0000 uOOO OUOU 0000 OuOU U002 0000 UOOO 
0000 OOuo 0000 0000 OICC UOUO ouOO UOOO 
0000 OOUO 01100 0000 OUOO 0000 OUOO 0000 
OOOu 0000 0000 uOOO O~OO 0000 0000 UOOO 

aA row of asterisks (****) indicates that the preceding line is repeated. 

Figure 6·3. Sample Physical Memory Dump 

•• 1) ••••••••• " •••••••••• , ••••••• 

· ............................... . 
••••••••••• 1 ••••••• % ••• ' ••• ) ••• + 
••• - ••• 1 ••• 1 ••• 3 ••• '; ••• 1 ••• 9 ••• 1 
••• = ••• ? •• A ••• C ••• E ••• G ••• I ••• K 
••• M ••• D ••• Q •• X) ••• U •• ~ •••• Y •••• 
•••••••••••••• Il •••• 3 •• ~ ••••••••• 
•••••• 7 ••••••••••• ; ••• <\f •• :?.>* 
• ••••••••• H ••• : { •••••••••••••••• 

• ••••••••••• " ••••••••••• C ••••• p 
• •• C •••••••••• " ••••••• , •••••••• 
• ....... fo' ............................... . 
.p ••• S.w<.L •••• A ••• A ••••• X •••• T 
••••• X •• Ili •• X •••••••••••••••••••• 
•••••• w ••••• 11/21/u810 •• t ••••••• 
•••• yC •••••••••• L ••••••• )L •• ·* .. 
L •• 5 ••• X.D •••••••••••• ll ••••• N.5 
•• u •••••••••••••••• Ou ••••••••••• 
•••••••••••••• $I; ••• K .Z.(, ••• $ ••• 1> 

••••• x)v ••••••••••••••••••••••• x 
••••• G.5 ••• T ••••••••• ' ••• .IC ••• N. I 

••••••••••••••• C •• yC •• t ••••••••• 
........ > ..................................... ~ 
• •••••••••••••••••••••• , • x •••••• 
• •••••••••••••••• , • F •••••••••••• 
• •••••••••••• 1< ••••••••••• , •••••• 

••• Q ••••••••••• P ••••• ll.S ••••• ll.S 
••••• T ••• l.T ••• U.T ••• p.T •••••• L. 
A**HHEAK ••••• N •••••••••••••••••• 

•• E •••••••• T .#.~ •••••• E ••••••••• 
•••••••• AD~EuII: (020105) 11 158 
u lOUD OUOO 

•••• ~S.I ••• p •••• 
••••••• > •••••••• Y ••• 1 ••••••••••• 
>* ......... x ...... .( ....................... .. 

.~ 



,/ - ". 
'. 
'- / 



( 

APPENDIX A 

INTERPRETING AND USING 

MEMORY DUMPS 

Memory dumps can be obtained by using Debug or Dump Edit. It is preferable to use 
dumps produced by Dump Edit; they are in edited format and are much easier to interpret 
(see Section 6). 

This appendix describes significant locations on memory dumps, how to interpret the 
contents of locations on memory dumps, and how to use memory dumps to perform the 
following procedures: 

o Finding the location in memory of your code 
o Determining where a trap occurred 
o Determining the state of execution of your code 

A trap is a special software- or hardware-related condition that may occur during the 
execution of a task. Many traps are caused by an error, but a few, such as the Monitor Call, 
are not. The above procedures may have to be performed if a trap message is issued. Traps 
and trap messages are described in detail in the "Trap Handling" section of the System 
Services Macro Calls manual. 

NOTE: In this appendix, all references to memory locations and offsets are for both SAF 
and LAF modes (short-address form and long-address form, respectively), and 
offsets always are in hexadecimal. LAF address and offsets are enclosed within 
parentheses and indicate the two-word form. 

SIGNIFICANT LOCATIONS ON MEMORY DUMPS 

Table A-I describes memory locations on the dump that it may be useful to refer to 
during debugging. It is assumed that you are familiar with the data structures referenced. 
Brief definitions of these data structures are contained in the glossary of the System 
Concepts manual. Figure A-I illustrates a map of systems data structures. 

TABLE A-I. SIGNIFICANT LOCATIONS ON MEMORY DUMP 

Memory Address 

0010 (0010/0011) 

0018 (0018/0019) 

0020-0023 

00S2-007F 
(0024-007F) 

0080-00BF 
(0080-00FF) 

INTERPRETING AND USING 
MEMORY DUMPS 

Meaning 

Head of queue of available trap save areas (TSA's). 

Pointer to system control block (SCB). This is the key to locating all system 
data structures. 

Level activity flags for levels 0 through 63. Bits ON indicate which levels are 
ready to execute; the lowest of these levels is the level currently executing 
(Le., the active level). The level 63 bit always is on. The clock level bit (4) 
may be on, and the Debug level bit is on if the dump resulted from a Debug 
DP directive. 

Trap vectors. Each trap vector is associated with a specific trap condition and 
points to that trap handler's entry address. The trap vector for trap number 1 
is in location 007F (7E/7F). The trap vectors for subsequent trap numbers 
are in descending, contiguous, locations; i.e., the trap vector for trap number 2 
is in location 007E (7C/7D). 

Pointers to interrupt save areas (ISA's) for levels 0 through 63, respectively. 
A null value means there is no dedicated task (i.e., a driver) or nondedicated 
task ready to execute on the specified level. 

A-I BC21 



GCB 

I 
GeB 

TCB 

BAS 

ROOT NAME 

INTERPRETING AND USING 
MEMORY DUMPS 

{ 

ABSOLUTE LOCATION 
,8,6 118. ,9),6 

o I LFT SEM I MAX LFN I LFNO 

LFT 

( ~ 
+C16 (+D/+E)I+D16 (+F/+l0) +1116 (+17/+18) 

., 1·2/-1) RCTO 

~~--~I~lr------------~{ 
I~ 
I 

( 

L ____________ _ 

NEXT TCB OF GROUP 

( ) ( 

Figure A-I. Data Structure Map 

A-2 

( 

/ 

+61+8/+91 

/ 

CB21 



(-

Locations Relative to the System Control Block or Group Control Block 

SCB+3 (+6) 
Pointer to first group control block (GCB) 

GCB+O (+0/+ 1) 
Pointer to next GCB in linked list of GCB's. 

GCB+l (+2) 
Task group identification ($S is the system group; $B is the batch group). The system 
will convert your user identification to non-ASCII representation. 

GCB+C (+D/+E) 
Pointer to LFNO of logical file table (LRT). 

GCB+D (+F/+lO) 
Pointer to task group's logical resource table (LRT). 

GCB+l1 (+17/+18) 
Pointer to first task control block (TCB) of the group. 

LRT-l (-1) 
Number of entries in the LRT. 

LRT+O (+0/+1) 
Pointer to LRN a's resource control table (RCT); the RCT's for subsequent LRN's are 
in contiguous, ascending locations (LRT + 1 points to LRN 1 's RCT). A null entry 
indicates that the associated LRN is not used. 

NOTE: Within an RCT, location a is the channel number/priority level of the 
resource (i.e., input/output device or task). 

RCT-I (-2/-1) 
Pointer to task control block (TCB) for that resource. 

Locations Relative to the Task Control Block (TCB) Pointer for the Desired Priority Level 

TCB-14 (-24) 
Hardware-assigned priority level of the task. 

TCB-9 (-13/-12) 
Pointer to current bound unit BUD. 

TCB-7 (-E/-D) 
Pointer to end of queue of requests for the task. 

TCB-6 (-C/-B) 
Pointer to start of queue of requests for the task (e.g., I/O requests for a driver). 

TCB-5 (-A/-9) 
Pointer to the group control block (GCB) for the group to which this task belongs. 

TCB-4 (-8/-7) 
Link to the queue of this group's TCB's. 

TCB-3 (-6/-5) 
Pointer to last TCB on that priority level. 

TCB-2 (-4/-3) 
Link to other task control blocks (TCB's) of the same or different task groups assigned 
to the same level. 

INTERPRETING AND USING 
MEMORY DUMPS A-3 CB21 



TCB-I (-2/-1) 
Pointer to the queue of trap save areas (TSA's) for the task. (Trap save areas are 
described in detail in the "Trap Handling" section of the System Service Macro Calls 
manual.) If a TSA is present, the task is executing system code or a user trap; if no 
TSA is present, check the program counter in the interrupt save area (ISA) portion of 
the TCB to determine the tasks's progress. 

TCB+O 
Device word, including channel number and level number. This entry is null if the task 
does not drive a device. 

TCB+n 
Hardware ISA. 

INTERPRETING THE CONTENTS OF A DPEDIT DUMP 

This section addresses dump interpretation when the DPEDIT dump format is used. 

Finding the Location in Memory of Your Code 
Locate your group-id and the TCB for your bound unit (BU). The first six characters of 

the BU filename are printed beside each TCB of the group. 
The address at TCB-l A (-2C/2B) is the start address of the BU. Calculate relative zero of 

the BU by subtracting the relative start address on its link map from this address. 

Determining the State of Execution of Your Code at the Time of the Dump 
Dump analysis begins with gathering all relevant information: the dump itself, the console 

hard-copy (if any) of the activity of a particular group (or groups), copies of the 
CLM_USER and >START_UP.E files, plus any link maps. 

These materials are required to understand the environment of the system represented in 
the dump. 

Three conditions are discussed below: 

1. Halt at level 2 
2. User level active at the time of dump 
3. No level active at the time of dump, except level 63. 

Halt at Level 2 
Examination of the level activity indicators at locations 20-23 confirms that level 2 is 

active. The system will force this condition to occur if either TSA or IRB resources are 
exhausted (see CLM SYS directive). Note that once level 2 becomes active, other lesser 
priority levels may activate but will not receive CPU time and should be ignored. 

The Dl register contains an ASCII IR (4952) when IRB exhaustion has occurred. 
Location 10 (10/ 11) is zero when TSA exhaustion has occurred. . 

If this symptom persists after augmenting the number of TSA/IRBs available to the 
system, it is possible that either your code or the system is improperly altering the TSA/IRB 
chains. To verify this, take a memory dump immediately after system startup. This allows 
easy location of the TSA chains from location 10 (10/ II) and the IRB chains from the first 
location of the SCB. Compare this dump to one taken after all TSA/IRBs are supposedly 
exhausted to verify that they really are. If the system is suspect, supply both dumps to 
Honeywell if you have a maintenance contract. TSAs can also be exhausted by a recursive 
trap. A recursive trap uses up all available TSAs. Adding TSAs simply allows for greater 
recursion. In this instance, the system is suspect and dumps should be supplied to 
Honeywell. 

INTERPRETING AND USING 
MEMORY DUMPS A-4 CB21 



,.,4 
S 

User Level Active at the Time of Dump 
This often indicates a halt or software loop condition on the active level. When a level is 

active, the pointer to the TCB associated with the code running is in the interrupt vector for 
that level. Match the TCB pointer with the TCBs listed for the groups present in the system. 
When a level is active, use the P-counter in the ISA portion of the TCB to locate the 
software running at the last time this level's context was saved. Since the system clock is 
active on level 4, the P-counter in the ISA for this level is usually helpful. It is also helpful to 
record the contents of R/B registers and EO when entering STEP mode at the control panel 
prior to taking the dump. 

No Level Active at the Time of Dump. Except for Level 63 
This condition usually indicates a system failure in that all tasks have been suspended and 

none are being reactivated. In this situation it is helpful to determine the conditions existing 
at this time. To do this, examine all TCBs in groups other than $S group. If the TCB under 
examination has not experienced a default trap condition, it mayor may not have an 
associated TSA. If a TSA is shown, examine the contents of the instruction/P address 
entries. An 000 I instruction (monitor call) indicates that your program called upon a 
system service whose function code can usually be found at the P address-l in a work space 
block of the task group encompassing the start address of your bound unit (otherwise look 
for this address in the physical dump portion of DPEDIT output). The function may be 
decoded using the numerical listing included in this appendix. 

When the system is called for a monitor function, only those registers that must be 
preserved by the system are saved in the TSA workspace. The saved registers are: B7, B6, 
BS, Bl, RS, R4, MI, beginning at TSA location +9 (+E/F). The trap save area (TSA) is 
illustrated below: 

a 

2 

+3 

4 

5 

+6 

7 

8 

TSAL 

I 

R3 

INSTR 

Z 

A 

P 

B3 

RSU 

all 

2 

3 

4 

5 

6/7 

8/9 

AlB 

C/D 

9 ElF T SPACE T 
WORK 

DETERMINING WHERE A TRAP PROCESSED BY THE SYSTEM DEFAULT HANDLER 
OCCURRED IN YOUR CODE 

If a trap message occurs on the operator terminal from the system default trap handler; 
i.e., (id) BUname (0303zz) level, the TCB of the referenced task group may be located using 
the bound unit name (BUname). In this situation, unless the TCB is subsequently 
re-requested, the last two areas associated with the TCB are related to the system handling 
of the trap. The first TSA following the TCB was used by the system to forceably terminate 
the task request in progress when the trap occurred. Your information is found in the next 
TSA associated with the TCB. It contains the hardware information described in the 
previous section of this appendix, followed by a complete set of registers current when the 
trap occurred. The order of the registers, beginning at location +9 (+E/F) of the TSA, is: B7, 
B6, BS, B4, B2, BI, I, R7, R6, RS, R4, R2, RI, MI (B3, R3, I are already in the TSA). 
When the TCB has been re-requested, only this second TSA remains attached to the TCB. 

INTERPRETING AND USING 
MEMORY DUMPS A-5 CB21 



FINDING THE LOCATION IN MEMORY OF YOUR CODE 

The three activities above may be performed without aid of the DPEDIT logical dump 
presentation. The examination of TCB contents is the same once the TCB is located. Use the 
following procedure to find the TCBs for your group, 

1. Go to location OOIS (1S/19); this location contains a pointer to the system control 
block (SCB). 

2. Go to location SCB+3 (+6); this location contains a pointer to the first group control 
block (GCB); the first word links to other GCB's in the system. Determine the group id 
at GCB+I (+2/+3). 

3. Go to location GCB+lI (+17/+ IS) to determine the location of the first task control 
block (TCB) of the task group. 

4. Go to location TCB-9 (-13/-12) to determine the location of your current bound unit 
descriptor (BUD). 

5. Go to location BUD+6 (+A). This location is the relocation factor of the bound unit; 
your code should start at this location. 

6. To confirm that your code does start at location BUD+6 (+A), go to location BUD+5 
(+S); this location points to the location of the bound unit attribute section (BAS). 

7. Go to location BAS+O to determine the bound unit's root name; this name should be 
the same file name (i.e., the same leading six characters) that you specified in the name 
argument of the LINKER command. 

S. If you did not find the root name for which you were looking, go to location TCB-4 
(-S/-7); this location points to the next TCB of the task group. Follow through the 
chain of TCB's until you find your task's task control block. 

INTERPRETING THE MONITOR CALL NUMBER ON MEMORY DUMPS 

Table A-2 is ordered numerically to facilitate identification of a monitor call function 
code, and provides a brief description of each Executive monitor call. 

INTERPRETING AND USING 
MEMORY DUMPS A-6 , CB21 

\. / 



TABLE A-2. SUMMARY OF EXECUTNE MONITOR CALLS 

Monitor 
Call Number Function Description Macro Call Name 

(" 0100 Wait for operation complete $WAIT 

0101 Wait on request list $WAITL 

0102 Test completion status $TEST 

0103 Terminate request start address not modified $TRMRQ 

0104 Terminate request $B4 has new start address $TRMRQ 

0105 Dequeue IRB 

0106 Post IRB 

0107 Return request block address $RBADD 

0108 Locate user RCT 

0200 Request I/O transfer $RQIO 

0202 Disable device $DSDV 

0203 Reset device attention $RDVAT 

0204 Enable device $ENDV 

0402 Get memory $GMEM 

0403 Get available memory $GMEM 

0404 Return memory $RMEM· 

0405 Return partial block of memory $RMEM 

0406 Status memory pool $STMP 

0500 Request clock $RQCL 

0501 Cancel clock request $CNCRQ 

0502 Suspend for interval $SUSPN 

0503 Suspend until time $SUSPN 
f 
'~ 

0504 External date/time - convert to $EXTDT 

0505 External time - convert to $EXTIM 

0506 Get date/time $GDTM 

0507 Internal date/time - convert to $INDTM 

0508 Set system date/time 

0600 Request semaphore $RQSM 

0601 Cancel semaphore request $CNSRQ 

0602 Reserve resource $RSVSM 

0603 Release semaphore $RLSM 

0604 Define semaphore $DFSM 

0700 Execute overlay $EXCOV 

0701 Load overlay $LDOV 

0703 Status overlay $STOV 

070C Unload overlay $UNOV 

0800 User input file - read $USIN 

0801 User output file - write $USOUT 

0802 Command infile (read command-in file) $CIN 

0803 Error output file - write to $EROUT 

0804 New user input file - redefine $NUIN 

0805 New user output file - redefine $NUOUT 
0806 New command input - reset 

(-~ 

INTERPRETING AND USING 
MEMORY DUMPS A-7 CB21 



TABLE A·2 (CONT). SUMMARY OF EXECUTNE MONITOR CALLS 

Monitor " 
Call Number Function Description Macro Call Name . .7 

0900 Operator information message· display $OPMSG 

0901 Operator response message· display $OPRSP 

OAOO Trap handler connect $TRPHD 

0902 Console message suppression· on $CMSUP 

0903 Console message suppression· off $CMSUP 

OAOI Enable user trap $ENTRP 

OA02 Disable user trap $DSTRP 

OA04 Trap handler query $TRPHD 

OBOO Read external switches $RDSW 

OB01 Set external switches $SETSW 

OB02 Clear external switches $CLRSW 

OCOO Request task $RQTSK 

OC02 Create task; same bound unit as issuing $CRTSK 

OC03 Create task; different bound unit than issuing $CRTSK 

OC04 Delete task $DLTSK 

OC05 Spawn task; same bound unit as issuing $SPTSK 

OC06 Spawn task; different bound unit than issuing $SPTSK 

OC08 Command line· process synchronously $CMDLN 

0000 Request group $RQGRP 

0003 Create group $CRGRP 

0004 Delete group $DLGRP 

0005 Spawn group $SPGRP 
/ 

0007 Abort group request $ABGRQ 

0008 Suspend group $SUSPG 

0009 Activate group $ACTVG 

ODOA Abort group $ABGRP 

ODOB New process $NPROC 

OEOO Request batch execution $RQBAT 

OFOO Report error condition $RPTER 

OFOI Report error condition $RPTER 

1010 Associate file $ASFIL 

1015 Disassociate file $DSFIL 

1020 Get file $GTFIL 

1025 Remove file $RMFIL 

1030 Create file $CRFIL 

1035 Release file $RLFIL 

1040 Rename file/directory $RNFIL 

1050 Open me (preserve) $OPFIL 

1051 Open file (renew) $OPFIL 

1055 Close file (normal) $CLFIL 

1056 Close me (leave) $CLFIL 

1057 Close me (unload) $CLFIL 

1060 Get file information $GIFIL 
./ 

INTERPRETING AND USING 
MEMORY DUMPS A·8 CB21 



TABLE A·2 (CONT). SUMMARY OF EXECUTNE MONITOR CALLS 

( Monitor 
Call Number Function Description Macro Call Name 

1061 Test file I/O $TSFIL 

1062 Test file for input $TIFIL 

1063 Test file for output $TOFIL 

1064 Wait for file input $WIFIL 

1065 Wait for file output $WOFIL 

10AO Create directory $CRDIR 

lOA5 Release directory $RLDIR 

lOBO Change working directory $CWDIR 

lOCO Get working directory $GWDIR 

lODO Expand pathname $XPATH 

1110 Read record $RDREC 

1111 Read record (with key) $RDREC 

1112 Read record (position = key) $RDREC 

1113 Read record (position> key) $RDREC 

1114 Read record (position;> key) $RDREC 

1115 Read record (position forward) $RDREC 

1116 Read record (position backward) $RDREC 

1120 Write record $WRREC 

1121 Write record (with key) $WRREC 

1122 Write record (position = key) $WRREC 
4 1123 Write record (position> key) $WRREC 

>, 

1124 Write record (position;> key) $WRREC 

1125 Write record (position forward) $WRREC 

1126 Write record (position backward) $WRREC 

1130 Delete record $DLREC 

1131 Delete record (with key) $DLREC 

1140 Rewrite record $ RWREC 

1141 Rewrite record (with key) $RWREC 

1150 Unlock record $ULREC 

1200 Read block (normal) $RDBLK 

1201 Read block (position to tape mark) $RDBLK 
1202 Read block (position to beginning of tape) $RDBLK 
1203 Read block (position on blocks) $RDBLK 
1204 Read block (position to end of tape) $RDBLK 

1210 Write block (normal) $WRBLK 

1211 Write block (write to tape mark) $WRBLK 

1220 Wait block $WTBLK 

130A Set terminal characteristics $STTY 

1400 User identification $USRID 

1402 Account identifier $ACTID 
1404 System identification $SYSID 

( 
IBOO Set dial $SDL 

INTERPRETING AND USING 
MEMORY DUMPS A·9 CB21 



TABLE A-2 (CONT). SUMMARY OF EXECUTIVE MONITOR CALLS 

Monitor 
Call Number 

INTERPRETING AND USING 
MEMORY DUMPS 

Function Description 

Clock request block template - generate 

Clock request block template - create 

Create file parameter block structure - offsets 

File information block - create 

Get file information file attributes 
block - offsets 

Get file information, key descriptors 
block - offsets 

Get file information, parameter structure 
block - offsets 

Get file, parameter structure block - offsets 

Input/Output request block 
template - generate 

Input/Output request block template - create 

Parameter structure block - generate 

Request block template 

Return sequence - establish 

Semaphore request block - generate 

Semaphore request block template - create 

File information block - offsets 

Task request block - generate 

Template task request block - create 

Wait list - generate 

A-I0 

Macro Call Name 

$CRB 

$CRBD 

$CRPSB 

$FIB 

$GIFAB 

$GIKDB 

$GIPSB 

$GTPSB 

$IORB 

$IORBD 

$PRBLK 

$RBD 

$RETRN 

$SRB 

$SRBD 

$TFIB 

$TRB 

$TRBD 

$WLIST 

/''\, 

'Ie, ,,7 

./ 

CB21 



INDEX 

ACTIVE 
DETERMINING/SETTING THE ACTIVE 

LEVEL, 5-4 
NO LEVEL ACTIVE AT THE TIME OF DUMP 

EXCEPT FOR LEVEL 63, A-5 
USER LEVEL ACTIVE AT THE TIME OF 

DUMP, A-5 

ADDRESS 
LONG ADDRESS FORM, 2-1 
SHORT ADDRESS FORM, 2-1 

APPLYING 
APPLYING THE PATCH, 4-2 

AREA 
TRAP SAVE AREA, A-I 

AREAS 
INTERRUPT SAVE AREAS, A-I 

ASSEMBLY 
RELOCATION IN ASSEMBLY, 2-38 

ASSIGN 
ASSIGN DIRECTIVE, 5-6 

ASSOC 
ASSOC COMMAND, 3-1 

ATTRIBUTE 
BOUND UNIT ATTRIBUTE TABLE AND THE 

LOADER, 2-16 

BASE 
BASE DIRECTIVE, 2-4, 2-11 
ILLUSTRATION OF USAGE OF BASE 

DIRECTIVES, 2-13 

BOUND 
BOUND UNIT ATTRIBUTE TABLE AND 

THE LOADER, 2-16 
BOUND UNIT FLOATABLE OVERLAY, 2-2 
BOUND UNIT FLOATABLE OVERLAY 

LOADING (LOADER), 2-2 
BOUND UNIT NONFLOATABLE 

OVERLAY, 2-2 
BOUND UNIT ROOT, 2-2 
CLEAR ALL BOUND UNIT 

DIRECTIVE, 5-8 
CLEAR BOUND UNIT DIRECTIVE, 5-8 
CREATING A BOUND UNIT, 2-2 
CREATING A SHAREABLE BOUND UNIT 

USING A HIGH LEVEL LANGUAGE, 
2-8 

LIST ALL BOUND UNIT BREAKPOINTS 
DIRECTIVE, 5-15 

LIST BOUND UNIT BREAKPOINT 
DIRECTIVE, 5-16 

SET BOUND UNIT BREAKPOINT 
DIRECTIVE, 5-19 

BREAKPOINT 
CLEARING A BREAKPOINT, 5-8 
CONTROLLING OUTPUT USING A 

BREAKPOINT, 5-4 
LIST BOUND UNIT BREAKPOINT 

DIRECTIVE, 5-16 
LIST BREAKPOINT DIRECTIVE, 5-15 
SET BOUND UNIT BREAKPOINT 

DIRECTIVE, 5-19 
SET BREAKPOINT DIRECTIVE, 5-18 

BREAKPOINTS 
LIST ALL BOUND UNIT BREAKPOINTS 

DIRECTIVE, 5-15 
LIST ALL BREAKPOINTS 

DIRECTIVE, 5-15 
SETTING BREAKPOINTS, 5-4 

CALL 
INTERPRETING THE MONITOR CALL 

NUMBER ON MEMORY DUMPS, A-6 

CALL-CANCEL 
CALL-CANCEL DIRECTIVE (CC), 2-15 

CALLS 
SUMMARY OF EXECUTIVE MONITOR CALLS 

(TBL), A-7 

CC 

CG 

CALL-CANCEL DIRECTIVE (CC), 2-15 
CC DIRECTIVE, 2-4 

CG COMMAND, 3-4 
USING THE CG AND EGR COMMANDS, 3-3 

CHECKOUT 
OVERVIEW OF PROGRAM EXECUTION AND 

CHECKOUT, 1-1 
PROGRAM EXECUTION AND CHECKOUT 

PROCEDURES (FIG), 1-2 

CLEAR 
CLEAR ALL BOUND UNIT 

DIRECTIVE, 5-8 
CLEAR ALL DIRECTIVE, 5-7 
CLEAR BOUND UNIT DIRECTIVE, 5-8 
CLEAR DIRECTIVE, 5-8 

CLEARING' 
CLEARING A BREAKPOINT, 5-18 

CLOCK 
DEACTIVATING REAL-TIME CLOCK, 5-24 

CODE 
FINDING THE LOCATION IN MEMORY OF 

YOUR CODE, A-4, A-6 

COMM 
COMM DIRECTIVE, 2-15 
EXTERNAL SYMBOLS COMM 

DIRECTIVE, 2-5 

CB21 



lNDEX 

COMMAND 
ASSOC COMMAND, 3-1 
CG COMMAND, 3-4 
DPEDIT COMMAND, 6-4 
EGR COMMAND, 3-5 
GET COMMAND, 3-1 
MSW COMMAND, 3-2 
USING THE LOGIN COMMAND, 3-8 
USING THE SG COMMAND, 3-6 

COMMANDS 
USING THE CG AND EGR COMMANDS, 

3-3 

COMMENT 
COMMENT PATCH DIRECTIVE, 4-9 

COMMON 
COMMON DEFINITIONS, 2-39 

CONDITIONAL 
CONDITIONAL EXECUTION 

DIRECTIVE, 5-13 

CONFIGURATION 
EXTERNAL REFERENCE LBDU 

CONFIGURATION DIRECTIVE, 2-3 

CONTROLLING 
CONTROLLING OUTPUT USING A 

BREAKPOINT, 5-4 

CONVENTIONS 
SUFFIX CONVENTIONS, 2-2 

CPROT 
CPROT DIRECTIVE, 2-15 
PURGING SYMBOLS ... CPROT 

DIRECTIVE, 2-6 

CPURGE 
CPURGE DIRECTIVE, 2-15 
PURGING SYMBOLS - CPURGE 

DIRECTIVE, 2-6 

CREATING 
CREATING A BOUND UNIT, 2-2 
CREATING A ROOT AND OPTIONAL 

OVERLAY(S), 2-4 
CREATING A SYMBOL TABLE, 2-3 
PROCEDURE FOR CREATING A ROOT 

AND ONE OR MORE OVERLAYS, 2-8 
PROCEDURE FOR CREATING ONLY A 

ROOT, 2-8 

DATA 
DATA PATCH DIRECTIVE, 4-3 
DATA STRUCTURE MAP (FIG), A-2 

DEACTIVATING 
DEACTIVATING REAL-TIME CLOCK, 4-24 

DEBUG 
DEBUG, 5-1 

DEBUG (CONT) 
DEBUG DIRECTIVES, 5-2 
DEBUG FILE REQUIREMENTS, 5-1 
DEBUGGING PROGRAMS WITHOUT USING 

DEBUG, 5-24 
EXAMPLE ILLUSTRATING USAGE OF DEBUG 

DIRECTIVES, 5-22 
LOADING THE DEBUG TASK GROUP, 5-1 
REDIRECT DEBUG OUTPUT 

DIRECTIVE, 5-12 
SUMMARY OF DEBUG DIRECTIVES BY 

FUNCTION (TBL), 5-5 
SYMBOLS USED IN DEBUG DIRECTIVE 

LINES (TBL), 5-3 

DEBUGGING 
DEBUGGING PROGRAMS, 5-1 
DEBUGGING PROGRAMS WITHOUT USING 

DEBUG, 5-24 

DEFINE 
DEFINE DIRECTIVE, 5-8 
DEFINE TRACE DIRECTIVE, 5-10 

DEFINING 
DEFINING EXTERNAL SYMBOL(S), 2-5 

DEFINITION 
LINK MAP SYMBOL DEFINITION, 2-2 
SYMBOL TABLE SYMBOL 

DEFINITION, 2-3 

DEFINITIONS 
COMMON DEFINITIONS, 2-39 

DESIGNATING 
DESIGNATING FILE NAMES (TBL), 2-2 
DESIGNATING FILES, 3-1 
DESIGNATING THAT THE LAST LINKER 

HAS BEEN ENTERED, 2-6 

DISPLAY 
DISPLAY MEMORY DIRECTIVE, 5-9 

DPEDIT 
DPEDIT COMMAND, 6-4 
DPEDIT SPECIFIC FATAL ERROR 

MESSAGES (TBL), 6-3 
INTERPRETING THE CONTENTS OF A 

DPEDIT DUMP, A-4 

DUMP 
DETERMINING STATE OF EXECUTION 

OF YOUR CODE AT TIME OF DUMP, A-4 
DUMP EDIT LINE FORMAT, 6-6 
DUMP EDIT UTILITY PROGRAM, 6-2 
DUMP MEMORY DIRECTIVE, 5-10 
FORMAT OF LOGICAL DUMPS PRODUCED 

BY DUMP EDIT (FIG), 6-7 
INTERPRETING DUMP EDIT DUMPS, 6-6 
INTERPRETING THE CONTENTS OF A 

DPEDIT DUMP, A-4 
LOGICAL DUMP FORMAT, 6-6 
MDUMP AND DUMP EDIT UTILITY 
PROG~S, 6-1 

ca21 

\~ / 



( 

DUMP (CONT) 
MEMORY DUMP, 6-1 
NO LEVEL ACTIVE AT THE TIME OF 

DUMP EXCEPT FOR LEVEL 63, A-5 
OPERATING PROCEDURE FOR DUMP 

EDIT, 6-3 
PHYSICAL DUMP FORMAT, 6-10 
SAMPLE LOGICAL MEMORY DUMP 

(FIG), 6-8 
SAMPLE PHYSICAL MEMORY DUMP 

(FIG), 6-11 
SIGNIFICANT LOCATIONS ON MEMORY 

DUMP (TBL), A-I 
SUPPLEMENTAL LOGICAL DUMP INFO 

FROM DUMP EDIT, 6-10 
SUPPLEMENTAL PHYSICAL DUMP INFO 

FROM DUMP EDIT, 6-10 
USER ~EVEL ACTIVE AT THE TIME 

OF DUMP, A-5 

DUMPS 
FORMAT OF LOGICAL DUMPS PRODUCED 

BY DUMP EDIT (FIG), 6-7 
INTERPRETING AND USING MEMORY 

DUMPS, A-I 
INTERPRETING DUMP EDIT DUMPS, 6-6 
INTERPRETING THE MONITOR CALL 

NUMBER ON MEMORY DUMPS, A-6 
LOCATIONS RELATIVE TO THE SYSTEM 

CONTROL BLOCK OR GROUP CONTROL 
BLOCK, A-3 

LOCATIONS RELATIVE TO THE TCB 
POINTER FOR THE DESIRED PRIORITY 
LEVEL, A-3 

SIGNIFICANT LOCATIONS ON MEMORY 
DUMPS, A-I 

EDEF 
EDEF DIRECTIVE, 2-16 
EXTERNAL SYMBOLS EDEF 

DIRECTIVE, 2-5 

EDIT 
DUMP EDIT LINE FORMAT, 6-6 
DUMP EDIT UTILITY PROGRAM, 6-2 
FORMAT OF LOGICAL DUMPS PRODUCED 

BY DUMP EDIT (FIG), 6-7 
INTERPRETING DUMP EDIT DUMPS, 2-6 
MDUMp AND DUMP EDIT UTILITY 

PROGRAMS, 6-1 
OPERATING PROCEDURE FOR DUMP 
EDIT,6-3 

EGR 
EGR COMMAND, 3-5 
USING THE CG AND EGR COMMANDS, 3-3 

ELIMINATE 
ELIMINATE PATCH DIRECTIVE, 4-5 

END 
END TRACE DIRECTIVE, 5-11 

INDEX 

ERROR 
DPEDIT SPECIFIC FATAL ERROR 

MESSAGES (TBL), 6-3 

EXAMPLE 
EXAMPLE ILLUSTRATING USAGE OF DEBUG 

DIRECTIVES, 5-22 
EXAMPLE ILLUSTRATING USAGE OF THE 

LINKER, 2-37 

EXECUTE 
EXECUTE DIRECTIVE, 5-11 

EXECUTION 
CONDITIONAL EXECUTION 

DIRECTIVE, 5-13 
OVERVIEW OF PROGRAM EXECUTION AND 

CHECKOUT, 1-1 
PROGRAM EXECUTION, 3-1 
PROGRAM EXECUTION AND CHECKOUT 

PROCEDURES (FIG), 1-2 
PROGRAM PREPARATION AND EXECUTION 

IN THE SAME TASK GROUP, 3-3 
REQUESTING PROGRAM EXECUTION, 3-3 
TASK GROUP EXECUTION ORDER, 3-2 

EXECUTIVE 
SUMMARY OF EXECUTIVE MONITOR CALLS 

(TBL), A-7 

EXTERNAL 
DEFINING EXTERNAL SYMBOL(S), 2-5 
EXTERNAL REFERENCE LBDU 

CONFIGURATION DIRECTIVE, 2-3 
EXTERNAL SYMBOLS COMM 

DIRECTIVE, 2-5 
EXTERNAL SYMBOLS EDEF 

DIRECTIVE, 2-5 
EXTERNAL SYMBOLS LDEF 

DIRECTIVE, 2-5 
EXTERNAL SYMBOLS VAL 

DIRECTIVE, 2-5 
EXTERNAL SYMBOLS VDEF 

DIRECTIVE, 2-5 
RESOLVING EXTERNAL REFERENCES, 2-3 

FATAL 
DPEDIT SPECIFIC FATAL ERROR 

MESSAGES (TBL), 6-3 

FILE 
DEBUG FILE REQUIREMENTS, 5-1 
DESIGNATING FILE NAMES (TBL) , 2-2 
RELATIVE OUTPUT FILE, 2-39 
RESET FILE DIRECTIVE, 5-19 
SPECIFY FILE DIRECTIVE, 5-20 

FILES 
DESIGNATING FILES, 3-1 

FLOATAB;LE 

i-3 

BOUND UNIT FLOATABLE OVERLAY, 2-2 
BOUND UNIT FLOATABLE OVERLAY 

LOADING (LOADER), 2-2 

CB21 



FLOVLY 
FLOVLY DIRECTIVE, 2-4, 2-17 

FORMAT 
DUMP EDIT LINE FORMAT, 6-6 
FORMAT OF LOGICAL DUMPS PRODUCED 

BY DUMP EDIT (FIG), 6-7 
LOGICAL DUMP FORMAT, 6-6 
PHYSICAL DUMP FORMAT, 6-10 

FORMATS 
LINK MAP FORMATS (FIG), 2-27 

FUNCTION 
SUMMARY OF DEBUG DIRECTIVES BY 

FUNCTION (TBL), 5-5 

FUNCTIONAL 
FUNCTIONAL GROUPS OF LINKER 

DIRECTIVES, 2-3 

FUNCTIONS 
FUNCTIONS OF THE LINKER, 2-2 

GET 
GET COMMAND, 3-1 

GO 
GO DIRECTIVE, 5-12 

GROUP 
LOADING THE DEBUG TASK GROUP, 5-1 
PROGRAM PREPARATION AND EXECUTION 

IN THE SAME TASK GROUP, 3-3 
TASK GROUP EXECUTION ORDER, 3-2 
TASK GROUP IDENTIFICATION, A-3 

GROUPS 
FUNCTI~NAL GROUPS OF LINKER 

DIRECTIVES, 2-3 

HALT 
HALT AT LEVEL 2, A-4 

HALTS 
MDUMP HALTS, 6-2 
MDUMP HALTS (TBL), 6-2 

HEADER 
PRINT HEADER LINE DIRECTIVE, 5-14 

HEXADECIMAL 
HEXADECIMAL PATCH DIRECTIVE, 4-6 
PRINT HEXADECIMAL VALUE 

DIRECTIVE, 5-22 

HISTORY 
MAINTAINING A TRACE HISTORY, 5-6 

IDENTIFICATION 
TASK GROUP IDENTIFICATION, A-3 

INDEX 

ILLUSTRATING 
EXAMPLE ILLUSTRATING USAGE OF 

DEBUG DIRECTIVES, 5-22 
EXAMPLE ILLUSTRATING USAGE OF THE 

LINKER, 2-37 

INFORMATION 
OBTAINING SUMMARY INFORMATION OF 

A LINKER SESSION, 2-10 

INTERFACE 
OPERATOR INTERFACE MANAGE (DIM), 

5-2 

INTERRUPT 
INTERRUPT SAVE AREAS, A-I 

INTERRUPTING 
INTERRUPTING LINKER 

PROCESSING, 2-1 

IST 
IST DIRECTIVE, 2-4, 2-19 

J-MODE 

LAF 

START J-MODE TRACE DIRECTIVE, 
5-21 

LAF, 2-1 

LBDU 
EXTERNAL REFERENCE LBDU 

CONFIGURATION DIRECTIVE, 2-3 

LDEF 
EXTERNAL SYMBOLS LDEF DIRECTIVE, 

2-5 
LDEF DIRECTIVE, 2-20 

LENGTH 
LINE LENGTH DIRECTIVE, 5-16 

.LEVEL 
DETERMINING/SETTING THE ACTIVE 

LEVEL, 5-4 
HALT AT LEVEL 2, A-4 
NO LEVEL ACTIVE AT THE TIME OF DUMP 

EXCEPT FOR LEVEL 63, A-5 
SET LEVEL DIRECTIVE, 5-20 
SET TEMPORARY LEVEL DIRECTIVE, 5-21 
USER LEVEL ACTIVE AT THE TIME 

OF DUMP, A-5 

LIB2 
LOCATING OBJECT UNITS WITH LIB2 

DIRECTIVE, 2-4 

LIB3 
LOCATING OBJECT UNITS WITH LIB3 

DIRECTIVE, 2-4 

LIB4 

i-4 

LOCATING OBJECT UNITS WITH LIB4 
DIRECTIVE, 2-4 

CB21 

/ 



LIB 
LIB DIRECTIVE, 2-21 
LIB (2 3 OR 4) DIRECTIVE, 2-22 
LOCATING OBJECT UNITS WITH LIB 

DIRECTIVE, 2-24 

LIMIT 
LIMIT TO PAUSE, 5-21 

LINE 
DUMP EDIT LINE FORMAT, 6-6 
LINE LENGTH DIRECTIVE, 5-16 
PRINT HEADER LINE DIRECTIVE, 5-14 

LINES 
SYMBOL USED IN DEBUG DIRECTIVE 

LINES (TBL), 5-3 

LINK 
LINK DIRECTIVE, 2-4, 2-23 
LINK MAP FORMATS (FIG), 2-27 
LINK MAP MAP DIRECTIVE, 2-3 
LINK MAP MAPU DIRECTIVE, 2-3 
LINK MAP SYMBOL DEFINITION, 2-6 
LINKING OBJECT UNITS WITH 

LINK, 2-3 
PRODUCING A LINK MAP, 2-3 
PRODUCING LINK MAP(S), 2-5 
SA1'1PLE LINK r1APS (FIG), 2-29 

LINKED 
SPECIFYING LOCATION(S) OF OBJECT 

UNIT(S) TO BE LINKED, 2-4 
SPECIFYING OBJECT UNIT(S) TO BE 

LINKED, 2-3 

LINKER 
DESIGNATING THAT THE LAST LINKER 

HAS BEEN ENTERED, 2-6 
DIRECTIVES ENTERED VIA ASSEMBLY 

CTRL STATEMENT, 2-8 
ENTERING LINKER DIRECTIVES, 2-8 
EXAMPLE ILLUSTRATING USAGE OF THE 

LINKER, 2-37 
FUNCTIONAL GROUPS OF LINKER 

DIRECTIVES, 2-3 
FUNCTIONS OF THE LINKER, 2-2 
INTERRUPTING LINKER PROCESSING, 

2-1 
LINKER, 2-1 
LINKER DIRECTIVE DESCRIPTIONS, 

2-11 
LINKER SEARCH RULES, 2-25 
LOADING THE LINKER, 2-6 
OBTAINING SUMMARY INFORMATION OF 

A LINKER SESSION, 2-10 

LINKING 
LINKING OBJECT UNITS WITH LINK, 

2-3 
LINKING OBJECT UNITS WITH LINKN, 

2-3 
LINKING OBJECT UNITS WITH LINKO, 

2-3 
RELOCATION IN LINKING, 2-38 

INDEX 

LINKN 
LINKING OBJECT UNITS WITH 

LINKN, 2-3 
LINKN DIRECTIVE, 2-4, 2-24 

LINKO 
LINKING OBJECT UNITS WITH 

LINKO, 2-3 
LINKO DIRECTIVE, 2-4, 2-25 

LIST 
LIST ALL BOUND UNIT BREAKPOINTS 

DIRECTIVE, 5-15 
LIST ALL BREAKPOINTS DIRECTIVE, 

5-15 
LIST BOUND UNIT BREAKPOINT 

DIRECTIVE, 5-16 
LIST BREAKPOINT DIRECTIVE, 5-15 
LIST PATCHES DIRECTIVE, 4-8 

LIST-FILE 
LIST-FILE, 2-10 

LOADER 
BOUND UNIT ATTRIBUTE TABLE AND THE 

LOADER, 2-16 
BOUND UNIT FLOATABLE OVERLAY 

LOADING (LOADER), 2-2 

LOADING 
BOUND UNIT FLOATABLE OVERLAY 

LOADING (LOADER), 2-2 
LOADING PATCH, 4-1 
LOADING THE DEBUG TASK GROUP, 5-1 
LOADING THE LINKER, 2-6 

LOCATING 
LOCATING OBJECT UNITS WITHIN 

DIRECTIVE, 2-4 
LOCATING OBJECT UNITS WITH LIB2 

DIRECTIVE, 2-4 
LOCATING OBJECT UNITS WITH LIB3 

DIRECTIVE, 2-4 
LOCATING OBJECT UNITS WITH LIB4 

DIRECTIVE, 2-4 
LOCATING OBJECT UNITS WITH LIB 

DIRECTIVE, 2-4 
LOCATING OBJECT UNITS WITH LSR 

DIRECTIVE, 2-4 

LOCATION 
FINDING THE LOCATION IN MEMORY OF 

YOUR CODE, A-4, A-6 

LOCATIONS 
SIGNIFICANT LOCATIONS ON MEMORY 

DUMP (TPL), A-I 
SIGNIFICANT LOCATIONS ON MEMORY 

DUMPS, A-I 
SPECIFYING LOCATION(S) OF OBJECT 

UNIT(S) TO BE LINKED, 2-4 

LOGICAL 
FORMAT OF LOGICAL DUMPS PRODUCED BY 

DUMP EDIT (FIG), 6-7 

i-5 CB21 



LOGICAL (CONT) 
LOGICAL DUMP FORMAT, 6-6 
SAMPLE LOGICAL MEMORY DUMP 

(FIG), 6-8 

LOGIN 
USING THE LOGIN COMMAND, 3-8 

LSR 
LOCATING OBJECT UNITS WITH LSR 

DIRECTIVE, 2-4 
LSR DIRECTIVE, 2-25 

MAINTAINING 

--_ .. __ .. _-..... __ ._.- . 

INDEX 

MEMORY (CONT) 
SIGNIFICANT LOCATIONS ON MEMORY 

DUMPS, A-I 

MESSAGES 
DPEDIT SPECIFIC FATAL ERROR 

MESSAGES (TBL), 6-3 

MONITOR 
INTERPRETING THE MONITOR CALL 

NUMBER ON MEMORY DUMPS, A-6 
SUMMARY OF EXECUTIVE MONITOR CALLS 

(TBL), A-7 

MAINTAINING A TRACE HISTORY, 5-6 MSW 

MANAGER 
OPERATOR INTERFACE MANAGER 

(OIM), 5-:-2 

MANUAL 

MAP 

SYMBOLS USED IN THIS MANUAL, 1-3 

DATA STRUCTURE MAP (FIG), A-2 
LINK MAP FORMATS (FIG), 2-27 
LINK MAP MAP DIRECTIVE, 2-3 
LINK MAP MAPU DIRECTIVE, 2-3 
LINK MAP SYMBOL DEFINITION, 2-2 
MAP AND MAPU DIRECTIVES, 2-25 
PRODUCING A LINK MAP, 2-3 

MAPS 
PRODUCING LINK MAP(S), 2-5 
SAMPLE LINK MAPS (FIG), 2-29 

MAPU 
LINK MAP 11APU DIRECTIVE, 2-3 
MAP AND MAPU DIRECTIVES, 2-25 

MDUMP 
MDUMP AND DUMP EDIT UTILITY 

PROGRAHS, 6-1 
MDUMP HALTS, 6-2 
MDUMP HALTS (TBL), 6-2 
MDUMP UTILITY PROGRAM, 6-1 
PREPARING FOR MDUMP, 6-1 
PROCEDURE FOR USING MDUMP, 6-1 

MEMORY 
CHANGE MEMORY DIRECTIVE, 5-7 
DISPLAY MEMORY DIRECTIVE, 5-9 
DUHP MEMORY DIRECTIVE, 5-10 
FINDING THE LOCATION IN MEMORY OF 

YOUR CODE, A-4, A-6 
INTERPRETING AND USING MEMORY 

DUMPS, A-I 
INTERPRETING THE MONITOR CALL 

NUMBER ON MEM:ORY DUMPS, A-6 
MEMORY DUMP, 6-1 
SAMPLE LOGICAL MEMORY DUMP 

(FIG), 6-8 
SAMPLE PHYSICAL MEMORY DUMP 

(FIG), 6-11 
SIGNIFICANT LOCATIONS ON MEHORY 

DUHP (TBL), A-I 

MSW COMHAND, 3-2 

NAMES 
DESIGNATING FILE NAMES (TBL), 2-2 

NAMING 
NAMING THE PATCH, 4-2 

NONFLOATABLE 
BOUND UNIT NONFLOATABLE 

OVERLAY, 2-2 

NUMBER 
INTERPRETING THE MONITOR CALL 

NUMBER ON MEMORY DUMPS, A-6 

OBJECT 
LINKING OBJECT UNITS WITH 

LINK, 2-3 
LINKING OBJECT UNITS WITH 

LINKN, 2-3 
LINKING OBJECT UNITS WITH 

LINKO, 2-3 
LOCATING OBJECT UNITS WITH IN 

DIRECTIVE, 2-4 
LOCATING OBJECT UNITS WITH LIB2 

DIRECTIVE, 2-4 
LOCATING OBJECT UNITS WITH LIB3 

DIRECTIVE, 2-4 
LOCATING OBJECT UNITS WITH LIB4 

DIRECTIVE, 2-4 
LOCATING OBJECT UNITS WITH LIB 

DIRECTIVE, 2-4 
LOCATING OBJECT UNITS WITH LSR 

DIRECTIVE, 2-4 
SPECIFYING LOCATION(S) OF OBJECT 

UNIT(S) TO BE LINKED, 2-4 
SPECIFYING OBJECT UNIT(S) TO BE 

LINKED, 2-3 

OBTAINING 
OBTAINING SUMMARY INFORMATION OF A 

LINKER SESSION, 2-10 

OIH 
OPERATOR INTERFACE MANAGER 

(OIM), 5-2 

OPERATING 

i-6 

OPERATING PROCEDURE FOR DUMP 
EDIT, 6-3 

CB21 



OPERATOR 
OPERATOR INTERFACE MANAGER 

(OIM) , 5-2 

OPTIONAL 
CREATING A ROOT AND OPTIONAL 

OVERLAY(S), 2-4 

ORDER 
TASK GROUP EXECUTION ORDER, 3-2 

OUTPUT 
CONTROLLING OUTPUT USING A 

BREAKPOINT, 5-4 
REDIRECT DEBUG OUTPUT 

DIRECTIVE, 5-12 
RELATIVE OUTPUT FILE, 2-38 

OVERLAY 
BOUND UNIT FLOATABLE OVERLAY, 2-2 
BOUND UNIT FLOATABLE OVERLAY 

LOADING (LOADER), 2-2 
BOUND UNIT NONFLOATABLE" 

OVERLAY, 2-2 

OVERLAYS 
CREATING A ROOT AND OPTIONAL 

OVERLAY (S), 2-4 
PROCEDURE FOR CREATING A ROOT AND 

ONE OR MORE OVERLAYS, 2-8 

OVERVIEW 
OVERVIEW OF PROGRAM EXECUTION AND 

CHECKOUT, 1-1 

OVLY 
OVLY DIRECTIVE, 2-4, 2-28 

PATCH 
APPLYING THE PATCH, 4-2 
COMMENT PATCH DIRECTIVE, 3-9 
DATA PATCH DIRECTIVE, 4-3 
ELIMINATE PATCH DIRECTIVE, 4-5 
HEXADECIMAL PATCH DIRECTIVE, 4-6 
LOADING PATCH, 4-1 
NAMING THE PATCH, 4-2 
PATCH, 4-1 
PATCH DIRECTIVES, 4-3 
QUIT PATCH DIRECTIVE, 4-9 
SUBMITTING PATCH DIRECTIVES, 4-2 

PATCHES 
LIST PATCHES DIRECTIVE, 4-8 

PATCHING 
PATCHING TECHNIQUES, 4-2 

PAUSE 
LIMIT TO PAUSE, 5-21 

PHYSICAL 
PHYSICAL DUMP FORMAT, 6-10 
SAMPLE PHYSICAL MEMORY DUMP 

(FIG), 6-11 

INDEX 

PLANNING 
PLANNING CONSIDERATIONS, 5-4 

PREPARATION 
PROGRAM PREPARATION AND EXECUTION 

IN THE SAME TASK GROUP, 2-3 

PREPARING 
PREPARING FOR MDUMP, 6-1 

PRINT 
PRINT ALL DIRECTIVE, 5-16 
PRINT DIRECTIVE, 5-17 
PRINT HEADER LINE DIRECTIVE, 5-14 
PRINT HEXADECIMAL VALUE 

DIRECTIVE, 5-22 
PRINT TRACE DIRECTIVE, 5-17 

PROCEDURE 
OPERATING PROCEDURE FOR DUMP 

EDIT, 6-3 
PROCEDURE FOR CREATING A ROOT AND 

ONE OR MORE OVERLAYS, 2-6 
PROCEDURE FOR CREATING ONLY A 

ROOT, 2-8 
PROCEDURE FOR USING MDUMP, 6-1 

PROCEDURES 
PROGRAM EXECUTION AND CHECKOUT 

PROCEDURES (FIG), 1-2 

PROCESSING 
INTERRUPTING LINKER 

PROCESSING, 2-1 

PROGRAM 
DUMP EDIT UTILITY PROGRAM, 6-2 
MDUMP UTILITY PROGRAM, 6-1 
OVERVIEW OF PROGRAM EXECUTION AND 

CHECKOUT, 1-1 
PROGRAM EXECUTION, 3-1 
PROGRAM EXECUTION AND CHECKOUT 

PROCEDURES (FIG), 1-2 
PROGRAM EXECUTION IN A DIFFERENT 

TASK GROUP FROM PROGRAM 
PREPARATION, 3-3 

PROGRAM PREPARATION AND EXECUTION 
IN THE SAME TASK GROUP, 3-3 

REQUESTING PROGRAM EXECUTION, 3-3 

PROGRAMMING 
PROGRAMMING CONSIDERATIONS, 2-38 

PROGRAMS 
DEBUGGING PROGRAMS, 5-1 
DEBUGGING PROGRAl1S WITHOUT USING 

DEBUG, 5-24 
MDUMP AND DUMP EDIT UTILITY 

PROGRAMS, 6-1 

PROT 

i-7 

PURGING SYMBOLS - PROT 
DIRECTIVE, 2-6 

CB21 



PROTECT 
PROTECT DIRECTIVE, 2-32 

PROTECTING 
PROTECTING OR PURGING 

SYMBOL(S), 2-6 

PROTECTION 
SYMBOL TABLE PROTECTION, 2-32 

PURGE 
PURGE DIRECTIVE, 2-33 
PURGING SYMBOLS - PURGE 

DIRECTIVE, 2-6 

PURGING 
PROTECTING OR PURGING 

SYMBOL(S), 2-6 
PURGING SYMBOLS - CPROT 

DIRECTIVE, 2-6 
PURGING SYMBOLS - CPURGE 

DIRECTIVE, 2-6 
PURGING SYMBOLS PROT 

DIRECTIVE, 2-6 
PURGING SYMBOLS - PURGE 

DIRECTIVE, 2-6 
PURGING SYMBOLS - VPURGE 

DIRECTIVE, 2-6 

QUIT 
QUIT DIRECTIVE, 2-4, 2-34, 5-17 
QUIT PATCH DIRECTIVE, 4-9 

REAL-TINE 
DEACTIVING REAL-TIrm CLOCK, 5-24 

REDIRECT 
REDIRECT DEBUG OUTPUT 

DIRECTIVE, 5-12 

REGISTERS 
ALL REGISTERS DIRECTIVE, 5-6 

RELATIVE 
RELATIVE OUTPUT FILE, 2-38 

RELOCATION 
RELOCATION IN ASSEMBLY, 2-38 
RELOCATION IN LINKING, 2-38 

REQUESTING 
REQUESTING PROGRAM EXECUTI9N, 3-3 

RESET 
RESET FILE DIRECTIVE, 5-18 

RESOLVING 
RESOLVING EXTERNAL REFERENCES, 2-3 

ROOT 
BOUND UNIT ROOT, 2-2 
CREATING A ROOT AND OPTIONAL 

OVERLAY(S), 2-4 
PROCEDURE FOR CREATING A ROOT AND 

ONE OR MORE OVERLAYS, 2-8 

INDEX 

ROOT (CONT) 

RTC 

PROCEDURE FOR CREATING ONLY A 
ROOT, 2-8 

RTC, 5-24 

RULES 
LINKER SEARCH RULES, 2-25 

SAF 
SAF, 2-1 

SAME 
PROGRAM PREPARATION AND EXECUTION 

IN THE SAME TASK GROUP, 3-3 

SAMPLE 
SAMPLE LINK MAPS (FIG), 2-29 
SAMPLE LOGICAL MEMORY DUMP 

(FIG), 6-8 
SAMPLE PHYSICAL MEMORY DUMP 

(FIG), 6-11 

SAVE 
INTERRUPT SAVE AREAS, A-I 
TRAP SAVE AREA, A-I 

SEARCH 
LINKER SEARCH RULES, 2-25 

SESSION 
OBTAINING SU~~RY INFORMATION OF A 

LINKER SESSION, 2-10 

SET 
SET BOUND UNIT BREAKPOINT 

DIRECTIVE, 5-19 
SET BREAKPOINT DIRECTIVE, 5-18 
SET LEVEL DIRECTIVE, 5-20 
SET TEMPORARY LEVEL 

DIRECTIVE, 5-21 

SETTING 

SG 

SETTING BREAKPOINTS, 5-4 
SETTING SWITCHES, 3-2 

USING THE SG COMMAND, 3-6 

SHARE 
SHARE DIRECTIVE, 2-4, 2-3 

SHORT 
SHORT ADDRESS FORM, 2-1 

SLIC 
SLIC, 2-1 

SPECIFIC 
DPEDIT SPECIFIC FATAL ERROR 

MESSAGES (TBL), 6-3 

SPECIFY 
SPECIFY FILE DIRECTIVE, 5-20 

i-8 CB21 



SPECIFYING 
SPECIFYING LOCATION(S) OF OBJECT 

UNIT(S) TO BE LINKED, 2-4 
SPECIFYING OBJECT UNIT(S) TO BE 

LINKED, 2-3 

START 
START DIRECTIVE, 2-4, 2-35 
START J-MODE TRACE DIRECTIVE, 5-21 

STRUCTURE 
DATA STRUCTURE MAP (FIG), A-2 

SUBMITTING 
SUBMITTING PATCH DIRECTIVES, 4-2 

SUFFIX 
SUFFIX CONVENTIONS, 2-2 

SUMMARY 
OBTAINING SU~~RY INFORMATION OF A 

LINKER SESSION, 2-10 
SUMMARY OF DEBUG DIRECTIVES BY 

FUNCTION (TBL), 5-5 
SUMMARY OF EXECUTIVE MONITOR CALLS 

(TBL), A-7 

SWITCHES 
SETTING SWITCHES, 3-2 

SYMBOL 
CREATING A SYMBOL TABLE, 2-3 
LINK MAP SYMBOL DEFINITION, 2-3 
SYMBOL TABLE PROTECTION, 2-32 
SYMBOL TABLE SYMBOL 

DEFINITION, 2-3 

SYMBOLS 
DEFINING EXTERNAL SYMBOL(S), 2-5 
EXTERNAL SYHBOLS COMM 

DIRECTIVE, 2-5 
EXTERNAL SYMBOLS EDEF 

DIRECTIVE, 2-5 
EXTERNAL SYMBOLS LDEF 

DIRECTIVE, 2-5 
EXTERNAL SYHBOLS VAL 

DIRECTIVE, 2-5 
EXTERNAL SYMBOLS VDEF 

DIRECTIVE, 2-5 
PROTECTING OR PURGING 

SYMBOL(S), 2-6 
PURGING SYMBOLS - CPROT 

DIRECTIVE, 2-6 
PURGING SYMBOLS - CPURGE 

DIRECTIVE, 2-6 
PURGING SYMBOLS - PROT 

DIRECTIVE, 2-6 
PURGING SYMBOLS - PURGE 

DIRECTIVE, 2-6 
PURGING SYMBOLS - VPURGE 

DIRECTIVE, 2-6 
SYMBOLS USED IN DEBUG DIRECTIVE 

LINES (TBL), 5-3 
SYMBOLS USED IN THIS MANUAL, 1-3 

INDEX 

SYS 
SYS DIRECTIVE, 2-4, 2-35 

TASK 
LOADING THE DEBUG TASK GROUP, 5-1 
PROGRAM PREPARATION AND EXECUTION 

IN THE SAME TASK GROUP, 3-3 
TASK GROUP EXECUTION ORDER, 3-2 
TASK GROUP IDENTIFICATION, A-3 

TECHNIQUES 
PATCHING TECHNIQUES, 4-2 

TIME 
NO LEVEL ACTIVE AT THE TIME OF DUMP 

EXCEPT FOR LEVEL 63, A-5 
USER LEVEL ACTIVE AT THE TIME OF 

DUMP, A-5 

TRACE 
DEFINE TRACE DIRECTIVE, 5-10 
END TRACE DIRECTIVE, 5-11 
MAINTAINING A TRACE HISTORY, 5-6 
PRINT TRACE DIRECTIVE, 5-17 
START J-MODE TRACE DIRECTIVE, 5-21 
TRACE TRAP, 5-21 

TRAP 
DETERMINING WHERE A TRAP PROCESSED 

BY SYSTEM DEFAULT HANDLER OCCURRED 
IN YOUR CODE, A-5 

TRACE TRAP, 5-21 
TRAP, A-I 
TRAP SAVE AREA, A-I 
TRAP VECTORS, A-I 

UNIT 
BOUND UNIT ATTRIBUTE TABLE AND THE 

LOADER, 2-16 
BOUND UNIT FLOATABLE OVERLAY, 2-2 
BOUND UNIT FLOATABLE OVERLAY 

LOADING (LOADER), 2-2 
BOUND UNIT NON FLOATABLE 

OVERLAY, 2-2 
BOUND UNIT ROOT, 2-2 
CLEAR ALL BOUND UNIT 

DIRECTIVE, 5-8 
CLEAR BOUND UNIT DIRECTIVE, 5-8 
CREATING A BOUND UNIT, 2-2 
LIST ALL BOUND UNIT BREAKPOINTS 

DIRECTIVE, 5-15 
LIST BOUND UNIT BREAKPOINT 

DIRECTIVE, 5-16 
SET BOUND UNIT BREAKPOINT 

DIRECTIVE, 5-19 

UNITS 

i-9 

LINKING OBJECT UNITS WITH 
LINK, 2-3 

LINKING OBJECT UNITS WITH 
LINKN, 2-3 

LINKING OBJECT UNITS WITH 
LINKO, 2-3 

LOCATING OBJECT UNITS WITHIN 
DIRECTIVE, 2-4 

CB21 



UNITS (CONT) 
LOCATING OBJECT UNITS WITH LIB2 

DIRECTIVE, 2-4 
LOCATING OBJECT UNITS WITH LIB3 

DIRECTIVE, 2-4 
LOCATING OBJECT UNITS WITH LIB4 

DIRECTIVE, 2-4 
LOCATING OBJECT UNITS WITH LIB 

DIRECTIVE, 2-4 
LOCATING OBJECT UNITS WITH LSR 

DIRECTIVE, 2-4 
SPECIFYING LOCATION(S) OF OBJECT 

UNIT(S) TO BE LINKED, 2-3 
SPECIFYING OBJECT UNIT(S) TO BE 

LINKED, 2-3 

USAGE 
EXAMPLE ILLUSTRATING USAGE OF DEBUG 

DIRECTIVES, 5-22 
EXAMPLE ILLUSTRATING USAGE OF THE 

LINKER, 2-37 

UTILITY 
DUMP EDIT UTILITY PROGRAM, 6-2 
MDUMP AND DUMP EDIT UTILITY 

PROGRAMS, 6-1 
MDUMP UTILITY PROGRAM, 6-1 

VAL 
EXTERNAL SYMBOLS VAL 

DIRECTIVE, 2-5 
VAL DIRECTIVE, 2-36 

VALUE 
PRINT HEXADECIMAL VALUE DIRECTIVE 

DIRECTIVE, 5-22 

VDEF 
EXTERNAL SYMBOLS VDEF 

DIRECTIVE, 2-5 
VDEF DIRECTIVE, 2-36 

VECTORS 
TRAP VECTORS, A-1 

VPURGE 
PURGING SYMBOLS - VPURGE 

DIRECTIVE, 2-6 
VPURGE DIRECTIVE, 2-36 

YOUR 
FINDING THE LOCATION IN MEMORY OF 

YOUR CODE, A-4, A-6 

INDEX 

i-10 CB21 



( 



,'i'j: , -. 
i. 
\il ,/ 



I 
I 
I 
I 

(J 
UJ 
z 
:::i 
(:J 
z 
o 
..J 
<{ 

~ 
~ 
u 

( 
r 
I 
I 
I 
I 
I 
I 
I 

HONEYWELL INFORMATION SYSTEMS 
Technical Publications Remarks Form 

TITLE 
SERIES 60 (LEVEL 6) GCOS 6 MOD 400 

PROGRAM EXECUTION AND CHECKOUT MANUAL 

ERRORS IN PUBLICATION 

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION 

ORDER NO·1 CB21, REV. 0 

DATED I NOVEMBER 1977 

r\. Your comments will be promptly investigated by appropriate technical personnel and action will be taken 0 lI' as required. If you require a wrttten reply. check here and furnish complete mailing address below. 

FROM: NAME __________________________________________ __ DATE ______________ __ 

TITLE ________________________________ ~---------

COMPANV ______________________________________ ___ 

ADDRE~ ________________________________________ _ 



PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms 

.. 1." 
./ '-

'\If' 
w 
2: 
:J 
(!) 
2: 
o 
...J 
« 
I­
::> 
u 

I 
I 
I 
I 
I w 
I 2: 
I :J 

I ~ 

--------------------------------------------------·--------------------------------ics 
I ~ 
I 6 

ATTENTION: PUBLICATIONS, MS 486 

Business Reply Mail 
Postage Stamp Not Necessary if Mailed in the United States 

Postage Will Be Paid By: 

HONEYWELL INFORMATION SYSTEMS 
200 SMITH STREET 
WALTHAM, MA 02154 

FIRST CLASS 
PERMIT NO. 39531 
WALTHAM,MA 
02154 

I LL 

I 
I 
I 
I 
I 
I 
I 

w 
2: 
...J 

(!) 
2: 

------------------------------------------------.------------~----------------~-------- ~S 

Honeywell 

« 
Cl 
...J 
o 
LL 

'~/ 

I 
I 
I 
I 
I 
I 
I 
I 



o 



Honeywell 
Honeywell Information Systems 

In the U.S.A.: 200 Smith Street. MS 486. Waltham. Massachusetts 02154 
In Canada: 2025 Sheppard Avenue East. Willowdale. Ontario M2J 1 W5 

In Mexico: Avenida Nuevo leon 250. Mexico 11. D. F. 

20677,3478, Printed in U.S.A. 

o 

C821, Rev. 0 

:'. 


