

SERIES 60 (LEVEL 6)
GCOS 6 MOD 400 PROGRAM
EXECUTION AND CHECKOUT MANUAL

SUBJECT

Detailed Description of Series 60 (Level 6) GCOS Program Execution and
Checkout Procedures

SOFTWARE SUPPORTED

This publication supports Release 0100 of the Series 60 (Level 6) MOD 400
Operating System; see the Manual Directory of the latest GCOS 6 MOD 400
System Concepts manual (Order No. CB20) for information as to later release
supported by this manual.

ORDER NUMBER
CB21, Rev. 0 November 1977

Honeywell

PREFACE

This manual describes the GCOS 6 MOD 400 program execution and
checkout procedures. Unless stated otherwise herein, the term GCOS refers
to the GCOS 6 MOD 400 software; the term Level 6 refers to the Series 60
(Level 6) hardware on which the software executes.

Section 1 summarizes how to access files via pathnames, and describes in
detail the suffixes that are appended to file names. It is important that you
understand these concepts before proceeding with the manual.

Section 2 describes how to load the Linker, Linker functions, and
directives that control execution of the Linker.

Section 3 provides a summary of the procedures and commands used in
program execution.

Section 4 describes how to load Patch, and includes detailed descriptions
of Patch directives.

Section 5 describes how to debug programs using Debug and other
methods.

Section 6 describes how to load and use the MDUMP and Dump Edit
utility programs.

Appendix A describes, in detail, how to interpret memory dumps. This
appendix includes procedures for determining where a trap occurred, finding
the location in memory of your code, and determining where execution of
your code terminated.

© 1977, Honey well Information Systems Inc.

'

File No.: 1523

CB21

MANUAL DIRECTORY

The following publications comprise the GCOS 6 manual set. The Manual
Directory in the latest GCOS 6 MOD 400 System Concepts manual lists the
current revision number and addenda (if any) for each manual in the set.

Order

No. Manual Title

CBo01 GCOS 6 Program Preparation

CB02 GCOS 6 Commands

CB03 GCOS 6 Communications Processing

CB04 GCOS 6 Sort/Merge

CBO05 GCOS 6 Data File Organizations and Formats
CB06 GCOS 6 System Messages

CB07 GCOS 6 Assembly Language Reference

CB08 GCOS 6 System Service Macro Calls

CB09 GCOS 6 RPG Reference

CB10 GCOS 6 Intermediate COBOL Reference

CB20 GCOS 6 MOD 400 System Concepts

CB21 GCOS 6 MOD 400 Program Execution and Checkout
CB22 GCOS 6 MOD 400 Programmer’s Guide

CB23 GCOS 6 MOD 400 System Building

CB24 GCOS 6 MOD 400 Operator’s Guide

CB25 GCOS 6 MOD 400 FORTRAN Reference

CB26 GCOS 6 MOD 400 Entry-Level COBOL Reference
CB30 Remote Batch Facility User’s Guide

CB31 Data Entry Facility User’s Guide

CB33 Level 6/Level 6 File Transmission

CB34 Level 6/Level 62 File Transmission

CB35 Level 6/Level 64 (Release 0300) File Transmission
CB36 Level 6/Level 66 File Transmission

CB37 Level 6/Series 200/2000 File Transmission

CB38 Level 6/BSC 2780 File Transmission

CB39 Level 6/Level 64 (Release 0220) File Transmission

In addition, the following documents provide general hardware information:

Order

No. Manual Title

AS22 Honeywell Level 6 Minicomputer Handbook

ATO4 Level 6 System and Peripherals Operation Manual

ii

CB21

CONTENTS

Page

Section 1. Overview of Program
Execution and Checkout 1-1
Symbols Used in This Manual 1-3
Section 2. Linker 2-1
Suffix Conventions 2-2
Functions of the Linker 2-2
Creatinga Bound Unit 2-2
Resolving External References 2-3
Creating a Symbol Table 2-3
Producinga LinkMap23

Functional Groups of Linker Directives. . 2-3
Specifying Object Unit(s) to be

Linked 2-3
Specifying Location(s) of Object

Unit(s) to be Linked 2-4
Creating a Root and Optional

Overlay(s)vvvvevnenenen... 2-4
Producing Link Map(s) 2-5
Defining External Symbol(s) 2-5
Protecting or Purging Symbol(s) 2-6

Designating that the Last Linker

has been Entered 2-6
Loading the Linker 2-6
Entering Linker Directives 2-8
Procedure for Creating Only a Root 2-8
Procedure for Creating a Root and One

or More Overlays 2-8
Procedure for Creating a Shareable
Bound Unit Using a High Level
Language 2-9
Obtaining Summary Information of a
Linker Session 2-10
Linker Directive Descriptions 2-11
BASE Directive 2-11
Call-Cancel Directive (CC) 2-15
COMM Directive 2-15
CPROT Directive 2-15
CPURGE Directive 2-15
EDEF Directive 2-16
FLOVLY Directive 2-17
IN Directive 2-18
IST Directive 2-19
LDEF Directive 2-20
LIB Directive 2-21
LIB (2, 3, or 4) Directive 2-22
LINK Directive 2-23
LINKN Directive 2-24
LINKO Directive 2-25
LSR Directive 2-25
MAP and MAPU Directives 2-25
OVLY Directive 2-28
PROTECT Directive............... 2-32

Page
PURGE Directive 2-33
QUIT Directive 2-34
SHARE Directive 2-35
START Directive 2-35
SYS Directive 2-35
VAL Directive 2-36
VDEF Directive 2-36
VPURGE Directive 2-36
Example Illustrating Usage of the
Linker 2-37
Programming Considerations 2-38
Section 3. Program Execution 3-1
Designating Files 3-1
ASSOC Command 3-1
GETCommand 3-1
Setting Switches 3-2
MSW Command 3-2
Requesting Program Execution 3-3
Program Preparation and Execution
in the Same Task Group 3-3
Program Execution in a Different
Task Group from Program
Preparation 3-3
Using the CG and EGR Commands . 3-3
CGCommand 34
EGRCommand 3-5
Using the SG Command 3-6
Using the LOGIN Command 3-8
Section4. Patch 4-1
LoadingPatch 4-1
Submitting Patch Directives 4-2
Patching Techniques 4-2
Naming the Patch 4-2
Applying the Patch 4-2
Patch Directives 4-3
Data Patch Directive 4-3
Eliminate Patch Directive 4-5
Hexadecimal Patch Directive 4-6
List Patches Directive 4-8
Quit Directive 4-9
Comment Directive 4-9
Section 5. Debugging Programs 5-1
Debug i 5-1
Debug File Requirements 5-1
Loading the Debug Task Group 5-1
Debug Directives 5-2
Planning Considerations 5-4
Setting Breakpoints 5-4
Controlling Output Using a
Breakpoint 5-4
CB21

Determining/Setting the Active
Level ... i
Maintaining a Trace History.......
All Registers Directive
Assign Directive
Clear All Directive
Change Memory Directive
Clear Directive
Clear Bound Unit Directive
Clear All Bound Unit Directive
Define Directive
Display Memory Directive
Dump Memory Directive
Define Trace Directive
Execute Directive
End Trace Directive
Redirect Debug Output Directive . .
GO Directive
Conditional Execution Directive . . .
Print Header Line Directive
List All Breakpoints Directive
List Breakpoint Directive
List All Bound Unit Breakpoints
Directive
List Bound Unit Breakpoint
Directive
Line Length Directive
Print All Directive
Print Directive
Print Trace Directive
Quit Directive
Reset File Directive
Set Breakpoint Directive
Set Bound Unit Breakpoint
Directive
Specify File Directive
Set Level Directive
Start j-mode Trace Directive
Set Temporary Level Directive
Print Hexadecimal Value
Directive
Example Illustrating Usage of Debug
Directives
Debugging Programs Without Using
Debug L.
Deactivating Real-Time Clock

................

..........
..............

...........

Section 6. MDUMP and Dump Edit Utility
Programs

MDUMP Utility Program
Preparing for MDUMP

.................

‘ Page

Procedure for Using MDUMP 6-1
MDUMPHalts 6-2
Dump Edit Utility Program 6-2
Operating Procedure for Dump Edit .. 6-3
DPEDIT Command 6-4
Interpreting Dump Edit Dumps 6-6
Dump Edit Line Format 6-6

Logical Dump Format 6-6

Physical Dump Format 6-10
Appendix A. Interpreting and Using
Memory Dumps A-1
Significant Locations on Memory
Dumps A-1
Locations Relative to the System
Control Block or Group Control
Block A-3
Locations Relative to the Task
Control Block (TCB) Pointer for the
Desired Priority Level A-3
Interpreting the Contents of a DPEDIT
Dump A-4
Finding the Location in Memory of
YourCode A-4
Determining the State of Execution
of Your Code at the Time of the
Dump L. A-4
Haltat Level 2 A-4
User Level Active at the Time of
Dump A-5
No Level Active at the Time of
Dump, Except for Level 63 A-5
Determining Where a Trap Processed by
the System Default Handler Occurred
inYourCode A-5
Finding the Location in Memory of
YourCode, A-6
Interpreting the Monitor Call Number
on Memory Dumps A-6

vi CB21

ILLUSTRATIONS

Figure
1-1.

2-1.

2-2.
2-3.
6-1.

6-2.
6-3.
A-1.

Page
Program Execution and Checkout
Procedures J 1-2
Schematic of Previous Example
IMustrating Usage of BASE

Directives 2-13
Link Map Formats 2-27
Sample Link Maps 2-29

Format of Logical Dumps Produced
by Dump Edit
Sample Logical Memory Dump 6-8
Sample Physical Memory Dump ... 6-11
Data Structure Map A-2

vii

TABLES

Table

2-1.
5-1.

5-2.

Page

Designating File Names 2-2
Symbols Used in Debug Directive

Lines . ..o 5-3
Summary of Debug Directives, by

Function 5-5
MDUMPHalts 6-2
DPEDIT — Specific Fatal Error

Messagesiiiien. 6-3
Supplemental Information that may

Occur in Logical Dumps Produced

by Dump Edit 6-10
Supplemental Information that may

Occur in Physical Dumps

Produced by Dump Edit 6-10
Significant Locations on Memory

Dump A-1
Summary of Executive Monitor
Calls A-7

CB21

SECTION 1

OVERVIEW OF PROGRAM EXECUTION
AND CHECKOUT

Honeywell supplies the necessary tasks to create a source unit and convert it into an
executable format (including error detection and correction) or to apply a patch. These
tasks are described in subsequent sections of this manual and in the Program Preparation
manual.

Program checkout can be performed after you first perform both the initial system
startup procedure and a specialized system startup procedure. The initial and specialized
startup procedures are described in the “Startup and Configuration” section of the System
Building manual. The equipment required for program preparation is described in the
“Equipment Requirements’ section of the Systems Concepts manual.

Program checkout is described below and illustrated in Figure 1-1. A source file is edited,
then compiled or assembled as described in the Program Preparation manual. Before
execution, separately assembled and/or compiled object units must be linked by the Linker
to form a bound unit. A bound unit comprises a root, or a root and one or more overlays. A
root is the portion of a bound unit that is loaded into memory when the Loader is requested
to load a bound unit.! The root remains in memory as long as there are tasks executing on
its behalf, unless the LDBU configuration directive was specified; if LDBU was specified, the
root remains in memory until the system is reinitialized. An overlay is loaded into memory
whenever it is required.

After linking and loading the bound unit, you can control execution of a program and
make desired changes while the program is executing by using Debug. Breakpoints can be set
to determine which code is executing, and specified registers and memory locations can be
displayed and, if desired, changed. If there is not enough memory for Debug, you can
perform debugging by using Patch to append monitor points. Patch permits you to add
patches to and/or delete patches from object units and bound units.

There are three methods of obtaining memory dumps. While a program is executing, you
can obtain a memory dump by using either Debug or the Dump Edit utility program; dumps
produced by Dump Edit are in edited format and are much easier to interpret. If an
executing program encounters a problem and it aborts or a halt occurs, to obtain a memory
dump you may use just Dump Edit or you may first dump memory to a disk file by using
the MDUMP utility program and then print the memory dump by using Dump Edit. To
dump the contents of all or part of the Multiline Communications Processor memory, you
can use the DUMCP dump routine, which is described in the Communications Processing
manual.

NOTES
1. If you are going to perform program checkout while simultaneously executing other
online tasks in the foreground, you must be familiar with the System Concepts
manual.

2. Throughout this manual there are references to the create group, enter group
request, spawn group, and enter batch request commands; these commands are
described in the Commands manual.

! The root is loaded when an —EFN argument is specified in a create group or spawn group command, or an LDBU config-
uration directive is specified (see the System Building manual).

OVERVIEW I-1 CB21

MACRO
PREPROCESSOR

EXPANDED
SOURCE
UNIT

SOURCE
UNIT

ASSEMBLER

OUTPUT
LISTING

] COMPILED/

ASSEMBLED
OBJECT
UNIT

— — |

PATCH

LINKER

MAP LISTING

BOUND
UNIT

— —

PATCH

PROGRAM
EXECUTION

— i

DEBUG

Figure 1-1. Program Execution and Checkout Procedures

OVERVIEW

12

CB21

presren

SYMBOLS USED IN THIS MANUAL

Processing; indicates any kind of processing function.

Online storage of information; e.g., diskette or cartridge disk.

Input from card reader.

Document; e.g., printer output.

Q Manual input;i.e., operator’s terminal or another terminal.

Mandatory; indicates that the designated flow of
information, type of processing, input, or output is required.

UPPERCASE Reserved words or symbols, must be entered or used exactly
CHARACTERS as shown.

lower case

characters Symbolic name or value; you must supply the exact value.
brackets [] Optional information.

braces { } An enclosed entry must be selected.

ellipses ... There may be multiple entries of the immediately preceding

type of information.

OVERVIEW 13 CB2I

s

SECTION 2
LINKER

The Linker combines separately assembled and/or compiled object units, which can also
be called compile units (CUs), and produces a bound unit. An object unit can only be
executed if it is first linked by the Linker. The Linker executes in either Short Address
Form (SAF) mode (4 byte-address) or Long Address Form (LAF) mode (8 byte-address). It
can create, in either mode, a SAF, LAF or SLIC bound unit. A SLIC bound unit can
execute in either LAF or SAF mode.

Object units may contain external references to symbols.! While linking object units, the
Linker resolves external references to symbols by referring to and updating a Linker-created
symbol table. A link map of defined and/or undefined symbols can be produced.

To load the Linker into memory, enter the LINKER command (see “Loading the Linker”
later in this section).

Linking is controlled by directives entered to the Linker through the directive input
device. The directive input device is the device specified in the in_path argument of the
“enter batch request” or “enter group request’” command (normally, the in__path represents
a terminal). This device can be reassigned in the command that loads the Linker.

If the Linker command specifies the —PT argument, the Linker prompter character “L?”
will appear each time the Linker expects a directive.

The Linker processing can be interrupted by:

o Depressing the “QUIT”, “INTERRUPT”, or “BREAK” key on the user terminal

o Entering ACAB group-id on the operator terminal, where group-id is the two-character
group identification code associated with the group containing the task to be
interrupted. A **BREAK** message appears on the user’s terminal when the system
interrupts the Linker.: One of the commands SR (start), PI (program interrupt), UW
(unwind) or NEW-PROC may be entered at this point. SR causes the interrupted task
to resume at the point where the interrupt occurred (i.e., to continue as if no interrupt
had occurred). If a MAP or MAPU directive has been issued and the PI command is
used, the map operation is terminated at its current location and processing jumps to
the next Linker directive. The UW command causes an orderly termination of the
Linker processing (i.e., files are closed) and processing continues with some other task
in the group containing the Linker.

The NEW-PROC command causes an orderly termination of the task group and the task
group is reinitialized.

Each object unit to be processed during a single execution of the Linker must be a
variable sequential file. The input files may reside in the same directory or in different
directories. Unless specified otherwise, all of the object units are in the working directory
(see ““‘Specifying Location(s) of Object Unit(s) to be Linked” later in this section).

Each bound unit to be linked requires a separate execution of the Linker. A bound unit
may consist of only a root, or a root and one or more overlays. The root and each overlay
may be up to 64K words (128K bytes). The root and each overlay is called a load unit; a
load unit is loaded into memory by the Loader. When you use a create group or spawn

! An external reference is a reference to a symbol defined in another object unit as an external symbol.

LINKER 2-1 CB21

group command, or an LDBU configuration directive, to request that a bound unit be
loaded, the root is the portion of the bound unit that is loaded by the Loader. The root
remains in memory as long as there are tasks executing on its behalf, unless LDBU was
specified; if LDBU was specified, the root remains in memory until the system is
reinitialized. An overlay is loaded into memory whenever it is required. Refer to the
Commands manual for a discussion of the create group and spawn group commands, and the
LDBU configuration directive.

Each bound unit has an attribute table associated with it; an attribute table contains
information about the bound unit’s characteristics and symbol definitions. The attribute
table is loaded into memory immediately preceding the root.

SUFFIX CONVENTIONS

The Linker requires that each of its input file names contain a .O suffix. When you
specify a file name in a link directive, or in the LINKER command name of a file that will
contain the bound unit, suffixes are omitted, the Linker will not append a suffix to the
bound unit name. If a list file is designated (i.e., the -COUT argument is specified in the
LINKER command), the Linker does not append a suffix to the specified name; otherwise,
the Linker forms the name of its list file (Linker maps) by appending .M to the specified or
default base name.

It is important to note that the Linker appends suffixes to specified file names.

Table 2-1 summarizes how file names are designated.

TABLE 2-1. DESIGNATING FILE NAMES

Program Preparation
Task Input File(s) Output File(s)

Linker Omit suffix. Linker Omit suffixes. The Linker appends .M to specified
appends .O to each bound unit file name to form the name of the list file
specified file name. if the -COUT argument was not specified in the LINKER
command. The Linker does not append a suffix to the
name designated in the —COUT argument.

FUNCTIONS OF THE LINKER

Creating a Bound Unit

The Linker produces a bound unit file whose pathname is specified in the name argument
of the LINKER command. '

The bound unit comprises only a root unless an OVLY or FLOVLY directive is entered.
Each time an OVLY or FLOVLY directive is entered, the Linker initiates creation of a
nonfloatable or floatable overlay, respectively. A nonfloatable overlay is loaded by the
Loader into the same memory location (relative to the root) each time it is requested. A
floatable overlay is linked at relative O (see “BASE Directive” later in this section), and can
be loaded by the Loader into any available memory location. A floatable overlay must have
the following characteristics:

1. External location definitions in the overlay are not referenced by the root or any other
overlay. '

. There cannot be external references between floatable overlays.

. The overlay does not contain external references that are not resolved by the Linker.

. The overlay must be linked after all desired nonfloatable overlays have been linked.

. The overlay cannot contain P+DSP references to any other overlay or the root.

. The overlay cannot contain IMA (immediate memory address) references within itself.

. There can be IMA references (with or without offsets) to locations in the root or any
nonfloatable overlay.

NN AW

LINKER . 2-2

CB21

Resolving External References

The Linker resolves the addresses or values of external symbol references it finds in object
units being linked. The references can be between object units comprising the root, between
object units comprising an overlay, between overlays, or between the root and an overlay. A
symbol can be defined in one bound unit and referenced in another bound unit. (The
symbol must exist in the system symbol table, as the result of an LBDU configuration
directive performed for the module in which the symbol is defined. Refer to the System
Building manual.)

Creating a Symbol Table

A symbol table is a data structure created by the Linker for resolving external references.
When the Linker encounters external references to symbols or definitions of symbols, it
creates an entry in the symbol table. When that entry is defined, the Linker updates the
symbol’s entry in the symbol table and all references to the symbol. A symbol can be
defined within an object unit, or by an LDEF or VDEF directive. (LDEF and VDEF are
explained later in this section under ‘“‘Linker Directive Descriptions.”) A list of defined
and/or undefined symbols can be obtained by producing a link map.

Producing a Link Map

A link map is a listing of information in the symbol table. A symbol can be defined in an
object unit as a value or location, in the LDEF directive as a location, or in the VDEF
directive as a value. If a symbol is defined as a location, the map contains the symbol name
and its relative address. If a symbol is defined as a value, the map contains the symbol name
and its value. The map also lists the name of each undefined symbol and the relative address
of the latest reference to it.

A link map can be produced at any time during the linking process by specifying the MAP
or MAPU directive. It is written to the file name .M in the working directory, unless the
-COUT argument was specified in the LINKER command. (-COUT permits you to assign the
list file to disk, a printer, the operator’s terminal, or another terminal.) If maps are assigned
to disk, a disk file with variable length records is created; the first character of each record is
a print control character.

FUNCTIONAL GROUPS OF LINKER DIRECTIVES

The general functions of Linker directives are listed and described below. For more
detailed information, see ‘“‘Linker Directive Descriptions’ later in this section.

Specify object unit(s) to be linked

Specify location(s) of object unit(s) to be linked

Create root and optional overlay(s)

Produce link map(s)

Define external symbols

Protect or purge symbols

Designate that the last Linker directive has been entered

© o000 O0O0O0o

Specifying Object Unit(s) to be Linked

Directives:
LINK
LINKN
LINKO

LINK, LINKN and LINKO designate that one or more specified object units are to be

linked. Object units specified in LINK directives are not linked immediately; their names are
put into a link request list. Once a directive has been entered which requires that all

LINKER 2-3 CB21

preceding link requests are honored, linking begins. Specified object units in the primary
input directory are linked before specified object units in the secondary input directory;
within each directory, the object units are linked in the order in which they were requested.

LINKN causes the Linker to link object units already named in the link request list, and
then to link object units specified in the LINKN directive, in the order in which they were
requested.

LINKO is essentially the same as LINKN, except that all embedded directives in the
named object unit(s) are ignored by the Linker.

The order in which object units are linked may be important if overlays exist.

NOTE: The Linker appends the suffix .O to each specified object unit name; when the
Linker searches for an object unit name, it searches for the name including the
suffix.

Specifying Location(s) of Object Unit(s) to be Linked

Directives:
IN
LIB
LIB2
LIB3
LIB4
LSR

Object units to be linked must be in at least one directory. The primary directory is the
first directory searched by the Linker; the secondary directory, if there is one, is the second
(last) directory searched; and so on. When the Linker is loaded into memory, the primary
directory is the working directory, and there are no other directories.

IN permits you to designate a different directory as the primary directory.

LIB designates a directory as the secondary directory

LIB2 designates the third directory to be searched.

LIB3 designates the fourth directory to be searched.

LIB4 designates the fifth directory to be searched.

LSR produces a list of the directories in the order they are to be searched.

Each of these directives may be specified any number of times.

Creating a Root and Optional Overlay(s)

Directives:
BASE
START
IST
SHARE
SYS
LINK
LINKN
LINKO
OVLY
FLOVLY
CC
QUIT

The BASE directive defines, for subsequent object units to be linked, the relative load
address within the bound unit. ’

LINKER 2-4 CB21

NOTE: When the lowest address of a root or overlay has been established (i.e., an object
unit has been linked), it is illegal to define a lower BASE address within that root
or overlay.

START specifies the relative address at which the root or overlay will begin executing
when it is loaded into memory by the Loader.

IST identifies the beginning of initialization code in the root.

SHARE designates that the bound unit is shareable.

SYS designates that the bound unit can be loaded into the system area as part of the
system.

LINK, LINKN and LINKO specify which object units will be linked. The order in which
specified object units are linked, and when they are linked, is determined by which link
directive is specified.

OVLY names and assigns a number to the next nonfloatable overlay that follows, and
designates the end of the preceding root or overlay.

FLOVLY names and assigns a number to the next floatable overlay that follows, and
designates the end of the preceding root or overlay.

Call-cancel (CC) permits a COBOL program that used CALL and CANCEL statements to
call overlays by their names.

QUIT designates that the last Linker directive has been entered. Execution of the Linker
terminates after the bound unit has been created.

Producing Link Map(s)

Directives:
MAP
MAPU

A link map is written to the list file by specifying the MAP or MAPU directive. MAP
creates a map that lists both defined and undefined symbols, whereas MAPU lists undefined
symbols only.

Defining External Symbol(s)

Directives:
COMM
LDEF
VAL
VDEF
EDEF

The COMM directive defines a symbol as being labelled or unlabelled common.?

A symbol can be defined as a relative location or value by specifying the LDEF or VDEF
directive, respectively. The symbol’s definition is then put into the symbol table by the
Linker.

The VAL directive specifies a value definition at LINK time. This value is equivalent to
the difference between two external locations.

The EDEF directive permits definitions in the Linker symbol table to be made part of the
bound unit so they are available to the Loader at execution time.

2 For discussions of “‘common” see the appropriate language reference manual.

LINKER 2-5 CB21

Protecting or Purging Symbol(s)

Directives:
CPROT
CPURGE
PROT
PURGE
VPURGE

The CPROT and CPURGE directives, respectively, protect and remove symbols associated
with labeled and unlabeled common.

The PROT and PURGE directives, respectively, protect and remove symbols and object
unit names from the symbol table.

The protect (PROT) directive prevents certain symbols and/or object unit names from
being removed from the symbol table. Symbols are protected if they identify a specified
address or an address within a specified range; object unit names are protected if they are
equated to a specified address or an address within a specified range.

The PURGE directive removes from the symbol table unprotected symbols that define a
specified address or an address within a specified range, and/or object unit names equated to
a specified address or an address within a specified range.

The VPURGE directive removes a specified value definition from the symbol table.

Designating That the Last Linker Directive Has Been Entered

Directive:
QUIT

QUIT must be the last Linker directive entered.

If a bound unit is being created, execution of the Linker terminates after the bound unit
has been created.

If no bound unit is being created, QUIT terminates execution of the Linker.

LOADING THE LINKER

To load the Linker, enter the LINKER command, which is described below.
After the Linker is loaded, there is a typeout to the error output file of the revision also
in the following format:

LINKER-nnnn-mm/dd/hhmm

where nnnn is a release identification, mm/dd is the month and day the Linker component
was linked, and hhmm the time (hour, minutes) at which that link took place.

FORMAT:
LINKER bound-unit-path [ct] arg]
ARGUMENT DESCRIPTIONS:
bound-unit-path
Pathname of the relative disk bound unit file. The pathname can be simple, relative, or
absolute and must be preceded by a space. If the specified file already exists, the

existing information in the file is deleted and replaced with the new bound unit.
Required.

LINKER 2-6 CB21

Ea

ctl_arg
Control arguments; none or any number of the following control arguments may be
entered, in any order:

-IN path

Pathname of the device through which Linker directives will be read; can be disk,
card reader, operator’s terminal, or another terminal.

Error messages are written to the error output file. Linker error messages are
described in the System Messages manual.

Default: Device specified in the in_path argument of the “enter batch request’ or
“enter group request” command.

-PT
If the -IN argument is not specified, -PT can be specified in order to produce a
prompter character on the user terminal. A prompter character is issued only if -PT
is specified.

-COUT list-path-name
Designates the list file. The list file can be sent to a disk, another terminal, or a
printer. The list-path-name is associated with this list file. If -COUT is not specified,
the list-path-name has a default value of bound-unit-path .M.

[-LAF

]-SAF

-SLIC

LAF and SAF are addressing modes in one of which the bound unit is to execute;
-LAF designates long address form (two-word addresses); -SAF designates short
address form (one-word addresses); -SLIC designates that either a SAF or a LAF
machine may be used with no reassembly or link necessary.

Default: Bound unit executed in SAF (short address form) mode.

-SIZE nn

-SZ nn
nn designates the maximum number of 1024-word (1K) blocks of memory available
for the Linker symbol table; nn must be from 1 to 32. At least 1024 words must be
available.
Default:

-W

Specifies that the implicit Linker work files are to be saved.

Default: Implicit Linker work files are automatically released by the Linker upon
Linker termination..

-R
Designates that a bound unit is to be created, where all data areas defined as

common are separated from all other code. Required for shareable CU’s (object
units).

Example:

LINKER MYPROG -IN"MYDISK>CNL -COUT >SPD>LPTO00 -SIZE 06

LINKER 2-7 CB21

This LINKER command loads the Linker and designates the following:

o Bound unit will be a relative file named MYPROG in the working directory.

o Linker directives will be entered through disk file "MYDISK>CNL.

o List file goes to a line printer (configured as LPTOOQ), rather than to a variable
sequential file named MYPROG.M in the working directory.

o The symbol table will be a maximum of 6K words of memory.

NOTE: LPTOO0 must have been previously defined in the DEVICE configuration
directive, which is described in the ‘“Startup and Configuration Procedures”
section of the System Building manual.,

ENTERING LINKER DIRECTIVES

Linker directives are entered through the directive input device, except for the following
directives which may be embedded in assembly language CTRL statements: LINK, LINKN,
LINKO, SHARE, EDEF, and SYS.

Linker directives comprise only a directive name or a directive name followed by one or
more parameters. Each directive name may be preceded by 0, 1, or more blank spaces, If
one or more parameters are to be specified in a Linker directive, the directive name must be
immediately followed by one or more blank spaces.

Multiple directives can be entered on a line by specifying a semicolon(;) after each
directive, except for the last directive on the line.

The last-(or only) directive on a line can be followed by a comment; to include a
comment, specify a space and a slash (/) after the last (or only) parameter and then enter
the comment.

If the directive input device is the operator’s terminal or another terminal, press
RETURN at the end of each line (i.e., at the end of the comment, or at the end of the last
directive if there is no comment).

If an error occurs when entering a directive, an error message is written to the error
output file. Linker error messages are described in the System Messages manual. Determine
what caused the error, and then reenter the directive correctly. If multiple directives are
entered on a line and an error occurs, the error does not affect the execution of previously
designated directives. The directive that caused the error and subsequent directives on that
line are not executed.

PROCEDURE FOR CREATING ONLY A ROOT

To link object units and create only a root, load the Linker and then enter the following

directives:
LINK }3
LINKN Links object units.
LINKO
QUIT Designates that the last Linker directive has been entered. After the

bound unit has been created, execution of the Linker terminates.
All other directives are optional.

PROCEDURE FOR CREATING A ROOT AND ONE OR MORE OVERLAYS

When creating a root and overlays, the following rules must be followed:

o The root must be created before its overlays.
o A root and all of its overlays must be created during the same execution of the Linker.

3Multiple LINK and/or LINKN and/or LINKO directives may be entered.

LINKER 2-8 CB21

o Nonfloatable overlays must be created before floatable overlays.
o Overlays may contain references to symbols defined in the root or other overlays.
o A root or overlay can be up to 64K words of memory.

To link object units and create a root and one or more overlays, load the Linker and then
enter the following required directives:

LINK |*

LINKN Links object units that will constitute the root.

LINKO

OVLY } Designates end of the root, and names and numbers the overlay that
FLOVLY immediately follows.

HII:I%N Links object units that will constitute an overlay.

NOTE: An OVLY or FLOVLY directive and at least one link directive must be specified
for each overlay associated with the root.

QUIT Designates that the last Linker directive has been entered. After the
bound unit has been created, execution of the Linker terminates.

All other directives are optional.

NOTE: It is advisable to specify a MAP directive before each FLOVLY directive. The
base address of a floatable overlay is relative 0, so all unprotected symbols that
define locations will be purged from the symbol table.

PROCEDURE FOR CREATING A SHAREABLE BOUND UNIT
USING A HIGH-LEVEL LANGUAGE

A shareable bound unit (BU) is one in which the code portion resides in system memory
and can be used on behalf of one or more groups to manipulate data in that group. To
accomplish this, the following factors must be present:

1. The pure (i.e., code) portion of the bound unit must be separated from the impure
(i.e., data) portion.

2. The BU must be declared shareable.

3. Space must exist in the System pool to allow loading of the pure portion of the BU.

These factors are processed respectively as follows:

1. Using the capability to declare pure portions from impure portions (e.g., Intermediate
COBOL), specify the -R argument on the Linker command line. This will cause the
Linker to separate all those items declared as impure from the rest of the program.

2. Specify the SHARE directive for the BU at link time.

3. If both of the preceding conditions are specified, the Loader will automatically load
the pure section of the BU into the System space in memory. If not enough room
exists in the System space, the pure section will go into the group with the impure
section and will no longer be shareable.

Using the Intermediate COBOL compiler, which automatically puts data in “Local
Common”, or using the Assembly Language pseudo-operator (SLOCOMW), the capability to
share a pure code portion of a program exists. If the -R argument is specified at link time,
the resultant BU can be up to 128K (up to 64K for pure code and up to 64K for data).

4Multiple LINK and/or LINKN and/or LINKO directives may be entered.

LINKER 2-9 CB21

No overlays are permitted in a shareable/separated BU.
When the -R argument is specified, all data which the compiler defines in common is

separated from executable code. All references in the code to this data are made via register N

$B6. The data does not directly reference the code.
When the -R argument is not specified, overlays are permitted. In this case, the maximum
size of the root or of any individual overlay is 64K (including both code and data).

OBTAINING SUMMARY INFORMATION OF A LINKER SESSION

The Linker designates on the list file summary information regarding the bound unit
created during the current execution of the Linker.

The list file includes the name of the bound unit and date and time of link, the name and
revision number of each object unit linked, the name of the assembler/compiler, the
assembler or compiler error count, and the sections described below:

ROOT Name of the root.

HIGHEST OVLY Number of the last overlay® ; if there are no
overlays HIGHEST OVLY is followed by a
blank.

/NUM OF SYMS Number of symbols specified in EDEF
directives.

SAF Type of addressing form used in the bound
LAF unit; SAF is short-address form, and LAF is
SLIC long-address form.

00T A SLIC bound unit may be executed in either
OVLY SAF or LAF mode.

BASE Name of the root or overlay.

ST Base address of the root or overlay.

SFUI Start address of the root or overlay.

Specifies characteristics of the bound unit, as
follows:
S

Shareable bound unit.

Floatable overlay(s) included.

U
There are resolved or unresolved forward references between the root and overlays or
between overlays.

I

IMA addresses are present.

HIGH Highest address in the root or overlay.

*SIZE OF ROOT AND STATIC OVLYS Highest address in either the root or the
largest overlay. (Indicates the amount of
memory needed to load the bound unit.)

HI REL RCD The number of the highest relative record of
the bound unit file. (Indicates the number of
control intervals used for storage.)

LINK DONE

Designates that execution of the Linker has been successful.

*The Linker assigns numbers to overlays. The first overlay is 00; subsequent overlays are numbered sequentially in ascending N

order.

LINKER ' 2-10 CB21

e

BASE

The format for this information is illustrated below:

ROOT rootname

HIGHEST OVLY number/NUM OF SYMS number
sk ok ok sk sk skosk skskosk

SAF
LAF
SLIC

skeosk skosfe e sk sk s seskok

[CMMN6 rootname BASE address ST address - HIGH = high address of data

ROOT
OVLY A
HIGH = high address of root or overlay
sk 3k ok sk ok sk sk skoskosk ok

*SIZE OF ROOT AND STATIC OVLYS = number,; ¢ HI REL RCD = number; 4

sk ok sk sk ke o ok sk skokook

LINK DONE

skt ks ek sksk sksk ok

LINKER DIRECTIVE DESCRIPTIONS

Linker directives are described below, alphabetically., Some examples are provided to
illustrate directive usage.

BASE Directive

The BASE directive defines, for subsequent object units to be linked, the relative link
address within the bound unit. At load time, all addresses are relative to the beginning of
available memory (relative 0) in the memory pool of the task group. When a task group is
created, vou specify the memory pool into which its bound units are to be loaded.

Unless BASE directives specify otherwise, the root will be linked, by default, at relative O,
and subsequent object units are linked at successive relative addresses. A BASE directive can
be used at any point during linking to change the relative locations of the root, overlays, or
individual object units. A floatable overlay always begins at relative O; therefore, in a
floatable overlay, BASE can be specified only after the first (or only) LINK, LINKN or
LINKO directive. A BASE parameter can specify a previously used or defined location, or
an address relative to the beginning of the available memory.

If unprotected symbols define locations that are equal to or greater than the location
designated in the BASE directive, those symbols are removed from the symbol table.

FORMAT:
g)
X 4
X‘address’

=object-unit-name >

xdef U i l X‘offset’:l ‘

The current address. /

BASE

SIf —R argument is specified and common exists.
7This line is repeated for each overlay.

LINKER 2-11

;
dirname {# overlay number } BASE address ST address - {S} {F} {U }{I }

CB21

BASE
PARAMETER DESCRIPTIONS

$
Next location after the highest address of the linked root or previously linked nonfloat-
able overlay.

% absolute
Highest addresstl ever used in the linked root or any previously linked nonfloatable
overlay. ’

address
Hexadecimal address comprising one to four integers enclosed in apostrophes and
preceded by X. The specified address is relative to the beginning of available memory
(relative 0) in the memory pool at load time.

=object-unit-name
Specified object unit’s base address; the subsequent root, overlay, or object unit will be
linked at the same relative address as the specified object unit, which must have already
been linked. Furthermore, the object unit name must still exist in the symbol table
(i.e., it is not purged).

xdef [-{t }X‘offset’]

Address of any previously defined external symbol. If an offset is specified, it must be
a hexadecimal integer with an absolute value less than 7FFF (32768 decimal).

Default:
Root-0
Nonfloatable overlay-Next location after the highest address of the preceding root or
nonfloatable overlay
Floatable overlay—0

Example:

This example illustrates usage of BASE directives in a bound unit that comprises a root and
overlays. In this example, assume that the bound unit being created is going to be executed
as part of task group Al, and memory pool AA is to be used by this task group. Figure 2-1
illustrates memory pool AA’s location in memory relative to the system pool and another
pool, and the locations within that memory pool to which each object unit specified in the
following directives will be loaded.

LINKER TEXT -COUT >SPD>LPTQ0 Designates address at which execution will begin

START TEXTEN when the root is loaded.

IST INIT Defines INIT as the beginning of initialization
code.

LINK OBJ1,0BJ2 Request that OBJ1.0 and OBJ2.0 be linked.

MAP Causes OBJ1.0 and OBJ2.0 to be linked, and
produces a link map.

OVLY ABLE Designates end of the root, and that a nonfloat-

able overlay named ABLE immediately follows.
The Linker assigns the number 00 to this
overlay.

LINKER 2-12 CB21

Fen

BASE

ADDRESS

RELATIVE 0 FOR ROOT

RELATIVE 0 OF ROOT

HIGH MEMORY

ADDITIONAL TASK
GROUP INFORMATION

e o —— — — — —

ROOT AND OVERLAY AREA

TASK GROUP CONTROL
STRUCTURES

J\.

ADDITIONAL TASK
GROUP INFORMATION

TASK GROUP CONTROL
STRUCTURES

SYSTEM POOL

OPERATING SYSTEM

LOW MEMORY

RELATIVE LOCATION IN MEMORY

OF MEMORY POOL AA

MEMORY POOL
AB (TASK
GROUP A2
WILL USE

THIS AREA)

0oBJC.O

LOCATION 1105
MEMORY POOL
AA (TASK
GROUP A1
WILL USE
THIS AREA)

08BJS.0

RELATIVE 0 OF
ROOT

ADDITIONAL TASK
GROUP INFORMATION

OBJE.O

0BJD.O

foBsB.O

e — o ——— — —]

OBJA.O

[_____________
-

0BJ2.0

08BJ1.0

TASK GROUP CONTROL
STRUCTURES

CONTENTS OF MEMORY POOL AA

OVERLAY FLOAT

OVERLAY ZEBRA

B

> OVERLAY FOX

? OVERLAY ABLE

~

- ROOT

LINKER

Figure 2-1. Schematic of Previous Example Illustrating Usage of BASE Directives

2-13

+ CB21

BASE
BASE =0BlJ2

LINK OBJ5
MAP

LINK OBJ6
OVLY FOX

BASE §

LINK OBJA
LINK OBJB
MAP

OVLY ZEBRA

BASE X’1105°

LINK OBJC

LINK OBJD
MAP
FLOVLY FLOAT

LINK OBJE
MAP
QUIT

LINKER

Subsequent object unit(s) constituting overlay
ABLE will be linked starting at the base address
of the object unit OBJ2.0; this address can be
determined from the map. Unprotected symbols
that define locations equal to or greater than the
address of OBJ2 are removed from the symbol
table.

Requests that OBJ5.0 be linked.

Requests that OBJ6.0 be linked.

Designates the end of the above overlay, and
specifies that a nonfloatable overlay named FOX
immediately follows. The Linker assigns the
number 01 to this overlay.

Subsequent object unit(s) constituting the over-
lay named FOX will be linked starting at one
location higher than the ending address of
OBJ6.0. This is the default BASE address, so
BASE $ need not be specified.

Requests that OBJA.O be linked.
Requests that OBJB.O be linked.

Designates end of above overlay 01 and names
subsequent nonfloatable overlay., The Linker
assigns the number 02 to this overlay.

Designates that subsequent object units con-
stituting overlay ZEBRA will be linked starting
at relative location 1105.

Object unit OBJC.O will be linked starting at
relative location 1105.

Requests that OBJD.O be linked.

Designates end of above overlay, and that a
floatable overlay named FLOAT immediately
follows. The Linker assigns the number 03 to
this overlay. This overlay will be linked starting
at the default base address of 0.

Requests that OBJE.O be linked.

2-14

CB21

CALL-CANCEL/COMM/CPROT/CPURGE

Call-Cancel Directive (CC)

The call-cancel directive (CC) must be used when linking COBOL programs that contain
CALL/CANCEL statements that reference overlays. The Linker will place each overlay
name and its associated Linker-generated overlay number into the bound unit attribute table
so that the COBOL program can call/cancel overlays by name.

To support the CALL/CANCEL facility, the object unit ZCCEC is required. ZCCEC will
be automatically linked into the root by COBOL,; it requires no link directive.

The CC directive must be specified before the first LINK, LINKN or LINKO directive in
the root.

FORMAT:
CcC

COMM Directive
The COMM directive defines a labelled or unlabelled “common” area of a specified size.

FORMAT:
COMM symbol, size
ARGUMENT DESCRIPTION:

symbol
Identifies the external symbol which is to be treated as common.

size
Size is specified as a 1- to 4-character hexadecimal number bound by single quotes and
preceded by the letter X (i.e., X’size’).

CPROT Directive
The CPROT directive prevents specified symbols from being removed from the common
area.
FORMAT:
CPROT symbol
ARGUMENT DESCRIPTION:
symbol
Name of the external symbol, as originally specified in the COMM directive, which is to
be protected.
CPURGE Directive
The CPURGE directive causes the Linker to remove an unprotected symbol from the
common area. '
FORMAT:
CPURGE symbol
ARGUMENT DESCRIPTION:

symbol
Identifies the external symbol which is to be removed from the common area.

LINKER 2-15 CB21

EDEF

EDEF Directive

The EDEF directive causes the transfer of a symbolic definition from the Linker to the
Loader at load time. The bound unit attribute table is part of the bound unit.

An EDEF directive can only specify a symbol that has been defined using XDEF, LDEF,
or VDEF. When EDEF is specified, the symbol’s definition must already be in the symbol
table.

Secondary entry points of bound units, whose code is to execute under control of a task,
must be defined in an EDEF directive. This includes secondary entry points of overlays and
the root entry point when it will be explicitly used in a create group command. The start
address of the root and of each overlay is placed by the Linker in the bound unit attribute
table and does not need an EDEF definition.

If a bound unit is memory resident, symbols (entry points and references) can be defined
by EDEF so that they can be referenced by any bound unit loaded by the system. At
system configuration time, when the resident bound units are loaded using the LDBU
system configuration directive, these symbols are placed in the system symbol table. When
the Loader loads other bound units that contain unresolved references, it tries to resolve
them with the list of symbols defined for resident bound units.

If the bound unit is transient (shareable or not shareable), the symbols in the attribute
table of the bound unit are meaningful only as definitions of secondary entry points,
Although shared bound units can be in the address space of more than one task group, the
bound unit attribute table is available to the Loader only when the bound unit is being
loaded. Unresolved references in any bound unit will be resolved only to symbols defined in
attribute tables of resident bound units.

The EDEF directive can be embedded in assembly language CTRL statements.

FORMAT:
EDE F}
{ EF symbol
ARGUMENT DESCRIPTION:
symbol

Any external definition comprising one to six characters. The symbol must have been
defined. If the symbol was multiply defined, the first definition is used.

Example:
This example illustrates usage of EDEF directives in bound units.
LINKER MYPROG Loads the Linker. The bound unit named MYPROG

will be created on the working directory. The list file
MYPROG.M is also created on the working directory.

LINK A |

LINKN B

MAP

EDEF B B is a symbol defined as an external location or value
in B.O.

LDEF SYM,X’1234’ Assigns relative location 1234 to external symbol
named SYM.

OVLY FIRST Designates end of root, and names nonfloatable

overlay that immediately follows.

LINKER 2-16 CB21

(-

EDEF/FLOVLY

LINK X,Y
EDEF SYM

QUIT Designates that the last Linker directive has been
entered. Execution of the Linker terminates after the
bound unit has been created.

LINKER PROG2 -COUT >SPD> Loads the Linker; the bound unit to be created is

LPTOO0 -SIZE 02 named PROG2. The list file is the printer. The
symbol table is a maximum of 2K words of memory.

BASE X’2222’ Subsequent object units will be loaded into memory
starting at the relative address 2222.

LINKN W Requests that object unit W.O be linked.

MAP Produces a link map; in this map, it is determined

that object unit W.O contains an unresolved reference
to the symbol SYM, which was defined in the root of
the bound unit MYPROG.

QUIT

If MYPROG is loaded into memory via an LDBU configuration directive, when the
Loader loads PROG2 the Loader will resolve the unresolved reference in PROG2 to the
symbol SYM, which was defined in the root of MYPROG.

NOTE: An EDEF directive cannot be entered on the directive line in which the object
unit is specified. For example, if the symbol TAG is defined in object unit A, the
following directive line is not allowed:

LINK A;EDEF TAG

FLOVLY Directive

The FLOVLY directive assigns the specified name and a number to the floatable overlay
that immediately follows, and designates the end of the preceding root or overlay. The
characteristics of floatable overlays are described earlier in this section under “Creating a
Bound Unit.”

FLOVLY must be specified as the first directive of each floatable overlay. Floatable
overlays must be linked after all desired nonfloatable overlays have been linked.

The Linker assigns a two-digit number to each overlay. Overlays are numbered
sequentially, in ascending order; the first overlay is 00.

FORMAT:
FLOVLY name
ARGUMENT DESCRIPTION:
name

Name of the floatable overlay that immediately follows. The overlay name must
comprise one to six alphanumeric characters; the first character must be alphabetic.

LINKER 2-17

CB21

FLOVLY/IN

Example:

LINKER BU ' Loads the Linker and designates BU as the bound
unit name.

LINK A

LINK B

MAP Produces a link map, The link map should be

referenced to determine if there are any unprotected
symbols that define locations. These symbols, if any,
will be removed from the symbol table since the
floatable overlay that immediately follows has a
default base address of 0.

FLOVLY GR Designates the end of the root (which comprises
object units A.O and B.0O), and specifies that the next
overlay is a floatable overlay named GR. The Linker
assigns the number 00 to this overlay.

LINK X

LINKY

MAP

FLOVLY BR Designates the end of floatable overlay GR, and
designates that the floatable overlay that immediately
follows is named BR. The Linker assigns the number
01 to this overlay.

LINK R6

MAP

QUIT

IN Directive

The IN directive designates a different directory as the primary directory.® This directive
permits the linking of object units that are in directories other than the default primary
directory or secondary directory (if any). If the IN directive is not specified, the working
directory is the primary directory. (The secondary directory is designated in the LIB
directive.)

NOTE: The IN directive must be specified before the first LINK, LINKN or LINKO
directive that requests the linking of an object unit that is in the specified
directory.

The specified directory remains the primary directory until another IN directive is
entered. If the primary directory is changed via an IN directive and at a later time you want
the task group’s working directory to be the primary directory, you must enter the IN
directive and specify in that directive the working directory’s pathname.

FORMAT:

IN path

® The primary directory is the first directory that the Linker searches for the specified object unit(s) to be linked.

LINKER 2-18

CB21

e 2

ARGUMENT DESCRIPTION:

path

IN/IST

Pathname of the directory being designated as the primary directory. The pathname
may comprise a maximum of 64 characters. A simple, relative, or absolute pathname
may be specified (methods of designating pathnames are described in the Program

Preparation manual.)
Example 1:

IN"DIR>PRIM

This directive designates that “DIR>PRIM is the primary directory.

Example 2:

This example illustrates usage of the IN directive in conjunction with directives that request
the linking of object units. Assume the primary directory is the working directory, whose
pathname is WORK>CURR; object units X.0, Y.O, and Z.O are in the working directory.

LINKER OUTPUT
LINK X
IN"NEW>PRIM

LINK A

LINK C

IN WORK>CURR

LINKNY

MAP
QUIT

IST Directive

Loads the Linker; a bound unit named OUTPUT will
be created on the working directory.

Requests the linking of object unit X.0; X.0 is in the
working directory.

Designates that "“NEW>PRIM is now the primary
directory.

Requests the linking of object unit A.O, which is in
the primary directory. "“NEW>PRIM>A.O is the
pathname of A.O, as expanded by the Linker.
Requests the linking of object unit C.O, which is in
the primary directory. "NEW>PRIM>C.O is the
pathname of C.O, as expanded by the Linker.
Designates that the primary directory is now the
working directory.

Requests the linking of object unit Y.O, which is in
the working directory., WORK>CURR>Y.O is the
pathname of Y.O, as expanded by the Linker.

The IST directive identifies the beginning of initialization code in the root. Initialization
code is code that you want to execute only once immediately after the root is loaded. After
initialization code is executed, the space is made available for overlays.

The external symbol must be specified in an EDEF directive.

FORMAT:

{IST } external symbol
IT

ARGUMENT DESCRIPTION:

LINKER

external symbol

Symbol defined within the root as an external location.

2-19

CB21

LDEF
LDEF Directive

LDEF assigns a relative location to an external symbol. A symbol should be defined only
once, either as a location or as a value. When a symbol is defined, its definition is put into
the Linker symbol table so that it can be used to resolve references to the symbol during
linking. When a symbol defined as a location is no longer referenced, its symbol table entry
can be cleared by specifying the PURGE directive. PURGE has no effect if a protect
(PROT) directive was previously specified.

FORMAT:
$
%
X‘address’
LDEF =object-unit-name
LE symbol,
xdef [{ +} X‘offset’]
#
ARGUMENT DESCRIPTIONS:
symbol
One to six alphanumeric characters,
$

Next location after the highest address of the linked root or previously linked
nonfloatable overlay.

%
Highest addresst! ever used in the linked root or any previously linked nonfloatable
overlay.

address
Hexadecimal address comprising one to four integers enclosed in apostrophes and
preceded by X. The specified address is relative to the beginning of available memory
(relative 0) in the memory pool.

=object-unit-name
Specified object unit’s base address.
xdef[{f} X‘offset’]

Address of any previously defined external symbol. If an offset is specified, it must be
a hexadecimal integer with an absolute value less than 7FFF (32768 decimal).

#

The current address.
Example:

This example illustrates usage of each format of the LDEF directive.

LINKER BOUND Loads the Linker and designates BOUND as the
bound unit name.

LINK A

LINK B,C

MAP

LDEF SYM,X’1234, SYM assigned relative location 1234

OVLY FIRST Designates end of root and names first nonfloatable

overlay

LINKER ‘ 220 CB21

5

LDEF/LIB

LINK R

MAP

LDEF QUIZ=C QUIZ assigned base location of the previously linked
object unit named C.O.

OVLY SECOND

LINKN D

LINK F

MAP

LDEF NEW,SYM NEW assigned same location as the symbol SYM,
which was defined in the root; i.e., NEW is assigned
relative location 1234,

OVLY NEXT

BASE X’1300°

LINK W, X

MAP

LDEF ANY,$ ANY assigned next location after highest address of
the previously linked nonfloatable overlay, SECOND.

OVLY THIRD

LINK Z

LINK Q

MAP

LDEF FIND,% FIND assigned next location after highest address of
the root or any previously linked nonfloatable
overlay. (A previous nonfloatable overlay was named
SECOND:; if it ended at location 1566 and this is the
highest address ever reached during the linking of
object units constituting this bound unit, FIND
would be assigned location 1567.)

QUIT

LIB Directive

The LIB directive designates a directory as the secondary directory. This directory
permits the linking of object units that are in a directory other than the primary directory.
If an object unit specified in the LINK, LINKN or LINKO directive cannot be found in the
primary directory, the Linker then searches the secondary directory.

If LIB is not specified, there is no secondary directory; the Linker searches only the
primary directory.

The specified secondary directory remains in effect until the LIB directive is respecified
with a different directory name.

NOTE: The LIB directive must be specified before the first LINK, LINKN or LINKO
directive that requests the linking of an object unit that is in the secondary
directory.

FORMAT:
LIB path
ARGUMENT DESCRIPTION:
path
Pathname of the directory being designated as the secondary directory. A simple,

relative, or absolute pathname may be specified. (Methods of specifying pathnames are
described in Section 1.)

LINKER 221

CB21

LIB/LIB(2, 3, or 4)
Example 1:

LIB DIR>SECND

This directive designates that DIR>SECND is the relative pathname of the secondary

directory.

Example 2:

This example illustrates usage of a secondary directory that contains object units W.0, Y.O,

and Z.0.

LIB DIR>SECND Designates that DIR>SECND is the relative pathname
of the secondary directory.

LINK B Requests the linking of object unit B.O; B.O resides
in the primary directory.

LINK A Requests the linking of object unit A.O; A.O resides
in the primary directory.

LINK W Requests the linking of object unit W.0; W.O resides

in the secondary directory, DIR>SECND>W.O is the
full pathname of W,0, as expanded by the Linker.

All specified object units in the primary directory are linked first; then all specified object
units in the secondary directory are linked, and so on. To cause object units to be linked in
a specific order, the LINKN or LINKO directive must be used.

2
LIB {3} Directive
4

The LIB (2, 3, or 4) directive designates directories as the third, fourth or fifth directory.
If an object unit specified in the Linker directive cannot be found in the primary or
secondary directory, then the third directory is searched and so on.

The specified directories remain in effect until another LIB (2, 3 or 4) statement is given.

NOTE: The LIB (2, 3 or 4) directive must be specified before the first LINK, LINKN or
LINKO directive that requests the linking of an object unit that is in one of these

directories.
FORMAT:
2
LIB {3}Apath
4
ARGUMENT DESCRIPTION:
path

Pathname of the third, fourth or fifth directory to be searched (if LIB is specified) if
the object unit specified in a Linker directive is not found in the precedmg directories.
A simple, relative or absolute pathname may be specified.

LINKER 2-22 CB21

LINK
LINK Directive

The LINK directive specifies that the Linker link one or more specified object units. Each
specified object unit name is put into the link request list., The object units are linked when
the first subsequent directive other than LINK or START is encountered. When this occurs,
the Linker searches the primary directory and links the specified object units in the order in
which they were requested. If all of the object units are not found and there is a secondary
directory, the Linker searches the secondary directory and links specified object units, in
the order in which they were requested. If there is a copy of an object unit in both the
primary and secondary directory, the copy in the primary directory is linked.

The order in which object units are linked is important for the following reasons: (1) it
determines which object units will be in memory simultaneously and which object units will
overlay other object units and (2) within the root and each overlay, the first start address
encountered by the Linker (either in an END statement or a START directive) is used as the
start address for that root or overlay,

During each execution of the Linker, at least one LINK, LINKN or LINKO directive must
be entered for each root or overlay. Multiple LINK directives can be specified within a single
root or overlay. If LINK and/or LINKN and/or LINKO directives request that the same
object unit be linked more than once within a single bound unit, only the first request is
honored.

LINK directives can be embedded in assembly language CTRL statements; the specified
object unit(s) are added to the link request list immediately following the object unit in
which they were embedded. See “LINKN Directive” and “LINKO Directive™ for the order
in which object units are linked if there are embedded LINK directives and/or LINKN
and/or LINKO directives.

FORMAT:
LINK obj-unit, [,obj-unit,] ...
ARGUMENT DESCRIPTION:

object-unity
Name of an object unit to be linked., An object unit name must be one to six
alphanumeric characters and must not include a suffix; the first character must be a
letter or a dollar sign ($). The Linker will search for the specified object unit name,
with a .O suffix.

Example 1:
LINK FIRST

This directive causes the Linker to link the object unit names FIRST.O. The primary
directory is searched first; if FIRST.O is not found, the secondary directory, if any, is
searched.

Example 2:

LIB SECOND>FILE
LINK R
LINK T

The above LIB directive designates that SECOND>FILE is the pathname of the secondary
directory. In this example, object unit R.O is in the secondary directory, and object unit
T.O is in the primary directory. \

The above LINK directives will link T.O before R.O, since T.O is in the primary directory.

LINKER 2-23 CB21

LINK/LINKN
Example 3:

LINK A,B,C,D

This directive causes the Linker to link the object units named A.O, B.O, C.O, and D.O. If
the primary directory contains B.O, and the secondary directory contains A.O, C.O, and
D.O, the object units are linked in the following order:

B.O
A.O
C.0
D.O

LINKN Directive
The LINKN directive causes object units to be linked in the following order:

1. Object units previously specified in LINK directives, and any object units requested in
embedded LINK directives. The object units are linked in the order in which they are
found by the Linker.

. First (or only) object unit specified in the LINKN directive.

. Object units specified in LINK and/or LINKN directives that are embedded in the
object unit linked as a result of step 2 above.

4. Additional object units, if any, specified in the LINKN directive; the object units are
linked in the order in which they were specified in LINKN, regardless of whether they
are in the primary or secondary directory. If an object unit contains an embedded
directive to link another object unit, the object unit designated in the embedded
directive is linked after the object unit that contains the embedded directive.

W N

If directives designate that an object unit be linked more than once within a single bound
unit, only the first request is honored.

During each execution of the Linker, at least one LINKN, LINK or LINKO directive must
be specified for each root or overlay.

Multiple LINKN directives can be specified within a single root or overlay.

LINKN directives can be embedded in assembly language CTRL statements; the specified
object unit(s) are added to the link request list immediately following the object unit in
which they were embedded.

FORMAT:
{E\TKN} obj-unit, [,obj-unit, ...
ARGUMENT DESCRIPTION:
obj-unity

Name of an object unit to be linked. An object unit name must be one to six
alphanumeric characters and must not include a suffix; the first character must be a
letter or dollar sign ($). The Linker appends the suffix .O to each object unit name,
and searches for the specified object unit name, including the suffix.
Example 1:
LINKN X,W

This directive designates that the Linker link the object unit named X.0 and then link the
object unit named W.0.

LINKER 2-24 CB21

LINKN/LINKO/LRS/MAP/MAPU
Example 2:

This example illustrates the order in which object units are linked if LINKN directives are
used in conjunction with LINK directives, and there are embedded LINKN directives.

LINK A Requests the linking of object unit A.O; this name is
put into the link request list.
LINK B Requests the linking of object unit B.O; this name is

put into the link request list. In this example, B.O
contains an embedded LINK directive to link object
unit C.O.

LINKN D,G Requests the linking of object units D.O and G.O.

In this example, all of the specified object units are in the primary directory, and D.O
contains an embedded LINK directive to link object unit E.O.

When the LINKN directive is executed, the Linker will link the object units in the
following order:

A.O (requested in first LINK directive)

B.O (requested in second LINK directive)

C.O (requested in a LINK directive embedded in object unit B.O)
D.O (first object unit requested in LINKN)

E.O (requested in an embedded directive in object unit D.O)

G.O (second object unit requested in LINKN)

LINKO Directive

The LINKO directive is essentially the same as the LINKN directive, except that all
embedded link directives in the named object units are ignored.

Only the object units named are linked.

FORMAT:
LINKO obj-unit, [,obj-unit,]...
ARGUMENT DESCRIPTION:

obj-unity
Name of an object unit to be linked. An object unit name must be one to six
alphanumeric characters and must not include a suffix; the first character must be a
letter or dollar sign ($). The Linker appends the suffix .0 to each object unit name, and
searches for the specified object unit name including the suffix.

LSR Directive
The LSR directive lists the Linker search rules; that is, the directories to be searched by
the Linker for the object unit(s) are listed in the order in which they will be searched.

FORMAT:
LSR
MAP and MAPU Directives
The MAP directives cause a link map of defined symbols that were not purged and of

undefined symbols to be written to the list-file (see -COUT in the LINKER command). The
MAPU directive is the same, but only applies to undefined symbols.

LINKER 2-25 CB21

MAP/MAPU

If MAP is specified, each defined and undefined symbol generated by the linking of
object units is listed in the map and preceded by the name of the object unit in which it is
located. A map also includes the names of object units that were linked because of
embedded Linker directives, and the symbols contained in those object units. If the MAP
directive precedes a QUIT directive, the link map will contain all the defined symbols and
undefined symbols of the completed bound unit that have not been removed (i.e., purged).

If MAPU is specified, the map contains each undefined symbol and the object unit in
which it is located.

MAP and MAPU directives can be interspersed among other Linker directives, When these
directives are encountered, all object units named in the link request list are linked before a
map is produced. Maps are useful for determining whether all required object units have
been linked, and whether all symbols referenced in those object units have been defined.

FORMAT:

MAP
MP
MAPU
MU

Default: No map produced.
A full link map (a map generated by the MAP directive) comprises the following sections:

START Address at which execution of the root or overlay
will begin; specified in the START directive or in a
linked object unit.

LOW Lowest memory address at which the current root or
overlay was based.

HIGH Next location after the highest address of the current
root or overlay.

$COMM Address assigned to unlabeled COMMON for the
bound unit.

CURRENT Next location after the current address of the root or
overlay (when the map was created).

EXT DEFS All exgtemal symbols currently defined in the symbol
table.

UNDEF If an object unit contains no references to undefined

symbols, the object unit name is listed and no symbol
names are specified.

If object units contain references to undefined
symbols, the map indicates, for the root and each
overlay, the first object unit® in which each symbol
was referenced and the relative address of the last
reference to each symbol; i.e., if an undefined symbol
is referenced in the root and an overlay or in two or
more overlays, the symbol will appear more than
once in the map. The last reference need not be in the
same object unit.

? Unprotected symbols defined in the root or a previously linked overlay will appear in the map unless the symbols are
purged via a PURGE or BASE directive. Symbols erroneously defined as both a value and a location will appear
twice under EXT DEFS.

1 9The first reference may occur in the root or a previously linked overlay.

LINKER 226 CB21

t"ﬁ\

ik

MAP/MAPU

If there are external references in both P-relative and
immediate memory address forms to an undefined
symbol, the symbol is listed twice under UNDEF.

Figure 2-2 illustrates the formats of maps generated by the MAP and MAPU directives. In
a single-word (SAF) system, each address or value is specified in four hexadecimal digits; in
a double-word (LAF) system, each address or value is specified in eight hexadecimal digits.

NOTE: The date and time at which the bound unit was created is automatically put in
the bound unit’s attribute section,

bound unit name LINK MAP yyyy/mm/dd hhmm:ss.s

* %
* * START address
* % LOW address
* * HIGH address

[**$COMM address]

* * CURRENT address

* * EXT DEFS

P ZHcomm®

P ZHREL®

* * ROOT

[P}* object unit name
[P][ICI] symbol nameb
[P}* object unit name
[P][[g] symbol nameb

* * overlay name
[P]* object unit name
[P][rg] symbol na\meb
[P]* object unit name

PILE]

symbol nameb

°

.

[* * COMMON

* * UNDEF

LINKER

0000 [0000]
0000 [0000]
base address of root

base address of object unit

address® or value

base address of object unit

address® or value

.

base address of overlay

base address of object unit

c
address~ or value

base address of object unit

address® or value

common definitions are separated on the map as well as in the bound

unit when -R is specified

>

Figure 2-2, Link Map Formats

2-27

OMITTED IF MAPU SPECIFIED

]

CB21

MAP/MAPU/OVLY

[P]* object unit named base address of object unit

[symbol nameb address of most recent referencee]

d

[P]* object unit name
b

base address of object unit

address of most recent referencee]

.

[symbol name

P - Protected symbol
M - Multiply defined symbol

C - Symbol defines labeled or unlabeled common

37HCOMM and ZHREL are reserved symbol names; they appear on every map as protected symbols.
ZHCOMM is located at unrelocatable zero. ZHREL is located at relocatable zero.

bThe map contains the names of all external symbols currently defined in the symbol table.
If there are external references in both P-relative and immediate memory address forms to
an undefined symbol, the symbol is listed twice under UNDEF. Each map line contains up to
four (SAF) or three (LAF) external symbols.

®To find a location definition, add the relocation factor at load time to the address shown
on the map. :

dAl'l object units linked are listed under UNDEF, even if they contain no unresolved references.

®Within the root or a single overlay, the latest reference to an undefined symbol need not be
in the object unit that contained the first reference to the symbol. Por each undefined
symbol, the following information is given under UNDEF: name of the first object unit that
co:tains a reference to the designated symbol, and the relative address of the most recent
reference.

Figure 2-2 (cont.) Link Map Formats

Figure 2-3 presents sample link maps.

OVLY Directive

The OVLY directive assigns the specified name and a number of the nonfloatable overlay
that immediately follows, and designates the end of the preceding root or overlay.

OVLY must be specified as the first directive of each nonfloatable overlay.

The Linker assigns a two-digit number to each overlay. Overlays are numbered
sequentially, in ascending order; the first overlay is 00.

FORMAT:
OVLY name

LINKER 2-28 CB21'

sl

OVLY

L INKER-nnnn-mm/ dd/ hhmm GLUDH MODUEUU=S10U=11/1170909 nnnn is the release identification

sz TEST LINKED Jne 1977711728 18183U5,2 =SLIC =« mm/dd/hhmm identify the 1ink date and time
This is a SLIC bound unit with separated code.

*% (ESI LINK waP 19/7/11/25 1518:09,2 A

*xSAKRT

«eLUW GUUU VU0

axM]GH QuOY QU0

xaxLUNKENT QUUD VUUO

«eEXT DEFS Map #1
P LHCUMM YU 000U s XX is an external location definition
4 LHREL VUYL 0000 VAL is an external value definition
xx [T T Y] vap vunu X is a common location definition
««CUMMON
X [V [T}
«xUNDEF 7
ae IEST LINK MAP 19///11/25 1518305,2 j
«aSTAKT
*aLOW UUuo YUOY
«eHlGH VVUU VUL

««CURREN] 0000 0VUO00

wap Xl OEFS
e LHCOMM 0UUU 000V Map #2
[LHREL VouL woLY y The common definition, X, is protected
XX VoVY VoB/ vaL 0oLL The external location definition, CC,
e ce VUUY oUBY is defined as XX + hex '6'
««CUMMON
[X VUV VOLO
“*UNDEF
V6 Command errors
CMD EKRR
CLT:]
CMU ErR
«x 1EST LINK Mk 39///711723 1518105,¢
*«START w
*elOW UooL VYoo
“*HIGH VU0U VU7
*«CURKENT 0000 V087
*xabXT VEFS
P IHCUMM UUUU 0000 Nagaigd at xx
P K VuLY . s
6:._"" 0030 0000 f A1l unprotected location definitions
i >
p cL VUUU 008D with addresses 287 are purged.
*«COMMUN
P X UUUL 0000
**UNDEF J

ILKBGN 77111/
HRS ASSEMBLEK 2.50 11/17/7/ UBl6.6 ESI THU) LINK ZLKBGN

Figure 2-3. Sample Link Maps

LINKER 229 CB21

LINKER

OVLY

VLo
0uoo
vovo
[y
0voY
Quuy
Voo
V000
Quov
0wooo
[
(Y
uuoo

MAP 19///711/25%

wx TEST LINK MAR
*xSTART VVVo vuay
wxlOW vovo ovos7
xaHIbLH VouL ool
*xCURREN] QUUU 0616
**UNDEF
* LLKBGN UUOL 008/
ZLBts vouL uess ex17
FURMLH UUUO 037C Tarst !l
MEMNMZ UUVU 0180 FURCNT
co VLU 0368 FINEX
LSW2A VVoL 01Ye MUDE
ciop vy 01les T
Sume vy 01FY ENTSL
HOCHIP U000 O1FkF MVWOS
HlMEM uuuY 02Ut MPDATE
CUNSUL vuou vec/ CHX1U
LSTERR VOO0 025/ LURNM
PURNM UUOU 02AS PRNTCH
READ VUUV U3S1 LLVER
*x 1EST LINK
*xSTART [V VT
*xL0W VuUL vouBY7
*ardlGH Vuoy vels
**CURREN] 0000 Oolb
#*E X1 VEFD
e LHCuMM VO UL 0VUY
4 LHREL [T VR TV
VAL vouL
P cc vouu 008V
xx RUOT oLy 00H7
* LLKBGLN VULV V0B/
ATTACH VU0 03CL B1
BIL VUL 0089 B1IR
B2H VVLO 0111 BeL
83 Vouo 0199 BSE
B3L VUYL 0195 XL
CTLBUF VuLL 02258 VATM
FlownKk vouu 05Ce FLIBLNG
Figol UL 0500 Flo0e
FlBUS VUoY 0S18B FlB06
FiBo9 UUuULY 0556 FInlo
INP VoVY 03Ct INPS
INPA Vuoy Ousy NP
INPTHS 0UOU 03r2 INPTHY
INPTHB VULV 045B PIFLAG
PIHE VoVL 0S7V PIHS
PIHo VULY 05DLS PTHS
PTHA VUYL 0S47 PIHB
VALZ voue
axCUMMON
P X vvoL 000V
* LLKBGN UUOU 008/
**UNDEF
* LLKBGLN UOO0O 008/
ILBEG UouL 0087 ex1T
FORMCH 0uOU 017C TARGE |
MEMNMZ 0000 0180 FURCNI
co VLULL 0368 FINEX
LSN2A VLoU 0196 MODE
ciop VouU O1tes 1
SDOM6 VouY 01F7 ENTSZ
HOCHIP 0UUU O1LFF MVWDS
RTMEM V0UL 020k MPDATE
CONSUL Vuuo oe2c/ CHKIU
LSTERK 000U 0257 LURNM
PORNM VU0V 02AS PRNTCH
READ VooU 0351 ZLVER

(Y]
0000
Vv oo
Vooo
000V
vooo
Qo0
uouo
vuoo
VLooL
Voo
oo
Voo
0000
0ooo
0oou
0000

0o
0000
0000
Voou
0000
ooo
0000
0000
0000
0000
0000
0000
0000

0089
01/A
VOFS
0385
0318
01e8
o1ry
0eel
021k
0364
0evs
0evt
0399

19/7/711/23 1318:05,.¢

PELIARY
SAFSW
My

8w
ULDENT
HOCH
LHCMAD
SDAV
oaie
MAPOS
JUINAM
Lusuuf
LLREV

1518205,2

ovsL
ovs7
010F
0ety
0198
R 113
[13:)
0586
05L4
0551
03F1
0u4da
041y
PEL1
0598
o5k 7
0562

0089
017A
00FS
0583
0318
01t8
01F9
0221
021F
0364
0293
0201
0390

B1H

Be

Ber
BSH
BEGIN
FI6LNG
FIBNHR
FIBu3
FInus
FiBll
INPY
INPIN]
INPIHA
PNl
PTHS
PTHY9
ILVATE

DSKC10
SAF SW
MV

54
ULDENT
HOCH
ZHCMAD
Svap
LUAT2
MAPOS
OUTNAM
LOGOUT
LLREV

0009
VoV
[
0000
(XY
(Y
0000
(Y
00vo
(TR
0000
VLov
0ovo

[AY
[AAY]
0ouv
Vouo
Vovo
QQouo
0oLov
[V
(Y
(V)
000
0000
0000
)
000v
wovo
00Vo

0000
000V
0oov
0000
0000
000u
0ovo
ooov
0000
0oov
0vov
00v0
0000

0s47
0187

vest ¢

0193
01td
01k S
OIFD
020C
PED)
V254
0299
0ens
0591

oovss
u11s
0100
0197
vos7
0s5C9
usEs
UoA2
ustke
056C
414
0SCH
0488
vdr 6
o511t
052C
0592

0847
0187
vesl
0193
01Ed
O1F3
01FD
0eoc
0226
02h4
0299
0eoe

3

0591)

Figure 2-3 (cont.) Sample Link Maps

2-30

Map #4 MAPU

Map #5

External value VAL2 is defined

CB21

*& TEST
*xSTART 0000
*xLON Vuoov
*eHIGH Voo
=#CURRENT QUUO
*«EXT DEFS
P IZHCOMM LU0V
P ZHREL Voo
VAL voovw
P cc uooL
*%x ROOT vuue
* (LKBGN 00UV
ATTALH OUUL
BiL VoY
82H Voo
B3 [V
B3L vuou
CTLBUF VUOO
FI6WHR U000
F1801 0000
FIBOS Vuuo
F1809 0090
INP [
INPA VoovL
INPTHS OU00
INPTHB VUUO
PTH2 VoL
PTH6 ooy
PTHA Quov
22COMMON
P X voovo
% (LKBGN 0000
2*UNDEF
* ILKBGN U0UO
LLBEG (T
FORMCH VOVO
MEMNMZ V00O
co [
LSNEA vuoy
crop voou
SOMe vooo
HOCHIP 0U0O
RTMEM QU
CONSUL vuuy
LSTERKR UUUO
PURNM vuue
READ Voo
I3 322222 04
ROUT TEST
RARRRANNRR
HIGHEST UvLY
i3 22222221
sLIC
RARARANRAR
CMMN TES!
EX2 2223222 F)
ROOT TEST
ARRARNRRER
%814k OF RUCI
RARRRRERN A
LINK DONE

ARRRANR KR RN

LINKER

LINK
0087
0087
Ue6le
0616

0000
0ooo

008D

oos7
oos/
03CL
008y
0111
0199

0195
02es
05Ce
0500
0S18
0556
03Ce
0uss
03F2
0458
0570
[O-111)
0S4y

0000
0087

oos7
0ou7
017C
0180
0368
0196
olee
01F7
01FF
020t
0ec/
0257
02as
0551

MAP 1977/11/723 1318:05.2

B1

B1R
BeL
K13

B3R
VATM
F18LNG
FiBo2
Fisoe
FiBlo
INPS
InPY
INPTHY
PIFLAG
PTHS
PTH8
PTHB

eExXLT
TARGET
FORCNT
FINEX
MOLE

ENTSZ
MVWDS
MPDATE
CHK IV
LURNM
PRNTCH
LLVER

/NUM OF SYMS

#ASE U000

BASE VUUO

0

0ovo
0000
0000
V0o

0000
0000
0000
0000
0000
0000
)
0000
Quo0
0000
0000
0000
Qoo

0000
0000
0000
0000
0o
Qoo
Vooo
Voo
vuov
0000
0000
0000
0000

0000

ovs7

AND STATIC QVLYS= 0000

008D
0087
010F
0219

0193
038t
(121
0586
05C4
0551
05F1
045A
0415
03586
0598
05+ 7
0562

(-2
0174
00FS
0383
03518
o1ts
01F9
0221
021F
0364
02938
0eu1l
0590

ST voou

ST Voo

0616 HI REL RCOD=

~
B1H 0000 0vEB
8e 0000 0113
H2R 0000 010D
83H<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>