

SERIES 60 (LEVEL 6)

GCOS 6 MOD 400
SYSTEM CONCEPTS

SUBJECT

System Concepts for Series 60 (Level 6) GCOS 6 MOD 400 Operating System
Software

SOFTWARE SUPPORTED

This publication supports Release 0100 of Series 60 (Level 6) GCOS 6 MOD 400
Operating System; see the Manual Directory in this manual for a list of other
manuals that support the release.

ORDER NUMBER
CB20, Rev. 0 January 1978

Honeywell

© 1978, Honeywell Information Systems Inc.

PREFACE

This manual presents a general description of Honeywell-supplied software
and system concepts for the Series 60 (Level 6) GCOS 6 MOD 400 operating
system. Unless otherwise stated, the term GCOS refers to the GCOS 6
MOD 400 software. The term Level 6 refers to the Series 60 (Level 6) hard-
ware on which the software executes.

Section 1 summarizes system features, provides information on how to
use manuals in the document set, and lists the contents of other manuals in
the set.

Section 2 describes the GCOS software facilities.
Section 3 contains details on the characteristics and use of the file system.

Section 4 summarizes system configuration procedures, methods of
accessing the system, and the functions and features of the command
environment.

Section 5 discusses the execution environment, presenting descriptions of
task groups and tasks, memory pools, and bound units.

Section 6 describes features related to task execution, including priority
level assignments, task coordination, and system handling of executing tasks.

Section 7 summarizes the functions of the Data Entry Facility, the
Remote Batch Facility, and the File Transmission Facility.

Appendix A describes the facilities available to provide compatibility for
using GCOS/BES and GCOS/BES2 programs and files with GCOS 6
MOD 400 systems.

Appendix B presents GCOS programming conventions.

Appendix C describes the Level 6 hardware resources and includes an
equipment requirements list.

Appendix D is a glossary.

File No.: 1S13

CB20

9

MANUAL DIRECTORY

The following publications comprise the GCOS 6 manual set and support
Release 0100 of the GCOS 6 MOD 400 system software.

Order No. Manual Title

CB01 GCOS 6 Program Preparation

CBO1A Addendum A

CB02 GCOS 6 Commands

CBO03 GCOS 6 Communications Processing

CB04 GCOS 6 Sort/Merge

CB05 GCOS 6 Data File Organizations and Formats
CB06 GCOS 6 System Messages

CB07 GCOS 6 Assembly Language Reference

CB08 GCOS 6 System Service Macro Calls

CB09 GCOS 6 RPG Reference

CB10 GCOS 6 Intermediate COBOL Reference

CB20 GCOS 6 MOD 400 System Concepts

CB21 GCOS 6 MOD 400 Program Execution and Checkout
CB22 GCOS 6 MOD 400 Programmer’s Guide

CB23 GCOS 6 MOD 400 System Building

CB24 GCOS 6 MOD 400 Operator’s Guide

CB25 GCOS 6 MOD 400 FORTRAN Reference

CB26 GCOS 6 MOD 400 Entry-Level COBOL Reference
CB30 Remote Batch Facility User’s Guide

CB31 Data Entry Facility User’s Guide

CB33 Level 6/Level 6 File Transmission

CB34 Level 6/Level 62 File Transmission

CB35 Level 6/Level 64 (Release 0300) File Transmission
CB36 Level 6/Level 66 File Transmission

CB37 Level 6/Series 200/2000 File Transmission

CB38 Level 6/BSC 2780 File Transmission

CB39 Level 6/Level 64 (Release 0220) File Transmission

In addition, the following documents provide general hardware information:

Order

No. Manual Title

AS22 Honeywell Level 6 Minicomputer Handbook

ATO4 Level 6 System and Peripherals Operation Manual

iii

CB20

Ay

CONTENTS

Section 1. System Characteristics
Software Features
Operating Features
Summary of System Features..........
Guide to Using the Manual Set

Applications Programmer’s Manual
Guide i e
System Programmer’s Manual Guide ..
Operator’s Manual Guide
RBF- and DEF-User’s Manual Guide. .
Software Document Set

..................

Section 2. Software Facilities
General Features of Software
Interfaces to Operating System

Command Language
Commands for Execution Control ..
Commands for Directory and File

Control
Commands for Program

Preparation...................
Commands for Utility Software

Execution....................
Interactive Commands

Operator Commands

Operator Commands for

Execution Control
Operator Commands for Directory,

File and Device Control
Operator Commands to Monitor

the System

System Service Macro Calls
Macro Calls for Execution Control . .
Macro Calls for Directory and File

Controlovviiu ...
Operating System Software

Monitor Software

File System Software

Physical Input/Output Software

Communications Software

Program Preparation Software
Utility Software
Sort/Mergecviviininn...
Run-Time Routines
Run-Time I/O Routines
FORTRAN Ruyn-Time Routines
Hardware Simulators
Configuration Load Manager

BES-MOD 400 Compatibility

Section 3. FileSystem.................
File and Pathname Concepts
Directories,
Filest
Pathnames
Naming Conventions
Pathname Construction
Absolute Pathnames
Relative Pathname and Working
Directory
Working Directory
Device Pathnames
Special Pathname Conventions
Star Convention
Equal Convention.............
Data File Organizations and Access
Data File Organizations
Data File Access
File Concurrency
System File Concurrency
Record Locking (Shared File
Protection)
File System Buffered Operations
Unit Record and Terminal Buffered
Operationsoeeeeuennn..
Buffered Read Operations
Buffered Write Operations
Disk and Magnetic Tape Buffered
Operations
Spooling Technique

..........

Section 4. System Access
System Configuration and Environment
Definition
Accessing the System
Ways to Access the System
LoggingIn
Operator Assigned Access.........
User Designed Access
The Activated Lead Task
Command Environment
Command Level
Achieving Command Level
Functions Performed at Command
Level
Command Line Format

CB20

Argumentsoieiiinan... 4-4 Device LRNsS 6-5

Spaces in Command Lines 4-5 Application Task LRNs 6-5

Parameters 4-5 Logical File Number (LFN) 6-6

Protected Strings 4-5 Inter/Intra Task Group
ECFiles o ... 4-5 Communicationo.uoeue.. 6-6

Startup ECFiles 4-6 Language Considerations 6-6

Use of Common Files 6-6
Section 5. Execution Environment 5-1 Task and Resource Coordination ... 6-6
Task Groupsand Tasks............... 5-1 Task Requests 6-6
Application Design Benefits of Task Semaphores 6-6
GroupUseccvvvi... 5-2 How the Operating System Handles
Intertask Communication 5-2 Tasks e 6-7
Operating System Control of Task Example of Monitor Interaction with
GIOUPS ot e i et i e i iniee e 5-3 UserTasks ..., 6-8
Generating Task Groups and Tasks. ... 5-3
Characteristics of Task Groups and Section 7. Distributed System Facilities ... 7-1
Tasks «.oviviie i 5-3 Remote Batch Facility (RBF) 7-1
' Task Group Identification 54 RBF Configuration................ 7-2
Memory Usageovevernnn.n. 5-4 Remote Batch Operations 7-2
Memory Layout 5-5 Data Entry Facility (DEF) 7-2
Online POOIS . ..o vvvvven ... 5-5 Interface with Programs 7-3
Exclusive Online Pools 5-6 DEF Operations 7-3
Nonexclusive Online Pools 5-7 DEF Supervisory Functions 7-3
Sharing Memory Pools 5-7 DEF Utilities 7-3
Batch Pool and Roll-out 5-8 DEF Configuration................ 7-3
Batch Task Group 59 File Transmission between Level 6 and
Operating System Area............. 59 Other Computerscovveenn 7-3
System Pool Area 5-9
System Task Group 59 Appendix A. BES/MOD 400
Batch Task Group Control Compatibility A-1
Structures. B 5-10 Executing BES Executive System
File Control Structures in the Services under MOD 400 A-1
System Pool Area 5-10 Honeywell-Supplied Accommodation
Bound Unitsovvvuvinnenennnn. 5-10 Package A-1
Overlays . ..o vt 5-10 Completely Emulated BES System
Nonfloatable and Floatable Services . ..vviiiiiii A-1
Overlays . ..oovvveineenenann.. 5-10 BES System Services Emulated
Resolving References 5-11 with Restrictions A-2
Sample Overlay Layout 5-11 BES System Service Functions
Shareable Bound Units 5-11 Not Emulated A-2
Loading Bound Units (Search Rules) .. 5-12 User-Coded Conversion A-2
Executing BES Programs under
Section 6. Task Execution.............. 6-1 MOD 400ooiiinnn, A-3
Interrupt Priority Levels 6-1 Converting BES Programs to

Processing Priority Levels 6-1 MOD 400 . Tt A-3

Interrupt Save Area (ISA) 6-2 . _

Control of Priority Levels........... 6-2 Appendix B. Programming Conventions .. B-1
TrapHandlingc.oooouo .. 6-3 Module and File Name Conventions B-1
Operating System Features Affecting Calling Sequence for External

Task Executiono oo, 6-3 Procedures B-2
Peripheral Device Assignments 6-3 Register Conventions B-3
Priority Assignments for Tasks 6-4 Assembly Language Program

Assigning Priorities to System Independence B-3
Tasks +vvvee i 6-4 Self-Modifying Procedures B-3
Assigning Priorities to Application
TasKS ©vvvmeeeenaannn. 6-5 Appendix C. Hardware Supported C-1

Logical Resource Number (LRN) 6-5 Hardware Resources C-1

vi CB20

-,

Minimum Equipment for Program
Preparation....................

Minimum Equipment for Online
Applications

Hardware Supported

Appendix D. Glossary

ILLUSTRATIONS

Figure
1-1. Application Programmer’s Guide
toManuals
1-2. System Programmer’s Guide to
Manuals0t
1-3. Operator’s Guide to Manuals
1-4. RBF- and DEF-User’s Guide to
Manualsccciuu....
2-1. GCOS Software
3-1. Sample Pathnames
5-1. Memory After Configuration
5-2. Exclusive Memory Pools and
ContentS......ovvvvivennee..
5-3. Exclusive and Nonexclusive Pool
Sets o e
5-4. Overlaysin Memory
6-1. Format of Level Activity
Indicatorsceiiin..
6-2. Order of Interrupt Vectors and
Format of Interrupt Save Areas
(SAF/LAF)
6-3. Example of LRN and Priority
Level Assignments to System
Tasks and Devices
B-1 Argument List
C-1 Level 6 Hardware

vii

TABLES

Table Page

2-1. Intermediate COBOL
Functionality Not Available in
Entry-Level COBOL 2-7
3-1. Disk File Concurrency Control 3-8
5-1. Task Group and Task Functions
Possible from Online or Batch
Dimensions................... 54
5-2. Comparison of Operating System
Extensions and Shareable Bound

Units ..., 5-12
6-1. Priority Level Assignments for

Tasks and Devices 6-4
B-1. System Module Name Prefixes B-1
B-2. System Program File Name

Suffixescc.. ... B-2
C-1. Hardware Supported C-3

CB20

P

N

SECTION 1
SYSTEM CHARACTERISTICS

GCOS 6 MOD 400 software is a disk-based operating system that supports multitasking,
real-time, or data communications applications in one or more online streams. In addition,
program development or other batch type applications can be performed concurrently in a
single batch stream.,

GCOS is a multifunctional system, capable of providing a variety of processing functions:
development and execution of applications, forms data entry, file transmission to other com-
puters, and serving as a remote batch terminal for a host processor. The system can be con-
figured to process different functional applications concurrently. For example, a user can
run his own applications, utilize other system functionality such as the data collection capa-
bility, and communicate with a host processor, all at the same time.

SOFTWARE FEATURES

The operating system includes Monitor, File System, and data communications facilities.
The Monitor supports the execution of user application tasks and provides a set of system
services that enables users to control execution of individual tasks and to synchronize
multiple tasks with one another and with time-related events. The Monitor controls the
loading of user programs and manages requests for available memory. It provides standard
system trap handling routines for responding to exception conditions and also allows users
to provide their own trap handling routines for user-caused trap conditions.

The File System software offers an extensive set of logical I/O access methods. It provides
device-independent access to any device for sequential files, and direct access to disk files.
In addition the File System software automatically manages the space utilization of mounted
disk volumes, thus allowing users to create, expand, and release disk files as required by
online applications needs.

The operating system offers two levels of communications interface. Remote/local
terminals may be accessed through the sequential file interface of file management, or for
more direct control of the communications environment, by using the systems physical
I/O interface. The communications facility includes line protocol handlers for teleprinter
and VIP devices and binary synchronous communications (BSC). :

The software includes a powerful and comprehensive set of program preparation com-
ponents, utilities and debugging aids for applications developments, all running under con-
trol of the Monitor. Programming languages include assembly language, RPG, FORTRAN,
and Entry-Level and Intermediate COBOL. Commercial Instruction Processor (CIP) and
Scientific Instruction Processor (SIP) hardware or simulators are available with the system.
The RPG and Intermediate COBOL Compilers generate code for the CIP: the FORTRAN
Compiler generates SIP code. The Assembler supports both CIP and SIP instructions.

The system supports concurrent execution of a variety of functions that interface with
the GCOS communications software, including the File Transmission Facility, Remote
Batch Facility, and Data Entry Facility. These components permit the GCOS system to be
connected to Honeywell and other host processor, all in a real-time, distributed systems
environment.

The file transmission capability (invoked by means of utility programs) supports trans-
mission of files between the Level 6 and Series 60 (Level 6, 62, 64, or 66) or Series 2000
processors, using the polled VIP protocol; or between the Level 6 and non-Honeywell proc-
essors, using the BSC protocol.

The Remote Batch Facility (RBF) permits a Level 6 system to be used for job submission
and output delivery for one or more Series 60 (Level 66) or Series 6000 host processors,
using the Remote Computer Interface (RCI) or High-Level Data Link (HDLC) protocols.

SYSTEM CHARACTERISTICS 1-1 CB20

Local processing (such as program development and user application execution) can occur
concurrently with remote batch processing.

The Data Entry Facility (DEF) provides a data collection capability that includes
creation/modification of forms; formatted data input; validation, extraction and verification
of data; and formatted printing of data. The facility supports multiple independent operator
display stations that use VIP devices.

GCOS 6 MOD 400 facilities accommodate applications developed under the GCOS/Basic
Executive Systems (BES). These facilities include utilities to move source and object program
files between the two operating systems, and support of BES system service calls via a special
interface package. Files created under the BES File Manager are supported directly by MOD
400; programs created under BES must be relinked under MOD 400,

OPERATING FEATURES

The operating system supports concurrent execution of multiple tasks (sequences of
instructions that perform identifiable functions) running under one or more task groups.
Each task group owns the resources necessary for execution of an application program (one
or more related tasks). The task group runs independently in its own operating environment
while sharing the resources of the operating system.

Multiprogramming can be achieved by defining more than one application task group to
be run concurrently. Serial execution of tasks in a task group can be accomplished by step-
ping through execution of the tasks in sequence; multitasking can be achieved by causing
tasks in the group to be executed concurrently.

Multiple online task groups can be run concurrently with a single batch task group. The
batch task group (used for program development or a batch-oriented user application) can
be rolled out to a disk to obtain additional memory for online applications.

The number of task groups being run is limited only by the amount of memory available.
Concurrently executing task groups may occupy independent, dedicated memory areas, or
they may contend for space within a memory pool. When one task group is deleted, the
released memory is available to other task groups in the same pool. The Monitor allocates
memory dynamically from pools and can relocate programs at load time. Once a task group
requests execution, it is dispatched according to its assigned priority level. When multiple
tasks share a priority level, they are serviced in a round-robin fashion.

Use of the file system by multiple independent users is facilitated by the arrangement
of file system entries (directories and files) in a tree-structured hierarchy. Each directory
or file is identified by a pathname that indicates the path from the root directory of the
hierarchical structure to the particular directory or file. File reference is simplified through
the use of pathnames relative to a working directory that indicates a user’s current position
in the file system hierarchy. Access to sharable files and devices is controlled by file attrib-
utes and concurrency procedures.

SUMMARY OF SYSTEM FEATURES
The GCOS 6 software offers the following capabilities:

o Provides a multi-user operating system

o Supports multiple concurrent programming environments, with applications being run
in one batch stream and one or more online streams

Controis program preparation through the operating system

Handles program preparation and execution of user applications concurrently
Handles execution of multiple user applications

Permits multitask execution within each user application

Controls the execution sequence of user applications

Supports real-time operations

Provides communications support

Is time and interrupt driven

Allows device independent programming

Supports program overlay capability

000 O0O0C0OO0OO0OC

SYSTEM CHARACTERISTICS 12 CB20

——

Provides four programming languages: assembly language, FORTRAN, RPG, and

two levels of COBOL (entry level and intermediate)

Provides a hierarchical file system with extensive utility support

Supports four disk file organizations

Supports code sharing via reentrant programs

Permits multiple functions that interface with communications facilities to be run con-

currently with application development and execution

o Supports file transmission between the Level 6 and other computers

o Provides the Remote Batch Facility, permitting the Level 6 system to be used for job
submission to a host processor

o Provides the Data Entry Facility, permitting forms creation and data collection

o Provides compatibility software for GCOS/BES and GCOS/BES?2 programs and files

o

© 0 0o O

GUIDE TO USING THE MANUAL SET

This guide to the manuals is arranged according to functions that might be performed by
an applications programmer, a systems programmer, or an operator. As used in this guide,
the applications programmer writes applications programs; the system programmer con-
figures the system and defines the environment for each application; and the operator
operates the system from the operator terminal. These functions could be performed by
three different persons or by the same person serving in the different capacities.

Applications Programmer’s Manual Guide

Figure 1-1 illustrates the suggested sequence for using the munuals. If you wish to start
using the system by writing an application program, begin by using the Programmer’s Guide
manual. It illustrates: (1) various ways to gain access to the system, (2) a sample Editor
session, and (3) for application languages, the procedure for performing program prepar-
ation and execution. Working with the small subset of system commands used within
examples is a good approach to learning the system command set. This approach for get-
ting started assumes that a system programmer has already configured and started up a
suitable application environment. While using the system, you may wish to familiarize
yourself with the system facilities described in the System Concepts manual.

Through examples, the Programmer’s Guide illustrates how to use the system facilities.
Other manuals provide reference material. The Program Preparation manual contains Editor
directives (statements) to create and update an application language source unit. For each
of the languages, the appropriate language reference manual contains the description of
the language statements. Operating system dependencies, if any, that affect how you write
the application are described in the Programmer’s Guide. If the application uses commun-
ications, refer to the Communications Processing manual. Read the Data File Organizations
and Formats manual if you require a better understanding of a language-supported file
organization that is to be used in an application or if you must calculate the size of a
data file. You can use Monitor macro calls, as described in the System Service Macro
Calls manual, in assembly language programs. Before your program can be entered for
execution, it must be linked as described in the Program Execution and Checkout manual.

For program compilation or assembly and execution, the procedures described in the
Programmer’s Guide might be sufficient. To obtain more control over the execution of
your program or utilize the system facilities more completely or efficiently, use the
commands described in the Commands manual. If you wish to use the operator terminal,
read the Operator’s Guide to learn how to use that terminal. In many cases, the description
of commands must be supplemented by system concepts described in the System Concepts
manual. Rather than read all the conceptual material at one time, you may find it more
meaningful to refer to it in conjunction with the appropriate reference material. The
Commands manual also describes the utilities. The Patch, Debug, and Dump utilities are
described in the Program Execution and Checkout manual; file transmission from Level 6
to a host system is described in the appropriate File Transmission manual. Error messages
and return status codes are listed in the System Messages manual.

SYSTEM CHARACTERISTICS 1-3 CB20

APPLICATIONS PROGRAMMER

PROGRAMMER’S GUIDE

GETTING STARTED

SYSTEM CONCEPTS

SAMPLE EXECUTION ENVIRONMENTS
SAMPLE EDITOR SESSION

SAMPLE PROGRAM PREPARATION AND
EXECUTION SESSIONS

+ ASSEMBLY, COBOL, FORTRAN,
RPG APPLICATION PROGRAMMER

|

PROGRAM PREPARATION

EDITOR

LANGUAGE REFERENCE

INTRODUCTION TO SOFTWARE
FACILITIES

OVERVIEW OF SOFTWARE
COMPONENTS

COMMUNICATIONS
PROCESSING

COMMUNICATIONS

LANGUAGE

AND FORMATS

DATA FILE ORGANIZATIONS

FILE ORGANIZATION
DESCRIPTION

DESCRIPTION

PROGRAMMER'S GUIDE

OPERATING SYSTEM
DEPENDENCIES

PROGRAM EXECUTION
AND CHECKOUT

LINKER

EXECUTION COMMANDS

FILE AND VOLUME
FORMATS

MA
COMMANDS ——_J———————— !

UTILITIES

PROGRAM EXECUTION
AND CHECKOUT

PATCH, DUMP,
DEBUG

Il

SYSTEM SERVICE
MACRO CALLS

MONITOR CALLS
DATA STRUCTURES
DEVICE DRIVERS

OPERATOR'S GUIDE

OPERATOR TERMINAL
SAGE

SYSTEM CONCEPTS

DETAILED SYSTEM

CONCEPTS

SYSTEM MESSAGES

ERROR AND STATUS
MESSAGES

FILE TRANSMISSION

LEVEL 6 TO HOST

Figure 1-1. Applications Programmer’s Guide to Manuals

SYSTEM CHARACTERISTICS

14

CB20

PN

System Programmer’s Manual Guide

Figure 1-2 illustrates the suggested sequence for using the manuals. The System Building
manual provides you with the configuration directives (statements) and startup procedures
to configure and start up a MOD 400, a Remote Batch Facility (RBF), or a Data Entry
Facility (DEF) system. You must know the conceptual material in the System Concepts
manual in order to successfully use the configuration directives. To tailor an applications
environment suitable for the intended application, you use operator commands described
in the Operator’s Guide manual. Error messages are listed in the System Messages manual.
If you are working with an application that runs under the BES operating system, the
System Concepts manual contains MOD 400 and BES compatibility considerations.

SYSTEM PROGRAMMER

SYSTEM BUILDING

SYSTEM CONCEPTS

CONFIGURATION AND STARTUP PROCEDURES
FOR MOD 400, REMOTE BATCH FACILITY (RBF),
AND DATA ENTRY FACILITY (DEF) OPERATING SYSTEM
CONCEPTS

OPERATOR'S GUIDE

OPERATING ENVIRONMENT
COMMANDS

SYSTEM CONCEPTS SYSTEM MESSAGES

MOD 400 AND BES ERROR MESSAGES
COMPATIBILITY

Figure 1-2. System Programmer’s Guide to Manuals

Operator’s Manual Guide

Figure 1-3 illustrates the suggested sequence for using the manuals. Specific operator job
functions must be determined by each installation; a large system might have a person
assigned as an operator; a small system might have each programmer also act as an operator.
The Operator’s Guide indicates those system procedures performed through the operator
terminal and describes operator commands used in system operation.

The Programmer’s Guide contains examples using commands (described in the Commands
manual) that are similar to operator commands. The System Concepts manual provides an
understanding of the operating system. Note that the Operator’s Guide describes using the
operator terminal for operator functions to enter operator commands to the system task
group, or for user functions to enter commands to a user task group. To run the utilities,
use the commands (described in the Commands manual) entered through the operator
terminal functioning as a user terminal. Error messages are listed in the System Message
manual.

SYSTEM CHARACTERISTICS 1-5 CB20

OPERATOR

|

OPERATOR'S GUIDE

PROGRAMMER'S GUIDE

PERATOR PROCEDURES
gPERATOR COMMANDS COMMANDS USED IN EXAMPLES

SYSTEM CONCEPTS
COMMANDS

SYSTEM DESCRIPTION
UTILITIES

SYSTEM MESSAGES

ERROR MESSAGES

Figure 1-3. Operator’s Guide to Manuals

RBF- and DEF-User’s Manual Guide

Figure 1-4 illustrates the suggested sequence for using the manuals. The system pro-
grammer configuration functions have been done and the system is ready to be used for
Remote Batch Facility (RBF) functions or Data Entry Facility (DEF) functions. The
Programmer’s Guide manual provides sample login execution environments similar to ones
that might be at your facility. The Remote Batch Facility User’s Guide is used for RBF
operations and the Data Entry Facility User’s Guide is used for DEF operations.

PROGRAMMER'S GUIDE

EXECUTION ENVIRONMENTS

RBF USER DEF USER

|

RBF USER'S GUIDE

DEF USER'S GUIDE

REMOTE BATCH DATA ENTRY
DESCRIPTION FACILITY DESCRIPTION

Figure 1-4. RBF- and DEF-User’s Guide To Manual
SOFTWARE DOCUMENT SET

This System Concepts manual briefly describes GCOS software, system features, and
operating concepts. Most of the background information needed to use the reference mate-
rial in other manuals of this set is presented in Section 3 through 6 of this manual. Except

SYSTEM CHARACTERISTICS 1-6 CB20

for summaries, this material is not duplicated in other manuals and covers the following
subjects:

o O O OO0

Task groups and tasking

Memory definition and use

Operating system features

File system and communications concepts
Operating environment configuration

This manual is the sole source for reference material on the compatibility of GCOS/BES1
and BES2 programs and files with a MOD 400 system. Programming conventions are pre-
sented in Appendix B of this manual, and a glossary of GCOS 6 MOD 400 terms is in
Appendix D.

The contents of other documents in the manual set are summarized briefly below.

o GCOS 6 Program Preparation, Order No. CBO1 — Overview of the programming steps to

prepare a program for execution. Suffix conventions for files used in program prepara-
tion. Detailed description of Editor. Rules for writing assembly language programs
using SLIC (SAF/LAF independent code).

GCOS 6 Commands, Order No. CB02 — Description of command line format, task
interrupt break function, activating an application program, and extending the com-
mand set. Detailed description of commands, utilities, and language processor execu-
tion. Description of additional command line arguments, terminal characteristics at
login, Intersystem Link (ISL) directives, and File Change directives; ASCII and
EBCDIC character sets.

GCOS 6 Communications Processing, Order No. CB03 — Introduction to communica-
tions software. Description of communications processing through COBOL, assembly
language, File System and FORTRAN; sample communications programs; Dump
MLCP (DUMCP) utility; TTY, VIP, and BSC control characters; ASCII and EBCDIC
character sets.

GCOS 6 Sort/Merge, Order No. CB04 — Description of the Sort and Merge program
features, statement formats, and report contents. Includes file and memory require-
ments, operating procedures, sample programs, using Sort as a subroutine, debug mode
execution, and ASCII collating sequence.

GCOS 6 Data File Organizations and Formats, Order No. CBO5 — Description of disk
and magnetic tape data file organizations support for application programs; disk and
magnetic tape record, file, and volume formats; unit record file formats; file and
volume headers; ASCII and EBCDIC character sets.

GCOS 6 System Messages, Order No. CBO6 — Description of messages reported by
system components. Procedure for adding user messages.

GCOS 6 Assembly Language Reference, Order No. CBO7 — Complete description of
all instructions, instruction formats, control statements, types of data handled, and
macro language statements. Description of Scientific Instruction Processor (SIP) and
Commercial Instruction Processor (CIP) instructions.

GCOS 6 System Service Macro Calls, Order No. CBO8 — Description of macro call
syntax, register and addressing conventions. Detailed description of system services
macro calls for the Monitor and File System and for defining data structures; physical
I/O device drivers; Trap Handler; Monitor and File System data structures; writing a
user device driver; contents of registers for system service macro calls; ASCII and
EBCDIC character set.

GCOS 6 RPG Reference, Order No. CB09 — Complete description of RPG data proces-
sing including: a primer on RPG programming, RPG specification form entries, descrip-
tion and use of the RPG fixed logic cycle, and operating instructions with sample
programs.

GCOS 6 Intermediate COBOL Reference, Order No. CB10 — Complete description of
the general features of Intermediate COBOL programs, language elements, language
syntax, the four major divisions of an Intermediate COBOL program, specific format

SYSTEM CHARACTERISTICS 1-7 CB20

descriptions of all Intermediate COBOL statements (including programming examples
incorporating each statement), and the types of files and data handled, compiler
diagnostics, ASCII collating sequence, COBOL glossary, comparison of standard
COBOL with Intermediate COBOL, and Intermediate COBOL run-time considera-
tions.

o GCOS 6 MOD 400 Program Execution and Checkout, Order No. CB21 — Overview
of program execution sequence. Detailed descriptions of Linker, Debug, Patch, Dump
Memory (MDUMP), Dump Edit (DPEDIT), and interpreting and using memory dumps.
Table of system service macro calls ordered by function code. ‘

o GCOS 6 MOD 400 Programmer’s Guide, Order No. CB22 — Description of various
possible programming environments at an installation and the ways to access the system
for each environment. Sample Editor session. Examples illustrating how to prepare
and execute COBOL, FORTRAN, SORT and assembly language programs; how to call
FORTRAN routines from an Entry-Level COBOL main program; and FORTRAN
chaining. Explanation of headers on listings.

o GCOS 6 MOD 400 System Building, Order No. CB23 — Description of system configu-
ration and startup procedures for the MOD 400 operating system, the Data Entry
Facility (DEF), and the Remote Batch Facility (RBF); configuration directives; system
disk layout; system overlays; minimum system hardware and configuration require-
ments to do program preparation; and startup halts. Description of procedures to
transfer files to system disk; create a single diskette system; place a shared version of a
utility in the system library; and load and execute the Intersystem Link (ISL) loader
for ISL configuration.

o GCOS 6 MOD 400 Operator’s Guide, Order No. CB24 — Description of routine system
startup, activation of the login capability, system operator interface with the system
(OIM), operator commands; task interrupt break function from the operator terminal;
additional operator command line arguments; listener component setup for login
capability; system halt conditions; ASCII character set.

o GCOS 6 MOD 400 FORTRAN Reference, Order No. CB25 — Complete description
of all statements, instruction formats, types of files and data handled, FORTRAN
run-time support routines (intrinsic functions, tasking, 1/0), and compiler diagnostics.

o GCOS 6 MOD 400 Entry-Level COBOL Reference, Order No. CB26 — Complete
description of the general features of Entry-Level COBOL programs, language
elements, language syntax, the four major divisions of an Entry-Level COBOL
program, specific format descriptions of all Entry-Level COBOL statements (includ-
ing programming examples incorporating each statement), and the types of files and
data handled, compiler diagnostics, ASCII collating sequence, COBOL glossary,
comparison of standard COBOL with Entry-Level COBOL, and Entry-Level COBOL
run-time considerations.

o Remote Batch Facility User’s Guide, Order No. CB30 — Description of remote batch
operations: communicating with the host, preparing job decks, managing job streams,
input and output processing, operator commands and messages, host software
control records.

o Data Entry Facility User’s Guide, Order No. CB31 — Operation of the Data Entry

Facility. Description of operation of the Operator Display Station; forms and table

development; data entry and verification process; file printing; system supervisory

and utility operations; interfacing with data entry and applications programs; and

error and system messages.

Level 6/Level 6 File Transmission, Order No. CB33

Level 6/Level 62 File Transmission, Order No. CB34

Level 6/Level 64 (Release 0300) File Transmission, Order No. CB35

Level 6/Level 66 File Transmission, Order No. CB36

Level 6/Series 200/2000 File Transmission, Order No. CB37

Level 6/BSC2780 File Transmission, Order No. CB38

Level 6/Level 64 (Release 0220) File Transmission, Order No. CB39

Each of the above documents describes the capability of the particular file trans-

mission facility, including file organizations supported, code sets, line protocols, and

O CcC 0000 O0

SYSTEM CHARACTERISTICS 1-8 CB20

P N

equipment requirements. Individual sections of the manuals provide the operating
information necessary to perform a file transfer from either end of a network (Level
6 and host).

o Honeywell Level 6 Minicomputer Handbook, Order No. AS22 — Descriptions of
hardware models, central processor, processor architecture and features, instruction
set, registers, peripheral devices, control panel, software, various controllers and
system features, as well as maintenance and site preparation information.

o Level 6 System and Peripherals Operation, Order No. AT04 — Description of the
operation of the models 6/30 and 6/40 control panels, the operation of each peripheral
attachable to Level 6 hardware, and operator trouble-shooting procedures.

SYSTEM CHARACTERISTICS 19 CB20

-

SECTION 2

SOFTWARE FACILITIES

GENERAL FEATURES OF SOFTWARE

The system provides a comprehensive array of software to perform multitasking; real-time
and data communications applications; and batch, remote batch and data entry processing.
The operating system controls execution of tasks and accessing of external devices and files.
A complete set of program preparation software is available to develop and debug programs
written in COBOL, FORTRAN, RPG or assembly language. An extensive set of utility
programs is provided to support program development and execution, and transmission of
files from the Level 6 to other computers. System software components are summarized

in Figure 2-1.

OPERATING SYSTEM

MONITOR

FILE SYSTEM
PHYSICAL 1O
COMMUNICATIONS

PROGRAM PREPARATION

EDITOR
MACRO PREPROCESSOR
ASSEMBLER

FORTRAN COMPILER®
ENTRY—LEVEL COBOL COMPILER?
INTERMEDIATE COBOL COMPILER
RPG COMPILER

LINKER

DEBUG

MOD 400—BES COMPATIBILITY?

EMULATOR
BUFFER MANAGER

UTILITY PROGRAMS

COMPARE
copy

CREATE FILE
CREATE VOLUME
DUMP EDIT

DUMP MEMORY
DUMP MLCP

EXPORT PAM FILE
FILE CHANGE

FILE DUMP

IMPORT PAM FILE

ISL CONFIGURATOR
LIST CREATION DATE
LIST NAMES

PATCH

PRINT FILE

RENAME FILE

RESET MAP
SORT/MERGE
TRANSMIT FILE

3These software components are available only with the SAF version of MOD 400.

MLCP SOFTWARE
CHANNEL CONTROL PROGRAMS
OFFLINE LOADER
SYSTEM CONTROL INTERFACES
COMMANDS
OPERATOR COMMANDS
SYSTEM SERVICE MACRO CALLS
CONFIGURATION

CONFIGURATION LOAD MANAGER
HONEYWELL-SUPPLIED SYSTEM

RUN—-TIME ROUTINES

FORTRAN ROUTINES? a
ENTRY—LEVEL COBOL ROUTINES
INTERMEDIATE COBOL ROUTINES

HARDWARE SIMULATORS

SINGLE PRECISION SCIENTIFIC (SIP)
SIMULATOR

DOUBLE AND SINGLE PRECISION (DSIP)
SCIENTIFIC SIMULATOR

COMMERCIAL INSTRUCTION PROCESSOR
(CIP) SIMULATOR

REMOTE BATCH FACILITY
DATA ENTRY FACILITY

Figure 2-1. GCOS Software

SOFTWARE FACILITIES

2-1 CB20

The software is available in a SAF (short address form) version, which supports up to
64K words of memory on model 6/34, 6/36 and 6/43 processors, and a LAF (long address
form) version which supports up to 256K words of memory on model 6/43 processors.
lfardware resources associated with this system are described in Appendix B.

INTERFACES TO OPERATING SYSTEM

The software supports the following control interfaces to the operating system:

o Commands submitted by a user to the command processor of the user task group

o Operator commands submitted by the operator to the command processor of the
system task group

o System service macro calls, specified in assembly language programs, that invoke
Monitor and file system services for user task groups

Command Language
There are five functional categories of commands:

o To control execution

o To control directories and files

o To invoke program preparation software
o To invoke utility software

o Interactive commands

Some control functions at the task group level are available through commands. Com-
mands are described in the Commands manual,

Commands for Execution Control

Once an online task group is created, commands written by the user can be executed
under the task group, More comprehensive control of execution is provided to the assem-
bly language program through system service macro calls. Commands are used to:

o Create then initiate other online task groups, or spawn online task groups. This pro-
vides a multiprogramming capability.

o Abort or delete an online task group, or terminate the task group issuing the request.
The abort and delete functions are not available through the batch task group.

o Create then initiate the execution of a sequence of tasks under an online task group,
or spawn online tasks within an online group. Using this capability an application can
be executed as a sequence of steps. When the sequencing is done so as to have several
tasks active simultaneously, there is multitask execution in one task group.

o Initiate and control the execution of tasks in the batch task group except the creation
of the batch task group.

o Control of external switches for intertask communication.

o List the status of all tasks or open files in a task group.

o Get or remove a file from reserved status.

Commands for Directory and File Control

The file system is based on a tree-structured directory hierarchy. To locate a file, the
directory pathname must be known, In order to write programs that are independent of
the pathname of the physical file, a program uses a logical file number (LFN). More com-
prehensive control of directories and files is provided to the assembly language program
through system service macro calls,

Commands are used to:

o Create or release a directory or file

o List the pathname of the working directory; change the pathname of the working
directory

SOFTWARE FACILITIES 22 CB20

PN

N

o List, in the order searched, the directories that are searched for a given pathname; list
file entries in a specified disk directory:

o Modify the share, read, or write attributes of a disk file ,

o Associate or dissociate a pathname with a logical file number

Commands for Program Preparation
Software to perform program preparation is invoked using a command. Component-

specific arguments are provided in these commands. The command name is often identical
to the software name, e.g., COBOL, FORTRAN, LINKER, RPG.

Commands for Utility Software Execution
A utility is invoked through a command. The command is often identical to the software
name, e.g., PATCH, SORT, MERGE.

Interactive Commands
Interactive commands permit the user to:

o Establish and terminate access to the system
o Request execution of a batch task group

o Send messages to the operator
o Display the current time

Operator Commands

There are three functional categories of operator commands: execution control; directory,
file and device control; and system operation monitoring. Operator commands operate on a
task group level and cannot be used to control the execution sequence of tasks in the batch
task group or in a user online task group. Operator commands are entered through the opera-
tor terminal or read from a command file. A description of the operator commands is found
in the Operator’s Guide manual,

Operator Commands for Execution Control

Initially, operator commands are used to define the operating environment. Subsequently,
they can be used to control system operation from the operator terminal. Operator commands
are employed to:

Create, initiate, abort or delete either a batch or online task group

Spawn an online task group

Temporarily suspend or reactivate an online task group

Temporarily suspend and roll out, or reactivate and roll in the batch task group
Load or unload a shareable bound unit from a system memory pool

Load assembled firmware files into writable control store (WCS)

(el el o RNl lNe]

Operator Commands for Directory, File and Device Control
Operator commands are used to:

o Change a system library or working directory pathname
0 Modify the share, read, or write attributes of a disk file

Operator Commands to Monitor the System
Operator commands are used to:

List all task groups and requests queued for batch execution

List the status of all tasks or open files in a task group

List the pathname of the working directory]

List, in the order searched, the directories that are searched for a given bound unit

© O o O

SOFTWARE FACILITIES 2-3 CB20

System Service Macro Calls

System service macro calls are available to the assembly language program to perform a
wide variety of Monitor and file system service functions, similar in some instances to those
functions accessible through commands. There are two functional categories of system ser-
vice macro calls: to control execution, and to control directories and files. The macro calls
are described in the System Service Macro Calls manual.

Macro Calls for Execution Control
Monitor service macro calls are used to:

Control task groups and tasks

Manage memory allocation

Load and execute overlays

Coordinate the use of resources within an online task group through semaphores
Control execution based on real-time clock considerations

Enable or disable user traps

Display or suppress the display of messages on the operator’s terminal
Designate a task group’s command-in, user-in, error-out, and user-out files
Communicate directly with device drivers to control input/output and devices
Control external switches for intertask group communication

Associate or dissociate a pathname with a logical file number.

000000000 O0O0

Macro Calls for Directory and File Control
Monitor service macro calls are used to:

Create or release a directory or file

Change or obtain the pathname of the working directory
Rename a file or directory

Open, close, get (reserve), or remove the reservation of a file
Lock/unlock records in a file

Get information describing a file

Test the status of an outstanding file activity

Wait on list until input or output is complete

Read, write, rewrite, or delete a record of a file

Read from, or write a block to a file

©C 0000000 O0O0

OPERATING SYSTEM SOFTWARE

The operating system contains software for execution control, the file system, physical
I/O, and communications.

Monitor Software

The Monitor contains software to execute requests for Monitor functions and to maintain
the control tables that are necessary for the orderly processing of requests. These functions
are obtained through commands, system service macro calls, and statements in higher-
level languages. Monitor software includes:

o Task manager — Handles the disposition of tasks within the system, and responds to
requests placed against tasks. It processes requests to activate tasks, returns control
to interrupted tasks, and synchronizes, suspends and terminates tasks.

o Clock manager — Handles all- requests to control tasks based on real-time considera-
tions, and responds to requests for the time of day and date in ASCII format.

o Memory Manager — Controls dynamic requests for memory or the return of memory
to a memory pool.

o Trap manager — Handles the transfer of execution control from an executing program
to a predefined trap location when a trap (a special condition such as a hardware
error) occurs. The trap manager handles system traps and allows a task group to con-
nect its own trap routines for specific traps.

SOFTWARE FACILITIES 2-4 CB20

.

o Operator interface manager — Manages all messages sent simultaneously by multiple
task groups to the operator terminal or from the operator terminal to a task group.

o Loader — Loads the root and overlays of a bound unit dynamically from a disk.

o Listener/login — The listener monitors a selected set of local and remote terminals,
reporting any change of state (for example, connect, disconnect) to the login compon-
ent. If a user submits a login command requesting access to the system, the login
component requests that a task be spawned for the user.

o Command processor — Processes all commands. It is the lead task of the batch task
group and can be the lead task of an online task group.

File System Software

The file system is based on a tree-structured hierarchy and software functions are provided
to create or maintain this directory structure, locate a file by its pathname, create and main-
tain data files, control concurrent use of files, and provide for the logical transfer of records
between an application program and an external device. These functions are available
through commands or, for an assembly language program, through system service macro
calls, described in the Commands manual and System Service Macro Calls manual,
respectively.

The File System software handles input/output functions of each of the different sup-
ported devices, including communications. For disk, it provides four file organizations and
access to them; namely, sequential, relative, indexed, and fixed relative file organizations.
(Fixed relative file organization is compatible with BES and BES?2 files.) Sequential access
is provided for magnetic tape, communications, printer, card reader, and terminals. A des-
cription of the data file organizations and their properties is found in the Data File Organ-
izations and Formats manual.

The languages COBOL, FORTRAN, and RPG use the logical file organizations listed
above. The language reference manual for each language provides statements for accessing
the logical files.

An assembly language program can access files through file and data management macro
calls to the Monitor or through the physical I/O drivers; both methods are described in the
System Service Macro Calls manual.

The interface to communications software is described in the Communications Processing
manual.

Physical Input/Output Software

An assembly language program can use physical input/output driver software which works
at ti.e hardware physical level. Each peripheral and communications device type has a driver
which is a reentrant procedure that can control one or more devices. A description of the
peripheral drivers and the physical 1/O macro calls is found in the System Service Macro Calls
manual. Macro calls for communications are described in the Communications Processing
manual.

Communications Software '

Communications software is accessible through the standard input/output interface, is
memory and MLCP resident, and interacts with Monitor software to process user communi-
cations applications. With the Honeywell-supplied communications software, users need not
provide their own communications system programs.

The communications software is user-driven. It answers the phone in response to a user-
issued connect; it polls terminals in response to user-issued reads. Users (application or
system software) must provide buffers to the communications software to accommodate
read and write operations.

Communications software provides a common I/O interface to its users through the stan-
dard physical I/O interface (the $RQIO macro call). The communications software compon-
ents and their functions are summarized below.

o Communications supervisor — Queues user service requests and activates the appropri-
ate line protocol handler, interacts with the user program through system software when

SOFTWARE FACILITIES 2-5 CB20

a transaction is complete, and services connect/disconnect requests and line protocol
handler timeouts.

o Phone monitor — Provides data set control for detection of phone connect/disconnect,
and provides the capability of “hanging up” the phone connection upon user request.

o Line protocol handler (LPH) — Handles error recovery (parity, block control check);
initializes the LPH and channel control program; processes interrupts, timeouts, and
messages; and handles protocol acknowledgment/negative acknowledgment.

o Poller — Used only for poll and select protocols. Queues poll requests, requests the LPH
to poll a terminal, and dequeues the request when the LPH has received data from the
terminal.

o MLCP driver — Sets up and processes I/O up to an LPH request, and services MLCP
interrupts, passing them to the LPH.

o Channel control program (CCP) — Handles character processing, inserts and deletes pro-
tocol headers and framing characters (surrounding a message). An extension of the LPH,
the CCP resides in the MLCP and is independent of the central processor; thus character
processing overhead is eliminated from central processing.

o MLCP macro routines

For details on communications software functions, line protocol handlers, and the control
structures used for communications tasks, see the Communications Processing manual.

PROGRAM PREPARATION SOFTWARE

The software in this category allows you to write, compile, link, execute and debug an
application program. Each of the program preparation components, except for Debug, is
invoked by command described in the Commands manual.

o Editor — Used to create and update, on disk, a source unit written in one of the pro-
vided programming languages. It will edit characters, expressions, or lines of text. The
Editor is reentrant and can support multiple users. A description of the Editor direc-
tive language is found in the Program Preparation manual.

0 Macro Preprocessor — Required to process an assembly language application source
unit containing calls to macro routines. A macro routine consists of a specified sequence
of assembly language source statements that you want specialized and included in your
source module. The Macro Preprocessor creates another source unit with assembly
source code replacing the macro calls. A description of the macro preprocessor lan-
guage statements is found in the Assembly Language Reference manual.

o Assembler — Translates assembly source statements of a source unit into'text of a re-
locatable object unit and optionally produces a cross-reference listing indicating symbol
usage. The Assembler can process source for two hardware components: the Commer-
cial Instruction Processor (CIP) and the Scientific Instruction Processor (SIP). The
Assembler supports coding of user-defined generic instructions to be executed on the
Writable Control Store (WCS).

0 FORTRAN Compiler — Translates FORTRAN source statements of a source unit into

text of a relocatable object unit and source listing or optionally, asscmbly language

source statements in a source unit. The language is based on the American National
Standards FORTRAN 77 subset. Offered in the language are the Instrument Society of

America (ISA) extensions for bit string manipulation and task management

i AW IRILS, SLIE ALNQILP LUIGUIVIL G LAoH 1LIALIAEVILIIVILL, and a

Honeywell extension for communications. FORTRAN programs and Entry-Level
COBOL programs can call each other. FORTRAN is intended for commercial and sci-
entific application programming. A description of the FORTRAN language statements
is found in the FORTRAN Reference manual.

o Entry-Level COBOL Compiler — Translates source statements of a source unit into text
of a relocatable object unit. Entry-Level COBOL programs and FORTRAN programs can
call each other. Significant features of Entry-Level COBOL include: file handling for
sequential, relative, and indexed files; three-dimensional tables and indexing; CALL/
CANCEL capability; DISPLAY and COMP-1 data; full American National Standards

SOFTWARE FACILITIES 2-6 CB20

A

editing; 21 verbs; and communications through file management facilities. For descrip-
tions of the Entry-Level COBOL language statements, refer to the Entry-Level COBOL
Reference manual.

Intermediate COBOL Compiler — Translates source statements of a source unit into
text of a relocatable object unit. Intermediate COBOL supports Entry-Level COBOL
features plus additional features as listed in Table 2-1. Descriptions of the Intermediate
COBOL language statements are given in the Intermediate COBOL Reference manual.
RPG Compiler — Translates RPG source statements of a source unit into a set of object
units consisting of a root plus multiple overlays. The compiler also produces a file con-
taining Linker directives; user-written Linker directives are thus unnecessary. When the
command processor is invoked to process the statements in this file, it invokes the
Linker, and supplies it with Linker directives necessary to create an executable bound
unit. The compiler supports an RPG language comparable to that in current industry-
wide use. Significant features include: look-ahead, control levels and matching fields on
input; table and array processing; forms alignment; and editing, detail, and total time
functions on output. The compiler generates Commercial Instruction Processor code.
A description of the RPG language is found in the RPG Reference manual.

Linker — Combines object units that are the output of a compiler or the Assembler and
produces a bound unit for subsequent loading. It resolves external references made
between object units being linked. Linker directives can be used to create reentrant
bound unit files. A description of Linker directives is found in the Program Execution
and Checkout manual.

Debug — Used to test programs at the assembly language level. Hexadecimal patches can
be made to the program. Debug is invoked as a separate task group within the system. A
description of the Debug directives is found in the Program Execution and Checkout
manual.

TABLE 2-1. INTERMEDIATE COBOL FUNCTIONALITY NOT AVAILABLE IN ENTRY-LEVEL COBOL

Compiler Enhancements

© 0o O

Reentrant object programs

Generates code for Commercial Instruction Processor (CIP)
Supports SLIC code

Provides SORT subroutine call

Language Enhancements

©C 0 000000 O0OO0OO0OO0

COMP (packed decimal) data and COMP-2 (double word binary) data

COPY

ELSE and NEXT SENTENCE options in IF statement

SAME RECORD AREA

UNTIL option in PERFORM statement

Identifier option in WRITE statement

VALUE OF clause

DATA RECORDS clause

DATE-COMPILED paragraph expanded

Relative Key: maximum value, 2,147,483,647; not restricted to USAGE DISPLAY
Number of file descriptions: increased from 20 to 99

Nonnumeric literals: maximum length, 120 characters; nongraphic characters allowed:
continuation of literal permited

UTILITY SOFTWARE

A comprehensive set of utility programs is available to support file management and

program development. All utility programs listed below are invoked by commands except
for Memory Dump (MDUMP) and Dump MLCP (DUMCP). The usage of the utility programs
is described in the Commands manual unless otherwise indicated.

SOFTWARE FACILITIES 27 CB20

o Compare — Compares two volumes, files or portions of files for equality, and lists the
discrepancies.

o Copy — Copies a file or volume. Permits the creation of backup copies of files or volumes,
either on tape or on a disk device.

o Create File — Creates the specified disk file.

o Create Volume — Creates or modifies a volume. Formats and labels a disk or tape

- volume, creates disk bootstrap records, or renames a disk volume.

o Dump Edit (DPEDIT) — Produces an edited logical or physical dump image of memory,
or edits and prints out a disk file containing a dump of main memory that was obtained
through the MDUMP bootstrap record. (Described in the Program Execution and
Checkout manual.)

o Dump Memory (MDUMP) — Dumps the contents of memory to a disk file when a
program aborts or halts, by using the bootstrap record MDUMP on a specially created
disk volume. The Dump Edit utility is then used to print the dump. (Described in the
Program Execution and Checkout manual.)

o Dump MLCP — Dumps contents of all or part of Multiline Communications Processor
(MLCP) memory. (Described in the Communications Processing manual.)

o File Change — Changes the contents of a disk sector or control interval.

o File Dump — Performs both logical and physical dumps from disk or 9-track magnetic
tape; performs physical dump only from 7-track tape; output in both alphabetic and
hexadecimal notation.

o Import/Export PAM File — Converts members of GCOS/BES partitioned files to and
from GCOS 6 variable sequential files; used to transport programs between BES and
GCOS 6.

o ISL Configurator — Reads ISL (Intersystem Link) directives from a user input file and
generates an ISL loader.

o List Creation Date — Lists creation dates of files in a directory.

o List Names — Lists the file and/or directory entries contained within the specified
directory.

o Patch — Applies hexadecimal patches to an object unit or bound unit. Provides a facil-
ity for program correction without recompilation or reassembling. (Described in the
Program Execution and Checkout manual.)

o Print — Prints the contents of the indicated file on a printer, with vertical spacing
control

0 Rename File — Assigns a new name to an existing file or directory.

0 Reset Map — Lists the number of logical sectors available for allocation on a disk
volume.

o Transmit File — Supports file transmission between the Level 6 system and other
Level 6 processors, or between the Level 6 and any of the following host processors:
Level 62, 64 or 66; Series 200/2000; or non-Honeywell systems that use the BSC 2780
protocol. Three utility programs, described in Section 7, provide the file transmission
capability.

The Sort/Merge utility capabilities are described below.

Sort/Merge

Sort and Merge are invoked by separate commands. Sort may also be called from a
COBOL, FORTRAN, or assembly language program. The Sort program arranges records
of a file in an order based on the values of user-specified record key fields. Merge combines
the records of up to six sequentially ordered input files on the basis of record key values.
Up to 16 key fields can be specified, with values to be arranged in ascending or descending
order according to the ASCII collating sequence. The data type of a key field can be char-
acter string, signed binary, packed decimal, or signed/unsigned unpacked decimal. Sort/Merge
options include record selection, redefinition or rearrangement of record contents, and dele-
tion of duplicate records. See the Sort/Merge manual for a detailed description of these capa-
bilities.

SOFTWARE FACILITIES 2-8 CB20

P9

RUN-TIME ROUTINES

Run-Time I/O Routines

The FORTRAN run-time I/O routines provide for data transfer, peripheral or communica-
tions device manipulation, and the processing of data as specified in FORTRAN FORMAT
statements. These routines use the file system to accomplish open, close, and position file
functions, and to read and write formatted and unformatted records. They contain data con-
version routines to edit integer, real, logical, and character data for formatted input and
output. Only those routines required by a particular FORTRAN program are linked to form
the bound unit.

The COBOL run-time I/O routine provides a logical I/O interface for the transfer and pro-
cessing of data at program execution time. The routine is linked with the program’s object
unit, and uses the file system to open, close, and position files and to read and write records
to peripheral or communications devices. Separate run-time routines are provided for Entry-
Level and Intermediate COBOL.

The FORTRAN and COBOL routines produce diagnostic messages to inform the program-
mer of inappropriate or inconsistent input/output statements.

FORTRAN Run-Time Routines

The software includes FORTRAN mathematical and bit string manipulation routines.
These intrinsic functions are available in object module format, linked on an as-needed basis
to perform a variety of operations on behalf of a FORTRAN program. Optionally, they can
be loaded during configuration as an operating system extension available to all online appli-
cations. Some of the operations performed by these routines are:

Date and time subroutines

Converting to and from integer and real values

Truncation

Determining the nearest whole number

Transferring a sign

Choosing: the largest value; the smallest value

Finding: the length of a character entity; the square root; the natural logarithm; the
common logarithm

Computing selected plane and spherical trigonometric functions

o Performing bit string manipulation operations on integer data: inclusive OR, exclusive
OR, products, complement, shift, clear or set a bit, and test a bit value.

O 000000

@)

FORTRAN routines are available to implement the management of tasks. Functions are
provided to:

.o Initiate a task after a designated period of time
o Suspend a task

Communications programs are provided with two routines, ZFSTIN and ZFSTOT, to test
the status of the system buffer prior to issuing a READ or WRITE. Depending on the return
status, the FORTRAN program can loop on the test, place itself in the wait state, continue
other processing, or issue a READ or WRITE and stall if the I/O buffer is busy.

See the FORTRAN Reference manual for details about these routines.

HARDWARE SIMULATORS

The SSIP and DSIP (single-and double-precision scientific instruction processor) provide
software simulation of floating-point instructions (add, subtract, multiply, divide, compare,
load, store, swap, and negate) that are generated by the FORTRAN Compiler or the
Assembler.

The Scientific Branch Simulator provides software simulation of floating-point branch
instructions (branch on bit settings of scientific indicator register or scientific accumulator
values).

SOFTWARE FACILITIES 29 CB20

The CIP (commercial instruction processor) simulator provides software simulation of CIP
instructions (commercially oriented calculations and operations) that are generated by the
Intermediate COBOL Compiler, RPG Compiler, or Assembler.

CONFIGURATION LOAD MANAGER

The Configuration Load Manager (CLM) accepts configuration directives from either a
Honeywell-supplied input file or a user-generated input file (CLM_USER) to perform system
configuration. Configuration directives are available to:

Define system variables (e.g., real-time clock, scientific and commercial processors)
Describe peripheral devices and their characteristics

Define system, batch, and one or more online memory pools

Identify system software and application-specific bound units that are to be perma-
- nently resident in the system area of memory

o Define the communications environment of the operating system

[e RN eRNelNe]

Configuration procedures are summarized in Section 4. A complete description of con-
figuration directives appears in the System Building manual.

BES-MOD 400 COMPATIBILITY

The GCOS 6 MOD 400 Monitor and I/O system services are a superset of the GCOS/BES
online Executive system services. However, differences exist in:

o Assembly language programs containing calls to the BES Executive

o BES object modules that must be imported to execute on MOD 400

o BES COBOL programs that require the BES COBOL and run-time routines for MOD 400
execution

o Configuration commands

Appendix A of this manual describes the procedures to be used to convert and execute
BES programs under MOD 400.

SOFTWARE FACILITIES 2-10 CB20

PN

SECTION 3
FILE SYSTEM

FILE AND PATHNAME CONCEPTS

The operating system controls the definition, description, and visibility of entities in the
file system. It contains a set of service routines which provide the capability of creatmg,
deleting, retr1ev1ng, and modifying entries in the file system.

The file system is represented by a tree-structured hierarchy. The basic elements of this
hierarchy are called files. Some files are a special type known as directories; other files com-
prise aggregates of data. In the following discussion these two types of files will be differen-
tiated by use of the terms directories and files, respectively.

Directories and files are referred to by supplying the File System software with a path-
name, which is an ASCII character string that uniquely identifies every element within the
file system.,

Directories

A directory is a file that contains information about other files, such as physical and
logical attributes of the files and attributes of the peripheral devices upon which they reside.
Files whose attributes are described in the directory are said to be immediately contained
in, or subordinate to, the directory. They may themselves be directories, or they may be
data files.

At the base of each tree structure is a directory known as the root directory. This is the
name of the directory that ultimately contains every element that resides within it either
immediately or indirectly subordinate to it. The root directory name is the same as the
volume identifier of the volume on which it resides; that is, no volume can contain more
than one tree structure. However, there may be multiple tree structures accessible to the
File System software at any given time, depending on how many volumes are mounted.
When the system is informed that a volume has been mounted, its volume identifier, and
hence its root directory name, is entered in a device table. All references to files and direc-
tories begin, either explicitly or implicitly, with a root directory name, and therefore every
file that is mounted is accessible to the File System software.

A magnetic tape file is considered to be a simple tree structure with a root directory (the
volume label) and a single file,

When a volume is first created, it contains only a root directory. The user can create,
within this directory, any additional directories required to satisfy the needs of his instal-
lation. Consider, for example, a volume that is to contain data used by two application
projects, each of which has several people associated with it. Each of these people has one
or more files of interest to him. The volume has been initialized and contains a root direc-
tory name. Two directories can be created, subordinate to the root directory, each identi-
fied by the project name. Then subordinate to these directories, a directory can be created
for each person associated with each project. This directory level is the one at which each
person will normally operate. His data files are all contained within his personal directory,
either immediately subordinate to it or subordinate to subdirectories, which he may create
to reflect his particular needs.

When the need for a directory no longer exists, the dlrectory can be deleted from the file
system, making the space it occupied, as well as the space occupied by its attributes in the
immediately superior directory, available for reuse. A directory must be empty before it can
be deleted; all directories and files subordinate to the one to be deleted must have been
previously deleted by explicit commands.

FILE SYSTEM 3-1 CB20

‘Files

A file is defined as any unit of storage external to the central processor that is capable of
supplying data to, and/or receiving data from, a task. Under this broad definition, a file can
be simply a peripheral device, such as a printer, card reader, or terminal device, or it can be
an aggregate of data stored within a directory structure, such as that described in the
previous paragraphs, on a magnetic-storage device. The conventions used to refer to any of
these types of files are essentially the same; only the complexity of the file’s unique identi-
fier varies with the type and location of the file.

A file is always the endpoint of any branch in a tree structure. That is, it contains no
information that the system interprets as attributes of subordinate directories or files. It is
thus the basic, or lowest level, structural unit that can be referred to through the File
System software.

Files can be created and deleted either explicitly or implicitly. Explicit creation and dele-
tion are done through the use of execution control commands issued by the user. Implicitly
created files, used mostly as temporary work files, result from the use of many of the pro-
gram development components, such as the Editor, Assembler, Linker, and some utility
components. These files are deleted upon normal termination of these components; their
creation, deletion, and existence are largely invisible to the user. However, some files are
implicitly created but not deleted; chief among these are the files produced by the Assem-
bler, the compilers, and the Linker for subsequent listing by a utility program. These must
be explicitly deleted after they have served their purpose. The names by which they are
known, and by which they must be deleted, are given in the various detailed descriptions of
these components.

Pathnames

The discussion of file concepts thus far has presented the concepts of directories and files
from the point of view of their existence and function only. The following material describes
the way in which these entities are named and how these names are used to construct unique
identifiers by which each such entity may be referenced.

Naming Conventions
Each directory or file name in the file system can consist of ASCII characters from the
following sets:

o Uppercase alphabetic (A through Z)
o Numeric (0 through 9)

o The underscore (_)

o The period (.)

o The dollar sign ($)

The first character of any name must be either an alphabetic or the dollar sign ($). The
underscore character can be used to join two or more words that are to be interpreted as a
single name (e.g., DATE_TIME). The period character followed by one or more alphabetic
or numeric characters is normally interpreted as a suffix to a file name. This convention is
followed, for example, by a compiler when it generates a file that is to be subsequently
listed; the compiler identifies this file by creating a name of the form “FILE.L.”.

The name of a root directory or a volume identifier can consist of from one to six
characters. The names of other directories and files can comprise from 1 to 12 characters,
The length of a file name must be such that any system-supplied suffix does not result in a
name of more than 12 characters.

Pathname Construction

The access path to any file system entity (directory or file) begins with a root directory
name and proceeds through zero or more subdirectory levels to the desired entity. The
series of directory names (and a file name if a file is the target entity) is known as the
entity’s pathname. The total length of any pathname, including all hierarchial symbols,

FILE SYSTEM 32 CB20

P

cannot exceed 58 characters, except that a working directory pathname cannot exceed 44
characters.

In the construction of a pathname, certain symbols are used to indicate the hierarchial
relationship between the pathname’s elements. These symbols and their meanings are shown
below.

o Circumflex (©) — Used exclusively to identify the name of the root directory. It pre-
cedes the root directory name, thus: ~VOLOI11.

o Greater than (&) — Indicates movement in the hierarchy away from the root directory.
The symbol is used to connect two directory names or a directory name and a file
name; it can also be the first character of a pathname, in which case it is immediately
subordinate to the root directory of the system volume. Each occurrence of the symbol
denotes a change in the directory level; the name to the right of the symbol is immedi-
ately subordinate to the name on the left. Reading a pathname from left to right thus
indicates movement through the tree structure in a direction away from the root
directory. If the root directory AVOLO11 contains a directory name DIR1, then the
pathname of DIR1 is

AVOLO011>DIR1

If the directory named DIRI1 in turn contains a file named FILEA, then the pathname
of FILEA is

AVOLO11>DIR1>FILEA

o Less than (<) — Used at the beginning of a pathname to indicate movement through the
tree structure in a direction foward the root directory. Consecutive symbols can be
used to indicate changes of more than one level; each occurrence represents a one-
level change. When followed by elements of a relative pathname, those elements repre-
sent changes of direction away from the root directory. One or more of these symbols
may only precede a relative pathname.

o ASCII “space” character — Used to indicate the end of a pathname. When represented in
memory, a pathname must end with a space character.

The last element in a pathname is the name of the entity upon which action is to be
taken, This element can be either a directory name or a file name, depending on the
function to be performed. In the CREATE DIRECTORY command, for example, a path-
name specifies the name of a directory to be created. The last element of this pathname is
interpreted by the command as a directory name; any names preceding the final name are
names of superior directories leading to it. An analogous situation occurs in the CREATE
FILE command, except that in this case the final pathname element is the name of a file to
be created.

The pathnames described to this point can be termed full pathnames, in that they contain
all necessary elements to describe a unique access path to a file system entity, regardless of
the type and location of the device on which it resides. The file access system uses this form
in referring to a directory or file, However, it is frequently unnecessary for the user to
specify all of these elements; the system can supply some of them under certain conditions;
i.e., when the missing elements are known to the system and the abbreviated pathnames are
used in the appropriate context. An understanding of these conditions and contexts requires
an understanding of absolute and relative pathnames and the concept of the working
directory. These subjects are described in the following paragraphs.

Absolute Pathnames

An absolute pathname is one that begins with a circumflex (/\) or a greater-than symbol
(>). A pathname that begins with a circumflex is called a full pathname. This form is used to
reference directories and files that reside on a device other than that on which the system

FILE SYSTEM 33 CB20

volume (the volume from which the system was initialized) is mounted. When an absolute
pathname begins with a greater-than symbol, the first element named in the pathname is
assumed to be immediately subordinate to the system volume root directory. Thus, if the
system volume name is SYS01 and the pathname given is >DIR1>FILEA, the full path-
name becomes ASYSO1>DIR1>FILEA.

Another volume, USERI1, can also contain a >DIR1>FILEA access path and can be
known to the system; the two access paths are made unique by requiring that the root
directory be specified when referring to the second volume. The full pathname of this file
on the second volume is thus AUSER1>DIR1>FILEA.

Relative Pathname and Working Directory

A relative pathname is one that does not begin with the circumflex or greater-than
symbol. For a relative pathname that does not begin with a less-than symbol, the first (or
only) name in the pathname identifies a directory or file that is immediately subordinate to
a directory known as the working directory. The working directory is the user’s current
position in the file system hierarchy. '

A simple name is a special case of the relative pathname. It consists of only one element:
the name of the desired entry in the working directory.

Working Directory

The initial setting of the working directory is derived from values in the -WD argument
of the EGR (enter group request), EBR (enter batch request), or SG (spawn group)
command, or the -HD argument of the LOGIN command. (Refer to the Commands manual
for details.) This directory can be changed by system service macro calls and commands.

A relative pathname can consist of one or more elements. If a relative pathname contains
more than one element, each element except the last is a directory name, the first immedia-
tely subordinate to the current working directory level, the second immediately subordinate
to the first, and so on. The last or only element can be either a directory name or a file
name, depending on the function being performed, as described previously.

In some cases, it may be necessary for a user to refer to a file contained in a directory sub-
ordinate at some level to the same directory as that to which his own working directory is
subordinate. He has two alternative ways of making this reference; he can use an absolute
pathname, or he may use a special form of relative pathname that beings with a less-than (<)
symbol.

Figure 3-1 shows some relative pathnames and the full pathnames they represent when
the working directory pathname is:

>UDD>PROJ1>USERA

Device Pathnames
Reference to any device is through the Symbolic Peripheral Device (SPD) directory, which
is subordinate to the system root.

Device Files (Other Than Disk And Tape) — The general form of a device file pathname is:
>>SPD>>dev_name

where dev_ name is the symbolic name defined for the card reader, punch, printer, or

is
terminal device during system building.

Tape Files — The general form of a tape file (device) pathname is:
>SPD>dev_name[>volid [>filename]]

where dev_name is the symbolic name defined for the tape device during system building,

volid is the name of the tape volume, and filename is the name of the file on the volume.

Tape dev