

SUBJECT

SERIES 60 (LEVEL 6)

GeOS 6 MOD 400
SYSTEM CONCEPTS

System Concepts for Series 60 (Level 6) GCOS 6 MOD 400 Operating System
Software

SOFTWARE SUPPORTED

This publication supports Release 0100 of Series 60 (Level 6) GCOS 6 MOD 400
Operating System; see the Manual Directory in this manual for a list of other
manuals that support the release.

ORDER NUMBER

CB20, Rev. 0 January 1978

Honeywell

PREFACE

This manual presents a general description of Honeywell-supplied software
and system concepts for the Series 60 (Level 6) GCOS 6 MOD 400 operating
system. Unless otherwise stated, the term GCOS refers to the GCOS 6
MOD 400 software. The term Level 6 refers to the Series 60 (Level 6) hard­
ware on which the software executes.

Section I summarizes system features, provides information on how to
use manuals in the document set, and lists the contents of other manuals in
the set.

Section 2 describes the GCOS software facilities.

Section 3 contains details on the characteristics and use of the file system.

Section 4 summarizes system configuration procedures, methods of
accessing the system, and the functions and features of the command
environment.

Section 5 discusses the execution environment, presenting descriptions of
task groups and tasks, memory pools, and bound units.

Section 6 describes features related to task exe<;:ution, including priority
level assignments, task coordination, and system handling of executing tasks.

Section 7 summarizes the functions of the Data Entry Facility, the
Remote Batch Facility, and the File Transmission Facility.

Appendix A describes the facilities available to provide compatibility for
using GCOS/BES and GCOS/BES2 programs and files with GCOS 6
MOD 400 systems.

Appendix B presents GCOS programming conventions.

Appendix C describes the Level 6 hardware resources and includes an
equipment requirements list.

Appendix D is a glossary.

© 1978, Honeywell Information Systems Inc. File No.: IS13

(,B20

MANUAL DIRECTORY

The following publications comprise the GCOS 6 manual set and support
Release 0100 of the GCOS 6 MOD 400 system software.

Order No. Manual Title

CB01
CB01A
CB02
CB03
CB04
CB05
CB06
CB07
CB08
CB09
CB10
CB20
CB21
CB22
CB23
CB24
CB25
CB26
CB30
CB31
CB33
CB34
CB35
CB36
CB37
CB38
CB39

GCOS 6 Program Preparation
Addendum A
GCOS 6 Commands
GCOS 6 Communications Processing
GCOS 6 Sort/Merge
GCOS 6 Data File Organizations and Formats
GCOS 6 System Messages
GCOS 6 Assembly Language Reference
GCOS 6 System Service Macro Calls
GCOS 6 RPG Reference
GCOS 6 Intermediate COBOL Reference
GCOS 6 MOD 400 System Concepts
GCOS 6 MOD 400 Program Execution and Checkout
GCOS 6 MOD 400 Programmer's Guide
GCOS 6 MOD 400 System Building
GCOS 6 MOD 400 Operator's Guide
GCOS 6 MOD 400 FORTRAN Reference
GCOS 6 MOD 400 Entry-Level COBOL Reference
Remote Batch Facility User's Guide
Data Entry Facility User's Guide
Level61Level6 File Transmission
Level 61Level 62 File Transmission
Level6lLevel64 (Release 0300) File Transmission
Level 61Level 66 File Transmission
Level 61Series 20012000 File Transmission
Level 61BSC 2780 File Transmission
Level61Level64 (Release 0220) File Transmission

In addition, the following documents provide general hardware information:

Order
No.

AS22
AT04

Manual Title

Honeywell Level 6 Minicomputer Handbook
Level 6 System and Peripherals Operation Manual

iii CB20

•

CONTENTS

Page

Section 1. System Characteristics 1-1
Software Features . ~ 1-1
Operating Features 1-2
Summary of System Features 1-2
Guide to Using the Manual Set 1-3

Applications Programmer's Manual
Guide 1-3

System Programmer's Manual Guide .. 1-5
Operator's Manual Guide 1-5
RBF- and DEF-User's Manual Guide ... 1-6

Software Document Set 1-6

Section 2. Software Facilities 2-1
General Features of Software 2-1
Interfaces to Operating System 2-2

Command Language 2-2
Commands for Execution C~Jntrol .. 2-2
Commands for Directory and File

Control ; 2-2
Commands for Program

Preparation 2-3
Commands for Utility Software

Execution 2-3
Interactive Commands ., 2-3

Operator Commands 2-3
Operator Commands for

Execution Control 2-3
Operator Commands for Directory,

File and Device Control 2-3
Operator Commands to Monitor

the System 2-3
System Service Macro Calls 2-4

Macro Calls for Execution Control .. 2-4
Macro Calls for Directory and File

Control 2-4
Operating System Software 2-4

Monitor Software 2-4
File System Software 2-5
Physical Input/Output Software 2-5
Communications Software 2-5

Program Preparation Software 2-6
Utility Software 2-7

Sort/Merge 2-8
Run-Time Routines 2-9

Run-Time I/O Routines 2-9
FORTRAN R\Jn-Time Routines 2-9

Hardware Simulators 2-9
Configuration Load Manager 2-10

v

Page
BES-MOD 400 Compatibility 2-10

Section 3. File System 3-1
File and Pathname Concepts 3-1

Directories 3-1
Files 3-2
Pathnames 3-2

Naming Conventions 3-2
Pathname Construction 3-2

Absolute Pathnames 3~3
Relative Pathname and Working
Directory 3-4

Working Directory 3-4
Device Pathnames 3-4

Special Pathname Conventions 3-6
Star Convention 3-6
Equal Convention 3-6

Data File Organizations and Access 3-7
Data File Organizations 3-7
Data File Access 3-8

File Concurrency 3-8
System File Concurrency 3-8
Record Locking (Shared File
Protection) .. ~ 3-9

File System Buffered Operations 3-9
Unit Record and Terminal Buffered

Operations 3-9
Buffered Read Operations 3-10
Buffered Write Operations 3-10

Disk and Magnetic Tape Buffered
Operations 3-11

Spooling Technique 3-11

Section 4. System Access 4-1
System Configuration and Environment

Definition 4-1
Accessing the System 4-2

Ways to Access the System 4-2
Logging In 4-2
Operator Assigned Access 4-2
User Designed Access 4-2

The Activated Lead Task 4-2
Command Environment " .. 4-2
Command Level 4-3

Achieving Command Level 4-3
Functions Performed at Command .

Level 4-4
Command Line Format 4-4

CB20

Page
Arguments 4-4
Spaces in Command Lines 4-5
Parameters 4-5
Protected Strings 4-5

EC Files 4-5
Startup EC Files 4-6

Section 5. Execution Environment 5-1
Task Groups and Tasks 5-1

Application Design Benefits of Task
Group Use 5-2

Intertask Communication 5-2
Operating System Control of Task

Groups 5-3
Generating Task Groups and Tasks 5-3
Characteristics of Task Groups and

Tasks 5-3
Task Group Identification 5-4

Memory Usage 5-4
Memory Layout 5-5
Online Pools 5-5

Exclusive Online Pools 5-6
Nonexclusive Online Pools 5-7
Sharing Memory Pools 5-7

Batch Pool and Roll-out 5-8
Batch Task Group 5-9

Operating System Area 5-9
System Pool Area 5-9

System Task Group 5-9
Batch Task Group Control

Structures ' 5-10
File Control Structures in the

System Pool Area 5-10
Bound Units 5-10

Overlays . 5-10
Nonfloatable and Floatable

Overlays 5-10
Resolving References 5-11
Sample Overlay Layout 5-11

Shareable Bound Units 5-11
Loading Bound Units (Search Rules) .. 5-12

Section 6. Task Execution 6-1
Interrupt Priority Levels 6-1

Processing Priority Levels 6-1
Interrupt Save Area (lSA) 6-2
Control of Priority Levels 6-2

Trap Handling 6-3
Operating System Features Affecting

Task Execution 6-3
Peripheral Device Assignments 6-3
Priority Assignments for Tasks 6-4

Assigning Priorities to System
Tasks , 6-4

Assigning Priorities to Application
Tasks 6-5

Logical Resource Number (LRN) 6-5

vi

Page
Device LRNs 6-5
Application Task LRNs 6-5

Logical File Number (LFN) 6-6
Inter/Intra Task Group

Communication ~ 6-6
Language Considerations 6-6
Use of Common Files 6-6
Task and Resource Coordination ... 6-6

Task Requests 6-6
Semaphores 6-6

How the Operating System Handles-
Tasks 6-7

Example of Monitor Interaction with
User Tasks 6-8

Section 7. Distributed System Facilities ... 7-1
Remote Batch Facility (RBF) 7-1

RBF Configuration 7-2
Remote Batch Operations 7-2

Data Entry Facility (DEF) 7-2
Interface with Programs 7-3
DEF Operations 7-3
DEF Supervisory Functions 7-3
DEF Utilities 7-3
DEF Configuration 7-3

File Transmission between Level 6 and
Other Computers 7-3

Appendix A. BES/MOD 400
Compatibility A-I

Executing BES Executive System
Services under MOD 400 A-I

Honeywell-Supplied Accommodation
Package A-I

Completely Emulated BES System
Services A-I

BES System Services Emulated
with Restrictions A-2

BES System Service Functions
Not Emulated A-2

User-Coded Conversion A-2
Executing BES Programs under

MOD 400 A-3
Converting BES Programs to

MOD 400 A-3

Appendix B. Programming Conventions .. B-1
Module and File Name Conventions. . .. B-1
Calling Sequence for External

Procedures B-2
Register Conventions B-3
Assembly Language Program

Independence B-3
Self-Modifying Procedures B-3

Appendix C. Hardware Supported C-l
Hardware Resources C-l

(,B~O

c

Page
Minimum Equipment for Program

Preparation " C-2
Minimum Equipment for Online

Applications. C-2
Hardware Supported C-3

Appendix D. Glossary D-l

ILLUSTRATIONS
Figure

1-1.

1-2.

1-3.
1-4.

2-1.
3-1.
5-1.
5-2.

5-3.

5-4.
6-1.

6-2.

6-3.

B-1.
C-1.

Page

Application Programmer's Guide
to Manuals 1-4

System Programmer's Guide to
Manuals 1-5

Operator's Guide to Manuals 1-6
RBF- and DEF-User's Guide to
Manuals 1-6

GCOS Software 2-1
Sample Pathnames 3-5
Memory After Configuration 5-5
Exclusive Memory Pools and

Contents 5-6
Exclusive and Nonexclusive Pool

Sets 5·8
Overlays in Memory 5-12
Format of Level Activity

Indicators 6-1
Order of Interrupt Vectors and

Format of Interrupt Save Areas
(SAF/LAF) 6-2

Example of LRN and Priority
Level Assignments to System
Tasks and Devices 6-5

Argument List B-2
Level 6 Hardware C-l

TABLES
Table Page

2-1. Intermediate COBOL
Functionality Not Available in
Entry-Level COBOL 2-7

3-1. Disk File Concurrency Control 3-8
5-1. Task Group and Task Functions

Possible from Online or Batch
Dimen~ons 5-4

5-2. Comparison of Operating System
Extensions and Shareable Bound
Units 5-12

6-1. Priority Level Assignments for
Tasks and Devices 6-4

B-1. System Module Name Prefixes B-1
B-2. System Program File Name

Suffixes B-2
C-1. Hardware Supported C-3

vii CB20

((" \
t",

_0/

(-

(

SECTION I

SYSTEM CHARACTERISTICS

GCOS 6 MOD 400 software is a disk-based operating system that supports multitasking,
real-time, or data communications applications in one or more online streams. In addition,
program development or other batch type applications can be performed concurrently in a
single batch stream.

GCOS is a multifunctional system, capable of providing a variety of processing functions:
development and execution of applications, forms data entry, file transmission to other com­
puters, and serving as a remote batch terminal for a host processor. The system can be con­
figured to process different functional applications concurrently. For example, a user can
run his own applications, utilize other system functionality such as the data collection capa­
bility, and communicate with a host processor, all at the same time.

SOFTWARE FEATURES

The operating system includes Monitor, File System, and data communications facilities.
The Monitor supports the execution of user application tasks and provides a set of system
services that enables users to control execution of individual tasks and to synchronize
mUltiple tasks with one another and with time-related events. The Monitor controls the
loading of user programs and manages requests for available memory. It provides standard
system trap handling routines for responding to exception conditions and also allows users
to provide their own trap handling routines for user-caused trap conditions.

The File System software offers an extensive set of logical I/O access methods. It provides
device-independent access to any device for sequential files, and direct access to disk files.
In addition the File System software automatically manages the space utilization of mounted
disk volumes, thus allowing users to create, expand, and release disk files as required by
online applications needs.

The operating system offers two levels of communications interface. Remote/local
terminals may be accessed through the sequential file interface of file management, or for
more direct control of the communications environment, by using the systems physical
I/O interface. The communications facility includes line protocol handlers for teleprinter
and VIP devices and binary synchronous communications (BSC).

The software includes a powerful and comprehensive set of program preparation com­
ponents, utilities and debugging aids for applications developments, all running under con­
trol of the Monitor. Programming languages include assembly language, RPG, FORTRAN,
and Entry-Level and Intermediate COBOL. Commercial Instruction Processor (CIP) and
Scientific Instruction Processor (SIP) hardware or simulators are available with the system.
The RPG and Intermediate COBOL Compilers generate code for the CIP: the FORTRAN
Compiler generates SIP code. The Assembler supports both CIP and SIP instructions.

The system supports concurrent execution of a variety of functions that interface with
the GCOS communications software, including the File Transmission Facility, Remote
Batch Facility, and Data Entry Facility. These components permit the GCOS system to be
connected to Honeywell and other host processor, all in a real-time, distributed systems
environment.

The file transmission capability (invoked by means of utility programs) supports trans­
mission of files between the Level 6 and Series 60 (Level 6, 62,64, or 66) or Series 2000
processors, using the polled VIP protocol; or between the Level 6 and non-Honeywell proc­
essors, using the BSC protocol.

The Remote Batch Facility (RBF) permits a Level 6 system to be used for job submission
and output delivery for one or more Series 60 (Level 66) or Series 6000 host processors,
using the Remote Computer Interface (RCI) or High-Level Data Link (HDLC) protocols.

SYSTEM CHARACTERISTICS 1-1 CB20

Local processing (such as program development and user application execution) can occur
concurrently with remote batch processing.

The Data Entry Facility (DEF) provides a data collection capability that includes
creation/modification of forms; formatted data input; validation, extraction and verification
of data; and formatted printing of data. The facility supports multiple independent operator "
display stations that use VIP devices.

GeOS 6 MOD 400 facilities accommodate applications developed under the GCOS/Basic
Executive Systems (BES). These facilities include utilities to move source and object program
files between the two operating systems, and support of BES system service calls via a special
interface package. Files created under the BES File Manager are supported directly by MOD
400; programs created under BES must be relinked under MOD 400.

OPERATING FEATURES

The operating system supports concurrent execution of multiple tasks (sequences of
instructions that perform identifiable functions) running under one or more task groups.
Each task. group owns the resources necessary for execution of an application program (one
or more related tasks). The task group runs independently in its own operating environment
while sharing the resources of the operating system.

Multiprogramming can be achieved by defining more than one application task group to
be run concurrently. Serial execution of tasks in a task group can be accomplished by step­
ping through execution of the tasks in sequence; multitasking can be achieved by causing
tasks in the group to be executed concurrently.

Multiple online task groups can be run concurrently with a single batch task group. The
batch task group (used for program development or a batch-oriented user application) can
be rolled out to a disk to obtain additional memory for online applications.

The number of task groups being run is limited only by the amount of memory available.
Concurrently executing task groups may occupy independent, dedicated memory areas, or
they may contend for space within a memory pool. When one task group is deleted, the
released memory is available to other task groups in the same pool. The Monitor allocates
memory dynamically from pools and can relocate programs at load time. Once a task group
requests execution, it is dispatched according to its assigned priority level. When multiple
tasks share a priority level, they are serviced in a round-robin fashion.

Use of the file system by multiple independent users is facilitated by the arrangement
of file system en tries (directories and files) in a tree-structured hierarchy. Each directory
or file is identified by a pathname that indicates the path from the root directory of the
hierarchical structure to the particular directory or file. File reference is simplified through
the use of pathnames relative to a working directory that indicates a user's current position
in the file system hierarchy. Access to sharable files and devices is controlled by file attrib­
utes and concurrency procedures.

SUMMARY OF SYSTEM FEATURES

The GCOS 6 software offers the following capabilities:

o Provides a multi-user operating system
o Supports multiple concurrent programming environments, with applications being run

in one batch stream and one or more online streams
o Controis program preparation through the operating system
o Handles program preparation and execution of user applications concurrently
o Handles execution of multiple user applications
o Permits multitask execution within each user application
o Controls the execution sequence of user applications
o Supports real-time operations
o Provides communications support
o Is time and interrupt driven
o Allows device independent programming
o 'Supports program overlay capability

SYSTEM CHARACTERISTICS 1-2 CB20

o Provides four programming languages: assembly language, FORTRAN, RPG, and
two levels of COBOL (entry level and intermediate)

o Provides a hierarchical file system with extensive utility support
o Supports four disk file organizations
o Supports code sharing via reentrant programs
o Permits multiple functions that interface with communications facilities to be run con­

currently with application development and execution
o Supports file transmission between the Level 6 and other computers
o Provides the Remote Batch Facility, permitting the Level 6 system to be used for job

submission to a host processor
o Provides the Data Entry Facility, permitting forms creation and data collection
o Provides compatibility software for GCOS/BES and GCOS/BES2 programs and files

GUIDE TO USING THE MANUAL SET

This guide to the manuals is arranged according to functions that might be performed by
an applications programmer, a systems programmer, or an operator. As used in this guide,
the applications programmer writes applications programs; the system programmer con­
figures the system and defines the environment for each application; and the operator
operates the system from the operator terminal. These functions could be performed by
three different persons or by the same person serving in the different capacities.

Applications Programmer's Manual Guide
Figure 1-1 illustrates the suggested sequence for using the munuals. If you wish to start

using the system by writing an application program, begin by using the Programmer's Guide
manual. It illustrates: (1) various ways to gain access to the system, (2) a sample Editor
session, and (3) for application languages, the procedure for performing program prepar­
ation and execution. Working with the small subset of system commands used within
examples is a good approach to learning the system command set. This approach for get­
ting started assumes that a system programmer has already configured and started up a
suitable application environment. While using the system, you may wish to familiarize
yourself with the system facilities described in the System Concepts manual.

Through examples, the Programmer's Guide illustrates how to use the system facilities.
Other manuals provide reference material. The Program Preparation manual contains Editor
directives (statements) to create and update an application language source unit. For each
of the languages, the appropriate language reference manual contains the description of
the language statements. Operating system dependencies, if any, that affect how you write
the application are described in the Programmer's Guide. If the application uses commun­
ications, refer to the Communications Processing manual. Read the Data File Organizations
and Formats manual if you require a better understanding of a language-supported file
organization that is to be used in an application or if you must calculate the size of a
data file. You can use Monitor macro calls, as described in the System Service Macro
Calls manual, in assembly language programs. Before your program can be entered for
execution, it must be linked as described in the Program Execution and Checkout manual.

For program compilation or assembly and execution, the procedures described in the
Programmer's Guide might be sufficient. To obtain more control over the execution of
your program or utilize the system facilities more completely or efficiently, use the
commands described in the Commands manual. If you wish to use the operator terminal,
read the Operator's Guide to learn how to use that terminal. In many cases, the description
of commands must be supplemented by system concepts described in the System Concepts
manual. Rather than read all the conceptual material at one time, you may find it more
meaningful to refer to it in conjunction with the appropriate reference material. The
Commands manual also describes the utilities. The Patch, Debug, and Dump utilities are
described in the Program Execution and Checkout manual; file transmission from Level 6
to a host system is described in the appropriate File Transmission manual. Error messages
and return status codes are listed in the System Messages manual.

SYSTEM CHARACTERISTICS 1-3 CB20

APPLICATIONS PROGRAMMER

PROGRAMMER'S GUIDE

GETTING STARTED
SAMPLE EXECUTION ENVIRONMENTS
SAMPLE EDITOR SESSION
SAMPLE PROGRAM PREPARATION AND
EXECUTION SESSIONS

I
, ASSEMBLY, COBOL, FORTRAN,

RPG APPLICATION PROGRAMMER

J
PROGRAM PREPARATION

EDITOR

LANGUAGE REFERENCE

LANGUAGE
DESCRIPTION

PROGRAMMER'S GUIDE

OPERATING SYSTEM
DEPENDENCIES

PROGRAM EXECUTION
AND CHECKOUT

liNKER

COMMANDS

EXECUTION COMMANDS
UTILITIES

PROGRAM EXECUTION
AND CHECKOUT

PATCH, DUMP,
DEBUG

Fil E TRANSMISSION

LEVEL 6 TO HOST

SYSTEM CONCEPTS

INTRODUCTION TO SOFTWARE
FACILITIES
OVERVIEW OF SOFTWARE
COMPONENTS

COMMUNICATIONS
PROCESSING

COMMUNICATIONS

DATA FILE ORGANIZATIONS
AND FORMATS

FILE ORGANIZATION
DESCRIPTION
FILE AND VOLUME
FORMATS

1
SYSTEM SERVICE
MACRO CALLS

MONITOR CALLS
DATA STRUCTURES
DEVICE DRIVERS

OPERATOR'S GUIDE

OPE"RATOR TERMINAL
USAGE

SYSTEM CONCEPTS

DETAILED SYSTEM
CONCEPTS

! I

[SYSTEM MESSAGES I
ERROR AND STATUS
MESSAGES

Figure 1-1. Applications Programmer's Guide to Manuals

SYSTEM CHARACTERISTICS 1-4 CB20

(

System Programmer's Manual Guide
Figure 1-2 illustrates the suggested sequence for using the manuals. The System Building

manual provides you with the configuration directives (statements) and startup procedures
to configure and start up a MOD 4QO, a Remote Batch Facility (RBF), or a Data Entry
Facility (DEF) system. You must know the conceptual material in the System Concepts
manual in order to successfully use the configuration directives. To tailor an applications
environment suitable for the intended application, you use operator commands described
in the Operator's Guide manual. Error messages are listed in the System Messages manual.
If you are working with an application that runs under the BES operating system, the
System Concepts manual contains MOD 400 and BES compatibility considerations.

SYSTEM PROGRAMMER

I
SYSTEM BUiLDING

SYSTEM CONCEPTS

CONFIGURATION AND STARTUP PRoceDURES
FOR MOD 400, REMOTE BATCH FACILITY {RBFI,
AND DATA ENTRY FACILITY (DEFI OPERATING SYSTEM

CONCEPTS

OPERATOR'S GUIDE

OPERATING ENVIRONMENT
COMMANDS

I I
SYSTEM CONCEPTS SYSTEM MESSAGES

MOD 400 AND BES ERROR MESSAGES
COMPATIBILITY

Figure 1-2. System Programmer's Guide to Manuals

operator's Manual Guide
Figure 1-3 illustrates the suggested sequence for using the manuals. Specific operator job

functions must be determined by each installation; a large system might have a person
assigned as an operator; a small system might have each programmer also act as an operator.
The Operator's Guide indicates those system procedures performed through the operator
terminal and describes operator commands used in system operation.

The Programmer's Guide contains examples using commands (described in the Commands
manual) that are similar to operator commands. The System Concepts manual provides an
understanding of the operating system. Note that the Operator's Guide describes using the
operator terminal for operator functions to enter operator commands to the system task
group, or for user functions to enter commands to a user task group. To run the utilities,
use the commands (described in the Commands manual) entered through the operator
terminal functioning as a user terminaL Error messages are listed in the System Message
manual.

SYSTEM CHARACTERISTICS 1-5 CB20

OPERATOR

I
OPERATOR'S GUIDE PROGRAMMER'S GUIDE

OPERATOR PROCEDURES
COMMANDS USED IN EXAMPLES OPERATOR COMMANOS

t---

I SYSTEM CONCEPTS

COMMANOS

~ SYSTEM DESCRIPTION

UTILITIES

SYSTEM MESSAGES

ERROR MESSAGES

Figure 1-3. Operator's Guide to Manuals

RBF- and DEF-User's Manual Guide
Figure 1-4 illustrates the suggested sequence for using the manuals. The system pro­

grammer configuration functions have been done and the system is ready to be used for
Remote Batch Facility (RBF) functions or Data Entry Facility (DEF) functions. The
Programmer's Guide manual provides sample login execution environments similar to ones
that might be at your facility. The Remote Batch Facility User's Guide is used for RBF
operations and the Data Entry Facility User's Guide is used for DEF operations.

PROGRAMMER'S GUIDE

EXECUTION ENVIRONMENTS

I
RBF USER

I
RBF USER'S GUIDE

REMOTE BATCH
DESCRIPTION

I
DEF USER

I
DEF USER'S GUIDE

DATA ENTRY
FACILITY DESCRIPTION

Figure 1-4. RBF- and DEF-User's Guide To Manual

SOFTWARE DOCUMENT SET

This System Concepts manual briefly describes GCOS software, system features, and
operating concepts. Most of the background information needed to use the reference mate­
rial in other manuals of this set is presented in Section 3 through 6 of this manual. Except

SYSTEM CHARACTERISTICS 1-6 CB20

/'

(~

for summaries, this material is not duplicated in other manuals and covers the following
subjects:

o Task groups and tasking
o Memory definition and use
o Operating system features
o File system and communications concepts
o Operating environment configuration

This manual is the sole source for reference material on the compatibility of GCOS/BES I
and BES2 programs and files with a MOD 400 system. Programming conventions are pre­
sented in Appendix B of this manual, and a glossary of GCOS 6 MOD 400 terms is in
Appendix D.

The contents of other documents in the manual set are summarized briefly below.

o eGOS 6 Program Preparation, Order No. CBOI - Overview of the programming steps to
prepare a program for execution. Suffix conventions for files used in program prepara­
tion. Detailed description of Editor. Rules for writing assembly language programs
using SLIC (SAF/LAF independent code).

o eGOS 6 Commands, Order No. CB02 - Description of command line format, task
interrupt break function, activating an application program, and extending the com­
mand set. Detailed description of commands, utilities, and language processor execu­
tion. Description of additional command line arguments, terminal characteristics at
login, Intersystem Link (ISL) directives, and File Change directives; ASCII and
EBCDIC character sets.

o eGOS 6 Communications Processing, Order No. CB03 - Introduction to communica­
tions software. Description of communications processing through COBOL, assembly
language, File System and FORTRAN; sample communications programs; Dump
MLCP (DUMCP) utility; TTY, VIP, and BSC control characters; ASCII and EBCDIC
character sets.

o eGOS 6 Sort/Merge, Order No. CB04 - Description of the Sort and Merge program
features, statement formats, and report contents. Includes file and memory require­
ments, operating procedures, sample programs, using Sort as a subroutine, debug mode
execution, and ASCII collating sequence.

o eGOS 6 Data File Organizations and Formats, Order No. CB05 - Description of disk
and magnetic tape data file organizations support for application programs; disk and
magnetic tape record, file, and volume formats; unit record file formats; file and
volume headers; ASCII and EBCDIC character sets.

o eGOS 6 System Messages, Order No. CB06 - Description of messages reported by
system components. Procedure for adding user messages.

o eGOS 6 Assembly Language Reference, Order No. CB07 - Complete description of
all instructions, instruction formats, control statements, types of data handled, and
macro language statements. Description of Scientific Instruction Processor (SIP) and
Commercial Instruction Processor (CIP) instructions.

o eGOS 6 System Service Macro Calls, Order No. CB08 - Description of macro call
syntax, register and addressing conventions. Detailed description of system services
macro calls for the Monitor and File System and for defining data structures; physical
I/O device drivers; Trap Handler; Monitor and File System data structures; writing a
user device driver; contents of registers for system service macro calls; ASCII and
EBCDIC character set.

o eGOS 6 RPe Reference, Order No. CB09 - Complete description of RPG data proces­
sing including: a primer on RPG programming, RPG specification form entries, descrip­
tion and use of the RPG fixed logic cycle, and operating instructions with sample
programs.

o eGOS 6 Intermediate COBOL Reference, Order No. CBIO - Complete description of
the general features of Intermediate COBOL programs, language elements, language
syntax, the four major divisions of an Intermediate COBOL program, specific format

SYSTEM CHARACTERISTICS 1-7 CB20

descriptions of all Intermediate COBOL statements (including programming examples
incorporating each statement), and the types of files and data handled, compiler
diagnostics, ASCII collating sequence, COBOL glossary, comparison of standard
COBOL with Intermediate COBOL, and Intermediate COBOL run-time considera­
tions.

o GCOS 6 MOD 400 Program Execution and Checkout, Order No. CB21 - Overview
of program execution sequence. Detailed descriptions of Linker, Debug, Patch, Dump
Memory (MDUMP), Dump Edit (DPEDIT), and interpreting and using memory dumps.
Table of system service macro calls ordered by function code. .

o GCOS 6 MOD 400 Programmer's Guide, Order No. CB22 - Description of various
possible programming environments at an installation and the ways to access the system
for each environment. Sample Editor session. Examples illustrating how to prepare
and execute COBOL, FORTRAN, SORT and assembly language programs; how to call
FORTRAN routines from an Entry-Level COBOL main program; and FORTRAN
chaining. Explanation of headers on listings.

o GCOS 6 MOD 400 System Building, Order No. CB23 - Description of system configu­
ration and startup procedures for the MOD 400 operating system, the Data Entry
Facility (DEF), and the Remote Batch Facility (RBF); configuration directives; system
disk layout; system overlays; minimum system hardware and configuration require­
ments to do program preparation; and startup halts. Description of procedures to
transfer files to system disk; create a single diskette system; place a shared version of a
utility in the system library; and load and execute the Intersystem Link (ISL) loader
for ISL configuration.

o GCOS 6 MOD 400 Operator's Guide, Order No. CB24 - Description of routine system
startup, activation of the login capability, system operator interface with the system
(OIM), operator commands; task interrupt break function from the operator terminal;
additional operator command line arguments; listener component setup for login
capability; system halt conditions; ASCII character set.

o GCOS 6 MOD 400 FORTRAN Reference, Order No. CB25 - Complete description
of all statements, instruction formats, types of files and data handled, FORTRAN
run-time support routines (intrinsic functions, tasking, I/O), and compiler diagnostics.

o GCOS 6 MOD 400 Entry-Level COBOL Reference, Order No. CB26 - Complete
description of the general features of Entry-Level COBOL programs, language
elements, language syntax, the four major divisions of an Entry-Level COBOL
program, specific format descriptions of all Entry-Level COBOL statements (includ­
ing programming examples incorporating each statement), and the types of fires and
data handled, compiler diagnostics, ASCII collating sequence, COBOL glossary,
comparison of standard COBOL with Entry-Level COBOL, and Entry-Level COBOL
run-time considerations.

o Remote Batch Facility User's Guide, Order No. CB30 - Description of remote batch
operations: communicating with the host, preparing job decks, managing job streams,
input and output processing, operator commands and messages, host software
control records.

o Data Entry Facility User's Guide, Order No. CB3l - Operation of the Data Entry
Facility. Description of operation of the Operator Display Station; forms and table
development; data entry and verification process; file printing; system supervisory
and utility operations; interfacing with data entry and applications programs; and
error and system messages.

o Level 6/Level 6 File Transmission, Order No. CB33
o Level6/Level62 File Transmission, Order No. CB34
o Level6/Level64 (Release 0300) File Transmission, Order No. CB35
o Level6/Level66 File Transmission, Order No. CB36
o Level6/Series 200/2000 File Transmission, Order No. CB37
o Leve16/BSC2780 File Transmission, Order No. CB38
o Level 6/Level 64 (Release 0220) File Transmission, Order No. CB39

Each of the above documents describes the capability of the particular file trans­
mission facility, including file organizations supported, code sets, line protocols, and

SYSTEM CHARACTERISTICS 1-8 CB20

/

equipment requirements. Individual sections of the manuals provide the operating
information necessary to perform a file transfer from either end of a network (Level
6 and host).

o Honeywell Level 6 Minicomputer Handbook, Order No. AS22 - Descriptions of
hardware models, central processor, processor architecture and features, instruction
set, registers, peripheral devices, control panel, software, various controllers and
system features, as well as maintenance and site preparation information.

o Level 6 System and Peripherals Operation, Order No. AT04 - Description of the
operation of the models 6/30 and 6/40 control panels, the operation of each peripheral
attachable to Level 6 hardware, and operator trouble-shooting procedures.

SYSTEM CHARACTERISTICS 1-9 CB20

SECTION 2
SOFTWARE FACILITIES,

GENERAL FEATURES OF SOFTWARE

The system provides a comprehensive array of software to perform multitasking; real-time
and data communications applications; and batch, remote batch and data entry processing.
The operating system controls execution of tasks and accessing of external devices and files.
A complete set of program preparation software is available to develop and debug programs
written in COBOL, FORTRAN, RPG or assembly language. An extensive set of utility
programs is provided to support program development and execution, and transmission of
files from the Level 6 to other computers. System software components are summarized
in Figure 2-1.

OPERATING SYSTEM

MONITOR
FILE SYSTEM
PHYSICAL IfO
COMMUNICATIONS

PROGRAM PREPARATION

EDITOR
MACRO PREPROCESSOR
ASSEMBLER
FORTRAN COMPILERa

ENTRY-LEVEL COBOL COMPILERa
INTERMEDIATE COBOL COMPILER
RPG COMPI LER
LINKER
DEBUG

MOD 400-BES COMPATIBI LlTya

EMULATOR
BUFFER MANAGER

UTILITY PROGRAMS

COMPARE
COpy
CREATE FILE
CREATE VOLUME
DUMP EDIT
DUMP MEMORY
DUMP MLCP
EXPORT PAM FILE
FILE CHANGE
FILE DUMP
IMPORT PAM FILE
ISL CONFIGURATOR
LIST CREATION DATE
LIST NAMES
PATCH
PRINT FILE
RENAME FILE
RESET MAP
SORT/MERGE
TRANSMIT FILE

MLCP SOFTWARE

CHANNEL CONTROL PROGRAMS
OFFLINE LOADER

SYSTEM CONTROL INTERFACES

COMMANDS
OPERATOR COMMANDS
SYSTEM SERVICE MACRO CALLS

CONFIGURATION

CONFIGURATION LOAD MANAGER
HONEYWELL-SUPPLIED SYSTEM

RUN-TIME ROUTINES

FORTRAN ROUTINES"
ENTRY-LEVEL COBOL ROUTINESa
INTERMEDIATE COBOL ROUTINES

HARDWARE SIMULATORS

SINGLE PRECISION SCIENTIFIC (SIP)
SIMULATOR

DOUBLE AND SINGLE PRECISION (DSIP)
SCIENTIFIC SIMULATOR

COMMERCIAL INSTRUCTION PROCESSOR
(CIP) SIMULATOR

REMOTE BATCH FACILITY

DATA ENTRY FACILITY

aThese software components are available only with the SAF version of MOD 400.

Figure 2-1. GCOS Software

SOFTWARE FACILITIES 2-1 CB20

The software is available in a SAF (short address form) version, which supports up to
64K words of memory on model 6/34, 6/36 and 6/43 processors, and a LAF (long address
form) version which supports up to 256K words of memory on model 6/43 processors.
~ardware resources associated with this system are described in Appendix ij.

INTERFACES TO OPERATING SYSTEM

The software supports the following control interfaces to the operating system:

o Commands submitted by a user to the command processor of the user task group
o Operator commands submitted by the operator to the command processor of the

system task group
o System service macro calls, specified in assembly language programs, that invoke

Monitor and file system services for user task groups

Command Language
There are five functional categories of commands:

o To control execution
o To control directories and files
o To invoke program preparation software
o To invoke utility software
o Interactive commands

Some control functions at the task group level are available through commands. Com­
mands are described in the Commands manual.

Commands for Execution Control
Once an online task group is created, commands written by the user can be executed

under the task group. More comprehensive control of execution is provided to the assem­
bly language program through system service macro calls. Commands are used to:

o Create then initiate other online task groups, or spawn online task groups. This pro­
vides a multiprogramming capability.

o Abort or delete an online task group, or terminate the task group issuing the request.
The abort and delete functions are not available through the batch task group.

o Create then initiate the execution of a sequence of tasks under an online task group,
or spawn online tasks within an online group. Using this capability an application can
be executed as a sequence of steps. When the sequencing is done so as to have several
tasks active simultaneously, there is multitask execution in one task group.

"0 Initiate and control the execution of tasks in the batch task group except the creation
of the batch task group.

o Control of external switches for intertask communication.
o List the status of all tasks or open files in a task group.
o Get or remove a file from reserved status.

Commands for Directory and File Control
The file system is based on a tree-structured directory hierarchy. To locate a file, the

directory pathname must be known. In order to write programs that are independent of
the pathname of the physical file, a program uses a logical file number (LFN). More com­
prehensive control of directories and files is provided to the assembly language program
through system service macro calls.

Commands are used to:

o Create or release a directory or file
o List the pathname of the working directory; change the pathname of the working

directory

SOFTWARE FACIUTIES 2-2 CB20

(/ 1

o List, in the order searched, the directories that are searched for a given pathname; list
file entries in a specified disk directory-

o Modify the share, read, or write attributes of a disk file ,.
o Associate or dissociate a pathname with a logical file number

Commands for Program Preparation
Software to perform program preparation is invoked using a command. Component­

specific arguments are provided in these commands. The command name is often identical
to the software name, e.g., COBOL, FORTRAN, LINKER, RPG.

Commands for Utility Software Execution
A utility is invoked through a command. The command is often identical to the software

name, e.g., PATCH, SORT, MERGE.

Interactive Commands
Interactive commands permit the user to:

o Establish and terminate access to the system
o Request execution of a batch task group
o Send messages to the operator
o Display the current time

Operator Commands
There are three functional categories of operator commands: execution control; directory,

file and device control; and system operation monitoring. Operator commands operate on a
task group level and cannot be used to control the execution sequence of tasks in the batch
task group or in a user online task group. Operator commands are entered through the opera­
tor terminal or read from a command file. A description of the operator commands is found
in the Operator's Guide manual.

Operator Commands for Execution Control
Initially, operator commands are used to define the operating environment. Sub seq uently,

they can be used to control ~ystem operation from the operator terminal. Operator commands
are employed to:

o Create, initiate, abort or delete either a batch or online task group
o Spawn an online task group
o Temporarily suspend or reactivate an online task group
o Temporarily suspend and roll out, or reactivate and roll in the batch task group
o Load or unload a shareable bound unit from a system memory pool
o Load assembled firmware files into writable control store (WCS)

Operator Commands for Directory, File and Device Control
Operator commands are used to:

o Change a system library or working directory pathname
o Modify the share, read, or write attributes of a disk file

Operator Commands to Monitor the System
Operator commands are used to:

o List all task groups and requests queued for batch execution
o List the status of all tasks or open files in a task group
o List the pathname of the working directory .
o List, in the order searched, the directories that are searched for a given bound unit

SOFTWARE FACILITIES 2-3 CB20

System Service Macro Calls
System service macro calls are available to the assembly language program to perform a

wide variety of Monitor and file system service functions, similar in some instances to those
functions accessible through commands. There are two functional categories of system ser­
vice macro calls: to control execution, and to control directories and files. The macro calls
are described in the System Service Macro Calls manual.

Macro Calls for Execution Control
Monitor service macro calls are used to:

o Control task groups and tasks
o Manage memory allocation
o Load and execute overlays
o Coordinate the use of resources within an online task group through semaphores
o Control execution based on real-time clock considerations
o Enable or disable user traps
o Display or suppress the display of messages on the operator's terminal
o Designate a task group's command-in, user-in, error-out, and user-out files
o Communicate directly with device drivers to control input/output and devices
o Control external switches for intertask group communication
o Associate or dissociate a pathname with a logical file number.

Macro Calls for Directory and File Control
Monitor service macro calls are used to:

o Create or release a directory or file
o Change or obtain the pathname of the working directory
o Rename a file or directory
o Open, close, get (reserve), or remove the reservation of a file
o Lock/unlock records in a file
o Get information describing a file
o Test the status of an outstanding file activity
o Wait on list until input or output is complete
o Read, write, rewrite, or delete a record of a file
o Read from, or write a block to a file

OPERATING SYSTEM SOFTWARE

The operating system contains software for execution control, the file system, physical
I/O, and communications.

Monitor Software
The Monitor contains software to execute requests for Monitor functions and to maintain

the control tables that are necessary for the orderly processing of requests. These functions
are obtained through commands, system service macro calls, and statements in higher-
level languages. Monitor software includes:

o Task manager - Handles the disposition of tasks within the system, and responds to
requests placed against tasks. It processes requests to activate tasks, returns control
to interrupted tasks, and synchronizes, suspends and terminates tasks.

o Clock manager - Handles all. requests to control tasks based on real-time considera­
tions, and responds to requests for the time of day and date in ASCII format.

o Memory Manager - Controls dynamic requests for memory or the return of memory
to a memory pool.

o Trap manager - Handles the transfer of execution control from an executing program
to a predefined trap location when a trap (a special condition such as a hardware
error) occurs. The trap manager handles system traps and allows a task group to con­
nect its own trap routines for specific traps.

SOFTWARE FACILITIES 2·4 CB20

("

~"

•

o Operator interface manager - Manages all messages sent simultaneously by multiple
task groups to the operator terminal or from the operator terminal to a task group.

o Loader -;- Loads the root and overlays of a bound unit dynamically from a disk.
o Listener/login - The listener monitors a selected set of local and remote terminals,

reporting any change of state (for example, connect, disconnect) to the login compon­
ent. If a user submits a login command requesting access to the system, the login
component requests that a task be spawned for the user.

o Command processor - Processes all commands. It is the lead task of the batch task
group and can be the lead task of an online task group.

File System Software
The file system is based on a tree-structured hierarchy and software functions are provided

to create or maintain this directory structure, locate a file by its pathname, create and main­
tain data files, control concurrent use of files, and provide for the logical transfer of records
between an application program and an external device. These functions are available
through commands or, for an assembly language program, through system service macro
calls, described in the Commands manual and System Service Macro Calls manual,
respectively.

The File System software handles input/output functions of each of the different sup­
ported devices, including communications. For disk, it provides four file organizations and
access to them; namely, sequential, relative, indexed, and fixed relative file organizations.
(Fixed relative file organization is compatible with BES and BES2 files.) Sequential access
is provided for magnetic tape, communications, printer, card reader, and terminals. A des­
cription of the data file organizations and their properties is found in the Data File Organ­
izations and Formats manual.

The languages COBOL, FORTRAN, and RPG use the logical file organizations listed
above. The language reference manual for each language provides statements for accessing
the logical files.

An assembly language program can access files through file and data management macro
calls to the Monitor or through the physical I/O drivers; both methods are described in the
System Service Macro Calls manual.

The interface to communications software is described in the Communications Processing
manual.

Physical Input/Output Software
An assembly language program can use physical input/output driver software which works

at tiL~ hardware physical level. Each peripheral and communications device type has a driver
which is a reentrant procedure that can control one or more devices. A description of the
peripheral drivers and the physical I/O macro calls is found in the System Service Macro Calls
manual. Macro calls for communications are described in the Communications Processing
manual.

Communications Software
Communications software is accessible through the standard input/output interface, is

memory and MLCP resident, and interacts with Monitor software to process user communi­
cations applications. With the Honeywell-supplied communications software, users need not
provide their own communications system programs.

The communications software is user-driven. It answers the phone in response to a user­
issued connect; it polls terminals in response to user-issued reads. Users (application or
system software) must provide buffers to the communications software to accommodate
read and write operations.

Communications software provides a common I/O interface to its users through the stan­
dard physical I/O interface (the $RQIO macro call). The communications software compon­
ents and their functions are summarized below.

o Communications supervisor - Queues user service requests and activates the appropri­
ate line protocol handler, interacts with the user program through system software when

SOFTWARE FACILITIES 2·5 CB20

a transaction is complete, and services connect/disconnect requests and line protocol
handler timeouts.

o Phone monitor - Provides data set control for detection of phone connect/disconnect,
and provides the capability of "hanging up" the phone connection upon user request.

o Line protocol handler (LPH) - Handles error recovery (parity, block control check);
initializes the LPH and channel control program; processes interrupts, timeouts, and
messages; and handles protocol acknowledgment/negative acknowledgment.

o Poller - Used only for poll and select protocols. Queues poll requests, requests the LPH
to poll a terminal, and dequeues the request when the LPH has received data from the
terminal.

o MLCP driver - Sets up and processes I/O up to an LPH request, and services MLCP
interrupts, passing them to the LPH.

o Channel control program (CCP) - Handles character processing, inserts and deletes pro­
tocol headers and framin,g characters (surrounding a message). An extension of the LPH,
the CCP resides in the MLCP and is independent of the central processor; thus character
processing overhead is eliminated from central processing.

o MLCP macro routines

For details on communications software functions, line protocol handlers, and the control
structures used for communications tasks, see the Communications Processing manual.

PROGRAM PREPARATION SOFTWARE

The software in this category allows you to write, compile, link, execute and debug an
application program. Each of the program preparation components, except for Debug, is
invoked by command described in the Commands manual.

o Editor - Used to create and update, on disk, a source unit written in one of the pro­
vided programming languages. It will edit characters, expressions, or lines of text. The
Editor is reentrant and can support multiple users. A description of the Editor direc­
tive language is found in the Program Preparation manual.

o Macro Preprocessor - Required to process an assembly language application source
unit containing calls to macro routines. A macro routine consists of a specified sequence
of assembly language source statements that you want specialized and included in your
source module. The Macro Preprocessor creates another source unit with assembly
source code replacing the macro calls. A description of the macro preprocessor lan­
guage statements is found in the Assembly Language Reference manual.

o Assembler - Translates assembly source statements of a source unit into'text of a re­
locatable object unit and optionally produces a cross-reference listing indicating symbol
usage. The Assembler can process source for two hardware components: the Commer­
cial Instruction Processor (CIP) and the Scientific Instruction Processor (SIP). The
Assembler supports coding of user-defined generic instructions to be executed on the
Writable Control Store (WCS).

o FORTRAN Compiler ~ Translates FORTRAN source statements of a source unit into
text of a relocatable object unit and source listing or optionally, assembly language
source statements in a source unit. The language is based on. the American National
Standards FORTRAN 77 subset. Offered in the language are the Instrument Society of
America (ISA) extensions for bit string manipulation and task management, and a
Honeywell extension for communications. FORTRAN programs and Entry-Level
COBOL programs can call each other. FORTRAN is intended for commercial and sci­
entific application programming. A description of the FORTRAN language statements
is found in the FORTRAN Reference manual.

o Entry-Level COBOL Compiler - Translates source statements of a source unit into text
of a relocatable object unit. Entry-Level COBOL programs and FORTRAN programs can
call each other. Significant features of Entry-Level COBOL include: file handling for
sequential, relative, and indexed files; three-dimensional tables and indexing; CALL/
CANCEL capability; DISPLAY and COMP-I data; full American National Standards

SOFTWARE FACILITIES 2-6 CB20

r~'~'
I

";i,.</

(

editing; 21 verbs; and communications through file management facilities. For descrip­
tions of the Entry-Level COBOL language statements, refer to the Entry-Level COBOL
Reference manual.

o Intermediate COBOL Compiler - Translates source statements of a source unit into
text of a relocatable object unit. Intermediate COBOL supports Entry-Level COBOL
features plus additional features as listed in Table 2-1. Descriptions of the Intermediate
COBOL language statements are given in the Intermediate COBOL Reference manual.

o RPG Compiler - Translates RPG source statements of a source unit into a set of object
units consisting of a root plus multiple overlays. The compiler also produces a file con­
taining Linker directives; user-written Linker directives are thus unnecessary. When the
command processor is invoked to process the statements in this file, it invokes the
Linker, and supplies it with Linker directives necessary to create an executable bound
unit. The compiler supports an RPG language comparable to that in current industry­
wide use. Significant features indude: look-ahead, control levels and matching fields on
input; table and array processing; forms alignment; and editing, detail, and total time
functions on output. The compiler generates Commercial Instruction Processor code.
A description of the RPG language is found in the RPG Reference manual.

o Linker - Combines object units that are the output of a compiler or the Assembler and
produces a bound unit for subsequent loading. It resolves external references made
between object units being linked. Linker directives can be used to create reentrant
bound unit files. A description of Linker directives is found in the Program Execution
and Checkout manual.

o Debug - Used to test programs at the assembly language level. Hexadecimal patches can
be made to the program. Debug is invoked as a separate task group within the system. A
description of the Debug directives is found in the Program Execution and Checkout
manual.

TABLE 2-1. INTERMEDIATE COBOL FUNCTIONALITY NOT AVAILABLE IN ENTRY-LEVEL COBOL

Compiler Enhancements

o Reentrant object programs
o Generates code for Commercial Instruction Processor (CIP)
o Supports SLIC code
o Provides SORT subroutine call

Language Enhancements

o COMP (packed decimal) data and COMP-2 (double word binary) data
o COpy
o ELSE and NEXT SENTENCE options in IF statement
o SAME RECORD AREA
o UNTIL option in PERFORM statement
o Identifier option in WRITE statement
o VALUE OF clause
o DATA RECORDS clause
o DATE-COMPILED paragraph expanded
o Relative Key: maximum value, 2,147,483,647; not restricted to USAGE DISPLAY
o Number of file descriptions: increased from 20 to 99
o Nonnumeric literals: maximum length, 120 characters; nongraphic characters allowed:

continuation of literal permited

UTILITY SOFTWARE

A comprehensive set of utility programs is available to support file management and
program development. All utility programs listed below are invoked by commands except
for Memory Dump (MDUMP) and Dump MLCP (DUMCP). The usage of the utility programs
is described in the Commands manual unless otherwise indicated.

SOFTWARE FACILITIES 2-7 CB20

o Compare - Compares two volumes, files or portions of files for equality, and lists the
discrepancies.

o Copy - Copies a file or volume. Permits the creation of backup copies of files or volumes,
either on tape or on a disk device.

o Create File - Creates the specified disk file.
o Create Volume - Creates or modifies a volume. Formats and labels a disk or tape

volume, creates disk bootstrap records, or renames a disk volume.
o Dump Edit (DPEDIT) - Produces an edited logical or physical dump image of memory,

or edits and prints out a disk file containing a dump of main memory that was obtained
through the MDUMP bootstrap record. (Described in the Program Execution and
Checkout manual.)

o Dump Memory (MDUMP) - Dumps the contents of memory to a disk file when a
program aborts or haIts, by using the bootstrap record MDUMP on a specially created
disk volume. The Dump Edit utility is then used to print the dump. (Described in the
Program Execution and Checkout manual.)

o Dump MLCP - Dumps contents of all or part of Multiline Communications Processor
(MLCP) memory. (Described in the Communications Processing manual.)

o File Change - Changes the contents of a disk sector or control interval.
o File Dump - Performs both logical and physical dumps from disk or 9-track magnetic

tape; performs physical dump only from 7-track tape; output in both alphabetic and
hexadecimal notation.

o Import/Export PAM File - Converts members of GCOS/BES partitioned files to and
from GCOS 6 variable sequential files; used to transport programs between BES and
GCOS 6.

o ISL Configurator - Reads ISL (Intersystem Link) directives from a user input file and
generates an ISL loader.

o List Creation Date - Lists creation dates of files in a directory.
o List Names - Lists the file and/or directory entries contained within the specified

directory.
o Patch - Applies hexadecimal patches to an object unit or bound unit. Provides a facil­

ity for program correction without recompilation or reassembling. (Described in the
Program Execution and Checkout manual.)

o Print - Prints the contents of the indicated file on a printer, with vertical spacing
control

o Rename File - Assigns a new name to an existing file or directory.
o Reset Map - Lists the number of logical sectors available for allocation on a disk

volume.
o Transmit File - Supports file transmission between the Level 6 system and other

Level 6 processors, or between the Level 6 and any of the following host processors:
Level 62,64 or 66; Series 200/2000; or non-Honeywell systems that use the BSC 2780
protocol. Three utility programs, described in Section 7, provide the file transmission
capability.

The Sort/Merge utility capabilities are described below.

Sort/Merge
Sort and Merge are invoked, by separate commands. Sort may also be called from a

COBOL, FORTRAN, or assembly language program. The Sort program arranges records
of a file in an order based on the values of user-specified record key fields. Merge combines
the records of up to six sequentially ordered input files on the basis of record key values.
Up to 16 key fields can be specified, with values to be arranged in ascending or descending
order according to the ASCII collating sequence. The data type of a key field can be char­
acter string, signed binary, packed decimal, or signed/unsigned unpacked decimal. Sort/Merge
options include record selection, redefinition or rearrangement of record contents, and dele­
tion of duplicate records. See the Sort/Merge manual for a detailed description of these capa­
bilities.

SOFTWARE FACILITIES 2-8 C820

RUN-TIME ROUTINES

Run-Time I/O Routines
The FORTRAN run-time I/O routines provide for data transfer, peripheral or communica­

tions device manipulation, and the processing of data as specified in FORTRAN FORMAT
statements. These routines use the file system to accomplish open, close, and position file
functions, and to read and write formatted and unformatted records. They contain data con­
version routines to edit integer, real, logical, and character data for formatted input and
output. Only those routines required by a particular FORTRAN program are linked to form
the bound unit.

The COBOL run-time I/O routine provides a logical I/O interface for the transfer and pro­
cessing of data at program execution time. The routine is linked with the program's object
unit, and uses the file system to open, close, and position files and to read and write records
to peripheral or communications devices. Separate run-time routines are provided for Entry­
Level and Intermediate COBOL.

The FORTRAN and COBOL routines produce diagnostic messages to inform the program­
mer of inappropriate or inconsistent input/output statements.

FORTRAN Run-Time Routines
The software includes FORTRAN mathematical and bit string manipulation routines.

These intrinsic functions are available in object module format, linked on an as-needed basis
to perform a variety of operations on behalf of a FORTRAN program. Optionally, they can
be loaded during configuration as an operating system extension available to all online appli­
cations. Some of the operations performed by these routines are:

o Date and time subroutines
o Converting to and from integer and real values
o Truncation
o Determining the nearest whole number
o Transferring a sign
o Choosing: the largest value; the smallest value
o Finding: the length of a character entity; the square root; the natural logarithm; the

common logarithm
o Computing selected plane and spherical trigonometric functions
o Performing bit string manipulation operations on integer data: inclusive OR, exclusive

OR, products, complement, shift, clear or set a bit, and test a bit value.

FORTRAN routines are available to implement the management of tasks. Functions are
provided to:

.0 Initiate a task after a designated period of time
o Suspend a task

Communications programs are provided with two routines, ZFSTIN and ZFSTOT, to test
the status of the system buffer prior to issuing a READ or WRITE. Depending on the return
status, the FORTRAN program can loop on the test, place itself in the wait state, continue
other processing, or issue a READ or WRITE and stall if the I/O buffer is busy.

See the FORTRAN Reference manual for details about these routines.

HARDWARE SIMULATORS

The SSIP and DSIP (single-and double-precision scientific instruction processor) provide
software simulation of floating-point instructions (add, subtract, multiply, divide, compare,
load, store, swap, and negate) that are generated by the FORTRAN Compiler or the
Assembler.

The Scientific Branch Simulator provides software simulation of floating-point branch
instructions (branch on bit settings of scientific indicator register or scientific accumulator
values).

SOFTWARE FACILITIES 2-9 CB20

The CIP (commercial instruction processor) simulator provides software simulation of CIP
instructions (commercially oriented calculations and operations) that are generated by the
Intermediate COBOL Compiler, RPG Compiler, or Assembler..

CONFIGURATION LOAD MANAGER

The Configuration Load Manager (CLM) accepts configuration directives from either a
Honeywell-supplied input file or a user-generated input file (CLM_USER) to perform system
configuration. Configuration directives are available to:

o Define system variables (e.g., real-time clock, scientific and commercial processors)
o Describe peripheral devices and their characteristics
o Define system, batch, and one or more online memory pools
o Identify system software and application-specific bound units that are to be perma­

nently resident in the system area of memory
o Define the communications environment of the operating system

Configuration procedures are summarized in Section 4. A complete description of con­
figuration directives appears in the System Building manual.

BES-MOD 400 COMPATmILITY

The GCOS 6 MOD 400 Monitor and I/O system services are a superset of the GCOS/BES
online Executive system services. However, differences exist in:

o Assembly language programs containing calls to the BES Executive
o BES object modules that must be imported to execute on MOD 400
o BES COBOL programs that require the BES COBOL and run-time routines for MOD 400

execution
o Configuration commands

Appendix A of this manual describes the procedures to be used to convert and execute
BES programs under MOD 400.

SOFTWARE FACILITIES 2·10 CB20

SECTION 3

FILE SYSTEM

FILE AND PATHNAME CONCEPTS

The operating system controls the definition, description, and visibility of entities in the
file system. It contains a set of service routines which provide the capability of creating,
deleting, retrieving, and modifying entries in the file system.

The file system is represented by a tree-structured hierarchy. The basic elements of this
hierarchy are called files. Some files are a special type known as directories; other files com­
prise aggregates of data. In the following discussion these two types of files will be differen­
tiated by use of the terms directories and files, respectively.

Directories and files are referred to by supplying the File System software with a path­
name, which is an ASCII character string that uniquely identifies every element within the
file system.

Directories
A directory is a file that contains information about other files, such as physical and

logical attributes of the files and attributes of the peripheral devices upon which they reside.
Files whose attributes are described in the directory are said to be immediately contained
in, or subordinate to, the directory. They may themselves be directories, or they may be
data files.

At the base of each tree structure is a directory known as the root directory. This is the
name of the directory that ultimately contains every element that resides within it either
immediately or indirectly subordinate to it. The root directory name is the same as the
volume identifier of the volume on which it resides; that is, no volume can contain more
than one tree structure. However, there may be multiple tree structures accessible to the
File System software at any given time, depending on how many volumes are mounted.
When the system is informed that a volume has been mounted, its volume identifier, and
hence its root directory name, is entered in a device table. All references to files and direc­
tories begin, either explicitly or implicitly, with a root directory name, and therefore every
file that is mounted is accessible to the File System software.

A magnetic tape file is considered to be a simple tree structure with a root directory (the
volume label) and a single file.

When a volume is first created, it contains only a root directory. The user can create,
within this directory, any additional directories required to satisfy the needs of his instal­
lation. Consider, for example, a volume that is to contain data used by two application
projects, each of which has several people associated with it. Each of these people has one
or more files of interest to him. The volume has been initialized and contains a root direc­
tory name. Two directories can be created, subordinate to the root directory, each identi­
fied by the project name. Then subordinate to these directories, a directory can be created
for each person associated with each project. This directory level is the one at which each
person will normally operate. His data files are all contained within his personal directory,
either immediately subordinate to it or subordinate to subdirectories, which he may create
to reflect his particular needs.

When the need for a directory no longer exists, the directory can be deleted from the file
system, making the space it occupied, as well as the space occupied by its attributes in the
immediately superior directory, available for reuse. A directory must be empty before it can
be deleted; all directories and files subordinate to the one to be deleted must have been
previously deleted by explicit commands.

FILE SYSTEM 3-1 CB20

'Files
A file is defined as any unit of storage external to the central processor that is capable of

supplying data to, and/or receiving data from, a task. Under this broad definition, a file can
be simply a peripheral device, such as a printer, card reader, or terminal device, or it can be
an aggregate of data stored within a directory structure, such as that described in the
previous paragraphs, on a magnetic-storage device. The conventions used to refer to any of
these types of files are essentially the same; only the complexity of the file's unique identi­
fier varies with the type and location of the file.

A file is always the endpoint of any branch in a tree structure. That is, it contains no
information that the system interprets as attributes of subordinate directories or files. It is
thus the basic, or lowest level, structural unit that can be referred to through the File
System software.

Files can be created and deleted either explicitly or implicitly. Explicit creation and dele­
tion are done through the use of execution control commands issued by the user. Implicitly
created files, used mostly as temporary work files, result from the use of many of the pro­
gram development components, such as the Editor, Assembler, Linker, and some utility
components. These files are deleted upon normal termination of these components; their
creation, deletion, and existence are largely invisible to the user. However, some files are
implicitly created but not deleted; chief among these are the files produced by the Assem­
bler, the compilers, and the Linker for subsequent listing by a utility program. These must
be explicitly deleted after they have served their purpose. The names by which they are
known, and by which they must be deleted, are given in the various detailed descriptions of
these components. .

Pathnames
The discussion of file concepts thus far has presented the concepts of directories and files

from the point of view of their existence and function only. The following material describes
the way in which these entities are named and how these names are used to construct unique
identifiers by which each such entity may be referenced.

Naming Conventions
Each directory or me name in the file system can consist of ASCII characters from the

following sets:

o Uppercase alphabetic (A through Z)
o Numeric (0 through 9)
o The underscore C)
o The period (.)
o The dollar sign ($)

The first character of any name must be either an alphabetic or the dollar sign ($). The
underscore character can be used to join two or more words that are to be interpreted as a
single name (e.g., DATE_TIME). The period character followed by one or more alphabetic
or numeric characters is normally interpreted as a suffix to a file name. This convention is
followed, for example, by a compiler when it generates a file that is to be subsequently
listed; the compiler identifies this file by creating a name of the form "FILE.L.".

The name of a root directory or a volume identifier can consist of from one to six
characters. The names of other directories and files can comprise from 1 to 12 characters.
The length of a me name must be such that any system-supplied suffix does not result in a
name of more than 12 characters.

Pathname Construction
The access path to any me system entity (directory or file) begins with a root directory

name and proceeds through zero or more subdirectory levels to the desired entity. The
series of directory names (and a file name if a file is the target entity) is known as the
entity's pathname. The total length of any pathname, including all hierarchial symbols,

FILE SYSTEM 3-2 CB20

('

cannot exceed 58 characters, except that a working directory pathname cannot exceed 44
characters.

In the construction of a pathname, certain symbols are used to indicate the hierarchial
relationship between the pathname's elements. These symbols and their meanings are shown
below.

o Circumflex ("') - Used exclusively to identify the name of the root directory, It pre­
cedes the root directory name, thus: -"YOLO I I.

o Greater than (» - Indicates movement in the hierarchy away from the root directory.
The symbol is used to connect two directory names or a directory name and a file
name; it can also be the first character of a pathname, in which case it is immediately
subordinate to the root directory of the system volume. Each occurrence of the symbol
denotes a change in the directory level; the name to the right of the symbol is immedi­
ately subordinate to the name on the left. Reading a pathname from left to right thus
indicates movement through the tree structure in a direction away from the root
directory. If the root directory-"YOLOll contains a directory name DIRI, then the
pathname of DIRI is

AYOLOll>DIRI

If the directory named DIRI in tum contains a file named FILEA, then the pathname
ofFILEAis

AYOLOII>DIRI>FILEA

o Less than «) - Used at the beginning of a pathname to indicate movement through the
tree structure in a direction toward the root directory. Consecutive symbols can be
used to indicate changes of more than one level; each occurrence represents a one-
level change. When followed by elements of a relative pathname, those elements repre­
sen t changes of direction away from the root directory. One or more of these symbols
may only precede a relative pathname.

o ASCII "space" character - Used to indicate the end of a pathname. When represented in
memory, a pathname must end with a space character.

The last element in a pathname is the name of the entity upon which action is to be
taken. This element can be either a directory name or a file name, depending on the
function to be performed. In the CREATE DIRECTORY command, for example, a path­
name specifies the name of a directory to be created. The last element of this -pathname is
interpreted by the command as a directory name; any names preceding the fmal name are
names of superior directories leading to it. An analogous situation occurs in the CREATE
FILE command, except that in this case the final pathname element is the name of a file to
be created.

The pathnames described to this point can be termed full pathnames, in that they contain
all necessary elements to describe a unique access path to a me system entity, regardless of
the type and location of the device on which it resides. The me access system uses this form
in referring to a directory or me. However, it is frequently unnecessary for the user to
specify all of these elements; the system can supply some of them under certain conditions;
i.e., when the missing elements are known to the system and the abbreviated pathnames are
used in the appropriate context. An understanding of these conditions and contexts requires
an understanding of absolute and relative pathnames and the concept of the working
directory. These subjects are described in the following paragraphs.

Absolute Pathnames
An absolute pathname is one that begins with a circumflex (A) or a greater-than symbol

(». A pathname that begins with a circumflex is called a full pathname. This form is used to
reference directories and files that reside on a device other than that on which the system

FILE SYSTEM 3-3 CB20

volume (the volume from which the system was initialized) is mounted. When an absolute
pathname begins with a greater-than symbol, the flrst element named in the pathname is
assumed to be immediately subordinate to the system volume root directory. Thus, if the
system volume name is SYSOI and the pathname given is >DIRI>FILEA, the full path­
name becomes ASYSOI>DIRI>FILEA.

Another volume, USERI, can also contain a >DIRI>FILEA access path and can be
known to the system; the two access paths are made unique by requiring that the root
directory be specified when referring to the second volume. The full pathname of this file
on the second volume is thus AUSERI>DIRI>FILEA;

Relative Pathname and Working Directory
A relative pathname is one that does not begin with the circumflex or greater-than

symbol. For a relative pathname that does not begin with a less-than symbol, the first (or
only) name in the pathname identifies a directory or file that is immediately subordinate to
a directory known as the working directory. The working directory is the user's current
position in the flle system hierarchy. .

A simple name is a special case of the relative pathname. It consists of only one element: .
the name of the desired entry in the working directory.

Working Directory
The initial setting of the working directory is derived from values in the -WD argument

of the EGR (enter group request), EBR (enter batch request), or SO (spawn group)
command, or the -HD argument of the LOGIN command. (Refer to the Commands manual
for details.) This directory can be changed by system service macro calls and commands.

A relative pathname can consist of one or more elements. If a relative pathname contains
more than one element, each element except the last is a directory name, the flrst immedia­
tely subordinate to the current working directory level, the second immediately subordinate
to the first, and so on. The last or only element can be either a directory name or a file
name, depending on the function being performed, as described previously.

In some cases, it may be necessary for a user to refer to a flle contained in a directory sub­
ordinate at some level to the same directory as that to which his own working directory is
subordinate. He has two alternative ways of making this reference; he can use an absolute
pathname, or he may use a special form of relative pathname that beings with a less-than «)
symbol.

Figure 3-1 shows some relative pathnames and the full pathnames they represent when
the working directory pathname is:

>UDD>PROJ1>USERA

Device Pathnames
Reference to any device is through the Symbolic Peripheral Device (SPD) directory, which

is subordinate to the system root.

Device Files (Other Than Disk And Tape) - The general form of a device file pathname is:

>SPD>dev _name

where dev _name is the symbolic name deflned for the card reader, punch, printer, or
ter!!1inal device during system building.

Tape Files - The general form of a tape file (device) pathname is:

>SPD>dev _name [>volid [>fllename]]

where dev _name is the symbolic name deflned for the tape device during system building,
volid is the name of the tape volume, and fllename is the name of the flle on the volume.
Tape devices are always reserved for exclusive use; i.e., the reserving task group has read and
write access, but other users are not allowed to share the me.

FILE SYSTEM 34 CB20

(

Disk Device Files - The general form of a disk device-level access pathname is:

>SPD>dev _name [>volid]

where dev _name is the symbolic name defined for the disk device during system building,
and volid is the name of the disk volume.

This pathname format is used only when access to the entire volume is required, e.g.,
during a volume copy or volume dump.

If the volid is not supplied, reservation of the disk is exclusive; i.e., the reserving task
group has read and write access, but other users are not allowed to share the file. This path­
name form is used when creating a new volume.

Relative Pathname

DELTA
OLD>DELTA
<USERB>ALPHA
«PROJ2>USERA>DELTA
<

I

USERA

I
DELTA

OLD

DELTA

Full Pathname

1\ SYSOl>UDD>PROJl>USERA>DELTA
1\ SYSOl>UDD>PROJl>USERA>OLD>DELTA
1\ SYSOl>UDD>PROJl>USERB>ALPHA
1\ SYSOl>UDD>PROJ2>USERA>DELTA
1\ SYSOl>UDD>PROJl

SYSOI

I
UDD

I I
I I

PROJI PROJ2

I I
USERB USERA

I I
ALPHA DELTA

Figure 3-1. Sample Path names

FILE SYSTEM 3-5 CB20

If the volid is specified, reservation is read/share; i.e., the reserving task group has read
access only, other users may read and write. This pathname form is used when dumping
selected portions of a volume without regard to the hierarchial file system tree structure.

The following are examples of device pathnames:

Peripheral Device
Line printer
Exclusive tape volume
File on exclusive tape volume
Exclusive diskette
Nonexclusive disk volume

Special Pathname Conventions

Pathname
>SPD>LPTOI
>SPD>MT902>VOL3
>SPD>MT902>VOL3>FILEA
>SPD>DSK02
>SPD>RCD01>V23X

Star names and equal names are special path name conventions available for use with
certain utility programs. They provide shorthand methods of specifying a related set of
entry names to commands.

Star Convention
A star name is an entry name that identifies a group of entries within a single directory.

It is composed of one or more nonnull components, one of which consists of an asterisk
(star), and can contain up to 12 ASCII characters, none of which can be the greater than
(», less than «), or circumflex (A) characters.

A star name can be used only as the final entry name of an input pathname for the
following commands:

o COpy
o COMPARE
o LIST NAMES
o LIST CREATION DATE

These commands perform their function for each entry identified by the star name.
A star name identifies all directory entries having an entry name that matches the star

name. A special type of matching is performed in which components of a star name that do
not contain an asterisk are compared with corresponding components of an entry name,
while other entry name components are ignored. Entries identified by a star name all have
similar names in that they are all determined by the star name template. For example, the
star name * .IN.A refers to all three-component entry names ending in .IN.A (Macro Pre­
processor include files) in the working directory.

An asterisk may appear in any component position of an entry name; each asterisk is
treated as a special character. Each asterisk character used in a star name designates any
number of characters (including none) appearing in the corresponding component position
of the entry name. A double asterisk (**) may be used to indicate any number of contig­
uous component positions within an entry name. One or more single asterisks may appear in
a star name; only one double asterisk component may be used. For ~xaIIlpie, the star
name *.MY _PROG. ** identifies all multiple-component file names, the second component
of which is MY _PROG, in the working directory.

A question mark character (?) may be used within a star name to match any character
position that appears in the corresponding component and character position within that
component of the entry name. Multiple question marks may be specified, each representing
exactly one character position. For example, the star name * .MY _ ????? * identifies all
three-component file names, the second component of which is an eight-character name
beginning with MY _, in the working directory.

For complete details concerning the star convention, refer to the Commands manual.

Equal Convention
Two commands that accept pairs of pathnames as their parameters (i.e., COPY and

COMPARE) allow the final entry name of the first pathname (input) to be a star name and

FILE SYSTEM 3-6 CB20

~
(

(

the final name of the second pathname (output) to be an equal name. An equal sign as a
component of the output pathname means that the character string from the corresponding
component of the input pathname is to be substituted for the equal sign. Use of this con­
vention allows the user to copy or compare multiple input files without specifying complete
individual names. Output file pathnames are determined by the equal name convention after
the input file pathnames containing star names have been resolved.

The equal names convention provides a powerful mechanism for mapping certain char­
acter strings from the first pathname into the second pathname of the pair. Such a mecha ..
nism helps to reduce typing required to specify the second pathname, and it can be essential
for mapping character strings from the entry names identified by the star name into the
equal name, because these character strings are not known at the time the command is
issued.

Under the equal convention, the mapping of character strings from the star name into the
equal name is performed according to rules for constructing and interpreting equal names.
An equal name is an entry name composed of one or more nonnull components, one of
which consists of an equal sign, and can contain up to 12 ASCII characters, none of which
can be the greater than (» or less than «) characters. An equal sign can appear in any com­
ponent position of an entry name; each is treated as a special character. The equal sign
represents the corresponding component of an entry name identified by the star name. An
error occurs if the corresponding component does not exist. A double equal sign (==) ~om­
ponent can be used to represent all components of entry names identified by the star name
that have no other corresponding components in the equal name.

The percent sign (%) functions in the same manner as the question mark in a star name.
The percent sign can be used within an equal name to match any character that appears in
the corresponding component and character position within that component of the entry
name identified by the star name. An error occurs if the corresponding character does not
exist or if an equal sign appears in a component that also contains a percent sign. Multiple
percent signs can be specified, each one representing exactly one character positon.

For example, the command

COPY RANDOM.DATA_BASE SORTED.=

creates a duplicate copy of the input file in the working directory, but assigns the name
SORTED. DATA_BASE to the duplicate file.

likewise, the star convention can be used to address all files with a specific component
name in the working directory. The command

COPY *.DATA_BASE =.DATA

copies all two-component entry names with DATA_BASE as the second component and
assigns the name DATA as the second component of the newly created files.

DATA FILE ORGANIZATIONS AND ACCESS

The operating system supports four disk file organizations and one magnetic tape file
organization. Descriptions of data file organizations and their file formats are found in the
Data File Organizations and Formats manual.

Data File Organizations
The file organizations for disk are:

Sequential - Records are accessed in consecutive order. Variable-length records are
handled in variable-length formats. A record can be updated (Le., rewritten) or appended
to the file. If a record is deleted, the position it occupied cannot be reused.
Relative - Records are accessed sequentially or directly by their record position relative
to the beginning of the file. Variable-length records are handled in fixed-length formats.
A record can be updated (Le., rewritten), deleted, or appended to the file. If a record is
deleted, the position it occupied can be used for a new record.

FILE SYSTEM 3-7 CB20

Indexed - Records are logically ordered by record key value. Records can be accessed
sequentially in key sequence or directly by key value. Variable-length records are handled
in variable-length formats. A record can be updated, deleted, or inserted in key sequence
into available free space. When no space is available in key sequence for an inserted record,
the record is placed in an overflow area.
Fixed Relative - Records are accessed sequentially or directly by their record position
relative to the beginning of the file. Only fixed-length records are supported. A fixed­
relative file can be restricted to nondeletable records. A record can be updated or
appended to the file; if deletable records are allowed, the deleted record position may be
used for new record data. The fixed-relative file organization is used in applications where
the file is to be used on or is from a BESI or BES2 Executive system. A fixed-relative file
is incompatible with file organizations on other GCOS systems.

The only file organization supported for magnetic tape is Sequential. A tape file can
contain fixed- or variable-length records. A record can be appended to the file, but it
cannot be updated or deleted.

Data File Access
The languages COBOL, FORTRAN, and RPG use logical file organizations as described

above. Refer to the language reference manuals for the relationship between a language's
logical file and the system's physical file organization. Each language provides statements
for manipulating files. Files can be manipulated by assembly language programs through
File and Data Management macro calls to the Monitor or through the physical I/O drivers;
both methods are described in the System Service Macro Calls manual.

File Concu"ency
Concurrent read or write use of a file is established by the task group that reserves the

file. Concurrency has two aspects: (I) it establishes how tasks in the reserving task group
intend to access the file, and (2) it establishes what the reserving task group allows other
task groups to do with a file. If the file is already reserved, a task group's concurrency
request will be denied when its intended access conflicts with the access permitted by
another task group. The concurrency request will also be denied if what it allows others
to do conflicts with the access already established by another task group. For example, if
a task group reserves the file exclusively, other task groups are denied access. Of if a task
group permits read only access but does not permit write access, other readers are allowed
but writers are denied access.

Concurrency is controlled through the GET command or through the $GTFIL system
service macro call. The possible combinations of access intended for the reserving task group
and the sharability permitted other task groups are given in Table 3-1.

TABLE 3-1. DISK FILE CONCURRENCY CONTROL

Reserving Task Group

Read only

Read or Write

System File Concu"ency

Other Task Groups

Read only (Read share)
Read or Write (Read/write share)
No read, no write (Exclusive use)
Read only (Read share)
Read or Write (Read/write share)

Compiler generated programs, commands, Sort, and other system software always
request exclusive concurrency for files that they reserve for a user. The operator termi­
nal must be reserved with read/write shared concurrency to allow concurrent access by
many task groups. For this reason, the command argument -COUT specifying the list
output file cannot be the operator terminal. If the command-in and user-in files are on

FILE SYSTEM 3-8 CB20

(

disk, they are reserved with read-only shared concurrency; if assigned to a user terminal,
they are reserved with exclusive concurrency. The user-out and command-out files are
always reserved for exclusive use.

Record Locking (Shared File Protection)
The record locking facility is an optional file access feature that provides protection

of and controls contention for records within shared disk files. The first user to access
(read or write) a record locks the record, making it inaccessible to other concurrent users
of the file until the task group causing the lock releases the record. Any contention for
the locked record causes the system to note the interference and to issue an error return
code.

The capability to perform record locking is a configuration option that the user must
specify during system initialization. Locking is performed on a file by a specific request
when the file is reserved; this is accomplished by a $GTFIL system macro call or by a
GET command that uses the -LOCK argument. Locking is performed on a control
interval basis on either a READ or WRITE operation. When the user accesses an
unlocked record in a shared file, the control interval containing that record is marked
for exclusive use. Other users sharing that file are denied access to that record and to
any other record contained in the control interval until the record is unlocked. Subse­
quent attempts by other users to access a locked record cause interference, in which
case access is refused and the user creating the lock is notified. Locked records are
released upon explicit user request ($ULREC), when the file is closed, or when the task
group terminates.

The first reserver of a file establishes the pattern for all other users of the file. If the
user who first reserves the file does not request locking, no subsequent reservation of the
file can request locking. Conversely, if the user who first reserves the file requests
locking, all subsequent reservations of the file must also request locking. A user, however,
can always read records whether or not they are locked by another user by specifying
read-only access with read/write sharing by others. The integrity of the data he reads is
not guaranteed. (Concurrency control is described under the GET command in the
Commands manual and under the $GTFIL macro call in the System Service Macro Calls
manual.)

FILE SYSTEM BUFFERED OPERA nONS
A buffer is a storage area used to compensate for a difference in rate of flow of data,

or time of occurrence of events, during transmission of data from one device to another.
As used in I/O programming, the term buffer refers to an I/O area in systems that pro­
vide the possibility of I/O overlap. Buffering is the process of allocating and scheduling
the use of buffers. In sequential data processing, for example, overlap of input operations
and processing can be achieved by anticipatory buffering; i.e., the next block is read into
memory before it is needed. The program can then process records from block n while
block n+ 1 is being read into memory.

This system supports two types of buffered operations: one for unit record and termi­
nal devices, the other for disk and magnetic tape devices.

Unit Record and Terminal Buffered Operations
All printers and most interactive terminals are provided with one File System buffer.

To provide a system buffer for the card reader or terminals configured as file types KDL,
TDH, or TDL, the B parameter in the CLM DEVICE directive must be specified. The
operator terminal (system LRN 0) cannot be buffered. By providing a File System
buffer, asynchronous I/O can be done; i.e., application code can execute in parallel with
I/O transfers.

All terminals (except the operator's) and printers, except file types KDL, TDH, and
TDL, have tabbing capability through software that converts the tab into spaces. Default
tabulation stops are set at position 11 and every tenth position thereafter for the line
length of the device.

Asynchronous I/O operates in two different ways, depending on whether data is obtained
from a device (reading) or transferred to a device (writing).

FILE SYSTEM 3-9 CB20

Buffered Read Operations
An application task issues a logical READ to a File System buffered device. If the

buffer is full from a prior anticipatory read, the data in the buffer is transferred into the
application task's area; then a physical I/O transfer into the system buffer (an anticipa­
tory read) is performed in parallel with continued task execution. If the buffer is not
full, task execution stalls until the anticipatory read is completed.

The timing of the initial anticipatory read performed for the card reader is different
from that of the interactive terminals; afterwards it is the same. An application task
issues an OPEN call to the card reader. Immediately after the OPEN is complete the FILE
System performs an asynchronous anticipatory read into the system buffer while the
application continues execution. All OPEN calls are synchronous.

For interactive terminals, immediately after the OPEN is complete an asynchronous
physical connect is performed while the application continues execution. Assembly or
FORTRAN applications can check the status of the OPEN to see if a READ can be
issued without stalling application execution. File System issues an asynchronous antici­
patory physical read when a status check after the physical connect is complete. The file
status remains busy until the physical read is done and the system buffer is full. At this
point, the file status is "not busy" (i.e., the anticipatory read is successfully completed),
and the application can issue a READ with the assurance of receiving data immediately.
If at any point after the OPEN is issued the assembly or FORTRAN application issues a
READ before the physical connect and anticipatory read have been completed, the READ
is synchronous and further central processor execution is stalled on this application until
the anticipatory read is complete. To avoid status check looping to test the input buffer
status or stalling on a READ, both assembly and FORTRAN applications can put them­
selves into the wait state, thus making tb.e central processor available for lower priority
tasks. After the OPEN, a COBOL application must issue READ requests. The COBOL
application will be put in wait state if it is executing its I/O statements in synchronous
mode. Otherwise, the COBOL run-time package performs the status checks and returns
a 91 status until successful completion. The COBOL program can either loop on the READ
or continue other processing.

The anticipatory read allows an application to control input from more than one inter­
active terminal, each of which represents a data entry terminal. By testing the status of
the system buffer before a READ (FORTRAN, assembly) or by checking for the 91
status return after a READ (COBOL) even if a terminal operator is not present at the
time of the READ request, the application will not be stalled and it can continue to
poll other terminals.

Buffered Write Operations
A buffered write operation to a device works on behalf of the application program in the

same logical manner as the read - the program is permitted to execute in parallel with the
physical I/O transfer to the device. To achieve this parallel processing, no special operation
occurs on an OPEN call and no distinction is made between interactive and noninteractive
file types. Each WRITE call is completed by moving data from the application buffer to the
File System's buffer (performing any detabbing, if requested), initiating the transfer, and
rcturning contiOl to the application program. If the program performs a second WRITE
while the system buffer is still in use for a previous transfer, the application is stalled until
the buffer is available and new data moved into it again. The application can avoid stalling
execution by checking the status of the system buffer before issuing a WRITE to an inter~
active terminal to see if, in a special mode, it is still in use or not (FORTRAN, assembly) or
by testing for the 91 status return after the WRITE (COBOL, for interactive devices only).

If a WRITE call is issued while data is being entered (because of a read) into the system
buffer, the read is allowed to complete and input data is saved in the system buffer, a
synchronous write is reissued by File System, and output data is transferred directly from
the application buffer. However, tab characters are not expanded into spaces by software.

Special considerations for buffered write operations arise because, if a physical I/O error
occurs while data is being transferred from the system buffer to the device, the application
program must be aware that the error occurred on the previous write operation. Furthermore.

FILE SYSTEM 3-10 CB20

(

if an error does occur, the application program may need to have saved (or be able to
retrieve) the data record so that it can be repeated.

Disk and Magnetic Tape Buffered Operations
An assembly language application can request buffers through the system service macro

call to get a file for reservation. If File System needs buffers for blocking or unblocking, it
provides either the number of buffers specified or, by default, one buffer. If no buffers are
needed, none are provided, even if specified. Each buffer contains a disk control interval
(CI) or magnetic tape block. When an application program issues a READ and the desired
record is not in any buffer, the next empty available buffer is filled with the CI or block
containing the record; when all buffers are filled, an active buffer is selected for the next
different CI or block based on a least recent usage algorithm.

I/O assembly language macro calls for disk or magnetic tape operations are synchronous,
and the application stalls until the I/O operation is completed. Asynchronous I/O can be
obtained through File System Storage Management macro calls and, optionally, through
physical I/O (PIO).

SPOOLING TECHNIQUE

SPOOling (Simultaneous Peripheral Operations On-Line) is an I/O technique that
allows the reading and writing of input and output streams on auxiliary storage devices,
concurrently with job execution, in a format convenient for later processing or output
operations.

The following method can be used to spool printer output to one disk device from both
online and batch task groups.

1. Define an online task group whose function is to produce print output files, for example:

CG DP 3 -EFN PR -POOL AB

where PR is the print utility and the other arguments are arbitrary.
2. Put the printer output files on shareable disk files by setting the "user-out" file to

a disk file, which will be created by the FO command if it does not exist, and/or by
using the "-COUT path" option on the assembler and compilers. The -COUT option
puts bulk output on a specified file and also creates the file if it does not exist.

3. Later when a rpint file is to be printed, issue the following command:

EGR DP -OUT >SPD>LPTxx -ARG fullpath [optional PR control]

where "fullpath" is the full pathname of the file to be printed. Optional, PR control
arguments could include -RL, which will release (delete) the print file if normal termina­
tion occurs. The LPTxx is the printer used by the print utility that prints the spooled
data. This example assumes that there is no concurrency conflict for printer use at the
time of printing.

FILE SYSTEM 3-11 CB20

(

(

SECTION 4

SYSTEM ACCESS

SYSTEM CONFIGURATION AND ENVIRONMENT DEFINITION

At larger installations a system programmer might design the configuration files and
the possibly different operating environments to be used at the installation. The daily
startup would be done by an operator. At smaller installations, especially those where
programmers run dedicated applications, each programmer might do the configuration
and startup for his application.

Creation of a usable system consists of a two-step procedure:

o Bootstrap a Honeywell-supplied system startup routine that provides a limited
operating environment for building the files used in the second step

o Specialize the system startup procedure by configuring a system to correspond to
the installed hardware and by defining the environment in which to prepare and
execute applications programs

The bootstrap operation simply consists of turning on the power supply to the hard­
ware, mounting the cartridge disk or diskettes containing the MOD 400 operating system
software, and pressing several control panel keys including bootstrap load to execute a
standard bootstrap routine. The bootstrap operation includes the initial configuration
and startup operations; procedures are executed (I) to configure a limited system con­
sisting of cartridge disks storage modules, or diskettes, and operator terminal, and (2)
to provide a one-user online environment that can be used to specialize system startup,
perform program preparation, or perform application program execution.

In the provided user environment, the user can employ the Editor to create two files
tha t specialize system startup:

o CLM_ USER - Contains configuration directives, which when executed, will con­
figure a system to correspond to the actual installation hardware

o START_UP.EC - Contains operator commands, which when executed, will define
the installation-specific operating environment consisting of task groups

When these files have been created, the system is again bootstrapped. However, this time
directives in the CLM_USER file control the configuration, and operator commands in
the START_UP.EC file define the operating environment. (Refer to the System Building
manual for complete details.)

Configuration directives are available to perform the following functions:

o Describe available central processing unit options, such as the real-time clock, scien­
tific processor, additional overlay areas, and trap save areas.

o Describe peripheral and communications devices and their characteristics.
o Specify the memory pools that partition memory. The system and each user task

group, under which applications execute, must be associated with a single memory
pool. System and user memory pools are discrete.

o Indicate which operating system overlay areas should be permanently resident.
o Indicate that an application-specific bound unit should be permanently resident and

be part of the operating system.

The START_UP.EC file is described later in this section.

SYSTEM ACCESS 4-1 CB20

ACCESSING THE SYSTEM

Ways to Access the System
An installation can simultaneously support several ways to access a system, so a user

must determine the access available at a terminal. For simplicity of discussion, three types
of access will be described. Access can be (1) through a LOGIN command, (2) through
operator control, or (3) through a user's own applications design.

Logging In
The login function allows a user, without operator intervention, to activate an appli­

cation from anyone of the designated terminals. The login function can be activated by
the operator after configuration is complete as described in the Operator's Guide. Depend­
ing on the capability designed and configured for an installation, a user can login in one
of three ways. A user can:

1. Type in a LOGIN command as described in the Commands manual.
2. Type in the abbreviation of a speCific LOGIN command line. A file contains, for

each abbreviation, an image of the LOGIN command line that can either be used at
all login terminals or that might be restricted to designated ones.

3. Turn on the terminal and be logged in through a direct login. Direct login is useful for
transaction processing applications where the user wants to interact with the application
and not the operating system, e.g., an application to provide, on request from the desig­
nated direct login terminals, the current inventory of a product.

Operator Assigned Access
The operator or another user must activate the application that is to be run and also

designate the terminal that is to be used to input commands or user input required by the
program executing the command. Terminals that are used for logging in cannot be assigned
by the operator or another user. An installation can have a mixture of terminals: some
that may be used for logging in and others that may be assigned through the operator or
another user.

User Designed Access
A user at an installation that allows use of the system for a single dedicated application,

must configure and startup the system, act as operator, determine what the application
environment should be, and how to access the system for that application. If an installa­
tion has one terminal, it is used both as an operator terminal and user terminal, as described
in the Operator's Guide.

The Activated Lead Task
When a user successfully gains access to the system, executable code for the lead task

(i.e., the controlling task of the application) is loaded and activated. The lead task can be
designated to be either the command processor or a user application. When the command
processor is the lead task, the user has complete flexibility to control execution hy heing
able to execute any command in the Commands manual. When an application is the lead
task, the command processor is not part of the task group.

COMMAND ENVIRONMENT

The command environment is that environment in which the user can communicate
with the operating system through the use of command lines entered at a terminal or read
from a command file. The essential parts of the command environment, from the user's
point of view, are the command processor and the command input file (command-in).
The command processor is the system software component which reads command lines
issued by the user. It interprets them into procedures that load and initiate execution of
bound units which fulfill the requests represented by the command lines. The command
input file (command-in) is the file from which the command lines are read. It can be a

SYSTEM ACCESS 4-2 CB20

(
',,-

("

terminal device, as in the case of an interactive user, or a command file stored on disk or
on cards, as in the case of a noninteractive user.

Three other files are involved with, but not limited to, the command environment.
These are the user input file (user-in), the user output file (user-out), and the error output
file (error-out).

The user-in file is the file from which a command function, during its execution, reads
its own input. When a task group request has been processed, and as long as no alternate
user-in file is specified as an argument in a subsequent command, the user-in file remains
the same as the command-in file. At the termination of a command which names an alter­
nate user-in file, the user-in file reverts to its initial assignment. The directives submitted
to the Editor following the entry of the EDITOR command, for example, are submitted
through user-in. No specific action is required on the user's part to activate, or to connect
to, user-in unless the directives are to be read from a previously-created disk file. The user
simply invokes the Editor and begins entering editor directives through the same terminal;
the attaching of the terminal to the user-in file is invisible to the user.

The user-out file is the file to which a task group normally writes its output. However,
certain system components (compilers, etc.) also write to list files (path.L) or to the out­
put file defined in the -COUT argument. The user-out file is initially established by the
-OUT argument of the EBR, EGR, or SG command. (Thus, originally, it is the same device
as the error output file device.) It can be reassigned to another device by use of the FO
(file out) command or by the use of the $NUOUT (new user out) system service macro
call. Such a reassignment remains in effect for the task group until another reassignment
occurs. Again using the Editor as an example, any responses from the Editor, such as the
printing of a line of the file being edited, are issued through user-out. As in the case of
user-in, no special action is required of the user to attach his terminal to the user output
file. The only time such action would be required is if the output from the command were
to be directed to some device other than the terminal.

Error-out is used by the system to communicate to the user an error condition which ma)
be detected during the interpretation of a command or its subsequent execution. Such a
condition could be a missing command argument, reported by the command processor,
or a file not found condition, reported by the invoked command. The error output file is
the same as the initial user-out file. The user cannot reassign error-out through a command,
only through a $EROUT system service macro call.

Subsequent paragraphs in this section describe in detail the functions available to the
user at command level.

COMMAND LEVEL

When the system is in a state capable of accepting a command from command-in, it is
said to be at command level. The methods whereby command level is achieved and the
functions that the system performs while at command level are described in the following
paragraphs.

Achieving Command Level
Command level can be achieved in any of several ways. Regardless of the way in which

the system arrives at this state, the system indicates that it is at command level by issuing
a "ready" prompter message at the user's terminal. (This assumes that the user has not
disabled the ready message by issuing a READY _OFF command; if he has, the system
still comes to command level but the user is not informed.)

A user is initially at command level when the lead task of a user task group is the
command processor.

When executing a command function, command level can be returned to in one of two
ways.

o At normal termination of a command function, the system returns to command level
and awaits the entry of another command.' This command can be some other function
that the user desires to execute, or it can be a BYE command, indicating that he has
no further work to do and wishes to terminate the current session.

SYSTEM ACCESS 4-3 CB20

o The user can interrupt the execution of an invoked command by pressing the "break"
or "interrupt" key on his terminal. The system then responds with the break message.
At this point he can enter the START command to resume processing where it was
interrupted, or he can enter a new command as described in the Commands manual.

Functions Performed at Command Level
When a command such as COPY, CWD (change working directory), or EGR (enter group

request) is read by the command processor, the system spawns a task whose objective is to
fulfill the requirements of the command. This action effectively consists of the following
steps:

o A task is spawned naming the requested bound unit i.e., command name. Task
spawning implies task creation, i.e., the allocation and initialization by the system of
any control structures and data areas required for task control.

o The loader is called to load the requested bound unit
o A request for its execution is placed against the created task and the command proc­

essor enters the wait state to await completion of the requested task (command). At
this point the system leaves command level, which can be returned to only by com­
pletion of execution of the command or by pressing the "break" or "interrupt" key
on the terminal, as described previously.

o If the command is an EGR, it places a group request against an application task group
and then the EGR command terminates. The request is queued if there are other out­
standing requests against the application task group from previous EGRs.

o When the command terminates, the spawned task is deleted and a ready message is
optionally issued to indicate that the system has returned to command level and can
accept further commands.

COMMAND·LINE FORMAT

Commands are read and interpreted by the command processor, which executes the lead
task in the batch task group, or can execute as the lead task in an online task group. Each
command causes a task to be spawned within this task group to perform the requested func- '"
tion (e.g., create a task within an existing group, enter a group request, dump a file). When
the execution of a command terminates, control is returned to the command processor,
which can then accept another command.

A command line to the processor is a string of up to 127 characters in the form

command-name [arg1 ... argn]

where command-name is the pathname of the bound unit that performs the command's
function. Each subsequent arg entry is an argument whose functions are described in the
following sections. A command line cannot be continued onto the next line.

Arguments
An argument of a command is an individual item of data passed to the task of the

named command. Some commands require no arguments; others accept one or more argu­
ments as indicated in the syntax of each command description. The types of arguments
used are:

o Positional argument - An argument whose position in the command line indicates to
which variable the item of data is applied. The argument can occur in a command
line immediately after the command name or as the last argument following the con­
trol arguments, as in the LIST NAMES command.

o Control argument - A keyword whose value specifies a command option. A keyword
is a fixed-form character string preceded by a hyphen (e.g., -ECL). It can be alone,
as in -WAIT, or it can be followed by a value, as in -FROM xx.

Except for -ARG or when the last argument of a command line is a positional argument,
keywords of control arguments can be entered in any order in the line, following the initial

SYSTEM ACCESS 4·4 CB20

./

(

positional arguments. The keyword -ARG must be the last argument of a SG, EBR, ETR,
or ST command line. The arguments following the -ARG are passed to the activated (appli­
cation) task.

Spaces in Command Lines
Arguments in command lines are separated from each other by spaces. Unless otherwise

indicated, a space in a command line syntax represents one or more space characters, or
one or more horizontal tab characters, or a combination of these. Spaces can be embedded
within an argument by enclosing the argument in single (') or double (") quote character.
For example, a file name supplied in an argument should have a trailing space if the argu­
ment is bounded by quotes.

Parameters
Arguments are the user-selected items of data passed to a task. In the activated task,

which is written in a generalized manner to handle any set of data passed to it, this data
is known as parameters. If the activated task expects positional parameters, the order of
the command line arguments passed to it must be in the same order as the task's positional
parameters.

Protected Strings
Special significance is attached to the following reserved characters:

o Space (blank)
o Horizontal tab
o Double quote (")
o Single quote (')
o Semicolon (;) (in assembly language)
o Ampersand (&)

It is occasionally necessary to use a reserved character without its special meaning. For
example, a blank 'could be used in a command argument. The protected string des~gn.ators
(the double and single quote) are reserved for this purpose. Reserved characters wlt~m a
protected string (one surrounded by protected string designators) are treated as ordmary
characters. Thus, in an argument

-ARG "ALPHA 2" ALPHA

the space in ALPHA 2 is treated as part of the name.
Another example is the & followed by a numeric in a command-in file. If, for example,

&1 is not to be interpreted as a substitutable parameter, it must be written as &' 1 ' or &" 1 "
(not "&1 ").

Also, since protected string designators themselves are reserved characters, it may be
desirable to suppress their special meaning. For this purpose, two adjacent protected string
designators of the same type within a protected string of that type are treated as a single
occurrence of that character. A protected string designator within a string enclosed by the
complementary protected string designator is treated as an ordinary ~haracter. Both of the
following arguments

-ARG "A""B"

-ARG 'A"B'

result in the string A "B being passed to a command.

ECFILES

The command processor is able to read commands from a source other than an interactive
user terminal. Such a source can be in the form of an EC file. An EC file is one which is con-

SYSTEM ACCESS 4-5 CB20

structed by the user, e.g., using the Editor, and which is destined to be read by the command
processor invoked either by the EC command or when a task group is activated with the com­
mand processor as its lead task. The EC file could contain a series of commands which the
user executes on a frequent basis, such as commands to execute a set of applications programs
that are run at the end of the month to summarize inventory, sales, and accounts receivable.

Startup EC Files
A special application of EC files is their use when activating a task group.
After configuration, i.e., after the CLM USER file of configuration directives is executed,

a user written command file, START_UP ~C, attached to the root directory is executed, if
present. It contains operator commands used, for example, to establish an applications en­
vironment for that installation.

Also, when a task group is activated whose lead task is the command processor, the com­
mand processor will first execute the EC file, working_directory>START UP.EC, ifthere
is one. This file could contain commands used, for example to execute in sequence, without
further user intervention, the tasks of the job.

SYSTEM ACCESS 4-6 CB20

(

SECTION 5

EXECUTION ENVIRONMENT

TASK GROUPS AND TASKS

System control of user applications and system functions is accomplished within the
framework of the task group, which consists of a set of related tasks. The simplest case of
a task can be considered to be the execution of code produced by one compilation or
assembly of a source program (after the code is linked and loaded).

The operating system allows the user to configure a system dedicated to online applica­
tions or a combination of online and batch applications. This flexibility of configuration is
based on the concept of the task group as the owner of the system resources it requires
for execution.

By defining more than one application task group to run concurrently, the user can
achieve multiprogramming. He can step through an application in sequence, by causing
tasks in the group to be executed one at a time; or he can multitask an application, by
causing tasks within the group to be executed concurrently.

Since multiple applications can be loaded in memory at the same time, contending for
system resources, an environment must be defined for each application so that it knows the
limits of its resources. This defined environment is called a task group, whose domain
includes one or more tasks, a memory pool, files, peripherals, and priority levels. By
defining the total system environment to consist of more than one task group, the resources
are divided up so that more than one,application can run concurrently. For Example, mem­
ory is divided into memory pools, and task code of a task group is loaded only into that
task group's pool and obtains dynamic memory from that pool.

By using the resources of one task group repetitively, an application can be run as a
sequence of job or program steps. To achieve this, a task group can be created by a SPAWN
GROUP command to use the command processor, whose function is to process system-level
commands. The command processor is activated as the lead task of the task group. One
method of sequencing the steps of an application task group is to submit a command to the
command processor to read an application command file containing a sequence of names of
bound units (files of executable code), where each bound unit corresponds to a program.
When a bound unit name is encountered in the file, that bound unit is loaded and executed
before the next bound unit name is read. The following is an example of bound unit names
in a command file:

REP_DATA (The name of a program that gathers report data)
PR_RPT (The name of a program that prints the report)

Another method of sequencing application steps is to issue a SPAWN TASK command for
each task to be executed. The SPAWN TASK command causes the task to be loaded,
executed, and then deleted. Provided the command processor is instructed to wait for
completion of each spawned task, the tasks in the task group can be executed in sequence.
For example:

ST I -EFN REP _DATA -WAIT (Spawn a task to gather report data)
ST I -EFN PR_RPT -WAIT (Spawn a task to print the report)

Since the Level 6 can be thought of as a set of processors - the central processor, each
input/output device, and the real-time clock - the above procedure can be used to attain
another effect, that of multitasking within one task group. Consider the situation when the
command processor is the lead task, and it reads a file containing SPAWN TASK commands;
it does not wait for the execution of the individual tasks, but continues to spawn tasks
until it reads an end-of-file or &Q directive. All these spawned tasks are loaded and run

EXECUTION ENVIRONMENT 5·1 CB20

concurrently in this task group, contending among themselves for the resources defined for
the task group. For example:

ST I -EFN REP DATA (Spawn a task to gather report data)
ST I -EFN PR_RPT (Spawn a task to print the report)

The command processor does not have to be the lead task of a task group. An application
consisting of one task could execute in a task group whose lead task is the application task.
Should your application require step control or multitasking, but you do not need the
control through commands, you can generate a task group whose lead task contains
assembly language system service macro calls whose functions are analogous to the CREATE
and SP AWN commands.

The above situations are illustrative and do not exhaust the various ways that you can
control program execution.

To summarize: a task group is the owner of system resources, and the context in which
system control of tasking is accomplished. A task may be characterized as the execution of
a sequence of instructions that has a starting point and an ending point, and performs some
identifiable function. It is the unit of execution of the operating system, and its execution
must be requested through the Monitor software.

The source language from which task code is derived may be any of the languages
supported by the operating system. Source code is compiled (or assembled) and linked to
form bound units consisting of a root and zero or more overlays.

Application Design Benefits of Task Group Use
Designing an application around the task group provides:

o Intertask communication
o Operating system control of multiple, unrelated task groups

Intertask Communication
The tasks in a task group execute asynchronously in response to the interrupt-driven

nature of the operating system and to a linear scan of priority levels assigned to each task
group. Tasks communicate through the control structures supplied with each request for
task execution.

Asynchronous tasks provide effective software response to information received from
real-time external sources such as communications or process control systems. Usually, the
task that is activated to handle the interrupt from the external source has a higher priority
and a shorter execution time than the task that processes the information. The task that
responds to the interrupt will use the operating system to request the execution of the
processing task, supplying along with the request the control structure containing a pointer
to the new information to be processed. The operating system responds to the request by
activating the requested task, or by queuing the request if there are other requests for the
execution of this task still pending.

Communications applications would have a high priority task to examine data received
at random intervals and decide which processing task should handle the dlltll, This high
priority task uses the operating system to queue requests for the processing task, thereby
accommodating peak-load conditions in which data is received faster than it can be
processed.

In a process control system, the real-time clock might provide the interrupt that causes
the high priority task to scan and update temperature, thickness, or raw material level
sensors that monitor the physical status of the process. This information would then be
passed to a processing task that determines the necessary adjustments based on the new
data. Then a third task, having a priority between the other two, could be requested to
make whatever changes are required; for example, to change the flow rate of material
entering the process by closing a valve.

These two brief examples illustrate the value of priority assignments and communication
facilities between tasks.

EXECUTION ENVIRONMENT 5·2 CB20

(

Operating System Control of Task Groups
Operating system control of an application based on the use of multiple task groups is

important for several reasons. First of all, these applications can be thought of as consisting
of multiple, unrelated "jobs" (task groups) made up of one or more "job steps" (tasks).
The sequence of task execution can then be controlled by the operating system (command
processor) as it processes synchronously-supplied commands instead of responding only to
externally-supplied interrupts. The next "step" is started only when the previous step
terminates.

Furthermore, if anyone set of tasks does not fully use the available processing time, the
operating system can make more efficient use of system resources by rotating their use on
the basis of interrupts and priority level assignments.

Finally, the use of independent task groups that are subject to operating system control
prevents one task group from adversely affecting another. If an error occurs in one task
group, it can be aborted while others continue to execute.

To summarize, operating system control of multiple task groups provides these
advantages:

o "Job" and "step" execution sequencing
o Efficient system resource use
o "Job" independence

Generating Task Groups and Tasks
The operating system provides tasking facilities regardless of the source code in which the

application is written. Once generated, all tasks are subject to the same system controls
whether written in COBOL, FORTRAN, RPG, or assembly language. Because COBOL and
RPG do not provide for "tasking" as part of the language syntax, the generation of tasks
consisting of code written in those languages is done via commands. Although tasks written
in assembly language or FORTRAN can be generated at the contro11anguage level, these
languages have a facility for generating task groups and tasks (FORTRAN) without recourse
to commands. Assembly language programs use system service macro calls; FORTRAN has
tasking routines.

From the overall system viewpoint, the actions of the control language in the generation
of task groups and tasks are much more visible than the same capabilities in assembly
language, and will be considered next.

As shown in Table 5-1, commands submitted by the operator and commands submitted
by other users share some of the task group generation functions and also perform unique
functions. The control commands are in three groupings:

o Commands that perform the same function whether submitted by the operator or
another user (an exception being the group creation/deletion commands in the batch
mode)

o Commands entered only by the "system operator"
o Commands contained within the content of an existing task group request

Characteristics of Task Group and Tasks
Task groups and individual tasks can be originated in either of two ways: they can be

"created" or "spawned." The choice depends on application design considerations as well
as the intended functions.

There are important differences between tasks (and task groups) that are generated by a
create function, and those originated by a spawn function. Created task groups and tasks
are permanent; they remain available in memory until they are explicitly removed. Spawned
task groups and tasks are transitory; they perform a function and disappear.

Created task groups and tasks are passive; they must be explicitly requested to execute
in order to perform their intended function. Spawned task groups and tasks cannot be
requested. The spawning of a task group or task is equivalent to a create-request-de1ete
sequence of contro11anguage commands: the task group or task is defined, provided with
system resources and control structures, executes, terminates, and has its resources
deallocated, all in one continuous process.

EXECUTION ENVIRONMENT 5-3 CB20

TABLE 5-1. TASK GROUP AND TASK FUNCTIONS POSSIBLE
FROM ONLINE OR BATCH DIMENSIONS

Commands Operator Commands
Command Online Batch Online Batch
Create Group Yes No Yes Yes
Enter Group Request Yes Yes Yes Yes
Delete Group Yes No Yes Yes
Abort Group Yes No Yes Yes
Spawn Group Yes No Yes Yes
Bye Yes Yes No No
Enter Batch Request Yes Yes NA Yes

Suspend Group Yes NA
Activate Group Yes NA
Abort Group Request Only operator Yes NA

Suspend Batch Group commands exist for NA Yes

Activate Batch Group these functions NA Yes

Create Batch Group NA Yes
Delete Batch Group NA Yes

Abort Batch Request NA Yes

Abort Batch Group NA Yes

Create Task Yes Yes No operator commands

Delete Task Yes Yes exist for these

Enter Task Request Yes Yes functions

Spawn Task Yes Yes

aThe command processor executes in both online and/or batch dimensions.

bNA means not applicable.

FORTRAN or assembly task code may cause extensive action in its own behalf, as
when application task code requests a system service or the execution of another task while
awaiting the completion of the requested task. Each task that requests another supplies
the address of a control structure through which the issuing task and the requested task can
communicate, and which the Monitor software uses to coordinate task processing.

Task Group Identification
Each task group has its own unique identifier. Honeywell-supplied task group identifiers

begin with a $. The system task group identifier is $S; the batch task group identifier is
$B; the Debug task group identifier is $D. The identifier for an online task group, specified
in the create or spawn group command, is a 2-character name that should not have the $
as its first character. The identifier (or group-id) may be indicated or implied in commands
to designate what task group is to be acted upon. The operator may include the task group
identifier in responding to messages from the task group.

MEMORY USAGE

The operating system manages a memory configuration that consists of two different
areas of available main memory: an online dimension and a batch dimension. The online
dimension is subdivided into the system and one or more online pools, which may belong to
more than one task group. The batch dimension is a single memory area or memory pool
that belongs to the batch task group.

EXECUTION ENVIRONMENT 5-4 CB20

/

"- _/

(

(

Memory Layout
The Configuration Load Manager (eLM) reads a directive file, and from the specifications

supplied, it sets up memory pools and indicates to the loader what system and user-written
software is to be resident for the life of the system.

The numbers and sizes of memory pools are specified in MEMPOOL directives to the
eLM. The system and batch pools are defined by an "S" or a "B" on their respective
MEMPOOL directives; all other pool definitions are application online pools.

Figure 5-1 shows a memory configuration consisting of resident operating system (and
possibly user-written) software beginning at location zero, the system pool adjacent to it,
three online pools for use by application task groups, and the batch pool which is always
located at the highest memory address. Online and batch pools are described below, followed
by a summary of the contents of the operating system area and the system pool area.

HIGH MEMORY ..

Online Pools

LOW MEMORY ..

Figure 5-1. Memory After Configuration

Online memory pools are defined in MEMPOOL directives submitted to the eLM
during configuration. The definition of online pools requires careful consideration based
on the following facts:

a The operating system acquires space on behalf of tasks of a task group from the pool
belonging to that task group-not from the system pool (for the exception to this
convention see "Sharable Bound Units" later in this section). This means that work
space for the task and space for some of the file control and other data structures
must be included in the calculation of the task's memory pool size. See the System
Building manual for these size calculations.

a Online pools can be shared by more than one task group.
a The batch pool can be rolled out to accommodate the extension of an online pool

into the batch pool area.

There are two types of online pools, exclusive and nonexclusive pools. Online pools
can also be specified as expandable and may expand into the batch pool space, thus
forcing a rollout of the batch task group. Expandable online pools need not be contiguous
with the batch pool.

EXECUTION ENVIRONMENT 5-5 CB20

Calculation of the desired size of system pools is necessary before a trial configuration
can be made for an application. However, these calculations may be rough approximations in
the early stages of application development. Both the system pool and batch pool (if any)
must be explicitly defined in size. The configuration process allows one physical area of
memory in the online pool area to be defined as having a size equal to the remaining
memory available (* convention) without making precise calculations. When the * con- \"
vention is used for an exclusive pool definition, nonexclusive pools may not be defined.
The * convention for nonexclusive pools is illustrated below.

Exclusive Online Pools
An exclusive pool is one whose boundaries do not overlap those of other pools. An

exclusive pool is defined in a MEMPOOL directive to CLM with "E" as the first parameter.
The lower part of Figure 5-2 shows a configuration of five online exclusive pools. Each
pool is to be used for the tasks of one task group. The pools are shown "empty" as they
would be at the end of the configuration process. The only task code that is loaded into
pool areas as a result of system configuration is the command processor residing in the
system pool area. All other bound units that execute as tasks are loaded in response to
specific commands to the command processor.

, ,
POOL

/AE
I

t

I
POOL

/AD
I

r'

,
I

POOL
/AC ,

v .
.'

'POOL
lAB , .'

ONLINE POOLS

V

TASK
GROUP

LOW MEMORY

POOL
/AA ,

WORKSPACE

THIRD TASK

THIRD TASK CONTROL STRUCTURES

WORK SPACE

SECOND TASK

SECOND TASK CONTROL STRUCTURES

WORKSPACE

LEAD TASK

LEAD TASK CONTROL STRUCTURES

TASK GROUP CONTROL STRUCTURES

Figure 5-2. Exclusive Memory Pools and Contents

The upper part of the figure is an idealized picture of the contents of pool AA at some
instant during processing and shows the memory layout for three concurrent tasks. The
figure does not accurately reflect the fact that memory is allocated and returned (in assembly

EXECUTION ENVIRONMENT 5-6 CB20

c' ..
I "

(

language programs) dynamically when needed, and work space might not be contiguous
to the task code that requests it. Also, memory is allocated in contiguous blocks according
to an algorithm that uses multiples of 32 word blocks to calculate the amount of space
to assign to a pool. So the "holes" that would normally be present as a result of the opera­
tion of the algorithm are missing. The memory manager adds two words for control informa­
tion to the requested amount of space, divides this value by 32, rounds up to the next whole
number, and allocates this calculated amount of memory to a task.

The tasks in pool AA (and in all task groups) have priorities assigned to them that are
relative to the priority of the lead task, eliminating conflict for resources.

The generation of task groups to use the pools in the figure could be carried out entirely
from the operator's terminal or the system START-UP EC command file using the command
processor. Alternatively, after creating a group whose lead task is the command processor,
that group could be used to generate task groups and tasks by reading its command file.

The characteristics of exclusive pools:

o Have "E" as the first parameter on a MEMPOOL directive
o Are an explicit size (the last pool specified need not be given an explicit size)
o Consist of one or more sets (all pools are defined by one or more MEMPOOL

directives)
o Are allocated sequentially beginning at the system pool
o Can be expandable (can cause roll-out of the batch task group)

Nonexclusive Online Pools
A nonexclusive pool set is a set of pools whose boundaries overlap those of other non­

exclusive pool sets so that some memory locations are common to both pool sets. Figure
5-3 shows two pool sets which are really alternative defmitions of the same physical
memory area.

Nonexclusive pools aredefined in MEMPOOL directives to CLM with a blank first
parameter. The characteristics of nonexclusive pools:

o Have a blank first parameter on a MEMPOOL directive
o Are an explicit size (except that the last pool in each pool set need not be given an

explicit size)
o Can consist of more than one set
o Are allocated between the exclusive pools and the batch pool
o Can be expandable (can cause roll-out to the batch task group)

Sharing Memory Pools
There are two ways of sharing memory pools. The first method involves assigning two or

more task groups to the same pool. As these tasks execute, they contend for the same
memory space. Therefore, they should be designed so that they can be suspended or take
some alternative action when no additional memory is available.

The second method of allowing task groups to share memory involves the definition of
nonexclusive pool sets. Figure 5-3 shows how this might be done.

Pool sets SX!SW!SV and SZ!SY represent alternate defmitions of the same physical
area of memory. This method of memory use has the advantage of providing flexible and
efficient use of resources at anyone time. But it has the disadvantage that, unless task
group requests are very carefully planned, software deadlock (memory usage conflicts)
can occur - the operating system does not prevent it. For example, if task groups using the
SZ!SY pool set never execute until those using the SX!SW!SV pool set have terminated,
there will never be a problem of deadlock (if only one task group uses each pool).

However, assume that a task group assigned to pool SY is generated and acquires some
of the pool space, Then, a task group assigned to pool SW is generated and acquires some
space. If each group requested its remaining space, and was willing to wait until the space
was available, a deadlock would occur-neither task would ever complete.

The surest way to avoid potential memory usage conflicts is to define all online pools as
exclusive pools, and additionally to confine pool use to one task group.

EXECUTION ENVIRONMENT 5·7 CB20

MEMPOOL ,SZ,2000"SY. *

Sy

~-;--"'--------";----------T-----l1

I : 1 I

L-----------...i----I j
/ . 1 I:
III

MEMPOOL E.AA,2D48 .. AB,1024,X I 1 1
I 1 1

I I 1
/ I I

I : 1 1
, I : 1 1
: I : I I (-L--+-.L....1. _.L ___ --________ -{ /

I 1
NONEXCLUSIVE POOL AREA I /

L...----'----+·-----,----------f
i :

MEMPOOL ,SX.l000"SW,3500"SV,·

sw

Figure 5-3. Exclusive and Nonexclusive Pool Sets

Batch Pool and Roll-Out
If you configure a system to include a batch pool (by specifying "B" as the first

MEMPOOL parameter), it is a resource of the batch task group, whose lead task is the
command processor. The usual use for the batch dimension is for program development
programs that can be rolled out to provide additional memory for online tasks.

Tasks executing in the batch pool are subject to roll-out when a task executing in an
extendable online pool exhausts its assigned memory pool. The operating system initiates
roll-out of the batch pool as soon as all batch task group I/O transfers are complete. If no
I/O operations are in progress, the task group will be suspended immediately and the
entire pool area written out to the roll-out file (>SID>ROLLOUT) on the bootstrap disk
as one large record.

Online tasks that use the memory extension capability must be designed so that they can
wait for roll-out to occur. Furthermore, unless online task memory requests are coordi­
nated, they could cause "thrashing" -the rapid roll-out/roll-in of the batch pool. Once
roll-out is started, it will complete before roll-in occurs, even though the condition that
caused roll-out has been removed. For example, Task A requests memory; none is available
in its pool; roll-out is requested; Task B immediately releases a block of memory in the same
pool large enough to accommodate Task A's request. Roll-out will proceed anyway. Roll-in
is initiated when the expanded memory usage is over only if no explicit roll-out request is
received.

EXECUTION ENVIRONMENT 5-8 CB20

(

(

Operator commands can be used to cause roll-out and roll-in: the SSPB (suspend batch)
command causes execution of the batch task group to be terminated temporarily and the
group to be rolled out of memory; the ACTB (activate batch) command causes the suspended
batch task group to be rolled back into memory and execution to be resumed.

Batch Task Group
The properties of the batch task group and its tasks are as follows:

o The lead task is always the command processor.
o Tasks can only refer to peripheral devices, or mass storage directories and files that

are marked shareable.
o Task code cannot execute privileged central processor operation codes (I/O, HALT,

LEV).
o On a model 6/43 with a Memory Management Unit (MMU), tasks cannot alter

memory outside the batch pool.
o Tasks cannot issue system service macro calls or commands that alter the set of task

groups defined to the operating system, e.g., CREATE GROUP, DELETE GROUP,
ABORT GROUP, SPAWN GROUP.

a A monitor I/O read request will have its boundaries verified that they fall within the
batch pool.

o Real-time application tasks should not be scheduled for execution under the batch
task group if the batch pool is subject to roll-out.

Operating System Area
In response to CLM directives, the following software components and data structures

will be located in the fixed operating system area after the configuration process is
complete:

o Basic operating system software plus resident overlays (RESOLA directive)
o User-written extensions to operating system (LDBU/or DRIVER directive)
o Device-drivers
o Intermediate request blocks needed fcir task groups (SYS directive)
o Trap save areas (SYS directive)
o Overlay area(s) for system software (SYS directive)
o File control structures (file description block (FOB) for nondisk devices)

The operating system area is fixed-its contents remain the same for the life of the
system - in contrast to other memory areas whose contents can vary. Almost all code loaded
into this area is reentrant so that a single copy of the code is available to multiple users,
thus minimizing memory requirements.

System Pool Area
The area adjacent to the resident software area is called the system pool. This area con­

tains the system task group. In addition, the system pool accommodates the following
elements:

o Current function invoked by an operator command
o Extended trap save areas (TSAs) needed during processing
o Control structures for the batch task group
o Shareable bound units
o File system directory and fIle definition blocks

System Task Group
The system task group differs from other task groups in the following ways:

o Cannot be aborted or suspended
o Always has read and write access to all of memory

EXECUTION ENVIRONMENT 5-9 CB20

o Handles all system dialog (including operator commands) through the designated
operator terminal

o Never terminates, so it cannot be requested

Batch Task Group Control Structures
The following control structures are found in the system pool area whenever a batch

memory pool is configured:

o Group control block (GCB)
o Logical resource table (LRT)
o Logical fIle table (LFT)
o Task control block (TCB)
o Batch request block

File Control Structures in the System Pool Area
The elements in the system pool area that are used for me control consist of:

o File description block (FDB)
o All buffer control blocks (BCB)
o Buffers for shareable fIles

BOUND UNITS

Task code is derived from the source language of programs that are compiled or assembled
to form object units. One or more object units are linked to form a bound unit that is placed
on a fIle. The bound unit is an executable program that can be loaded into memory. A task
represents the execution of a bound unit. Each bound unit consists of a root segment and
any related overlay segments.

Overlays
To minimize the amount of memory required to execute a bound unit containing applica­

tion code, the bound unit can be created as a root and one or more overlays. Object units
whose code is to be loaded as overlays are defined as overlays by the Linker. The use of
overlays requires careful planning so that required code is not lost or repetitively loaded.

Nonf/oatable and Floatable Overlays
Overlays are part of a bound unit which comprises a root or a root and one or more over­

lays. There are two types of overlays: the nonfloatable overlay that is loaded into the same
memory location relative to the root each time it is requested, and the floatable overlay
that is linked at relative location 0 and can be loaded into any available memory location.

Floatable overlays must have the following characteristics:

o External location definitions in the overlay are not referred to by the root or any
other overlay.

o The oveday makes no immediate memory addressing (IMA) refereuces tu itsdf,
and no displacement references to the root or any other overlay.

o The overlay can contain IMA references with or without offsets to the root or any
ot.~er nonfloatable overlay.

o The overlay does not contain external references that are not resolved by the Linker.
o The overlay must be linked after all nonfloatable overlays have been linked.

A user program can use one or more areas of its available memory for placement of float­
able overlays. To be most effective, the program must perform its own memory management
of these areas. To perform memory management, a user-written assembly language overlay
manager must be linked with the root of the program bound unit. Adequate memory space
must also be provided in the pool of the requesting task. If the user program does not con­
trol the placement of a floatable overlay, the system will place the overlay in available
space in available memory.

EXECUTION ENVIRONMENT 5-10 CB20

(

Assembly language programs can use system service macro calls to load and execute non­
floatable overlays; memory management is handled by the Monitor. Similarly, COBOL
programs can use CALL/CANCEL statements to control nonfloatable overlays. FORTRAN
and RPG programs must link a user-written assembly language overlay manager with the
application program.

Resolving References
Forward references can be made to symbols defined in object units to be linked later.

Backward references can be made to symbols previously defined provided that the defmed
symbols were not purged from the Linker symbol table by a Linker BASE or PURGE direc­
tive. Since the specification of the BASE directive removes from the Linker symbol table all
previously defined, unprotected symbols that are at locations equal to or greater than the
location designated in the BASE directive, you must either define all symbols in a non over­
laid part of the root or plan the linking of subsequent overlays so that purging of needed
symbols does not occur.

Floatable overlays can refer to fixed addresses in the root or non floatable overlay, but
cannot refer to addresses in another floatable overlay.

When a root or an overlay of a bound unit is loaded, the loader examines the attribute
tables associated with the bound unit, if an alternate entry point is specified. The loader
tries to resolve any references to symbols that remain unresolved at load time by searching
the system symbol table (i.e., the resident bound unit attribute table); it cannot resolve any
references to symbols that do not exist in that table (Linker symbol tables do not exist at
load time).

Sample Overlay Layout
Figure 5-4 illustrates the layout of overlays in a memory pool AA. The Linker directives

to create and specify the location of these overlays are described in the Program Execution
and Checkout manual.

When the root is loaded, the largest contiguous amount of memory necessary to accom­
modate the root and all nonfloatable overlays is allocated. Except for space for any floatable
overlays, no other memory requests need be made. In the figure, this memory area begins
at relative 0 of the root, and continues to the end of object unit OBJD. The root consists
of object units OBJ1 and OBJ2. When loaded, OBJ5 of overlay ABLE will replace the
previously loaded OBJ2 code of the root. Similarly, the overlay locations were specified so
that OBJC of overlay ZEBRA will replace part of OBJB.

Shareable Bound Units
Using shareable bound units is a way of minimizing application task group memory

requirements while making reentrant code available to multiple tasks. Unlike permanently
resident bound units that are loaded during system configuration, shareable bound units
are transient in the system pool and are loaded during processing. A counter is incremented
each time a request is made for the bound unit, and the unit remains in memory as long as a
task is using the code. As soon as the counter is decremented to zero, the system pool space
occupied by the bound unit is returned to available status.

Operator commands can be used to load and then unload a shareable bound unit.
To be recognized as shareable by the loader and loaded into the system pool, the bound

unit must have been so marked by the linker in response to a SHARE directive when the
bound unit was linked. If the system pool does not have enough space to accommodate the
bound unit, at a given instant, it will be placed in the pool associated with the task group
that requested th,e bound unit, and cannot be shared.

Shareable bound units and the operating system extensions that are loaded when the
system is configured differ in another way. Namely, operating system extensions can be
referred to directly by any task, but a shareable bound unit must be accessed as a task. The
reason for the difference is that an operating system extension is loaded when the system is
configured-its symbols are included in the system symbol table at that time. Since there is
no symbol defmition once configuration is complete, and since a shareable bound unit is
loaded after the system has been configured-no entry for it exists in the system symbol
table, and it must be accessed as a task.

EXECUTION ENVIRONMENT 5-11 CB20

ADDRESS HIGH MEMORY

r-------
ADDITIONAL TASK
GROUP INFORMATION

} OVERLAY FLOAT

f----------
ADDITIONAL TASK
GROUP INFORMATION
f---------

OBJE.O

f---------
ROOT AND OVERLAY AREA UNUSED MEMORY

RELATIVE 0 FOR ROOT
r--------

TASK GROUP CONTROL
STRUCTURES

ADDITIONAL TASK
GROUP INFORMATION
r--------

MEMORY POOL
AS (TASK
GROUPA2
WILL USE
THIS AREA) }, .. "~, " .. ' OBJO.O

f------- ---

{
f----------

OBJC.O

r----;---
LOCA.TION 1105 OBJB.O

1--------ROOT AND OVERLAY AREA

MEMORY POOL
AA (TASK
GROUP A1
WILL USE

OVERLAY FOX

RELATIVE a OF ROOT r-------- THIS AREA) OBJA.O

TASK GROUP CONTROL
STRUCTURES f---------

OBJ6.0

SYSTEM POOL

1
=~~ ~~-------

OVERLAY ABLE

OPERATING SYSTEM

OBJ5.0

LOW MEMORY OBJ2.0

ROOT
RELATIVE LOCATION IN MEMORY
OF MEMORY POOL AA

RELATIVE 0 OF
ROOT

OBJ1.0

TASK GROUP CONTROL
STRUCTURES

CONTENTS OF MEMORY POOL AA

Figure 5-4. Overlays in Memory

Table 5-2 compares permanently resident operating system extensions and transient
shareable bound units.

TABLE 5-2. COMPARISON OF OPERATING SYSTEM EXTENSIONS AND SHAREABLE
BOUND UNITS

Characteristics Operating System Extension Shareable Bound Units

Multiple Users Yes Yes
Permanent Resident (flxed area) Yes No

Temporary Resident (dynamic area) No Yes

Symbols in System Table Yes No

Accessed symbolically? Yes No

Accessed as a task? Vega Yes

Can have overlays? No Yes

Cal~ed by Bound Unit Name Nob Yes

aif the extension is an assembly language bound unit, it may have within it sections of code or control structures
controlled by semaphores which would be accessible to other assembly language tasks.

bThe operating system does not "remember" extensions by their names; a request for one by name results in
another copy being brought into memory.

Loading Bound Units (Search Rules)
The loader follows preestablished search rules when searching through a set of direc­

tories to locate a bound unit to be loaded. The loader initiates the search in response to a
command which contains an argument naming the bound unit to be loaded.

EXECUTION ENVIRONMENT 5-12 CB20

.~.

(

(j

Search rules that regulate the search process define three directory pathnames and the
sequence in which they are used during a search. They are:

o The task group's working directory
o System directory -LIBI argument of the CSD (change system directory) command
o System directory -LIB2 argument of the CSD command

At the completion of command processor start-up, the pathname of the system task
group's working directory is "'system_volume_name, and remains so until modified by
one or more CWD (change working directory) commands. Both system directories are
initially set to >SYSLIBI. The system STARTUP.EC file executed immediately after
configuration should initially be used to change the value of the second system library
searched. It would normally be changed to >SYSLIB2 on a cartridge disk or storage
module system and I\ZSYSOI >SYSLIB I on a diskette system. The operator command
CSD (change system directory) may be used to change pathnames associated with system
directory arguments -LIB I and -LIB2. The pathname of a user task group's working
directory is established through a CWD command or through the -WD argument in the
EBR (enter batch request), EGR (enter group request), or SG (spawn group) commands.

EXECUTION ENVIRONMENT 5-13 CB20

(

(

SECTION 6

TASK EXECUTION

A task may be characterized as the execution of a sequence of instructions that has a
starting point and an ending point and performs some identifiable function. In an assembly
language program, a task can initiate another task for execution or terminate itself by calling
task management functions. Multiple tasks can operate independently of and asynchronously
to each other.

Each application, system, or device driver task operates at an interrupt priority level, one
of the 64 priority levels provided by the hardware/firmware. This section describes the proc­
essing of priority levels, including context saving of interrupted tasks, and the assignment
of priority levels and logical resource numbers to tasks. Communication between tasks, task
coordination, and task handling by the system are also summarized in this section.

INTERRUPT PRIORITY LEVELS

All system tasks, device driver, and application tasks are assigned interrupt priority levels
that indicate the order of their execution. Control of the central processor is given to the
highest active interrupt level. An overview of the priority levels, a description of how the
hardware/firmware processes priority levels, and information on controlling levels (the latter
of interest primarily to the assembly language programmer) are given below.

Processing Priority Levels
A Level 6 central processor provides 64 potential interrupt priority levels that are used by

the hardware to order the processing of events. These levels are numbered from the highest
priority (level 0) to the lowest priority (level 63). Levels 6 through 4 are reserved; level 63 is
the "system idle" level; the intervening levels (5 through 62) are assigned to logical resources,
i.e., devices and tasks.

The determination of which priority level is to receive central processor time is based on a
linear scan of the level activity indicators. The level activity indicators are maintained by the
hardware in four contiguous dedicated memory locations (see Figure 6-1). Each bit that is
"on" denotes an active priority level; each bit that is "off' denotes an inactive level.

MEMORY
LOCATION

0020 ..

0021"

0022"

0023"

BIT
0 1 2

o.
16.

32.

48.

3 4 5 6 7 8,9 10 11 12 13

NOTE: IF THE BIT CORRESPONDING TO AN INDIVIDUAL
LEVEL IS "ON" THAT LEVEL IS ACTIVE IF THE
BIT IS "OFF" THE LEVEL IS SUSPENDED

14 15

.15

.. 31

.47

• 63

llNTERRUPT PRIORITY
LEVEL NUMBER

Figure 6-1. Format of Level Activity Indicators

When a given priority level is the highest active level, it receives all available central proc­
essor time until it is interrupted by a higher priority level or until it relinquishes control by
suspending itself (setting its level activity indicator "off'). If a priority level is interrupted by
a higher priority level, its level activity indicator remains "on" and it will resume execution
of the interrupted logical resource when it again becomes the highest active priority level.
Each time a priority level change occurs, the hardware/firmware saves the context of the
previously highest active level and restores the context of the new highest active level. Inter-

TASK EXECUTION 6-1 CB20

rupting a task, saving the context of a task, selecting and starting the p,ighest priority level
task, and restoring the contex:t of a task are done without software involvement.

When more than one logical reSOUlce is assigned the same priority level, software determines
in round robin fashion, the next active logical resource to resume execution at this level. Thus
a task does not block a level when the task is put in a wait state after a request to wait, wait
on list, request semaphore, terminate, or after a Monitor call that does a wait for a data trans­
fer. Another task on the same level that is ready will be activated.

Interrupt Save Area (ISA)
The context of a level can include the contents of the program counter, the S-register, all

B-registers, the I-register, all R-registers, all M-registers and all SIP and CIP registers. The con­
text is stored in a block of memory known as an interrupt save area. The hardware/firmware
context save/restore function finds the appropriate interrupt save area through a pointer sup­
plied in the interrupt vector for that level. The interrupt vectors are a set of contiguous mem­
ory locations containing an entry for each potentially active priority level and ordered by
ascending priority level number. Figure 6-2 illustrates the order of the priority levels, their
corresponding interrupt vectors, and the format of an interrupt save area.

FUNCTIONS PRIORITY
LEVEL

POWER FAILURE 0

WATCHDOG TIMER RUNOUT

TRAP SAVE AREA OVERFLOW

INHIBIT LEVEL

REAL TIME CLOCK 4

OPERATOR'S TERMINAL DEVICE 5
SYSTEM BOOTSTRAP DEVICE 6

RESERVED

RESERVED

APPLICATION TASKS

IDLE LEVEL 63

11-WORD)
SAF
INTERRUPT
VECTORS

ADDRESS ISA 0

ADDRESS ISA 1

ADDR ESS ISA 2

SEE NOTE

ADDRESS ISA 4

ADDRESS ISA 5

ADDR ESS ISA 6

.

ADDRESS ISA 63

-
r-

SAF
INTERRUPT
SAVE AREA
FOR PRIORITY
LEVEL 5

TSA POINTER

INTERRUPT DEVICE 10

INTERRUPT SAVE MSK

INTERRUPT SAVE MSK

INTERRUPT SAVE MSK

PROGRAM COUNTER

S-REGISTER

B7-REGISTER

B6-REGISTER

Bl-REGISTER

I-REGISTER

R7-REGISTER

Rl-REGISTER

Ml-REGISTER

M7-REGISTER

SIP CONTEXT

CIP CONTEXT

NOTE: The "inhibit" level (priority level 3) does not have Its own ISA; it points to the ISA
of the priority level from which it was entered.

12-WORD)
LAF
INTERRUPT
VECTORS

ADDESS ISA 0

ADDRESS ISA 1

ADDRESS ISA 2

SEE NOTE

AD DR ESS ISA 4

ADDRESS ISA 5

ADDRESS ISA 6

ADDRESS ISA 63

r--

LAF
INTERRUPT
SAVE AREA
FOR PRIORITY
LEVEL 5

TSA POINTER

INTERRUPT DEVICE 10

INTERRUPT SAVE MSK

INTERRUPT SAVE MSK

INTERRUPT SAVE MSK

PROGRAM COUNTER

S-REGISTER

B7-REGISTER

B6-REGISTER

Bl-REGISTER

I-REGISTER

R7-REGISTER

Rl-REGISTER

Ml-REGISTER

M7-REGISTER

SIP CONTEXT

CIP CONTEXT

Figure 6-2. Order of Interrupt Vectors and Fonnat of Interrupt Save Areas (SAF/LAF)

The three highest priority levels have dedicated assignments of special hardware/firmware
functions (viz., incipient power failure, watchdog timer runout, and trap save area overflow).
Priority level 3 is reserved as an inhibit level and level 4 is dedicated to the real-time clock.
Succeeding levels are configured as device levels. Following these are two levels that are re­
served for system use. Except for level 63, the remaining levels can be used for application
tasks. Level 63 is reserved for an always-active software idle loop.

Control of Priority Levels
The operating system controls multiple levels through the use of the LEV (Level Change)

instruction, which provides the following functions:

o Resume - Ascertain the highest active priority level by examining the level activity
indicators. Restore the context of this priority level and continue on this level.

o Suspend - Mark the current priority level as inactive (reset the level's activity indicator);
save the context oLthe current priority level; go into resume state. Except for this des-

TASK EXECUTION 6-2 CB20

(

cription of a firmware state, in this documentation set, the term "suspend" indicates
the logical state of a task as described in the paragraph "How the Operating System
Handles Tasks."

o Activate a Level - Mark the target priority level as active (set the leve1's activity indi­
cator); save the context of the current priority level; go into resume state.

o Inhibit - Mark dedicated, high-priority level as active and immediately assume this level.
Continue execution on this priority level with no context save or restore.

o . Enable - Return to the highest active normal priority level from the inhibit level. If the
highest priority level is the same one from which the inhibit level was entered, do not
perform a context save or restore.

The number of the highest active priority level can be ascertained by interrogation of the
contents of the S-register.

The availability of an inhibit level allows critical sections of code to be executed without
danger of interruption. For example, it may be necessary to temporarily assume the inhibit
level in order to protect short sequences of instructions that modify data structures shared
between levels. '

A standard feature of Level 6 central processors is a real-time clock, which interrupts at a
preassigned priority level (level 4) each time its specified scan cycle has elapsed.

TRAP HANDLING

The operating system provides a means by which certain events which occur during the
execution of a task can be "trapped", or handled by routines which are designed specifically
to cover the condition causing the trap. Events such as the detection of a program error,
hardware error, arithmetic overflow, or uninstalled optional instruction cause traps, control
transfers to designated software routines, to occur.

Traps fall into two classes: standard system traps, for which routines are supplied with the
operating system, and user-specific traps, for which the user can supply his own handler.

An application program can designate which traps are to be handled through specification
of the enable/disable user trap macro calls (see the System Service Macro Calls manual for
details). If an enabled trap occurs in the user program, the trap manager transfers control to
the connected trap handler for the condition causing the trap. A trap that is enabled is local
to a task, that is, it neither affects nor is affected by the handling of the same trap in another
task, even within the same task group.

Any trap which occurs when its handler is not enabled, or which does not have a handler
to process it, causes the executing task to be aborted.

OPERATING SYSTEM FEATURES AFFECTING TASK EXECUTION

The operating system does not monitor resource use either within a task group or among
task groups using the online pools. Tasks and task groups must cooperate in their use of sys­
tem resources to ensure smooth operation of the application.

Peripheral Device Assignments
DEVICE or DRIVER directives processed by the CLM during configuration identify periph­

eral devices to the operating system. (Communication devices require an additional device­
type-specific directive; see the System Building manual for details.) Any online task can use
any peripheral device or disk file. A batch task can use any peripheral device or disk file that
is marked as shareable. The command MF (MODIFY FILE) can be used to change a periph­
eral device, a disk directory, or file to nonshareable and back again. MF won't be recognized
when issued from the batch task group. If just one directory in the full pathname of a file is
marked as nonshareable, that file cannot be used by the batch task group. The MF command
is also used to control accessibility (read-only and write-only) to files created by any program,
but particularly on behalf of a high-level language program that cannot set concurrency re­
strictions as a part of the language syntax. Read/write/share permissions can be set directly
by an assembly language program.

TASK EXECUTION 6-3 CB20

Priority Assignments for Tasks
Priority levels (5 through 62) are assigned according to application design objectives to

system, device driver, and application tasks. Assignment of priorities to system tasks and
driver tasks (performed during configuration) and to application tasks (performed during
task group creation) are described below.

Assigning Priorities to System Tasks
The priority levels for system tasks cannot be explicitly specified; priority levels for device:

are included in the specifications submitted on the DEVICE or DRIVE directives to the CLM
when the system is configured. The two priority levels following the last one assigned to a
configured device are used by the operating system and cannot be assigned to tasks. Table
6-1 summarizes a priority level assignment scheme for tasks and devices.

The table indicates I/O devices, and not device drivers, to stress that each peripheral device
must have at least one level assigned to it; peripherals (other than communications devices)
cannot share a level. If there are two printers, each must be assigned a unique level even
though there is only one copy of a reentrant I/O driver. Communications requires one non­
shareable level (COMM CLM directive) dedicated to processing communications interrupts,
and it must be at a higher level than any communications device. Communications devices
can share a level. For example, four TTYs and one VIP can either share one level or be
configured to use up to five levels. The listed priority arrangement provides maximum
throughput for each device by assigning the high-trans fer-rate devices a higher priority than
the low-transfer-rate devices. The criteria used to specify Table 6-1 might not suit a particu­
lar application and the level assignments should be modified to include other priority
considerations.

TABLE 6-1. PRIORITY LEVEL ASSIGNMENTS FOR TASKS AND DEVICES

Level Use

o Power failure handler

1 Watchdog timer runout

2

3

4

Trap save area overflow

Inhibit interrupts

System clock

Operator's Terminal Device

System bootstrap device

Debug program

Communications interrupt

Communications devices (high transfer rate, e.g., 9600 bps)

Cartridge disks

Communications Devices (low transfer rate, e.g., 1200 bps)

Diskettes

Magnetic tapes

Printers

Card readers

Card punches

KSR

Operator interface manager interrupta

Operating system taska

Input/ output· bound application tasks

Central processor· bound application tasks

63 System idle loop (always active)

- aMandatory, reserved for system use.

TASK EXECUTION 64 CB20

"-_ ..7

',- --

(

Assigning Priorities to Application Tasks
Priorities are assigned to user task groups and tasks when they are created or spawned. The

command to generate a task group contains an argument that represents the base priority
level for the task group. The base priority level is relative to the highest system physical
priority level, i.e., the highest interrupt priority level number used by the system in that
configuration. When a task group is assigned a base priority level of zero, the lead task group
executes at the physical interrupt priority level that is the next level above that of the
highest level system task. When other tasks in the same task group are created or spawned,
they are given level numbers relative to the base priority level assigned to the task group. The
physical interrupt priority level at which a task executes is the sum of the highest system
physical priority level plus one, the base priority level of the task group, and the relative
priority level of a task within that group. This total must not exceed 62.

User tasks that are to execute in the online dimension are usually given higher priorities
(lower level numbers) than those in the batch dimension. Tasks that are I/O bound should
be run at a higher priority than tasks that are central processor bound. This permits 1/0-
bound tasks, which run in short bursts, to issue I/O data transfer orders as needed, wait for
I/O completion, and, while in the wait state, relinquish control of the central processor to
the central processor-bound tasks. Otherwise, if the central processor-bound tasks have a
higher priority, the I/O devices would be idle while I/O bound tasks waited to receive central
processor time.

Logical Resource Number (LRN)
An LRN is an internal identifier used to refer to task code and devices independently of

their physical priority levels. Use of LRNs makes assembly language application task code in­
dependent of priority levels so that if circumstances require a change in priority levels, the
task code does not have to be reassembled.

Device LRNs
LRNs are assigned to devices in the CLM DEVICE directives when the system is configured.

The operator's terminal is assigned to LRN 0 at configuration. The bootstrap device is given
an LRN value of I, and, if an MLCP-connected operator's terminal is configured, the system
assigns it an LRN of 2. Figure 6-3 is an example of priority level assignments for devices and
system tasks and the related device LRNs.

LRN LEVEL

o
1
3
4
5

o

3
4
5
6
7
8
9
10
11

INT
CLOCK
OPERATOR'S TERMINAL
DISK
LINE PRINTER
SERIAL PRINTER
CARD READER
OPERATOR INTERFACE MANAGER INTERRUPT
SYSTEM TASK

Figure 6-3. Example of LRN and Priority Level Assignments
to System Tasks and Devices

Application Task LRNs
LRN assignments to application program tasks are not dependent on the system configur­

ation on which the application task group is running. LRNs are assigned to task code within
an assembly language application program through specification of the create group/task
macro calls, as well as the macro calls that build data structures ($IORB, $TRB, etc.). LRNs
can be assigned at the control language level through the use of the commands (including
operator commands) for creation of tasks groups and tasks. An LRN for an application task
can have any value from 0 through 252. Within a task group, the LRN for each task must be
unique. More than one LRN can be associated with the same level. For example, two tasks
at level 23 can be assigned LRNs of 28 and 29, respectively.

TASK EXECUTION 6-5 CB20

Logical File Numer (LFN)
Logical file numbers are internal file identifiers that are associated with file pathnames

either at the assembly language level, or for high-level languages at the command level,
through GET or ASSOCIATE commands.

Inter/Intra Task Group Communication
Whether or not information can be passed between task groups and tasks depends upon

the following considerations:

o Language in which task code is written
o Use of the same file by more than one task group

Language Considerations
Task code written in assembl¥ language can pass information to other assembly language

tasks in the same task group by using variable-length request blocks. (See the System Service
Macro Calls manual for details about building these data structures.) High-level languages
cannot use this mechanism directly, but would require called subroutines written in assembly
language.

Use of Common Files
Tasks within the same (or different) task group can communicate via disk files. The only

requirement is that the concurrency status be the same for all tasks using the files.

Task and Resource Coordination
Tasks can be coordinated in either of two ways:

o Through the use of tasking requests
o Through the use of semaphores

Task Requests
One task can request another to execute asy:p.chronously with it, or the requesting task can

later wait for the completion of the requested task. Both tasks have access to the request block
provided by the requesting task, and thus can pass arguments between them.

Semaphores
Semaphores support an application-designed agreement among tasks to coordinate the use

of a resource such as task code or a file. A semaphore is defined by a task within a task group"
and is available only to the tasks within that group.

For each resource to be controlled, a semaphore is defined, and given a two-character ASCII
semaphore name. This name is a system symbol recognized by the Monitor, and not a program
symbol that needs Linker resolution. The agreement is: each requestor of a resource whose
use must be coordinated issues appropriate Monitor calls to the named semaphore to request
or to release the resource. The task that defines the semaphore assigns the semaphore's
initial value. The Monitor maintains its current value to coordinate requestors of the resource
being controlled. A requestor obtains use of a resource if the semaphore value is greater than
zero at the time of the request. A requestor is either suspended waiting for the resource or
notified that no resource is available if the value is zero or negative.

Monitor service macro calls are used to:

o Define a semaphore and give an initial value ($DFSM)
o Reserve a semaphore-controlled resource ($RSVSM); this macro call subtracts a resource,

or queues waiter for the resource; i.e., it decrements the current-value counter.
o Release a semaphore-controlled resource ($RLSM); this macro call adds a resource, or

activates the first waiter on the semaphore queue; i.e., it increments the current-value
counter.

o Request the reservation of a semaphore-controlled resource ($RQSM); this macro call
queues a request bloyk (SRB) if the resource is not available. This macro call decrements
the current-value counter.

A semaphore is a gating mechanism, and the initial value given to it depends upon the type of
control you want to exercise.

TASK EXECUTION 6-6 CB20

For example, assume that you want to restrict access to a particular resource to a one-user­
at-a-time order. The mechanism would work in the following way:

1. Task A defines a semaphore by issuing the macro call:

<. $DFSM ZZ

(

Omission of the value parameter causes the initial value to be set at 1.

2. Task B now issues a $RSVSM call; the counter is decremented to 0, Task B gets the
resource for itself knowing that no other task using the semaphore mechanism is
using or can obtain the resource.

3. Task C issures a $RSVSM call; the counter is decremented to -1, Task C is suspended
and put on semaphore queue in first-in/first-out (FIFO) order (Task B is still using the
resource).

4. Task B issues a $RLSM when it finishes with the resource; the counter is incremented
to 0, Task C now gets the resource. After the $RLSM for Task C, the value is I again.

Use of resources by more than one user at a time can be arranged by adjusting the initial
value of the semaphore, e,g., an initial value of 2 allows two users, a value of 4 allows four
users, and so on, depending on the nature of the resource and its intended use.

If it is undesirable for a task to be suspended while a resource is in use, the $RQSM macro
call can be used instead of $RSVSM to reserve a resource. $RQSM is an asynchronous reser­
vation request ($RSVSM is a synchronous request) which causes a request block to be queued
for the resource,so that the issuing task can do other processing before the needed resource
is available.

HOW THE OPERATING SYSTEM HANDLES TASKS

More than one task can be concurrently active under the operating system. For example,
in a multiprogramming environment, a task in each of several task groups can be active and
compete for system resources. Another possibility can be a multitasking application where
several tasks executing under one task group can be active to compete for system resources
among themselves and with tasks from other task groups. A COBOL or RPG program exe­
cutes as a single task. A FORTRAN or assembly language program can include requests to
activate more than one task and synchronize their execution; these requested tasks can
execute concurrently.

In order for the operating system to sequence the execution of tasks, each task must be
assigned to a priority level. Task competition for the central processor resource is governed
by the hardware/firmware linear priority scan of level activity indicators. Tasks on the same
priority level execute serially in the order in which they are requested. The highest priority
active task receives all available central processor time until it is interrupted by a higher
priority task or until it waits, terminates, or is placed in hold. As a result of this linear
ordering of task priority, care must be taken that high-priority tasks do not consume an
excessive amount of central processor time at the expense of lower priority tasks. A task
that has a built-in program loop, to wait for an event occurrence, prevents other tasks at
the same or lower priority levels from executing.

In an assembly, COBOL,'or FORTRAN language program, program loops might not be
necessary since a wait function can be invoked by a task, at some point after a related re­
quest has been made, to suspend itself and it will be later reactivated at the time of event
completion.

It should be noted that all device drivers are considered to be tasks in the above sense;
using the File System, buffered device drivers can execute concurrently with tasks. Drivers
execute on the priority levels assigned to individual devices and thus have their own contexts.
The device drivers provided in the operating system are written in reentrant code and are
therefore capable of servicing multiple devices.

A user task becomes active when a command or operator command is issued for it using
a SPAWN GROUP/TASK or an ENTER GROUP/TASK REQUEST. FORTRAN programs
can also call START or TRNON; an assembly language program can call:$RQGRP, $RQTSK,
$SPGRP and $SPTSK to activate a user task.

TASK EXECUTION 6·7 CB20

Tasks may exist in any of the following logical states:

o Dormant - There is no current request for the task. A task enters the dormant state
if it is created but never requested, or a terminate is issued against it. A task
remains dormant until a request is placed against it or it is deleted. If deleted, it is
erased, memory is deleted, and it cannot be reactivated.

o Active - Executing or ready to execute when its priority level becomes the highest
active level in the central processor. A task remains active until it waits, terminates,
or is suspended. In the active state, task execution might stall by not having task code
executed; e.g., the task issues a synchronous input/output order.

o Wait - A task is not executing because it may have caused its own execution to be
interrupted until the completion of an event such as the completion of a requested
task, or until a timer request is satisfied, or until a task releases a semaphore. A waiting
task loses its position in the priority level round robin. The following events always result
in a wait: an I/O order to disk, magnetic tape, operator's terminal or unbuffered card
reader. Task code written in FORTRAN or assembly language will also wait in the fol­
lowing circumstances: a write order to an interactive terminal, or to a printer when a
previous write has not completed; a read order issued before the transfer of the current
message from an interactive terminal is complete (i.e., CARRIAGE RETURN not pressed).
In COBOL, the latter two circumstances result in a wait, if the program is executing its
input/output statements in synchronous mode; otherwise, if in asynchronous mode, the
result is a FILE STATUS return code value 91 with no waiting.

o Suspend - A task is removed from execution by an external human action; e.g., the
operator enters a SSPG (suspend group) command or a user interrupts a program with a
break. The task is activated through another human action; e.g., the operator enters an
ACTG (activate group) command or a user enters a command after a break.

To terminate, tasks of assembly language programs must contain a request to terminate
($TRMRQ) call. Compilers provide this call in the object text and it is executed after the user
completes execution.

When the concurrent execution of more than one task is desired, each task is specified in a
CREATE TASK or SPAWN TASK command or system service macro call.

The procedural code for a requested task is either in a unique bound unit or shared with a
bound unit of a task that was previously created. When a task is requested, the Monitor searches
the table of LRNs of the current task group under which the task is executing for the identifying
LRN, and activates the task, if it is not already active.

EXAMPLE OF MONITOR INTERACTION WITH USER TASKS

The following sequence of events illustrates a typical interaction between the Monitor and
two user tasks within a group. For the purpose of this example, task A has an absolute priority
level 13 and task B an absolute priority level 12. The absolute priority level is obtained by adding
a task's relative priority level, the task group's base priority level, and the highest system physical
priority level plus one.

The accompanying diagram indicates the priority levels at which the central processor runs as .
the sequence of events occurs. The diagram also indicates the consecutive activity of user tasks,
the Monitor and hardware/firmware. The numbers in the diagram correspond to the numbers
in the sequence of events and are explained in order in the text.

TASK EXECUTION 6-8 CB20

.'" '\
.",-j

(

(

HARDWARE
PRIORITY LEVEL
PRIORITY LEVEL 4
(CLOCK MANAGER)

PRIORITY LEVEL 12
(TASK B)

PRIORITY LEVEL 13

LEVEL OF HARDWARE OPERATION

9 -- .. · . · . · . · .
: : 9 10 11 : -----r--: 4 5 6 :- --""---1'- --: .

(TASK A) 2 3 -------+-----1- -----0 : 7 8
-----+I--~

: 12 13 14 15 16 17
---...j---~-- ...

PRIORITY LEVEL 63
(IDLE LEVEL)

____ INDiCATES USER TASK EXECUTION
______ INDICATES MONITOR EXECUTION
••••••• •• INDICATES HARDWARE/FIRMWARE ACTION

User Task Execution

I. Task A is running; task B is requested by
task A, or entered or spawned through a
command.

2. Task A does not issue a wait.

5. Task B begins execution because its priority
level is higher than that of task A.

6. Task B issues a call to the clock manager and
issues a wait function to wait for clock time­
out. Task B is suspended.

8. Task A resumes execution.

9. Task B's clock-related wait times out. The
clock manager interrupts task A. Task B's
priority level is activated. Task B resumes
execution and continues to completion.

10. Task B issues a terminate call to the
Monitor.

12. Task A resumes execution because its
priority level is now the highest active
level.

13. In a multitasking program, task A could
issue a wait call to the Monitor to wait for
completion of task B.

15. Task A continues to completion.

16. Task A issues a terminate call to the
Monitor.

TASK EXECUTION 6-9

Monitor Execution

3. The Monitor places the request in the request
queue for task B. (Assume that there are no
other requests in this request queue.) The
Monitor activates priority level 12.

4. The Monitor examines the request and
ascertains task B's starting address from start
address data accompanying the request.

7. Now operating at the priority level of task A,
the highest active priority level, the Monitor
returns control to task A.

II. The Monitor removes the request from the
request queue for task B. The Monitor
suspends priority level 12.

14. The Monitor detects that task B's request is
marked as terminated. Control is immediately
returned to task A.

17. The Monitor removes the first request from
the request queue for task A. If there are no
additional requests in this request queue, the
Monitor suspends priority level 13. Ifthere
are no remaining active priority levels, the
Monitor now idles at priority level 63.

CB20

SECTION 7
DISTRIBUTED SYSTEMS
FACILITIES

The GCOS system is designed to interface with communications and networking
products to provide components for implementation of a distributed systems environment.
This section describes the following GCOS facilities that use communications software to
perform data transfers: the Remote Batch Facility, the Data Entry Facility, and utility
programs that support file transmission between the Level 6 and other processors.

REMOTE BATCH FACILITY (RBF)

The Level 6 Remote Batch Facility (RBF) is a software package enabling Level 6 hard­
ware to be used in a remote batch processing environment with Level 66 and Series 6000
host processing systems. Remotely located Level 6 peripheral devices can enter jobs into
and receive output from one to four host processors.

The Remote Batch Facility works in conjunction with a host processor and a Front-End
Network Processor (FNP), operating under control of General Remote Terminal Supervisor
(GRTS) or Network Processing Supervisor (NPS) software.

The Remote Batch Facility can use either of two line protocol conventions that control
the flow of data between the Level 6 and the FNP:

o Remote Computer Interface (RCI)
o High-Level Data Link Control (HDLC)

The Remote Batch Facility operates under control of the GCOS 6 operating system.
Remote batch and GCOS 6 local processing functions that are independent of the host proc­
essor can be performed concurrently, provided adequate resources (i .e., memory, peripheral
devices) are available. Local processing of the following types can be performed:

o Program/system development and maintenance
o User-written processing applications
o User-written data communications applications

Remote batch terminal (RBT) software is run as a task executing in a unique task group
and using the resources reserved for that task group. In systems with adequate resources,
the Remote Batch Facility can support the concurrent operation of up to four remote batch
terminals. Each RBT permits the batch entry of remote jobs destined for processing in a
host system and the receipt of output from those jobs. Each RBT is associated with a stream;
i.e., a logical connection that lets data travel between two end points between a device or file
at an RBT and a host processor).

In remote batch processing, the following functions can be performed at an RBT:

o Enter a job or group of jobs for processing by a host processor.
o Combine input from more than one input medium or file into one job.
o Obtain the status of jobs in the host processor.
o Use the transparent binary feature to process cards in nonstandard binary format without

performing checksumming.
o Spool data to a file for temporary storage. Input jobs can be stored on a spool file and

later be transferred to the host. Batch output can be spooled and then printed or punched
at a later time.

DISTRIBUTED SYSTEMS FACILITIES 7-1 CB20

o Direct that job output be sent to any of the terminal's peripheral devices capable of
receiving output, to another RBT, or to the host computer site.

o Backspace an output file and resume output processing from that point.
o Change printer forms as specified on GCOS control cards.
o Abort a file that is being retrieved (output from host) or a job that is being entered

(input to host).
o Restart job output processing, specifying the page and/or line number for printer

output or the card number for punch output.

RBF Configuration
The user must configure the system using configuration directives (see the System

Building manual). He then creates a task group for each RBT, defining initial input and out­
put file assignments, modifying external switches associated with the task group and, finally,
invoking the RBT and identifying its processing stream.

Remote Batch Operations
Remote batch operations are controlled by entering commands from either the Level

6 operator terminal or an RBT console. Operator messages are issued on the console and
define conditions that may require operator action. If necessary, operator responses can be
entered through the console.

The Remote Batch Facility supports multiple communications lines to one to four host
processors. The lines can be either all dedicated (which are always connected), all switched
(which are connected by dialing a telephone and disconnected at the end of each session), or
a mixture of dedicated and switched.

Jobs to be processed can be prepared on cards, and read directly through the card reader
by an RBT. Alternatively, the job deck can be prepared using the Editor and read from a file
in ASCII code. Or, the cards can be spooled to a file and read in GBCD code.

Output records are delivered to a specified output file or device. If the requested device is
in use or inoperable, you can wait for device availability of direct the output to a different
device.

Refer to the Remote Batch Facility User's Guide for a complete description of the Remote
Batch Facility.

DATA ENTRY FACILITY (DEF)

The GCOS 6 Data Entry Facility (DEF) is a multifunctional data entry system. Data can be
entered through an operator control station, validated, edited, verified, and communicated to
a host computer for further processing.

DEF is a disk system combining Level 6 hardware with DEF software. DEF operates under
a task group under GCOS software and can operate simultaneously with other system functions
and tasks. It supports up to 12 operator display stations (VIP 7200 terminals) and up to
six line or serial printers.

The following functions can be performed using DEF:

o Develop forms; create, modify, delete, print, and view forms
o Develop tables; create, modify, lldt:Lt:, print, and view tables. The tabies are used to ensure

that data is entered correctly or to replace data with other specified data.
o Enter or modify data records by using a form as a template. The entire form is displayed

on the screen, and variable (unprotected) areas can be written into or aitered.
o Verify contents of all or specified fields by rekeying the data.
o Print entire files or selected records from files. The printout can be formatted or unfor­

matted (all d~ta in a single record is run together on one or more lines).

DEF functions may be run concurrently with other GCOS 6 facilities such as file transmission'
to and from a host computer.

DISTRIBUTED SYSTEMS FACILITIES 7-2 CB20

(

Interface with Programs
Data entry subroutines can be created to include capabilities such as arithmetic functions

(e.g., batch totals) or additional data validation and editing features. The subroutines are
automatically executed when the operator reaches the fields where they were specified.
Application programs may be run concurrently with other DEF functions; application pro­
grams can be used for functions such as printing reports received on a DEF disk from a host
system or sorting and merging data files. Data entry subroutines and non-data-entry appli­
cation programs can be written in COBOL or assembly language.

DEF Operations
All system operations, including data entry and system control, are performed from the VIP

7200 operator display station. Data entry and control is initiated from the keyboard. User­
generated information (e.g., data entry forms) and system-generated information (e.g., selec­
tion lists and prompting messages), and all entered data are displayed on the screen. Selection
lists indicate which options may be selected (e.g., data entry, supervisory functions). Prompting
messages request entry of specific responses or information.

Data is entered at an operator display station onto a form created for the particular appli­
cation. As data is entered, specified data validation and editing takes place. If an error exists,
an alarm sounds. Error messages are displayed on the bottom line of the operator display sta­
tion. The appropriate correction can be ma~ and, if desired, additional data entered. The
data entered is stored on disk and is available to be processed, viewed, modified, deleted,
printed, or transmitted using the GCOS 6 file transmission utility program.

DEF Supervisory Functions
DEF supervisory functions have the capabilities listed below; access to these functions is

protected via a password to prevent unauthorized or accidental access to the functions:

o Copy forms, tables, and data files
o Rename forms, tables, and data files
o Delete forms, tables, and data files
o Assign any number of operator display stations to a selected printer or change the current

disk volume assignments for forms, tables, and data files.
o Examine and change the system status
o Change the supervisory password

DEF Utilities
Utility routines provide the following capabilities:

o Display (1) form names, (2) names and types of tables (i.e., extract or verify table),
or (3) file names, number of records in each file, and each file's verification status

o Print (1) form names, (2) names and types of tables, or (3) file names, number of records
in each file, and each file's verification status

o Display names of disk volumes to which the operator display station has access for reading.
and writing forms, tables, and data files. /

o Temporarily change disk volumes that forms, tables, and data entry files are read from or
written to for the operator display station at which the user is working.

DEF Configuration

The user must configure the system using configuration directives (see the System Building
manual). He must link the DEF object modules to form a bound unit. He then creates a task
group for DEF and creates DEF-specific tasks.

For a complete description of the Data Entry Facility, refer to the Data Entry Facility
User's Guide manual.

FILE TRANSMISSION BETWEEN LEVEL 6 AND OTHER COMPUTERS
File transmission between the Level 6 and a variety of other processors (Level 6, 62, 64 and

66, Series 200/2000, and non-Honeywell processors) is implemented through three utility pro-

DISTRIBUTED SYSTEMS F ACIUTIES 7·3 C820

grams: TRAN, TRANH, and TRANB. Each of these utility programs permits files to be trans­
mitted to or received from one or more remotely located processors. Each processor must in­
corporate appropriate file transmission software.

The TRAN utility program provides for file transmission between the Level 6 and one or
more Level 66 host processors. The TRANH utility program is used for file transmission
between the Level 6 and other Level 6 processors, or between the Level 6 and Level 62,
Level 64, or Series 2000 host processors. Both TRAN and TRANH transmit files in ASCII
format, using the polled VIP protocol.

A third utility program, TRANB, enables file transmission between the Level 6 and non­
Honeywell processors that use the BSC 2780 protocol; TRANB converts ASCII data in
Level 6 files into EBCDIC 80-character records for transmission, and converts the received
EBCDIC records into ASCII format.

Each file transmission program is invoked bya command (either entered on a terminal
or included within a user EC command file). The command name corresponds to the name
of the utility program invoked: TRAN, TRANH, or TRANB. Each program provides error
analysis. For TRAN and TRANH, ap initiate/accept dialog between file transmission soft­
ware in each of the two processors determines whether a file can be transferred. A restart
capability is available when transmission between two Level 6 processors or b~tween a
Level 6 and a Level 66 processor is aborted due to failure in the transmission line. File
transfer can be restarted at any record in the file being transferred at the time of failure.

Multiple file transmissions between the Level 6 and one or more processors can occur
concurrently. (For example, the Level 6 could transmit files to a Leveh64 and a Level 66
host processor concurrently.) Each file transfer takes place over a different communications
line. An argument in the command that invokes the file transmission program specifies
whether a specific communications line is to remain connected after a file transfer or is to
be disconnected. As long as the line is connected, file transfers can be made by issuing the
appropriate command (TRAN, TRANH, or TRANB) for each transfer.

For details on the use of the file transmission utility programs to transmit files to a spe­
cific processor, refer to the appropriate file transmission manual.

DISTRIBUTED SYSTEMS FACILITIES 7-4 CB20

'",,---

(~

(

APPENDIX A

BES/MOD 400
COMP ATIBILITY

Many areas of GCOS 6 MOD 400 and GCOS/BES are fully compatible, while others require
conversion aids. Fully compatible areas include:

o Source and object text programs
o Register usage at execution time
o Data management functions
o Data file
o Most executive functions

This appendix describes the considerations that must be made in order to run BES programs
under MOD 400 successfully.

EXECUTING BES EXECUTIVE SYSTEM SERVICES UNDER MOD 400

The MOD 400 Monitor and I/O system services are a superset of the BES online Executive
system services. Therefore, the same register interface is used, except:

o $B2 and $B4 - not available for user values under MOD 400.
o $B3, $B4 and $BS - not available for user values under BES.
o MOD 400 uses a system service macro call to request system services instead of the LNJ

instruction used by BES.

There are two methods available to resolve the LNJ macro call and register differences: a
Honeywell-supplied Accommodation Package, or user-coded macro calls.

Honeywell-Supplied Accommodation Package
The Honeywell-Supplied Accommodation Package contains the BES external definition

(EDEF) system service entry points, and issues appropriate MOD 400 macro calls. It can be
loaded as a system extension when CLM initializes a system, or it can be linked as an object
unit with the BES object program.

The BES Executive System services handled by the Accommodation Package fall into
three groups: those that are completely emulated; those emulated, but with restrictions; and
those not emulated at all.

Completely Emulated BES System Services
The following BES Executive system services are completely emulated by the Accommo­

dation Package:

o Request (ZXRQST)
o Wait (ZXWAIT)
o Terminate (ZXTERM)
o Locate RCT (ZXLRCT)
o Overlay Loader (ZXOVL Y)
o Operator Output (ZITYP)
o Operator Reply (ZITYPR)
o 10RB Request (ZIOREQ)
o BES File Manager (ZYFILE)
o Error Handlers (ZUERS, ZUERSR)

BES/MOD 400 COMPATIBILITY A·I CB20

RES System Services Emulated with Restrictions
The following BES Executive system services are emulated with restrictions:

o Buffer Manager Calls (ZXBGET and ZXBPUT)
o Clock Functions (ZXCMGR)
o Dequeue (ZXDQRB)

The BES Buffer Manager get buffer (ZXBGET) and put buffer (ZXBPUT) calls must be
handled by including the Buffer Manager as well as the emulator in the MOD 400 system.
The Buffer Manager can either be loaded as a system extension when CLM initializes the
system, or an object unit version of it can be linked with the BES object program. The pool
parameter table (PPT) is user-created and must reside in the BES program's resulting bound
unit, because MOD 400 does not generate one.

The clock (ZXCMGR) "conmkt," "disconnect," and "millisecond conversion" functions
are not handled by the emulator. The "get date/time" function is also not handled by the
emulator because it does not use the LNJ interface, but an absolute memory interface
(ZXCTOD). However, the (ZXCMGR) "time-of-day ASCII conversion," "date ASCII con­
version," and get-internal-time functions are handled by assuming that the user-supplied five­
word table contains MOD 400 rather than BES values; therefore, it is important that the
program does not manipulate these fields before passing them to the ASCII conversion
functions. As with all monitor and I/O system services, it is recommended that these routines
be coded as macros under BES (see "User-Coded Conversion" below) so that conversion to
MOD 400 will be more easily facilitated by recording the macro rather than attempting to find
all of the Monitor and I/O system services in all programs.

Note:
The "connect-with-wait" function is completely emulated.

Althouth the dequeue function (ZXDQRB) is emulated, a subsequent "post" function
cannot be issued to the dequeued request block. When the dequeue function is issued a
default return code is placed into the referenced request block.

RES System Service Functions Not Emulated
The following functions are not emulated.

o Clock Manager (ZXCMOR) "connect," "disconnect," and "millisecond timer conversion"
functions (i.e., function codes 0, I, and 2, respectively)

o Clock (ZXCTOD) "ascertain date/time" function
o Post (ZXPOST)
o I/O subroutine (ZIOSUB) "common driver" function
o Operator Attention (ZIATTN)

In addition, permanent clock table blocks are not emulated.

User-Coded Conversion
If program development is done under BES for execution under MOD 400, a macro con­

vention can save overhead (required by the Honeywell-supplied Accommodation Package),
although its use necessitates reassembly. The following example illustrates how a task request
macro, which contains an LNJ interface, in a BES program can be modified to use a system
service macro call interface under MOD 400.

Example:

Assume that the following macro definition appears in a BES program:

RTASK

BES/MOD 400 COMPATIBILITY

MAC
LAB
LNJ
ENDM

$B4,?PA
$B5,<ZXRQST

A-2 CB20

(

?PA is a variable that identifies the address of a task request block; this variable is specialized
in the BES program as follows:

RTASK ERRMSG (REQUEST ERROR MESSAGE TASK REQ. BLK.)

Under MOD 400, the macro must be redefined as follows, although the instruction special­
izing the variable parameter need not be altered:

RTASK MAC
$RQTSK ?PA (MOD 400 MONITOR CALL TO REQUEST TASK)
ENDM

This redefinition of the macro call makes it possible to use the BES object program intact
because the $RQTSK macro call generates the proper macro call interface.

EXECUTING BES PROGRAMS UNDER MOD 400

Programs executed under BES can be moved easily to the MOD 400 environment because
the two systems are compatible. BES object text programs can be brought (Le., imported)
into the MOD 400 environment for relinking via the 1M_PAM command (see the Command
manual); once imported, BES object text can be mixed with MOD 400 text. Each member in
a BES PAM file is converted into an MOD 400 sequential file when it is imported; conversely
MOD 400 sequential files can be unloaded (via the EX_PAM command) to a BES PAM file,
in which case each file becomes a member of the PAM file.

However, it is important to note that although BES FORTRAN object text can utilize
the MOD 400 FORTRAN run-time package, BES COBOL object text requires the BES COBOL
run-time package for execution.

Converting BES Programs to MOD 400
In BES, applications are built entirely by CLM; however, the environment in which MOD

400 applications are executed is constructed in stages.
The MOD 400 operating system is configured/initialized by a bootstrap/CLM sequence,

which corresponds roughly to the following BES CLM commands:
SYS
TSA
CLOCK
ADMOD
DEVICE
DEVFILE
lOS
QUIT

Then, using the operator's terminal and optional command file(s), the operator controls
system capabilities, which correspond to the following BES CLM commands:

SYS(maximum LRN)
DATE

The command is then used to control online applications; the commands used correspond
roughly to the following BES CLM commands:

ADMOD
TASK
ATFILE

After the MOD 400 system is bootstrapped, the MOD 400 CLM is used to build all unchange­
able structures within the operating system. The MOD 400 DEVICE directive is used to specify
all peripherals to the operating system; although this directive performs the same functions
as the BES DEVICE and DEVFILE directives, the BES DEVICE directive allowed a user-written
attention routine to be entered, whereas MOD 400 does not support this capability. In MOD
400, dedicated physical levels, symbolic names, and LRNs are chosen for each device; since

BES/MOD 400 COMPATIBILITY A-3 CB20

all task groups contain these specified LRNs, any task can refer to any peripheral. In addition,
symbolic names are used to allow programs to request specific peripherals when a file is opened.

The MOD 400 CLM directive MEMPOOL is used to define memory pool sizes in the available
memory above the resident Monitor. A task group is executed within one of the memory pools,
each of which is used not only for all code (Le., bound units local to the task group) but also
for control structures for the system to control the task group; these structures include:

o Task group/LRT/LFT
o Command processor task
o Each user task
o System files (user-in, error-out, FCBs and buffers)
o Each FCB (from ASSOC)
o Each intermediate buffer
o Each bound unit

See the System Building manual for information about the sizes of these structures.
The CLM directive LDBU is used to add user bound units to the resident Monitor code;

the following Honeywell-supplied components can be added:

o Accommodation Package
o BES Buffer Manager

The CLM SYS directive allows the selection of the clock frequency and update interval, the
specification of either the SSIP or DSIP simulator, and the setting of the sumber of TSAs. The
CLMIN directive changes the CLM input file (only if the device on which the file exists was
previously defined in a DEVICE directive).

Using operator commands, the operator controls dynamic system characteristics. This capa­
bility makes it possible to change the status of peripheral devices and monitor the status of task
groups. The SET_DATE command is used to initialize the internal system clock time. Then,
using the SPAWN GROUP or CREATE GROUP commands, a task group, in which the appli­
cation will run, must be created (i.e., spawned); this can be done via a stored operator command
processed automatically at the completion of CLM, or at a later time.

If the application consists of a single bound unit and task, the command processor does not
have to be declared as the lead task; in this case, the application can be the lead (and only) task.
The highest LRN and LFN values used must also be specified; in BES, you cannot use a LRN
used by a system driver. In addition, the base level at which the lead task runs is also specified;
the level used by the application cannot duplicate one used by the system (e.g., trap, clock,
etc.,) or a driver. For portability and/or future expansion to the configuration, the base level
of the lead task should be set a few levels below the last one used by the system.

If CREATE GROUP was used, an EGR (ENTER_GROUP_REQUEST) command is used to
activate the lead task of the task group. If the lead task is the command processor, it will read
commands to control the construction and step sequencing within that task group.

The commands can be used to construct a multibound unit application as well as control
sequencing between steps within a task group. The MOD 400 CREATE TASK command is used
+l C! .. _ t... 1_ c 1 ____ ~~~.! ... __ + 1-1.:_1- __ ____ = ____ T n~T ___ ..l 1 ___ +: ____ 11 __ '\ _.L. ___ ..L. _ .1..1 ____ _
~u UvUHv v<1vH ~<11>1\. U 1 <1 ~d~.l\. 01 U UjJ, lL v~ ~dUl1hllv~ d Ulll4. UC Ln.l ~ lULU I. U jJ LlUl1dUY) i:1 :s Li:11 L i:1UUH::S:S

other than the default entry point. In addition, each task created requires a bound unit in which
its start address is located; depending on the shareability of the bound unit, this is done as
follows:

o If the bound unit name is stated explicitly (Le., it is not shareable), memory is allocated
. within the task group's specified memory pool, and the specified bound unit's root
segment is loaded into memory.

o If the specified bount unit is shareable, the first request for it causes it to be loaded into
system-dynamic space; if the unit is already loaded, usage-counts in its bound unit
attribute section (BAS) are updated to show multiple users; the BAS is also updated
when a task's bound unit is specified by stating that it is the same as another defined task
within the same task group bound unit.

BESjMOD 400 COMPATIBILITY A-4 CB20

/'

(

The created tasks can be activated initially via the ETR (ENTER TASK REQUEST) command;
this command' is executed for each task that is to be initially active. If the last ETR is done
with -WAIT, then the command processor will become active again only when that task termi­
nates; otherwise, the command processor is active with the application and can be used to retrieve
status or terminate the application.

If the application uses non-mass storage. peripheral (files), a file management OPEN macro
call identifying the pathname of the peripheral must be executed. For compatibility, the same
filename used in the BES DEVFILE command must be used in the MOD 400 DEVICE command.

If the application uses mass storage files, the pathname identified in the OPEN macro call
may start with a circumflex. (The circumflex is ignored by the BES file manager.) In addition,
the ASSOC command is the functional equivalent of the BES ATFILE command and must be
used as such.

The following BES CLM commands have no equivalent in MOD 400:

o ATLRN
o BUFSPACE
o EQLRN
o TRAP

There are no ATLRN or EQLRN commands because each task running under MOD 400 has
only one LRN, although a procedure can have two LRNs, they will run asynchronously (i.e.,
not serially) with each other, and with the different register context. There is no BUFSPACE
command because the BES buffer management component can be used by the BES object
text program; although the memory area for the buffer pools must be located with the user
program and the pool parameter table (PPT) set up by the user. There is no TRAP command
because MOD 400 does not allow the user to have direct access to the hardware trap vectors;
if this function is needed, a special program, which would conver the MOD 400 trap entry call
and structure into the structure used by the MOD 400 program(s) as well as issue system
Executive service calls to activate the task group's call mechanism when the specified traps occur,
must be written.

The following restrictions exist for programs converted to MOD 400:

1. There is no forward referencing between bound units loaded by the eLM LDBU
directive.

2. There is no symbol resolution between bound units; externally referenced (EREF)
symbols of a bound unit can be resolved only against symbols externally defined (EDEF)
by bound units already loaded by the LDBU command.

3. A task group's bound unit will have no initialization subroutine table (1ST) processing;
an 1ST is processed only if loaded by the LDBU directive.

4. The 1ST routine of the program loaded via the LDBU directive cannot increase the
size of the loaded program as in BES; the size can only be preserved or made smaller.

5. Two or more LRNs cannot be given to the same procedure in such a way that a single
process will be activated in a serial manner when one of the LRNs is referenced.

6. A user-written program must be used to convert the MOD 400 trap call sequence in
the BES type.

7. There is no ATTENTION routine in MOD 400.
8. Privileged instructions that exist in BES programs cannot be executed by programs

running in the MOD 400 batch task group.
9. The LEV instruction cannot be used in either online or batch dimensions under

MOD 400.

BES/MOD 400 COMPATIBILITY A-5 CB20

(

It

APPENDIX B

PROGRAMMING
CONVENVENTIONS

The following programming conventions are provided for designing application programs
to interface smoothly with system software.

MODULE AND FILE NAME CONVENTIONS
Program names and load module names that begin with Z are reserved for Honeywell use

and should not be used for an application program. System module names are six characters
in length; the second character defines the system component. Table B-1 lists the first two
characters of each system module name and the system component that it relates to.

The names of files that are processed by program development software (compiler, assem­
bler, and so on), are given a suffix by the particular component doing the processing.
Table B-2 lists these suffixes.

TABLE B-1. SYSTEM MODULE NAME PREFIXES

Name Prefix System Component

ZA Assembler

ZC COBOL Compiler

ZE Editor

ZF FORTRAN Compiler

ZG Configuration Load Manager

ZH Trap Handler

ZI Input/Output Drivers

ZL Unker

ZM Memory Management

ZO Loader

ZP Macro Preprocessor

ZQ Communications

ZR RPG Compiler

ZS Sort/Merge

ZU Utility Routines and Conversion Aids

ZX Executive

ZY File, Data and Storage Management

ZZ Program units internal to File, Data
and Storage Management

PROGRAMMING CONVENTIONS B-1 CB20

TABLE B-2. SYSTEM PROGRAM FILE NAME SUFFIXES

Suffix File Type

.A

.AO

.C

Assembly language source unit

Default user-out if user-in is disk

COBOL language source unit

.EC Execution command (EC)

.F FORTRAN language source unit

.L List unit

.M Link maps

.0 Object unit

.P Macro Preprocessor source program unit

.Q RPG Compiler generated linker directive fIle

.R RPG language source unit

.WA Writable Control Store (WCS) assembly language
source unit

.WO WCS object unit

CALLING SEQUENCE FOR EXTERNAL PROCEDURES

External procedures are those that are assembled or compiled separately from the calling
procedure. These procedures may be either functions, that is, procedures returning a single
value to the caller, or subroutines, namely, procedures that alter data contained in an area
common to both the procedure and its caller. For example, the FORTRAN mathematical
routines (sine, cosine, etc.) are external procedures. When it is necessary to write an
assembly language external procedure, use the calling sequence described below for com­
patibility with code generated by the language processors.

The external procedure calling sequence generated by the CALL statement in assembly
language, COBOL, FORTRAN and RPG is of the form:

LAB $B7, list
LNJ $B5, <entry
list - Label assigned to the argument list
entry - External label of subroutine's entry point

The external procedure should assume that register B5 contains the address of the caller's
return point and register B7 points to an argument list having the format shown in
Figure B-1.

o 9 10 15

n;>u m

POINTER TO FIRST ARGUMENT

POINTER TO LAST ARGUMENT

RSU: Reserved for system use (must not be modified by called
procedure)

m: Length of argument list given by $AF*n+1 where n is the
number of arguments

Figure B-1. Argument List

PROGRAMMING CONVENTIONS B-2 CB20

("

._-... -_._--

REGISTER CONVENTIONS

The system services uses the following registers without preserving their contents: Rl,
R2, R6, R7, B2, and B4. If the information in these registers is of value to the application
program, it should save the register contents before making a Monitor or Input/Output ser­
vice request. Unless otherwise specified, the following registers will not be altered by the
system services: S, I, R3, R4, R5, Bl, B3, B5, B6, B7, T, RDBR, CI, SI, Sl, S2, S3, and the
M registers.

ASSEMBLY LANGUAGE PROGRAM INDEPENDENCE

If an assembly language program is to be run under both SAF and LAF systems, the pro­
gram must be written using code that is SAF/LAF independent by reassembly, or code that
is SAF /LAF independent at loading. The rules for preparing these types of assembly lan­
guage programs are given in the Program Preparation manual.

Self-Modifying Procedures
A self-modifying procedure should not be used for two reasons: (1) it cannot be made

reentrant and (2) the instruction as modified might not be executed becasue of the instruc­
tion prefetching feature of the model 6/40. In instruction prefetching, an arbitrary number
of words are prefetched in parallel with the execution of the current instruction. The pre­
fetch buffer is emptied only when a transfer of control occurs. In case of a store into a word
that had previously been prefetched, the prefetch buffer is not cleared and the pre fetched
instruction will be executed as it was prior to modification.

However, if a self modifying procedure must be used, the program must contain code to
remove the prefetched instruction after modification is complete but before the modified
code is executed. This can be done by executing an unconditional branch of the form:

B $+2 FLUSH THE PRE FETCH

PROGRAMMING CONVENTIONS B-3 CB20

(

(

APPENDIX C

HARDWARE SUPPORTED

HARDWARE RESOURCES

Figure C-1 shows the hardware resources that can be used in a Level 6 configuration.
(Minimum configurations are given below.) For a complete description of central processors,
peripheral and communications hardware, refer to the Level 6 Minicomputer Handbook.

CENTRAL MEMORY MDC MSC MTC ISL PROCESSOR

MLCP

~
BJ STORAGE

MODULE

LEVEL 6
COMPUTER

LEVEL 62,
64 OR 66
COMPUTER

NON·
HONEYWELL
COMPUTER

CARD READER

Figure C-l. Level 6 Hardware

HARDWARE SUPPORTED C-l CB20

Memory is available in multiples of 8K words up to 256K words, depending on the central
processor. A multiple device controller (MDC) controls terminals, printers, diskettes, and
card readers. A mass storage controller (MSC) controls fixed and removable cartridge disks,
and storage modules. A magnetic tape controller (MTC) controls 7- and 9-track magnetic
tape devices. The terminals are: keyboard-send-receive (KSR) and automatic-send-receive ,,_
(ASR) teleprinters (no paper tape); cathode ray tube keyboard console (CRT); and type-
writer console.

The multiline communications processor (MLCP) is·a programmable communications con­
troller that is programmed to handle supported asynchronous terminals, synchronous termi­
nals, and communications to other computers. The MLCP can be programmed by the user
to handle devices not supported by Honeywell-supplied software.

The asynchronous terminals supported are: KSR teleprinters, CRT consoles, and visual
information projection (VIP) system terminals with line editing at the keyboard, buffered
line transmission, and full cursor control to edit text from the keyboard.

The synchronous terminals supported are: VIP terminals with keyboard, screen, and
receive-only printer (ROP) that can be used in a poll/select mode of operation. The VIP is an
interactive display terminal that, in addition to line cursor control, provides forms control to
display a form on the screen for formatted data entry, and function code keys to transmit a
function code to be interpreted by the receiver.

The synchronous BSC2780 communications protocol is used for communicating with
other Level 6 computers, Level 66 computers, and non-Honeywell computers.

Figure C-I also illustrates that data transfers occur over communications lines that are
either hard-wired, dedicated, or dial up.

The Intersystem Link (lSL) interconnects two busses to extend the bus, or to share cen­
tral processors, memory or controllers.

EQUIPMENT REQUIREMENTS

Minimum Equipment for Program Preparation
The following equipment is required for program preparation:

o 6/34, 6/36, or 6/43 central processor with full or basic control panel.
o 32K words of memory (SAF mode) or 40K words of memory (LAF mode).
o Operator's terminal (TTU9101, TTU9102, DKU9101, DKU9102, TWU9101,

TWU9104, TWU9106), connected through the multiple device controller (MDC); or
ASR33, ASR35, KSR33, VIP7100, VIP7200 connected through the Multiline Com­
munications Processor (MLCP).

o One million bytes disk storage: two dual diskettes (DIU91 02) connected through the
MDC; cartridge disk (CDU9101, CDU9102, CDU9103, CDU9104) connected through
the mass storage controller (MSC); or storage module (MSU9101, MSU9105, MSU9102,
MSU9106) connected through the MSC.

Minimum Equipment for Online Applications
The following equipment is required to run online applications:

o 6/34, 6/36, or 6/43 central processor with full or basic control panel.
o 24K words of memory (SAF mode).
o 32K words of memory (SAP mode) for communications applications.
o Additional 8K for LAF mode.
o Operator's terminal (TTU9101, TTU9102, DKU9101, DKU9102, TWU9101,

TWU9104, TWU9106) connected through the MDC; or operator's terminal (ASR33,
ASR35, KSR33, VIP7100, VIP7200) connected through the MLCP.

o One half million bytes disk storage: one dual diskette (DIU9102) connected through
MDC; cartridge disk (CDU9101, CDU9102, CDU9103, CDU9104) connected through
the MSC; or storage module (MSU9101, MSU9105, MSU9102, MSU9106) connected
through the MSC.

HARDWARE SUPPORTED C-2 CB20

(-

Hardware Supported
Table C-llists the central processor, peripheral, communications equipment, and other

equipment that can be used.
Modems supported for asynchronous communications terminals are:

o 103,1113,1 202 type modems

For synchronous communications terminals they are:

o 201,203,208 type modems
Also supported are:

o Honeywell modem by-pass for both asynchronous and synchronous terminals
o Modem types where the connection, disconnection and dataset control settings can be

user specified

A modem is not required for a direct connect asynchronous terminal or synchronous ter­
minal with a timing source in the terminal or in the MLCP.

Receive-only printers (ROP) can optionally be used with the VIP7700, VIP7760-2A, or
VIP7700R. The ROPs are TermiNets 100, 150, 300, 1200, the ASR/KSR33, or the ASR35.

Type Number

CPS945X

CPS946X

CPS955X

Memory Options

CMC9001

CMC9002

CMC9503

CMC9501

CMC9502

Central Processor Options (6/40)

TABLE C-l, HARDWARE SUPPORTED

Description

Central Processors

6/34; additional memory to 32K words

6/36; additional memory to 64K words

6,43; additional memory to 64K words (SAF mode), or to 256K words
(LAF mode)

Parity Memory (Single Fetch)

EDAC Memory (Single Fetch)

Cache Memory (6/40)

Parity Memory (Double Fetch - 6/40)

EDAC Memory (Double Fetch - 6/40)

CPF9501 Memory Management Unit

CPF9502 Commercial Instruction Processor

CPF9503

CPF9509

CPF9504

Card Readers

CRU9101

CRU9102

CRU9183

CRU9104

CRF9101

Scientific Instruction Processor

Writable Control Store

Portable Plug-in Control Panel for 6/40

Peripherals

300 cpm, punched card

300 cpm, punched and marked sense card

500 cpm, punched card

500 cpm, punched and marked sense card

51-column option for CRUs 9101, 9102, 9103, 9104

I These modems must be equipped with the option to disconnect the data set after a carrier drop of 110 milliseconds.

HARDWARE SUPPORTED C-3 CB20

Type Number

CRU9108

CRU9109

CRU911 0

CRU9111

CRU9112

CRU9113

Card Readers/Punches

CCU9101

PCU9101

Cartridge Disk Drives

CDU9101

CDU9102

CDU9103

CDU91 04

CDU9114

CDU9116

CDU9115

Storage Modules

MSU9101

MSU9105

MSU9102

MSU9103

MSU9104

MSU9106

Diskette Drives

DIU9101

DIU9102

Line Printers

PRU9103

PRU9104

PRU9105

PRU9106

PRU9108

PRU9109

PRF9102

Serial Printers

PRU9101

PRU9102

PRU9112

PRU9114

HARDWARE SUPPORTED

TABLE Col (CONT). HARDWARE SUPPORTED

Description

300 cpm, punched card reader

300 cpm, punched and IBM marked sense card reader

300 cpm, punched and HIS marked sense card reader

500 cpm, punched card reader

500 cpm, punched and IBM marked sense. card reader

500 cpm, punched and HIS marked sense card reader

400 cpm card reader/punch

100- to 400-cpm card punch

Low density 100 tpi removable disk (1.25 million words)

Low density 100 tpi ftxed and removable disks (2.5 million words)

High density 200 tpi removable disk (2.5 million words) CDU9104

High density 200 tpi ftxed and removable disks (5.0 million words)

100 tpi, low density, ftxed and removable disks (2.5 million words)

200 tpi, high density, ftxed and removable disks (5.0 million words)

High Density removable disk (2.5 million words)

40 megabyte, 411 cylinders

40 megabyte, 411 cylinders

80 megabyte, 823 cylinders

143/127 megabyte

288/256 megabyte

80 megabyte, 823 cylinders

Single diskette

Dual diskette

240 lpm, 96-character set

300 lpm, 64-character set

480 lpm, 96-character set

600 lpm, 64-character set

660 lpm, 96-character set

900 lpm, 64-character set

12-channel vertical format unit option for PRUs 9103, 9104, 9105,
9106,9109

60 lpm, 64-character set

60 lpm, 96-character set

120 cps, 96-character set (Lina 21)

160 cps, 96-character set

C-4 CB20

('

(

TABLE Cl (CONT). HARDWARE SUPPORTED

Type Number

Console Devices

TTU9101

TTU9102

DKU9101

DKU9102

DKU9103

DKU9104

TWU91 01

TWU9104

TWU9106

VIP7200

Magnetic Tape Drives

MTU91 04

MTU9105

MTU9109

MTU9110

MTU9114

MTU9115

MTU9116

MTU9117

MTU9112

MTU9113

MTU9120

MTU9121

Magnetic Tape Controller

MTC9101

MTC9102

Multiline Communications
Processor (MLCP)

MLC9101

MLC9102

MLC9103

Communication-Pacs
(Communications Adapters)

DCM9101

DCM91 02

DCM9103

DCM9104

DCM9110

HARDWARE SUPPORTED

Description

Teleprinter console (ASR33)

Teleprinter console (KSR33)

CRT/keyboard console, 64-character set

CRT/keyboard console, 96-character set

CRT/keyboard console, 64-character set

CRT/keyboard console (VIP7205), 96-character set

Typewriter console, 30 characters per second, 64-character set

Typewriter console, 30 characters per second, 96-character set

Typewriter console, 120 characters per second, 96-character set

CRT/keyboard console

Magnetic tape drive (9-track NRZI, 45 ips)

Magnetic tape drive (9-track NRZI, 75 ips)

Magnetic tape drive (9-track NRZI/PE, 45 ips)

Magnetic tape drive (9-track NRZI/PE, 75 ips)

Magnetic tape drive (9-track PE only, 45 ips)

Magnetic tape drive (9-track PE only, 75 ips)

Magnetic tape drive (9-track NRZI, 45 ips)

Magnetic tape drive (9-track NRZI, 75 ips)

Magnetic tape drive (7-track NRZI, 45 ips)

Magnetic tape drive (7-track NRZI, 75 ips)

Magnetic tape drive (7-track NRZI, 45 ips)

Magnetic tape drive (7-track NRZI, 75 ips)

Magnetic tape controller for NRZI tape drives

Magnetic tape controller for PE/NRZI tape drives

Communications Eqnipment

With Communications-Pac for eight asynchronous lines

With Communications-Pac for eight synchronous lines

Multiline Communications Processor only - requires Communications­
Pac(s) depending on choice of line speeds.

Communications-Pac, two asynchronous lines, with cable

Communications-Pac, one asynchronous line, with cable

Communications-Pac, two synchronous lines, with cable

Communications-Pac, one synchronous line, with cable

Communications-Pac - Autocall unit for one or two synchronous or
asynchronous lines

C-5 CB20

Type Number

DCM91 06

DCM9112

DCM9113

DCM9115

DCM9116

Asynchronous Terminals

ASR-33

ASR-35

KSR-33

VIP71 00

VIP7200

VIP7205

TWUlOOI

TWU 1003

TWUI005

PRUlOOI

PRUl003

PRUl005

Synchronous Terminals

VIP7700R

VIP7700R

VIP7760-2A

VIP7700

VIP7700

Receive-only printer for
CRT terminals

TN300

TN1200

PRUlOOI

PRUl003

PRUl005

Intersystem Link

GIS9010

HARDWARE SUPPORTED

Description

Communications-Pac, one synchronous HDLC line, with cable (for RBF)

Communications-Pac, broadband HDLC line (Bell 301, 303 compatible
to 72 KB)

Communications-Pac, broadband HDLC line (CCITT/V35 compatible to
72KB)

Communications-Pac, broadband synchronous line, (MIL 188C compat­
ible to 72 KB)

Communications-Pac, dual asynchronous line, (MIL 188C compatible to
9.6 KB)

Keyboard/printer, 110 baud

Keyboard/printer, 110 baud

Keyboard/printer, 110 baud

CRT/keyboard, up to 9600 baud

CRT/keyboard, with cursor control, line editing and buffered trans­
mission, up to 9600 baud

CRT/keyboard/display terminal, 96-character set

Keyboard/printer 30 cps

Keyboard/printer 30 cps

Keyboard/printer 120 cps

Printer Terminal 30 cps

Printer Terminal 30 cps

Printer Terminal 120 cps

Nonpolled CRT/keyboard with optional ROP; 2000 to 4800 baud

Polled CRT/keyboard with optional ROP; 2000 to 4800 baud

Polled CRT/keyboard with optional ROP; 2000 to 4800 baud

Nonpolled CRT/keyboard with optional ROP; 2000 to 4800 baud

Polled CRT/keyboard with optional ROP; 2000 to 4800 baud

Printer Terminal 30 cps

Printer Terminal 120 cps

Printer Terminal 30 cps (available on VIP7100 and VIP7200 only)

Printer Terminal 30 cps

Printer Terminal 120 cps

General Purpose Hardware

Intersystem Link (ISL)

C-6 CB20

(

APPENDIX D

GLOSSARY

abort
An operator action resulting in the immediate cessation of operation of a task group or
the operation of the currently executing request in a task group. All resources are re­
turned to the operating system. The bound unit of the lead task of an aborted request
may be retained.

activate
An operator action resulting in the resumption of a previously suspended task group. See
suspend.

active
A task is in the active state when it is executing or ready to execute, when its priority
level becomes the highest active one in the central processor.

address, absolute
A reference to a storage location that has a fixed displacement from absolute memory
location zero.

address., relocatable
A reference to a storage location that has a fixed displacement from the program origin,
but whose displacement from absolute memory location zero depends upon the loading
address of the program (see relocation factor).

algorithm
A set of well-defined rules for the solution of a problem.

application program
A user-written program for the solution of a business, industrial, or scientific problem.

argument
User-selected items of data that are passed to a procedure. For example, Monitor macro
call arguments that are passed to the called system service, or command arguments passed
to the invoked task (see parameter).

ASCII (American Standard Code for Information Interchange)
The interchange code established as standard by the American Standards Association.

attribute, file
Any of the set of file characteristics which .determine its accessibility and degree of pro­
tection from task groups other than its current "owner." Established at fIle creation,
attributes can be modified by a command from the owning task group.

attribute, NONSHARE
The characteristics of a file which deny access by the batch task group.

attribute, READ
The fIle characteristic which permits reading of the file by tasks in a task group.

attribute, SHARE
The fIle characteristic which permits batch task group access to a fIle.

GLOSSARY D-I CB20

attribute, WRITE
The file characteristic which permits writing to a me by tasks in a task group.

base level
See priority level, base.

batch dimension
An execution environment used primarily for non-real-time activities such as program
development.

batch pool
The memory pool from which the batch task group is supplied memory segments. It can
be rolled out by a task executing in an extendable online pool.

batch task group
The single task group that executes in the batch dimension; it owns a set of resources: the
batch memory pool, and the peripheral devices currently available to it.

BCB
See buffer control block.

block
A logical unit of transfer between main memory and a tape device; the size is variable up
to a maximum specified for the file.

Binary Synchronous Communications (BSC)
A communications procedure, using a standardized set of control characters and control
character sequences, for the synchronous transmission of binary-coded data.

bootstrap routine
A routine, contained in a single record that is read into memory by a ROM bootstrap
loader, which reads the operating system into memory. (See ROM bootstrap loader.)

bound unit
The output of one Linker execution that is placed in one me. A bound unit is an execut­
able program consisting of a root segment and zero or more related overlay segments.

break
A user action, initiated by pressing the break or interrupt key, that interrupts a running
task so that commands can be entered, the task can be halted temporarily, or termination
of the task can be effected.

breakpoint
The assembly language instruction BRK, or the point in'a program where such an instruc­
tion is inserted for the purpose of interrupting execution and activating a debugging
program.

buffer control block (BCB)
A control structure, cont~ined in the system pool area, which describes the characteristics
of the buffer.

buffer, I/O
A storage area used to compensate for the differences in the flow rates of data transmitted
between peripheral devices and memory.

BYE
A user action, via command, resulting in the immediate cessation of the currently execut­
ing request in the task group issuing the command, and the return to the system of all
resources except the lead task's bound unit. (See abort.)

GLOSSARY D-2 CB20

I
I

l

(

(

byte
A sequence of eight consecutive binary digits operated upon as a unit.

calling sequence
A standard code sequence by which system services or external procedures are invoked.

CCP
See channel control program.

channel control program (CCP)

CI

A program that resides in the MLCP and processes characters, protocol headers, and
framing characters.

See control interval.

CIP
Commerical Instruction Processor. A hardware option available on 6/40 models that
executes a set of business-oriented instructions.

CIP Simulator
A software component that provides the same functionality as the CIP.

clock frequency
The line frequency, in cycles per second, that is the basis (coupled with the scan cycle)
for calculating the interval between real time clock-generated interrupts.

Oock Manager
A Monitor component that handles all requests to control tasks based on real-time consid­
erations, and requests for the time-of-day and date in ASCII fonnat.

clock request block
A control structure supplied by a task to request a servic.e from the Oock Manager.

clock scan cycle
The time in milliseconds between clock-generated interrupts.

clock timer block
The control structure used by the Clock Manager to control the clock-related processing
of tasks.

command
An order that is processed by the command processor.

command input file (command-in)
Any file or device from which commands to the command processor are read.

command language
The set of commands that can be issued by a user to control the execution of the user's
online or batch task.

command level
The state of the command processor, when it is capable of accepting commands, indicated
by the display of the RDY (ready) message.

command processor
A software component that interprets control commands issued by the operator or a user,
and invokes the required function.

communications device
A device that transfers data over communications lines and is connected through the MLCP.

GLOSSARY D-3 CB20

concurrency
The read or write file access that the reserving task group intends for its tasks and the read
or write file access that the reserving task group allows to other task groups.

configuration
The procedure that involves the use of configuration directives to define a system that
corresponds to actual installation hardware.

control interval (Cl)
A logical unit of transfer between main memory and a disk device; the size is specified by
the user and remains constant for a file. The CI determines the buffer size.

CTB
See clock times block.

CRB
See clock request block.

device driver
A software component that controls all data transfers to or from a peripheral or communi­
cations device.

device-pac
The adapter between an MSC or MDC controller and peripheral device (e.g., printer, disk­
ette drive).

direct access
The method for reading or writing a record in a file by supplying its key value.

directive
A "secondary" level order read through the user-in file to a "secondary" processor.
Examples are Editor, Linker, Patch, Debug, and CLM (configuration) directives.

directory
A structure in a volume directory containing a description of a file or another directory.

disk
A generic name for mass storage devices such as diskette, cartridge disk, and storage
module.

dormant state
A task is in the dormant state when there is no current request for the task.

entry point
A symbolic start address within the root segment of a bound unit.

equal name convention
A special pathname convention that can be used with certain commands to automatically
construct the output pathname entry name when the input pathname entry name has
been resolved.

error output file (error-out)
The file or device by which the systcm communicates error information to tlle user or
operator; established when a group request is entered.

exclusive online pool
A memory pool whose boundaries do not overlap those of other pools.

expandable online pool
An online pool that may expand into the batch pool space.

GLOSSARY D4 (,B20

(-

extent
A group of contiguous allocated sectors on a disk.

external procedure
A routine that is assembled or compiled separately from the program that calls it.

FCB
See file control block.

FDB
See file description block.

FIB
See file information block.

field
A collection of meaningful data consisting of bit patterns that can be translated into
alphabetic, numeric, and special characters in a standard character set.

file
A collection of one or more records.

file control block (FCB)
A File System data structure that controls a user's access to a file. A FeB is pointed to by
an entry in the logical file table, and in turn, points to a file description block. There is
one FCB per user LFN associated with a file.

me description block (FDB)
A File system data structure that describes a file or directory. A FDB is pointed to by a
FCB for a particular file. There is one FDB per file or directory concurrently known
(reserved) in the file system.

me information block
A user-created data structure containing required information for file processing.

file name
A 1- to 12-character name assigned to a collection of related data records, or to a periph­
eral or communications device. For a file on disk this name is assigned when the file is
created. For devices, the name is assigned at system configuration. See pathname.

me organization
A method that establishes a relationship between a record and its location in a file. See
fixed relative, indexed, relative, or sequential file organization.

File System
The operating system software that handles input/output functions of each of the sup­
ported input/output devices.

fixed-length record
A record stored in a file in which all of the records are the same length.

fixed relative file organization
A relative file organization that is compatible with the BES Executive system.

floatable overlay
An overlay that can be loaded into any available memory location within a task group's
memory pool.

function
A procedure that returns a single value to its caller. Compare with subroutine.

GLOSSARY D-S CB20

group id
See task group identification.

HMA
High mem0IY: address. The address, of the highest physical memory location in the central
processor.

IMA
See immediate memory addressing.

immediate memory addressing
A form of addressing a location in main memory by referencing the location directly,
indirectly, or through direct or indirect indexing.

indexed me organization
A disk file whose records are organized to be accessed sequentially in key sequence or
directly by key value.

input/output device
A peripheral or communications device.

input/output request block (lORB)
A control structure used for communication between a program and an I/O driver outside
of the me system.

interrupt
The initiation, by hardware, of a routine intended to respond to an external (device­
originated) or internal (software-originated) event that is either unrelated, or asynchronous
with, the executing program.

interrupt save area
An area used to store the context of an interrupted task. There is one ISA for each task in
memory.

interrupt vector
A pointer to a priority-Ievel-specific memory area called an interrupt save area. There is
one vector for each priority level, each having a dedicated memory location.

Intersystem Link
A hardware element interconnecting two busses, thereby permitting the same functions
between two units on different busses as between two units on the same bus.

10RB
. See input/output request block.

ISA
See interrupt save area.

ISL
See intersystem link.

KSR
I,As. ke)Tboard send-receive teleprinter.

KSR-like terminal
A KSR teleprinter, CRT keyboard, or VIP terminal, which supports the TTY protocol,
either connected to the MDC, or MLCP.

lead task
The controlling task of a task group. The lead task can invoke other tasks to perform
functions on its behalf (Le., Monitor or I/O services).

GLOSSARY D-6 CB20

(

LFN
See logical file number.

LFT
See logical file table.

line
A record stored in a Series 60-compatible file.

line number
The relative position of a record in a line, in a block or control interval in a Series 60-
compatible file.

line protocol handler (LPH)
A communications program that processes messages, interrupts, and timeouts; handles
protocol acknowledgement and error recovery; initializes the channel control program.

loader
A Monitor component that dynamically loads from disk the root and overlays of a bound
unit from disk.

logical file number (LFN)
An internal identifier that becomes associated with a file when it is reserved. LFNs are
used in all file references until the file is removed.

logical file table (LFT)
A data structure for use by the File System. It contains an entry for each logical file
number.

logical resource number (LRN)
An internal identifier used to refer to tasks or devices.

logical resource table (LR T)
A data structure within a task group containing an entry for each logical resource number
used in an application, or a data structure within the system task group containing an
entry for each logical resource number representing a device. Each entry is a pointer to
the resource control table (RCT).

login
A procedure used to gain access to the system. When the login procedure has been exe­
cuted, it spawns a task group to be associated with the user's terminal.

LPH
See line protocol handler.

LRN
See logical resource number.

LRT
See logical resource table.

MBZ
"Must be zero."

MDC
Multiple device controller for peripheral devices other than cartridge disk, storage module,
and magnetic tape.

memory pool
A block of central processor memory from which a task group obtains segments of memory
as required for executable code, control structures and input/output buffers. See batch,
online, or system pool.

GLOSSARY D-7 CB20

Memory Manager
A Monitor component that controls dynamic requests for memory or to return memory to
a memory pool.

MLCP
See multiline communications processor.

MMO
Memory management option. A hardware feature, only on the Model 6/40, which provides
memory management options.

MSC
Mass storage controller for cartridge disks or storage modules.

MTC
Magnetic tape controller for magnetic tapes.

multiline communications processor (MLCP)
A programmable interface between a central processor and one or more communications
devices. Can be programmed to handle specific communications devices.

mul tiprogramming
An operating system capability that allows the concurrent execution of tasks from more
than one task group.

multitasking
An operating system capability that allows the concurrent execution of more than one
task in one or more task groups. .

NATSAP
Next available trap save area pointer.

non floatable overlay
An overlay that is loaded into the same memory location relative to the root each time
that it is loaded.

nonexclusive online pool
A memory pool whose boundaries can overlap those of other nonexclusive online pools.

object unit
A relocatable program unit produced by a single execution of the FORTRAN, RPG or
COBOL Compiler, or by the Assembler, and requiring further processing by the Linker to
produce a bound unit.

online dimension
An execution environment intended for use by application programs, including those
operating in real time.

online pool
A memory pool from which an online task group is supplied memory segments. An online
pool can be shared by more than one task group. See exclusive, nonexclusive or expand­
able online pools.

online task group
A task group that executes in the online dimension; its resources are an online memory
pool and the peripheral devices it requests.

operating system area .
The memory area containing operating system software, user-written extensions to the
operating system, and device drivers.

GLOSSARY Do8 CB20

(

(

operator commands
The set of commands that can be issued by the system operator to control execution in
the online and batch dimensions.

Operator Interface Manager
A Monitor component that manages all messages sent simultaneously by multiple task
groups to the operator terminal or from the operator terminal to a task group.

operator output file (operator-out)
The file or device by which an interactive command communicates with the system
operator; established at system initialization or when a FILE_OUT command is issued.

operator terminal
A KSR-like terminal specified for use in interactive communications between the operator
and Honeywell-supplied and user-written application programs.

overlay segment
A section of a program that can be loaded during execution to overlay another section of
the program. Used when there is insufficient memory to accommodate all the code of a
program. See floatable overlay and non floatable overlay.

parameter
The data received by a procedure that is written in a generalized form to handle a..'1y data
passed to it (see argument).

patch
A portion of code used to modify an existing object or load unit on disk or in memory.

pathname
A character string by which a file, directory or device is known in the me system.

pathname, absolute
A pathname that begins with a greater-than sign (», or a circumflex ~). In the former
case, it is a partial pathname, and is appended to the root directory name of the system
volume to form a full pathname; in the latter case, it is a full pathname, and is used with­
out modification.

pathname, device
A pathname by which reference is made to a peripheral device via the symbolic peripheral
device (SPD) directory. Device pathnames have the general form >SPD>dev _name.

pathname, relative
A pathname that does not begin with a greater-than sign (», or a circumflex (A). It is a
partial pathname consisting of one or more directory names and/or a me name, and is
appended to the working directory pathname to form a full pathname.

pathname, simple
A special form of a relative pathname consisting of a single directory name or file name.
It is appended to the working directory name to form the full pathname.

peripheral device
A device connected through the MDC, MSC or MTC (e.g., a card reader, disk or tape).

physical input/output
Physical input/output, or physical I/O, which is initiated through a request I/O macro call,
outside of the file system.

PIa
See physical input/output.

GLOSSARY D-9 CB20

pool identifier
A two-character name, established at system configuration, by which a memory pool is
identified, and by which a task group is assigned a memory pool when the task group is
created.

priori ty level
A numeric value that may be assigned to a task or device for purposes of controlling proc­
essing. Values range from 0 to 63. The lowest values (highest priorities) are reserved for
system tasks; level 63 is the system idle level. Intermediate levels are available for user
assignment to tasks and devices. The physica1level at which a task executes is the sum of
the highest system physical priority level plus one, the base level of the task group, and
the relative level of the task withinthe group.

priority level activity indicators
Each bit of a 4-word-area in memory is used to indicate whether a task is active at that
level.

priority level, base
The priority level, relative to the system priority level, at which all tasks in a task group
execute. A base level of 0 is the next higher level above the last (highest) system priority
level.

priority level, physical
See priority level.

priority level, relative
The priority level, relative to the base level, at which a user task within a task group exe­
cutes. Relative level 0 is the base level.

priority level, system
The priority level assigned to system devices and tasks.

program name suffixes
A "point-letter" character string such as ".0" for object units, ".A" for assembly language \,
source units, appended to a file name to identify it as a source object, or list unit.

range
The number of bytes transferred during an I/O operation.

record
A collection of logically related fields.

ReT
See resource control table.

reentrant routine
A routine that during execution does not alter itself; a reentrant routine can be entered
and reused at any time, by any number of callers.

relative file organization
A file whose records are organized to be accessed sequentially or directly by their record
position relative to the beginning of the file.

relative level
See priority level, relative.

relative record number
A number representing the position of a record relative to the beginning of the file. The
initial record is relative record number 1.

GLOSSARY D-IO CB20

(

request block
See IORB, TRB, CRB, SRB.

request I/O
The macro call, issued to a driver, that performs physical input/output (PIO).

request queue
A threaded list of request blocks.

resource control table
A control structure created for use by the Monitor to control task processing.

resident bound unit
A bound unit that is permanently configured in memory as an extension to the operating
system.

return address
The address of the instruction in a program to which control is returned after a call to a
subroutine. By convention, this address is usually stored in register B5.

RFU
"Reserved for future use."

residual range
The difference between the number of bytes requested and the number of bytes trans­
ferred during an I/O operation.

ROM bootstrap loader
A firmware routine (activated by pushing the Load key on the control panel) that reads
the first record from a designated disk into memory.

root directory
The base of the directory structure on a disk volume; it has the same name as the volume
name recorded on a disk volume. It is identified by a preceding circumflex (A).

root segment
The controlling segment of a program. It is resident in memory during the entire execution
of the program, and can call overlay segments.

RSU
"Reserved for system use."

search rules
An ordered list of directories that are searched by the operating system when a bound unit
is to be located and loaded or executed.

sector
A I 28-byte portion of a diskette track, or a 256-byte portion of a cartridge disk or storage
module track.

semaphore
A software counter mechanism, available to assembly language programs, and used to coor­
dinate the use of task code or other resources such as files.

semaphore request block (SRB)
A data structure used to control semaphore processing.

sequential access
The method of reading or writing a record in a file by requesting the next record in
sequence.

GLOSSARY D-11 CB20

sequential file organization
A file on disk or magnetic tape whose records are organized to be accessed in consecutive
order.

shareable bound unit
A transient bound unit consisting of reentrant code and residing in the system memory
pool. It is available for execution as a task of more than one task group.

shareable file
Any file that is usable by more than one task concurrently.

SIP
Scientific Instruction Processor. A hardware option on 6/40 models that executes a set of
scientific instructions.

SIP Simulator
A software component that provides the same functionality as the SIP.

source unit
A program written in source language for processing by a compiler or an assembler. Source
units are stored as variable sequential data files.

spanned record
A variable-length record that is segmented and spans one or more control intervals; valid
only for disk-resident sequential files.

spooling
The technique for storing output on disk files for subsequent printing.

SRB
See semaphore request block.

standard II a files
The command-in, user-in, user-out, operator-out, and error-out files.

star name convention
A special pathname convention that can be used with certain commands to perform an
operation on a group of files, thereby eliminating the need for separate commands for
each file.

startup
The procedure that bootstraps a Honeywell-supplied, preconfigured system from disk, to
provide a minimum operating environment.

states (task)
A task can be in the following states: dormant, active, wait, and suspend.

subroutine
Any procedure that alters data in an area common to both the subroutine and its caller.
Contrast with "function".

suspend
An operator action resulting in the temporary cessation of execution of a task group; all
resources are retained by the task group. See activate.

system console
See operator terminal.

system task group
The task group in which all drivers, the clock, the command processor and aIM execute.

GLOSSARY D-12 C820

"

system pool
The memory area from which the system task group and system global structures (e.g.,
BCB and FDB) are supplied with memory segments, and the area where shareable bound
units reside.

system directory
One of the directories that the operating system uses in its search for a bound unit to be
loaded for execution.

task
A sequence of instructions that has a starting point, an ending point, and performs some
identifiable function.

task control block
The system control structure that describes the task's characteristics, including the con­
tents of the hardware interrupt save area (ISA).

task group
A named set of one or more tasks which has a common set of resources; the framework
within which every user and system function operates.

task group identification
A two-character name by which a task group is known to the operating system.

task group resource
One of a set of elements associated with a task group which enables it to perform its func­
tion. A resource can be a task, a central processor priority level, central processor memory,
or a peripheral or communications device.

Task Manager
A Monitor component that handles task requests to activate, wait, or terminate tasks.

task request block (TRB)
A data structure used by one task to request another task and communicate with it.

TCB
See task control block.

terminate
A system service macro call request issued by the currently executing task at the end of
its normal processing.

thrashing
The situation describing the frequent roll-out/roll-in of the batch pool.

transient bound unit
A bound unit that resides in memory as long as there is a request for it.

transparent mode transmission
A data transmission mode that allows data consisting of bytes having any bit configuration
to be transmitted over communications lines. Thus, control characters can be transmitted
as data.

trap
A control transfer caused by an executing program. The transfer is made to a predefined
location in response to an event that occurs during processing.

trap handler
A routine designed to take a particular action in response to a specific trap condition.

'-

GLOSSARY D-13 CB20

Trap Manager
A Monitor component that handles an executing program's transfer of execution control
to a predefined trap location.

trap save area
An area in memory in which certain information is stored when a trap occurs.

trap vector
A pointer to a trap handler. There is one vector for each possible trap condition, in dedi­
cated memory locations.

TRB
See task request block.

TSA
See trap save area.

user identification
A field that identifies the current user of a task group.

user input me (user-in)
The file or device from which a command function requiring directives (e.g., the Editor)
reads its input; it is established when the group request is made. User programs can also
read from this file.

user output file (user-out)
The file or device by which an interactive command communicates with the user; estab­
lished when a group request is made, or a FILE_OUT (FO) command is issued. User pro­
grams can also write to this file.

variable-length record
A record stored in a file in which records have different lengths.

volume header
A control structure on every disk or magnetic tape volume that carries information about
the volume.

volume name
See root directory.

wait
A task is in the wait state when it causes its own execution to be interrupted until a timer
request is satisfied, until another task releases a semaphore, until another task terminates,
or until an I/O operation terminates.

WCS
See Writable Control Store.

wurd
A sequence of 16 consecutive binary digits operated upon as a unit; two consecutive bytes.

working directory
A directory pathname associated with a task group. It begins with a root directory name
and contains zero or more intermediate directory names. It is used by the File System
software to construct a full pathname whenever a task group refers to a relative or simple
pathname.

Writable Control Store
User programmable firmware.

GLOSSARY D-14 CB20

..

(

•

(

ABSOLUTE
ABSOLUTE PATHNAMES, 3-3

ACCESS
ACCESSING THE SYSTEM, 4-2
DATA FILE ACCESS, 3-8
DATA FILE ORGANIZATIONS AND

ACCESS, 3-7
OPERATOR ASSIGNED ACCESS, 4-2
SYSTEM ACCESS, 4-1
USER DESIGNED ACCESS, 4-2
WAYS TO ACCESS THE SYSTEM, 4-2

ACCOMMODATION
HONEYWELL-SUPPLIED ACCOMMODATION

PACKAGE, A-1

ACTIVATED
THE ACTIVATED LEAD TASK, 4-2

ACTIVITY
FORMAT OF LEVEL ACTIVITY INDICATORS

(FIG), 6-1

AREA (S)
FILE CONTROL STRUCTURES IN THE

SYSTEM POOL AREA, 5-10
INTERRUPT SAVE AREA (ISA), 6-2
OPERATING SYSTEM AREA, 5-9
SYSTEM POOL AREA, 5-9

ARGUMENT (S)
ARGUHENT LIST (FIG), B-2
ARGUHENTS, 4-4

ASSEMBLY
ASSEMBLY LANGUAGE PROGRAH

INDEPENDENCE, B-3

ASSIGNING
ASSIGNING PRIORITIES TO

APPLICATION TASKS, 6-5
ASSIGNING PRIORITIES TO SYSTEM

TASKS, 6-4
OPERATOR ASSIGNED ACCESS, 4-2

ASSIGN14ENTS
Exru~PLE OF LRN AND PRIORITY LEVEL

ASSIGNMENTS TO SYSTEM TASKS AND
DEVICES (FIG), 6-5

PERIPHERAL DEVICE ASSIGN14ENTS, 6-3
PRIORITY ASSIGNMENTS FOR

TASKS, 6-4
PRIORITY LEVEL ASSIGNMENTS FOR

TASKS AND DEVICES (TBL), 6-4

BATCH
BATCH POOL AND ROLL-OUT, 5-8
BATCH TASK GROUP, 5-9
BATCH TASK GROUP CONTROL

STRUCTURES, 5-16
REMOTE BATCH FACILITY (RBF), 7-1
REHOTE BATCH OPERATIONS, 7-2
TASK GROUP AND TASK FUNCTIONS

POSSIBLE FROM ONLINE OR BATCH
DIMENSIONS (TBL), 5-4

INDEX

BES
BES SYSTEM SERVICE FUNCTIONS NOT

EUMULATED, A-2
BES SYSTEM SERVICES EMULATED WITH

RESTRICTIONS, A-2
COMPLETELY EMULATED BES SYSTEM

SERVICES, A-1
CONVERTING BES PROGRAMS TO MOD

400, A-3
EXECUTING BES EXECUTIVE SYSTEM

SERVICES UNDER MOD 400, A-1
EXECUTING BES PROGRAMS UNDER MOD

400, A-3

BES-MOD 400
BES-MOD 400 COMPATIBILITY, 2-10, A-1

BOUND UNITS
BOUND UNITS, 5-10
COMPARISON OF OPERATING SYSTEM

EXTENSIONS AND SHAREABLE BOUND
UNITS (TBL), 5-12

LOADING BOUND UNITS (SEARCH
RULES), 5-12

SHAREABLE BOUND UNITS, 5-11

BUFFERED
BUFFERED READ OPERATIONS, 3-10
BUFFERED WRITE OPERATIONS, 3-10
DISK AND MAGNETIC TAPE BUFFERED

OPERATIONS, 3-11
FILE SYSTEM BUFFERED

OPERATIONS, 3-9
UNIT RECORD AND TERMINAL BUFFERED

OPERATIONS, 3-9

CALLING
CALLING SEQUENCE FOR EXTERNAL

PROCEDURES, B-2

CALLS
SEE MACRO CALLS

CHARACTERISTICS
CHARACTERISTICS OF TASK GROUPS AND

TASKS, 5-3
SYSTEM CHARACTERISTICS, 1-1

COBOL
INTERMEDIATE COBOL FUNCTIONALITY

NOT AVAILABLE IN ENTRY-LEVEL
COBOL (TBL), 2-7

COM?4AND (S)

i-I

ACHIEVING COMMAND LEVEL, 4-3
COMMAND ENVIRONHENT, 4-2
COM?4AND LANGUAGE, 2-2
COMMAND LEVEL, 4-3
CGrIJMAND LINE FORMAT, 4-4
COHHANDS FOR DIRECTORY AND FILE

CONTROL, 2-2
CGr-1l·1ANDS FOR EXECUTION

CONTROL, 2-2
COMMANDS FOR PROGRM1

PREPARATION, 2-3

CB20

COMMAND(S) (CONT)
COMMANDS FOR UTILITY SOFTWARE

EXECUTION, 2-3
FUNCTIONS PERFORMED AT COMMAND

LEVEL, 4-4
INTERACTIVE COMMANDS, 2-3
OPERATOR COMMANDS, 2-3
OPERATOR COMMANDS FOR DIRECTORY,

FILE AND DEVICE CONTROL, 2-3
OPERATOR COMMANDS FOR EXECUTION

CONTROL, 2-3
OPERATOR COMMANDS TO MONITOR THE

SYSTEM, 2-3
SPACES IN CO~~ND LINES, 4-5

COMMUNICATION(S)
COMMUNICATIONS SOFTWARE, 2-5
INTER/INTRA TASK GROUP

Cm-1MUNICATION, 6-6
INTERTASK COMMUNICATION, 5-2

COMPARISON
COMPARISON OF OPERATING SYSTEM

EXTENSIONS AND SHAREABLE BOUND
UNITS (TBL), 5-12

COMPATIBILITY
BES-HOD 400 COMPATIBILITY, 2-10,
A-I

COMPUTERS
FILE TRANSMISSION BETWEEN LEVEL 6

AND OTHER COMPUTERS, 7-3

CONCEPTS
FILE AND PATHNAME CONCEPTS, 3-1

CONCURRENCY
DISK FILE CONCURRENCY CONTROL

(TBL), 3-8
FILE CONCURRENCY, 3-8
SYSTEM FILE CONCURRENCY, 3-8

CONFIGURATION
CONFIGURATION LOAD MANAGER, 2-10
DEF CONFIGURATION, 7-3
l4EM.ORY AFTER CONFIGURATION

(FIG), 5-5
RBF CONFIGURATION, 7-2
SYSTE~'1 CO:NFIGUP~7\ ... TIOr-1]\ ... ~lD

ENVIRONMENT DEFINITION, 4-1

CONTROL
BATCH TASK GROUP CONTROL

STRUCTURES, 5-10
Cm.1MANDS FOR DIRECTORY AND FILE

CONTROL, 2-2
COMMANDS FOR EXECUTION CONTROL,

2-2
CONTROL OF PRIORITY LEVELS, 6-2
DISK FILE CONCURRENCY CONTROL

(TBL), 3-8
FILE CONTROL STRUCTURES IN THE

SYSTEM POOL AREA, 5-10

INDEX

CONTROL (CONT)
MACRO CALLS FOR DIRECTORY AND

FILE CONTROL, 2-4
MACRO CALLS FOR EXECUTION

CONTROL, 2-4
OPERATING SYSTEM CONTROL OF TASK

GROUPS, 5-3
OPERATOR COMMANDS FOR DIRECTORY,

FILE AND DEVICE CONTROL, 2-3
OPERATOR CO~1MANDS FOR EXECUTION

CONTROL, 2-3

CONVENTION (S)
EQUAL CONVENTION, 3-6
MODULE AND FILE NAME

CONVENTIONS, B-1
NAMING CONVENTIONS, 3-2
PROGRAMMING CONVENTIONS, B-1
REGISTER CONVENTIONS, B-3
SPECIAL PATHNAME CONVENTIONS, 3-6
STAR CONVENTION, 3-6

CONVERSION
CONVERTING BES PROGRAMS TO MOD

400, A-3
USER-CODED CONVERSION, A-2

COORDINATION
TASK AND RESOURCE

COORDINATION, 6-6

DATA

i-2

DEF

DATA ENTRY FACILITY, 7-2
DATA FILE ACCESS, 3-8
DATA FILE ORGANIZATIONS, 3-7
DATA FILE ORGANIZATIONS AND

ACCESS, 3-7

DEF CONFIGURATION, 7-3
DEF OPERATIONS, 7-3
DEF SUPERVISORY FUNCTIONS, 7-3
DEF UTILITIES, 7-3
RBF- AND DEF-USER'S GUIDE TO

MANUALS (FIG), 1-6
RBF- AND DEF-USER'S MANUAL

GUIDE, 1-6

DEVICE(S)
DEVICE LPNS, 6-5
DEVICE PATHNM1ES, 3-4
OPERATOR COMMANDS FOR DIRECTORY,

FILE AND DEVICE CONTROL, 2-3
PElUPJlERAL .DEVICE ASSIGNMENTS,

6,..3
PRlORlTY LEVEL ASSIGNMENTS FOR

TASKS AND DEVICES (TBL), 6-4

DISK
D;I;SK AND MAGNETIC TAPE BUFFERED

OPERATIONS, 3-11
DISK FILE CONCURRENCy CONTROL

(TBL), 3,..,8

CB20

(
"": --/

•

/ "

(

INDEX

DISTRIBUTED
DISTRIBU'I'ED SYSTEM FACILITIES, 7-1

DOCUMENT
SOFTWARE DOCUMENT SET, 1-6

EC
EC FILES, 4-5
STARTUP EC FILES, 4-6

EMULATED
BES SYSTEM SERVICE FUNCTIONS NOT

EMULATED, A-2
BES SYSTEM SERVICES EMULATED WITH

RESTRICTIONS, A-2
COMPLETELY EMULATED BES SYSTEM

SERVICES, A-I

ENTRY
DATA ENTRY FACILITY, 7-2

ENTRY-LEVEL COBOL
INTERMEDIATE COBOL FUNCTIONALITY

NOT AVAILABLE IN ENTRY-LEVEL
COBOL (TBL), 2-7

ENVIRONMENT
COMMAND ENVIRONMENT, 4-2
EXECUTION ENVIRONMENT, 5-1
SYSTEM CONFIGURATION AND

ENVIRONMENT DEFINITION, 4-1

EQUAL
EQUAL CONVENTION, 3-6

EQUIPMENT
EQUIPMENT REQUIREMENTS, C-2
MINIMUM EQUIpr~NT FOR ONLINE

APPLICATIONS, C-2
MINIMUM EQUIPMENT FOR PROGRAM

PREPARATION, C-2

EXCLUSIVE
EXCLUSIVE AND NONEXCLUSIVE POOL

SETS (FIG), 5-8
EXCLUSIVE MEMORY POOLS AND

CONTENTS (FIG), 5-6
EXCLUSIVE ONLINE POOLS, 5-6

EXECUTING
EXECUTING BES EXECUTIVE SYSTEM

SERVICES UNDER MOD 400, A-I
EXECUTING BES PROGRAMS UNDER

MOD 400, A-3

EXECUTION
COMMANDS FOR EXECUTION

CONTROL, 2-2
COMMANDS FOR UTILITY SOFTWARE

EXECUTION, 2-3
EXECUTION ENVIRONMENT, 5-1
MACRO CALLS FOR EXECUTIO~

CONTROL, 2-4
OPERATING SYSTEM FEATURES AFFECTING

TASK EXECUTION, 6-3

EXECUTION (CONT)
OPERATOR COMMANDS FOR EXECUTION

CONTROL, 2-3
TASK EXECUTION, 6-1

EXECUTIVE
EXECUTING BES EXECUTIVE SYSTEM

SERVICES UNDER MOD 400, A-I

EXTERNAL
CALLING SEQUENCE FOR EXTERNAL

PROCEDURES, B-2

FACILITIES
DISTRIBUTED SYSTEM FACILITIES, 7-1
SOFTWARE FACILITIES, 2-1

FACILITY
DATA ENTRY FACILITY, 7-2
REMOTE BATCH FACILITY (RBF), 7-1

FILE(S)
COMMANDS FOR DIRECTORY AND FILE

CONTROL, 2-2
DATA FILE ACCESS, 3-8
DATA FILE ORGANIZATIONS, 3-7
DATA FILE ORGANIZATIONS AND

ACCESS, 3-7
DISK FILE CONCURRENCY CONTROL

(TBL), 3-8
EC FILES, 4-5
FILE AND PATHNAI-1E CONCEPTS, 3-1
FILE CONCURRENCY, 3-8
FILE CONTROL STRUCTURES IN THE

SYSTEM POOL AREA, 5-10
FILE SYSTEH, 3-1
FILE SYSTEM BUFFERED

OPERATIONS, 3-9
FILE SYSTEM SOFTWARE, 2-5
FILE TRANSMISSION BETWEEN LEVEL 6

AND OTHER COHPUTERS, 7-3
FILES, 3-2
LOGICAL FILE NUMBER (LFN), 6-6
MACRO CALLS FOR DIRECTORY AND FILE

CONTROL, 2-4
MODULE AND FILE NAME

CONVENTIONS, B-1
OPERATOR COMMANDS FOR DIRECTORY,

FILE AND DEVICE CONTROL, 2-3
RECORD LOCKING (SHARED FILE

PROTECTION), 3-9
STARTUP EC FILES, 4-6
SYSTEM FILE CONCURRENCY, 3-8
SYSTEM PROGRAM FILE. NAME SUFFIXES

(TBL) , -B-2
USE OF COMMON FILES, 6-6

FLOATABLE

i-3

NONFLOATABLE AND FLOATABLE
OVERLAYS, 5-10

CB20

INDEX

FORMAT
COMMAND LINE FORMAT, 4-4
FORMAT OF LEVEL ACTIVITY INDICATORS

(FIG), 6-1
ORDER OF INTERRUPT VECTORS AND

FORMAT OF INTERRUPT SAVE AREAS
(SAF /LAF) (FIG) ,6-2

FORTRAN
FORTRAN RUN-TIME ROUTINES, 2-9

FUNCTIONS
BES SYSTEM SERVICE FUNCTIONS NOT

EMULATED, A-2
DEF SUPERVISORY FUNCTIONS, 7-3
FUNCTIONS PERFORMED AT COMMAND

LEVEL, 4-4
TASK GROUP AND TASK FUNCTIONS

POSSIBLE FROM ONLINE OR BATCH
DIMENSIONS (TBL), 5-4

GCOS
GCOS SOFTWARE (FIG), 2-1

GLOSSARY
GLOSSARY, D-1

GROUP(S)
APPLICATION DESIGN BENEFITS OF TASK

GROUP USE, 5-2
BATCH TASK GROUP, 5-9
BATCH TASK GROUP CONTROL

STRUCTURES, 5-10
CHARACTERISTICS OF TASK GROUPS

AND TASKS, 5-3
GENERATING TASK GROUPS AND

TASKS, 5-3
INTER/INTRA TASK GROUP

COMMUNICATION, 6-6
OPERATING SYSTEM CONTROL OF TASK

GROUPS, 5-3
SYSTEM TASK GROUP, 5-9
TASK GROUP IDENTIFICATION, 5-4
TASK GROUP AND TASK FUNCTIONS

POSSIBLE FROM ONLINE OR BATCH
DIMENSIONS, 5-4

TASK GROUPS AND TASKS, 5-1

GUIDE
APPLICATIONS PROGRAMMERiS MANUAL

GUIDE, 1-3
GUIDE TO USING THE MANUAL SET, 1-3
OPER~TOR'S MANUAL GUIDE, 1-5
RBF- AND DEF-USER'S MANUAL

GUIDE, 1-6
SYSTEM PROGRAMMER'S MANUAL

GUIDE, 1-5

HARDWARE
HARDWARE RESOURCES, C-1
HARDWARE SIMULATORS, 2-9
HARDWARE SUPPORTED, C-1, C-3
HARm'JARE SUPPORTED (TBL), C-3
LEVEL 6 HARDWARE (FIG), C-1

IDENTIFICATION
TASK GROUP IDENTIFICATION, 5-4

INDICATORS
FORMAT OF LEVEL ACTIVITY INDICATORS

(FIG), 6-1

INPUT/OUTPUT
PHYSICAL INPUT/OUTPUT

SOFTWARE, 2-5

INTERACTIVE
INTERACTIVE COMMANDS, 2-3

INTERFACE(S)
INTERFACE WITH PROGRAMS, 7-3
INTERFACES TO OPERATING

SYSTEM, 2-2

INTERMEDIATE COBOL
INTERMEDIATE COBOL FUNCTIONALITY

NOT AVAILABLE IN ENTRY-LEVEL
COBOL (TBL), 2-7

INTERRUPT

I/O

INTERRUPT PRIORITY LEVELS, 6-1
INTERRUPT SAVE AREA (ISA), 6-2
ORDER OF INTERRUPT VECTORS

AND FORMAT OF INTERRUPT
SAVE AREAS (SAF/LAF) (FIG), 6-2

RUN-TIME I/O ROUTINES, 2-9

ISA
INTERRUPT SAVE AREA (ISA), 6-2

LANGUAGE
ASSEMBLY LANGUAGE PROGRAM

INDEPENDENCE, B-3
COMMAND LANGUAGE, 2-2
LANGUAGE CONSIDERATIONS, 6-6

LAYOUT
MEMORY LAYOUT, 5-5
SAMPLE OVERLAY LAYOUT, 5-11

LEAD TASK
THE ACTIVATED LEAD TASK, 4-2

LEVEL(S)
ACHIEVING COMMAND LEVEL, 4-3
COMMAND LEVEL, 4-3
CONTROL OF PRIORITY LEVELS, 6-2
EXAMPLE OF LRN AND PRIORITY

LEVEL ASSIGNMENTS TO SYSTEM
TASKS AND DEVICES (FIG), 6-5

FILE TRANSMISSION BETWEEN LEVEL
6 AND OTHER COMPUTERS, 7-3

FORMAT OF LEVEL ACTIVITY INDICATORS
(FIG), 6,...1

i-4

FUNCTIONS PERFORMED AT COMMAND
LEVEL, 4-4

INTERRUPT PRIORITY LEVELS, 6-1
LEVEL 6 HARDWARE (FIG), C-1

CB20

(

(

(

LEVEL(S) (CONT)

LFN

PRIORITY LEVEL ASSIGNMENTS FOR
TASKS AND DEVICES (TBL), 6-4

PROCESSING PRIORITY LEVELS, 6-1

LOGICAL FILE NUMBER (LFN), 6-6

LINE(S)
COMMAND LINE FORMAT, 4-4
SPACES IN COMMAND LINES, 4-5

LIST
ARGUMENT LIST (FIG), B-2

LOAD
CONFIGURATION LOAD MANAGER, 2-10

LOADING
LOADING BOUND UNITS (SEARCH

RULES), 5-12

LOCKING
RECORD LOCKING (SHARED FILE

PROTECTION), 3-9

LOGGING
LOGGING IN, 4-2

LOGICAL
LOGICAL FILE NUMBER (LFN), 6-6
LOGICAL RESOURCE NDr1BER (LRN), 6-5

LRN (S)
APPLICATION TASK LRNS, 6-5
DEVICE LRNS, 6-5
EXAMPLE OF LRN AND PRIORITY

LEVEL ASSIGNMENTS TO SYSTEM TASKS
AND DEVICES (FIG), 6-5

LOGICAL RESOURCE NUMBER (LRN), 6-5

MACRO CALLS
MACRO CALLS FOR DIRECTORY AND FILE

CONTROL, 2-4
MACRO CALLS FOR EXECUTION CONTROL,

2-4
SYSTEM SERVICE MACRO CALLS, 2-4

MAGNETIC
DISK AND MAGNETIC TAPE BUFFERED

OPERATIONS, 3-11

MANUAL
APPLICATIONS PROGRAMMER'S MANUAL

GUIDE, 1-3
GUIDE TO USING THE MANUAL SET, 1-3
OPERATOR'S MANUAL GUIDE, 1-5
RBF- AND DEF-USER'S r~JUAL

GUIDE, 1-6
SYSTEM PROGRru1MER'S MANUAL

GUIDE, 1-5 '

INDEX

MEMORY
EXCLUSIVE MEMORY POOLS AND CONTENTS

(FIG), 5-6
MEMORY AFTER CONFIGURATION

(FIG), 5-5
f).iEHORY LAYOUT, 5-5
MEMORY USAGE, 5-4
OVERLAYS IN MEMORY (FIG), 5-12
SHARING MEMORY POOLS, 5-7

MOD 400
BES-MOD 400 COMPATABILITY, 2-10,
A-I

CONVERTING BES PROGRAMS TO MOD
400, A-3

EXECUTING BES EXECUTIVE SYSTEM
SERVICES UNDER ~1OD 400, A-I

EXECUTING BES PROGRAMS UNDER MOD
400, A-3

MODULE
MODULE AND FILE NAME

CONVENTIONS, B-1
SYSTEM MODULE NM1E PREFIXES

(TBL), B-1

MONITOR
EXAMPLE OF MONITOR INTERACTION WITH

USER TASKS, 6-8
MONITOR SOFTWARE, 2-4
OPERATOR COMMANDS TO MONITOR THE

SYSTEH, 2-3

NMiE
MODULE AND FILE NAME

CONVENTIONS, B-1
SYSTEM MODULE NAME PREFIXES

(TBL), B-1
SYSTEM PROGRAM FILE NAr1E SUFFIXES

(TBL), B-2

NAMING
NAMING CONVENTIONS, 3-2

NONEXCLUSIVE
EXCLUSIVE AND NONEXCLUSIVE POOL

SETS (FIG), 5-8
NONEXCLUSIVE ONLINE POOLS, 5-7

NONFLOATABLE
NONFLOATABLE AND FLOATABLE

OVERLAYS, 5-10

NUMBER
LOGICAL FILE NUMBER (LFN), 6-6
LOGICAL RESOURCE NUMBER (LRN), 6-5

ONLINE

i-5

EXCLUSIVE ONLINE POOLS, 5-6
MINIMUM EQUIPHENT FOR ONLINE

APPLICATIONS, C-2
NONEXCLUSIVE ONLINE POOLS, 5-7
ONLINE POOLS, 5-5
TASK GROUP AND TASK FUNCTIONS POSSIBLE

fROM ONLINE OR BATCH DH1ENSIONS
(TBL), 5-4

CB20

INDEX

OPERATING
COMPARISON OF OPERATING SYSTEM

EXTENSIONS AND SHAREABLE BOUND
UNITS (TBL), 5-12

HOW THE OPERATING SYSTEM: HANDLES
TASKS, 6-7

INTERFACES TO OPERATING
SYSTEM, 2-2

OPERATING FEATURES, 1-2
OPERATING SYSTEM AREA, 5-9
OPERATING SYSTEM CONTROL OF TASK

GROUPS, 5-3
OPERATING SYSTEM FEATURES AFFECTING

TASK EXECUTION, 6-3
OPERATING SYSTEM SOFTWARE, 2-4

OPERATIONS
BUFFERED READ OPERATIONS, 3-10
BUFFERED WRITE OPERATIONS, 3-10
DEF OPERATIONS, 7-3
DISK AND MAGNETIC TAPE BUFFERED

OPERATIONS, 3-11
FILE SYSTEM BUFFERED

OPERATIONS, 3-9
REMOTE BATCH OPERATIONS, 7-2
UNIT RECORD AND TERMINAL BUFFERED

OPERATIONS, 3-9

OPERATOR
OPERATOR ASSIGNED ACCESS, 4-2
OPERATOR COMMANDS, 2-3
OPERATOR COI~NDS FOR DIRECTORY,

FILE AND DEVICE CONTROL, 2-3
OPERATOR COMMANDS FOR EXECUTION

CONTROL, 2-3
OPERATOR COMMANDS TO MONITOR THE

SYSTEM, 2-3
OPERATOR'S GUIDE TO MANUALS

(FIG), 1 5
OPERATOR'S MANUAL GUIDE, 1-5

ORDER
ORDER OF INTERRUPT VECTORS AND

FOID1AT OF INTERRUPT SAVE
AREAS (SAF/LAF) (FIG), 6-2

ORGANIZATIONS
DATA FILE ORGANIZATIONS, 3-7
DATA FILE ORGANIZATIONS AND

ACCESS: 3-7

OVERLAY(S)
NONFLOATABLE AND FLOATABLE

OVERLAYS, 5-10
OVERLAYS, 5-10
OVERLAYS IN MEMORY (FIG), 5-12
SAMPLE OVERLAY LAYOUT, 5-11

PARAMETERS
PARAMETERS, 4-5

PATHNAM:E(S)
ABSOLUTE PATHNAM:ES, 3-3
DEVICE PATHNAMES, 3-4

PATHNAME(S) (CONT)
FILE AND PATHNAME CONCEPTS, 3-1
PATHNAME CONSTRUCTION, 3-2
PATHNAMES, 3-2
RELATIVE PATHNAME AND WORKING

DIRECTORY, 3-4
SAMPLE PATHNAHES (FIG), 3-5
SPECIAL PATHNAME CONVENTIONS, 3-6

PERIPH.ERAL
PERIPHERAL DEVICE ASSIGNMENTS, 6-3

PHYSICAL
PHYSICAL INPUT/OUTPUT

SOFTWARE, 2-5

POOL(S)
BATCH POOL AND ROLL-OUT, 5-8
EXCLUSIVE AND NONEXCLUSIVE POOL

SETS (FIG), 5-8
EXCLUSIVE MEM:ORY POOLS AND

CONTENTS (FIG), 5-6
EXCLUSIVE ONLINE POOLS, 5-6
FILE CONTROL STRUCTURES IN THE

SYSTEM POOL AREA, 5-10
NONEXCLUSIVE ONLINE POOLS, 5-7
ONLINE POOLS, 5-5
SHARING MEMORY POOLS, 5-7
SYSTEM: POOL AREA, 5-9

PREFIXES
SYSTEM: MODULE NAME PREFIXES

(TBL), B-1

PREPARATION
COMMANDS FOR PROGRru1

PREPARATION, 2-3
MINIMm1 EQUIPMENT FOR PROGRAM

PREPARATION, C-2
PROGRAM PREPARATION SOFTWARE, 2-6

PRIORITIES
ASSIGNING PRIORITIES TO APPLICATION

TASKS, 6-5
ASSIGNING PRIORITIES TO SYSTm1

TASKS, 6-4

PRIORITy
CONTROL OF PRIORITY LEVELS, 6-2
EXAl1PLE OP LRN AND PRIORITY LEVEL

ASSIGNMENTS TO SYSTEM TASKS AND
DEVICES (PIG), 6-5

rNTERRUPT PRrORITY LEVELS, 6-1
PRIORlTy ASSrGN.MENTS ;FOR

TASKS, 6-4
PRIORITy LEVEL ASSIGNMENTS FOR

TASKS AND DEVICES (TBL), 6-4
PROCESSING PRIORITY LEVELS, 6-1

PROCEDURES
CALLING SEQUENCE POR EXTERNAL

PROCEDURES, B-2
SEL;F-MODlpYING PROCEDURES, B-3

CB20

PROCESSING
PROCESSING PRIORITY LEVELS, 6-1

PROGRAM(S)
ASSEMBLY LANGUAGE PROGRAM

INDEPENDENCE, B-3
COMr-1ANDS FOR PROGRAM

PREPARATION, 2-3
CONVERTING BES PROGRAMS TO MOD

400, A-3
EXECUTING BES PROGRAMS UNDER MOD

400, A-3
INTERFACE WITH PROGRAMS, 7-3
MINIMUM EQUIPMENT FOR PROGRAM

PREPARATION, C-2
PROGRAM PREPARATION SOFTWARE, 2-6
SYSTEM PROGRAM FILE NAl>1E SUFFIXES

(TBL) , B-2

PROGRAl-1MER'S
APPLICATIONS PROGRA!1MER'S MANUAL

GUIDE, 1-3
SYSTEM PROGRAMMER'S MANUAL

GUIDE, 1-5

PROGRAMMING
PROG~~ING CONVENTIONS, B-1

PROTECTED
PROTECTED STRINGS, 4-5

PROTECTION
RECORD LOCKING (SHARED FILE

PROTECTION), 3-9

RBF
RBF CONFIGURATION, 7-2
RBF- AND DEF-USER'S GUIDE TO

MANUALS (FIG), 1-6
RBF- AND DEF-USER'S MANUAL

GUIDE, 1-6

READ
BUFFERED READ OPERATIONS, 3-10

RECORD
RECORD LOCKING (SHARED FILE

PROTECTION), 3-9
UNIT RECORD AND TERMINAL BUFFERED

OPERATIONS, 3-9

REGISTER
REGISTER CONVENTIONS, B-3

RELATIVE
RELATIVE PATHNM1E AND WORKING

DIRECTORY, 3-4

REMOTE
REMOTE BATCH FACILITY (RBF) , 7-1
REMOTE BATCH OPERATIONS, 7-2

REQUESTS
TASK REQUESTS, 6-6

INDEX

RESOURCE(S)
HARDWARE RESOURCES, C-l
LOGICAL RESOURCE NUMBER (LRN) , 6-5
TASK AND RESOURCE

COORDINATION, 6-6

RESTRICTIONS
BES SYSTEM SERVICES EMULATED WITH

RESTRICTIONS, A-2

ROLL-OUT
BATCH POOL AND ROLL-OUT, 5-8

ROUTINES
FORTRAN FUN-TIME ROUTINES, 2-9
RUN-TIME I/O ROUTINES, 2-9
RUN-TUm ROUTINES, 2-9

RUN-TIME
FORTRAN RUN-TIME ROUTINES, 2-9
RUN-TIME I/O ROUTINES, 2-9
RUN-TIr1E ROUTINES, 2-9

SAVE
INTERRUPT SAVE AREA (ISA), 6-2
ORDER OF INTERRUPT VECTORS AND

FORMAT OF INTERRUPT SAVE AREAS
(SAF/LAF) (FIG), 6-2

SEARCH RULES
LOADING BOUND UNITS (SEARCH

RULES), 5-12

SELF-MODIFYING
SELF-MODIFYING PROCEDURES, B-3

SEMAPHORES
SEMAPHORES, 6-6

SEQUENCE
CALLING SEQUENCE FOR EXTERNAL

PROCEDURES, B-2

SERVICE (S)
BES SYSTEM SERVICE FUNCTIONS NOT

EMULATED, A-2
BES SYSTEM SERVICES EMULATED WITH

RESTRICTIONS, A-2
COMPLETELY EMULATED BES SYSTEM

SERVlCES, A-I
EXECUTING BES EXECUTlVE SYSTEM

SERVICES UNDER MOD 400, A-I
SYSTEM SERVICE MACRO CALLS, 2-4

SET(S)
EXCLUSrVE AND NONEXCLUSIVE POOL

SETS (FlG) , 5-8
GUIDE TO USING THE MANUAL SET, 1-3
SOFTWARE DOCUMENT SET, 1-6

SHAREABLE

i-7

COMPARISON OF OPERATING SYSTEM
EXTENSIONS AND SHAREABLE BOUND
UNITS (TBL), 5-12

SHAREABLE BOUND UNITS, 5-11

CB20

SHARED
RECORD LOCKING (SHARED FILE

PROTECTION), 3-9

SHARING
SHARING MEMORY POOLS, 5-7

SIMULATORS
HARDWARE SIMULATORS, 2-9

SOFTWARE
COMMANDS FOR UTILITY SOFTWARE

EXECUTION, 2-3
COMMUNICATIONS SOFTWARE, 2-5
FILE SYSTEM SOFTWARE, 2-5
GCOS SOFTWARE (FIG), 2-1
GENERAL FEATURES OF SOFTWARE, 2-1
MONITOR SOFTWARE, 2-4
OPERATING SYSTEM SOFTWARE, 2-4
PHYSICAL INPUT/OUTPUT

SOFTWARE, 2-5
PROGRAM PREPARATION SOFTWARE, 2-6
SOFTWARE DOCUMENT SET, 1-6
SOFTWARE FACILITIES, 2-1
SOFTWARE FEATURES, 1-1
UTILITY SOFTWARE, 2-7

SORT/MERGE
SORT/MERGE, 2-8

SPACES
SPACES IN COMMAND LINES, 4-5

SPOOLING
SPOOLING TECHNIQUE, 3-11

STAR
STAR CONVENTION, 3-6

STARTUP
STARTUP EC FILES, 4-6

STRINGS
PROTECTED STRINGS, 4-5

STRUCTURES
BATCH TASK GROUP CONTROL

STRUCTURES, 5-10
FILE CONTROL STRUCTURES IN THE

SYSTEM POOL AREA, 5-10

SUFFIXES
SYSTEM PROGRAM FILE NAME SUFFIXES

(TBL), B-2

SUMMARY
SUMMARY OF SYSTEM FEATURES, 1~2

SUPERVISORY
DEF SUPERVISORY FUNCTIONS, 7~3

INDEX

'SYSTEM

i-8

ACCESSING THE SYSTEM, 4-2
ASSIGNING PRIORITIES TO SYSTEM

TASKS, 6-4
BES SYSTEM SERVICE FUNCTIONS NOT

EMULATED, A-2
BES SYSTEM SERVICES EMULATED WITH

RESTRICTIONS, A-2
COMPLETELY EMULATED BES SYSTEM

SERVICES, A-1
DISTRIBUTED SYSTEM FACILITIES, 7-1
EXECUTING BES EXECUTIVE SYSTEM

SERVICES UNDER MOD 400, A-1
FILE CONTROL STRUCTURES IN THE

SYSTEM POOL AREA, 5-10
FILE SYSTEM, 3-1
FILE SYSTEM BUFFERED

OPERATIONS, 3-9
FILE SYSTEM SOFTWARE, 2-5
HOW THE OPERATING SYSTEM HANDLES

TASKS, 6-7
INTERFACES TO OPERATING

SYSTID1, 2-2
OPERATING SYSTEM AREA, 5-9
OPERATING SYSTE1-1 CONTROL OF TASK

GROUPS, 5-3
OPERATING SYSTEM FEATURES AFFECTING

TASK EXECUTION, 6-3
OPERATING SYSTEM SOFTWARE, 2-4
OPERATOR COMMANDS TO MONITOR THE

SYSTEM, 2-3
SUMMARY OF SYSTEM FEATURES, 1-2
SYSTEM ACCESS, 4-1
SYSTEM CHARACTERISTICS, 1-1
SYSTEM CONFIGURATION AND

ENVIRONMENT DEFINITION, 4-1
SYSTEM FILE CONCURRENCY, 3-8
SYSTEM HODULE NMiE PREFIXES

(TBL), B-1
SYSTEM POOL AREA, 5-9
SySTEM PROGRAM FILE NAHE SUFFIXES

(TBL) , B-2
SySTEM PROGRAMMER'S MANUAL

GUIDE, 1 ... 5
SYSTEM SERVICE r~CRO CALLS, 2-4
SySTEM TASK GROUP, 5-9
WAyS TO ACCESS THE SYSTEM, 4-2

TAPE
D;£SK AND MAGNETJ;C TAPE BUFFERED

I""\'T"\T"!" :n mTI""\'l.Tt""I "') _, ,
vr.1!l~.L...LvJ."p, .JI.""-

TASK(S)
APPLICATION DESIGN BENEFITS OF

TASK GROUP USE, 5-2
APPLJ;CATION TASK LRNS, 6-5
ASSlGNING PRIOR1TIES TO APPLICATION

TASKS, 6-4
ASSIGNING PRIORITIES TO SYSTEr.1

TASKS, 6-4
BATCH TASle GROUP, 5-9
BATCH TASK GROUP CONTROL

STRUCTURES, 5-10

CB20

'-,

(

(

INDEX

TASK(S) (CONT)
CHARACTERISTICS OF TASK GROUPS AND

TASKS, 5-3
EXAMPLE OF MONITOR INTERACTION

WITH USER TASKS, 6-8
GENERATING TASK GROUPS AND

TASKS, 5-3
HOW THE OPERATING SYSTEH

HANDLES TASKS, 6-7
INTER/INTRA TASK GROUP

COMMUNICATION, 6-6
OPERATING SYSTEM CONTROL OF TASK

GROUPS, 5-3
OPERATING SYSTEH FEATURES AFFECTING

TASK EXECUTION, 6-3
PRIORITY ASSIGNMENTS FOR TASKS, 6-4
SYSTEM TASK GROUP, 5-9
TASK AND RESOURCE COORDINATION, 6-6
TASK EXECUTION, 6-1
TASK GROUP IDENTIFICATION, 5-4
TASK GROUP AND TASK FUNCTIONS

POSSIBLE FROM: ONLINE OR BATCH
DIMENSIONS (TBL), 5-4

TASK GROUPS AND TASKS, 5-1
TASK REQUESTS, 6-6
THE ACTIVATED LEAD TASK, 4-2

TECHNIQUE
SPOOLING TECHNIQUE, 3-11

TERMINAL
UNIT RECORD AND TERMINAL BUFFERED

OPERATIONS, 3-9

TRANSMISSION
FILE TRANSMISSION BETWEEN LEVEL 6

AND OTHER COMPUTERS, 7-3

TRAP
TRAP HANDLING, 6-3

UNIT(S)
BOUND UNITS, 5-10
LOADING BOUND UNITS (SEARCH RULES),

5-12
SHAREABLE BOUND UNITS, 5-11
UNIT RECORD AND TERMINAL BUFFERED

OPERATIONS, 3-9

USAGE

USE

MEMORY USAGE, 5-4

APPLICATION DESIGN BENEFITS OF
TASK GROUP USE, 5-2

USE OF COl.fMON FILES, 6-6

USER-CODED
USER-CODED CONVERSION, A-2

UTILITY
COMMANDS FOR UTILITY SOFTWARE

EXECUTION, 2-3
DEF UTILITIES, 7-3
UTILITY SOFTWARE, 2-7

VECTORS
ORDER OF INTERRUPT VECTORS AND

FORMAT OF INTERRUPT SAVE AREAS
(SAF/LAF) (FIG), 6-2

WORKING DIRECTORY
RELATIVE PATHNAME AND WORKING

DIRECTORY, 3-4
WORKING DIRECTORY, 3-4

WRITE
BUFFERED WRITE OPERATIONS, 3-10

i-9 CB20

•

(~

(

z
::i
CJ
z
o
...J
«
~
:J
U

HONEYWEll INFORMATION SYSTEMS
Technical Publications Remarks Form

TITLE SERIES 60 (LEVEL 6) GCOS 6
MOD 400 SYSTEM CONCEPTS

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

ORDER No·1 CB20, REV. 0

DATED I JANUARY 1978

r\. Your comments will be promptly investigated by appropriate technical personnel and c;lction will be taken 0 Lf as required. If you require a written reply. check here and furnish complete mailing address below.

FROM: NAME __ __ DATE ______________ _

TITLE ______________________________ _

COMPANY ____________ ~-------------_

ADDRE~~i-------~------------------__

PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms

~-.. --~,
w
Z
-.J

c.:J
Z
o
-.J
«
I­
::J
U

I
I
I
I)
I
I ~
I :i
I c.:J
I z ~

--~-------------------------- ~g
I ~
I (5

ATTENTION: PUBLICATIONS, MS 486

Business Reply Mail
Postage Stamp Not Necessary if Mailed in the United States

Postage Will Be Paid By:

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

FIRST CLASS
PERMIT NO. 39531
WALTHAM,MA
02154

I W-

I
I
I
I
I
I
I
t

w
z
:.::i

~ (

-- ~g

Honeywell

I «
IS
! 2)
I
I
I
I
I
J
I
I
I
I
I
I
<r-~

" I
I
I
I
I
I
I
I

·c\

"

C,",','," ;

Honeywell
Honeywell Information Systems

In the U.S.A.: 200 Smith Street, MS 486, Waltham, Massachusetts 02154
In Canada: 2025 Sheppard Avenue East, Willowdale, Ontario M2J 1 W5

In Mexico: Avenida Nuevo Leon 250, Mexico 11, O.F.

19804, 3178, Printed in U.S,A. CB20, Rev. 0

