

SUBJECT

SERIES 60 (LEVEL 6)

GCOS 6 SYSTEM SERVICE
MACRO CALLS

Description of and User Procedures for System Service Macro Calls, Device
Drivers, and Data Structures

SPECIAL INSTRUCTIONS

This revision supersedes Revision 0 of the manual dated January 1978. Except
in revised Section 6 and Appendixes A, Band C, change bars indicate new and
changed technical information, asterisks denote deletions. Major additions
include message group macro calls, new overlay macro calls, and error logging
macro calls, as well as descriptions of corresponding data structures.

SOFTWARE SUPPORTED

This manual supports Release 0110 of the Series 60 (Level 6) GCOS 6 MOD 400
Operating System. See the Manual Directory of the latest GCOS 6 MOD 400
System Concepts manual (Order No. CB20) for information as to later releases
supported by this manual.

ORDER NUMBER

CB08, Rev. 1 July 1978

Honeywell

PREFACE

This manual is for assembly language programmers who use the
GCOS system service macro routines and macro calls in writing
application programs. The manual describes the macro calls for
monitor services, for using the file system, and for generating
data structures.

The manual also discusses Honeywell peripheral device
drivers and how to write a user device driver.

Section 1 concerns macro call syntax, register conventions,
and addressing conventions.

Sections 2, 3, and 4 briefly summarize and list macro calls
for monitor services, for the file system, and for defining data
structures, respectively.

Section 5 describes in detail the use, structure, function, ~/
and error return codes for each macro routine and macro call,
some with examples. These descriptions are arranged a1phabet-
ically by function description name, according to the function
description shown in column 2 of Table 1-1.

Section 6 describes the GCOS 6 Honeywell device drivers for
data transfer in system and applications programs with Level n
peripheral devices.

Section 7 discusses trap handling for hardware and software
traps.

Appendix A describ~s various block data structures that are
related to certain macro routines. Appendix B discusses writing
a user device driver. Appendix C summarizes register contents
before and after execution of the system service macro calls.
Appendix D shows the ASCII and EBCDIC character sets.

© 1978, Honeywell Information Systems Inc. File No.: lS23

CB08
c

c\

MANUAL DIRECTORY

The following publications comprise the GCOS 6 manual set.
The Manual Directory in the latest GCOS 6 MOD 400 System Concepts
manual (Order No. CB20) lists the current revision number and
addenda (if any) for each manual in the set.

Order
Number

CBOI
CB02
CB03
CB04
CBOS
CB06
CB07
CBOS
CB09
CBIO
CB20
CB21
CB22
CB23
CB24
CB2S
CB26
CB27
CB28
CB30
CB31
CB32

CB33

CB34

CB3S

CB36

Manual Title

GCOS 6 Program Preparation
GCOS 6 Commands
GCOS 6 Communications Processing
GCOS 6 Sort/Merge
GCOS 6 Data File Organizations and Formats
GCOS 6 System Messages
GCOS 6 Assembly Language Reference
GCOS 6 System Service Macro Calls
GCOS 6 RPG Reference
GCOS 6 Intermediate COBOL Reference
GCOS 6 MOD 400 System Concepts
GCOS 6 MOD 400 Program Execution and Checkout
GCOS 6 MOD 400 Programmer's Guide
GCOS 6 MOD 400 System Building
GCOS 6 MOD 400 Operator's Guide
GCOS 6 MOD 400 FORTRAN Reference
GCOS 6 MOD 400 Entry-Level COBOL Reference
GCOS 6 MOD 400 Programmer's Pocket Guide
GCOS 6 MOD 400 Master Index
Remote Batch Facility User's Guide
Data Entry Facility User's Guide
Data Entry Facility Operator's Quick Reference

Guide
Level 6/Level 6 File Transmission Facility User's

Guide
Level 6/Level 62 File Transmission Facility

User's Guide
Level 6/Level 64 (Native) File Transmission

Facility User's Guide
Level 6/Level 66 File Transmission Facility

User's Guide

iii CB08

Order
Number

CB37

CB38

CB39

CB40
CB4l
CB42
CB43

Manual Title

Level 6/Series 200/2000 File Transmission
Facility User's Guide

Level 6/BSC 2780/3780 File Transmission Facility
User's Guide

Level 6/Level 64 (Emulator) File Transmission
Facility User's Guide

IBM 2780/3780 Workstation Facility User's Guide
HASP Workstation Facility User's Guide
Level 66 Host Resident Facility User's Guide
Terminal Concentration Facility User's Guide

The following documents provide general hardware
info rmat ion:

Order
Number

AS22
AT04
AT97
FQ4l

Manual Title

Honeywell Level 6 Minicomputer Handbook
Level 6 System and Peripherals Operation Manual
MLCP Programmer's Reference Manual
Writable Control Store User's Guide

iv CB08

(

,f
\

Section 1

Section 2

CONTENTS

Introducing and Using the Manual ••••
How to Use the Manual ••••••.••••••
Macro Call Syntax •••••••••••••••••
Register Conventions and Contents •
Addressing Conventions ••••••••••••
Register Contents at Task

Page

1-1
1-1
1-1
1-2
1-3

Activation •••••••••••••••••••••• 1-5
Register Contents at Initial Task

Activation •••••••••••••••••••••• 1-5
Return Status Codes in $Rl

Register •••••••••••••••••••••••• 1-6
System Service Macro Calls and

Function Codes ••••••••••••••••••
Location of Macro Routines ••••••••
Task Request Queues •••••••••••••••

Monitor Service Functions •••••••••••
Batch Functions •••••••••••••••••••
Clock Functions •••••••••••••••••••
Communications Functions ••••••••••
Date/Time Functions •••••••••••••••
Error Handling Function •••••••••••
External Switch Functions •••••••••
Identification and Information

Functions •••••••••••••••••••••••
Memory Allocation Functions •••••••
Message Facility Functions ••••••••
Operator Interface Functions ••••••
Overlay Handling Functions ••••••••
Physical I/O Functions ••••••••••••
Request and Return Functions ••••••
Secondary User Terminal Functions •
Semaphore Functions •••••••••••••••
Standard System File I/O

Functions •••••••••••••••••••••••
Task Control Functions ••••••••••••
Task Group Control Functions ••••••
Trap Handling Functions •••••••••••

v

1-6
1-6
1-16

2-1
2-1
2-2
2-2
2-3
2-3
2-3

2-4
2-4
2-5
2-6
2-6
2-7
2-8
2-8
2-9

2-10
2-11
2-12
2-13

CB08

Section 3

Section 4

Section 5

CONTENTS (cont)

File System Functions •••••••••••••••
File Information Block (FIB) ••••••

Program View Entry in the FIB •••
Offsets Definitions •••••••••••••

Assumptions for File System

Page

3-1
3-2
3-6
3-11

Examples •••••••••••••••••••••••• 3-13
File Management Functions ••••••••• 3-14
Data Management Functions ••••••••• 3-16
Storage Management Functions •••••• 3-1B

Data Structure Generation •••••••••••
Monitor Services Data Structures ••

Request Blocks ••••••••••••••••••
Parameter Block and Wait List •••
Request Block Offsets •••••••••

File System Data Structures •••••••
File Information Block (FIB) ••••
Offsets Definitions •••••••••••••

Macro Routine/Call Descriptions •••••
Abort Group ($ABGRP) ••••••••••••••
Abort Group Request ($ABGRQ) ••••••
Account Identification ($ACTID) •••
Activate Group ($ACTVG) •••••••••••
Associate File ($ASFIL) •••••••••••
Bound Unit Identification ($BUID) •
Cancel Clock Request ($CNCRQ) •••••
Cancel Request ($CANRQ) •••••••••••
Cancel Semaphore Request ($CNSRQ) •
Change Working Directory ($CWDIR) •
Clean Point ($CLPNT) ••••••••••••••
Clear External Switches ($CLRSW) ••
Clock Request Bloc k ($CRB) ••••••••
Clock Request Block Offsets

($CRBD) •••••••••••••••••••••••••
Close File ($CLFIL) •••••••••••••••
Command In ($CIN) •••••••••••••••••
Command Line Process ($CMDLN) •••••
Console Message Suppression

($CMSUP) ••••••••••••••••••••••••
Create Directory ($CRDIR) •••••••••
Create File (SCRFIL) ••••••••••••••
Create File Parameter Structure

Block - Offsets ($CRPSB) ••••••••
Create Group ($CRGRP) •••••••••••••
Create Overlay Area Table

($CROAT) ••••••••••••••••••••••••
Create Task ($CRTSK)

vi

4-1
4-1
4-1
4-3
4-4
4-5
4-5
4-5

5-1
5-2
5-4
5-6
5-8
5-10
5-13
5-1.5
5-17
5-19
5-21
5-24
5-26
5-28

5-31
5-32
5-36
5-39

5-42
5-44
5-47

5-55
5-56

5-60
5-63

CBDB

./

Section 5 (cont)

CONTENTS (cont)

Define Semaphore ($DFSM) ••••••••••
Delete Group ($DLGRP) •••••••••••••
Delete Record ($DLREC) ••••••••••••
Delete Task ($DLTSK) ••••••••••••••
Disable Device on Attention

($DSDV) •••••••••••••••••••••••••
Disable User Trap ($DSTRP) ••••••••
Dissociate File ($DSFIL) ••••••••••
Enable Device ($ENDV) •••••••••••••
Enable User Trap ($ENTRP) •••••••••
Error Logging, End ($ELEND) •••••••
Error Logging Information, Exchange

($ELEX) •••••••••••••••••••••••••
Error Logging Information, Get

($ELGT) •••••••••••••••••••••••••
Error Logging, Start ($ELST) ••••••
Error Out ($EROUT) ••••••••••••••••
Expand Pathname ($XPATH) ••••••••••
External Date/Time, Convert To

($EXTDT) ••••••••••••••••••••••••
External Time, Convert To

($EXTIM) ••••••••••••••••••••••••
File Information Block ($FIB) •••••
File Information Block Offsets

($TFIB) •••••••••••••••••••••••••
Get Date/Time ($GDTM) •••••••••••••
Get File ($GTFIL) •••••••••••••••••
Get File Parameter Structure Block

Offsets ($GTPSB) ••••••••••••••••
Get File Information ($GIFIL) •••••
Get File Information, File

Attribute Block Offsets
($GIFAB) ••••••••••••••••••••••••

Get File Information, Key Descrip­
tors Block Offsets ($GIKDB) •••••

Get File Information, Parameter
Structure Block Offsets

($G I PSB) ••••••••••••••••••••••
Get Memory/Get Available Memory

($GMEM) •••••••••••••••••••••••••
Get Working Directory ($GWDIR) ••••
Home Directory ($HDIR) ••••••••••••
Input/Output Request Block

($IDRS) •••••••••••••••••••••••••
Input/Output Request Block Offsets

($IORBD) ••••••••••••••••••••••••
Internal Date/Time, Convert To

($ I NDTM) ••••••••••••••••••••••••

vii

Page

5-67
5-71
5-73
5-76

5-78
5-80
5-82
5-84
5-86
5-88

5-90

5-94
5-96
5-99
5-102

5-105

5-108
5-111

5-119
5-121
5-124

5-142
5-143

5-153

5-154

5-155

5-156
5-161
5-163

5-165

5-168

5-169

CB08

Sect ion 5 (con t)

CONTENTS (cont)

Message Group, Accept ($MACPT) ••••
Message Group Control Request Block

($MGCRB) ••••••••••••••••••••••••
Message Group Control Request Block

Offsets ($MGCRT) ••••••••••••••••
Message Gro up, Co un t ($MCMG) ••••••
Message Group Initialization

Request Block ($MGIRB) ••••••••••
Message Group Initialization

Request Block Offsets ($MGIRT) ••
Message Group, Initiate ($MINIT) ••
Message Group, Receive ($MRECV) •••
Message Group Recovery Request

Block ($MGRRB) ••••••••••••••••••
Message Group Recovery Request

Block Offsets (SMGRRT) ••••••••••
Message Group, Send ($MSEND) ••••••
Message Group, Terminate ($MTMG) ••
Mode Identification ($MODID) ••••••
New Process ($NPROC) ••••••••••••••
New User Input ($NUIN) ••••••••••••
New User Output ($NUOUT) ••••••••••
Open File ($OPFIL) ••••••••••••••••
Operator Information Message

($OPMSG) ••••••••••••••••••••••••
Operator Response Message

($OPRSP) ••••••••••••••••••••••••
Overlay Area, Release ($OVRLS) ••••
Overlay Area Reserve, and Execute

Overlay ($OVRSV) ••••••••••••••••
Over I a y, Ex ec ute ($ 0 VE XC) •••••••••
Overlay, Load ($OVLD) •••••••••••••
Overlay Release, Wait, and Recall

($OVRCL) ••••••••••••••••••••••••
Overlay Status ($OVST) ••••••••••••
Overlay, Unload ($OVUN) •••••••••••
Parameter Block ($PRBLK) ••••••••••
Person Identification ($PERID) ••••
Read Block ($RDBLK) •••••••••••••••
Read External Switches (SRDSW) ••••
Read Record ($RDREC) ••••••••••••••
Release Directory ($RLDIR) ••••••••
Release File ($RLFIL) •••••••••••••
Release Semaphore ($RLSM) •••••••••
Release Terminal ($RLTML) •••••••••
Remove File ($RMFIL) ••••••••••••••
Rename File/Rename Directory

($RNFIL) ••••••••••••••••••••••••

viii

Page

5-172

5-175

5-180
5-181

5-184

5-188
5-189
5-192

5-196

5-200
5-201
5-205
5-208
5-210
5-211
5-213
5-215

5-222

5-225
5-228

5-230
5-234
5-237

5-240
5-244
5-247
5-250
5-252
5-254
5-258
5-260
5-266
5-269
5-272
5-274
5-276

5-279

CB08

C)

Section 5 (cont)

CONTENTS (cont)

Report Error Condition ($RPTER) •••
Request Batch ($RQBAT) ••••••••••••
Request Clock ($RQCL) •••••••••••••
Request Group ($RQGRP) ••••••••••••
Request I/O ($RQIO) •••••••••••••••
Request Semaphore ($RQSM) •••••••••
Request Task ($RQTSK) •••••••••••••
Request Terminal ($RQTML) •••••••••
Reserve Semaphor e ($RS VSM) ••••••••
Reset Device Attention ($RDVAT) •••
Return ($RETRN) •••••••••••••••••••
Return Memory/Return Partial Block

of Memory ($RMEM) •••••••••••••••
Return Request Block Address

($RBADD) ••••••••••••••••••••••••
Rewrite Record ($RWREC) •••••••••••
Semaphore Request Block ($SRB) ••••
Semaphore Request Block Offsets

($SRBD) •••••••••••••••••••••••••
Set Dial ($SDL) •••••••••••••••••••
Set External Switches ($SETSW) ••••
Set Terminal Characteristics

($STTY) •••••••••••••••••••••••••
Spawn Group ($SPGRP) ••••••••••••••
Spawn Task ($SPTSK) •••••••••••••••
Status Memory Pool ($STMP) ••••••••
Suspend Group ($SUSPG) ••••••••••••
Suspend for Interval ($SUSPN) •••••
Suspend Until Time ($SUSPN) •••••••
System Ident i f ication ($S YSID) ••••
Task Group Input ($TGIN) ••••••••••
Task Request Bloc k ($TRB) •••••••••
Task Request Block Offsets

($TRBD) •••••••••••••••••••••••••
Te rm inate Reques t ($TRMRQ) ••••••••
Test Completion Status ($TEST) ••••
Test File ($TIFIL) ••••••••••••••••
Test .File ($TOFIL) ••••••••••••••••
Trap Handler Connect ($TRPHD) •••••
User Identification ($USRID) ••••••
User Input ($USIN) ••••••••••••••••
User Output ($USOUT) ••••••••••••••
Wait ($WAIT) ••••••••••••••••••••••
Wait Block ($WTBLK) •••••••••••••••
Wait File ($WIFIL) ••••••••••••••••
Wait File ($WOFIL) ••••••••••••••••
Wait List, Generate ($WLIST) ••••••
Wa it on Request Li st ($WAITL) •••••

ix

Page

5-282
5-285
5-288
5-290
5-294
5-297
5-300
5-303
5-306
5-309
5-311

5-313

5-316
5-318
5-321

5-323
5-324
5-328

5-330
5-333
5-339
5-343
5-345
5-347
5-350
5-353
5-355
5-357

5-361
5-362
5-365
5-367
5-367
5-370
5-373
5-375
5-378
5-381
5-383
5-385
5-385
5-388
5-390

CB08

Section 5 (cont)

Section 6

CONTENTS (cont)

Write Block ($WRBLK) ••••••••••••••
Write Record ($WRREC) •••••••••••••

Input/Output Device Drivers •••••••••
Input/Output Drivers ••••••••••••••
Device Driver Conventions •••••••••

Driver Functions and Function

Page

5-393
5-397

6-1
6-1
6-2

Codes ••••••••••••••••••••••••• 6-2
Wait Online Function (fc=O) ••• 6-4
Write Function (fc=l) ••••••••• 6-4
Read Function (fc=2) •••••••••• 6-5
Read Disabled Device Function

(fc=E) •••••••••••••••••••••• 6-5
Write Tape Mark Function

(fc=3) •••••••••••••••••••••• 6-6
Position Block Function

(fc=4) •••••••••••••••••••••• 6-6
Position Tape Mark Function

(fc=6) •••••••••••••••••••••• 6-6
Break Notification Function

(fc=9) ••••••••••••••••••••••
Communications Function Codes •••

Connect Function (fc=A) •••••••
Disconnect Function (fc=B) ••••

Data Structures •••••••••••••••••••
Input/Output Request Block ••••••
Resource Control Table (RCT) ••••

Caller Interface With Device
Driver ••.•....••.••••..••...••••

Device Drivers ••••••••••••••••••••
Card Reader/Card Reader-Punch

Driver ••••••••••••••••••••••••
ASCII Mode ••••••••••••••••••••
Verbatim Mode •••••••••••••••••
Card Reader/Card Reader-Punch

Device-Specific IORB Fields •
Card Reader/Card Reader-Punch

Device-Specific RCT Fields ••
Card Reader/Card Reader-Punch

RCT/IORB Status Code
Mapping •••••••••••••••••••••

Printer Driver ••••••••••••••••••
Print Control Byte ••••••••••••
Printer Device-Specific IORB

Fields ••••••••••••••••••••••
Printer Device-Specific RCT

Fields ••••••••••••••••••••••

x

6-6
6-6
6-7
6-7
6-7
6-7
6-12

6-14
6-16

6-16
6-17
6-19

6-19

6-20

6-20
6-22
6-22

6-24

6-25

CB08

(-

Section 6 (cont)

CONTENTS (cont)

Printer RCT/IORB Hardware/
Software Status Code
Mapping •••••••••••••••••••••

Disk Driver •••••••••••••••••••••
Disk Driver Processing for

Diskette ••••••••••••••••••••
Diskette Device-Specific IORB

Fields ••••••••••••••••••••
Diskette Device-Specific RCT

Fields ••••••••••••••••••••
Diskette RCT/IORB Hardware/

Software Status Code
Mapping •••••••••••••••••••

Disk Driver Processing for
Cartridge Disk ••••••••••••••
Cartridge Disk Device­

Specific IORB Fields ••••••
Cartridge Disk Device­

Specific RCT Fields •••••••
Cartridge Disk RCT/IORB

Hardware/Software Status
Code Mapping ••••••••••••••

Disk Driver Processing for Mass
Storage Unit ••••••••••••••••
Mass Storage Unit Device­

Specific IORB Fields ••••••
Mass Storage Unit Device­

Specific RCT Fields •••••••
Mass Storage Unit RCT/IORB

Hardware/Software Status
Code Mapping ••••••••••••••

ASR/KSR Drivers •••••••••••••••••
Keyboard Input ••••••••••••••••
Printer Output ••••••••••••••••
ASR/KSR Device-Specific lORB

Fields ••••••••••••••••••••••
ASR/KSR Device-Specific RCT

Fields ••••••••••••••••••••••
ASR/KSR RCT/lORB Hardware/

Software Status Coding
Mapping •••••••••••••••••••••

Magnetic Tape Driver ••••••••••••
Magnetic Tape Device-Specific

lORB Fields •••••••••• ~ ••••••
Magnetic Tape Device-Specific

RCT Fields ••••••••••••••••••
Magnetic Tape RCT/lORB

Hardware/Software Status Code
Mapping •••••••••••••••••••••

xi

Page

6-25
6-26

6-26

6-27

6-28

6-28

6-29

6-29

6-30

6-31

6-32

6-33

6-33

6-34
6-34
6-35
6-36

6-36

6-37

6-38
6-39

6-42

6-43

6-43

CB08

Section 7

Appendix A

Appendix B

CONTENTS (cont)

Trap Handling •••••••••••••••••••••••
Trap Conditions During Task

Execution •••••••••••••••••••••••
Trap Enabled ••••••••••••••••••••
Trap Not Enabled ••••••••••••••••

Contents of Trap-Related Memory
Ar ea s •••••••••••••••••••••••••••
Pointer to Next Available Trap

Save Area (NATSAP) ••••••••••••
Trap Vector •••••••••••••••••••••
Trap Save Areas •••••••••••••••••
Interrupt Vector ••••••••••••••••
Interrupt Save Area (ISA) •••••••

Honeywell-Supplied Trap Handlers ••
Trap Handling by the Debug

Program •••••••••••••••••••••••
Commercial Simulator ••••••••••••
Floating-Point Simulator ••••••••
Scientific Branch Simulator •••••
Software Generated Traps ••••••••

User-Written Trap Handlers ••••••••
Trap Handlers Designed as Monitor

Extensions ••••••.•••••••••••••
Programming Considerations for

User-Written Trap Handlers ••••••

Data Structure Formats ••••••••••••••
Clock Request Block Format ••••••••
File Information Block Format •••••
Input/Output Request Block Format •
Semaphore Request Block Format ••••
Task Request Block Format •••••••••
Parameter Block Format ••••••••••••
Wait List Format ••••••••••••••••••
Message Facility Message Group

Request Blocks ••••••••••••••••••

Writing a Peripheral I/O Driver •••••
System Building Considerations in

Page

7-1

7-2
7-2
7-2

7-2

7-5
7-6
7-6
7-6
7-6
7-12

7-12
7-12
7-13
7-14
7-14
7-15

7-15

7-16

A-I
A-2
A-4
A-6
A-IO
A-II
A-I3
A-I4

A-IS

B-1

Writing a Driver •••••••••••••••• B-1
Driver Interface in Writing a

Driver •••••••••••••••••••••••••• B-2
User-Written Driver

Initialization ••••••••••••••••••
Driver Usable System Functions ••••

I/O Subroutines (ZIOSUB) for
User-Written Drivers ••••••••••
Initialize Function (Code 0)

xii

B-2
B-3

B-3
B-3

CBOS

--------------- --- ---

Appendix B (cont)

Appendix C

Appendix D

" " Figure 3-l.
Figure 6-I.
Figure 6-2.
Figure 6-3.
Figure 6-4.
Fig ure 6-5.

Fig ure 7-I.
Figure A-I.
Figure A-2.
Figure A-3.

Figure A-4.
Fig ure A-5.
Figure A-6.
Figure A-7.
Figure A-S.
Figure B-1.

CONTENTS (cont)

Page

Wait On Line Function
(Code 1) •••••••••••••••••••• B-3

Stop I/O Function (Code 2) •••• B-4
Wait for Interrupt (Code 3) ••• B-4
Read/Modify Status Function

(Code 4) •••••••••••••••••••• B-5
Locate RCT for Device (ZXSRCT) •• B-5
Driver Terminate (ZXD_TR) ••••••• B-6
Output Address and Range

(ZIOLD) ••••••••••••••••••••••• B-6
General I/O Requirements for User

Device Driver ••••••••••••••••••• B-S

Summary of Register Contents for
System Service Macro Calls ••••••••

ASCII and EBCDIC Character Sets •••••
Control Characters ••••••••••••••••
Special Graphic Characters ••••••••

ILLUSTRATIONS

Life Cycle of a File ••••••••••••••••••
Format of I/O Request Block •••••••••••
LRN as Pointer to RCT •••••••••••••••••
ASCII Card-to-Memory Code Formatting ••
Verbatim Mode Formatting ••••••••••••••
Packed and 6-Bit Modes on 7-Track

Ta pe ••••••••••••••••••••••••••••••••
Trap Handling Mechanism •••••••••••••••
First Four Items of Request Blocks ••••
Format of Clock Request Block •••••••••
Format of File Information Block

(FIB) •••••••••••••••••••••••••••••••
Format of I/O Request Block •••••••••••
Format of Semaphore Request Block •••••
Format of Task Request Block ••••••••••
Format of Parameter Block •••••••••••••
Format of Wait List •••••••••••••••••••
Typical Device Driver •••••••••••••••••

xiii

C-l

D-I
D-I
D-2

3-17
6-S
6-15
6-17
6-19

6-39
7-3
A-2
A-2

A-4
A-7
A-I0
A-12
A-14
A-14
B-7

CBOS

Table 1-1.
Table 3-1.

Table 3-2.
Table 3-3.
Table 5-1.

Table 5-2.

Table 5-3.
Table 5-4.

Table 5-5.
Table 5-6.

Table 5-7.

Table 5-8.
Table 5-9.

Table 5-10.

Table 5-11.

Table 6-1.
Table 6-2.
Table 6-3.
Table 6-4.
Table 6-5.

Table 6-6.
Table 6-7.

Table 6-8.

Table 6-9.

Table 6-10.
Table 6-11.
Table 6-12.

Table 6-13.
Table 6-14.
Table 6-15.

Table 6-16.

TABLES

System Service Macro Calls ••••••••••••
Contents of File Information Block

(FIB) •••••••••••••••••••••••••••••••
Contents of Program View Entry in FIB •
Offsets Definition Macro Calls ••••••••
User-Generated Table for Error Logging

Page

1-7

3-2
3-7
3-12

Macro Calls ••••••••••••••••••••••••• 5-91
MGIRB Argument Values for $MACPT Macro

Call ..•.....•..••....•..............
Argument Values for $MGCRB Macro Call •
MGIRB Argument Values for $MCMG Macro

Ca 11 ••••••••••••••••••••••••••••••••
Argument Values for $MGIRB Macro Call •
MGIRB Argument Values for $MINIT Macro

Call•.......••..........••..
MGCRB Argument Values for $MRECV Macro

Call•.•••...•............•..••..
Argument Values for $MGRRB Macro Call •
MGCRB Argument Values for $MSEND Macro

Ca 11 ••••••••••••••••••••••••••••••••
MGRRB Argument Values for $MTMG Macro

Ca 11 ••••••••••••••••••••••••••••••••
Tape File Search Rules for $OPFIL Macro

Ca 11 ••••••••••••••••••••••••••••••••
Input/Output Function Code ••••••••••••
Return Status Codes •••••••••••••••••••
Contents of I/O Request Block •••••••••
IORB Software Status Word (I ST) ••••••
Resource Control Table (RCT)-Field

Definitions ••••••••••••••.••••.•••••
Hollerith-ASCII Code Table ••••••••••••
Card Reader Card/Reader-Punch Device­

Specific IORB Fields ••••••••••••••••
Card Reader IORB Hardware/Software

Status Code Mapping •••••••••••••••••
Card Reader/Punch Hardware/Software

Status Code Mapping •••••••••••••••••
Printer Device-Specific IORB Fields •••
Printer Device-Specific RCT Fields ••••
Printer RCT/IORB Hardware/Software

Status Code Mapping •••••••••••••••••
Diskette Device-Specific IORB Fields ••
Diskette Device-Specific RCT Fields •••
Diskette RCT/IORB Hardware/Software

Status Code Mapping •••••••••••••••••
Cartridge Disk Device-Specific IORB

Fields

xiv

5-173
5-176

5-182
5-185

5-190

5-193
5-197

5-202

5-207

5-217
6-3
6-5
6-8
6-11

6-12
6-18

6-19

6-21

6-21
6-24
6-25

6-26
6-27
6-28

6-28

6-30

CB08

'--- ./

~-"

~,"j

(

Table 6-17.

Table 6-18.

Table 6-19.

Table 6-20.

Table 6-21.
Table 6-22.
Table 6-23.
Table 6-24.

Table 6-25.

Table 6-26.

Table 6-27.

Table 6-28.

Table 7-1.

Table A-I.
Table A-2.

Table A-3.
Table A-4.

Table A-S.
Table A-6.
Table A-7.

Table A-8.

Table A-9.

Table C-1.

Table D-1.
Table D-2.

TABLES (cont)

Cartridge Disk Device-Specific RCT
Fi elds

Cartridge Disk RCT/IORB Hardware/
Software Status Code Mapping ••••••••

Mass Storage Unit Device-Specific IORB
Fi elds

Mass Storage Unit Device-Specific RCT
Fi elds

Mass Storage Unit Status Code Mapping •
ASR/KSR Device-Specific IORB Fields •••
ASR/KSR Device-Specific RCT Fields ••••
ASR/KSR RCT/IORB Hardware/Software

Status Code Mapping •••••••••••••••••
Characteristics of Supported Tape

Drives•...............•....
Magnetic Tape Device-Specific IORB

Fi elds
Magnetic Tape Device-Specific RCT

Fields
Magnetic Tape RCT/IORB Hardware/

Software Status Code Mapping ••••••••
Contents of Selected Words of Trap Save

Area When Trap Occurs •••••••••••••••
Contents of Clock Request Block •••••••
Contents of File Information Block

(FIB) •••••••••••••••••••••••••••••••
Contents of I/O Request Block •••••••••
Summary of IORB Fields for Operator

Interface •••••••••••••••••••••••••••
Contents of Semaphore Request Block •••
Contents of Task Request Block ••••••••
Message Group Control Request Block

(MGCRB) •••••••••••••••••••••••••••••
Message Group Initialization Request

Block (MGIRB) •••••••••••••••••••••••
Message Group Recovery Request Block

(MGRRB) •••••••••••••••••••••••••••••
Macro Calls, Function Codes, and

Register Contents •••••••••••••••••••
ASCII/Hexadecimal Equivalents •••••••••
EBCDIC/Hexadecimal/Binary Equivalents •

xv

Page

6-31

6-31

6-33

6-34
6-34
6-36
6-38

6-38

6-40

6-42

6-43

6-44

7-7
A-3

A-S
A-7

A-9
A-IO
A-12

A-IS

A-18

A-22

C-2
D-2
D-3

CB08

_.-/'"

(

(

SECTION 1

INTRODUCING AND USING THE MANUAL

This manual describes the function and use of GCOS 6 system
service macro routines, used by the assembly language programmer
to obtain monitor and input/output services and to build control
structures, for applications programs.

HOW TO USE THE MANUAL

Table 1-1 is an alphabetic list of all macro calls and their
functions, arranged alphabetically by macro call name (column 1).

Sections 2, 3, and 4 contain brief descriptions of the func­
tional groupings for the macro calls, together with a list of the
macro calls arranged alphabetically by function grouping. The
lists also include the macro call names shown in column 1 of
Table 1-1. Section 2 summarizes monitor services macro calls,
Section 3 the file system macro calls related to I/O services,
and Section 4 the macro calls to generate and define system data
structures.

Section 5 describes the use, functions, structures, and
error return codes for all macro routines/calls, with one
example for most. For easy reference, these detailed descrip­
tions are arranged in alphabetic order by specific function, (see
column 2 in Table 1-1).

This section also describes macro call syntax and register
conventions. The Assembly Language Reference manual discusses
the use of labels and address formats in detail.

MACRO CALL SYNTAX

Macro call syntax follows the conventions for assembly lan­
guage. The first field of the macro call can have an optional
label. If no label is used, at least one blank must precede the
macro call. User-selected items of data in a macro call are
known as arguments; these arguments are passed to a system ser­
vice macro routine by the macro processor.

, 1-1 CB08

Within the called system service macro routine (which is
generalized to handle any set of data passed to it), the macro
call arguments are associated with the service routine arguments
-- the order of positional arguments in the macro call indicates
the variables to which the data is applied. Thus, the order of
your arguments must be the same as the positional arguments with­
in the system service macro routine. Unless stated otherwise,
omitted arguments. that precede an included argument must be
indicated by the presence of a replacing comma for each omission.
One or more spaces must separate the macro call name from its
arguments, with a comma between each argument. The horizontal
tab character is equivalent to a space. A semicolon at the end
of a line indicates that the next line is a continuation
line.

REGISTER CONVENTIONS AND CONTENTS

Macro call arguments are often loaded into registers for
access by the system services. An argument of a macro call can
specify that the corresponding system service argument is either
contained in memory or in a register. If an argument is omitted
from the macro call the system assumes that the register normally
used to provide the value or address to the system service rou­
tine contains the requiref value or address. For this reason it
is important to know how the system service routines use the re­
gisters, as well as the conventions that exist for saving regis­
ter contents. 1

The system services use the following registers without pre­
serving their contents:1

Rl R7
R2 B2
R6 B4

As a general rule, the system services do not alter the
contents of the following registers:

S B1 T S3
I B3 RDBR M1 through M7
R3 B5 CI
R4 B6 SI
R5 B7 S1

S2

When coding a macro call that uses a register whose con­
tents are not preserved, ensure that the contents of the reg­
ister are appropriate for each occurrence of the macro call.

1The file system macro calls preserve the contents of all
registers except R1. B4 is the only register loaded by the file
system macro calls.

1-2 CBD8

I~-'-""

~-~

(~ ADDRESSING CONVENTIONS
"I..

(~~

Any macro call argument definition that specifies an argu­
ment default of a specific register content will allow an argu­
ment specification in the form =$Rn or =$Bn (n designates the
register to be specialized for the system service routine) to
denote that the register has been previously set to be the value
to be used. When a macro call argument description specifies .
that the location of a value or an address may be provided, any
assembly-level address syllable format that is valid for the type
of register being specialized can be used; i.e., the value (if
less than or equal to two bytes) or address can be supplied as an
immediate memory operand {IMO} address syllable form by prefacing
the val ue or address wi th an equal sign (=). (The! label macro
notation is used only to distinguish between LDB and LAB instruc­
tions when specializing a base register.)

For example, the $WAIT macro call has a single argument that
specifies the location of the address of the request block to be
waited on. This location must be placed in base register $B4.
The value specified for this argument in the $WAIT macro call can
take any of the following forms (among others):

=label

label

<label

=$B4

The label refers to the request block to be waited on.
An IMO address syllable format will be used by the LDB
instruction generated to load $B4.

The label refers to a field that contains the address
of the request block to be waited on. A P+DSP address
syllable format will be used by the LDB instruction
generated to load $B4.

The label refers to a field that contains the address
of the request block to be waited on. An IMA address
syllable format will be used by the LDB instruction
generated to load $B4.

Base register $B4 already contains the address of the
request block to be waited on. No instruction will be
generated to load $B4.

1-3 CB08

=$B3

$B3

*$B3

Base register $B3 contains the address of the request
block to be waited on. A register addressing addreSs
syllable will be used by the LOB instruction generated
to load $B4.

Base register $B3 contains the address of a field that
contains the address of the request block to be waited
on. A direct base addressing address syllable will be
used by the LOB instruction generated to load $B4.

Base register $B3 contains the address of a field that
contains the address of a field that contains the
address of the request bloc~ to be waited on. An in­
direct base addressing address syllable will be used
by the LOB instruction generated to load $84.

$B 3. $R2

The address referred to by base register $B3 plus $R2
contains .the address of the request block to be waited
on. An indexed base addressing address syllable will
be used by the LOB instruction generated .to load $B4.

If the address syllable is preceded by an exclamation point
(!) then the instruction generated is a LAB rather than an LOB.
For example:

!label

The label refers to the address of the request block
to be waited on. An effective address syllable format
will be used by the LAB instruction generated to load
$B4.

!*label

The label refers to a field containing the address of
the the request block to be waited on. A "LAB $B4,
*label" instruction will be generated to load $B4.

Thus, macro call "location address" arguments (which are to
be loaded into base registers) can refer to the location of the
address of the data or data structure or can refer to the-aaaress
of the data or data structure. In the first case (location of
address), the macro call loads the $Bn register through an LOB
instruction, thus requi ring that the "location add ress" val ues/!"

\

"'~~

1-4 CBD8

in the macro call arguments be the label of a location where the
address of the actual argument structure is located. In the
second case (address), the macro call loads the effective address
of the argument structure into $Bn directly (through a LAB in­
struction) when the first argument is a label and is preceded by
an exclamation point (!) character.

Fo r Example:

FIBPTR DC <FIB

FIB RESV 16

$macro FIBPTR = > LDB $B4,FIBPTR

$macro !FIB = > LAB $B4,FIB

REGISTER CONTENTS AT TASK ACTIVATION

When a task is activated, the contents of registers $B4,
$B5, and $B7 are the following:

Register $B4: Address of the task request block

Register $B5: Address of the system-supplied termination
routine (see the return ($RETRN) macro call)

Register $B7: Address of the parameter block containing
the request block argument list

REGISTER CONTENTS AT INITIAL TASK ACTIVATION

The M registers are set up as follows:

When each task starts, the system establishes the following de­
fault values Ml, M3, M4, and M5:

Ml = 00

M3 = 00

Trace trap and all R-register overflow traps
disabled.

CIP overflow trap and truncation trap disabled;
CIP is under direct CPU firmware control (i.e.,
not in software test mode).

1-5 CB08

M4 = 03

M5 = 20

Truncation mode in effect. Scientific accumula­
tors $Sl and $S2 and associated memory operands
are two words long; $S3 and associated memory
operands are four words long.

Significance error trap enabled; exponent overflow
and precision error traps disabled.

Contents of these registers can be modified with the assem­
bly language instruction MTM.

If the task is in an online task group, then the privileged
bit in the S-register is set on. If the task is not in an online
task group, the privileged bit is not set.

RETURN STATUS CODES IN $RI REGISTEER

The descriptions of the macro calls in Section 5 include
lists of status codes returned in register $RI, together with an
explanation of each code. These lists, while extensive, are not
intended to include every possible status return or explanation
for each macro call. See the System Messages manual for a list
of all $RI return status codes, corresponding messages, and added
definitions.

SYSTEM SERVICE MACRO CALLS AND FUNCTION CODES

Table 1-1 contains an alphabetic list, by macro call name,
of the macro calls summarized in Sections 2, 3, and 4, and de­
scribed in Section 5. The list includes the function codes
associated with each macro call (data structure generation macro
calls do not have function codes). The first two digits of the
function code designate the major function, and are used by the
macro call trap-handling routine to locate the entry point of the
appropriate system service routine. The last two digits are a
subfunction code used by the system service routine to provide
the requested subfunction. When a macro call is executed, it
generates the following:

MCL
DC Z' mmss'

where mm is the 2-digit major function code and ss is the 2-digit
subfunction code. The function codes are provided for informa­
tion only; they will appear in program listings and dumps.

LOCATION OF MACRO ROUTINES

The macro routines are located either on cartridge disk or
on storage module in a library named >LDD>MACRO>EXEC_LIB. On
diskette they are located in ~ZSYS02>LDD>MACRO>EXEC LIB. See the
Assembly Language Reference manual.

1-6 CBOS

(
Macro

Call Name
(1)

$ABGRP

$ABGRQ

$ACTID

$ACTVG

$ASFIL

$BUID

$CANRQ

$CIN

$CLFIL

$CLPNT

$CLRSW

$CMDLN

$CMSUP

$CNCRQ

$CNSRQ

Table 1-1. System Service Macro Calls

Function Description
(2)

Abort group

Abort group request

Account identifier

Activate group

Associate file

Bound unit identification

Cancel request

Command in (read command­
in file)

Close file

Clean point

Clear external switches

Command line, process

Console message suppression

Cancel clock request

Cancel semaphore request

1-7

Function
Code

(3)

ODOA

OD07

1402

OD09

1010

1406

OCOI

Function
Group

(4)

Task group
control

Task group
control

Identifica­
tion and
information

Task group
control

File manage­
ment

Identifica­
tion and
information

Task control

0802 Standard
system file
I/O

1055-1057 File manage­
ment

OC13 Task control

OB02 External
switch

OC08 Task control

0902/0903 Operator
interface

0501 Clock

0601 Semaphore
handling

CB08

I

I

I

Macro
Call Name

(1)

$eRB

$CRBD

$CRDIR

$CRFIL

$CRGRP

$CROAT

$CRPSB

$CRTSK

$CWDIR

$DFSM

$DLGRP

$DLREC

$DLTSK

$DSDV

$DSFIL

$DSTRP

Table 1-1 (cont). System Service Macro Calls

Function Description
(2)

Clock request block

Clock request block offsets

Create directory

Create file

Create group

Create overlay area table

Create file parameter
structure block - offsets

Create task

Change working directory

Define semaphore

Delete g ro up

Delete record

Delete task

Disable device

Di ssoc i ate file

Disable user trap

1-8

Function
Code
(3)

10AO

1030

OD03

070A

Function
Group

(4)

Data struc­
ture genera­
tion

Data struc­
t ur e gener a­
tion

File manage­
ment

File manage­
ment

Task group
control

Overlay
handling

- Data struc­
ture genera­
tion

OC02/0C03 Task control

lOBO File manage­
ment

0604 Semaphore
handling

OD04 Task group
control

1130/1131 Data mange­
ment

OC04

0202

1015

OA02

Task control

Physical I/O

File manag e­
ment

Trap handling

CB08

(....

Macro
Call Name

(1)

$ELEND

$ELEX

$ELGT

$ELST

$ENDV

$ENTRP

$EROUT

$EXTDT

$EXTIM

$FIB

$GDTM

$GIFAB

$GIFIL

$GIKDB

$GIPSB

Table 1-1 (cont). System Service Macro Calls

Function Description
(2)

Error logging, end

Error logging information,
exchange

Error logging information,
get

Error logging, start

Enable device

Enable user trap

Error output file - write to

External date/time - convert
to

External time - convert to

File information block -
create or change

Get date/time

Get file information, file
attributes block - offsets

Get file information

Get file information and
create file, key descriptor
block - offsets

Get file information, pa­
rameter structure block -
offsets

1-9

Function
Code
(3)

0209

0207

0208

0205

0204

OAOI

0803

0504

0505

0506

1060

Function
Group

(4)

Phys ical I/O

Physical I/O

Phys ical I/O

Phys ical I/O

Physical I/O

Trap handling

Standard
system file
I/O

Date/time

Da te/time

Data struc­
ture genera­
tion

Date/time

Data struc­
ture genera­
tion

File manage­
ment

Data struc­
ture genera­
tion

Data struc­
ture genera­
tion

CB08

*

I

Table 1-1 (cont). System Service Macro Calls

Macro
Call Name

(1)

$GMEM

$GTFIL

$GTPSB

$GWDIR

$HDIR

$INDTM

$IORB

$IORBD

$MACPT

$MCMG

$MGCRB

$MGCRT

Function Description
(2)

Get memory; get available
memory

Get file

Get file, parameter struc­
ture block - offsets

Get working directory

Home directory, return

Internal date/time -
convert to

Input/output request
block

Input/output request
block 0 ffsets

Message group, accept

Message group, count

Message group control
request block

Message group control request
block 0 ffsets

1-10

Function
Code
(3)

0402/0403

1020

lOCO

l40B

0507

1501

1507

Function
Group

(4)

Memory allo­
cation

Fi Ie manage­
ment

Data struc­
ture genera­
tion

File manag e­
ment

Identifica­
tion and in­
formation

Date/time

Data struc­
ture genera­
tion

Data struc­
ture genera­
tion

Intergroup
message fa­
cility

Intergroup
message
facility

Data struc­
ture genera­
tion

Data struc­
ture genera­
tion

CB08

,/

Macro
Call Name

(1)

$MGIRB

$MGIRT

$MGRRB

$MGRRT

$MINIT

$MODID

$MRECV

$MSEND

$MTMG

$NPROC

$NUIN

$NUOUT

Table 1-1 (cont). System Service Macro Calls

Function Description
(2)

Message group initialization
request block

Message group initialization
request block offsets

Message group recovery request
block

Message group recovery request
block 0 ffsets

Message group, initiate

Mode identification

Message group, receive

Message group, send

Message group, terminate

New process

New user input file -
redefine

New user output file -
redefine

1-11

Function
Code
(3)

1502

1403

1503

1505

1504

ODOB

0806

0807

Function
Group
(4)

Data struc­
ture genera­
tion

Data struc­
ture genera­
tion

Data struc­
ture genera­
tion

Data struc­
ture genera­
tion

Intergroup
message
facility

Identification
and info rma­
tion

Intergroup
message facil­
ity

Intergroup
message facil­
ity

Intergroup
message facil­
ity

Task group
control

Standard
system file
I/O

Standard
system file
I/O

CB08

Macro
Call Name

(1)

$OPFIL

$OPMSG

$OPRSP

$OVEXC

$OVLD

$OVRCL

$OVRLS

$OVRSV

$OVST

$OVUN

$PERID

$PRBLK

$RBADD

$RDBLK

$RDREC

Table 1-1 (cont). System Service Macro Calls

Function Description
(2)

Open file

Operator information
message - display only

Operator response
message - display/respond

Overlay, execute

Overlay, load

Overlay release, wait, and
recall

Overlay area, release

OVerlay area reserve, and
execute overlay

Overlay status

Overlay, unload

Person identification

Parameter block

Return request block
address

Read block

Read record

1-12

Function
Code
(3)

Function
Group

(4)

1050/1051 File manage­
ment

0900

0901

0700

0701

0707

0706

0705

0703

070C

Opera to r
interface

Operator
interface

Overlay
handling

Overlay
handling

Overlay
handling

Overlay
handling

Overlay
handling

Overlay
handling

Overlay
handl ing

1401 Identification
and informa­
tion

- Data struc­
ture genera­
tion

0107 Request and
return

1200-1204 Storage
management

1110-1116 Data manage­
ment

CBOS

(" Table 1-1 (cont) • System Service Macro Calls

Macro Function Function
Call Name Function Description Code Group

(1) (2) (3) (4)

$RDSW Read external switches OBOO External
switch

$RDVAT Reset device attention 0203 Physical I/O

$RETRN Return sequence - establish - Request and
return

$RLDIR Release directory 10A5 File manage-
ment

$RLFIL Release file 1035 File manage-
ment

$RLSM Release semaphore 0603 Semaphore
handling

$RLTML Release terminal 1704 Terminal I Function

($RMEM Return memory; return 0404/0405 Memory
partial block 0 f memory allocation

$RMFIL Remove file 1025 File manage-
ment

$RNFIL Rename file/directory 1040 File manage-
ment

$RPTER Report error condition OFOO/OFOI Error hand-
ling

$RQBAT Request batch execution OEOO Batch

$RQCL Request clock 0500 Clock

$RQGRP Request group 0000 Task group
control

$RQIO Request I/O transfer 0200 Physical I/O

$RQSM Request semaphore 0600 Semaphore
handling

$RQTML Request terminal 1703 Terminal I (--~ function

1-13 CBOe

I

Macro
Call Name

(1)

$RQTSK

$RSVSM

$RWREC

$SDL

$SETSW

$SPGRP

$SPTSK

$SRB

$SRBD

$STMP

$STTY

$SUSPG

$SUSPN

$SYSID

$TEST

Table 1-1 (cont). System Services Macro Calls

Function Description
(2)

Request task

Reserve semaphore

Rewri te record

Set dial

Set external switches

Spawn group

Spawn task

Semaphore request block

Semaphore request block
offsets

Status memory pool

Set terminal file
characteristics

Suspend group

Suspend for interval; sus­
pend until time

System identification

Test completion status

1-14

Function
Code
(3)

OCOO

0602

1140/1141

1BOO

OB01

OD05

OC05/0C06

0406

1045

Function
Group

(4)

Task control

Semaphore
handling

Data manage­
ment

Communica­
tions

External
switch

Task group
control

Task control

Data struc­
ture genera­
tion

Data struc­
ture genera­
tion

Memory al­
location

File manage­
ment

OD08 Task group
control

0502/0503 Clock

1404 Identifica-
tion and in­
formation

0102 Request and
return

CB08

(

Macro
Call Name

(1)

$TFIB

$TGIN

$TIFIL

$TOFIL

$TRB

$TRBD

$TRMRQ

$TRPHD

$USIN

$USOUT

$USRID

$WAIT

$WAITL

$WIFIL

Table 1-1 (cont). System Service Macro Calls

Function Description
(2)

File information block -
offsets

Task group input

Test file for input

Test file for output

Task request block

Task request block offsets

Terminate request

Trap handler connect

User input file - read

User output file - write

User identification

Wait for operation
complete

Wait on request list

Wait for file input

1-15

Function
Code
(3)

l40C

1062

1063

Function
Group

(4)

Data struc­
ture genera­
tion

Identifica­
tion and in­
formation

File manage­
ment

File manage­
ment

Data struc­
ture genera­
tion

Data struc­
ture genera­
tion

0103/0104 Request and
return

OAOO Trap handling

0800

0801

1400

0100

0101

1064

Standard
system file
I/O

Standard
system file
I/O

Identifica­
tion and
information

Request and
return

Request and
return

File manage­
ment

CB08

I

*

Table 1-1 (cont). System Service Macro Calls

Macro Function Function
Call Name Function Description Code Group

(1) (2) (3) (4)

$WLIST Wait list - Data struc-
ture genera-
tion

$WOFIL Wait for file output 1065 File manage-
ment

$WRBLK .Wri te block 1210/1211 Storage
management

$WRREC Write record 1120/1126 Data manage-
ment

$WTBLK Wait block 1220 Storage
management

$XPATH Expand pathname 10DO File manage-
ment

TASK REQUEST QUEUES

The task manager controls the scheduling and synchronization
of tasks, and uses the following data structures.

o Logical Resource Number (LRN) - An LRN' provides a logical
task identifier. You assign an LRN to an application
task when the application is designed; you assign an LRN
to a system device driver task at configuration. Its
value is from 0 through 252.

o Logical Resource Table (LRT) - An LRT associates each LRN
with a specific resource control table (RCT). An LRT is
created for each user task group and contains an entry
for each LRN specified in the task group. Each entry in
the LRT points to an RCT that uniquely identifies one of
the task group's tasks.

The system has one LRT to associate each configured de­
vice with an LRN. The LRT contains an entry for each
LRN identified to the Configuration Load Manager at sys­
tem startup. Each entry in the LRT points to an RCT that
uniquely defines the configured device.

1-16 CB08

. , ,

o Resource Control Table (RCT) - A separate RCT is built
for each task or device. Each RCT contains the physical
priority level number dedicated to that task or device.
In addition, each device RCT contains the device-specific
characteristics that uniquely describe that device.

o Request Block (RB) - The RB is the basic control struc­
ture that em60dies a specific request for the execution
of a task. An RB contains the arguments of a task re­
quest; it provides the medium of communication between
the requesting and requested tasks. Separate RB formats
exist for tasks and devices, but the control fields used
by the task manager are common to both formats. You may
extend the RB to include application-specific information
to be passed between the requesting and requested tasks.

o Request Queue - The request queue is a first-in/first-out
queue of request blocks maintained by the task manager in
order to serialize requests for task services. A sepa­
rate request queue is maintained for each task.

o Task Control Block (TCB) - A TCB is the system control
structure for a task and includes the interrupt save area
(ISA). When a task is interrupted by a task with a
higher priority level, the contents of the ISA are stored
in the task control block of the interrupted task •

The task manager controls tasks by manipulating request
blocks in task request queues. Using the logical resource number
provided in a request block, the task manager consults the logi­
cal resource table to locate the TCB of a requested task; the
mechanism is shown in the diagram below.

RESOURCE CONTROL TABLE

TeB
ADDRESS

PRIORITY
LEVEL
NUMBER

LOGICAL RESOURCE TABLE

POINTER
}

LOGICAL
RESOURCE
NUMBER
OFFSET

A request for a task causes a request block to be placed in
the request queue for the requested task. When the requested
task terminates, the task manager removes the request block from
the top of its request queue and posts its completion. If
desired, one task may wait for the completion of the requested

1-17 CB08

I

task; the waiting task is suspended until the requested task
signal its completion to the task manager, which will re­
activate the waiting task. In the meantime, other tasks may use
the level of the waiting task.

TCBs representing task code are assigned to execute on phys­
ical priority level of the central processor. One or more TCBs
may be assigned to use a level, and will be queued awaiting
availability if there is a request for the task. When the TCB
heading the level queue terminates with an empty request queue or
is temporarily suspended by the system, the next TCB on that
level moves to the head of the level queue. The system may
suspend a task while processing a system service call, e.g.,
fetching a system overlay; the task may also explicitly suspend
by performing a wait or suspend operation. When a suspended task
reactivates, its TCB is placed at the end of the appropriate
level queue.

The following sequence of events illustrates an example of
request queue manipulation as one task (e.g., task A, identified
as logical resource number I at priority level 7) requests the
execution of another task (e.g., task B, identified as logical
resource number 2 at priority level 10, a lower priority level)
and later waits for completion of the requested task.

1. Task A requests task B (specifying logical resource
number 2 in the request block). The task manager places
this request block at the end of the request queue for
Task B which executes at priority level 10. See Diagram
1.

~ TCB
I ANOTHER REQUEST

J
REQUEST --- BLOCK
BLOCK FROM TASK A

TASK B REQUEST QUEUE

Diagram 1 - Request Block From Task A is Queued in
Request Queue for Task B

2. Task A issues a wait call, indicating that it wishes to
be suspended until its request for Task B is completed.
Task A is now suspended.

1-18 CB08

\ ./
"<;..- .•

3. Task B runs and terminates relative to the first request
block in the request queue for the task. As Task B
terminates, the first request block is removed from the
request queue for the task. See Diagram 2. The TCB for
Task B on priority level 10 remains active because
another request block (the one generated by Task A)
exists in its request queue.

ANOTHER
REQUEST
BLOCK

REQUEST
BLOCK
FROM TASK A

", V ¢""

TASK B REQUEST QUEUE

Diagram 2 - First Request Block is Dequeued as Task B
Terminates Relative to It

4. Task B runs and terminates relative to the request block
generated by Task A. Task A, which was waiting for this
event, is now reactivated, The request block generated
by Task A is removed from the request queue for priority
level 10. Task A will resume execution when priority
level 7 becomes the highest active level, and the Task A
TCB again reaches the beginning of the level 7 TCB
queue.

1-19 CB08

(-

SECTION 2

MONITOR SERVICE FUNCTIONS

The Monitor service macro routines summarized and listed in
this section provide access to system service functions. The
macro routines/calls are arranged and discussed within and in the
order of these functional groups (see column 4 in Table 1-1):

Batch
Clock
Communications
Date/time
Error handling
External switches
Identification and information
Memory allocation
Message facility (intergroup)
Operator interface

Overlay handling
Physical I/O
Request and return
Secondary user terminal
Semaphore handling
Standard system file I/O
Task control
Task group control
Trap handling

Each macro routine/call is described in detail in Section 5,
in the alphabetic order of its function description (column 2 of
Table 1-1).

BATCH FUNCTIONS

The macro call for batch functions facilitates program
execution in a way that requires no personal interaction with
the system. To use the batch functions, prepare a file that is
to act as the command input file and the user input file. All
commands and program input are read from this file by the batch
task group when your request executes.

The macro routine/call is:

o Request batch execution $RQBAT

Section 5 describes this macro call in detail.

2-1 CB08

I

I

CLOCK FUNCTIONS

The macro calls for clock functions allow user control of
task execution according to an elapsed time period. These macro
calls use the clock manager, a system component whose primary
function is initiating task execution based on the passage of
time.

The clock manager services interrupts from the real-time
clock. At each interrupt, the clock manager ascertains whether
the time interval associated with a request to initiate execution
of the task has been satisfied. Based on information contained
in the clock request block (see Appendix A), the system will:

o Activate a task
o Schedule an indicated request block
o Release a semaphore

The clock macro calls act to:

o Connect a clock request block to the timer queue

o Disconnect a clock request block from the timer queue

o Suspend the issuing task until an interval of time has
passed

o Suspend the issuing task until a particular date/time

The clock function macro routines/calls are:

o Cancel clock request
o Request clock
o Suspend for interval
o Suspend until time

$CNCRQ
$RQCL
$SUSPN
$SUSPN

Section 5 describes these macros in detail and also the
macro $CRB (clock request block) for generating a clock request
block.

COMMUNICATIONS FUNCTIONS

The macro call for communications functions allows you to
set a telephone number to be used for automatic dialing. The
macro routines/call is:

o Set dial $SDL

The Communications Processing manual describes communica­
tions processing.

Section 5 describes the above macro in detail.

2-2 CBD8

\,,-___ ,.7'

,;{
I

~./

(- DATE/TIME FUNCTIONS

,f

The macro calls for date/time functions allow access and use
of the internal date/time value maintained by the system, and
conversions of date/time values for internal to external formats,
and vice versa. Specifically, the macro calls provide the task
with the means to:

o Obtain the current internal date/time value

o Convert the internal date/time value to external date/
time format

o Convert the internal date/time value to external time
format

o Convert an external date/time value to internal format

The date/time macro routines/calls

External date/time - convert to
External time - convert to
Get date/time
Internal date/time - convert to

are:

$EXTDT
$EXTIM
$GDTM
$INDTM

Section 5 describes these macros in detail.

, ERROR HANDLING FUNCTION

The macro for error handling enables you to report error
conditions and to add error text.

The error handling macro routine/call is:

Report error condition $RPTER

Section 5 describes it in detail.

EXTERNAL SWITCH FUNCTIONS

A task group, by using external switch function macro calls,
can control its own execution by modifying its own external
switches. An external switch operates much like a hardware
switch on an operator's control panel. External switches may be
set and cleared with the MSW (modify switches) command, or inter­
nally with the $SETSW and $CLRSW macro calls.

A separate external switch word is associated with each task
group. Each bit in the word is an external switch. Thus, each
task group can use 16 switches. A user program can contain

2-3 CBD8

I

I

instructions or statements to interrogate the settings of one or
more of these switches. The program can then use these settings
to control its execution logic.

The macro calls allow you to:

o Set swi tches
o Clear switches
o Read the current values of the switches

The macro routines/calls are:

Clear external switches
Read external switches
Set external switches

$CLRSW
$RDSW
$SETSW

Section 5 describes these macros in detail.

IDENTIFICATION AND INFORMATION FUNCTIONS

The macro calls for identification and information make
available the following information concerning the current task
or task group.

Function

Home directory pathname
Bound unit identification
System identification
Task group account identification
Task group input file name
Task group mode identification
Task group person identification
Task group user identification

Macro Call

$HDIR
$BUID
$SYSID
$ACTID
$TGIN
$MODID
$PERID
$USRID

Section 5 describes these macro in detail.

MEMORY ALLOCATION FUNCTIONS

The macro calls for memory allocation functions allow you to
dynamically obtain memory from the task group's memory pool, to
return this memory when it is no longer needed, and ascertain the
amount of memory available in a specified pool.

The macro call that allocates a memory block has two forms:
one form allows you to obtain a memory block of the specified
size only; the other allows you to obtain the largest existing
contiguous memory block if a block of the specified size cannot
be found. The macro call that returns a memory block also has
two forms: one form allows you to return an entire memory block;
the other allows you to return a specified part of the block.

2-4 CB08

(. The macro routines/calls are:

Get memory; get available memory

Return memory; return partial
block of memory

Status memory pool

$GMEM

$RMEM

$STMP

Section 5 describes these macros in detail.

MESSAGE FACILITY FUNCTIONS

The message facility allows two task groups, using assembly
language code, to have online communication between them by
sending a message (one or more records) through message queues
called mailboxes. A message group is a set of records that con­
stitute a message sent through a mailbox.

The message facility macro calls are issued by the task
groups to perform message group and message functions. (The
Mod 400 System Concepts manual describes the message facility.)

The intergroup message facility macro calls have the follow­
ing funct ions:

o Open the send function of the message facility (accept)

o Ascertain number of messages in the mailbox

o Open the receive function of the message facility
(initiate)

o Terminate the message group

o Receive the data

o Send the message data

The message facility macro calls are:

Message group, accept
Message group, count
Message group, initiate
Message group, terminate
Message group, receive
Message group, send

$MACPT
$MCMG
$MINIT
$M'IMG
$MRECV
$MSEND

Section 5 describes these macros in detail.

2-5 CB08

OPERATOR INTERFACE FUNCTIONS

The macro calls for operator interface functions enable
tasks to communicate with the operator terminal by:

o Displaying an information message on the operator
terminal

o Sending a message to the operator terminal and receiving
a response

o Activating or deactivating console suppression, i.e.,
suspend or restore issuance of messages to the operator
terminal for the issuing task group

The macro routines/calls are:

Console message suppression
Operator information message
Operator response message

$CMSUP
$OPMSG
$OPRSP

The $OPMSG and $OPRSP macro calls require input/output re­
quest blocks (IORB's), which can be generated by the $IORB macro
call (see Sections 4 and 5 and Appendix A) •

Section 5 describes the operator interface macros in detail.

OVERLAY HANDLING FUNCTIONS

Overlays may be loaded at a fixed displacement from the base
of the root-segment at link time, or if "floatable," into a block
of memory allocated explicitly by the user or implicitly by the
system.

The user may create a set of overlay areas and have the sys­
tem load floatable overlays into them, managing the availability
of free areas, and locating available copies of requested
overlays.

The macro routines/calls are:

Overlay, release, wait, and recall
Overlay area, release
Overlay area reserve, and execute overlay
Create overlay table
Overlay, execute
Overlay, load
Overlay status
Over lay, unload

Section 5 describes these macro in detail.

2-6

$OVRCL
$OVRLS
$OVRSV
$CROAT
$OVEXC
$OVLD
$OVST
SOWN

CB08

(PHYSICAL I/O FUNCTIONS

(,

The macro calls described in this subsection allow you to
interact with device drivers. If direct access to devices is not
a requirement, use the File System macro calls.

The physical I/O macro calls allow you to:

o Request input and output

o Disable"a device when an attention interrupt occurs

o Set the resource control table (RCT) of a device to the
enable status

o Turn off the attention status indicator in the RCT of the
specified device

See Section 6 fora complete description of Level 6 physical
I/O functions, including details on device drivers and resource
control tables.

The macro routines/calls for physical I/O are:

Disable device on attention
Enable device
Reset device attention
Request I/O transfer

$DSDV
$ENDV
$RDVAT
$RQIO

Another group of macro calls associated with physical I/O
function codes are the error logging macro calls which:

o Activate error logging for a device

o Insert current values of error logging information in the
user's error log structure

o End error logging and store logging information in user's
error log structure

o Verify and save user error logging structure.

The macro calls for error logging are:

Error logging, start
Error logging information, get
Error logging, end
Error logging information, exchange

Section 5 describes these macros in detail.

2-7

$ELST
$ELGT
$ELEND
$ELEX

CBD8

REQUEST AND RETURN FUNCTIONS

The macro calls for request and return functions enable you
to control requests for tasks and to provide a standard return
sequence for called subroutines. Specifically, the macro
routines are used to:

0 Terminate the current execution of a task
0 Wait for the completion of another task
0 Wait for the completion of any of a number
0 Test for the completion of an event
0 Return the address of a request block
0 Issue a common return sequence

The macro routines/calls are:

Return request block address
Return
Terminate request
Test completion status
Wait for operation to complete
Wait on request list

for called

$RBADD
$RETRN
$TRMRQ
$TEST
$WAIT
$WAITL

Section 5 describes these macros in detail.

of events

subroutines

Sections 4 and 5 describe the macro routines for generating
request blocks. Appendix A shows request block formats.

SECONDARY USER TE~MINAL FUNCTIONS

The macro calls for secondary terminal functions pertain to
a task group's secondary user terminal, which is defined as a
terminal given to a task group by the listener component when a
a secondary login is performed at that terminal. This occurs
provided the task group has an outstanding request for a second­
ary user terminal.

The macro calls for secondary user terminal functions
permi t:

o The task group to request a secondary terminal.

o The task group to release a secondary terminal.

o The task group to cancel a previous request from the
issuing group.

2-8 CB08

The appropriate macro calls are:

Request terminal
Release terminal
Cancel request

$RQTML
SRLTML
$CANRQ

Section 5 describes these macros in detail.

SEMAPHORE FUNCTIONS

A semaphore is a mechanism for coordinating the use of re­
sources within task groups. Semaphores are unique to a task
group and once defined, are available only to the tasks within
that group, to control access to multiple resources and control
multiple requests for the same resource.

A semaphore is defined for each resource to be controlled
and given a 2-character ASCII semaphore name, which is a system
symbol recognized by the Monitor. Every requestor of a resource
whose use must be coordinated issues appropriate Monitor calls
to the named semaphore to request or release the resource. The
task that defines the semaphore assigns the semaphore's initial
value. The Monitor maintains its current value to coordinate
requestors of the resource being controlled. A requestor obtains
use of a resource if the semaphore value is greater than zero at
the time of the request. A requestor is either suspended waiting
for the resource or notified that no resource is available if the
value is zero or negative.

Monitor service macro calls are used to:

o Define a semaphore and give an initial value.

o Reserve a semaphore-controlled resource; this macro call
subtracts a resource, or signals a waiter for the re­
source i.e., it decrements the current-value counter.

o Release a semaphore-controlled resource; this macro call
adds a resource, or activates the first waiter on the
semaphore queue; i.e., it increments the current-value
counter.

o Request the reservation of a semaphore-controlled re­
source; this macro call queues a request block (SRB) if
the resource is not available. This macro call decre­
ments the current-value counter.

o Remove a specified semaphore request block from its
semaphore request queue.

A semaphore is a gating mechanism, and the initial value
given to it depends upon the type of control to be exercised.

2-9 CB08

For example, assume that you want to restrict access to a
particular resource to a one-user-at-a-time order.

1. Task A defines a semaphore by issuing the macro call:

$DFSM ZZ

Omission of the value parameter causes the initial value to
be set to 1.

2. Task B now issues a $RSVSM call; the counter is decre­
mented to 0, Task B gets the resource for itself knowing
that no other task using the semaphore mechanism is
using or can obtain the resource.

3. Task C issues a $RSVSM call; the counter is decremented
to -1, Task C is suspended (Task B is still using the
reso urce) •

4. Task B issues a $RLSM when it finishes with the re­
source; the counter is incremented to 0, Task C now gets
the resource. After the $RLSM for Task C, the value is
1 again.

Use of resources by more than one user at a time can be ar­
ranged by adjusting the initial value of the semaphore, e.g., an
initial value of 2 allows two users, a value of 4 allows four
users, and so on, depending on the nature of the resource and its
intended use.

If it is undesirable for a task to be suspended while a re­
source is in use, the $RQSM macro call can be used instead of
$RSVSM to reserve a resource. $RQSM is an asynchronous reserva­
tion request ($RSVSM is a synchronous request) which causes a
request block to be queued for the resource, so that the issuing
task can do other processing before the needed resource is
ava ilable.

The macro routines/calls for semaphore handling are:

Cancel semaphore request
Define semaphore
Release semaphore
Request semaphore
Reserve semaphore

$CNSRQ
$DFSM
$RLSM
$RQSM
$RSVSM

Section 5 describes these macros in detail.

STANDARD SYSTEM FILE I/O FUNCTIONS

The macro calls for standard system file I/O functions make
the standard system files (command-in, user-in, user-out, and

2-10 CBOS

(-

error-out) available to a task group. Other macro calls shown
below allow the task to redefine the user-in and user-out files.
Specifically, the macro routines enable you to:

o Read the next record from the command-in file
o Write the next record to the error-out file
o Read the next record from the user-in file
o Write the next record to the user-out file
o Redefine the user-in file
o Redefine the user-out file

The macro routines/calls are:

Command in (read command-in file)
Error output file
New user input file
New user output file
User input file
User output file

$CIN
$EROUT
$NUIN
$NUOUT
$USIN
$USOUT

Section 5 describes the macros in details.

TASK CONTROL FUNCTIONS

The macro calls for task control allow you to:

o Create, request, spawn, and delete a task

o Process command lines

o Unlock locked records for all files attached to the
task group (clean point)

Some macro calls involve the use of request blocks. Sec­
tions 4 and 5 discuss and describe macro calls that generate re­
quest blocks; Appendix A shows the format of the request blocks.

Macro routines/calls for task control are:

Cancel request
Clean po int
Command line, process
Create task
Delete task
Request task
Spawn task

$CANRQ
$CLPNT
$CMDLN
$CRTSK
$DLTSK
$RQTSK
$SPTSK

Section 5 describes these macros in detail.

2-11 CBOS

I

I

TASK GROUP CONTROL FUNCTIONS

A task group is a named set of one or more tasks, memory
space, files, peripheral devices, and priority levels. Any num­
ber of task groups may be defined. The macro calls for task
control allow you to:

o Create a task group

o Request a task group

o Delete a task group

o Spawn a task group

o Suspend a task group

o Activate a suspended task group

o Terminate current task group and restart task group
request

o Abort a task group request

o Abort a task group

A task executing under one task group can initiate another
task group. A task group must first be defined to create task,_
group control structures and load the bound-unit root segment as
the lead task. A group request must be issued to activate the
lead task for execution. Tasks can be executed concurrently in
this task group with the use of task control functions or
commands.

The task group can be deleted; no more requests can be made
against this task group after it has been marked for deletion.
When all tasks in the task group terminate and become dormant,
all memory associated with the task group is returned to its
memory pool, making that memory available to other task groups.

The above effects of create, request, and delete a task group
occur in sequence when a spawn task group macro call is issued.

A task can suspend a task group~s execution and then acti­
vate that task group.

A task can terminate the current task group request and then
restart the processing of the original task group request.

A task can abort the current request for the activation of a
specified task group. In this case the next request, if any,
against that task group, will be processed.

2-12 CBOS

(

(:'

To delete the task group immediately, before all its tasks
terminate and become dormant, the group can be aborted.

Some macro calls listed below use parameter blocks.

The macro call to generate parameter blocks is discussed and
described in Sections 4 and 5; block format is shown in Appendix
A.

The macro routines/calls for task group control are:

Abort group
Abort group request
Activate group
Create group
Delete group
New process
Request group
Spawn group
Suspend group

$ABGRP
$ABGRQ
$ACTVG
$CRGRP
$DLGRP
$NPROC
$RQGRP
$SPGRP
$SUSPG

Section 5 describes these macros in detail.

TRAP HANDLING FUNCTIONS

The macro calls for trap functions allow you to indicate the
kind of trap handling functions within the task group of the
issuing task. The macro calls allow you to:

o Connect a user-written, generalized trap handling routine
to a task

o Enable a specific trap or all traps

o Disable a specific trap or all traps

Section 7 describes traps and trap handling in detail.

The macro routines/calls for trap handling are:

Disable user trap
Enable user trap
Trap handler connect

$DSTRP
$ENTRP
$TRPHD

Section 5 describes these macros in detail.

2-13 CB08

(~

SECTION 3

FILE SYSTEM FUNCTIONS

The macro routines summarized and listed in this section
enable you to use the file system functions, which are organized
according to the following major functional groups: (see column
4 in Table 1-1):

o File/directory management
o Data management
o Storage management

The file/directory management macro routines provide service
functions at the file level (i.e., creating files, reserving
files, specifying concurrency control, opening and closing files,
creating directories, etc.). Data management macro routines sup­
ply the service functions required at the record level, such as
read, write, delete, and rewrite. The storage management macro
routines furnish service functions at the block (unit of trans­
fer) level, such as read and write.

Every macro routine/call is described in detail in Section 5
in the alphabetic order of its function description (see column 2
of Table 1-1).

File management services use argument structures, which vary
in content from macro call to macro call. The content of each
argument structure is described with the appropriate macro call.

"Addressing Conventions" in Section 1 describes the address
forms that are valid for address and data registers.

A pointer in the file system structures consists of two
words. In SAF, the pointer resides in the first word; in LAF the
pointer is a double-word address.

3-1 CB08

Some macros, particularly the data and storage management
services, use a data structure called a file information block
(FIB), which is generated with a $FIB macro call (see Sections 4
and 5). The following are detailed descriptions of the structure
and contents of the file information block (FIB).

FILE INFORMATION BLOCK (FIB)

There must be one file information block for each file, in
order for the file to be accessed. The FIB, which must start on
a word boundary, provides the interface between your program and
the system for performing data- and storage-management functions.
Table 3-1 describes each of the FIB entries, Table 3-2 describes
the second entry in the FIB (i.e., program view) in detail.

The FIB can be generated by a $FIB macro call (see Sections
4 and 5).

Table 3-1. Contents of File Information Block (FIB)

Entry

Logical file
number (LFN)

Program view

Size
(bytes) Description

2 Specifies the logical file number
(LFN) by which the file is refer­
enced. The LFN is the common ele­
ment linking the FIB and the exter­
nal file; this connection is made
via the $ASFIL, $CRFIL, or $GTFIL
macro call (or equivalent command).

2 Describes the user visibility of the
file and its functional capabili­
ties; it contains information speci­
fic· to each of the function groups
(see Table 3-2) as follows:

Bits 0-9 File/directory management
Bits 10-14 Data management
Bits 13-15 Storage management

As described in Table 3-2, the set­
ting of bit 0 determines whether
bits 13 and 14 are data management
specific or storage management
specific.

3-2 CBoa

i
'4,

Table 3-1 (cont). Contents of File Information Block (FIB)

Entry

User record
pointer (for
data manage­
ment functions)

Buffer pointer
(for storage
management
functions)

In record length
(for data manage­
functions)

Transfer-size
(for storage
management
functions)

Out record length
(for data manage­
ment functions)
or

Size
(bytes) Description

Identifies the start of the user­
record area as follows:

$RDREC - Identifies the storage area
into which records are delivered by
the system.

$RWREC, $WRREC - Identifies the
storage area from which records are
taken by the system.

4 The storage area must be large
enough to contain the longest re­
cord, excluding headers, to be
written to or received from the
file.

2

2

Identifies the start of the buffer
area as follows:

$RDBLK - Identifies the buffer area
into which blocks of data are de­
livered.

$WRBLK - Identifies the buffer area
from which blocks of data are taken.

Specifies the maximum size of the
user-record area for $RDREC opera­
tions.

Specifies the size of the data
transfer (i.e., the size of the buf­
fer) for storage management
operations.

Specifies the actual size of the
record to be written or read, as
follows:

$RDREC - The system updates this
entry to reflect the actual length
of the last record delivered into
the user-record area.

3-3 CB08

I

Table 3-1 (cont). Contents of File Information Block (FIB)

Entry

Block size
(for storage
management
functions)

Reserved

Block number
(for storage
management
function)

Reserved

In key po inter

Size
(bytes)

4

2

4

Description

$RWREC, $WRREC - Specifies the
actual length of the record, exclud­
ing the headers, to be written in
the file.

Specifies the size of the block for
storage management operations; for
disk files the size must be a multi­
ple of physical sector size.

Must specify Z'OOOOFFFF'.

Specifies the starting block number
for the I/O transfers; is relative
to the start of the file and to the
block size (described above). This
entry is incremented by 1 after each
I/O transfer; therefore, user's
dynamic changes to the block size
also require changes to the contents
of this entry. The first block in a
file is block O.

Must specify Z'OOOO'.

Identifies the start of the user-key
area in which the key value is
stored for the following $RDREC
macro call functions:

Read wi th key
Read position equal
Read position greater than
Read position greater than or equal
Read posi tion forward
Read position backward

3-4 CBoa

I

Table 3-1 (cont). Contents of File Information Block (FIB)

Entry

In key pointer
(cont .)

In key format

In key length

Size
(bytes) Description

For the following $WRREC macro call
functions:

Write with key
Write position equal
Write position greater than
Write position greater than or equal
Write position forward
Write position backward

4 For the following $RWREC macro call
function:

1

1

Rewr i te wi th key

And for the following $DLREC macro
call function:

Delete with key

The type of key is specified in the
"in key format" entry below.

Identifies the type of key pointed
to by the "in key pointer" entry
above, as follows:

D - None specified

I - Primary or relative, as speci­
fied in the "key type" field in
the "program view" entry; see
Table 3-2.

2 - Simple key

The entry is meaningful only for the
macro calls specified in the "in key
pointer" entry defined above.

Specifies the length of the user-key
area identified in the "in key
pointer" entry described above.
Only meaningful for primary keys;
simple and relative keys always
assumed to be four bytes.

3-5 CBDS

Table 3-1 (cont). Contents of File Information Block (FIB)

Entry

Out record address

Reserved

Size
(bytes)

4

4

Program View Entry in the FIB

Description

This field is available for the
system to place the media address of
the record dealt with by the last
data management macro call.

Normally, this address is a 32-bit
simple key (i.e., it specifies the
control interval and logical record
within the control interval).

However, if the file is accessed via
a relative key as specified in the
"in key format" field, then this
address is a 32-bit relative key
(i.e., relative logical record
number in the file). If the opera­
tion is not performed as specified,
this entry is not set (and an error
code is returned).

For card readers, printers, and
terminal devices, this field con­
tains a count of the records
transferred; i.e., this field is
incremented by 1 for each logical
sequential access to the device.

This entry is reserved for future
use.

Table 3-2 shows the contents of the 2-byte FIB program view
entry. The program view ~ntry describes to the file system how
the file is to be accessed and, to some extent, what it looks
like from the programmer's point of view. The contents of this
entry are used by the file system to ensure that the file is
accessed only as intended.

The bits in the program view entry are read at the time the
file is opened. Once the file is opened, you can change only
bits 11, 12, and 13. You cannot change the other bits until you
close the file and then reopen it.

3-6 CBOS

Table 3-2. Contents of Program View Entry in FIB

Entry

Access level
(Bit 0)

Process rules
(Bi ts 1-4)

Size
(Bits)

1

4

De sc r ipt ion

Specifies whether file is
accessed via data or
storage management macro
calls as follows:

a - Access via data man­
agement macro calls.

1 - Access via storage
management macro
calls.

Specifies how the file can
be processed; that is, it
specifies which types of
data/storage management
macro calls are allowed as
follows:

Permi tted Macro
Binary Calls

1000
0100
0010
0001

nnnn

SRDREC or SRDBLK
SWRREC or $WRBLK
$RWREC
$DLREC

Any combination
of the binary
settings to allow
the desired datal
storage management
macro calls listed
above.

If a macro call that is
not permitted (as speci­
fied in this field) is
issued, an access viola­
tion error results.

3-7

Related
Function
Group

File Management
($OPFIL only)

CB08

I

*

I

Table 3-2. Contents of Program View Entry in FIB

Entry

Key type
(Bits 5-9)

Size
(Bits) Description

5 Specifies the type of
keys that can be used to
access the file as fol­
lows:

Permi tted Key
Binary Typ~

10000 Primary keys
allowed

00010 Relative keys
allowed

00001 Simple keys
allowed

nOOnn Any combina­
tion of the
binary settings
to allow the
des i red keys to
be used by the
data management
macro calls.

If the key type specified
in this field is not per­
mitted by the type of file
being processed, a bad
program view error
results. The following
types of keys are allowed
by the specified types of
files:

File
Organization Key Type

Fixed-rela­
tive

Relative
Simple

Relative Relative
Simple

Related
Function
Group

File Management
($OPFIL only)

File Management
($OPFIL only)

3-8 CB08

(

(

Table 3-2 (cont). Contents of Program View Entry in FIB

Entry

Key type
(cont) •

Record class
(Bit lO)

Record
visibil i ty
{Bit II}

Size
(Bi ts)

1

1

Description

Sequential
(Di sk­
resident)

Indexed

Simple

Primary
Simple

(Also see the "in key
format" entry in Table
3-1.)

Specifies type of logical
records that can be pre­
sent in the file as fol­
lows:

o - Any type (i.e., fixed­
or variable-length
records allowed).

I - Only fixed-length
records allowed.

Specifies whether or not
deleted records are
skipped during read next
record ($RDREC) operations
as follows:

o - Deleted records not
visible (i.e., skip
them) •

1 - Deleted records are
visible (i .e., the
system issues the
record not found
return code when a
deleted record is
accessed) •

3-9

Rela ted
Function
Group

File Management
($OPFIL only)

Da ta Management

CB08

I

*

*

*

Table 3-2 (cont). Contents of Program View Entry innFIB

Entry

Key storage
area align­
men t (Bi t
12)

Record
storage
area/buffer
al ignment
(Bit 13)

Transc r ip­
tion mode
(Bit 14)

Size
(Bits) Description

1 Specifies the boundary
alignment of the user­
key area (see "in key
pointer" entry in Table
3-1) as follows:

1

1

o - Key storage area
begins at even-byte
boundary.

1 - Key storage area
begins at odd-byte
boundary.

Specifies the boundary
alignment of the user­
record area (see "User
Record Pointer" entry
in Table 3-1) as fol­
lows:

o - Record storage
area begins at
even-byte boundary.

1 - Record storage
area begins at
odd-byte boundary.

Same as above, except that
the boundary alignment
refers to the buffer.

Specifies how data is
transferred as follows:

o - Data is tranferred
in device-specific
native (ASCII) mode.

1 - Data is transferred
in binary transcrip­
tion mode. (See
Note 2.)

3-10

Related
Function
Group

Data Management

Da ta Management

Storage
Management

Da ta Management

CB08

Table 3-2 (cont). Contents of Program View Entry in FIB

Entry

Transc r i pt ion
mode (Bi t 14
cont.)

Synchronous/
asynchronous
indicator
(Bit 15)

Size
(Bits)

1

Description

Same as above.

Specifies whether or not
$RDBLK or $WRBLK macro
calls are executed
synchronously or asyn­
chronously as follows:

o - $RDBLK or $WRBLK macro
calls are to be
executed synchronously.
When synchronous
$RDBLK or $WRBLK macro
calls are issued, a
$WTBLK macro call is
not required to
synchronize buffer use.

1 - $RDBLK or $WRBLK macro
calls are to be
executed asynchron­
ously (i .e., a $WTBLK
macro call is required
to synchroni ze.)

Related
Function
Group

Storage
Management

Storage Manage­
ment

NOTES: 1. Bits 10 through 15 may be set after an $OPFIL macro
call and before any data or storage management macro
call.

2. Binary transcription mode is meaningful only for card
devices and for 7-track magnetic tape. For card de­
vices, this mode is equivalent to verbatim mode (see
Section 6). For 7-track magnetic tape, binary trans­
cription mod~ is usable only with storage management
and is equivalent to packed mode (see Section 6) •

Offsets Definitions

You can refer to specific locations in the file information
block and the various argument structures by using offsets defin­
ition macro calls. These calls, summarized in Section 4 and des­
cribed in detail in Section 5, define standard offsets tags.

3-11 CB08

Table 3-3 shows the offsets definition macro calls and the
\

structures for which they define tags.

Table 3-3. Offsets Definition Macro Calls

Macro Call Affected Structure

$CRPSB

$GTPSB

$GIPSB

$GIFAB

$GIKBD

$TFIB

Argument structure for create file macro call
($CRFIL)

Argument structure for get file macro call
($GTFIL)

Argument structure for get file information
macro call ($GIFIL)

File attribute block pointed to by $GIFIL
argument structure

Key descriptor block pointed to by the $GIFIL
and $CRFIL argument structures.

File information block for the following
macro calls:

Open file ($OPFIL)
Close file ($CLFIL)
Test file ($TIFIL, $TOFIL)
Read record ($RDREC)
Write record ($WRREC)
Rewrite record ($RWREC)
Delete record ($DLREC)
Read block ($RDBLK)
Write block ($WRBLK)
Wait block ($WTBLK)

Offsets definition macro calls can be specified only once
per assembly procedure. They provide tags that are equated to
specific offsets in argument structures and FIBs. For example,
assuming that the address of an argument structure labeled
FILE A has been loaded into a base register as follows:

LAB $B4,FILE_ A

and assuming that $CRPSB has been specified, the following ad­
dress syllable can be used to refer to the argument structure
entry that identifies the control interval size:

$B4.R C ISZ

3-12 CB08

(This entry effectively points to the displacement FILE_A+5 in the
parameter structure.

Section 5 describes each displacement definition macro
routine/call and its tags, displacements, and entry names in
deta i1 .

ASSUMPTIONS FOR FILE SYSTEM EXAMPLES

The example shown for each file system macro call descrip­
tion in Section 5 is based on the following assumptions.

1. All the following displacement definition macros were
specified:

$CRPSB
$GTPSB
$GIPSB
$GIFAB
$GIKDB
$TFIB

2. The following argument structures were defined:

a. Argument structure for create file ($CRPSB)

FILE A Z'0005'
<IDXOI
2-$AF
Z'4900'
80
512
5
10
320

LFN 5
PATHNAME PTR.

FILE ORG = I (INDEXED)
LOG. RCD. SZ. = 80
C.r. SZ. = 512
INIT. ALLOC. 5Z. = 5
MAX. ALLOC. SZ. = 10
FREE SPACE = 320

DC
DC
RESV
DC
DC
DC
DC
DC
DC
DC
DC
DC
RESV
RESV

2
1

LOCAL OVERFLOW ALLOCATION INCREMENT=2
NO. OF KEY DE5CR. = 1

<KEY
2-$AF
4,0

KEY DESCRIPTOR PTR.

RESERVED

b. The pathname addressed by the previous structure
(FILE_A)

IDXOI DC ''''VOL03>SUBINDEX. A>FILE A!:1'

c. File information block ($FIB)

3-13 CB08

MYFIB DC Z'OO05' LFN 5
DC Z '2000' PROG. VIEW = ALLOW WRITE
DC < INBUF USER RECORD PTR.
RESV 2-$AF
DC 256 MAX. INPUT RCD. SZ. = 256
DC 256 OUTPUT) RCD. SZ. = 256
DC Z'OOOOFFFF' RESERVED
DC Z '0000 ' RESERVED
DC <MYKEY INPUT KEY PTR.
RESV 2-$AF
DC Z'OlOA' INPUT KEY=PRIMARYi KEY LENGTH=lO
RESV 2,0 RECORD ADDRESS
RESV 2,0 RESERVED

When necessary, other structures are defined in the file
system macro call examples.

FILE MANAGEMENT FUNCTIONS

The file/directory management macro calls allow you to mani­
pulate your files within the file system hierarchy (described in
the System Concepts manual). Specifically, the calls allow you
to:

0 Create a file

0 Get a file (reserve a file for processing)

0 Open a file

0 Close a file

0 Release a file

0 Remove a file from processing

0 Rename a file

0 Associate a logical file number with a pathname

0 Dissociate a logical file number from a pathname

0 Create a directory

0 Release a directory

0 Rename a directory

0 Change the working directory

0 Get the name of the current working directory

3-14 CB08

~\

o Expand pathname (develop a full pathname from a relative
pathname)

o Get information about a file

o Test the status of an I/O activity (terminal)

o Wait for the completion of an asynchronous I/O activity
(term inal)

o Set the file characteristics of a terminal.

Some of the macro calls use file information blocks (FIBs);
some can use FIB offsets or parameter structure offsets. The
macro calls available to generate FIBs and offsets are summarized
in Section 4 and described in detail in Section 5.

The macro routines/calls for file management are:

Associate file
Change working directory
Close file
Create directory
Create file
Dissociate file
Expand pathname
Get file
Get file information
Get working directory
Open file
Release directory
Release file
Remove file
Rename file/directory
Set terminal file
characteristics
Test file for input
Test file output
Wait for file input
Wait for file output

$ASFIL
$CWDIR
$CLFIL
$CRDIR
$CRFIL
$DSFIL
$XPATH
$GTFIL
$GIFIL
$GWDIR
$OPFIL
$RLDIR
$RLFIL
$RMFIL
$RNFIL
$STTY

$TIFIL
$TOFIL
$WIFIL
$WOFIL

Section 5 describes these macros in detail.

Many of the macro calls can be logically paired, as follows:

o Open file - Close file
o Create file - Release file
o Associate file - Dissociate file
o Get file - Remove file
o Create directory - Release directory

3-15 CB08

I

I

*

Although the following functions are available through macro
calls, they are typically performed outside of program execution
via executlon control commands.

o Associate file
o Dissociate file
o Get file
o Remove file
o Create file
o Release file
o Rename file
o Create directory
o Change working directory
o Release directory
o Get working directory
o Set terminal file characteristics.

Figure 3-1 shows the life cycle of a file. Create file
($CRFIL) and get file ($GTFIL) are actually on the same level.
The same is true for release file ($RLFIL) and remove file
($RMFIL). (Associate file and dissociate file provide a way of
supplying a pathname as input to create file and get file.)

DATA MANAGEMENT FUNCTIONS

The data management macro calls handle only logical records;
to do your own blocking and deblocking, you must use the storage
management macro calls (see following discussion). If you handle ~
your files at the logical record level (as described in the Data
File Organizations and Formats manual), the data management macro
routines can be used to perform any of the necessary I/O opera-
tions. Specifically, the data management macro calls allow you
to:

o Write a record
o Rewrite a record
o Read a record
o Delete a record

The definitions of arguments in the data management macro
calls include identification of required file information block
(FIB) entries, which are described at the beginning of this sec­
tion. The macro calls to generate and change FIBs and to define
FIB offsets are discussed in Section 4 and described in detail
in Section 5.

Note that before any data management macro calls can be
executed, the file must have been reserved and opened with the
LFN supplied in the FIB. See "Get File" and "Ope~ File" in
Section 5.

3-16 CBD8

(

NO

$GTFIL

RESERVE THE
FILE FOR
PROCESSING

$OPFIL

OPEN IT

I
I
I

PROCESS IT USING
DATA AND STORAGE
MANAGEMENT
FUNCTIONS

$CLFIL

I
I

CLOSE IT

YES

YES

NO

$RMFIL

REMOVE THE
FILE FROM
PROCESSING

$CRFIL

CREATE THE
FILE

REPEATED
N TIMES

$RLFIL

RELEASE THE
FILE

Figure 3-1. Life Cycle of a File

3-17 CBOS

*

The macro routines/calls for data management functions are:

Delete record
Read record
Rewrite record
Write record

$DLREC
$RDREC
$RWREC
$WRREC

Section 5 describes each macro in detail.

STORAGE MANAGEMENT FUNCTIONS

The storage management macro calls provide a primitive I/O
interface for transferring blocks directly between your buffer
and a file. Storage management itself is used qy data management
to perform input/output.

The complexities of blocking and deblocking logical records,
and conforming at the same time to the various file organizations
and formats, recommend against using storage management when
dealing with I/O at the logical record level. To ensure maximum
efficiency in terms of space and access, let the system (i.e.,
data management) handle your records.

However, with unblocked records or large blocks with simple
fixed-length records that you want to block yourself, the storage
management macro calls can be used to perform I/O transfers bet­
ween your buffer and the file. In addition, the macros offer an
asynchronous I/O facility that lets you overlap I/O transfers
with task execution. Specifically, the storage management macro
calls allow you to:

o Read a block
o Write a block
o Wait for the completion of an I/O activity

Block size for disk files must be some multiple of physical
sector sizes.

The definitions of arguments in the storage management macro
calls include identification of required file information block
(FIB) entries, which are described at the beginning of this sec­
tion. The macro calls to generate FIBs and define FIB offsets
are discussed in Section 4 and described in detail in Section 5.

Note that before any storage management macro calls can be
executed, the file must have been reserved and opened with the
LFN supplied in the FIB. See "Get File" and "Open File" macro
descriptions in Section 5.

3-18 CBDS

(are:
The macro routines/calls for storage management functions

Read block
Wait block
Write block

$RDBLK
$WTBLK
$WRBLK

These macros are described in detail in Section 5.

3-19 CBOS

(
-~

.~

i ,

l(·.·~
.. ~~

SECTION 4

DATA STRUCTURE GENERATION

This section summarizes the macro routines that generate
and/or define the system data structures. There are two kinds of
data structure, those that apply to the monitor service func­
tions, and those that apply to the file system functions.

The macro calls for data structure generation for both
monitor services and for the file system functions, are described
in detail in Section 5, in the alphabetic order of their function
descriptions (see column 2 of Table 1-1).

MONITOR SERVICES DATA STRUCTURES

Monitor service data structures are the following:

o Request blocks
o Parameter block and wait list
o Request block offsets

The macro routines for generating the monitor services data
structures, summarized in this subsection and described in
Section 5, cannot be usea in programs written in SAF/LAF inde­
pendent code (SLIC). See the Program Preparation manual for
detailed information about SAF/LAF independent code.

Request Blocks

Request blocks are data structures used by an application to
coordinate the processing of events. The request blocks provide
a standard system interface that specifies the conditions for
execution to proceed. For example, one element in a request
block can be set to indicate that a task issuing a request for
another task has the option to wait until the second task fin­
ishes processing before the issuing task continues its own
processing.

4-1 CB08

Request blocks provide the means of specifying the following
options:

o Wait for requested task completion
o Explicit start address of requested task
o Termination action for requested task
o Deletion of request block upon termination

The wait option allows synchronization of a requesting and
requested task; for example, the issuing task could name a sema­
phore to be released or it could specify an address of a request
block to be scheduled.

The selection of an explicit start address allows a request­
ing task to control the entry point of the requested task.

Possible termination options of the requested task include
release of a semaphore or request of another request block on
task termination. These options allow flexible synchronization
among tasks of an application and permit the issuing task to
terminate before the requested task completes. For example, a
slave task that runs asynchronously with the remainder of the ap­
plication can repetitively reserve a semaphore and be activated
only by release of that semaphore as requested at termination of
other tasks. The option of scheduling another task request at
task termination allows, for example, a dispatching task to be
notified of completion of certain tasks without explicitly wait­
ing for their completion.

The request block deletion option causes the system to re­
turn the request block to the appropriate pool upon task termina­
tion without further application intervention.

Often used in conjunction with the semaphore and/or schedule
request options, this is a way for memory to be properly returned
even though the issuing task has itself terminated. For example,
the system uses this feature on asynchronous task requests such
as Spawn Task, with the NWAIT argument.

These options are controlled by the following specific bits
in the request blocks, and apply to all types of requests
(unless otherwise indicated).

oW-bit, or wait

o I-bit, or implicit start address (not optional for IORBs,
always set)

oS-bit, or semaphore

oR-bit, or return request

o D-bit, or delete

4-2 CB08

,
',- .. /

(

i ,

(~

The assignment of these control bits within the request blocks is
shown in Appendix A.

Request blocks also carry parameters from the issuing task
to the requested task or to the system service. A variable­
length area is available in the task request block for intertask
communication of application-specific parameters.

The specific request blocks generated by the macro calls
listed below are:

o Task request block (TRB)
o Input/output request block (IORB)
o Message group request blocks (MGCRB, MGIRB, MGRRB)
o Semaphore request block (SRB)
o Clock request block (CRB)

A field in a request block that is not set by its corres­
ponding argument in the request block macro call is set to zero
when the block is generated. You may change these zero fields to
any desired value.

The first four words of the request blocks are identical in
format (see Appendix A,for a diagram of each structure). Addi­
tional words carry parameter information specific to the request
block type.

There is,an offsets maCrO call for each form of request
block. These ~acro calls, described in Section 5, create expli­
cit labels for request blocks.

, ,

The macro routines/calls to generate the request blocks are:

Clock request block $CRB
Input/output request block $IORB'
Message group request blocks ($MGCRB, $MGIRB, $MGRRB)
Semaphore request block $SRB
Task request block $TRB

Section 5 describes these macros in detail.

Parameter Block and Wait List

The macro routines listed below generate data structures
with a format different from that of the request blocks described
above. These data structures are:

o Parameter block
o Wait list

Their formats are shown in Appendix A.

4-3 CB08

I

I

I

The macro routines/calls for generating a paramenter block
and a wait list are:

Parameter block, generate
Wait list, generate

$PRBLK
$WLIST

Section 5 describes these macros in detail.

Request Block Offsets

The request block offsets macro routines generate data
structure definitions for request blocks that will be constructed
at a later time by application code. The request block defini­
tions supplied by the offsets macro calls have explicit labels
for each entry in the structure, allowing symbolic displacement
references to be made in application code.

NOTE: The request block macro calls previously
described generate actual request blocks; the
displacement entry labels are not included.
The contents of the request block fields are
set according to the arguments supplied in
the macro calls.

No arguments are specified with the offsets macro calls.
Only one request block offsets macro of a particular type is re­
quired in an assembly program referencing its entries.

You may include several different templates containing the
four common request block fields in your code because the tem­
plate for each structure begins with a unique identification
character prefix. This technique avoids assembly error notices
of multiple defined symbols, when, for example, the control word
I entry label of a TRB and IORB are both included in the applica­
tion source program.

Note that a program may use a request block macro routine to
initially define a desired block, and also include that same type
request block offsets to facilitate modification of the initial
block by executing code.

The request blocks offsets generated by the offsets macro
calls are:

o Task request block (TRB) offsets

o Input/output request block (IORB) offsets

o Clock request block (CRB) offsets

4-4

Generated by
macro call:

$TRBD

$IORBD

$CRBD

CBoa

Generated by
macro call:

o Semaphore request block (SRB) offsets

o Message group request blocks (MGCRB,
MGIRB, MGRRB) offsets

Section 5 describes each macro in detail.

FILE SYSTEM DATA STRUCTURES

File system data structures are the following:

o File information block (FIB)
o Offsets definitions

File Information Block (FIB)

$SRBD

$MGCRT
$MGIRT
$MGRRT

The FIB is the principal means of communication between the
application and the File System.

Table 3-1 and Appendix A show the format and content of the
file information block. The macro routine/call to build' a file
information block, or alter its contents, or provide labels for
its entries, is:

File information block $FIB

Section 5 describes this macro in detail.

Offsets Definitions

With offsets definition macro calls, you can refer to
specific locations in the file information block and in the
various argument structures used by certain file system macro
calls.

The offsets definition macro calls, which can be specified
only once per assembly procedure, provide tags that are
equated to specific offsets in the argument structures and in the
FIBs.

Macro calls are provided to define tags for the following
structures:

o Create file ($CRFIL) macro call argument structure

o Get file ($GTFIL) macro call argument structure

o Get file information ($GIFIL) argument structure

4-5 CBDS

I

o File attribute block pointed to by $GIFIL argument
structure

o Key descriptor block pointed to by $GIFIL argument
structure

o File information block

Only the macro call name is specified; these macro calls
have no arguments.

The macro routines/calls for offsets definition are:

Create file parameter block $CRPSB
structure offsets

File information block $TFIB
offsets

Get file information $GIFAB
file attribute block
offsets

Get file information $GIKDB
key descriptor block
offsets

Get file information $GIPSB
parameter structure block
offsets

Get file parameter structure $GTPSB
bloc k 0 ffsets

These macros are described in detail in Section 5.

4-6 CBD8

(

SECTION 5

MACRO ROUTINE/CALL DESCRIPTIONS

This section describes in detail the use, structure, func­
tions, and re.turn status error conditions for all system services
macros referred to and listed in Sections 2, 3, and 4, and pro­
vides an example for most macros. For easy reference, the
descriptions are in alphabetic order by specific function name
(see column 2 in Table 1-1).

Each description includes a reference to the command (if
there is one) that performs the equivalent function (see the
Commands manual). Also included for each description is a repre­
sentative list of possible return status (error) codes and the
corresponding error condition for each return status. (See the
System Messages manual for a complete list of GCOS 6 return
status codes and corresponding system messages.)

5-1 CB08

ABORT GROUP

I ABORT GROUP (MOD 400 ONLY)

Macro Call Name: $ABGRP

Function Code: ODIOA

Equivalent Command: Abort Group (ABORT_GROUP)

Terminate the indicated task group and delete it.

FORMAT:

[label] $ABGRP rlocation of abort status],
[location of group identifier]

ARGUMENT DESCRIPTION:

location of abort status

Any address form valid for a data register; provides a
completion status code that will be posted when the
task group is terminated. The abort status code is
used as the termination code of the lead task of the
aborted group.

location of group identifier

Any address form valid for a data register; provides
the group identification of the task group to be
aborted. If this argument is omitted, the task group
issuing the macro call is aborted. If a group identi­
fier is specified, it must be the same as that used in
the create gr~up macro call that initialized this task
group.

5-2 CB08

FUNCTION DESCRIPTION:

This call terminates an existing task group, whether the
group is active or dormant. The abort group macro call
removes all data structures that define and control execu­
tion of the task group, and returns all memory used by the
group to the appropriate memory pool. Any files that were
open during execution of the task group are closed. Any
requests pending against the group are canceled. The group
is deleted.

NOTES: 1. The abort status code supplied by argument 1 is
placed in $R6; if this argument is omitted $R6
is assumed to contain the abort status code to
be used.

Example:

2. The group identification suppled by argument 2
is placed in $R2; if the argument is omitted,
$R2 is set to zero to designate that the issuing
task group is to be aborted.

3. If a task group other than the issuing task
group was aborted, $RI and $R2 contain the fol­
lowing information upon return to the issuing
task.

$RI - Return status; one of the following:

0000 - Abort task group status set
0806 - Task group not found

$R2 - Group id of aborted task group

In this example, the $ABGRP macro call causes the processing
of the current group request to be aborted with a completion
status of 40 (decimal). The task group is then deleted with
any requests that may be queued on the group being
di scarded.

$ABGRP =40

5-3 CB08

*

--- --------

ABORT GROUP REQUEST

ABORT GROUP REQUEST

Macro Call Name: $ABGRQ

Function Code: OD/O?

Equivalent Command: Abort Group Request (AGR)

Terminate the execution of the current request in the indi­
cated task group.

FORMAT:

[label] $ABGRQ [location of abort status],
[location of group identifier]

ARGUMENT DESCRIPTION:

location of abort status

Any address form valid for a data register; provides a
completion status code that will be posted when the
request is marked as terminated. The abort status
code is used as the termination code of the lead task
of the aborted group.

location of group identifier

Any address form valid for a data register; provides
the group identification of the task group whose cur­
rent request is to be terminated. If this argument is
omitted, the current request of the issuing task group
is terminated. If a group identifier is specified, it
must be the same as that used in the create group or
spawn group macro call that initialized this task
group.

5-4 CB08

(

(

FUNCTION DESCRIPTION:

This call causes the cessation of execution of the current
request in the indicated task group. It removes all defin­
ing and controlling data structures except those associated
with the lead task (as defined by the create group macro
call that specified this group id) and returns the associ­
ated memory to the appropriate memory pool.

Files that are open and in use by this task group are
closed. The abort process will not complete until all out- I
standing input/output orders are completed.

When the macro call has been executed, the abort status code
is posted, the request is removed, and the lead task pro­
cesses the next request for this group, if any.

An abort group request for a spawned group is equivalent to
an abort group monitor call.

NOTES: 1. The abort status code specified by argument 1 is
placed in $R6; if this argument is omitted, $R6
is assumed to contain the abort status code to
be used.

Example:

2. The group identification specified by argument 2
is placed in SR2; if this argument is omitted,
$R2 is set to zero to designate that the issuing
task group request is to be aborted.

3. If the current request of a task group other
than the issuing task group was aborted, $Rl and
$R2 contain the following information upon
return to the issuing task.

$RI - Return status; one of the following:

0000 - Abort task group request status set
0806 - Task group not found

$R2 - Group id of task group whose current
request was aborted

In this example, the $ABGRQ macro call causes the processing
of the current group request to be aborted with a completion
status of 20 (hexadecimal). If additional requests are
queued on the task group, the next (first) request in the
queue will be processed.

END2 $ABGRQ =X'20'

5-5 CB08

ACCOUNT IDENTIFICATION

ACCOUNT IDENTIFICATION

Macro Call Name: $ACTID

Function Code: 14/02

Equivalent Command: None

Returns the account component of the calling task group's
user identification to a l2-character receiving field.

FORMAT:

rIabelJ $ACTID [location of account id field address]

ARGUMENT DESCRIPTION:

location of account id field address

Any address form valid for an address register; pro­
vides the address of a 12-character, aligned, non­
varying field into which the system will place the
account component of the user identification associ­
ated with the issuing task group.

FUNCTION DESCRIPTION:

This call returns the account component (i.e., the account
under which the user is working) of the task group's user
identification to a field in the issuing task. See the
Operator's Guide for more details.

The entire user id is returned by the user identification
($USRID) macro call.

NOTES: 1. The address of the recelvlng account id field,
supplied by argument 1, is placed in $B4; if
this argument is omitted, $B4 is assumed to con­
tain the address of the receiving field.

5-6 CB08

/
i

(~I

Example:

2. On return, $Rl contains one of the following
status codes:

0000 - No error
0817 - Memory access violation

In the following example, $B4 is loaded with the address
(ACIDFL) of a l2-character field and the $ACTID macro call
is issued to place the account identification of the task
group in that field.

ACIDFL RESV
LAB
$ACTID

5-7

12,0
$B4,ACIDFL

CB08

*

ACTIVATE GROUP

ACTIVATE GROUP

Macro Call Name: $ACTVG

Function Code: OD/09

Equivalent Command: Activate Group (ACTG)

Reactivate a previously suspended task group.

FORMAT:

[label] $ACTVG rlocation of group id]

ARGUMENT DESCRIPTION:

location of group id

Any address form valid for a data register; provides
the group id of the task group to be reactivated.

FUNCTION DESCRIPTION:

This call causes the system to reactivate the specified
suspended task group. This task group must have been
previously suspended through a suspend group macro call.
The system requeues on the appropriate level queue all tasks
that were active when the task group was suspended.

If the group id argument is $B, the previously rolled out
batch task group is rolled in when all online task groups
have returned memory to the batch pool. Any task group that
has explicitly rolled out the batch task group (through a
$SUSPG $B macro call) should roll in the batch task group
before terminating. If the task group does not issue a
$ACTVG $B macro call before terminating, or if the task
group is aborted, the operator must issue an ACTB command to
allow batch roll in.

5-8 CBOS

(/ Before it terminates, any online task group that has sus­
pended another online task group (through a $SUSPG macro
call) should reactivate that task group. If the suspending
task group does not issue a $ACTVG macro call, or if the
suspended task group is aborted, the operator must issue an
ACTG command for the suspended task group to resume.

NOTES: 1. The group id of the task group to be reacti­
vated, supplied by argument 1, is placed in $R2;
if this argument is omitted, SR2 is assumed to
contain the correct group ide

Example:

2. On return, $Rl and $R2 contain the following
information:

$RI - Return status; one of the following:

0000 - No error

0806 - Specified task group not currently
defined

080D - Specified task group not currently
suspended

$R2 - Group id as supplied

In this example, the $ACTVG macro call is used to reactivate
the previously suspended task group whose group id is GI.
All tasks in task group Gl that were active when the group
was suspended will be requeued on the appropriate level
queue.

ACTGAA SACTVG =Gl

5-9 CB08

I

ASSOCIATE FILE

ASSOCIATE FILE

Macro Call Name: $ASFIL

Function Code: 10/10

Equivalent Command: Associate Path (ASSOC)

Associate a logical file number (LFN) with a specific path­
name. This association is typically done outside of program
execution to allow the program to be run against a pathname
that is not known until execution time. The $GTFIL macro
call or GET command may be more useful.

FORMAT:

[label] $ASFIL rargument structure address]

ARGUMENT DESCRIPTION:

argument structure address

Any address form valid for an address register; pro­
vides the location of the argument structure defined
below. The argument structure must contain the fol­
lowing entries in the order shown.

logical file number

A 2-byte logical file number (LFN) used to refer
to the file; must be a binary number in the
range 0 through 255.

pathname pointer

A 4-byte address, which may be any address form
valid for an address register; points to a path­
name (which must end with an ASCII space charac­
ter) to be associated with the LFN.

5-10 CB08

FUNCTION DESCRIPTION:

This macro call establishes a logical connection between an
LFN and a pathname. It does not reserve a file or check to
determine whether or not the pathname identifies an existing
file or directory (i.e., the pathname entry may identify an
incomplete pathname, such as VOLI SUBA). If you associate
an incomplete pathname with the LFN, it can be completed at
a later time by a get file macro call using the colon (:)
option. Subsequent macro calls (e.g., change working
directory) have no effect on a previously associated path-
name because the pathname identified in this macro call is
fully expanded at the time of the call. Finally, although a I
single pathname can be associated with several LFNs, a given
LFN can be associated with only one pathname at any given
time; after a file reservation (see get file) has been
established using a specific LFN, subsequent associations of
the same LFN will alter the LFN/pathname relationships but
will not affect current file reservation. It should be
noted that the association established is specific to a task
group; that is, different task groups can associate dif-
ferent pathnames to the same LFN.

NOTES: 1. If the argument is coded, the address of the
argument structure is loaded into $B4; if the
argument is omitted, $B4 is assumed to contain
the address of the argument structure.

2. On return, $Rl contains one of the following
status codes:

0000 - No error

0201 - Illegal pathname

0205 - Illegal argument

0206 - Unknown or illegal LFN

0210 - LFN already associated

0222 - Pathname cannot be expanded, no working
directory

0226 - Not enough user memory for buffers or
structures

In addition to the above, any system service
codes received by the file manager are passed on
thro ug h $R 1.

5-11 CB08

Example:

This example assumes that $B4 was loaded with the address of
the label FILE A (i.e., LAB $B4,FILE A); therefore, the
macro call to associate the path identIfied in the create
file example (i.e., VOL03 SUBINDEX.A FILE A) with LFN 5 is
coded as follows: -

ONlAA $ASFIL

FILE A was previously defined in "Assumptions for File
System Examples" in Section 3; as a result of issuing the
$ASFIL macro call, the first two entries in that structure
are referred to by the system.

5-12 CB08

r '

--_ _ .. .

BOUND UNIT IDENTIFICATION

BOUND UNIT IDENTIFICATION

Macro Call Name: $BUID

Function Code: 14/06

Equivalent Command: USER BUID

Returns the file name of the boun0 unit being executed by
the issuing task to a 12-character receiving field.

FORMAT:

r label] $BUID r locat ion 0 f bound un i t id fi eld add ress]

ARGUMENT DESCRIPTION:

location of bound unit id field address

Any address form valid for an address register; pro­
vides the ad0ress of a 12-character aligned, nonvary­
ing receiving field into which the system will place
the name of the current bound unit.

FUNCTION DESCRIPTION:

This macro call returns the name of the currently executing
bound unit to a specified field in the issuing task. The
name returned is that specified in the Linker NAME
statement.

NOTES: 1. The address of the receIvIng boun0 unit id field
supplied by argument 1 is placed in $B4; if this
argument is omitted, $B4 is assumed to contain
the address of the receiving field.

2. On return, $Rl contains one of the following
status codes:

0000 - No error
0817 - Memory access violation

3. On return, $B4 contains the address of the
receiving field.

5-13 CB08

I

Example:

In this example, $B4 is loaded with the address (BUNAME) of
a 6-character field and the $BUID macro call is issued to
place the name of the currently executing bound unit in that
field.

BUNAME RES V 6,0
LAB $B4, BUNAME

$BUID

5-14 CB08

CANCEL CLOCK REQUEST

CANCEL CLOCK REQUEST

Macro Call Name: $CNCRQ

Function Code: 05/01

Equivalent Command: None

Cancel a previously issued clock request.

FORMAT:

rlabel] $CNCRQ [location of CRB address]

ARGUMENT DESCRIPTION:

location of CRB address

Any address form valid for an address register; pro­
vides the address of the clock request block (CRB) to
be removed from the timer queue.

FUNCTION DESCRIPTION:

This call removes a no longer needed but previously queued
CRB from the timer queue. The CRB must have previously been
placed on the queue by a request clock ($RQCL) macro call.

The $CNCRQ macro call is the only way to remove a cyclic
CRB from the timer queue. A noncyclic CRB will also be
removed when its interval elapses.

NOTES: 1. The address of the CRB to be disconnected from
the queue, supplied by argument 1, is placed
$B4; if this argument is omitted, $B4 is assumed
to contain the correct address.

2. On return, $Rl and $B4 contain the following
information:

5-15 CB08

$Rl - Return status; one of the following:

0000 - No error

0404 - CRB not connected to basic timer
queue

$B4 - Address of CRB

Example:

See the example given for the wait on request list macro
call in this section.

5-16 CB08

« CANCEL REQUEST

CANCEL REQUEST

Macro Call Name: $CANRQ

Function Code: OC/Ol

Equivalent Command: None

Cancel a previously issued request made through a $RQTML or
$TRB macro call.

FORMAT:

rlabel] $CANRQ rlocation of address of request block]

ARGUMENT DESCRIPTION:

location of address of request block

Any address form valid for a data register; provides
the address of the request block whose request is to
be canceled.

FUNCTION DESCRIPTION:

This call cancels a previously issued request. The call is
used to cancel a request established by a request terminal
($RQTML) or task request block ($TRB) macro call.

NOTES: 1. The address of the request block containing the
request to be canceled, supplied by argument 1,
is placed in $B4. If this argument is omitted,
the system assumes that $B4 contains the address
of the request block.

2. On return, $RI contains one of the following
status codes:

0000 - Terminal request canceled

0803 - Illegal request block address (request
block not found)

5-17 CB08

I

Example:

0817 - Memory access violation

083C - Terminal request already posted

3. When SRI contains an 083C return code, $R6 con­
tains the posted return code. The request block
was completed before this macro call was issued.

In this example, the SCANRQ macro call is used to cancel the
request established by a request terminal (SRQTML) macro
call. (See the example for the request terminal macro
call.)

$CANRQ !IORB

5-1S CBOS

~ ..

~.

~~

(-
"

- ... -

CANCEL SEMAPHORE REQUEST

CANCEL SEMAPHORE REQUEST

Macro Call Name: $CNSRQ

Function Code: 06/01

Equivalent Command:. None

If a previously issued request semaphore macro call caused a
semaphore request block (SRB) to be queued, cancel the
effect of that macro call by removing the SRB from the sema­
phore request .queue. Return to the issuing task.

FORMAT:

Dabel] $CNSRQ rIocation of SRB address]

ARGUMENT DESCRIPTION:

location of SRB address

Any address form valid for an address register; pro­
vides the address of the semaphore request block to be
removed from the semaphore request queue.

FUNCTION DESCRIPTION:

This call removes a specified SRB from its semaphore request
queue. The SRB must have been queued as the result of a
previously issued request semaphore macro call. The SRB
address specified in argument I of the cancel semaphore
request call must be the same SRB address used in the
request semaphore call.

When executed, this function increments the counter estab­
lished by the define semaphore macro call, and previously I
decremented by the request semaphore macro call.

When the SRB is removed from the semaphore request queue,
the memory required for its structure is returned to the
system memory area.

5-19 CB08

NOTES: 1. The address of the SRB supplied by argument I is /'

Example:

placed in $B4; if this argument is omitted, $B4 "~.i
is assumed to contain the SRB address.

2. On return, $RI and $B4 contain the following
i n form at ion:

$RI - Return status; one of the following:

0000 - No error
0502 - Invalid SRB

$B4 - Address of SRB (as supplied)

In this example, the $CNSRQ macro call is used to cancel the
semaphore request used in the example for the request sema­
phore macro call. It is assumed that the task did not need
the resource.

SCNSRQ ! SRB

5-20 CB08

(

CHANGE WORKING DIRECTORY

CHANGE WORKING DIRECTORY

Macro Call Name: $CWDIR

Function Code: 10/BO

Equivalent Command: Change Working Directory (CWD)

Change the working directory to the one specified in the
macro call. This function is usually done outside program
execution.

FORMAT:

[label] $CWDIR rargument structure address]

ARGUMENT DESCRIPTION:

argument structure address

Any address form valid for an address register; pro­
vides the location of the argument structure defined
below. The argument structure must contain the fol­
lowing entry.

new working directory

I

A 1- to 4S-byte pathname, which includes and I
must end with an ASCII space character, identi­
fying the new current working directory. At
least one nonspace character must be specified.

FUNCTION DESCRIPTION:

The specified pathname, which may be absolute or relative,
must point to an existing directory; that is, this macro
call does not dynamically create a directory. If a return
status code other than 0000 is returned (see Note 2, below),
an attempt is made to reestablish the previous working
directory; if a subsequent error results, future functions
may return an 0222 error code.

5-21 CB08

The system issues a mount request when a disk volume con­
taining the new working directory is not mounted. The task
is suspended until the volume is mounted or the operator
cancels the mount request.

NOTES: 1. If the argument is coded, the address of the
argument structure is loaded into $B4; if the
argument is omitted, $B4 is assumed to contain
the address of the parameter structure.

Example:

2. On return, $Rl contains one of the following
status codes:

0000 - No error

0201 - Illegal pathname

0205 - Illegal argument

0209 - Named directory not found

020C - Volume not found

0222 - Pathname cannot be expanded, no working
directory

0225 - Not enough system memory for buffers or
structures

0226 - Not enough user memory for buffers or
structures

0228 - Illegal file type (not a directory)

In addition to the above, any system service
codes received by the file manager are passed on
through $RI.

This example is based on the following file system hierarchy
(see the System Concepts manual) :

5-22 CB08

(

I
SUB.OIR.A
I

SUB.OIR.AA
I

FILEOI

VOLOI
I

FILE02

I
SUB.OIR.B

I
SUB.OIR.BB
I

SUB.OIR.BBI
I

FILE03
I

I
SUB.OIR.BIB

I
I

FILE05
I

FILE06
The current working directory is SUB.DIR.BIB and you want to
access FILEOI from subdirectory SUB.DIR.AA. You need not
specify the absolute pathname to FILEOI if you specify the
macro call $CWDIR to SUB.DIR.AA as shown below. The file
can then be accessed with the simple pathname FILEOI.

To change to this working directory, you can use the $CWDIR
macro call:

SCWDIR ! CHGPTH

to identify the path:

CHGPTH DC '««SUB.DIR.A>SUB.DIR.AA~'

or

CHGPTH DC , "YOLO I>SUB. DIR.A>SUB. DIR.AA~'

The first case uses the existing working directory as a base
from which to expand the relative pathname; the second case
pro6uces the same result, but uses the absolute pathname;
see the System Concepts manual for more informati~n about
relative and absolute pathnames.

5-23 CBC8

I

CLEAN POINT

CLEAN POINT

Macro Call Name: $CLPNT

Function Code: DC/13

Equivalent Command: None

Defines a clean and consistent point in program execution at
which all file records updated by the program are valid.
These updated records are made visible to other users shar­
ing these files. Writes out to disk the records updated by
the issuing task group; unlocks the records previously
locked by the issuing task group, for all files assigned to
the task group.

FORMAT:

[label] $CLPNT

ARGUMENT DESCRIPTION:

None

FUNCTION DESCRIPTION:
.

This macro call results in the following:

1. The buffers of updated records of files accessed by the
task group are written to disk.

2. If the end of data record for a disk file accessed by
the task group is altered, the directory record for that
file is updated.

3. All record locks set by this task group are unlocked~
thus allowing other users to continue_ processing.

Record locking, a file system mechanism, provides multi-user
interface protection for shared file access. A record, when
accessed by a user, is locked by a lock applied to the con­
trol interval(s) where the record is located. Locking is on

.>

a first-come first-served basis. Another user (task group) (
~j

5-24 CBOS

sharing this file is denied access to that record and any
other record in the same control interval, until the pre­
vious user unlocks the record.

The only limit to the number of locks at one time is the
amount of memory dedicated to the lock pool at system
building. (The lock pool is that memory area where locked
records are recorded.)

Record locks for a file must be specifically requested when
the file is reserved through a get file ($GTFIL) macro call
or by a GET command. Once record locking for a file is
requested, any access (read or write) causes a lock. Once
locked, records are unlocked only when a clean point
($CLPNT) macro call is issued or the file is closed.
(Abnormal task group termination also causes records to be
unloc ked.)

Records should be unlocked when there is no further need to
lock them. Otherwise, when records remain locked, lock pool
overflow or deadlock record contention may result. The
description of the get file ($GTFIL) macro call later in
this section has more details about record locking.

Clean point allows a user to structure an application into
steps. At the end of each step, successful execution of the
macro call ensures that all the file updates were written to
disk, and that the resources used in record locking are
released to the system.

NOTES: 1. To perform the clean point function in a COBOL
program, the user must call an assembly language
subroutine that contains the $CLPNT macro'
call (s) •

2. On return, $Rl contains one of the following
status codes:

0000 - No error.

0225 - Insufficient system memory for buffer or
structures

0226 - Insufficient user memory for buffer or
structures

3. ARY system service error codes received by data
management are passed on through $Rl.

5-25 CB08

CLEAR EXTERNAL SWITCHES

CLEAR EXTERNAL SWITCHES

Macro Call Name: $CLRSW

Function Code: OB/02

Equivalent Command: Modify External Switches (MSW)

Set the specified switches in the task group's external
switch word to off; return the inclusive logical OR of the
previous settings.

FORMAT:

[label] SCLRSW external swi tch name,
[external switch name],

[external switch name]

ARGUMENT DESCRIPTION:

external switch name ••• external switch name

A single hexadecimal digit specifying the external
switch in the task group's external switch word to be
set off. A maximum of 16 external switch names (0
through F) can be specified. If no arguments are
supplied, $R2 is assumed to contain a mask word spec­
ifying the switches to be set off. I~ ALL is spec­
ified for any argument, all external switches are set
off.

FUNCTION DESCRIPTION:

This call provides a mask by which switches can be set off
in the external switch word of the issuing task's task
group. It also provides an indication of the previous set­
tings of the switches.

5-26 CBoe

/"
i

"

(

$R2 is the mask word. Each bit that is 1 in $R2 causes the
corresponding bit in the external switch word to be set off;
each bit that is 0 causes the corresponding bit to remain
unchanged.

When the $CLRSW macro call is executed, $R2 contains the new
settings of the external switch word. Bit 11 (bit-test
indicator) or the I-register provides an indication of the
previous setting of the switches, as follows:

o If bit 11 is 0, no switch set off had previously been set
on.

o If bit 11 is 1, at least one switch set off had pre­
viously been set on.

NOTES: 1. The bits corresponding to the external switches
in the arguments are set on in $R2; if no argu­
ments are supplied, $R2 is assumed to contain
the mask to be used. If ALL is spec if ied fo r
any argument, all bits are set on in $R2.

Example:

2. On return, $R2 and the I-register contain the
following information:

$R2 - External switch word after modification

I-register (Bit 11) - Inclusive OR of previous
settings of switches set off:

o - No switch set off was on
1 - At least one switch set off was on

In this example, the $CLRSW mcaro call is used to turn off
external switches 4, 8, and C of the task group in which the
issuing task is executing.

CLR AA $CLRSW 4,8,C

5-27 CB08

CLOCK REQUEST BLOCK

CLOCK REQUEST BLOCK

Macro Call Name: $CRB

Function Code: None

Equivalent Command: None

Generate a regular or cyclic clock request block (CRB) whose
length is from six to nine words.

FORMAT:

[label] SCRB [CRB type],
[issuing task suspension option] ,

or

[termination action],
[interval value]

ARGUMENT DESCRIPTION:

CRB type

A value specifying the type of CRB to be generated, as
follows:

C - Generate a cyclic CRB
R - Generate a regular (noncyclic) CRB

issuing task suspension option

One of the following values is specified to indicate
whether the requesting task is to be suspended until
the clock request has been satisfied. .

WAIT - Suspend the issuing task until the clock
request has been satisfied (set w-bit to 0) •

NWAIT - Do not suspend the issuing task (set w-bit
to I).

5-28 CB08

(-

(

If this argument is omitted, the value NWAIT is
assumed.

If WAIT is specified, argument 3 (termination action)
must be omitted. I

termination action

One of the following values is specified to indicate
the action to be taken when the clock request is
satisified.

SM=aa - Do not suspend the issuing task; release
(V-op) the semaphore identified by aa (two
ASCII characters) when timeout has
occurred.

RB=label - Do not suspend the issuing task; issue a
request for the request block identified by
label, when timeout has occurred.

If this argument is omitted (or argument 2 is WAIT),
the generated CRB contains no termination option.

interval value

Unit of time after which completion of the request
will be posted; has one of the following values:

MS=n
TS=m
SC=m
MN=m
CT=m

MS indicates milliseconds; TS tenths of seconds; SC
seconds; MN minutes; and CT units of clock resolution.

n is an integer value from I through 65535; m is an
integer value from I through 32767.

If this argument is omitted, the CRB is initialized
with an interval value of zero milliseconds (MS=O).

FUNCTION DESCRIPTION:

The clock request block (CRB) is used as the standard means
of synchronizing events with the passage of time. A CRB
contains the time at which, or the interval after which,
completion of the request is to be posted (marked as
complete) •

There are two types of CRBs; regular and cyclic.

5-29 CB08

When the interval specified in a cyclic CRB has been satis­
fied, it is automatically recycled to begin a new clock
request for the initially specified interval. This process
continues until a cancel clock request macro call is issued
for this CRB.

A regular CRB is dequeued from the timer queue when the
specified interval has been satisfied. A new request clock
macro call must be issued to requeue the CRB.

NOTE: This macro call cannot be used in programs written in
SAF/LAF independent code (SLIC). See the Program
Preparation manual for more information about SAF/LAF
independent code.

Example:

In this example, the SCRB macro call is used to generate a
cyclic CRB with an interval of 500 milliseconds. The issu­
ing task is not to be suspended. When the request has been
satisfied, the issuing task will release semaphore xx.

CLKAA SCRB C,NWAIT,SM=XX,MS=500

5-30 CBOS

J
/"

"-/

CLOCK REQUEST BLOCK OFFSETS

CLOCK REQUEST BLOCK OFFSETS (MOD 400 ONLY)

Macro Call Name: $CRBD

Generated Label Prefixes:

C RRB/C SEM
CRB label offset 0

C CTI
C-CT2
C-TM

See Appendix A for the format of the clock request block.

DESCRIPTION:

See the clock request block macro call.

NOTE: This macro call cannot be used in programs written in
SAF/LAF independent code (SLIC). See the Program
Preparation manual for more information
about SAF/LAF independent code.

5-31 CB08

I

CLOSE FILE

CLOSE FILE

Macro Call Name: $CLFIL

Function Code: 10/55 (normal), 10/56 (leave), 10/57 (unload)

Equivalent Command: None

Terminates processing of the specified file. The file can~
not be processed again until another open file macro call is
issued. You identify the file to be closed by supplying its
logical file number.

FORMAT:

[label] $CLFIL [fib address] [J;~~~~~L}]
t,UNLOAD

ARGUMENT DESCRIPTION:

fib address

Any address form valid for an address register; pro­
vides the location of the file information block
(FIB). The FIB must contain a valid LFN.

{NORMAL}
NOR

Normal mode for closing files; the file can be
reopened during execution of the task group.

If the file is tape-resident, the end-of-file (EOF)
labels are written (if necessary) and the tape is
rewound to its beginning-of~tape (BOT) position.

If the file is a terminal device, the line will be
disconnected according to the specifications made at
system building time.

NORMAL is the default value for this macro call.

5-32 CB08

--- ~-~--~~-- -~~~~----

(

(

{LEAVE}
LEV

For tape files is the same as for NORMAL mode, except
that the tape is not rewound; i.e., remains at its
current position.

For terminal device files, this indicates that the
line is not to be hung up, regardless of the specifi­
cation made at system building.

{UNLOAD}
UNL

For tape-resident files the action is the same as for
NORMAL mode, except that after the rewinding, the tape
is unloaded (Le., cycled down).

For terminal device files, the line is hung up
(regardless of the specification made at system
building time).

FUNCTION DESCRIPTION:

The fib address specified by the first argument of this
macro call can refer to the same structure specified in the
open file macro call with which this macro call is paired.

This macro call causes all unwritten buffers to be written,
records to be unloaded, and the logical end-of-file (EOF) I
label to be updated. However, the call does not remove the
file (see the remove file macro call) from the task group
(i.e., the file remains reserved for the task group and can
be reopened).

If the file being closed is a card punch, a file mark card
is punched. (A card reader/punch is considered to be a card
punch if the FIB program view word at open time had bit 2 I
set to I (write permitted) and bit I set to 0 (read not
permitted) .'

The following info rmation appl ies onl y to magnetic tape.
The actions performed on closing a tape file are determined
by the way the write permit bit (bit 2) in the FIB program
view word was set when the file was opened. Either an
output close (write permission granted) or an input close
(write permission denied) can be performed. Note that when
a tape volume is opened for storage management access, and
both volume and file names were not specified, then no
trailer labels nor tape marks were written; in that case it
is the user's responsibility.

5-33 CB08

I

I

~

1. Output close (write permission):

a. If the file was opened in RENEW mode, the trailer
label group is written, followed by an end-of-data
(EOD) tape mark. This action is performed whether
or not data records were actually written into the
file.

b. If the file was opened in PRESERVE mode and write
operations were performed, the trailer label group
and EOD tape mark are written. Data and/or files
located in front of the current position of the tape
are destroyed.

If no write operations were performed, or an input
close is performed (as described below), existing
data and/or files located in front of the current
position of the tape are preserved.

c. If the LEAVE option is specified, the tape will be
positioned at the end of the current trailer label
group.

2. Input close (no write permission)

a. If the end-of-file tape mark was detected, the
trailer label group is processed and the action
specified by NORMAL, LEAVE, or UNLOAD is taken.

If the LEAVE option is specified, the tape is posi­
tioned at the end of the current trailer label
group.

b. If the end-of-file tape mark was not detected, the
trailer label group is not processed. When the
LEAVE option is specified, the tape will be misposi­
tioned. Opening the next file may result in an
"invalid tape file header" condition.

The file information block can be generated by a $FIB macro
call. Displacement tags for the FIB can be defined by the
$TFIB macro call.

NOTES: 1. If the first argument is coded, the address of
the FIB is loaded into $B4; if the argument is
omitted, $B4 is assumed to contain the address
of the FIB.

2. On return, $RI contains one of the following
status codes:

0000 - No error

5-34 CB08

(

(/

Example:

0205 - Illegal argument

0206 - Unknown or illegal LFN

0207 - LFN not open

0225 - Not enough system memory for buffers or
structures

0226 - Not enough user memory for buffers or
structures

In addition to the above codes, any system
service codes received by the file manager are
passed on through $RI.

In this example, it is assumed that the file opened in the
example for the open file macro call is to be closed. The
macro call is coded as follows:

MYFIB
CLFILA

DC 5
$CLFIL !MYFIB

LFN 5

Since the second argument is not specified, the system
assumes NORMAL mode.

5-35 CB08

I

I

I

*

COMMAND IN

COMMAND IN

Macro Call Name: $CIN

Function Code: 08/02

Equivalent Command: None

Read the next record from the standard command-in file for
the task group of the issuing task.

FORMAT:

[label] $CIN [location of record area address],
[location of record size],
[byte offset of beginning of record area]

ARGUMENT DESCRIPTION:

locatio~ of record area address

Any address form valid for an address register; pro­
vides the address of a record area in the issuing task
into which the next record on the command-in file will
be placed.

location of record size

Any address form valid for a data register; provides
the size (in bytes) of the record whose address is
given in argument 1.

byte offset of beginning of record area

Any address form valid for a data register; provides
the byte offset of the beginning of the record area
(from the address provided in argument 1).

5-36 CBOS

(FUNCTION DESCRIPTION:

This call allows a task to read the next record from the
standard command-in file.

NOTES: 1. The address of the command input record area I
supplied by argument 1 is placed in $B4; if this
argument is omitted, $B4 is assumed to contain
the record area address.

2. The record area size supplied by argument 2 is
placed in $R6; if this argument is omitted, $R6
is assumed to contain the correct size.

3 • I f a rg urn en t 3 i s L , $ R 7 iss e t to z e rot 0 des i g­
nate that the record area begins in the left
byte of the specified address. If argument 3 is
R, $R7 is set to 1 to designate that the record
area begins in the right byte of the specified
address. Any other value for argument 3 is
assumed to designate the location of the byte
offset to be used, and is placed in SR7. If
argument 3 is omitted, the record area is
assumed to begin in the left byte of the speci­
fied address, and $R7 is set to zero.

4. On return, $RI, $R6, $R7, and $B4 contain the
following information:

Value

02
10
11
12
IA

$Rl - Return status; one of the following:

0000 - No error
0817 - Memory access violation

All data management read-next-record error
codes may also be returned. See the
System Messages manual.

$R6 - Residual range (number of bytes left
unfilled in record area).

$R7 - File type: bits 10 through 15 of $R7 con­
tain the hexadecimal value for the follow­
ing file types:

File Type

Fixed relative
Line/serial printer
Card reader
KSR (MDC-connected)
Bidirectional MLCP

5-37 CBD8

I

Value File Type

lB BSC
IE Output-only MLCP
30 Variable sequential (spanned records)
32 Relative
33 Indexec (data)
34 Indexed (index)

$B4 - Input record area address

Example:

In this example, the issuing task is to read the next record
of the command-in file into a l28-byte record area whose
address is in RECAD. The record area begins at an offset of
10 bytes from the indicated address.

INDAD $CIN !RECAD,=128,=10

RECAD RESV 5+64,0

5-38 CBC8

(

\. .. /

COMMAND LINE PROCESS

COMMAND LINE PROCESS

Macro Call Name: $CMDLN

Function Code: OC/08

Equivalent Command: None

Process the supplied command line by spawning a task to exe­
cute the command named in the first argument of the macro
call, and wait for the task's termination.

FORMAT:

[label] $CMDLN rlocation of command line address],
[location of command line size]

ARGUMENT DESCRIPTION:

location of command line address

Any address form valid for an address register; pro­
vides the address of the supplied command line.

location of command line size

Any address form valid for a data register; provides
the size (in bytes) of the command line to be
processed.

FUNCTION DESCRIPTION:

This macro call allows you to embed commands in your pro­
gram; see the Commands manual. The same task that executes
the particular command when given from the terminal is
spawned to execute the command named in the macro call.

The task spawned of behalf of the macro call is provided
with a request block that has been constructed by the system
to contain the edited arguments in system standard task
request block format. The task that issues this macro call
waits for the completion of the spawned task before

5-39 CB08

continuing its own processing. The spawned task passes the
completion status ($Rl) to the issuing task.

NOTES: 1. The address of the command line, supplied by
argument 1, is placed in $84; if this argument
is omitted, $84 is assumed to contain the
address of the command line to be processed.

Example:

2. The size of the command line, supplied by argu­
ment 2, is placed in $R6; if this argument is
omitted, $R6 is assumed to contain the size.

3. On return, SRI and $84 contain the following
information:

$Rl - Return status; one of the following:

0000 - No error

OOOO-DOFF - Completion status returned by
spawned task

0601 - Insufficient memory

0602 - Insufficient memory

0805 - Unbalanced quotation marks,
brackets, or parentheses

080C - Unresolved symbolic entry
point

l60A - Invalid bound unit pathname
fo r first a rg urnent

l60B - Insufficient memory

FFFF - Honeywell component error pre­
viously reported

$84 - Address of supplied command line

In this example, the $CMDLN macro call causes a command line
to be processed which will execute the Assembler to assemble
the source program MYPROG, residing in the current working
directory. The Assembler will use 5K words of memory, taken
from the issuing task group's memory pool, for its symbol
table. The assembly listing will be written on the device
named LPTOl, and the object unit will be stored in the file

5-40 C808

(

(

MYPROG.O in the working directory. If MYPROG.O does not
already exist, it will be created.

$CMDLN

LINE TEXT
LENGTH EQU

!LINE,=LENGTH

'ASSEM MYPROG -SZ 5 -COUT >SPD>LPTOl'
2*($-LINE)

5-41 CB08

CONSOLE MESSAGE SUPPRESSION

CONSOLE MESSAGE SUPPRESSION

Macro Call Name: $CMSUP

Function Code: 09/02 (suppression), 09/03 (no suppression)

Equivalent Command: None

Turn console message suppression on or off for the issuing
task's task group.

FORMAT:

[label] $CMSUP [keyword]

ARGUMENT DESCRIPTION:

keyword

One of the following values:

ON - Turn on console message suppression (function
code 09/02)

OFF - Turn off console message suppression (function
code 09/03)

If this argument is omitted, OFF is assumed.

FUNCTION DESCRIPTION:

This call turns console message suppression on or off for
the issuing task's task group.

When console message suppression is turned on, operating
system components such as storage management will not issue
error messages to the operator terminal - either directly
(through the facility offered by the operator information
message macro call) or indirectly (through the facility
offered by the report error condition macro call, described
later in this section). Turning on console message suppres-
sion does not disable these facilities; rather it prevents (~

~.j

5-42 CB08

(

(

(

the system components from using the facilities to report
anything other than catastrophic errors.

When console message suppression is turned on, the error
code normally used in the operator message will be returned
in SRI (assuming the message had an error code).

When console message suppression is turned off, messages are
again issued in the normal manner.

NOTE: On return, $RI contains one of the following subfunc­
tion codes:

0002 - Turn on suppression
0003 - Turn off suppression

Example:

In this example, the issuing task turns on console message
suppression for the task group under which it is running.

SUPaN $CMSUP ON

5-43 CBoa

CREATE DIRECTORY

CREATE DIRECTORY

Macro Call Name: $CRDIR

Function Code: IO/AO

Equivalent Command: Create Directory (CD)

Creates a new directory in the file system hierarchy. This
function is typically done outside of program execution.

FORMAT:

r label] $CRDIR r a rg ument structure add ress]

ARGUMENT DESCRIPTION:

argument structure address

Any address form valid for an address register; pro­
vides the location of the argument structure defined
below. The argument structure must contain the fol­
lowing entries in the order shown.

pathname pointer

A 4-byte address which may be any address form
valid for an address register; points to a path­
name (which must end with an ASCII "space" char­
acter) that, when expanded, identifies the
directory in the hierarchy in which to create
the new directory and the name of the new direc­
tory itself.

reserved

A 4-byte entry containing "zeros."

FUNCTION DESCRIPTION:

This request can be used only to create new directories,
which are created with:

5-44 CB08

\ "'-_ci'

(' ,
~--j

(

(

o An initial allocation of eight physical sectors (allowing
32 entries) for diskette, eight physical sectors (allow­
ing 64 entries) for cartridge disk and storage module
(except 19-surface, 200 tracks-per-inch), or 16 physical
sectors (allowing 128 entries) for 19-surface, 200
tracks-per-inch storage module.

o An increment allocation of four physical sectors (allow­
ing 16 entries each) for diskette, eight physical sectors
(allowing 64 entries) for cartridge disk and storage
module (except 19-surface, 200 tracks-per-inch), or 16
physical sectors (allowing 128 entries) for 19-surface,
200 tracks-per-inch storage module) •

o A maximum allocation of 4000 physical sectors (allowing a
maximum of 16,000 entries) for diskette, or 4000 physical
sectors (allowing a maximum of 32,000 entries) for car­
tridge disk and storage module.

NOTES: 1. If the argument is coded, the address of the
parameter structure is loaded into $B4; if the
argument is omitted, $B4 is assumed to contain
the address of the parameter structure.

2. On return, SRI contains one of the following
status codes:

0000 - Successful completion

0201 - Illegal pathname

0205 - Illegal argument

0209 - Same named subdirectory not found

020C - Volume not found

0212 - Attempted creation of existing file or
directory

0215 - Not enough contiguous logical sectors
available

0222 - Pathname cannot be expanded, no working
directory

0224 - Directory space limit reached or not
expandable

0225 - Not enough system memory for buffers or
structures

5-45 CB08

I

Example:

0226 - Not enough user memory for buffers or
structures

022C - Access control list (ACL) violation

In addition to the above codes, any system
service codes received by the file manager are
passed on through $RI.

In this example, the macro call is used to create the sub­
directory, labeled SUBINDEX.A, identified in the create file
example. This subdirectory must exist before the path iden­
tified in that example (i.e., VOL03 SUBINDEX.A FILE A) can
be used. Prior to issuing the create directory macro call,
the following parameter structure and pathname must exist:

SUBDIR DC
RESV
RES V

DIRPTH DC

<DIRPTH
2-$AF
2,0

'I\VOLO 3>SUB INDE X.A~'

The macro call can be specified as follows:

$CRDIR !SUBDIR

5-46 CB08

CREATE FILE

CREATE FILE

Macro Call Name: $CRFIL

Function Code: 10/30

Equivalent Command: Create File (CF)

Creates a new disk file by placing a description of the file
in the file system hierarchy and, optionally, allocating
space for it. The user identifies this file by either a
logical file number (LFN) a pathname, or both. At the I
completion of create file execution, the file is reserved
exclusively for the task group. If both an LFN and pathname
are supplied then, in addition to creating and reserving the
file, it is assigned to the LFN. Subsequent macro calls.
(open file, read record, etc.) can then be directed to the
file via this LFN. $CRFIL can be used to create any of
the disk files which are described in the Data File
Organizations and Formats manual, including:

o Fixed-Relative
o Relative
o Sequential
o Indexed

In addition $CRFIL can be used to create a temporary disk
file which will exist only during this task group's
execution. This function is normally done outside program
execution.

FORMAT:

[label] $CRFIL rparameter structure address]

ARGUMENT DESCRIPTION:

parameter structure address

Any address form valid for an address register; pro­
vides the location of the parameter structure defined
below. The parameter structure must contain the fol­
lowing entries in the order shown.

5-47 CB08

logical file number

A 2-byte logical file number (LFN) used to refer
to the file. It must be a binary number in the
range 0 through 255, ASCII blanks (2020) which
indicates that an ,LFN is not specified, or -1
(FFFF), which indicates that the system should
assign an LFN from the pool of available LFNs.

pathname pointer

A 4-byte address of the pathname, which may be
any address form valid for an address register;
points to a pathname (which must end with an
ASCII space character) that, w~en expanded,
identifies (1) the name of the file to be
created, and (2) the directory in the file sys­
tem hierarchy in which to add the name and
attributes of the file. Binary zeros (null
pointer) in this entry indicate that a path is
not specified; if the path identified is a
single ASCII space (20) character, the file
being created is a temporary file.

file organization

A l-byte field specifying the file organization,
as follows:

2 - Fixed-relative without deletable
records

5 - Fixed-relative with deletable records

R - Relative

S Sequential

I - Indexed

reserved

This l-byte field must contain zeros.

5-48 CB08

- ,-- -------------- - -,--

" " f'o \

\'1l ./

(

(/

logical record size

A 2-byte value that specifies the length of the
longest logical record in the file. If the file
organization entry, above, specified R, S, or I,
this size does not include headers. If the file
organization entry specified 5, the size
includes the 2-byte record header. There are no
headers for a file organization shown as 2.

control interval size

A 2-byte value that specifies the unit of file
space allocation, as follows:

For fixed-relative files: defines only the
unit of space allocation and can be speci­
fied as any multiple of 128 bytes which
includes both CI and logical record header
information.

For all other files: defines the size of a
data transfer to/from main memory (and thus
the buffer size); must be specified as a
multiple of 256 bytes, including CI and
logical record header information.

Zeros in this entry result in a size of 512
bytes.

initial allocation size

A 2-byte value that specifies the number of con­
trol intervals to be allocated to the file at
file-creation time; zeros in this entry indicate
that no space is to be allocated initially.

allocation increment size

A 2-byte value that specifies the number of
additional control intervals to be dynamically
allocated to the file at load time if the number
specified in the "initial allocation size" entry
are filled. Zeros in this entry indicate a
value of 4D physical sectors.

maximum allocation size

A 2-byte value that specifies the maximum number
of control intervals that can be allocated to
the file. Zeros in this entry indicate that
there is no limit.

5-49 CBD8

free space per control interval

A 2-byte value, as follows:

For indexed files: The number of bytes to be
left free in each control interval at file­
loading time; this permits records to be
inserted in the file without causing overflow.

For all other file organizations: Contains
zeros.

I local overflow allocation increment

A 2-byte value that sets the frequency at which
a local overflow control interval will be allo­
cated when an indexed file is loaded. For
example, if this value is 10, one local overflow
control interval will be allocated after every
ten data control intervals are allocated.

number of key descriptors

A 2-byte value, as follows:

For indexed files: Must contain Z'OOOl'

For all other file organizations: Contains
zeros.

pointer to key descriptor

A 4-byte address, as follows:

reserved

For indexed files: Any address form valid for
an address register; points to a key descrip­
tor structure that defines the key field in
records stored in an indexed file. This
structure is described below.

For all other file organizations: Contains
zeros ~

An 8-byte entry containing zeros.

The key-descriptor structure pointed to by the pointer
to key descriptors entry in the argument structure
described above must contain the following entries in
the order shown:

5-50 CBoa

j

(

• \

(

record type range

A 4-byte value that must contain Z'OOOOFFFF'.

number of key components

A I-byte value that must contain the value 1.

reserved

A 9-byte entry containing zeros.

key component data type

A I-byte entry that contains an ASCII C for
character data or D for decimal data.

key component size

A I-byte binary value that specifies the length
of the key field in the record.

key component offset

A 2-byte binary value that specifies the number
of bytes from the beginning of the record to the
beginning of the key field; the first byte in
the logical record is position 1.

FUNCTION DESCRIPTION:

This macro call cannot be issued if the file already exists
(i.e., a create file macro call with the same pathname has
been previously issued and the file has not been released),
or if the LFN is currently assigned to an open file in the
same task group. When properly coded, the create file macro
call allocates space to the specified file in accordance
with the entries in the argument structure (i.e., it
"creates" an empty file, which can be loaded with data
through data management or storage management macro calls).

The file can be specified (in the argument structure) by (1)
an LFN only, (2) a pathname only, or (3) both an LFN and a
pathname.

o If only an LFN is specified, it must previously have been
associated with a pathname (see the associate file macro
call.

5-51 CB08

I

o If only a pathname is specified (i.e., the LFN field con­
tains ASCII spaces (2020)), the file is reserved without
a unique LFN. The only requests that can use the files
are those that can refer to it by pathname only. If a
pathname is specified, and the LFN field contains a value
of -1 (FFFF), the system assigns a unique LFN; it is the
user's responsibility to return the LFN to the pool of
available LFNs (via remove file macro call) when it is no
longer needed. The unique LFN is assigned from the pool
of available LFNs for the task group. The highest LFN
not already assigned is set in the LFN entry of the argu­
ment structure, overlaying the previous contents (FFFF).
You must move this value to other structures (i.e., argu­
ment structures of FIBs) as required.

o If both an LFN and a pathname are specified, then (in
addition to creating the file), the file is assigned to
the specified LFN.

Zeros are specified in the "initial allocation size" entry,
space is allocated according to the value specified in the
"allocation increment size" entry at file load time.

Initial allocation and allocation increment sizes (although
stated in terms of control intervals) cannot resolve to a
value greater than 8191 logical sectors for mass storage
units, and 8191 physical sectors for diskettes and cartridge
disks. After the space is allocated, the system reserves it
with "exclusive" concurrency control; as a result, it is not
necessary to issue a get file macro call before an open file
macro call in order to access the file exclusively. If the
file being created is a temporary file (see the "pathname
pointer" entry described in the argument structure descrip­
tion), it can be released (Le., deleted) through the remove
remove file macro call.

Offset tags for the parameter structure can be defined by
the $CRPSB macro call.

NOTES: 1. If the argument is coded, the address of the
argument structure is loaded into $B4. If the
argument is omitted, $B4 is assumed to contain
the address of the argument structure.

2. On return, $Rl contains one of the following
status codes:

0000 - No error

0201 - Illegal pathname

5-52 CB08

KEY

(

Example:

0205 - Illegal argument

0206 - Unknown or illegal LFN

0208 - LFN or file already open

0209 - Same named subdirectory not found

020C - Volume not found

0211 Unable to establish unique LFN

0212 - Attempted creation of existing file

0215 - Not enough contiguous logical sectors
available

0222 - Pathname cannot be expanded, no working
directory

0224 - Directory space limit reached or not
expandable

0225 - Not enough system memory for buffers or
control structures

0226 - Not enough user memory for buffers or
control structures

022C - Access control list violation

In addition to the above codes, any system
service codes received by the file manager are
passed on through $Rl.

In this example, the argument structure labeled FILE A,
defined under "Assumptions for File System Examples"-in
Section 3, describes the file to be created. In addition,
the following key descriptor structure has been defined:

DC Z'OOOOFFFF' RECORD TYPE RANGE
DC Z '0100' NO. OF COMPONENTS = 1
RESV 4,0 RESERVED
DC Z '430A' KEY COMP. DATA TYPE = C;

KEY LENGTH = 10
DC 1 KEY LOC. IN RECD. = FIRST POSITION

Also, the pathname was defined as follows:

IDXOI DC ,AVOL03>SUBINDEX.A>FILE AA'

5-53 CB08

With the preceding definitions having been made, the fol­
lowing macro call will create FILE A:

DOMYAA $CRFIL !FILE A

5-54 CB08

\
".

("

.~"

~

(

CREATE FILE PARAMETER
STRUCTURE BLOCK-OFFSETS

CREATE FILE PARAMETER STRUCTURE BLOCK - OFFSETS

Macro Call Name: $CRPSB

Associated Macro Call: $CRFIL

Generated

Ta9

R LFN
R-PTHP
R ORG
R-RFU
R LRSZ
R-CISZ
R IASZ
R-AlSZ
R MASZ
R-FREE
R LOV
R-NKD
R KDP

R SZ

Offsets Tags:

Co rrespond ing
Offsets

(in Words)

0
+1
+3
+3
+4
+5
+6
+7
+8
+9
+10
+11
+12

+18

Entry Name

Logical file number (LFN)
Pointer to path
File organization (first byte)
Reserved (second byte)
Logical record size
Control interval size
Initial allocation size
Allocation increment size
Maximum allocation size
Amount of free space per C.l.
Local overflow allocation increment
Number of key descriptors
Pointer to key descriptors (see $GIKBD I
macro call)

Size of structure (in words); not a
field in the block

5-55 CB08

CREATE GROUP

CREATE GROUP

Macro Call Name: $CRGRP

Function Code: ODj02

Equivalent Command: Create Group (CG)

Define a new task group. Allocate and initialize the data
structures required to control the task group within the
specified memory pool. Create the lead task as described
under the create task macro call.

FORMAT:

rlabel] $CRGRP [location of group identifier],
[location of memory pool identifier],
[location of base level],
[location of high logical resource number],
[location of high logical file number],
[location of root entry name address]

ARGUMENT DESCRIPTION:

location of group identifier

Any address form valid for a data register; provides
the group identification of the new task group. The
group identifier must be a two-character (ASCII) name
that does not have the $ character as its first
character.

location of memory pool identifier

Any address form valid for a data register; provides
the identifier of the memory pool to be used to
satisfy all memory requests emanating from the created
task group. The memory pool identifier consists of
two ASCII characters that name a pool defined at sys­
tem building. If this argument is omitted, the new
task group will use the memory pool associated with
the issuing task group.

5-56 CB08

(

location of base level

Any address form valid for a data reg ister; prov ides
the base priority level, relative to the system level,
at which the lead task will execute.

A base level of 0, if specified, is the next higher
level above the last system priority level. The sum
of the highest system physical level plus 1, and the
base level of a group, and the relative level of a
task within that group, must not exceed 62 10 •

location of high logical resource number

Any address form valid for a data register; provides
the highest logical resource number (LRN) that will be
used by any task in the task group. The LRN can be a
value from 0 through FC (hexadecimal). If this argu­
ment is omitted, or if the value specified is less
than the highest LRN used by the system task group,
the system task group's LRN will be used.

location of high logical file number

Any address form valid for a data register; provides
the highest logical file number (LFN) to be used by
any task in the task group. The LFN can be a value
from 0 through FF (hexadecimal). If this argument is
omitted, the value 15 is assumed. (Refer to the asso­
ciate file macro call.)

location of root entry name address

Any address form valid for an address register; pro­
vides the address of the root entry name string that
specifies the pathname of the bound unit to be exe­
cuted as the lead task. The bound unit pathname can
have an optional suffix in the form of ?entry, where
entry is the symbolic start address within the root
segment. If this suffix is not given, the default
start address (established at Assembly or Link time)
is used. EC?ECL specifies the command processor as
the lead task.

FUNCTION DESCRIPTION:

This call causes the initialization and allocation of all
data structures used by the system to define and control the
execution of a task group. It causes the loading of the
root segment of the lead task of the task group. It does
not cause the system to activate any task within the task
group.

5-57 CB08

I

NOTES: 1. The group identifier supplied by argument 1 is
placed in $R2; if this argument is omitted, $R2
is assumed to contain the group identifier to be
used.

2. The memory pool identifier supplied by argument
2 is placed in $R4; if this argument is omitted,
$R4 is set to zero to indicate that the memory
pool of the issuing task group should be used by
the newly created task group.

3. The base priority level supplied by argument 3
is placed in $R5; if this argument ,is omitted,
$R5 is assumed to contain the base priority
level to be used.

4. The high LRN value supplied by argument 4 is
placed in $R6; if this argument is omitted, $R6
is set to zero to indicate that the value of the
highest LRN created for the system task will be
used.

5. The high LFN value specified by argument 5 is
placed in $R7; if this argument is omitted, $R7
is set to 15.

6. The address of the root entry name supplied by
argument 6 is placed in $B2; if this argument is
omitted, $B2 is assumed to contain the address
of the bound unit to be executed by the lead
task.

7. On return, $Rl and $R2 contain the following
information:

$RI - Return status; one of the following:

0000 - No error
0601 - Insufficient memory
0602 - Insufficient memory
0804 - Group id in use
0806 - Inval id group id
0807 - Invalid memory pool identifier
0808 - Invalid base level
0809 - Invalid high LRN
080A - Invalid high LFN
080C - Unresolved start address
160A - Invalid pathname
160B - Insufficient memory

$R2 - Group id of created group

5-58 CB08

(

(

Example:

In this example, a new task group is created with a group id
of Gli the group uses memory pool PI, and has level 40
(decimal) assigned as a base level. Both the high LRN and
high LFN are defaulted (only a number of LRNs equivalent to
that configured for the system task group will be available,
and the highest logical file number available will be 15
decimal). The task group's lead task will begin its execu­
tion at the entry point ENTRYI of the bound unit PROGI, as
found by application of the system search rules.

GROUPI $CRGRP ='GI',='Pl',=40",!ROOT

.
ROOT TEXT 'PROGI?ENTRYlt\'

5-59 CBOS

I

CREATE OVERLAY AREA TABLE

CREATE OVERLAY AREA TABLE

Macro Call Name: $CROAT

Function Code: 07/0A

Equivalent Command: None

Create an overlay table to be used with overlay loading
functions that require a pointer to an overlay area table
(OAT). The overlay area described by this OAT is created in
real memory space. (See the Programmer's Reference manual
for details on overlays and overlay area tables.)

FORMAT:

[label] $CROAT rlocation of OAT address] ,
[location of size of overlay area entry],
[location of number of overlay area entries]

ARGUMENT DESCRIPTION:

location of OAT address

Any address form valid for an address register; pro­
vides the location into which the system will place
the address of the OAT.

location of size of overlay area entry

Any address form valid for a data register; provides
the location of a value specifying the number of words
to be contained in each entry in this overlay area.
This value should be equal to or greater than the size
of the overlays to be placed in the area for loading.

location of number of overlay area entr ies

Any address form valid for a data register; provides a
value specifying the number of entries in this overlay
area. (The size of each entry is defined by argument
2.) The value for this argument depends on the number
of overlays of this size used by the bound unit and
the frequency of their release. /

5-60 CB08

(

(,

FUNCTION DESCRIPTION:

This macro call creates an overlay area table (OAT) to be
used by subsequent loader functions that require (or imply)
the existence of an OAT in the call.

The real memory space for the overlay area described by this
call is obtained from the same memory pool used by the cur­
rent bound unit of the issuing task. If the current bound
unit is not sharable, memory will be obtained from the pool
associated with the group of the issuing task. If the cur­
rent bound unit is sharable, memory will be obtained from
the system pool.

Once allocated, the overlay area table becomes a supporting
resource of the current bound unit. That is, an OAT queue
header field will be added to the definition of the bound
unit descriptor, and as OATs are created, they will be
placed in this queue. The OAT queue is maintained so that
OATs are ordered by ascending area size.

Before an OAT is allocated, any existing OATs are searched
for an OAT with area size equal to that specified in argu­
ment 2. If one is found equal, the number of areas in this
OAT is returned to the caller (i.e., location specified in
argument 1 or to register $R6). On return, the caller
receives the address of the newly created OAT or an existing
OAT.

The overlay area reserve and execute overlay ($OVRSV) and
overlay area, release ($OVRLS) macro calls require that
overlay areas be present. If no OAT that controls entries
of the specified size can be found, the system creates an
overlay area with the number of entries specified by argu­
ment 2, and then creates the controlling OAT.

When the system returns the address of the OAT, it also
returns the actual size of the overlay area and the actual
number of areas allocated or already present.

NOTES: 1. The address of the OAT is returned in $B4 and is
stored as specified in argument 1. If argument
1 is omitted, the address is stored only in $B4.

2. The size of the entry supplied by argument 2 is
placed in $R2; if this argument is omitted, $R2
is assumed to contain the correct size.

3. The number of entries supplied by argument 3 is
placed in $R6; if this argument is omitted, $R6
is assumed to contain the correct number.

5-61 CB08

Example:

4. On return, $RI, $R2, $R6, and $B4 contain the
following information:

$RI - Return status; one of the following:

0000 - No error

1602 - Invalid argument (size or number of
over lay a rea s)

160A - Insufficient memory

$R6 - Actual number of overlay areas allocated
to this area (if $RI is 0000)

)

$B4 - Address of OAT (if $RI is 0000)

5. On a return with error, the contents of $R2,
$R6, and $B4 are unspecified.

In this example, an overlay area of three 512-word entries
is created. (It is assumed that no existing overlay area
table controls 512-word entries.) The address of the con­
trolling OAT will be placed in OATAD.

OATAD RESV 2,0
$CROAT =OATAD,=512,=3

5-62 CB08

CREATE TASK

CREATE TASK

Macro Call Name: $CRTSK

Function Code: OC/02 (same bound unit),
OC/03 (different bound uni t)

Equivalent Command: Create Task (CT)

Add the supplied task definition to the set of currently
defined tasks within the task group of the issuing task.

FORMAT:

r label] $CRTSK r locat ion 0 flog ical reso urce number],
[location of relative priority level],
[location of start address] ,
[location of root entry name address]

ARGUMENT DESCRIPTION:

location of logical resource number

Any address form valid for a data register; provides
the location of the logical resource number (LRN) by
which the issuing task group can refer to the created
task. The LRN (a value from 0 through 252) cannot
exceed the value used as the high LRN in the create
group macro call that created the group of which this
task is a member.

location of relative priority level

Any address form valid for a data register; provides
the location of the priority level, relative to the
task group's base priority level, at which the created
task is to execute. If this argument is omitted or is
-1, the priority level used is that of the issuing
task.

5-63 CB08

location of start address

Any address form valid for an address register; pro­
vides the location of the task start address when the
newly created task is to execute in the same bound
unit as the task that issued the create task macro
call. (Function code OC/02.)

location of root entry name address

Any address form valid for an address register; pro­
vides the address of the pathname of the bound unit
root segment to be loaded for execution by the newly
created task. The bound unit pathname can have an
optional suffix in the form of ?entry, where entry is
the symbolic start address within the root segment.
If this suffix is not given, the default start address
(established at Link time) is used. (Function code
OC/03.)

FUNCTION DESCRIPTION:

This call causes the allocation and initialization of the
data structures that define and control task execution. The
call does not activate the task; the request task macro call
is required for task activation.

One or more create task macro calls can be issued to create
one or more tasks within a task group.

When a create task macro call is executed, the system builds
a resource control table (RCT) and a task control block
(TCB) for the created task. The address of the RCT is
placed in the logical resource table (LRT) in association
with the appropriate LRN. .

Either the location of the start address or the location of
the root entry name address, but not both, can be specified.

If the new task is to execute within the bound unit of the
issuing task, then the count of tasks associated with the
unit is incremented (function code OC/02) to prevent pre­
mature reuse of memory containing the bound unit.

If the specified bound unit is not a sharable bound unit
that is currently resident in memory, the root segment of
the bound unit is loaded into memory belonging to the task
group. If the specified bound unit is both sharable and
currently resident, the count of tasks associated with the
un it is inc remented. (Function code aC/D 3.)

5-64 CBD8

~~-.- ._-- --

(NOTES: 1. The LRN supplied by argument 1 is placed in SR2;
if this argument is omitted, $R2 is assumed to
contain the LRN for the created task.

2. The relative priority level supplied by argument
2 is placed in $R6; if this argument is omitted,
$R6 is set to the relative priority level of the
task issuing this create macro call.

3. Arguments 3 and 4 are mutually exclusive. If
both are supplied, argument 3 is used and a
diagnostic is issued. Information derived from
either argument is placed in $B2; if these argu­
ments are omitted, $B2 is assumed to contain the
s~art address to be used.

4. On return, $Rl and $R2 contain the following
information:

$Rl - Return status; one of the following:

0000 - No error

Olxx - Media erro r

0209 - Bound unit not found

0809 - LRN too large

0813 - Referenced LRN already in use or
invalid

0827 - Bound unit file not fixed-relative

1604 - Unresolved symbolic start address

l60A - Insufficient memory

1611 - Zero length root segment

1613 - Invalid bound unit pathname

1615 - III egal bound unit file

$R2 - LRN of created task

5-65 eB08

I

Examples:

In this example, the $CRTSK macro call makes a task known as
logical resource number 10 (decimal) of the issuing group.
The task will execute at priority level 2 relative to the
group's base level. The task will execute the procedures
contained in the bound unit PROGlO, as found by application
of search rules, entering the bound unit at entry point
PROGIO.

$CRTSK =lO,=2,,!ROOT

ROOT TEXT 'PROGlOA'

In this example, the $CRTSK macro call makes a task known as
logical resource number 12 (decimal) of the issuing group.
The task will execute at the same priority level as the
issuing task. The task will execute the same bound unit as
the issuing task and will be started at the address repre­
sented by the label SSA.

$CRTSK = 1 2, , , ! S SA'

5-66 CBOS

(DEFINE SEMAPHORE

DEFINE SEMAPHORE

Macro Call Name: $DFSM

Function Code: 06/04

Equivalent Command: None

Define a semaphore for the issuing task group; assign the I
semaphore an identifier and an initial value.

FORMAT:

[label] $DFSM [location of semaphore identifier],
[location of initial value of semaphore]

ARGUMENT DESCRIPTION:

location of semaphore identifier

Any address form valid for a data register; provides
the two ASCII characters that identify this semaphore.

location of initial value of semaphore

Any address form valid for a data register; provide~
the initial value to which the semaphore is set. This
value specifies the number of simultaneous requests
for the resource identified by the semaphore. If this
argument is omitted, the initial value of the sema­
phore is set to one (one user at a time).

FUNCTION DESCRIPTION:

This call allows different tasks within the same task group
to coordinate the use of a resource (such as task code, a
device, or a file). The semaphore acts as a gating mecha­
nism that allows a requesting task to obtain the use of a
resource if the value of its associated semaphore is
posi tive.

5-67 CB08

When a semaphore is defined by a task, it is available only
to tasks within the task group of the defining task. See
"Semaphore Functions" in Section 2 for a discussion of
semaphores.

The 2-character semaphore identifier indicated by argument 1
is a system symbol used by the monitor to coordinate
requests for the resource being controlled. The initial
value indicated by argument 2 specifies the type of control
to be exercised. If this value is 1, the resource can be
accessed by only one task at a time. A value of 2 allows
two users, 3 three users, and so on.

NOTES: 1. The semaphore identifier supplied by argument 1
is placed in $R6; if this argument is omitted,
$R6 is aisumed to contain the identifier to be
used.

Example:

2. The initial semaphore value supplied by argument
2 is placed in $R2; if this parameter is
omitted, $R2 is set to 1.

3. On return, $Rl and $R6 contain the following
information:

$Rl - Return status; one of the following:

0000 - No error

0503 - Semaphore id previously defined in
issuing task group

$R6 - Semaphore identifier (as supplied)

In this example, the $DFSM macro calls define two semaphores
named TH and LK.

TH is a semaphore having an initial value of 10 and which
controls the allocation of ten identical nonsharable
resources, such as magnetic tape drives, that are called
"resources" in this example. Any task wanting a resource
does a P-op (see reserve resource) on this semaphore. If no
resources are available at the moment, the task is suspended
until a resource becomes available. When a task finishes
using a resource, it does a V-op (see release semaphore),
thereby making the resource available for use by other
tasks. If any other task is waiting for this semaphore when
the V-op is done, the task that was waiting the longest is
awakened.

5-68 CB08

j
1!.

(

-----~-~--~~~-~ .. - ..

*

LK is a semaphore which has an initial value of 1 and which
controls access to the free resource list by serving as a
lock. After a task has reserved the right to use a resource
by performing the P-op on TH as described above, the task
will unlink (the description of) a particular resource from
the free-resource list. Upon entering a section where it
examines or modifies the free-resource list, the task does a
P-op on the semaphore LK, thus ensuring the integrity of
this data base. After it stops using this data base, the
task does a V-op on LK.

When the task finishes using the resource, it will return
the resource by doing a P-op on LK, linking (the description
of) the resource being returned into the free-resource list,
doing a V-op on LK, and then doing a V-op on TH.

* DEFINE SEMAPHORES TO CONTROL RESOURCES

*

*
*
*
*

*
*
*

*
*
*

*

ROUTINE TO GET A

FIRST GET RIGHTS

NOW LOCK THE FREE

$DFSM
$DFSM

='TH',=lO
= ILK I

RESOURCE

TO TAKE A RESOURCE

$RSVSM = 'TH I

RESOURCE LIST

$RSVSM = ILK I

TAKE A RESOURCE FROM THE FREE RESOURCE

* THEN UNLOCK THE FREE RESOURCE LIST

*

*
*
*

$RLSM = ILK I

END OF ROUTINE TO GET A RESOURCE

* ROUTINE TO RETURN A RESOURCE

* * FIRST LOCK THE FREE RESOURCE LIST

*
$RSVSM ='LK I

5-69

LIST

CBDa

* * NOW LINK THE RESOURCE BACK INTO THE FREE RESOURCE LIST

* * THEN UNLOCK THE FREE RESOURCE LIST
*

$RLSM ='LK'

* * FINALLY RELEASE THE RESOURCE
*

$RLSM ='TH'

* * END OF ROUTINE TO RETURN A RESOURCE

*

5-70

'" _~;1;'

CB08

(

(

DELETE GROUP

DELETE GROUP

Macro Call Name: $DLGRP

Function Code: OD/04

Equivalent Command: Delete Group CDG)

Mark the task group as eligible for deletion when it becomes
dormant; then return all allocated memory to the associated
memory pool.

FORMAT:

[label] $DLGRP [location of group identifier]

ARGUMENT DESCRIPTION:

location of group identifier

Any address form valid for a data register; provides
the group identification of the task group to be
deleted. This task group must have previously been
created by a create group macro call. If this argu­
ment is omitted, the issuing task group is deleted.

FUNCTION DESCRIPTION:

This call removes all data structures, built by the create
group macro call issued with this group id, when the group
becomes dormant. No further enter group request macro
calls can be issued for this task group once the delete
group macro call has been issued. I
When a task group is deleted, the memory occupied by the
data structures defining the group, and any memory asso­
ciated with the execution of the group, is returned to the
appropriate memory pool.

5-71 CBoa

The delete group macro call takes effect immediately if the
task group is dormant when the command is issued. If the
task group is active (i.e., its code is being executed and/
o~ there are requests in its request queue), the delete
group macro call takes effect when execution terminates and
no requests remain in the queue.

NOTES: 1. The group id supplied by argument I is placed in
$R2; if this argument is omitted, $R2 is set to
zero to designate that the issuing task group is
to be deleted.

Example:

2. On return, $RI and $R2 contain the following
information:

$RI - Return status; one of the following:

0000 - Delete task group status set
0806 - Task group not found

$R2 - Group id of deleted task group

In this example, the $DLGRP macro call causes the task group
in which the macro call is executed to be deleted when the
group's tasks are all terminated with no queued group
requests.

NOABA $DLGRP

5-72 CBOS

/

DELETE RECORD

DELETE RECORD

Macro Call Name: $DLREC

Function Code: 11/30 (current), 11/31 (key)

Equivalent Command: None

Removes the specified logical record from the file; valid
for all file organizations except fixed-relative without
deletable records, tape-resident sequential files, and
d ev ice f i 1 es •

FORMAT:

[label] $DLREC [fib address] [{:i~~RENT}J

ARGUMENT DESCRIPTION:

fib address

Any address form valid for an address register; pro­
vides the location of the file information block
(FIB) •

{CURRENT}
CUR

Indicates that the record read by the immediately pre­
ceding read next or read with key (i.e., the last
record read; see "Read Record") macro call is to be
deleted. (This is the default value for this macro
call.) You must code the following FIB entry:

logical file number

5-73 CB08

*

KEY

Indicates that the record identified by the key value
pointed to by the FIB is to be deleted. You must code
the following FIB entries:

logical file number
input key pointer
input key format

FUNCTION DESCRIPTION:

Before this macro call can be executed, the file must have
been opened (see the open file macro call) with a program
view word that allows access via data management (bit 0 is
0) and allows delete operations (bit 4 is 1). The file must
have been reserved (see get file macro call) with write
access concurrency (type 3, 4, or 5). In addition, execu­
tion of this macro call has no effect on the next read or
write pointer (i.e., it can be issued between a read next
record and write next record macro call without disturbing
the sequence of the records being read or written).

The delete record macro call does not apply to fixed­
relative files with nondeletable records, tape files, and
device files.

The file information block can be generated by a $FIB macro
call. Displacement tags for the FIB can be defined by the
$TFIB macro call.

NOTES: 1. If the argument is coded, the address of the FIB
is loaded into $B4; if the argument is omitted,
$B4 is assumed to contain the address of the
FIB.

2. None of the out-values in the FIB are set by
this macro call.

3. On return, $Rl contains one of the following
status codes:

0000 - No error
0203 - Illegal function
0205 - Illegal argument
0206 - Unknown or illegal LFN
0207 - LFN not open
020A - Address out of file
020E - Record not found
0217 - Access violation
0219 - No current record pointer
021E - Key length or location error

5-74 CBOH

4
/

(

(

Example:

022A - Record lock area overflow
022B - Requested record is locked

In addition to the above codes, any system
service codes received by the data manager are
passed on through $RI.

The macro call in this example identifies the FIB that is
described under "Assumptions for File System Examples" in
Section 3. The $TFIB macro call reserved the FIB tags. The
$DLREC macro call indicates that the current record is to be
deleted; it is assumed that the file is open and that a
$RDREC NEXT (read next record) macro call immediately
precedes the $DLREC macro call. The macro call is:

$DLREC !MYFIB,CURRENT

The FIB identified by the address in the first argument is
as defined in the example for the open file macro call. In
addition, offset tags can be used to access the LFN in later
instructions in your program with the macro call $TFIB.

5-75 CB08

I

DELETE TASK

DELETE TASK

Macro Call Name: $DLTSK

Function Code: OC/04

Equivalent Command: Delete Task (DT)

Delete the definition of a task from the task group of which
the task issuing this macro call is a member.

FORMAT:

[label] $DLTSK rlocation of log ical resource number]

ARGUMENT DESCRIPTION:

location of logical resource number

Any address form valid for a data register; provides
the location of the LRN of the task to be deleted.
The LRN (a value from 0 through 252) must have been
specified in a previously issued create task macro
call. If this argument is omitted, the task issuing
the macro call is deleted.

FUNCTION DESCRIPTION:

This call removes the data structures constructed by the
create task macro call that was issued with the specified
LRN.

If the task is executing, the macro call causes its defini­
tion to be deleted when the task next issues a terminate
macro call and there are no request blocks in its request
queue. No further request task macro calls can be issued
for this task after the delete task macro call has been
issued.

5-76 CB08

(If the task is not executing and there are no outstanding
requests for it, its definition is deleted immediately.
When the task is deleted, the memory occupied by its data
structures is returned to the appropriate memory pool. The
delete task function operates asynchronously. The issuing
task does not wait until the referenced task is deleted.

NOTES: 1. The LRN specified by argument 1 is placed in
$R2; if this argument is omitted, $R2 is set to
-1 to denote that the task issuing the macro
call is to be deleted.

Example:

2. On return, SRI and SR2 contain the following
information:

$Rl - Return status; one of the following:

0000 - No error
0802 - Invalid LRN

SR2 - LRN of deleted task

In this example, the $DLTSK macro call causes the task known
as logical resource number 10 (decimal) within the issuing
task's task group to be deleted. If the $DLTSK macro call
shown in this example was executed in the same task group as
the $CRTSK macro call used in the first example of the
create macro call descrip~ion, the task created by that
example would be deleted.

DEL AA $DLTSK =10

5-77 CB08

I

DISABLE DEVICE ON ATTENTION

DISABLE DEVICE ON ATTENTION (MOD 400 ONLY)

Macro Call Name: $DSDV

Function Code: 02/02

Equivalent Command: None

Disable the specified device when an attention interrupt
occurs.

FORMAT:

[label] $DSDV [location of LRN]

ARGUMENT DESCRIPTION:

location of LRN

Any address form valid for a data register; provides
the location of the logical resource number (LRN) of
the device to be disabled. The LRN must be a system
LRN (defined at system building) •

FUNCTION DESCRIPTION:

This call sets the device status to disabled when an atten­
tion interrupt occurs. It is typically used to ensure that
volume swaps are detected by the application program.

A disabled device is logically unavailable and returns a
0108 status until enabled. To regain use of the device, you
must enable it (see the enable device macro call) each time
an attention interrupt occurs.

NOTES: 1. The LRN specified by argument 1 is placed in
$R2; if this argument is omitted, $R2 is assumed
to contain the correct LRN.

2. On return, $Rl and $R2 contain the following
information:

5-78 CBD8

/

(,

Example:

$Rl - Return status; one of the following:

0000 - No error
0102 - Invalid LRN

$R2 - LRN of device

In this example, the $DSDV macro call is used to disable the
device whose LRN is 15 whenever an attention interrupt
occurs.

DISPT $DSDV =15

5-79 CB08

DISABLE USER TRAP

DISABLE USER TRAP

Macro Call Name: $DSTRP

Function Code: OA/02

Equivalent Command: None

Disable the handling of the specified trap for the issuing
task.

FORMAT:

[label] $DSTRP [location of trap number]

ARGUMENT DESCRIPTION:

location of trap number

Any address form valid for a data register; provides
the trap number (0 through 63, decimal) of the trap to
be disabled. A value of -1 designates that all traps
are to be disabled. The trap number must have been
specified in an enable user trap ($ENTRP) macro call.

FUNCTION DESCRIPTION:

This macro call disables the hardware trap vector specified
by argument 1. All subsequent occurrences of the specified
trap are handled by the system's default trap handling rou­
tine until an enable user trap macro call is later issued
fo r the trap. (Sect ion 7 desc r ibes trap hand 1 ing.)

NOTES: 1. The trap number of the trap to be disabled, sup­
plied by argument 1, is placed in $R2; if this
argument is omitted, $R2 is assumed to contain
the binary number of the trap to be disabled.

2. On return, $Rl and $R2 contain the following
info rmation:.

5-80 CB08

(

Example:

SRI - Return status:

0000 - No error

0342 - Illegal trap number

0343 - A previously signalled trap is
still pending.

$R2 - Trap number supplied in macro call

See the example given for "Connect Trap Handler."

5-81

I

CB08

DISSOCIATE FILE

DISSOCIATE FILE

Macro Call Name: $DSFIL

Function Code: 10115

Equivalent Command: Dissociate Path (DISSOC)

Dissociates a previously associated logical file number
(LFN) from a pathname. This dissociation is typically done
outside of program execution.

FORMAT:

[label] $DSFIL [parameter structure address]

ARGUMENT DESCRIPTION:

parameter structure address

Any address form valid for an address register; pro­
vides the location of the argument structure defined
below. The argument structure must contain the fol­
lowing entry.

logical file number

A 2-byte logical file number (LFN) used to refer
to the pathname; must be a binary number in the
range 0 through 255.

FUNCTION DESCRIPTION:

This macro call breakS the logical connection between the
specified LFN and its previously associated pathname (see
the associate file macro call). It does not remove the file
from the task group (see the remove file macro call).

NOTES: 1. If the argument is coded, the address of the
argument structure is loaded into $B4; if the
argument is omitted, $B4 is assumed to contain
the address of the argument structure.

5-S2 CBOS

Example:

2. On return, $RI contains one of the following
status codes:

0000 - No error
0205 - Illegal argument
0206 - Unknown or illegal LFN

In addition to the above codes, any system
service codes received by the file manager are
passed on through $RI.

In this example, the macro call identifies the same argument
structure used in the associate file macro call described
earlier (i.e., FILE A). The effect of the dissociate macro
call is to remove the logical connection between the LFN and
the pathname IDXOI, as established by the associate file
macro call.

FILE A DC 5 LFN5
$DSFIL !FILE-A

5-83 CB08

I

ENABLE DEVICE

ENABLE DEVICE (MOD 400 ONLY)

Macro Call Name: $ENDV

Function Code: 02/04

Equivalent Command: None

Set the resource control table (RCT) of the specified device
to enabled status.

FORMAT:

[label] $ENDV [location of LRN]

ARGUMENT DESCRIPTION:

location of LRN

Any address form valid for a data register; provides
the LRN of the device whose RCT is to be set to
enabled status. The LRN must be a system LRN (defined
at system building) •

FUNCTION DESCRIPTION:

This call turns off the device disabled indicator (bit 10 of
the R FLGS entry) in the RCT of the specified device. $ENDV
can be used in synchronizing task operation with device
availability. A task can issue a disable device on atten­
tion macro call ($DSDV) to request notification of an inter­
rupt. When the interrupt occurs, the device driver will set
bit 10 (device disabled) and bit 8 (attention has occurred)
of R FLGS. When a ready interrupt is generated, the task
can clear the disabled status by resetting bit 10 through
the $ENDV macro call.

After clearing bit 8, using the reset device attention
($RDVAT) macro call, and waiting for the device ready inter­
rupt to occur, a task can use the enable device ($ENDV) and
the reset device attention ($RDVAT) macro calls to clear
bits 8 and 10 to initial states.

5-84 CB08

NOTES: 1. The LRN supplied by argument J. is placed in $R2;
if this argument is omitted, $R2 is assumed to
contairi the correct LRN.

Example:

2. On return, $Rl and $R2 contain the following
information:

$Rl - Return status; one of the following:

0000 - No error
0102 - Invalid LRN

$R2 - LRN of device

In this example, the $ENDV macro call is used to set the RCT
of the device whose LRN is 15 to the enabled status. It is
assumed that a ready interrupt has been generated for the
dev ice.

ONDEVA $ENDV =15

5-85 CB08

I

ENABLE USER TRAP

ENABLE USER TRAP

Macro Call Name: $ENTRP

Function Code: OA/OI

Equivalent Command: None

Enable a specified user trap for the issuing task.

FORMAT:

flabel] $ENTRP flocation of trap number]

ARGUMENT DESCRIPTION:

location of trap number

Any address form valid for a data register; provides
the trap number of the trap to be enabled. The trap
number is a decimal value from a through 63, or a
value of -1. A -1 value designates that all user
traps are to be enabled.

FUNCTION DESCRIPTION:

This call causes a specific hardware trap vector whose
number is derived from argument 1 to be enabled. All subse­
quent occurrences of the specified trap cause control to be
transferred to a previously established trap handling rou­
tine for the task (see connect trap handler macro call).

When the task group~s general trap handling routine is
entered, $R3 contains the trap number assigned to the event
that caused the entry to the routine. $83 contains the
location of the trap save area. The j-mode bit in the I­
register has been set off. All other registers are
unchanged. An RTT (return from trap) instruction is exe­
cuted to return from the task's trap handler. (See Section
7 for more information about trap handling.)

5-86 CB08

,/

(

(

NOTES: 1. The trap number of the trap to be enabled, sup­
plied by argument 1, is placed in $R2i if this
argument is omitted, $R2 is assumed to contain
the binary number of the trap to be enabled.

Example:

2. On return, $Rl and $R2 contain the following
information:

$Rl - Return status; one of the following:

0000 - No error

0341 - Trap handler entry not connected

0342 - Illegal trap number (requested trap
not a user class trap).

$R2 - Trap number supplied in macro call

3. This macro call is required in order to enable a
software simulated trap in a task that the user
interrupts with the break key function, and for
which a PI or UW break response is entered.

See the example given for "Connect Trap Handler."

5-87 CB08

I

ERROR LOGGING, END

ERROR LOGGING, END

Macro Call Name: $ELEND

Function Code: 02/09

Equivalent Command: None

Terminate the error logging function for the named device
and provide summary error information.

FORMAT:

rIabel] $ELEND flocation of device-name],
[address of user's error logging table]

ARGUMENT DESCRIPTION:

location of device-name

Any address form valid for a data register. Provides
the address of the device-name for the peripheral
(noncommunications) device for which the logging func­
tion is to be terminated.

address of user's logging table

Any address form valid for a data register. Provides
the address of the previously generated 27-word user's
error logging table. (See Table 5-1 in the discussion
of error logging information exchange ($ELEX) macro
call.)

FUNCTION DESCRIPTION:

This call terminates the error logging function previously
activated for this device. The system transfers logging
information values from the system logging table into the
user's logging table in memory (i.e., delivers to the user
information (1) about the current status of the error log­
ging table up to the time of the macro call, and (2) about
the last error that occurred. (See Ta-ble 5-1.)

5-88 CB08

... /

NOTES: 1. When argument 1 is specified, the location of
the device-name is placed in $82. If the argu­
ment is omitted, the system assumes that $82
contains a pointer to the device-name.

2. When argument 2 is specifi.ed, the address of the
user's logging table is placed in $84. When the
argument is omitted, the system assumes that $84
contains a pointer to that table.

3. The device name must have been specified (or
defaulted) in a previously executed $ELST macro
call for that device.

4. On return, $Rl contains one of the following
status codes:

0000 - Error logging terminated successfully.

3801 - Invalid argument (lor 2).

3802 - Named device is nonexistent.

3805 - Logging function for this device is not
active.

3808 - Illegal function code.

380A - Device-name refers to a communications
device. Macro call cannot be executed.

5-89 e808

I

ERROR LOGGING
INFORMATION, EXCHANGE

ERROR LOGGING INFORMATION, EXCHANGE

Macro Call Name: $ELEX

Function Code: 02/07

Equivalent Command: None

Verifies, then saves the values in the user's error logging
table; transfers current logging values from system's error
logging table to user's error logging table; moves the saved
user-supplied error logging values into the system's logging
table.

FORMAT:

[label] $ELEX rIocation of device-name],
[address of user's error logging table]

ARGUMENT DESCRIPTION:

location of device-name

Any address form valid for a data register. Provides
the address of the device-name (previously coded in
$ELST macro call for this device) for the device whose
error logging values are to be exchanged.

address of user's logging table

Any address form valid for a data register; provides
the address of the previously generated 27-word user's
error logginq table. Table 5-1 below defines the
user's error logging table, which the user must build
and initialize befdre issuing any error logging macro
call.

5-90 CBD8

" j

Table 5-1. User-Generated Table for Error Logging Macro Calls

Word (s) Value (Signed Binary) Function

User-Specified in $ELST and $ELEX Macro Calls

1 and 2 Two-word integer ~ 0; Co unter for number of I/O
normally initialized to o. orders.

3 One-word intege r ~ 0; Counter for number of device
normally initialized to o. read/write errors.

4 Must be o. None.

5 One-word integer from 0 Error threshold ratio. A
through 1000, represented ratio of DC 10 (i.e., 1%) is
as a fraction in thou- suggested for magnetic tape.
sandths; i • e. , DC SOD
means .500.

6 One-word integer > o. Minimum number of I/O 0 rders
processed before error
threshold ratio is checked.

Val ues Returned by $ELGT, $ELEX, $ELEND Macro Calls

(7 Reserved for system use. N/A

8 Hi story co unter. Total number of errors up to
time information returned in
this macro call.

9 History counter. Error threshold ratio when
info rmat ion is returned in
this macro call.

10-12 Hi story val ue. Internal date/time of macro
call return.

13-18 Device name.

19 Left byte. LRN for this device.
Right byte. Device type.

20-22 Internal date/time that last
error occurred.

23 I/O status word (I ST) when
last error occurred.

24-27 Reserved for future use.

(
5-91 CBD8

FUNCTION DESCRIPTION:

This call causes the system to deliver to the user informa­
tion about (1) the current status of the system's logging
table up to the time of the macro call, and (2) about the
last error that occurred, as indicated by words 7 through 27
in Table 5-1. The system (1) checks the values of the
user's error logging table for errors, and if they are cor­
rect, saves those val ues; (2) executes a $ELGT macro call to
move current values from the system's logging table to the
user's logging table; and (3) moves and stores in the sys­
tem's logging table the new logging values verified and
saved from the user's logging table, thus replacing the
previous values in the system's logging table. History
counters in the system's logging table are reset to O.

NOTES: 1. When argument 1 is specified, the location of
the device name is placed in $B2. If the argu­
ment is omitted, the system assumes that $B2
contains a pointer to the device name.

2. When argument 2 is specified, the address of the
user's logging table is placed in $B4. When the
argument is omitted, the system assumes that $B4
contains a pointer to that table.

3. The device name must have been specified (or
defaulted) in a previously executed $ELST macro
call for that device.

4. On return, $RI contains one of the following
status codes:

0000 - Error logging information successfully
exchanged.

3BOl - Invalid argument (lor 2).

3B02 - Named device is nonexistent.

3B03 - Illegal value specified for minimum
number of I/O orders.

3B05 - Logging function for this device is not
active.

3B06 - Illegal value specified for threshold.

3B07 - Illegal initial value for I/O order
counter or device error counter.

3B08 - Illegal function code.

5-92 CB08

~ .. j

(" 3BOA - Device name refers to communications
device; macro call cannot be executed.

5-93 CB08

I

ERROR LOGGING
INFORMATION, GET

ERROR LOGGING INFORMATION, GET

Macro Call Name: $ELGT

Function Code: 02/08

Equivalent Command: None

Retrieve current logging information values, for the named
device, from the system's error logging table; place them in
the user's error logging table.

FORMAT:

[label] $E LGT r locat ion 0 f d ev ice-name] ,
[address of user's error logg ing table]

ARGUMENT DESCRIPTION:

location of device-name

Any address form valid for a data register. Provides
the address of the device-name (previously coded in a
$ELST macro call for this device) for the device whose
error logging error information is to be transferred.

address of user's logging table

Any address form valid for a data register. Provides
the address of the previously generated 27-word user's
error logging table (see Table 5-1 in the discussion
of the-error logging information exchange ($ELEX)
macro call.)

FUNCTION DESCRIPTION:

This call transfers current error logging information
values, for the named device~ from the system's error log­
ging table to the user's error logging table in memory.
Error logging must have been previously activated for the
device. Only those items in the system's logging table,
that have corresponding entries in the user's logging table,
are transferred.

5-94 CB08

j

(NOTES: 1. When argument I is specified, the locati<?n of
the device-name is placed in $B2. If the argu­
ment is omitted, the system assumes that $B2
contains a pointer to the device-name.

2. When argument 2 is specified, the address of the
user's logging table is placed in $B4. When the
argument is omitted, the system assumes that $B4
contains a pointer to that table.

3. The device-name must have been specified (or
defaulted) in a 'previously executed $ELST macro
call for that device.

4. On return, $RI contains one of the following
status codes:

0000 - Error logging values successfully
transferred.

3BOl - Inval id argument (l or 2).

3B02 - Named device is nonexistent.

3B05 - Logging function for this 'device is not
active.

3B08 - Illegal function code.

3BOA - Device-name refers to a communications
device; macro call cannot be executed.

5-95 CB08

I

ERROR LOGGING, START

ERROR LOGGING, START

Macro Call Name: $ELST

Function Code: 02/05

Equivalent Command: None

Activate error logging for the named device.

FORMAT:

r label] $ELST r locat ion 0 f dev ice-name] ,
[address of user's error loggi~g table]

ARGUMENT DESCRIPTION:

location of device-name

Any address form valid for a data register. Provides
the address of the device-name (designated at system
building) for the peripheral (noncommunications)
device to be monitored. Device name can have up to 12
ASCII characters.

address of user's logging table

Any address form valid for a data register. Provides
the address of the user's error logging table, which
must have been previously generated. (See Table 5-1
in the discussion of the error logging information
eX'change ($ELEX) macro call.) This macro call
requires only the first six words of the user's error
logging structure.

FUNCTION DESCRIPTION:

This macro call starts error logging for the named device,
and maintains error logging information in memory. The call
(1) allocates a block of system memory for the system's log­
ging table; (2) checks parameters in the first six words of
the user's logging table and stores the values in the sys­
tem's logging table in memory; and (3) stores in the

5-96 CB08

I
-.7

device's RCT a pointer to the system's logging memory area,
which activates the logging function. Before this macro
call is issued, the user must build and initialize at least
a six-word error logging table, as defined in Table 5-1.
Whenever an I/O order is issued, the system increments the
I/O counter (words 1 and 2 in Table 5-1). When there is a
device error, the system increments the device error counter
(word 3). When the specified number of I/O orders (word 6)
is processed, the system checks the error threshold ratio
(word 5) and if the value is exceeded, sends a message to
the operator and resets the system's error logging table for
this device.

The logging table is reset under any of the following
cond i t ions:

1. Designated error threshold ratio exceeded.

2. Either the I/O order counter (words 1 and 2) or device
error counter (word 3) overflowed.

3. $ELEX macro call is executed.

When 1 or 2 occurs, the current value of the I/O order and
device error counters are added to the history values in the
system's error logging table. (These history values may be
later delivered to corresponding history areas in the user's
logging table (see Table 5-1». If there is overflow in the
addition, these counters are reset to 0, but the error
threshold (word 4) and I/O order minimum (word 5) values are
retained. When 3 occurs ($ELEX executed), the items in the
system logging table are reinitialized from the new values
supplied in the user's logging table.

NOTES: 1. When argument 1 is specified, the location of
the device-name is placed in $B2. If the argu­
ment is omitted, the system assumes that $B2
contains a pointer to the device-name.

2. When argument 2 is specified, the address of the
user's logging table is placed in $B4. When the
argument is omitted, the system assumes that $B4
contains a pointer to that table.

3. The device-name must be that of a noncommunica­
tions peripheral device, i.e., cannot be con­
nected to an MLCP or DLCP.

4. On return, $Rl contains one of the following
status codes:

(. 0000 - Error logging activated successfully.

5-97 CBOS

3801 - Invalid argument (lor 2).

3802 - Named device is nonexistent.

3803 - Illegal value specified for minimum
number of I/O orders.

3806 - Illegal value specified for threshold.

3807 - Illegal initial value for I/O order
counter or device error counter.

3808 - Illegal function code.

3809 - Insufficient system memory for logging
table.

380A - Device-name refers to communications
device; logging cannot be activated.

5. The user can move the latest error logging
information values from the system logging table
to the user's logging table with a $ELGT, SELEX,
or $ELEND macro call.

5-98 CB08

(

(

(

ERROR OUT

ERROR OUT

Macro Call Name: $EROUT

Function Code: 08/03

Equivalent Command: None

Write the next record to the error-out file for the task
group of the issuing task.

FORMAT:

[label] $EROUT [location of record area address],
[location of record size], *
[byte offset from beginning of record area]

ARGUMENT DESCRIPTION:

location of record area address

Any address form valid for an address register; pro­
vides the address of a record area containing the
record to be written to the error-out file. The first
byte of the record must be a slew byte (print file
form control byte; see "Printer Driver" in Section 6) •
The record text begins in the second byte.

location of record size

Any address form valid for a data register; provides
the size (in bytes) of the record whose address is
given in argument 1. The output size value must
include the slew byte.

5-99 CB08

*

byte of~set of beginning of record area

Any address form valid for a data register; provides
the byte offset of the beginning of the record area
(from the address provided in argument 1). If argu­
ment 3 is L, the record begins in the left byte of the
address specified in argument 1; if argument 3 is R,
the record area begins in the right byte of this
address. Any other value for argument 3 is taken to
be the location of the byte offset. If argument 3 is
omi tted, the record area is assumed to beg in at the
left byte of the address specified in argument 1.

FUNCTION DESCRIPTION:

This call allows a task to write the next record (an error
message record) to the current error-out file. The error­
out file is the same as the initial user-out file defined in
the request group ($RQGRP) macro call, and cannot be changed
during execution of the request.

NOTES: 1. The address of the record to be written, sup­
plied by argument 1, is placed in $84; if this
argument is omitted, $B4 is assumed to contain
the address of the output record.

2. The output record size, supplied by argument 2,
is placed in $R6; if this argument is omitted,
$R6 is assumed to contain the size of the
record.

3. If argument 3 is L, $R7 is set to zero to desig­
nate that the record area begins in the left
byte of the specified address. If argument 3 is
R, $R7 is set to one to designate that the
record area begins in the right byte of the
specified address. Any other value is assumed
to be the location of the byte offset to be
used, and is placed in $R7. If argument 3 is
omitted, the record area is assumed to begin in
the left byte of the specified address, and $R7
is set to zero.

4. On return, $RI, $R6, and $B4 contain the fol­
lowing information:

$RI - Return status; one of the following:

0000 - No error

5-100 CB08

',,- /

Example:

All data management write-next-record
error codes may also be returned. See the
System Messages manual.

$R6 - Residual range (number of bytes not
transferred from record area).

$B4 - Address of record area containing output
record.

In this example, the issuing task is to write an error mes­
sage record on the error-out file. The record length is 12
bytes (including the slew byte). The output record is
located at the record area address RECAD. The record area
begins at the leftmost byte of the indicated address.

OUTRB $EROUT !RECAD,=12

RECAD TEXT 'AFIELD ERROR'

5-101 CBDa

EXPAND PATHNAME

EXPAND PATHNAME

Macro Call Name: $XPATH

Function Code: laiD a

Equivalent Command: None

Develop a full pathname from a relative pathname.

FORMAT:

[label] $XPATH rargument structure address]

ARGUMENT DESCRIPTION:

argument structure address

Any address form valid for an address register; pro­
vides the location of the argument structure defined
below. The argument structure must contain the fol­
lowing entries in the order shown.

input pathname pointer

A 4-byte address, which may be any address form
valid for an address register; points to a
relative pathname (which must end with an ASCII
space character) to be expanded.

output pathname pointer

A 4-byte address, which may be any address form
valid for an address register; identifies a 58-
byte field into which the absolute (i.e.,
expanded) pathname is placed by the system.

pathname base

A 2-byte binary value that specifies the basis
on which to expand the relative path, as
follows:

5-102 CB08

(

(

0000 - Working directory
0001 - System library-l
0002 - System library-2

FUNCTION DESCRIPTION:

This macro call will expand any relative pathname, regard­
less of the format in which it is supplied, into an absolute
pathname. It is possible that the resulting pathname will
point to a nonexistent file. The expanded pathname cannot
exceed 58 characters.

NOTES: 1. I f the arg ument is coded, the add ress 0 f the
argument structure is loaded into $B4; if the
argument is omitted, $B4 is assumed to contain
the address of the argument structure.

Example:

2. On return, $Rl contains one of the following
status codes:

0000 - Successful completion

0201 - Illegal pathname

0205 - Illegal argument

0222 - Pathname cannot be expanded, no working
directory

In addition to the above codes, any system
service codes received by the file manager are
passed on through $RI.

In this example, the pathname of the working directory is
VOL6 SUBI SUB2 SUB3 SUB4, and you want to develop a fully

expanded absolute pathname from the relative pathname ADF.
In the macro call, you must identify the relative pathname
(ADF) and the basis (working directory) on which the
absolute pathname is to be developed, as well as an area
into which the syst-em can place the fully expanded absolute
pathname. The main memory area is defined as follows:

X NAME RESV 29

5-103 CB08

The argument structure is built as follows:

XPND I DC <RELDPH
RESV 2-$AF
DC <X_NAME
RESV 2-$AF
DC 0

The relative pathname is defined as follows:

RELPTH DC '«ADFc.'

The fully expanded pathname AVOL 6>SUBI>SUB2>ADF is developed
as a result of the following macro call.

$XPATH !XPND I

5-104 CBOS

,/

(- EXTERNAL DATE/TIME, CONVERT TO

EXTERNAL DATE/TIME, CONVERT TO

Macro Call Name: $EXTDT

Function Code: 05/04

Equivalent Command: Time (TIME)

Convert an internal format date/time value to an external
format date/time value.

FORMAT:

[label] $EXTDT [location of address of internal date/time],
[location of address receiving field],
[location of size of receiving field]

ARGUMENT DESCRIPTION:

location of address of internal date/time

Any address form valid for an address register; pro­
vides the address of the 3-word field containing the
internal date/time value to be converted. This value
must be in the format returned by the get date/time
macro call ($GDTM).

location of address of receiving field

Any address form valid for an address register; pro­
vides the address of a field in the issuing task that
is to receive the external format date/time value.

location of size of receiving field

Any address form valid for a data register; provides
the size of the receiving field identified by argument
2. The field size must be less than or equal to 22
bytes. If this argument is omitted, the size is set
to 20 bytes (the date/time value is resolved to a I
tenth of a second).

5-105 caos

I

I

I

FUNCTION DESCRIPTION:

This call converts an internal date/time value (in the
format supplied by the get date/time macro call) to an
external date/time format. The date/time value appears in
the receiving field as a character string having the format:

Word Contents

0 yy (Two ASCII numer ic characters)
1 yy (Two ASCII numeric characters)
2 /m (Two ASCII characters)
3 m/ (Two ASCII characters)
4 dd (Two ASCII numeric characters)
5 h (Two ASCII characters)
6 hm (Two ASCII numeric characters)
7 m: (Two ASCII characters)
8 ss (Two ASCII numeric characters)
9 .t (Two ASCII characters)

10 tt (Two ASCII numer ic characters)

yyyy - Year mm - Minute
mm - Month ss - Seconds
dd - Day ttt - Tenths, hundredths,
hh - Hour thousandths of seconds

The size of the receiving field cannot be such that the
field terminates with a punctuation character (/, :, or .).
Thus argument 3 cannot specify a size of 5, 8, 16, or 19
bytes.

NOTES: 1. The internal date/time value whose address was
supplied by argument 1 is loaded into $R2, $R6,
and $R7. If argument 1 is omitted, or is =$R7,
it is assumed tha t $R 2, $R6, and $R7 conta in the
value to be converted.

2. The address of the receiving field supplied by
argument 2 is placed in $B4; if this argument is
omitted, $B4 is assumed to contain the correct
add ress •

3. The size of the receiving field supplied by
~rguIl!ent 3 is placed in $R5. If this argument
IS given as =$R5, $R5 is assumed to contain the
correct size. If this argument is omitted, $RS
is set to 20 bytes (tenth of a second
resolution) •

5-106 CB08

Example:

4. On return, $Rl, $R2, $R6, $R7 and $84 contain
the following information:

$Rl - Return status; one of the following:

0000 - No error

0402 Invalid (negative) receiving field
length

040A - Invalid receiving field address

0817 - Memory access violation

$R2, $R6, $R7 ~ Internal date/time value
supplied

$84 - Address of receiving field

See the example given for the get date/time macro call.

5-107 C808

EXTERNAL TIME, CONVERT TO

EXTERNAL TIME, CONVERT TO

Macro Call Name: $EXTIM

Function Code: 05/05

Equivalent Command: None

Convert an internal format date/time value to an external
format time value.

FORMAT:

[label] $EXTIM [location of address of internal date/time],
[location of address of receiving field],
[location of length of receiving field]

ARGUMENT DESCRIPTION:

location of address of internal date/time

Any address form valid for an address register; pro­
vides the address of a 3-word field containing the
internal date/time value to be converted. This value
must be in the format returned by the get date/time
macro call.

location of address of receiving field

Any address form valid for an address register; pro­
vides the address of a field in the issuing task that
is to receive the external format time value.

location of length of receiving field

Any address form valid for a data register, provides
the size of the receiving field identified by argument
2. The field size must be less than or equal to 11
bytes. If this argument is omitted, the size is set
to 9 bytes (the time is resolved to a tenth of a
second) •

5-108 CBOS

,r '\

~.,j

(FUNCTION DESCRIPTION:

This call converts an internal date/time value (in the
format supplied by the get date/time macro call) to an
external time format. The time value appears in the
receiving field as a character string having the format
hhmm:ss.ttt (see below).

Word

0 hh (two
1 mm (two
2 :s (two
3 s. (two
4 tt (two
5 t (two

hh - ho urs
mm - minutes

Contents

ASCII numeric characters)
ASCII numeric characters)
ASCII characters)
ASCII characters)
ASCII numeric characters)
ASCII characters)

ss - Seconds
ttt - tenths, hundredths,

thousandths of seconds

The size of the receIvIng field cannot be such that the
field terminates with a punctuation character (: or .).
Thus, the third argument cannot be 5 or 8.

NOTES: 1. The internal date/time value whose address is
supplied by argument 1 is loaded into $R2, $R6,
and $R7. If argument 1 is omitted, or is =$R7,
it is assumed that $R2, $R6, and $R7 contain the
internal value to be converted.

2. The address of the receiving field supplied by
argument 2 is placed in $B4; if this argument is
omitted, $B4 is assumed to contain the correct
address.

3. The size of the receiving field supplied by
argument 3 is placed in $R5. If argument 3 is
=SR5, it is assumed that $R5 contains the cor­
rect size. If this argument is omitted, $R5 is
set to 9 bytes (tenth of a second resolution).

4. On return, $Rl, $R2, $R6, $R7, and $B4 contain
the following information:

$Rl - Return status; one of the fololowing:

0000 - No error

0402 Invalid (negative) receiving field
length

5-109 CB08

I

Example:

040A Invalid receiving field address

0817 - Memory access violation

$R2, $R6, $R7 - Internal date/time value
supplied

$B4 - Address of receiving field

In this example, the $GDTM macro call is used to get the
current date/time, in internal format, leaving it in reg­
isters $R2, $R6, and $R7. The $EXTIM macro call is then
used to format this internal date/time value into a dis­
playable format with a resolution to milliseconds. A mes­
sage containing the external format date/time is then
written on the user-out file.

*
*
*

*
*
*

*
*
*

PI MSG
PI-TIM
PI MLN

GET THE

FORMAT

$EXTIM

OUTPUT

$USOUT

TEXT
TEXT
EQU

CURRENT DATE/TIME.

$GDTM

IT FOR DISPIA Y.

,1Pl_TIM, =11

THE MESSAGE.

lPl_MSG,=Pl MLN

'APHASE 1 FINISHED ATA'
'HHMM:SS.TTT'
2* ($-Pl_MSG)

5-110 CB08

(

FILE INFORMATION BLOCK

FILE INFORMATION BLOCK

Macro Call Name: $FIB

Function Code: None

Equivalent Command: None

Depending on the arguments supplied in the call, does one of
the following:

o Builds a 16-word file information block (FIB) containing
default values for the words.

o Generates instructions to alter the partial contents of
an existing FIB.

o Calls and expands the $TFIB macro call to provide labels
for the FIB entries.

FORMAT:

[label] $FIB rarguments]

ARGUMENT DESCRIPTION:

There are three types of arguments for this macro call:

o Keyword only
o Keyword with expression
o Keyword with option

The keyword RESV generates a data structure. The $FIB macro
without the keyword RESV generates executable cone to modify
an existing data structure.

When the call is coded with only the keyword RESV, a 16-word
FIB containing default values is built (with tags for the
entries). The entries have the following values:

5-111 CBD8

I

DC ° DC B'OllOOlOOlOOOOOOO'
DC 0,0
DC 80
DC 80
DC ° DC Z'FFFF'
DC ° DC 0,0
DC Z'0104'
DC 0,0
DC 0,0

The default values generated for this FIB allow access to a
file for reading and writing, and allow record access by
both primary and relative keys. The default input and
output record len9ths are 80 characters; the default key
format for input records is primary; key length is 4 bytes.

When the keyword RESV is used with other arguments, it
preserves all entries in the generated FIB that are not
specifically changed by the other arguments.

Arguments coded as keyword=expression apply to the words of
the file information block. These arguments can be coded
in any order. If a new FIB is to be built and an argument
is omitted, the default value (described above) for that
word is used. If an existing FIB is to be modified and an
argument is omitted, the existing value for that word is
used. The diagram below shows the keywords and possible
expression values, but does not necessarily correspond to
the FIB physical structure. For more detailed information,
see Tables 3-1 and 3-2.

Keyword Expression

LFN= A val ue from ° through 255 specifying the log ical
file number by which the file is referenced; or -1;
or A ,~~, (two ASCII space characters) •

PVW= A val ue specifying the desired program view word
(i.e., user visibility), as follows:

Bits Meaning --
0 Access level:

0 - Access via data management
1 - Access via storage management

5-112 CB08

/ "
j

(

(

Keyword

PW=
(cont)

Expression

Bits Meaning

1-4 Process rules:

1000 - $RDREC or SRDBLK macro calls permitted

0100 - $WRREC or SWRBLK macro calls permitted

0010 - SRWREC macro call permitted

0001 - $DLREC macro call permitted

nnnn - Any combination of the binary settings
to allow the desired macro calls

5-9 Key type:

10000 - Primary keys allowed

00010 - Relative keys allowed

00001 - Simple keys allowed

nOOnn - Any combination of binary settings to
allow the desired keys

NOTE: Bits 10-14 are data management specific
and can be set before the file is opened.

10 Record class:

o - Fixed- and variable-length records allowed
1 - Only fixed-length records allowed

11 Record visibility:

a - Deleted records are not visible during a
read next record operation

1 - Deleted records are visible

12 Key storage area alignment:

13

o - Area begins at even-byte boundary
1 - Area begins at odd-byte boundary

Record storage area/buffer alignment:

a - Begins at even-byte boundary
1 - Begins at odd-byte boundary

5-113 CB08

I

Keyword Expression

PVW= Bits Meaning --(con t)
14 Transcription mode:

0 - ASCII mode
1 - Binary transcription mode

15 Synchronous/asynchronous ind ica tor:

0 - $RDBLK or SWRBLK macro calls to be
executed synchrono usl y

1 - These calls to be executed asynchronously

URP= Address of start of user record area (data manag e-
ment) or start of buffer area (sto rag e management)

I IRL= Maximum size of input record for data management
operations

ORL= Actual size of output record

* IKP= Address of user key area in which key val ue is
stored

IKF= Type of key:

00 - None specified
01 - Primary or relative (see bits 5-9 of PVW)
02 - Simpl e

IKL= Value specifying the length of the user key area
(IKP) • A maximum of 256 ASCII characters is allowed
for pr imary keys. (Simple and relative keys are
always assumed to be fo ur bytes.) When used with
the RESV keyword, the value specified for IKL must
be a I-byte hexadecimal number (e.g., OA, 01, etc.) •

BFS= Value specifying size of data transfer (block si ze)
for storage m~nagement operations.

BNL= Left half of block number; an integer relative to
the beginning of the file (storage management)

BNR= Right hal f of block number; an integer relative to
the beg inning of the file (storage management)

ADR= Address of FIB to be modified. Not used when
building new FIBs.

5-114 CB08

Arguments coded as keyword=option apply only to the program
view word of the FIB. Options can be given in any order;
more than one option value can be specified per argument.
Bits in the program view word that are not explicitly given
a value through an option selection retain their previous
setting. The diagram below shows the keywords and possible
values for the expressions. See Table 3-2 for more detailed
information.

Keyword Option Meaning

SFN= RD File can be read by $RDREC or $RDBLK macro
calls

RFN=

WR File can be written by $WRREC or $WRBLK
macro calls

RW File can be rewritten by $RWREC macro call

DL File can be deleted by $DLREC macro call

RD File cannot be read by SRDREC or $RDBLK
macro calls

WR File cannot be written by $WRREC or $WRBLK
macro calls

RW File cannot be rewritten by $RWREC macro
call

DL File cannot be deleted by $DLREC macro call

SKA= P Primary keys allowed

R Relative keys allowed

S Simple keys allowed

RKA= P Primary keys not allowed

R Relative keys not allowed

S Simple keys not allowed

SRA= FL Only fixed-length records allowed

DV Deleted records are visible

RRA= FL Fixed- and variable-length records allowed

DV Deleted records are not visible

5-115 CB08

Keyword Option Meaning

SSM= BT Binary transcription mode used for data
transfer

AS $RDBLK or $WRBLK macro calls executed
asynchronously

OP File accessed via storage management

RSM= BT ASCII mode used for data transfer

AS $RDB LK 0 r $WRB LK macro calls executed
synchronousl y

OP File accessed via data management

ODD= KY Key storage area begins at odd-byte bo undary

RC Record storage area begins at odd-byte
boundary

EVN= KY Key storage area beg ins at even-byte
boundary

RC Record storage area begins at even-byte
boundary

If no arguments are coded, the $TFIB macro call is expanded.

FUNCTION DESCRIPTION:

This call (1) generates a 16-word FIB, or (2) alters the
contents of an existing FIB, and (3) calls and expands the
$TFIB offsets macro call.

A FIB must exist for a file if that file is to be operated
upon by one of the following macro calls:

o Open file ($OPFIL)
o Close file ($CLFIL)
o Test file ($TIFIL, $TOFIL)
o Read record ($RDREC)
o Write record ($WRREC)
o Rewrite record ($RWREC)
o Delete record ($DLREC)
o Read block ($RDBLK)
o Write block ($WRBLK)
o Wait block ($WTBLK)

5-116 CB08

,
\

/

(

C

If an existing FIB is to be modified and the argument ADR=
is not entered, $B4 is assumed to point to the FIB to be
mod if i ed •

Registers $R7 and $B5 are altered when an existing FIB is
mod i f i ed •

Macro global value GX is used to control expansion of the
$TFIB macro call.

When you use the $FIB macro call to alter an existing FIB,
arguments that use an address follow the convention in which
addresses preceded by the ! character cause an LAB instruc­
tion to be generated, and addresses not preceded by the!
character cause an LDB instruction to be generated. When
you supply values for arguments coded as keyword=expression
(IRL=, ORL=, etc.), the address of the value is distin­
guished by a preceding character. No special character is
needed to indicate that the string following the = character
is a value. The second example given below uses both values
and addresses (IFL=128 and ORL= LENGTH).

The expressions specified with each argument must be in a
form suitable for the DC statement. IKF and IKL must
specify a I-byte hexadecimal number.

Example 1 :

In this example, the $TFIB macro call is expanded.

$FIB

Example 2:

In this example, an existing F.IB is modified. This example
assumes that the $B4 register was previously loaded with the
address of the FIB to be modified.

$FIB URP=! REC 1, RFN=WR, SRA=FL, ODD=RC, IRL=12 8, LFN =<GETPRM

Execution of the macro call generates the following set of
instructions:

LAB $B 5 , REC 1
STB $B5,$B4.F URP
LBF $B4,F PROV,B'0010000000000000'
LBT $B4,F-PROV,B'OOOOOOOOOOl00100'
LDR $R7,=I28
STR $R7,$B4.F IRL
LDR $R7,GETPRM
STR $R7,$B4.F_LFN

5-117 CB08

Example 3: /--\

This example generates a FIB so that the file can be
accessed for reading, ~riting, rewriting, and deleting
records by either primary or relative keys. The rewrite and
delete bits (bits 3 and 4) of the program view word are
altered from the original values (provided by the RESV
parameter) by means of the SFN=RWDL argument.

EXTFIB $FIB LFN=3,IKF=02,RESV,SFN=RWDL,SKA=PR,IKP=<KEY

This macro call generates the following FIB:

EXTFIB

Example 4:

DC
DC
DC
DC
DC
DC
DC
DC
DC
RESV
DC
DC
DC

3
B'0111110010000000'
0,0
80
80
a
Z 'FFFF'
a
<KEY
2-$AF
Z '0204'
0,0
0,0

In this example, a 16-word FIB is generated with default
values for all words.

EXTFIB $FIB RESV

The following FIB is generated:

EXTFIB DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC

o
B'0110010010000000'
0,0
80
80
o
Z 'FFFF'
o
0,0
Z '0104'
0,0
0,0

5-118 CB08

FILE INFORMATION BLOCK OFFSETS

«

FILE INFORMATION BLOCK OFFSETS

Macro Call Name: $TFIB

Associated Macro Calls:

$OPFIL, $CLFIL, $TIFIL, $TOFIL,
$RDREC, $WRREC, $RWREC, $DLREC, $RDBLK,
$WRBLK, $WTBLK

Generated Offsets Tags:

F LFN
F-PROV
F URP
F-IRL
F ORL
F-ORT
F IKP
F-IKF
F IKL
F-ORA
F ORAl
F-ORA2
F UBP
F-BFSZ
F BKSZ
F-BKNO
F BKNOI
F-BKN02

F SZ

Corresponding
Offsets

(in Words)

o
+1
+2
+4
+5
+B
+9
+11
+11
+12
FORA (+12)
F-ORA+l (+13)
+2
+4
+5
+6
F BNKO(+6)
F=BKNO+l (+7)

+16

Entry Name

Logical file number (LFN)
Progam view
User record pointer l
Input record lengthl
Output record length l
Reservedl
Input key pointer l
Input key format (first byte)l
Input key length (second byte)l
Output record address l
(left half of F ORA)l
(right half of F ORA)l
User buffer pointer 2
Buffer size 2
Block size 2
Block number 2
(left half of F BKNO)
(right half of F_BKNO)

Size of structure (in words);
not a field in the block

lSpecific to $RDREC, $WRREC, $RWREC, and $DLREC macro calls.

(.. 2Specific to $RDBLK, and $WRBLK macro calls.

5-119

*

CBOB

In addition to the offsets tags listed above, the following
program view (F_PROV tag, above) masks are defined:

Tag

MF OPS
MF-RDA
MF WRA
MF-RWA
MF DLA
MF-PKA
MF-CKA
MF 2KA
MF RKA
MF-SKA
MF FRA
MF-DLV
MF KOD
MF-ROD

MF BOD

MF BTM

MF AIO

Mask

Z '8000 '
Z '4000'
Z'2000'
Z '1000 '
Z '0800'
Z'0400'
Z '0200'
Z'0100'
Z '0080'
Z'0040'
Z '0020'
Z '0010'
Z'0008'
Z'0004'

Z'0004'

Z '0002'

Z '0001 '

Meaning

Open for storage management
Read operations allowed
Write operations allowed
Rewrite operations allowed
Delete operations allowed
Access via primary key
Reserved
Reserved
Access via relative key
Access via simple key
Fixed length records allowed
Deleted records visible to program
Key area starts an odd-byte boundary
Record area starts at odd-byte boundary
(data management specific)
Buffer area starts at odd-byte boundary
(storage management specific)
Data transferred in binary
transcription mode
Next block function is asynchronous

5-120 CB08

GET DATE/TIME

GET DATE/TIME

Macro Call Name: SGDTM

Function Code: 05/06

Equivalent Command: None

Supply the requesting task with the current internal date/
time value maintained by the system.

FORMAT:

[label] SGDTM [location of address of receiv ing field]

ARGUMENT DESCRIPTION:

location of address of receiving field

Any address form valid for an address register; pro­
vides the address of a 3-word field in the issuing
task that is to receive the current internal date/time
val ue •

FUNCTION DESCRIPTION:

This macro call returns to the issuing task the current 3-
word internal date/time value. The leftmost word contains
the most significant 16 bits; the rightmost word contains
the least significant 16 bits. The value supplied is a
binary count of the milliseconds since 1 January 1901 at
00:00:00.000 hours.

NOTES: 1. The internal date/time value is returned in SR2,
$R6, and $R7 and stored in the receiving field
specified by argument 1. If argument 1 is
omitted, or is =$R7, the value is returned only
in $R2, $R6, and $R7.

5-121 CB08

Example:

2. On return, $Rl, $R2, $R6, and $R7 contain the
following information:

$Rl - Return status; one of the following:

0000 - No error
040A Invalid address for receiving field

$R2, $R6, and $R7 - Current 3-word internal
date/time value. $R2 contains the most
significant 16 bits and $R7 the least
significant 16 bits.

In this example the $GDTM macro call is used to get the
starting date/time, in internal format, of a process and
store it in the field ST TIM. The convert to external date/
time macro call ($EXTDT)-is then used to format this
internal clock value, contained in registers $R2, $R6, and
$R7, into a displayable date/time format with resolution to
a tenth of a second. A startup message containing the
external format date/time is then written on the user-out
file. Later, the get date/time macro call is used again to
get the finishing date/time of the process without storing
it in memory. The low order two words of the starting date/
time are then subtracted from the corresponding words of the
finishing date/time, leaving the elapsed time (in milli­
seconds) in $R6 and $R7. The subtraction is performed
assuming a central processor that does not have the subtract
integer double instruction. The high order word of the
starting and finishing date/time values is ignored with the
assumption that the elapsed time is less than 2~ milli­
seconds (about 24.S55 days).

*
* GET THE STARTING TIME.

*
$GDTM !ST TIM

*
* FORMAT IT FOR DISPLAY.
*

$EXTDT , !GO_TIM,20

*
* OUTPUT THE START UP MESSAGE.

*
$USOUT !GO_MSG, =GO_MLN

5-122 CBOS

*
*
*

*

BEGIN PROCESSING.

* GET THE FINISHING TIME.
*

$GDTM
*
* CALCULATE THE ELAPSED TIME.
*

ST TIM
GO-MSG
GO-TIM
GO-MLN

SUB $R7,ST TIM+2
BCT >$+2-
ADV $R6,-1
SUB $R6,ST_TIM+1

RESV
TEXT
TEXT
EQU

3,0
'APROGX STARTED ATL\'
'YYYY/MM/DD HHMM:SS.T'
2* ($-GO _ MSG)

5-123 CB08

I

I

GET FILE

GET FILE

Macro Call Name: $GTFIL

Function Code: 10/20

Equivalent Command: Get File (GET)

Locate and reserve a file (tape or disk file, disk direc­
tory, card reader, pr inter, or te rm inal dev ic e) for pro­
cessing with the specified access rights. You identify the
file by supplying either a logical file number (LFN) or a
pathname. If you supply both an LFN and a pathname, the
file is reserved and is assigned to the LFN. Subsequent
macro calls (open file, read record, etc.) can then be
directed to the file through this LFN. If the file is tape­
resident, the get file macro call supplies the necessary
tape definition arguments. This function is normally done
outside program execution, to assign the LFN to a file that
is not known until execution time.

FORMAT:

[label] $GTFIL rargument structure address]

ARGUMENT DESCRIPTION:

argument structure address

Any address form valid for an address register, pro­
vides the location of the argument structure defined
below. The argument structure must contain the fol­
lowing entries in the order shown. The size of each
entry, whose descriptions follow this list, is as
follows:

5-124 CB08

(

(

(

Argument Structure Entry

logical file number
pointer pathname
lock/concurrency control
mount option
tape block size
tape logical record size
number of buffers
tape file sequence number
tape label format
tape data type
tape data format
tape parity/BSN indicator
tape retention period

logical file number

Size
(in bytes)

2
4
1
1
2
2
1
1
1
1
1
1
4

A 2-byte logical file number (LFN) used to refer
to the file; must be a binary number in the
range 0 through 255, ASCII blanks (2020) if an
LFN is not specified, or -1 (FFFF) if the system
is to assign an LFN from the pool of available
LFNs.

pointer pathname

A 4-byte address, which may be any address form
valid for an address register; points to a path­
name (which must end with an ASCII space char­
acter) that when expanded, identifies the file
to be reserved. Binary zeros in this entry
indicate that a pathname is not specified.

lock/concurrency control

A I-byte code, applicable only to disk files,
that specifies the record lock and concurrency
control to be established for the file.

If record locking is requested, the records in
the file will be locked in shared-read/
exclusive-write mode when the file is accessed.
Once a file is reserved with locking, it cannot
be reserved by another user (task group) unless
that user also specifies record locking.

5-125 CB08

I

I

*

Bit(s)

o

1-4

5-7

The type of file concurrency chosen indicates ~./
how you intend to access the file and in what
way you are willing to share access to the file
with other users (task groups). There are six
types of concurrency control, as follows:

Type 5 - You will write or read; others can
write or read (read/write sharing)

Type 4 - You will write or read; others can read
but not write (read share, exclusive
write)

Type 3 - You will write or read; no others can
write or read (exclusive)

Type 2 - You will read; others can read and
write

Type 1 - You will read; others can read but not
write (read sharing)

Type 0 - If the file is already reserved, the
last concurrency specified is used. If
the file is not already reserved, type
3 concurrency control is used.

The value of the lock/concurrency control byte
is determined as follows:

Meaning

Lock specification:

o - Do n6t lock records
1 - Lock records

Must be zero

Concurrency control specification

000 - Type 0
001 - Type 1
010 - Type 2
011 - Type 3
100 - Type 4
101 - Type 5

The following diagram summarizes the lock/
concurrency control specifications for each pos­
sible value of the lock/concurrency control
byte.

5-126 CB08

Byte Value
(Hexadec imal)

00
01
02
03
04
05
80
81
82
83
84
85

mo unt opt ion

Record
Locking?

NO
NO
NO
NO
NO
NO
YES
YES
YES
YES
YES
YES

Type of
Conc ur rency

Control

o
1
2
3
4
5
o
I
2
3
4
5

A I-byte code, applicable to disk files and
directories, that specifies whether a mount mes­
sage is to be issued if the volume is not
mounted. This byte can have the following
val ues :

o - Return a 020C error code in $RI if the
volume containing the file referenced by the
pathname or LFN is not mounted.

n - (Where n is any value other than 0.) Issue
a mount request if the volume containing the
file referenced by the pathname or LFN is
not mo unted.

tape block size

A 2-byte binary value, applicable only to tape
files, that specifies the size of the block in
bytes.

For files with fixed length records, the block
size is a multiple of the record size plus the
6-character block serial number (if specified).

For files with variable length records, the
block size can be any value, but should be at
least as large as the maximum record size plus
the 4-character logical record header and the
6-character block sequence number (if
specified).

5-127 CB08

I

I

I

I
*

The block sequence number is specified by a
value of 2 for the tape parity/BSN indicator
(see below) •

The block size entry is ignored if the file is
not tape resident.

The block size entry is ignored if block size
was explicitly specified by a previous GET
command.

If the file is not currently reserved and block
size is not specified (i.e., the field contains
all zeros), a value is computed based on the
values for logical record size, tape data
format, and tape BSN indicator.

If the file is already reserved and block size
is not specified, the previously specified or
computed value is not changed.

tape logical record size

A 2-byte binary value, applicable only to tape
files, that specifies the logical record size in
bytes.

The logical record size is the size of the
longest record in the block, excluding the
logical record header (if any).

If this is not a tape file, the tape logical
record size entry is ignored.

The logical record size entry is ignored if
logical record size was explicitly specified by
a previous GET command.

If the file is not currently reserved and
logical record size is not specified (i.e., the
field contains 'all zeros), a value is computed
based on the values for block size, tape data
format, and tape BSN indicator.

If the file is already reserved and logical
record size is not specified, the previously
specified or computed value is not changed.

5-128 CB08

\
\;,.. ./

/

(

(~

number of buffers

A I-byte binary value specifying the number of
buffers to be allocated for I/O when the file is
opened for access. The possible values are as
follows:

o - None specified; system allocates buffers as
follows:

o Two buffers are allocated for indexed
files accessed via data management macro
calls

o One buffer is allocated for other disk
files or tape files accessed via data
management macro calls

o No buffers are required for files
accessed via storage management macro
calls

n - Number of buffers to be used to access the
file when other than the above default
values are used. When accessing a file,
data management first checks all buffers
allocated for the file to determine whether
the relative block or control interval is
already in memory. Thus, increasing the
number of buffers for a file being
accessed randomly may significantly reduce
I/O time.

Buffer space is allocated at open-file time and
returned at close file time when the file is
accessed via data management macro calls.
Buffer space is not required if the file is
accessed via storage management macro calls.

This entry does not apply to device files; buf­
fers are allocated according to information
specified at system building (buffered or
unbuffered devices).

tape file sequence number

A l-byte binary code, applicable only to tape
files, that indicates the position of the file
on an ANSI tape volume; can have the following
values:

5-129 eBOS

I

I

*

I

00 - The desired file is the next file on the
vol ume

FF - Search for the file in a forward direction
only

nn - Relative sequence number of the file on the
vol ume

If a pathname is specified, it is used with the
tape file sequence number to perform a file
search when an open file macro call is issued.
(The maximum file name length is 12 characters.)

See the description of the open file macro call
($OPFIL) for a discussion of tape search rules.

If FF is specified, the search is performed from
the current position on the volume to EOD.

If the file is not tape-resident, this entry is
ignored.

tape label format

A I-byte code, applicable only to tape files,
that indicates the tape label format.

o - No label format specified (can be labeled or
unlabeled)

1 - Tape has standard labels

2 - Tape is not labeled

If the file is not tape-resident, this entry is
ignored.

tape data type

A I-byte code, applicable only to tape files,
that specifies the data type.

o - No data type specified
I - Honeywell
2 - ANSI Level 3

If the file is not tape-resident, this entry is
igno red.

5-130 CB08

*

tape data format

A I-byte code, applicable only to tape files,
that indicates the data format.

o - No format specified
1 - Fixed length records
2 - Variable length records
3 - Undefined records

If the file is not tape-resident, this entry is
igno red.

tape parity/BSN indicator

Bit(s)

0, 1

2, 3

4, 5

6, 7

A I-byte code, applicable only to tape files,
that indicates whether the tape has odd or even
parity, and whether each block on the tape has a
six-character block sequence number (BSN) in the
first six characters of the block.

Meaning

Must be o.

o = Parity not specified.
1 = Odd parity.
2 = Even parity.

These bits are meaningful only for
7-track tapes to be opened for
storage management (block level)
access.

Must be O.

o = No BSN specified.
1 = BSN not supplied.
2 = BSN supplied.

If 2 is specified, a block sequence number is
assumed to be present on input; on output a
block sequence number will be inserted.

If the file is not tape-resident, this entry is
ignored.

5-131 CB08

*

I

tape retention period

A 4-byte value, applicable only to tape files,
that specifies the tape retention period in
days. Zeros in this field indicate that the
retention period is not specified.

If the file is not tape-resident, this entry is
ignored.

FUNCTION DESCRIPTION:

This macro call reserves the file with proper access rights
for use by the data management and storage macro calls. It
can also be used to alter concurrency or tape definition
arguments established by a previous get file macro call,
provided the file is not already open (see the open file
macro call) in the task group in which you are executing.

Once you have reserved a file, it cannot be released (see
the release file macro call) by a task executing in another
task group until you are finished with it (i.e., until you
issue a remove file macro call).

The file can be specified (in the argument structure) by an
LFN only, a pathname only, or both an LFN and a pathname.

o If specified only by an LFN, the LFN must have been pre­
viously associated with a pathname (see the associate
file macro call), or it must have been previously
assigned to the file through the get file or create file
function.

o If only a pathname is specified, the file is reserved
without a unique LFN. The only requests that can use the
file are those that can reference the file by a pathname
only, i.e., $GTFIL, $GIFIL, $RLFIL, $RMFIL.

o If a pathname is specified and the LFN field contains a
value of -1 (FFFF), the system assigns a unique LFN from
the task's LFN pool. In this case it is your responsi­
bility to return the LFN to the pool (by a remove file
macro call) when the LFN is no longer needed. In assign­
ing a unique LFN from the pool, the system selects the
highest LFN available for assignment and sets it in the
LFN entry in the argument structure, overlaying the pre­
vious contents (FFFF). You must move this value to other
structures (argument structures or FIBs) as required.

5-132 CB08

(f "­

'''"~_/

(

o If both an LFN and a pathname are specified, the file is
reserved and assigned to the LFN. This LFN-to-file
assignment remains in effect until the file is removed
from the task group or another get file macro that
specifies the same LFN is issued.

The get file macro call allows you to append ASCII charac­
ters to a previously associated pathname or a partial path­
name (see the associate file macro call). You do this by
prefixing the string of characters to be appended (i.e.,
pointed to by the pathname pointer entry) with a colon (:).
The system replaces the colon with the previously associated
pathname, as follows:

Previously
Associated

Pathname

none
none
AVOL1>UDD
AVOL2>

Characters
to be

Appended

:ABC
:>FILEOI
:FILE02

Result

Working directory
ABC
AVOLl>UDD>FILEOl
AVOL2>FILE02

As stated above, the get file macro call can be used to
alter concurrency control. In doing so, note the
following:

I

o If you specify type 0 concurency control the first time
the file is reserved in a task group, the system reserves
the file for exclusive use (type 3 concurrency). I

o If you specify type 0 concurrency control and the file
was previously reserved in this task group, the previous
concurrency control does not change. This could occur if
you wanted to change the tape file definition argument or I
address the file through a different LFN.

o A get file macro call does not alter the concurrency con­
trol established through a previously issued GET command.
Only by issuing another GET command can you alter the
concurrency established through a previous GET command.

o If device level access is desired (i.e., the pathname is
in the form >SPD>dev name[>volid)), the following rules
apply: -

Type 3 exclusive concurrency control is set regardless
of the value specified in concurrency control entry if
the pathname is specified as:

>SPD>dev name

5-133 CB08

I

I

I

I

o

No volume label validation is performed. Note that
tapes are always reserved with type 3 concurrency.

For disk volumes type 2 concurrency control is set
regardless of the value specified in the concurrency
control entry if the pathname is specified as:

>SPD>dev name>volid

The volume label is read and validated; if a mismatch
occurs, the action specified in the mount option argu­
ment occ urs •

To change disk device-level concurrency control, you
must first issue a remove file macro call and then
issue a new get file macro call.

The following rules apply to directories reserved through
a get file macro call:

If the directory is reserved exclusively (type 3 con­
trol), all subdirectories and files inferior to the
directory are also held exclusively. For example, a
get file macro call having a pathname of Avolid (i.e.,
only the volume directory supplied) and a concurrency
of 3, would reserve the entire volume for exclusive
use through normal file, data, and storage management
facilities. This is not the same as device level
access (>SPD>dev name) since it permits normal access
by the user at tEe file level.

If the directory is not reserved exclusively, read/
write share concurrency control (type 5) is set
regardless of the specified value.

Directory-level concurrency cannot be changed by
issuing a new get file macro call. To change
directory-level concurrency, you must first issue a
remove file macro call and then a get file macro call.

The record lock facility is a mechanism that provides multi­
user interference protection for shared file access. When a
record is accessed by a task group, it is locked (by locking
the control interval(s) in which the record is contained) on
a first-come first-served basis. If another user is sharing
the file, he will be denied access to the record (and any
other record contained in the same control interval) until
the previous user unlocks the record (through the $CLPNT
macro call). You should consider the following points when
using record locking:

5-134 CB08

o An LFN within a task group uniquely identifies a user for
record locking purposes and thus provides interference
protection between task groups. Since tasks within a
task group may agree to access a file through different
LFNs, interference protection is provided when the
cooperating tasks agree to respect the LFN assignments.

o Lock requests are valid only for disk resident files (a
request to lock any other file is ignored). Directories
and entire disk volumes cannot be reserved with lock.
The primary index of an indexed file is never locked
(since once created, it is never updated).

o Files reserved with lock cannot be modified (written) via
storage management access.

o Records are locked in "shared read/exclusive write" mode,
which can be explained as follows:

For purposes of record locking, file system users may
be classified as "readers" and "updaters." Readers
are those who have opened the file, but without update
permission, since they need only to read records.
They are not concerned if other users are reading the
same record, but do not want to read a record while it
is being updated.

Updaters have opened a file, with update permission,
and want to be the only users of a specific record.
The record lock facility makes sure that a given
record is accessed by only one updater or by n readers
at one time.

Accordingly, readers set read locks, updaters set
write locks. A given record may have any number of
read locks, or it may have only one write lock.

o Once specified, locking is automatic. Any access (read
or write) will cause an appropriate lock. The number of
locks that can exist at one time is limited only by the
amount of memory dedicated to the lock pool (i.e., the
area of memory where locked records are recorded). (This
area is defined at system building; see the System
Building manual.)

o Any access that encounters a lock conflict is not per­
formed. The caller is notified immediately; no wait is
performed.

5-135 CB08

I

o Once a file has been reserved as sharable with record
locking, all users who want to share access to the file
must also request record locking. Conversely, if a
sharable file is initially reserved without record lock­
ing, no user who specifies record locking is allowed to
access the file. In other words, bit 0 of the lock/
concurrency control argument must be identical in the get
file macro calls, with the following exceptions:

If bits 5 through 7 of the lock/concurrency control
argument specify type 2 concurrency control (you read,
others read and write), bit 0 need not match in the
$GTFIL macro calls. Thus, the user who specifies type
2 concurrency control can gain access to records that
are currently locked by another user. However, this
user can only read, and the integrity of the data is
not guaranteed.

If the entire lock/concurrency control byte is all 0
bits, the lock and" concurrency states set by a GET
command or a previous $GTFIL macro call in the same
task group are inherited.

o The $CLPNT macro call is used to unlock records. If
records are not unlocked, lock pool overflow or a dead­
lock record condition will probably result. (See the
clean point macro call for details.)

o You must provide for all actions to be taken when noti­
fied of lock pool overflow or record lock concurrency
conflict. When a record deadlock condition occurs, you
should restart the current phase by unlocking all records
and recycling to the point where the interrupted sequence
began. (In so doing some records may be updated, thereby
making a simple recycling unsatisfactory.) From a
practical standpoint, all records to be updated or
deleted should be read first to ensure access; all
inserts should be done first to make the unwinding of a
transaction easier to manage.

If an operator terminal is not included in the system, or if
messages to the operator terminal have been suppressed
(through a $CMSUP macro call), a $GTFIL macro call issued to
reserve a volume that is not mounted results in an 020C
(volume not mounted) error return.

If a file is reserved through an LFN and a subsequent $GTFIL
macro call is issued specifying the same LFN, this LFN
becomes associated with the new file. The previously
reserved file will remain reserved for the task group until
it is removed (through the remove file macro call).

5-136 CBOS

(

(

Since the get file macro call performs so many functions, it
should be used as infrequently as possible. A $GTFIL fol­
lowed by multiple $OPFIL/$CLFIL sequences is much more
efficient than a $GTFIL, $OPFIL, $CLFIL, $RMFIL, $GTFIL,
etc.

Offsets tags for the argument structure block can be defined
by the $GTPSB macro call.

Tape file arguments are meaningful in only when (1) a I
labeled tape file is being created (opened) in RENEW mode;
and (2) an unlabeled tape file is being processed for input/
output. For labeled tapes being opened for input (PRESERVE
mode), the various tape parameters are taken from the file
header labels.

For tape files, default block size (BKSZ) and logical record
size (LRSZ) are computed as shown in the following diagram:

BKSZ NOT SPECIFIED BKSZ NOT SPECIFIED BKSZ SPECIFIED

LRSZ NOT SPECIFIED LRSZ SPECI F I ED

ERROR

ERROR

LRSZ = n

5-137 CBD8

Block and record sizes are checked for validity as shown in
the following diagram:

NOTES:

BKSZ SPECIFIED

YES NO >--_ ERROR

YES NO
~--_ERROR

">-----1"" ERROR

PASS

1. If the argument is coded, the address of the
argument structure is loaded into $B4; if the
argument is omitted, $B4 is assumed to contain
the address of the argument structure.

2. On return, $Rl contains one of the following
status codes:

0000 - No error

0201 - Illegal pathname

0205 - Illegal argument

0206 - Unknown or illegal LFN

0208 - LFN or file currently open in same task
group

5-138 CB08

./

(

Example 1:

0209 - Named file or directory not found

020C - Volume not found

0211 - Unable to establish a unique LFN

0213 - Cannot provide requested file concurrency

0222 - Pathname cannot be expanded, no working
directory

0225 - Not enough system memory for buffers or
structures

0226 - Record lock concurrency conflict

022A - Record lock area overflow or not defined

022C - Access control list violation

022E - Record lock concurrency conflict

0238 - Invalid file description

In addition to the above codes, any system
service codes received through the file manager
are passed on through $Rl.

In the following example, the get file macro call identifies
an argument structure that contains the appropriate argu­
ments to reserve the indexed file created in the example for
the create file macro call (i.e., FILE A) with type 5 con­
currency control (read/write share) and record locking. The
argument structure was built as follows:

WRTFIL DC

DC
RESV
DC

RESV
DC
RESV

Z'0005'

<IDXOI
2-$AF
Z'8501'

2,0
Z'0200'
4,0

See "Assumptions for File
System Examples" in Section 3.
(The pathname is defined in
the example for the create
file macro call.)

READ/WRITE SHARE; RECORD
LOCKING: ISSUE MOUNT REQUEST
IGNORED
BUFFERS=2
IGNORED

5-139 CB08

I

It is assumed that the following macro calls were issued
before the $GTFIL macro call was issued:

$CRDIR ! SUBDIR

$CRFIL !FILE A

(See create directory macro example)

(See "Assumptions for File System
Examples")

The $GTFIL macro call altering FILE A concurrency from
exclusive to share can be specified-as follows:

$GTFIL !WRTFIL

Example 2:

In this example, the $GTFIL macro call is used to append
characters to an incomplete pathname defined as follows:

DIRPTH DC ,I\VOL03>SUB INDEX. Afl' (See create direc­
tory macro example)

This pathname has been associated with the LFN as follows:

$ASFIL !FILE X

where the argument structure labeled FILE X has been defined
as follows:

FILE X DC
DC
RESV

Z '00A3'
<DIRPTH
2-$AF

LFN=163
PATHNAME ,I\VOL03 SUBINDEX.Afl'

Assuming that the above definitions have been made, the
following argument structure identifies the characters to be
appended to the incomplete path (DIRPTH):

WTFIL2 DC Z '0 OA3 ' LFN=163
DC <IDX02 PATHNAME POINTER
RESV 2-$AF
DC Z '0301' EXCLUSIVE: ISSUE MOUNT REQUEST
RESV 2,0 UNSPECIFIED
DC Z '0200' BUFFERS=2
RESV 4,0 IGNORED

The pathname labeled IDX02 is defined as follows:

IDX02 DC ':>FILE cfl'

5-140 CB08

(

(

The result of specifying the above structure (WTFIL2) in the
following $GTFIL macro call is to reserve the file identi­
fied by the pathname AVOLD3>SUBINDEX.A>FILE C with exclusive
concurrency control:

$GTFIL !WTFIL2

However, before you can open and access FILE C, it must
exist in the file system hierarchy (i.e., it-must have been
created as defined in the create file macro call example).

5-141 CBD8

I

GET FILE PARAMETER STRUCTURE
BLOCK OFFSETS

GET FILE PARAMETER STRUCTURE BLOCK OFFSETS

Macro Call Name: $GTPSB

Associated Macro Call:

Generated Offsets Tags:

Co rrespond ing
Offsets

Tag (in words)

G LFN 0
G-PTHP +1
G-CONC +3
G-MNT +3
G BLSZ +4
G-LRSZ +5
G NBF +6

$GTFIL

Entry Name

Logical file number (LFN)
Pointer to pathname
Concurrency control (first byte)
Mount option (second byte)
Tape block size
Tape logical record size
Number of buffers (first byte)

G-TFSN
G-TLF

+6
+7

Tape file sequence number (second byte)
Tape label format (first byte)

G-TDT +7
G TDF +8
G-BSN +8
G TRP +9

G SZ +11

Tape data types (second byte)
Tape data format (first byte)
Tape BSN indicator (second byte)
Tape retention period

Size of structure (in words); not a
field in the block

5-142 CB08

(

GET FILE INFORMATION

GET FILE INFORMATION

Macro Call Name: $GIFIL

Function Code: 10/60

Equivalent Command: None

Retrieves information about the specified file. You iden­
tify the file by supplying either a logical file number
(LFN) or a pathname. This macro call returns information
such as file type, device type, and, optionally, other file
attributes (logical record size, block or cQntrol interval
size, space allocation, etc.). In addition, you can
receive a description of the keys of an indexed file.

FORMAT:

[label] $GIFIL rargument structure address]

ARGUMENT DESCRIPTION:

argument structure address

Any address form valid for an address register; pro­
vides the location of the argument structure defined
below. The argument structure must contain the fol­
lowing entries in the order shown. (Entries marked
with an asterisk (*) are provided by the system. You
must supply the other entries.) The size of each
entry, whose descriptions follow this list, is as
follows:

5-143 CB08

I

Argument Structure Entry

logical file number
*pointer pathname
*device type
*logical resource number
*file type
*data format
file attribute pointer
reserved
key descriptor pointer
reserved

logical file number

Si ze
(in bytes)

2
4
2
2
1
1
4

4 (all zeros)
4

4 (all zero s)

A 2-byte logical file number (LFN) used to refer
to the file; must be a binary number in the
range 0 through 255, or ASCII blanks (2020),
which indicates that an LFN is not specified.
If this entry contains blanks, the pathname­
pointer entry (below) must point to a pathname.

*pointer pathname

A 4-byte address, which may be any address form
val id fo r an add ress reg i ster. If an LFN is
specified in the first entry, this entry
(optionally) points to a 58-byte field in main
memory into which the system places the full
absolute pathname associated with the LFN. If
the LFN entry contains ASCII blanks, this entry
points to the location where a pathname (which
must end with an ASCII space character) is
found. This pathname identifies the file for
which the system is to retrieve information.
Zeros in this entry indicate that the pathname
is not to be returned. If zeros are specified,
the LFN entry (above) must contain a nonblank
val ue.

*dev ice type

A 2-byte entry into which the system places the
4-digit hexadecimal device code of the device
containing the file. The devices, their codes,
and marketing identifiers are:

5-144 CBOS

(Device
Type

Peripheral Device Code Marketing Identifier

Card Reader 2008 CRU9101/9102/9103/9104

Teleprinter 2018 TTU 9102
2019 TTU9101

CRT Keyboard Console 2020 DKU 9101

Ke yboard Typewriter Console 2018 TWU9101

Diskette 2010 DIU9101/9102

Cartridge Disk 2330 CDU9101
2331 CDU 9102
2332 CDU 9103
2334 CDU 9104

Serial Printer 2004 PRU 9101
2006 PRU9102

Line Printer 2000 PRU9104/9106
2001 same as above but with

Option PRF9102
2002 PRU 9103/910 5
2003 same as above but with

Option PRF9102

Magnetic Tape 2045 MTU 9104 (9-track NRZ I,
45-ips)

2046 MTU 9105 (9-t rac k NRZ I,
75- ips)

2045 MTU 9109 (9-track, 800
bpi, NRZ I, 45-ips)

2049 MTU9109 (9-track, 1600
bpi PE, 45-ips)

2046 MTU 9110 (9-track, 800
bpi NRZ I, 75- ips)

204A MTU 9110 (9-track, 1600
bpi PE, 75-ips)

2067 MTU 9112 (7-track, 556-
bpi)

2071 MTU 9112 (7-track, 800-
bpi)

206A MTU9113 (7-track, 556-
bpi)

2071 MTU9113 (7-track, 800-
bpi)

(
5-145 CB08

I

I

I

I

Device
Type

PeriEhera1 Device Code Marketin~ Identifier

Magnetic Tape (cont) 2049 MTU9114 (9-track, 1600-
bpi, 45-ips)

204A MTU 9115 (9-track, 1600-
bpi, 75-ips)

Mass Storage Unit 2360 MSU9l0l/9l05 (40-
megabyte)

2361 MSU9l02/9l06 (80-
megabyte)

2362 MSU9l03 (143/127-
megabyte)

2363 MSU 9104 (288/256-
megabyte)

Card Reader/Punch 2088 CCU 9101 /PCU 9101

*logical resource number

A 2-byte entry into which the system places the
logical resource number (LRN) that corresponds
to the device on which the specified file is
located.

*file type

A I-byte entry into which the system places a
code identifying the file organization of the
specified file, as follows:

I - IBM diskette
o - Device file
2 - Fixed-relative without deletable records
5 - Fixed-relative with deletable records
D - Directory
R - Relative
S - Sequential
I - Indexed
T - Tape-resident file

*dat,a format

A I-byte entry into which the system places a
code identifying the format of the data, as
follows:

F - Fixed-length record
D - Variable-length record (decimal count size)
U - Undefined

5-146 CBOS

(

(

file attribute pointer

A 4-byte address of a 32-byte field in main
memory into which the system can place file­
attribute information, as described below; may
be any address form valid for an address regis­
ter or zeros, which indicate that the informa­
tion is not required.

reserved

A 4-byte entry, containing zeros.

key descriptor pointer

A 4-byte address of an IS-byte field in main
memory into which the system can place key­
descriptor information, as described below; may
be any address form valid for an address regis­
ter, or zeros, which indicate that the informa­
tion is not required.

reserved

A 4-byte entry, containing zeros.

The system places file attribute information in the 32-byte
field pointed to by the file attribute entry described
above. For disk-resident files, the structure contains the
following:

*logical record size

A 2-byte entry specifying the maximum size (in
bytes) of logical records stored in the file;
the size does not include headers.

*control interval/physical sector size

A 2-byte entry, as follows:

For fixed-relative files: the size (in bytes)
of a physical sector.

For all other files: the size (in bytes) of a
control interval, including control interval and
logical-record headers.

5-147 CBOS

*current allocation size

A 2-byte entry specifying the number of active
control intervals. This value may be less than
the currently allocated space.

*allocation increment size

A 2-byte entry specifying the number of addi­
tional control intervals to be allocated to the
file when it is necessary to do so. This value
is the size of an additional extent to be added
to the file.

*maximum allocation size

A 2-byte entry specifying the maximum number of
control intervals that can be allocated to\the
file; indicates the limit to which the file can
grow. Zeros indicate there is no defined limit.

*amount of free space per control interval

A 2-byte entry, as follows:

For indexed files: the number of bytes to be
left free in each control interval at file load­
ing time; this value supplies space for records
to be inserted without causing overflow.

For all other files: contains zeros.

*local overflow allocation increment

For indexed files: a 2-byte value that sets the
frequency at which a local overflow control
interval will be allocated when the file is
loaded. For example, if this value is 10, one
local overflow control interval will be allo­
cated after every ten data control intervals
allocated.

For all other files: contains zeros.

*number of keys

A 2-byte entry that contains a 1 for indexed
files, and a 0 for all other files.

*reserved

A l6-byte field containing zeros.

5-148 CB08

(/

For tape-resident files, the structure contains the follow­
ing information:

*logical record size

A 2-byte entry specifying the maximum size (in
bytes) of logical records stored in the file;
the size does not include headers.

*block size

A 2-byte entry specifying the maximum size (in
bytes) of a block, including block and logical­
reco rd headers.

*reserved

A 2S-byte entry containing zeros.

For device files, the structure contains the following
information:

*logical record size

A 2-byte entry specifying the maximum size (in
bytes) of a logical record (i.e., the unit of
transfer to the device file).

*block size

A 2-byte entry specifying the maximum size (in
bytes) of a physical record (i.e., the unit of
transfer to a device file).

*reserved

A 2S-byte entry containing zeros.

The following key oescriptor information is placed in the
IS-byte field pointed to by the key descriptors entry
described above. This structure applies only to indexed
files, and contains the following:

*reserved

A 4-byte entry that contains Z'OOOOFFFF'.

*reserved

A I-byte entry that contains 1.

5-149 CBOS

*reserved

A 9-byte entry that contains zeros.

*key component data type

A I-byte entry that indicates the data type of
the key component. The entry is hexadecimal 43
(i.e., C) for character, 0 r hexadecimal 44
(i.e., D) for decimal.

*key component size

A I-byte entry that specifies the size of the
key component in bytes; that is, it specifies
the size of the primary key stored in each
logical record in the indexed file.

*key component location

A 2-byte entry that specifies the offset (in
bytes) from the beginning of the record to the
beginning of the key field; the first byte in
the logical record is position 1.

FUNCTION DESCRIPTION:

Before this macro call is issued, tape-resident files must _ ~
be open (see the open file macro call) so that the system
can retrieve the file attribute information. (File attri-
bute information is stored in the tape labels.)

If neither the pathname nor the LFN is specified, a status
code of 0205 is returned.

If an LFN is specified, the file must have been previously
reserved through that LFN via a get file or create file
macro call (or equivalent command).

To access specific entries in the argument structure, use
the $GIPSB, $GIKDB, and $GIFAB macro calls.

NOTES: 1. If the argument is coded, the address of the
argument structure is loaded into $B4; if the
argument is omitted, $B4 is assumed to contain
the address of the parameter structure.

2. On return, $RI contains one of the following
status codes:

5-150 CB08

Example:

0000 - No error

0201 - Illegal pathname

0205 - Illegal argument

0206 - Unknown or illegal LFN

0209 - Named file or directory not found

020C - Volume not found

0222 - Pathname cannot be expanded, no current
working directory

0225 - Not enough system memory for buffers or
structures

0226 - Not enough user memory for buffers or
structures

0228 - Illegal file type

022C - Access control list (ACL) violation

0238 - Invalid file description

In addition to the above codes, any system
service codes received by the file manager are
passed on through $R 1.

In this example, the get file information macro call is used
to obtain information about the file reserved in the example
for the get file macro call. The argument structure is
defined as follows:

F INFO

PATHS
FILATT

DC
DC
RESV
RESV

DC
RESV
RESV
RESV
RESV

5
<PATH 5
2-$AF
3,0

<FILATT
2-$AF
6,0
29,0
16,0

LFN=5
POINTER TO PATHNAME

DEV. TYPE, LRN,
FILE/RECORD TYPE INFOR AREA
POINTER TO FILE ATTRIBUTE AREA

RESERVED
FIELD TO RECEIVE PATH
FIELD TO RECEIVE FILE· ATTRIBUTE INFO

5-151 CB08

I

Since, as stated under "Assumptions for File System
Examples" (in Section 3), the $GIPSB and $GIFAB macro calls ~ ~
have been included in your procedure, you can reference any
entry in F INFO and FILATT after executing the following
macro call:

$GIFIL ! F INFO

The following instructions allow the reference to be made:

LAB $B6, F INFO
LAB $B 7 , FILA TT

Then, for example, to reference the system-supplied logical
resource number and control interval size, respectively, you
would specify the following address syllables in your
instructions:

$B6. I LRN
$B 7. K-CISZ

SYSTEM-SUPPLIED LRN
SYSTEM-SUPPLIED C.I. SIZE

5-152 CBD8

./

GET FILE INFORMATION,
FILE ATTRIBUTE BLOCK OFFSETS

GET FILE INFORMATION, FILE ATTRIBUTE BLOCK OFFSETS

Macro Call Name: $GIFAB

Associated Macro Call: $GIFIL

Generated Offsets Tags:

For tape-resident and device files:

T LRSZ
T-BKSZ
T RFU

T SZ

Corresponding
Offsets

(in words) Entry Name

o Logical record size
+1 Block size
+2 Reserved

+16 Size of structure (in words);
not a field in the block

For disk-resident files:

Corresponding
Offsets

(in words) Entry Name

Logical record size K LRSZ
K-CISZ
K CASZ
K-AISZ
K MASZ
K-FREE

o
+1
+2
+3
+4
+5
+6
+7

Control interval/physical sector size
Current allocation size

K LOV
K-NKS

K SZ +16

Allocation increment size
Maximum allocation size
Amount of free space per C.I.
Local overflow allocation increment
Number of keys

Size of structure (in words); not a
field in the block

5-153 CB08

*

I
*

GET FILE INFORMATION,
KEY DESCRIPTORS BLOCK OFFSETS

GET FILE INFORMATION, KEY DESCRIPTORS BLOCK OFFSETS

Macro Call Name: $GIKDB

Associated Macro Call: $GIFIL

Generated Offsets Tags:

Tag

Y RFU1
Y-RT
Y-NKC
Y-RFU2
Y-KLEN.
Y-KOFF

Y SZ

Co rrespond ing
Offsets

(in words)

o
+1
+2
+3
+7
+8

+9

Entry Name

Reserved
Record-type
Number of key components
Reserved
Key type and size in bytes
Key offset in bytes

Size of structure (in words);
not a field in the block

5-154 CBDS

(

(-

GET FILE INFORMATION,
PARAMETER STRUCTURE BLOCK OFFSETS

GET FILE INFORMATION, PARAMETER STRUCTURE BLOCK OFFSETS

Macro Call Name: $GIPSB

Associated Macro Call: $GIFIL

Generated Offsets Tags:

Tag

I LFN
I-PTHP
I-DTYP
I-LRN
I FTYP
r-nTYP
r FABP

I RFU2

I SZ

Co rrespond ing
Offsets

(in words)

o
+1
+3
+4
+5
+5
+6

+8
+10

+12

+14

Entry Name

Logical file number (LFN)
Pointer to pathname
Device type
Logical resource number
File type (first byte)
Data format (second byte)
Pointer to file attributes
(see $GIFAB description)
Reserved
Pointer to key descriptors
(see $GIKDB description)
Reserved

Size of structure (in words);
not a field in the block

5-155 CB08

I

I

GET MEMORY/GET AVAILABLE MEMORY

GET MEMORY/GET AVAILABLE MEMORY

Macro Call Name: $GMEM

Function Code: 04/02 (get memory), 04/03 (get available memory)

Equivalent Command: None

Allocate to the issuing task the requested amount of contig­
uous memory. The memory is allocated as a block from the
memory pool of the task group to which the issuing task
belongs. If the specified amount of contiguous memory is
not available, perform one of the following actions:

o Return immediately to the issuing task without performing
any allocation (get memory with DENY specified).

o Suspend the issuing task until the required memory
becomes available (get memory with WAIT sp~cified).

o Allocate the largest contiguous block of memory currently
available in the memory pool and return to the issuing
task (get available memory (AVAIL) specified).

FORMAT:

[label] $GMEM

: o[{c ~!~r }]o f
AVAIL

maximum number of words required

ARGUMENT DESCRIPTION:

location of maximum number of words required

Any address form valid for a data register; provides
the maximum number of words of memory to be allocated
as a block to the issuing task. The value used cannot
exceed the size of the pool minus the memory block
header. (Each bit in the bit map represents a 32-word
allocation.) The value for the number of words cannot
exceed 1,048,575 (minus the memory block header).

5-156 CB08

.\",./

/

(

(

DENY

WAIT

AVAIL

If the number of words of memory specified in argu­
ment 1 is not available either in the task group's
or, if it can extend into it, the batch group's
memory pool, return immediately to the issuing task.
If argument 2 is omitted, DENY is the default value.

If the number of words of memory specified in argument
1 is not available either in the task group's or, if
it can extend into it, the batch group's memory pool,
suspend the issuing task until the memory becomes
available. Activate the task, allocate the memory,
and return to the task.

If the number of words of memory specified in argument
1 is not available in the task group's memory pool,
allocate to the issuing task the largest contiguous
block of memory currently available.

This function will not obtain memory from the batch
pool, even if the online pool may extend into the
batch pool.

FUNCTION DESCRIPTION:

This call allows the issuing task to dynamically obtain a
block of memory from the task group's memory pool. If argu­
ment 2 is DENY, the task obtains a block of the specified
size or no block at all. If argument 2 is WAIT, the task is
suspended until the requested amount of memory becomes
available. If the online pool extended into the batch pool,
allocated memory may be from the batch pool, which may have
been rolled out because of this request.

If argument 2 is AVAIL, the task obtains a block of the
specified size or the largest block (less than the specified
size) that is currently available.

When AVAIL (get available memory) is specified, the actual
size of the memory block allocated may be much smaller than
the desired size. This situation occurs because the memory
manager does not wait for memory to become available.
Rather, it checks for contiguous memory of the specified
size and if none is available, allocates the largest contig­
uous block of memory that is available. If no memory is
available, the system returns a status code of 0602.

5-157 CB08

I

NOTE: When AVAIL is specified, all of available
memory may be removed from the pool. Other
functions (including the command processor)
that require memory from that pool then will
not be able to execute until memory becomes
available.

When a return is made to the issuing task, the actual size
of the supplied contiguous memory block is placed in $R6 and
$R7. "Actual size" has the following meaning: Memory is
allocated in units of 32 words; a block of memory contains
an integral number of 32-word allocation units. A memory
block also contains a header; its size is two words in SAF
mode and three words in LAF mode. The value returned in $R6
and $R7 is the specified number of words rounded up to the
next higher allocation unit, minus the size of the memory
block header.

NOTE: If AVAIL is specified and a block of the
requested size could not be found, the actual
size of the block is that of the largest
contiguous memory block available, minus the
size of the header.

The max imum size of a memory block tha t can be obta ined is
1,048,575 words, minus the memory block header. The block
size cannot exceed the pool size.

On return to the issuing task, $84 contains the address of
the first usable word in the block (first word after the
block header).

The get memory/get available memory functions enable the
task to dynamically acquire additional memory in response to
processing needs. When a memory block is no longer
required, it must be returned to the task group's memory
pool (by a return memory or return partial block of memory
macro call). If a task repeatedly acquires memory blocks
and does not return them, the task group memory area will
become empty (or nearly so), denying other tasks the oppor­
tunity to obtain memory blocks.

NOTES: 1. The number of contiguous words of memory
required, supplied by argument 1, is placed in
$R6 and $R7; if this argument is =$R7; it is
assumed that $R6 and $R7 contain the number of
wo rd s des ired •

2. If argument 2 is DENY, $R2 is set to O. If
argument 2 is WAIT, $R2 is set to -1. If argu­
ment 2 is AVAIL, $R2 is not set. If argument 2

/

is omitted, $R2 is set to 0 (DENY). ~/

5-158 CBC8

(

3. On return to the issuing task, $Rl, $R6, $R7,
and $B4 contain the following information:

$Rl - Return status; one of the following:

0000 - If the call specified WAIT or DENY,
a successful allocation was made;
if the call specified AVAIL, at
least one memory unit was allocated

0601 - If the call specified WAIT or DENY,
requested contiguous memory exceeds
defined pool size; not applicable
if the call specified AVAIL

0602 - If the call specified WAIT or DENY,
the requested contiguous memory
could not be obtained; if the call
specified AVAIL, no memory alloca­
tion units were available

The following codes could be returned if
WAIT or DENY was specified.

0818 - No task group with specified group
id exists (system software error)

08lA - Suspend in progress (system soft­
ware error)

08lB - Rollout of online task group
attempted (system software error)

08lD - Batch task group already rolled out
(system software error)

08lE - Unrecoverable media error during
rollout

$R6, $R7 - Actual size of contiguous memory I
blocks supplied, rounded up to the nearest
multiple of 32 words

$B4 - If $Rl was 0000, address of first avail­
able word in memory block

5-159 CB08

Examples:

In this example, the $GMEM macro call is used to attempt to
obtain 2500 words of memory from the issuing task group's
memory area. If the memory is available, the system will
return with a status of 0000 in $Rl, the actual size of the
memory area obtained in $R6 and $R7, and the address of the
first usable word of the area in $B4. The example saves the
address of the memory area in the field labeled M PTR and
continues processing. If 2500 contiguous words of memory
are not available, the system will return with a status of
0602 in $Rl. If the pool size is less than 2500 words, the
system will return error code 0601 in $Rl.

M PTR

$GMEM
BNEZ
STB

DC

=2500
$RI,NO MEM
$B4,M_PTR

<$

In this example, the $GMEM macro call is used to attempt to
obtain the largest contiguous area of memory, not exceeding
5000 words, available in the issuing task group's memory
area. If any memory is available, the system will return
with a status of 0000 in $RI, the actual size of the memory
area obtained in $R6 and $R7, and the address of the first
usable word of the area in $B4. If all of the memory in
the task group's memory area is in use at the time, the
system returns with a status of 0602 in $RI.

$GMEM =5000,AVAIL

5-160 CB08

\., ./

(.

GET WORKING DIRECTORY

GET WORKING DIRECTORY

Macro Call Name: $GWDIR

Function Code: lO/CO

Equivalent Command: List Working Directory (LWD)

Returns the name of the current working directory. This
function is usually done outside program execution.

FORMAT:

[label] $GWDIR [argument structure address]

ARGUMENT DESCRIPTION:

argument structure address

Any address form valid for an address register; pro­
vides the location of the argument structure defined
below. The argument structure must contain the fol­
lowing entry.

working directory pathname

I

A 45-byte field, in main memory, into which the I
system can place the full absolute pathname of
the current working directory.

FUNCTION DESCRIPTION:

This macro call returns the full absolute pathname of your
current working directory. Although the pathname may be
shorter than the maximum 45 characters, the argument struc- I
ture must be large enough to accommodate the maximum number
of characters.

NOTES: 1. If the argument is coded, the address of the
argument structure is loaded into $B4; if the
argument is omitted, $B4 is assumed to contain
the address of the argument structure.

5-161 CB08

Example:

2. On return, SRI contains one of the following
status codes:

0000 - No error

0201 - Illegal pathname

0205 - Illegal argument

0222 - Pathname cannot be expanded, no working
directory

In addition to the above codes, any system
service codes received by the file manager are
passed on through $Rl.

This example assumes the following file system hierarchy
(see the System Concepts manual) and that the working direc­
tory is 'SUB.DIR.BBl'.

VOLOl
I

I I
SUB.DIR.A SUB.DIR.B

I I .-, ----'-----...,1

SUB.DIR.AA FILEOl SUB.DIR.BB
I

FILE02
1 I

FILE03 SUB.DIR.BBl
I

Coding the $GWDIR macro call causes the system to place the
full absolute pathname of the working directory; defined
below, into the specified argument structure:

$GWDIR ! CURDIR

CURDIR RESV 29

The path placed in the main memory field labeled CURDIR is:

AVOL01>SUB.DIR.B>SUB.DIR.BB>SUB.DIR.BB16666666666666666666

5-162 CB08

(

(

HOME DIRECTORY

HOME DIRECTORY

Macro Call Name: $HDIR

Function Code: 14/0B

Equivalent Command: None

Return the pathname of the initial working directory of the
calling task group to a 45-character receiving field.

FORMAT:

r label] $HDIR [location 0 f home d i recto ry fi eld add ress]

ARGUMENT DESCRIPTION:

location of home directory field address

Any address form valid for an address register; pro­
vides the address of a 45-character, aligned, non­
varying field into which the system will place the
pathname of the default working directory of the
calling task group.

FUNCTION DESCRIPTION:

This call returns the pathname of the initial working
directory to a field in the issuing task. The pathname
returned is that specified in the -HD argument of the login
command. If the -HD argument was not specified, the path­
name returned is that set according to user registration
arguments or system defaults.

NOTES: 1. The address of the receiving home directory
field, supplied by argument 1, is placed in $B4;
if this argument is omitted, $B4 is assumed to
contain the correct address.

2. On return, $Rl contains one of the following
status codes:

0000 - No error
0817 Memory access violation

5-163 CB08

I

Example:

On return, $B4 contains the address of the
receiving field.

In this example, the pathname of the initial working
directory of the calling task group is stored in the 45-
character field labeled DEF WD.

DEF WD

$HDIR

RESV
DC

5-164

!DEF WD

22,0
o

CB08

If

"

INPUT/OUTPUT REQUEST BLOCK

INPUT/OUTPUT REQUEST BLOCK

Macro Call Name: $IORB

Function Code: None

Equivalent Command: None

Generates an input/output request block (IORB). The length I
of the IORB is eight or nine words in SAF (short address
form), and ten to twelve words in LAF (long address form).

FORMAT:

[label] $IORB [log ical resource number],
[issuing task suspension option],

or

[issuing task termination option] ,
[buffer address],
[buffer byte alignment],
[buffer rang e)

ARGUMENT DESCRIPTION:

logical resource number

A value from 0 through 252 specifying the LRN of the
device involved in the request. The value specified
must be that of a system LRN. If this argument is
omitted, the left byte of the I CTI word (see
Appendix A) is set to zero.

issuing task suspension option

One of the following values is specified to indicate
whether the requesting task is to be suspended until
the completion of the request:

WAIT - Suspend the issuing task until the request is
complete (set the w-bit to zero)

5-165 CBoa

I

NWAIT - Do not suspend the issuing task (set the w-bit ~
to 1)

If this argument is omitted, the value NWAIT is
assumed.

If WAIT is specified, argument 3 must be omitted.

issuing task termination option

One of the following values is specified to indicate
the action to be taken upon the completion of the
request.

SM=aa - Do not suspend the issuing task; release
(V-op) the semaphore identified by aa (two
ASCII characters), when requested task is
completed.

RB=label - Do not suspend the issuing task; issue a
request for the request block identified by
label, when requested task is completed.

If this argument is omitted (or argument 2 is WAIT),
the generated IORB contains no termination option.

buffer address

Address of a buffer area to be used for input/output
transfers involving the specified device. If this
argument is omitted, the buffer address field in the
generated IORB is initialized to zeros.

buffer byte alignment

A value specifying the beginning byte of the buffer,
as follows:

R - Buffer begins in right byte of word address
specified by argument 4

L - Buffer begins in left byte of word address
specified by argument 4

If this argument is omitted, a value of L is assumed.

buffer range

A value specifying the length, in bytes, of the buf­
fer. If this argument is omitted, the generated
IORB's range value is initialized to zero.

5-166 CB08

FUNCTION DESCRIPTION:

The input/output request block (IORS) is used as the stan­
dard means of requesting a physical I/O service. The IORS
contains an LRN which identifies the I/O device being
addressed. The IORB also identifies the location and size
of the buffer to be used for physical I/O transfers as well
as the specific function requested.

NOTE: This macro call cannot be used in programs written in
SAF/LAF independent code (SLIC). See the Program
Preparation manual for more information
about SAF/LAF independent code.

Example:

In this example, the $IORB macro call generates a standard
IORB having an LRN of 0, a WAIT status indicating that the
requesting task will wait for I/O completion, and a label
(DSUF) that gives the location of the 140-byte buffer area.

CONIO $IORB 0, WAIT" DBUF" 140

5-167 CS08

I

INPUT/OUTPUT REQUEST
BLOCK OFFSETS

INPUT/OUTPUT REQUEST BLOCK OFFSETS

Macro Call Name: $IORBD

Counterpart: SIORB (see "Input/Output Request Block")

Generated Label Prefixes:

IORB label
I RRB/I SEM
offset 0
I CT I
I-CT2
I-ADR
I-RNG
I-DVS
I-RSR
I_ST

See Appendix A for the format of the input/output request
block.

NOTE: This macro call cannot be used in programs written in
SAF/LAF independent code (SLIC). See the Program
Preparation manual for more information
about SAF/LAF independent code.

5-168 CB08

-/

(

(

INTERNAL DATE/TIME, CONVERT TO

INTERNAL DATE/TIME, CONVERT TO

Macro Call Name: $INDTM

Function Code: 05/07

Equivalent Command: None

Convert the external format date/time value to an internal
format date/time value.

FORMAT:

rlabel] $INDTM [location of address of external date/time],
[location of address of receiving field],
[location of size of external date/time]

ARGUMENT DESCRIPTION:

location of address of external date/time

Any address form valid for an address register; pro­
vides the address of a field containing an external
date/time value. This value must be in the format
returned by the convert to external date/time macro
call.

location of address of receiving field

Any address form valid for an address register; pro­
vides the address of a 3-word field into which the
system places the internal format date/time value.

location of size of external date/time

Any address form valid for a data register; provides
the size of the external date/time value identified by
argument 1. The size must be less than or equal to 22
bytes. If this argument is omitted, the size is set
to 20 bytes (tenth of a second resolution). I
~he size must be such that the date/time value does
not end wi th the characters : (colon) or • (per iod) •

5-169 CBOS

I

FUNCTION DESCRIPTION:

This call converts an external date/time value (as supplied
by the convert to external date/time macro call) to internal
format (as supplied by the get date/time macro call). The
internal date/time value appears in the receiving field as a
binary count of the milliseconds that have elapsed from
1 January 1901 at 00:00:00.000 hours.

NOTES: 1. The address of the external date/time value sup­
plied by argument I is placed in $B4; if this
argument is omitted, $B4 is assumed to contain
the correct external value.

2. The internal date/time value returned is loaded
into $R2, $R6, and $R7, and is placed in the
receiving field specified by argument 2. If
argument 2 is omitted, or is =$R7, the internal
date/time value is returned only in $R2, $R6,
and $R7.

3. The size of the external date/time value sup­
plied by argument 3 is placed in $R5. If this
argument is =$R5, it is assumed that $R5 con­
tains the correct size. If this argument is
omitted, $R5 is set to a value of 20 (tenth of a
second resolution) •

4. On return, $RI, $R2, $R6, $R7, and $B4 contain
the following information:

$Rl - Return status; one of the following:

0000 - No error
0407 - Invalid external date/time value
040A - Invalid input field address

$R2, $R6, $R7 - Generated internal date/time
value

$84 - Address of supplied external date/time
value

5-170 CB08

(

(

Example:

In this example, the $GDTM macro call is used to get the
current date/time, in internal format, leaving it in regis­
ters $R2, $R6, and $R7. The $EXDTM macro call is then used
to convert this internal format to an external format,
replacing the date portion (first 10 characters) of the
field labeled TODAY. The TODAY field now contains the
external format date/time for 0800 hours of today. The
$INDTM macro call then converts this date/time value back to
an internal format contained in $R2, $R6, and $R7. One day
(86,400,000 milliseconds) is then added to this internal
date/time giving the internal date/time for 0800 hours
tomorrow, which is stored in the 3-word field labeled
MORROW. The addition is programmed with the assumption that
the central processor does not have the add integer double
instruction.

*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*

GET THE CURRENT DATE/TIME VALUE.

$GDTM

CONVERT IT TO AN EXTERNAL FORMAT DATE.

$EXTDT , ! TODAY, =10

NOW CONVERT THE EXTERNAL DATE/TIME
BACK TO THE INTERNAL FORMAT.

$INDTM ! TODA Y, , =15

ADD IN ONE DAY.

ADD
CAD
CAD
ADD
CAD

NOW STORE THE

TODAY
A DAY
MORROW

STR
SDI

TEXT
DC
RESV

$R7,A DAY+l
=$R6 -
=$R2
$R6,A_DAY
=$R2

RESULT.

$R2, MORROW
MORROW+l

'YYYY/MM/DD 0800'
86400000B(3l,0)
3,0

5-171 CB08

I

MESSAGE GROUP, ACCEPT

MESSAGE GROUP, ACCEPT

Macro Call Name: $MACPT

Function Code: 15/01

Equivalent Command: None

Establish a message connection, through a mailbox, between
an initiator's task group and the acceptor (calling) task
group issuing this $MACPT macro call.

FORMAT:

[label] $MACPT [locat ion of MGIRB add ress]

ARGUMENT DESCRIPTION:

location of MGIRB address

Any address form valid for a data register; provides
the address of the message group initialization
request block (MGIRB), which must have been previously
generated.

FUNCTION DESCRIPTION:

The acceptor task group issues this macro call in order to
accept a connection request initiated (with a $MINIT macro
call) by the initiator task group. The $MACPT macro call
(1) indicates that the acceptor task group wishes to receive
a message from a named mailbox (message queue), and (2)
opens the receive function of the message facility. (See
the System Concepts manual for a discussion about the mes­
sage facility.

NOTES: 1. Mailboxes must have been created before the
macro call is issued. (See the create mailbox
(CMBX) command in the Commands manual.) Refer­
ence to mailbox fields when no mailbox has been
created results in an error return.

5-172 CBOS

/

(2. The system places the address of the MGIRB in
$B4. If the argument is omitted, the system
assumes that $B4 contains a pointer to the
MGIRB.

3. Before the $MACPT macro call is executed, the
user must generate the MGIRB (see Table A-8)
with the argument values shown in Table 5-2.

Table 5-2. MGIRB Argument Values for $MACPT Macro Call

Field in
Argument Name and Description MGIRB Arg ument Val ue

synchronous/asynchronous
ind icator

Indicates whether macro
call execution is to be
synchronous or
asynchronous.

Reserved for future use.

acceptor identification

Describes the following
characteristics of the
acceptor at a mailbox that

I is the destination of the
message group:

address type:

Specifies that this is
an acceptor's address.

Reserved for future use.

Reserved for future use.

acceptor mailbox

MI MAJ
(bIt 9)

MI MPD

o - Synchronous; task
waits until all
specified message
group conditions are
met before macro
call is executed.

1 - Asynchronous; task
does other process­
ing while checking
whether the message
group conditions
have been met.

Must be 0001.

As shown As shown below.
below.

MI ADT

(bits
8-F)

MI NWA

MI NDA

MI MBA

5-173

Must be hexadecimal 01.

Must be o.

Must be o.

Must be from 1 to 12
ASCII characters, blank­
filled, left justified.

CB08

4. At successful macro execution, the system
returns the following MGIRB output argument
val ues :

message group identifier:

MG MGI field: is the message group
identifier of the "accepted" message group.
A valid identifier is returned for all
requests even when a message group is not
available.

initiator identification:

Designates the following characteristics of
the initiator at a mailbox from which the
acceptor will accept the message group:

address type:

MI ADT field (bits 0 through 7), indi­
cates an initiator address.

mailbox name:

MI MBI field; is the name (from 1 to
12-ASCII characters, blank-filled,
left justified) of the mailbox
designated by the initiator task group
as the initiator mailbox.

5. On return, $Rl contains the following status
codes:

0000 - No error

OC23 - Invalid message path description
identifier

OC25 - Acceptor mailbox may not be accessed by
initiator

OC26 - Acceptor mailbox not known

OC62 - Normal message group termination

6. On return, register $B4 will point to the
appl ication' s M.GIRB, wh ich is ·updated accord ing
to the specifications in the macro call.

5-174 CBD8

\ .'
~, . .7'

.{ "'. ".j

MESSAGE GROUP CONTROL
REQUEST BLOCK

MESSAGE GROUP CONTROL REQUEST BLOCK

Macro Call Name: $MGCRB

Function Code: None

Equivalent Command: None

Depending on the arguments supplied in the call, does one of
the fo llowing:

o Builds a message group control request block (MGCRB) of
24 words (for SAF) and 28 words (for LAF) that contains
default values for all fields not explicitly specified in
the call. See Table A-7 in Appendix A.

o Generates instructions to alter the partial contents of
an existing MGCRB.

FORMAT:

[label] $MGCRB, [arguments]

ARGUMENT DESCRIPTION:

There are three types of arguments for this macro call:

o Keyword only (i.e., RESV).

o Keyword with expression (expression is a user-selected
variable whose literal value is used by the system).

o Keyword with option (option is a prescribed ASCII string
that is interpreted by the system).

The keyword-only argument RESV generates an MGCRB. When the
macro call is issued with RESV as its only argument, an
MGCRB is built with system-assigned default values. When
RESV is specified with other arguments, all entries in the
MGCRB that are not specifically changed by other arguments
are defaul ted.

5-175 CBD8

I

Omitting the RESV a~gument generates executable code to
modify an existing MGCRB, in which case the keyword with
expression argument ADR=address is used to specify the
address of the MGCRB to be changed. When ADR=address is
omitted, the system assumes that register $B4 points to that
MGCRB. The argument ADR=address is not used in building a
new MGCRB, i.e., when RESV is specified, the system ignores
any ADR=address argument.

The other keyword-only arguments are WAIT and NWAIT, which
are described in Table 5-3 below.

The first argument position is reserved for system use, and
must be specified by the user as a comma. The second and
third arguments are positional, and when omitted, each must
be replaced by a comma.

Table 5-3 describes the arguments for the $MGCRB macro call,
and indicates the fields in the MGCRB into which the system
inserts the argument values.

Table 5-3. Argument Values for $MGCRB Macro Call

Argument Keyword Field in
Position Keyword Value Argument Description MGCRB

Keyword only

1 None None Reserved by system, must N/A
be a comma.

2 Issuing task
opt ion:

suspension MC MAJ -

a
WAIT None Suspend the issuing task

until the request is
completed (set W-bit
(wai t) to 0) •

NWAIT None Do not suspend the
(default) issuing task (set W-bit

to 1).

Any RESV None Generates MGCRB.

5-176 CB08

/

Table 5-3 (cont). Argument Values for $MGCRB Macro Call

Argument Keyword Field in
Posi tion Keyword Value Argument De scr ipt ion MGCRB

Keyword with expression

3 Issuing task termination
b

N/A
option:

SM= aa When requested task is
completed, do not
suspend issuing task;
release the semaphore
identified by the two
ASCII characters aa.

RB= label When requested task is
complete, do not suspend
the issuing task; issue
a request for the
request block identified
by label.

Any ADR= address When existing MGCRB is N/A
to be changed (RESV
om i tted) , specifies
address of MGCRB to be
changed.

Any BUF= buffer Address of the buffer MC BUF -add ress location in the task
where sent or received

(default record is to be placed.
is 0)

Any RANGE = number Length, in bytes of the MC BSZ
of bytes buffer. -

(defaul t
is 0)

5-177 CB08

Table 5-3 (cont). Argument Values for $MGCRB Macro Call

Argument
Posi tion Keyword

Keyword
Value Argument Description

Field in
MGCRB

a

b

Any ALIGN=

Any WTI=

Any ENC=

Keyword with option

R

L
(default
value)

WAIT

DENY
(default
val ue)

Buffer byte alignment:

Buffer begins in right­
most byte of address
specified by BUF=
argument.

Buffer begins in left­
~ost byte of address
specified by BUF=
argument.

Wait test indicator (for
$MRECV onl y) :

Do not process request
until data is available.

Return error status when
there is no data
available.

Enclosure level that
delimits send or receive
message unit.

EOR End-of-record.

EOQ End-of-quarantine-unit.
(default
val ue)

EOM End-of-message.

When WAIT is specified, argument 3 must be omitted.

When this argument is omitted, or argument 3 is WAIT, the

MC OPT

MC WTI

MC LVL

generated MGCRB contains no termination option. In that case,
the user must issue a $WAIT, $WAITL, or $TEST macro call.

5-178 CBD8

't, ./

(

FUNCTION DESCRIPTION:

The message group control request block (MGCRB) is used for
communication between task groups, and is the means for
passing arguments among task groups in connection with the
message group send ($MSEND) and message group receive
($MRECV) macro calls of the message facility. This macro
call makes it possible to modify an existing MGCRB by
generating executable instructions that use registers $R6,
$R7, and $B5 (as appropriate). The modifying process always
uses $B4 to point to the MGCRB.

NOTE: This macro call cannot be used in programs written in
SAF/LAF independent code (SLIC). See the Program
Preparation manual for more information about SAF/LAF
independent code.

5-179 CBca

MESSAGE GROUP CONTROL
REQUEST BLOCK OFFSETS

I MESSAGE GROUP CONTROL REQUEST BLOCK OFFSETS

Macro Call Name: $MGCRT

Generated Label Prefixes:

MC OS
MC MAJ
MC-OPT
MC"-BUF
MC-BSZ
MC-DVS/MC REC
MC-RSR
MC-MRU/MC WTl
MC-EXT -
MC-FNC/MC REV
MC-MGl -
MC-LVL
MC-PCl
MC-VDP
MC-TGl
MC-TSK
MC-NPl

Appendix A describes the contents of the message group con­
trol request block (MGCRB).

NOTE: This macro call cannot be used in programs written in
SAF/LAF independent code (SLlC). See the Program
Preparation manual for information about SAF/LAF
independent code.

5-lS0 CBOS

,/

,/

(

f
~.

(

MESSAGE GROUP, COUNT

Macro Call Name: $MCMG

Function Code: 15/07

Equivalent Command: None

MESSAGE GROUP, COUNT

Provide a count of the number of completed message groups,
not yet "accepted" by previous $MACPT macro calls, that are
available for processing by subsequent $MACPT macro calls.

FORMAT:

r label] $MCMG [locat ion 0 f MGIRB add ress]

ARGUMENT DESCRIPTION:

location of MGIRB address

Any address form valid for a data register; provides
the address of the message group initialization
request block (MGIRB), which must have been previously
created.

FUNCTION DESCRIPTION:

The sending or receiving task group may issue this macro
call to ascertain the number of completed groups currently
in the mailbox not yet "accepted" by earlier $MACPT macro
calls, and available to subsequent $MACPT macro calls. The
mailbox is described in the MGIRB for this macro call (see
Table 5-4 below).

NOTES: 1. Referenced mailboxes must have been created
before this macro call is issued. (See the
create mailbox (CMBX) command in the Commands
manual.) Referenc~s to mailbox fields when no
mailbox has been created results in an error
ret urn.

5-181 .CB08

I

2. The system places the address of the MGIRB in
register $B4. If this argument is omitted, the
system assumes that $B4 contains a pointer to
the MGIRB.

3. Before the macro call is executed, the user must
generate the MGIRB (see Table A-8) with the
argument values shown in Table 5-4).

Table 5-4. MGIRB Argument Values for $MCMG Macro Call

Field
Argument Name and Description in MGIRB

synchronous/asynchronous

Indicates whether macro
call execution is to be
synchronous or
asynchronous

MI MAJ
(bIt 9)

Argument Value

o - Synchronous; task
waits until all
specified message
group conditions are
met before the macro
call is executed.

1 - Asynchronous; task
continues with other
process ing wh il e
checking whether the
message group condi­
tions have been met.

acceptor identification As shown As shown below.
below

Describes the following
characteristics of the
acceptor at a mailbox
that contains the message
groups.

address type:

Specifies that this is an
acceptor's address

Reserved for future use.

Reserved for future use.

acceptor mailbox name

MI ADT

(bits
8-F)

MI NWA

MI NDA

MI MBA

5-182

Must be hexadecimal 01.

Must be O.

Must be O.

Must be from 1 to 12
ASCII characters, blank­
filled, left justified.

CB08

4. At successful macro execution, MI CNT will con­
tain the count of "unaccepted" completed message
groups remaining in the mailbox.

5. On return, $Rl contains the following return
status codes:

0000 - No error

OC02 - Invalid message group identification

OC03 - Abnormal termination received

OC09 - Invalid enclosure level specified

OC25 - Acceptor mailbox may not be accessed
by the initiator

OC26 - Acceptor mailbox or acceptor mailbox
node not known

OC34 User-coded reason for abnormal message
through - group termination

OC44

OC62 - Normal message group termination

6. On return, register $B4 will point to the
application's MGIRB, which is updated according
to the specifications in the macro call.

5-183 CB08

I

MESSAGE GROUP INITIALIZATION
: REQUEST BLOCK

MESSAGE GROUP INITIALIZATION REQUEST BLOCK

Macro Call Name: $MGIRB

Function Code: None

Equivalent COmmand: None

Depending on the arguments supplied in the call, does one of
the following:

o Builds a message group initialization request block
(MGIRB) of 42 words (for SAF) and 46 words (for LAF) that
contains default values for all fields not explicitly
specified in the call. See Table A-8 in Appendix A.

o Generates instructions to alter the partial contents of
an existing MGIRB.

o When modifying an existing MGIRB, calls and expands the
corresponding $MGIRT template macro call to provide
labels for the MGIRB's fields.

FORMAT:

[label] $MGIRB, [arguments]

ARGUMENT DESCRIPTION:

There are three types of arguments for this macro call:

o Keyword only (i.e., RESV).

o Keyword with expression (expression is a user-selected
variable whose literal value is used by the system).

o Keyword with option (option is a prescribed ASCII string
that is interpreted by the system).

5-184 CB08

(- The keyword-only argument RES V generates an MGIRB. When the
macro call is issued with RESV as its only argument, an
MGIRB is built with system-assigned default values. When
R~SV is specified with other arguments, all entries in the
MGIRB that are not specifically changed by other arguments
are defaulted.

Omitting the RESV argument generates executable code to
modify an existing MGIRB, in which case the keyword with
expression argument ADR=address is used to specify the
address of the MGIRB to be changed. When ADR=address is
omitted, the system assumes that register $B4 points to that
MGIRB. The argument ADR=address is not used in building a
new MGIRB, i.e., when RESV is specified, the system ignores
any ADR=address argument.

The other keyword-only arguments are WAIT and NWAIT, which
are described in Table 5-5 below.

The first argument position is reserved for system use, and
must be specified by the user as a comma. The second and
third arguments are positional, and when omitted, each must
be replaced by a comma.

Table 5-5 describes the arguments for the $MGIRB macro call,
and indicates the fields in the MGIRB into which the system
inserts the argument values.

Table 5-5. Argument Values for $MGIRB Macro Call

Argument Keyword Field in
Position Keyword Value Argument Description MGIRB

Keyword only

1 None None Reserved by system, must N/A
be a comma.

2 Issuing task suspension MI MAJ -option:
a

WAIT None Suspend the issuing task
until the request is
completed (set W-bit
(wai t) to 0) •

NWAIT None Do not suspend the
(defaul t) issuing task (set W-bit

to 1).

Any RESV None Generates the MGIRB.

5-1S5 CBOS

Table 5-5 (cont). Argument Values for $MGIRB Macro Call

Argument
Posi tion Keyword

Keyword
Value Argument Description

Field in
MGIRB

a

b

3

SM=

RB=

Any ADR=

Any MaI=

Any MBA=

Keyword with expression

aa

label

b
Issuing task termination
option:

When requested task is
completed, do not suspend
issuing task; release the
semaphore identified by
the two ASCII characters
aa.

When requested task is
complete, do not suspend
the issuing task; issue a
request for the request
block identified by
label.

address When existing MGIRB is to
be changed (RESV omit­
ted), specifies address
of MGIRB to be changed.

Initiator mailbox name:

From 1 to 12 ANSII charactrs,
blank-filled, left justified.
Default is 12 blanks.

Acceptor mailbox name.

From 1 to 12 ANSII characters,
blank-filled, left justified.
Default is 12 blanks.

When WAIT is specified, argument 3 must be omitted.

N/A

N/A

MI MBI

MI MBA

When this argument is omitted, or argument 3 is WAIT, the
generated MGIRB contains no termination option. In that case,
the user must issue a $WAIT, SWAITL or $TEST macro call.

5-1S6 CBDS

'", /

(FUNCTION DESCRIPTION:

The message group initialization request block (MGIRB) is
used for communication among task groups, and is the means
for passing arguments among task groups in connection with
the message group accept ($MACPT), message group initiate
($MINIT), and message group count ($MCMG) macro calls of the
message facility. This macro call makes it possible to
modify an existing MGIRB by generating executable instruc­
tions that use registers $R6, $R7, and $B5 (as appropriate).
The modifying process always uses $B4 to point to the MGIRB.

NOTE: This macro call cannot be used in programs written in
SAF/LAF independent code (SLIC). See the Program
Preparation manual for more information about SAF/LAF
independent code.

5-187 CB08

I

MESSAGE GROUP INITIALIZATION
REQUEST BLOCK ·OFFSETS .

MESSAGE GROUP INITIALIZATION REQUEST BLOCK OFFSETS

Macro Call Name: $MGIRT

Generated Label Prefixes:

MI OS
MI MAJ
MI-OPT
MI-BUF
MI-BSZ
Ml-MPD
Ml-RSR
MI-MDE/Ml lOP
Ml-EXT
Ml-FNC/Ml REV
Ml-MGl -
Ml-PCM/Ml ADT
Ml-NWl -
Ml-NDl
Ml-MBl
Ml-NWA
Ml-NDA
Ml-MBA
Ml-QSZ
Ml-CNT
Ml-TG I
Ml-TSK
Ml-SIP

Appendix A describes the contents of the message group
initialization request block (MGlRB).

NOTE: This macro call cannot be used in programs written in
SAF/LAF independent code (SLIC). See the Program
Preparation manual for information about SAF/LAF
independent code.

5-188 CB08

MESSAGE GROUP, INITIATE

Macro Call Name: $MINIT

MESSAGE GROUP, INITIATE

Function Code: 15/02

Equivalent Command: None

Initiate a message connection, through a previously created
mailbox, between the initiating task group (initiator) and
the accepting task group (acceptor).

FORMAT:

[label] $M INIT [location of MGIRB add ress]

ARGUMENT DESCRIPTION:

location of MGIRB address

Any address form valid for a data register; provides
the address of the message group initialization
request block (MGIRB), which must have been previously
generated.

FUNCTION DESCRIPTION:

A task group that is to send a message (initiator task
group) to another task group must issue the $MINIT macro
call to open the send function of the message facility.
(See the System Concepts manual for a discussion about the
message facility.) The macro routine informs the system
that a message connection is requested in order to send a
message, and provides the name of the initiator's mailbox.

NOTES: 1. Mailboxes must have been created before the
macro call is issued. (See the create mailbox
(CMBX) command in the Commands manual.)

2. The system places the address of the MGIRB in
$B4. If the argument is omitted, the system
assumes that $B4 contains a pointer to the
MGIRB.

5-189 CB08

I

3. Before the $MINIT macro call is executed, the
user must generate the MGIRB (see Table A-8)
with the argument values shown in Table 5-6.

Table 5-6. MGIRB Argument Values for $MINIT Macro Call

Field in
Argument Name and Description MGIRB

synchronous/asynchronous
ind icator

Indicates whether macro
call execution is to be
synchronous or
asynchrono us.

Reserved foi future use.

MI MAJ
(bIt 9)

MI MPD

Arg ument Val ue

a - Synchronous; task
waits until all
specified message
group conditions are
met before the macro
call is executed.

1 - Asynchronous; task
continues with other
processing while
checking whether the
message group condi­
tions have been met.

Must be 0001.

initiator identification As shown As shown below.
below.

Describes the following
characteristics of the
initiator at a mailbox
where the message group
or ig ina tes •

address type

Specifies that this is an
initiator's address.

Reserved for future use.

Reserved for, future use.

initiator mailbox name

MI ADT

(bits
0-7)

MI NWI

MI NDI

MI MBI

5-190

Must be hexadecimal 1.

Must be o.

Must be o.

Must be from 1 to 12
ASCII characters, blank­
filled, left-justified.

CB08

(

(

4. The $MINIT macro call is effective only for a
one-way connection to another task group's mail­
box. For the other task group to send messages,
it must create its own initiator mailbox and
issue its own $MINIT macro call.

5. On successful macro execution, the system
returns the message group identifier (MI MGI
field) of the "initiated" message group.- A
valid identifier is returned for all requests.

6. On return, $Rl contains the following return
status codes:

0000 - No error

OC23 - Invalid message-path-description
identifier

OC25 - Acceptor mailbox may not be accessed b
initiator

OC26 - Acceptor mailbox not known

OC34 User-coded reason for abnormal message
through - group

OC44

OC62 - Normal message group termination

7. On return, register $B4 will point to the
application's MGIRB, which is updated according
to the specifications in the macro call.

5-191 CB08

I

MESSAGE GROUP, RECEIVE

MESSAGE GROUP, RECEIVE

Macro Call Name: $MRECV

Function Code: 15/03

Equivalent Command: None

Requests that this task group receive a message group via a
named mailbox, from another task group, specifies how much
message data is to be received, and detects when there is no
more data to be received.

FORMAT:

rlabelJ $MRECV rlocation of MGCRB address]

ARGUMENT DESCRIPTION:

location of MGCRB address

Any address form valid for a data register; provides
the address of the message group control request block
(MGCRB), which must have been previously generated.

FUNCTION DESCRIPTION:

The task group that issued the SMACPT macro call to open the
receive function of the message facility can issue one or
more $MRECV macro calls in order to receive message data
from the sending task group, via named mailboxes. The mes­
sage group identifier returned in the $MACPT macro call is
used by the $MRECV macro call to identify the message groups
of the sending and receiving task groups. A receive message
can be any unit, not necessarily exactly as defined by the
sender. A portion of a message group cannot be received
unless designated as a quarantine unit by the sender. The
$MRECV macro call can request that the message be received
in record sizes other than those with which it was sent. It
can specify how much data is to be received in terms of
numbers of bytes (range), and by "enclosure level" (see
below). Every receive unit is an enclosure. The receiving
task group can delimit the amount of received data as

5-192 CB08

(,

ena-of-quarantine-unit (see description of quarantine unit
under the message, send ($MSEND) macro call) or as end-of­
message.

NOTES: 1. Mailboxes must have been created before this
macro call is issued. (See the create mailbox
(CMBX) command in the Commands manual.)

2. The system places the address of the MGCRB in
reg i s t e r $ B 4 • If the a r g urn en tis 0 mit ted, the
system assumes that $B4 contains a pointer to
the MGCRB.

3. Before issuing the macro call, the user must
generate the MGCRB (see Table A-7) with the
argument values shown in Table 5-7.

Table 5-7. MGCRB Argument Values for $MRECV Macro Call

Argument Name and Description
Field in

MGCRB Argument Val ues

message group identifier MC MGI Value returned in $MACPT
macro call.

Identifies the message
group within whose
enclosures the record is to
be received.

buffer area identifier

Defines the location within
the task where the received
record is to be placed.

range

Defines the maximum number
of bytes to be placed into
the buffer area in one
execution of the macro
call. When the specified
range is exceeded, the
transfer of message text is
terminated.

MC BUF Buffer pointer.

MC BSZ User-specified.

5-193 CB08

Table 5-7 (cont). MGCRB Argument Values for $MRECV Macro Call \,,/

Field in
Argument Name and Description MGCRB Argument Values

requested enclosure level MC LVL ASCII values:

Amount of data, in text
units, that the receiving
task group is to receive.
When the buffer range is
exceeded, text transfer
terminates.

wait test indicator

Specifies whether user
waits for data, even if
none now available; or
whether request is
terminated when there is no
data.

synchronous/asynchronous
indicator

Indicates whether macro
call execution is to be
synchronous or
asynchrono us.

(bits
0-7)

MC WTI

(bits
8-F)

MC MAJ
(bIt 9)

1 - End-of-record, but
not last record in
quarantine unit.

2 - End-of-quarantine­
unit.

5 - End-of-message.

o - Terminate the
request.

1 - Wait for data to
become available.

o - Synchronous; task
waits until all
specified message
group conditions are
met before the macro
call is executed;

1 - Asynchronous; task
continues with other
processing while
checking whether the
message group condi­
tions have been met.

4. After successful receipt of a complete message
(i.e., value of detected enclosure level in
bits 8-F in MC LVL is ASCII 5) the receiving
task group musE issue a message group terminate
($MTMG) to terminate the message group. (See
"Message Group, Terminate" later in this section
for a discussion of normal and abnormal
termination.)

5-194 CB08

5. At successful macro execution, the system
returns the following MGCRB output argument
val ues :

6.

test length (range):

MC RSR field, reports the number of bytes
of-text not transferred into the buffer
area. When a record has no text associated
with it, the value will equal buffer size.

detected user enclosure level:

MC LVL field (bits 8-F), reports the
enclosure level detected at end of the
transfer. Possible values (ASCII):

o - No enclosure detected
1 - Eno-of-recoro
2 - End-of-quarantine-unit
5 - End-of-message

On return, register $Rl contains the following
status codes:

0000 - No error

OC02 - Invalid message group identifier

OC03 - Abnormal termination received

OC09 - Invalid enclosure level specified

OC16 - Message quarantine unit exceeded
capacity

OC33 - Invalid user-coded abnormal
term ination

OC34 User-coded reason for abnormal message
through_ - group termination

OC44

OC62 - Normal message group termination

OC64 - Terminate request rejected

7. On return, register $B4 will point to the
application's MGCRB, which is updated according
to the specifications in the macro call.

5-195 CB08

I

MESSAGE GROUP RECOVERY
REQUEST BLOCK

MESSAGE GROUP RECOVRRY REQUEST BLOCK

Macro Call Name: $MGRRB

Function Code: None

Equivalent Command: None

Depending on the arguments supplied in the call, does one of
the following:

o Builds a message group reoovery request block (MGRRB) of
24 words (for SAF) and 27 words (for LAF) that contains
default values for all fields not explicitly specified in
the call. See Table A-9 in Appendix A.

o Generates instructions to alter the partial contents of
an existing MGRRB.

o When modifying an existing MGRRB, calls and expands the
corresponding $MGRRT template macro call to provide
labels for the MGRRB's fields.

FORMAT:

[label] $MGRRB, [arguments]

ARGUMENT DESCRIPTION:

There are three types of arguments for this macro call:

o Keyword only (i.e., RESV).

o Keyword with expression (expression is a user-selected
variable whose literal value is used by the system).

o Keyword with option (option is a prescribed ASCII string
that is interpreted by the system).

5-196 CBD8

(

The keyword-only argument RESV generates an MGRRB. When the
macro call is issued with RESV as its only argument, an
MGRRB is built with system-assigned default values. When
RESV is specified with other arguments, all entries in the
MGRRB that are not specifically changed by other arguments
are defaulted.

Omitting the RESV argument generates executable code to
modify an existing MGRRB in which case the keyword with
expression argument ADR=address is used to specify the
address of the MGRRB to be changed. When ADR=address is
omitted, the system assumes that register $B4 points to that
MGRRB. The argument ADR=address is not used in building a
new MGRRB, i.e., when RESV is specified, the system ignores
any ADR=address argument.

The other keyword-only arguments are WAIT and NWAIT, which
are described in Table 5-8 below.

The first argument position is reserved for system use, and
must be specified by the user as a comma. The second and
third arguments are positional, and when omitted, each must
be replaced by comma.

Table 5-8 describes the arguments for the $MGRRB macro call,
and indicates the fields in the MGRRB into which the system
inserts the argument values.

Table 5-8. Argument Values for $MGRRB Macro Call

Argument Keyword Field in
Posi tion Keyword Value Argument Description MGRRB

Keyword only

1 None None Reserved by system, must N/A
be a comma.

2 Issuing task suspension MR MAJ -opt ion:
a

WAIT None Suspend the issuing task
until the request is
completed (set W-bit
(wai t) to 0) •

NWAIT None Do not suspend the
(defaul t) issuing task. (Set W-bit

bit to 1.)

Any RESV None Generates the MGRRB.

5-197 CB08

Table 5-8 (cont). Argument Values for $MGRRB Macro Call

Argument
Posi tion Keyword

Keyword
Value Argument Description

Field in
MGRRB

a

b

3

SM=

RB=

Any ADR=

Any TERM=

Keyword with expression

aa

label

address

0, or
34

through
44

Issuing task terminationb

option:

When requested task is
completed, do not suspend
issuing task; release the
semaphore identified by
the two ASCII characters
aa.

When requested task is
complete, do not suspend
the issuing task; issue a
request for the request
block identified by
label.

When existing MGRRB is to
be changed (RESV omit­
ted), specifies address
of MGRRB to be changed.

Message group termination
code:

o - Indicates normal
termination of this
message group.

34 through 44 - User­
coded reason for
abnormal termination.

When WAIT is specified, argument 3 must be omitted.

When this argument is omitted, or argument 3 is WAIT, the

N/A

N/A

MR RSN

generated MGRRB contains no termination option. In that case,
the user must issue a $WAIT, $WAITL, or $TEST macro call.

5-198 CB08

(

(

FUNCTION DESCRIPTION:

The message group recovery request block is used for com­
munication between task groups, and is the means for passing
arguments among task groups in connection with the message
group terminate ($MTMG) macro call of the message facility.
This macro call makes it possible to modify an existing
MGRRB by generating executable instructions that use regis­
ters $R7 and $B5 (as appropriate). The modifying process
always uses $B4 to point to the MGRRB.

NOTE: This macro call cannot be used in programs written in
SAF/LAF independent code (SLIC). See the Program
Preparation manual for more information about SAF/LAF
independent code.

5-199 CB08

I

MESSAGE GROUP RECOVERY
REQUEST BLOCK OFFSETS

MESSAGE GROUP RECOVERY REQUEST BLOCK OFFSETS

Macro Call Name: $MGRRT

Generated Label Prefixes:

MR OS
MR MAJ
MR-OPT
MR-BUF
MR-BSZ
MR-ITP
MR-RES
MR-RSN
MR-EXT
MR-FNC/MR REV
MR-MGI -
MR-CNC
MR-FMT
MR-MRU
MR-AMU

Appendix A describes the contents of the message group
recovery request block (MGRRB).

NOTE: Th.is macro call cannot be used in programs written in
SAF/LAF independent code (SLIC). See the Program
Preparation manual for information about SAF/LAF
independent code.

5-200 CB08

(MESSAGE GROUP, SEND

MESSAGE GROUP, SEND

Macro Call Name: $MSEND

Function Code: 15/05

Equivalent Command: None

Send a specified amount of message text from the initiator
task group. Optionally, make this record and any previously
sent records visible to the receiver by declaring this mes­
sage text as a quarantine unit.

FORMAT:

r1abe1] $MSEND r1ocation of MGCRB address]

ARGUMENT DESCRIPTION:

location of MGCRB address

Any address form valid for a data register; provides
the address of the message group control request block
(MGCRB), which must have been previously generated.

FUNCTION DESCRIPTION:

The task group that issued a $MINIT macro call to initiate
the message connection, issues one or more $MSEND macro
calls to send message data via that connection. A task
group sending a message to another task group sends through
a named mailbox. The message group identifier returned in
the $MINIT macro call is used by the $MSEND macro call to
identify the message group of the task group that initiated
it. A message is one or more records. Each $MSEND sends
one record, which is the basic unit of data exchange. Each
transmission is a buffer of data, which must point to the
MGCRB that describes the buffer. Only when designated by
the sender as a "quarantine unit," is a sender's record or
group of records interpreted at the destination (i.e., is
visible) •

5-201 CB08

I

Every send uni t is an enclosure. The last or intermed iate
records in the message are identified by an enclosure level
which delimits sent data as end-of-record, end-of­
quarantine-unit, or end-of-message. End-of-message implies
the end-of-quarantine-unit; end-of-quarantine-unit implies
eno-of-recoro.

NOTES: 1. Mailboxes must have been created before this
macro call is issued. (See the create mailbox
command (CMBX) in the Commands manual.)

2. The system places the address of the MGCRB in
register $B4. If the argument is omitted, the
system assumes that $B4 contains a pointer to
the MGCRB.

3. Before issuing the $MSEND macro call, the user
must generate the MGCRB (see Table A-7) with the
argument values shown in Table 5-9.

Table 5-9. MGCRB Argument Values for $MSEND Macro Call

Field in
Argument Name and Description MGCRB

synchronous/asynchronous
ind icato r

Indicates whether macro
call execution is to be
synchronous or
asynchronous

message group identifier

Identifies the message
group within whose
enclosure the record is to
be sent

buffer area identifier

Defines the location
within the task where the
message text to be sent is
located.

MC MAJ
(bTt 9)

MC MGI

MC BUF

5-202

Arg ument Val ue

o - Synchronous; task
waits until all
specified message
group conditions are
met before the macro
call is executed.

1 - Asynchronous; task
continues with other
process ing wh i1 e
checking whether the
message group condi­
tions have been met.

Value returned in $MINIT
macro call.

Buffer pointer.

CB08

''''-. ~/

(Table 5-9 (cont). MGCRB Argument Values for $MSEND Macro Call

Argument Name and Description

user-requested enclosure
level

Defines the unit of text
i • e ., how m uc h d a t a, i s
contained in an
"enclosure level."

range

Indicates the number of
bytes of message text to be
sent from the buffer area.
A zero value indicates no
text is to be sent; even
then the other argument
values are examined and a
record enclosure is opened
if not already open.

Field in
MGCRB

MC LVL

(bits
0-7)

MC BSZ

Argument Value

ASCII values:

I - End-of-record, but
not last record in a
qua ran tin e un it.

2 - End-of-quarantine
uni t.

5 - End-of-message.

User-specified.

4. To complete sending a message group, the sending
task group must terminate the message group by
either:

o Specifying an ASCII 5 (end-of-message)
enclosure level in MC LVL of the MGCRB (see
Table 5-9) supplied on an $MSEND macro call,
or

o Issuing the macro call message group termi­
nate ($MTMG), with the value a in MR CNC of
the MGRRB. (See "Message Group, Ter;inate"
later in this section for a discussion of
normal and abnormal termination.)

5. On return, register $RI contains the following
return status codes:

0000 - No error

OC02 - Invalid message group identification

OC03 - Abnormal termination received

5-203 CB08

OC09 - Invalid enclosure level specified

OC16 - Message/quarantine unit exceeded
capacity

OC34 User-coded reason for abnormal message
through - group termination

OC44

OC62 - Normal message group termination

6. On return, $B4 will point to the application's
MGCRB, which is updated according to the
specification in the macro call.

5-204 CB08

(

(

MESSAGE GROUP, TERMINATE

MESSAGE GROUP, TERMINATE

Macro Call Name: $MTMG

Function Code: 15/04

Equivalent Command: None

Terminates a message group, either normally or abnormally.

FORMAT:

[label] SMTMG [location of MGRRB address]

ARGUMENT DESCRIPTION:

location of MGRRB address

Any address form valid for a data register; provides
the address of the message group recovery request
block (MGRRB), which must have been previously
generated.

FUNCTION DESCRIPTION:

This macro call, issued by a sending or receiving task
group, causes normal or abnormal termination of a message
group. A sending task group, after normal transmission of a
message, must terminate the message group with either a
$MSEND macro call that specifies an end-of-message enclosure
level (5 in MC LVL of the MGCRB), or with a $MTMG macro call
having a termination value of 0 in bits 0 through 7 of
MR RSN (see Table 5-10 below). The sending task group can
specify abnormal termination of the message group by
inserting a user-coded value from 34 through 44 in bits 0-7
of MR RSN. This code informs the receiving task group of
the reason for abnormal termination.

NOTE: When a receiving task group terminates a message
group abnormally before the sending task group does,
the sending task group will receive an OC34 through
OC44 error return on his next $MSEND macro call. At
that point the sending task group can issue only a
$MTMG macro call for normal termination.

5-205 CB08

I

A receiving task group, after issuing a $MACPT macro call
and $MRECV macro call(s), and after receiving complete mes­
sage data (detected use renclosure level 5 in MC LVI.) , will
receive a return status of 0000 in $Rl. The receiving task
group must then issue a $MTMG macro call to terminate the
message group. When the receiving task group wants to ter­
minate the message group before receiving the last completed
data, it requests abnormal termination by specifying a user­
coded termination value from 34 through 44 in bits a through
7 of MR RSN in a $MTMG macro call (see Table 5-10 below).
This causes the message group to be removed from the receiv­
ing task group and any remaining data to be purged. The
sending task group, if still active, will receive the same
return status code (from 34 through 44) in $Rl when it next
issues a $MSEND macro call.

NOTES: 1. The system places the address of the MGRRB in
register $B4. If the argument is omitted, the
system assumes that $B4 contains a pointer to
the MGRRB.

2. Before issuing this macro call# the user must
generate the MGRRB (see Table A-g) with the
argument values shown in Table 5-10 below.

3. When the message group is terminated, its mes­
sage group identifier is available for reuse.

4. On return, register $Rl contains the following
status codes:

0000 - No error

OC02 - Invalid message group identifier

OC33 - Invalid user-coded abnormal
termination

OC34 User-coded reason for abnormal message
through - group termination

OC44

OC62 - Normal message group termination

OC64 - Terminate request rejected

5. On return, register $B4 will point to the
application's MGRRB, which is updated according
to the specifications in the macro call.

5-206 CB08

<.

Table 5-10. MGRRB Argument Values for $MTMG Macro Call

Field in
Argument Name and Description MGRRB

synchronous/asynchronous
indicator

message group identifier

Identifies the message
group to be terminated.
This message group must
have been identified in
a $MINIT or $MACPT macro
call by the task group
issuing this macro call.

termination type

Specifies whether message
termination is normal or
abnormal.

MR MAJ
(bIt 9)

MR MGI

MR RSN

(bits
0-7)

5-207

Arg ument Val ues

o - Synchronous; task
waits until all
specified message
group conditions are
met before macro
call is executed.

1 - Asynchronous; task
does other process­
ing while checking
whether the message
group conditions
have been met.

Value returned on $MINIT
and $MACPT macro calls.

o - Indicates normal
termination.

Any value from 34 to 44
indicates abnormal ter­
mination, and issued in
$RI as user-coded error
codes. Any value other
than 0 or from 34
through 44 is transmit­
ted as 33.

CB08

I

MODE IDENTIFICATION

~ODE IDENTIFICATION

Macro Call Name: $MODID

Function Code: 14/03

Equivalent Command: User Mode

Returns the mode component of the calling task group's user
identification to a 3-character receiving field.

FORMAT:

rlabel] $MODID [location of mode id field address]

ARGUMENT DESCRIPTION:

location of mode id field address

Any address form valid for an address register; pro­
vides the address of a 3-charac~er, aligned, nonvary­
ing field into which the system will place the mode
component of the user identification associated with
the issuing task group.

FUNCTION DESCRIPTION:

This call returns the mode component of the task group's
user identification to a field in the issuing task. The
mode identification returned is that entered as part of the
LOGIN command that established the user as a primary or
secondary user of this task group. See the Commands manual
for deta ils.

The entire user id is returned by the user identification
($USRID) macro call.

NOTES: 1. The address of the receiving mode id field, sup­
plied by argument 1, is placed in $84; if this
argument is omitted, $B4 is assumed to contain
the address of the receiving mode id field.

5-208 CB08

/

(-

Example:

2. On return, SRI contains one of the following
status codes:

0000 - No error
0817 - Memory access violation

3. On return, $B4 contains the address of the
receiving field.

In this example, $B4 is loaded with the address (MODFL) of a
3-character field and the $MODID macro call is issued to
place the mode identification of the task group in that
field.

MODFL RES V
LAB

$MODID

5-209

3,0
$B4,MODFL

CB08

NEW PROCESS

NEW PROCESS

Macro Call Name: $NPROC

Function Code: OD/OB

Equivalent Command: New Process (NPROC)

Terminate the current task group request and restart the
task group request with the same parameters as the original
invocation of the task group for this request.

FORMAT:

[label] $NPROC

ARGUMENT DESCRIPTION:

There are no arguments for this macro call.

FUNCTION DESCRIPTION:

This call terminates the current request for the issuing
task group, then restarts the request using the same param­
eters as in the original request.

Example:

In this example, the $NPROC macro call is used to terminate
and restart the task group request.

AGAIN $NPROC

5-210 CB08

(NEW USER INPUT

NEW USER INPUT

Macro Call Name: $NUIN

Function Code: 08/04

Equivalent Command: None

Redefine, reset, or set the user-in file for the issuing
task. The user-in file can be redefined by a new pathname,
reset to the initial user-in file, or set to the file cur­
rently defined as the command-in file. The action taken
applies only to the task that issues the macro call.

FORMAT:

[label] $NUIN [location 0 f pa thname add ress]

ARGUMENT DESCRIPTION:

location of pathname address

Any address form valid for an address register; pro­
vides the pathname of the file that is to be used as
the new user-in file for the issuing task. If $CIN is
specified for this argument, the file currently
defined as the task's command-in file is also used as
the new user-in file. If this argument is omitted,
the file defined by the request group ($RQGRP) macro
call as the user-in file for tasks in this task group
is again used for this task.

FUNCTION DESCRIPTION:

This call allows the issuing task to use another file as the
user-in file.

If a pathname is specified in the macro call, input will be
read from the file identified by the pathname.

If $CIN is specified as argument 1, the file that is cur­
rently the task's command-in file will be used as the source
of input for the task.

5-211 CB08

If the call is written without an argument, the user-in file
is identified as the initial user-in file for this task.
(The request group macro call identifies this user-in file.)

When the macro call has been executed, $R6 will contain the
record length of the new user-in file, and $R7 will contain
the file status.

NOTES: 1. If argument 1 is a pathname address, $R2 is set
to zero and the pathname supplied by argument I
is placed in $B4. If argument I is $CIN, $R2 is
set to two. If argument I is omitted, $R2 is
set to one.

Example:

2. On return, $Rl, $R6, $R7, and $B4 contain the
following information:

$RI - Return status; one of the following:

0000 - No error

All file management get-file and open-file
error codes may also be returned. See the
System Messages manual.

$R6 - Recoro length of redefined file

$R7 File status of redefined file (see
"Command In")

$B4 - Address of pathname string of new user-in
file (if pathname was supplied in argument
1)

In this example, the issuing task is to read its input from
a new user-in file name, ~VI124>UDD>TEST>JONES.

INAA $NUIN !NEWIN

NEWIN DC '~VI124>UDD>TEST>JONES~'

5-212 CBOS

NEW USER OUTPUT

NEW USER OUTPUT

Macro Call Name: $NUOUT

Function Code: 08/05

Equivalent Command: File Out (FO)

Redefine or reset the user-out file for the task group of
the issuing task. The user-out file can be redefined by a
new pathname or reset to the user-out file initially defined
for the issuing task group. The action taken applies to all
tasks in the task group from which the command is issued.

FORMAT:

[label] $NUOUT [location of pathname address]

ARGUMENT DESCRIPTION:

location of pathname address

Any address form valid for an address register; pro­
vides the pathname of the file to be used as the new
user-out file for the issuing task group. If this
argument is omitted, the file defined by the request
group macro call ($RQGRP) is used as the user-out file
for tasks in this task group.

FUNCTION DESCRIPTION:

This call allows the issuing task group to use another file
as the user-out file.

If a pathname is specified in the macro call, the tasks in
this task group will write their output to the file identi­
fied by the pathname.

If the call is written without an argument, the user output
file identified as the initial output file for this task
group is used for task output. (The request group macro
call identifies the initial user-out file.)

5-213 CB08

When the macro call has been executed, $R6 will contain the
record length of the new user-out file, and $R7 will contain
its file status.

NOTES: 1. The address of the pathname supplied by argument
I is placed in $B4, and $R2 is set to zero. If
this argument is omitted, $R2 is set to one.

Example:

2. On return, $RI, $R6, $R7, and $B4 contain the
following information:

$Rl - Return status; one of the following:

0000 - No error

All file management get-file, create-file,
and open-file error codes may also be
returned. See the System Messages manual.

$R6 - Record length of redefined file

$R7 - File status of redefined file (see
"Command In")

$B4 - Address of pathname string of new user-out
file (if a pathname was specified in
argument 1)

In this example, the user-out file is reset to its initial
definition.

OUTBK $NUOUT

5-214 CB08

OPEN FILE

OPEN FILE

Macro Call Name: $OPFIL

Function Code: 10/50 (preserve), 10/51 (renew)

Equivalent Command: None

Initializes and establishes addressability to a file (which
can be used by any task in the group). You identify the
file to be opened by supplying its logical file number
(LFN) •

FORMAT:

[label] $OPFIL [fib address] [{ ,PRESERVE}]
,RENEW

ARGUMENT DESCRIPTION:

fib address

Any address form valid for an address register; pro­
vides the location of the file information block
(FIB). The FIB must contain a valid LFN and program
view.

{PRESERVE}
PRE

Specifies that this is an existing data file, and that
labels and data already in the file are to be pre­
served. Reading starts from the first logical record;
writing starts at the current logical end-of-file.
PRESERVE is the default value for this macro call.

For indexed files only, specifying PRESERVE means that
a file when opened cannot be opened by anyone else in
RENEW mode.

5-215 CBOS

{RENEW}
REN

Specifies that this is a new file, and that no attempt
should be made to read it (i.e., the file should be
treated as though it was empty).

Specifying RENEW means that the file cannot be opened
by anyone else.

For disk files, both writing and reading start from
the first logical record (except for indexed sequen­
tial files, which cannot be read in this mode) •

For tape files, RENEW is used to rewrite an existing
file or add a new file to a volume. Write permission
must be granted in the FIB program view word.

FUNCTION DESCRIPTION:

Before this macro call can be issued, the following actions
must have occurred:

1. The specified file must physically exist (i.e., it must
have been created through a create file macro call).

2. The LFN must have been associated with the external file
through an associate file, get file, or create file
macro call (or through an equivalent command) •

If a file is currently opened elsewhere in the system (by
any LFN in the requesting task group or any other task
group), the following rules apply:

1. Opening the file in RENEW mode is not allowed.

2. Opening an indexed file in PRESERVE mode is not allowed
if the file is currently open in RENEW mode.

3. Opening a tape file in any mode is not allowed.

If an associate file macro call was executed, but a get file
macro call was not, the open file macro call will attempt to
reserve the file with exclusive concurrency control. (This
method of opening a file is not recommended.)

A file cannot be opened directly through its pathname. If
you issue a get file or create file macro call with only a
pathname (no LFN specified), the system will assign an LFN,
which you can then use to open the file.

5-216 CB08

/

/! ,

If an indexed sequential file is empty (i.e., has been
created but never opened in RENEW mode), and this file is
opened in PRESERVE mode, the system converts the open to an
open in RENEW mode and provides no notification of this
change. Only write operations will be allowed. A subse­
quent read operation will result in a 0203 (illegal func­
tion) error code.

The following discussion and rules apply only to magnetic
tape fi les.

1. Certain tape search rules are used when the file is
opened to locate the required tape file. These rules
are applied when the tape is opened for data management
(record-level) access, or when a file name is specified
and the tape is opened for storage management (block
level) access. Table 5-11 defines these rules.

Table 5-11. Tape File Search Rules for $OPFIL Macro Call

File Label Type and
Open Mode

Labeled tapes opened
in PRESERVE mod e:

File name not
speci fied

File name is
specified

a •
FSN Value ln

$GTFIL Call

O/FF

n

o

n

5-217

Resul t

Tape positioned to next
file.

Tape posi tioned to nth fil e.

Tape positioned to next
file; file name in header
label is compared against
specified file name.

Tape positioned to nth file;
file name in header label is
compared against specified
file name.

Tape searched in forward
direction only for a header
label with a matching file
name.

CB08

Table 5-11 (cont). Tape File Search Rules for $OPFIL Macro Call

File Label Type and
Open Mode

Labeled tape opened
in RENEW mode (file
name is always
required)

Unlabeled tapes
opened in PRESERVE
mode (file or volume
name cannot be
specified)

Unlabeled tapes
opened in RENEW mode
(file or volume name
cannot be specified)

a

a 1 . FSN Va ue ln
$GTFIL Call Result

o Tape positioned to next
file.

n Tape positioned to nth file.

n

o

n

FF
16

Tape positioned in forward
direction only to a file
with a matching file name.
If no match is found, the
new file is appended after
the end of all existing
files on the last tape
vol ume.

Tape positioned to the next
file (past the next tape
mar k) •

Tape positioned to the nth
file (past the nth tape
mark) •

Tape positioned to the next
file (past the next tape
mar k) •

Tape positioned to the nth
file (past the nth tape
mar k) •

Tape positioned forward only
to the end of existing data;
the new file is appended
after the end of all exist­
ing files on the tape.

FSN = Tape file sequence number argument in $GTFIL macro call.

2. For tapes opened in PRESERVE mode, the position of data
within the file is determined as follows:

a. If only read permission is granted (FIB program view
word ~llows read but not write), the header label
group is processed and the file positioned directly
in front of the first data record.

5-218 CB08

\... /

(

(

3.

b. If only write permission is granted (FIB program
view word allows write but not read) the header
label group is processed and the file positioned
directly after the last data record. This in
effect, is "append" mode, a way for the user to add
records to the end of a file without having to read
past all the existing data records.

Trailer labels and an end-of-data tape mark are
written when the file is closed. Files following
the current file are lost.

c. If read and write permissions are granted (FIB pro­
gram view word allows both read and write) the
header label group is processed and the file posi­
tioned directly in front of the first data record.
Any write request issued after the file is opened
will cause all data records that were read to be
preserved, and those records that were not read to
be lost. This procedure can be used to preserve
part of the file while renewing the rest.

If no write operations are done and the file is
closed, no trailer labels are written. Thus files
located after the current file are preserved.

If write operations are done, trailer labels and an
end-of-data tape mark are written when the file is
closed. Files that follow the current file are
lost.

For tapes opened in RENEW mode, the position of data
within the file is determined as follows.

a. Creation 6f the new file is initiated at the current
tape position. (If the tape is positioned at begin­
ning of tape (BOT), the volume header label is
bypassed.) The header label group is written as
specified in the preceding get file macro call.
After these actions, the tape is positioned at the
end of the header label group.

b. Data and/or files following the current tape posi­
tion are destroyed when the file is opened.

As part of the initialization process, this macro call
verifies that sufficient space is available for buffers and
control structures.

This macro call must be issued before any of the data man~
agement or storage management macro calls can be executed.

5-219 CBD8

The file information block can be generated by a $FIB macro
call. Displacement tags for the FIB can be defined through
the $TFIB macro call.

NOTES: 1. If the first argument is coded, the address of
the FIB is loaded into $B4; if the argument is
omitted, $B4 is assumed to contain the address
of the FIB.

Example:

2. On return, $RI contains one of the following
status codes:

0000 - No error

0205 - Illegal argument

0206 - Unknown or illegal LFN

0208 - LFN or file already open

0214 - Bad program view of file

0217 - Access violation

0225 - Not enough system memory for buffers or
structures

0226 - Not enough user memory for buffers or
structures

022C - Access control list (ACL) violation

022E - Record lock concurrency conflict

In addition to the above codes, any system
service codes received by the file manager are
passed on through $RI.

This $OPFIL example opens a new file, in which records are
to be written via the data management macro call(s) that
follow this macro call.

Following is a sample sequence of macro calls and FIB used
to open FILE A for processing.

5-220 CB08

./

(FILE A

MYFIB

KEY

IDXOI

WRTFIL

DC

DC

DC

DC

DC

.
$CRFIL

$OPFIL

$WRREC

Z'OOO5'

Z'OOO5'

Z'OOOOFFFF'

~~VOL03>SUBINDEX.A>FILE A~'

Z'0005'

!FILE A or $GTFIL !WRTFIL

!MYFIB, RENEW

! MYFIB

5-221

(See "Assumptions
for File System
Examples" in
Section 3.)

(See create file
macro call)
(See get file

macro call)

(See write record
macro call)

CB08

OPERATOR INFORMATION MESSAGE

OPERATOR INFORMATION MESSAGE

Macro Call Name: $OPMSG

Function Code: 09/00

Equivalent Command: Message (MSG)

Display an information message on the terminal designated as
the operator terminal.

FORMAT:

[label] $OPMSG [location of IORB address]

ARGUMENT DESCRIPTION:

location of IORB address

Any address form valid for an address register; pro­
vides the address of the input/output request block
(IORB) that describes the location and range of the
output information message. See Appendix A for a
description of the IORB.

FUNCTION DESCRIPTION:

This call enables the issuing task to send a message to the
system operator. The location of the message and its range
are specified in the IORB (which is generated by the SIORB
macro call, or coded by the user). The IORB also specifies
whether control is to be returned to the issuing task imme­
diately or the task is to wait until the message is
displayed.

NOTES: 1. The address of the IORB supplied by argument 1
is placed in $B4; if this argument is omitted,
$B4 is assumed to contain the correct address.

2. On return, $RI and $B4 contain the following
information:

5-222 CBOS

/

\ ,
~./

(

Example:

$Rl - Return status; one of the following:

0000 - No error

0801 - IORB in use (T-bit on)

0802 - Invalid LRN; or console message
suppression in effect

0803 - Illegal wait or R, S, D, bit in
IORB is still on

(The following could occur if the IORB
specified the issuing task was to wait for
the message to be displayed.)

0104 - Invalid arguments

0105 - Device not ready

0106 - Device timeo.u t

0107 - Hardware error (check IORB status
word)

0108 - Device disabled

0109 - File mark encountered

OIOA - Controller unavailable

OIOB - Device unavailable

OIOC - Inconsistent request

$B4 - Address of IORB

In this example, the $OPMSG macro call is used to write the
message labeled OP MSG on the operator terminal. The wait
macro call ($WAIT)-is later used to block the task until the
message has been received.

5-223 CB08

$OPMSG !IORB

.
$WAIT ! IORB

* * DEFINE THE IORB.
*
IORB

*

RESV

TEXT

TEXT

DC
DC

TEXT

DC
DC

$AF, 0

Z '00 ' ;
B '0 ';
B 'I' ;
B '0 ' ;
B '0 ' ;
B '0 ' ;
B '0 ' ;
B'Ol'

Z '00 ' ;
B '0 ';
B '0 ' ;
B '0 ' ;
B 'a ' ;
Z 'I '

<OP MSG
OP MLN

B'OOOOOOO';
B '0 ';
B '0 ' ;
B '0 ' ;
B' 0 ';
B 'I ' ;
B '0 ' ;
B'OOO'

o
o

* END OF THE IORB.
*

THIS CODE EXECUTES WHETHER OR NOT
OPERATOR'S MESSAGE WAS PHYSICALLY
WRITTEN TO THE TERMINAL •

THIS CODE EXECUTES ONLY AFTER THE
MESSAGE IS PHYSICALLY WRITTEN.

RSU

RETURN STATUS
T (IN USE) BIT
W (DON'T WAIT) BIT
U (USER) BIT
MBZ
MBZ
MBZ
MUST BE 1

LRN
MBZ
B (BYTE INDEX) BIT
MBZ
MBZ
FUNCTION CODE

BUFFER ADDRESS
RANGE (IN BYTES)

B (BREAK) BIT
D BIT (MBZ)
K BIT (MBZ)
E (KEYBOARD ECHO) BIT
L (LF) BIT
C (NO CR) BIT
MODE

RESIDUAL RANGE
STATUS WORD

I CTI

I CT2

I DVS

TEXT
EQU

'A MESSAGE TO THE OPERATOR.'
2* ($-OP_MSG)

5-224 CB08

~~~~~ ....... --_ .. . 

J 
.of 

j 



OPERATOR RESPONSE MESSAGE 

OPERATOR RESPONSE MESSAGE 

Macro Call Name: $OPRSP 

Function Code: 09/01 

Equivalent Command: None 

Display a message on the operator terminal and place the 
operator's response to that message in a buffer specified by 
the input IORB. 

FORMAT: 

[label] $OPRSP [location of IORB 1 ist address] 

ARGUMENT DESCRIPTION: 

location of IORB list address 

Any address form valid for an address register; pro­
vides the address of a list specifying the IORBs to be 
used. The fo rmat 0 f the IORB 1'i st is as follows: 

entry I - Address of IORB describing output message 
(to operator terminal) 

entry 2 - Address of IORB describing input message 
(for operator response) 

FUNCTION DESCRIPTION: 

This call enables the issuing task to send a message to the 
system operator and receive the operator's response to that 
message. 

Two IORBs are needed; an IORB describing the output·message 
and an IORB describing the input buffer for the response. 
Both IORBs are generated through a $IORB macro call or coded 
by the user. 

The output message lORB describes the location of the output 
message and the size of the output message. 

5-225 CB08 



The input IORB describes the location'of the input buffer 
for the response, the size of the buffer, and whether con­
trol is to be returned to the issuing task immediately or, 
by setting the W-bit of the input IORB, after the response 
has been received. 

NOTES: 1. The address of the IORB list supplied byargu­
ment 1 is placed in $B4; if this argument is 
omitted, $B4 is assumed to contain the correct 
address. 

2. On return, $Rl and $B4 contain the following 
in fo rma t ion: 

$Rl - Return status; one of the following: 

0000 - No error 

0801 - IORB in use (T-bit on) 

0802 - Invalid LRN; or console message 
suppression in effect 

0803 - Illegal wait, or the R, S, D bit in 
the IORB is not zero 

0817 - Memory access violation 

(The following could occur if the IORB 
describing the input buffer specified that 
the issuing task was to wait for the 
response. ) 

0104 - Invalid argument 

0105 - Device not ready 

0106 - Device timeout 

0107 - Hardware error (check IORB status 
word) 

0108 - Device disabled 

0109 - File mark encountered 

OlOA - Controller unavailable 

OIOB - Device unavailable 

OlOC - Inconsistent request 

0100 - EaT on magnetic tape detected 

5-226 CBC8 



(-, 

. .. 
~, 

$B4 - Address of input IORB 

Example: 

In this example, the $OPRSP macro call causes the message 
labeled OP QRY to be written on the operator terminal. A 
reply from-the operator terminal will then be read into the 
buffer labeled OP ANS. The issuing task will remain blocked 
until the above actions have been completed. 

$OPRSP ! IORB L 

* 
* DEFINE THE IORB LIST. 
* 
IORB L DC <OUT_RB,<IN RB 
* -
* DEF HIE THE IORBS. 
* OUTPUT IORB: 
* 
OUT RB RESV $AF, a 

TEXT Z '00' , B'OOOOOOOl' 
TEXT Z '00' , B'OOOO' , Z '1 ' 
DC <OP QRY 
DC OPQLN 
TEXT B'OOOOOOOOOOOlOOOO' 
DC 0, 0 

* 
* INPUT IORB: 
* 
IN RB RES V $AF, a 

TEXT Z 'no' , B' 00000001 ' 
TEXT Z '00' , B'OOOO' , Z '2' 
DC <OP ANS 
DC OP ALN 
TEXT B'0000000000110000' 
DC 0, a 

* 
* END OF IORBS. 
* 
OP QRY TEXT 'A QUERY TO THE OPERATOR?' 
OP QLN EQU 2* ($-OP QRY) 
OP-ANS 40, 0 -RESV 
OP ALN EQU 2*($-OP ANS) 

5-227 CB08 



I 

OVERLAY AREA, RELEASE 

OVERLAY AREA, RELEASE 

Macro Call Name: $OVRLS 

Function Code: 07/06 

Equivalent Command: None 

Exit from the calling overlay, decrement the count of users 
maintained for this overlay, and transfer control to the 
supplied return point. (The overlay must have been 
requested through an overlay area reserve and execute over­
lay ($OVRSV) macro call.) 

FORMAT: 

[label] $OVRLS [location 0 f return po in t add ress] 

ARGUMENT DESCRIPTION: 

location of return point address 

Any address form valid for an address register; pro­
vides the address of the return point to which control 
is to be transferred. 

FUNCTION DESCRIPTION: 

This call causes an exit from the calling overlay and a 
return to a specified point. The identity of the overlay 
area table (OAT) controlling the overlay is extracted from 
the task control block of the issuing task. The identity of 
the OAT is cleared from the TCB and the count of the number 
of users of this overlay is decremented in the defining OAT. 
When the count drops to zero (Le., the task is the last to 
use the reserved area) ,the overlay area is marked 'as 
available (i.e., released) and can be reused by a reserve 
area and execute overlay function. Control is transferred 
to the return point supplied by argument 1. 

5-228 CB08 



( 

NOTES: 1. The return point address supplied by argument 1 
is placed in $B5; if this argument is omitted, 
$B5 is assumed to contain the correct return 

Example: 

po int address. 

2. No return is made to the caller; control is 
returned to the address supplied in $B5. All 
registers except $RI are preserved as they 
existed when the function was executed. 

In this example, the calling overlay uses the $OVRLS macro 
call to release its overlay area and return to the caller at 
the return point named OV2 RA. The calling overlay is 
assumed to be the overlay (OVLY2) that was loaded and 
executed as shown in the example for the overlay area 
reserve and execute overlay macro call. 

XLOC 
$OVRLS 

OV2 RA 
!<OV2 RA 

5-229 CB08 



I 

OVERLAY AREA RESERVE, 
AND EXECUTE OVERLAY 

OVERLAY AREA RESERVE, AND EXECUTE OVERLAY 

Macro Call Name: $OVRSV 

Function Code: 07/05 

Equivalent Command: None 

Reserve an overlay area defined by the specified overlay 
area table (OAT), increment the user count for that overlay 
area, load the specified floatable overlay, and transfer 
control to the overlay at the specified {or default} entry 
point. {The overlay area must have been defined through a 
create overlay area table macro call.} 

FORMAT: 

[label] $OVRSV flocation of overlay id], 
[location of entry point offset], 
[location of OAT address] 

ARGUMENT DESCRIPTION: 

location of overlay id 

Any address form valid for an address register; pro­
vides the overlay id of the overlay to be loaded and 
executed. (The overlay id is a binary value generated 
by the Linker.) 

location of entry point offset 

Any address form valid for an address register; pro­
vides the offset {from the overlay load base} of the 
overlay entry point to which control is to be 
transferred. If this argument is omitted, control is 
transferred to the start address declared to the 
language processor or the Linker. 

5-230 CB08 

/ 



( 

( 

location of OAT address 

Any address form valid for an address register; pro­
vides the address of the OAT that defines this overlay 
area. This address was returned by the system when 
the OAT was created through the create overlay area 
table macro call ($CROAT). 

FUNCTION DESCRIPTION: 

This call causes the system to perform the following: 

1. Determine if the issuing task already has an area 
reserved. If so, an illegal overlay nesting (160B) is 
returned. 

2. If the issuing task has no area reserved, determine 
whether the specified overlay of the bound unit being 
executed by the issuing task is currently resident in 
any of the overlay areas defined by the OAT referred to 
in the call. 

3. If the overlay is resident, the system increments the 
area's user count and transfers control to the overlay 
at the specified (or default) entry point. 

NOTE: The default OAT is the first OAT in the OAT queue 
of the current bound unit having areas of suf­
ficient size to contain the requested overlay. 

4. If the overlay is not resident, the system attempts to 
reserve an overlay area defined by the specified OAT. 
If the overlay area is successfully reserved, the system 
increments the user count for the area, loads the 
specified overlay, and transfers control to the overlay 
at the specified (or default) entry point. 

5. If no overlay area defined by the specified OAT is 
available, the system suspends the issuing task until an 
area becomes available. When an area becomes available, 
the system res~rves it, increments its user count, loads 
the specified overlay, and transfers control to its 
specified (or default) entry point. 

6. When control is transferred to the overlay, the system 
records the identity of the defining OAT in the task 
control block of the issuing task. 

The overlay to be loaded must be a user segment with proper 
access rights and the proper size. 

5-231 CB08 



NOTES: 

Example: 

1. The overlay id supplied by argument 1 is placed 
in $R2; if this argument is omitted, $R2 is 
assumed to contain the overlay ide 

2. The relative displacement of the entry point 
from the overlay base, supplied by argument 2, 
is placed in $R6; if this argument is omitted, a 
value of -1 is placed in $R6 to designate that 
the default entry point established through the 
language processor or the Linker is to be used. 

3. The address of the overlay area table (OAT), 
supplied by argument 3, is placed in $B4; if 
this argument is omitted, $B4 is assumed to con­
tain the address of the OAT to be used. 

4. On normal entry to the overlay, $B4 conta ins the 
address of the overlay area table (OAT). All 
other registers are preserved as they existed at 
the execution of the call. 

5. On return, $R2 and $B4 contain the following: 

$R2 - Overlay id (as supplied) 
$84 - Overlay area table address (as supplied) 

6. If an error occurs, return is made to the 
caller. $Rl contains one of the following 
status codes: 

Olxx - Media error 
0602 - Insufficient system memory 
1602 - Invalid overlay id 
1605 - Illegal start address 
l60A - Insufficient memory 
l60B - Illegal overlay nesting 
1610 - Named OAT cannot be found 

In this example, the $CROAT macro call is used to create an 
overlay area table of three 5l2-word entries. (It is 
assumed that no existing OAT controls 5l2-word entries.) 
The address of the controlling OAT will be stored in the 
field OAT A. Later, the $OVRSV macro call is used to cause 
the overlay named OVLY2 to be loaded into one of the areas 
controlled by the OAT (if it is not already available in one 
of the OAT areas) and then executed at its default entry 
point. 

5-232 CB08 



( XVAL OVLY2 

* 
* CREATE AN OAT IF ONE DOES NOT ALREADY EXIST 

* 
$CROAT ! OAT_A, =512, =3 

* 
* CHECK FOR ERRORS 
* 

BNEZ $R 1, ERRORI 

* 
* LOAD OVLY2 (IF NECESSARY) AND EXECUTE IT 

* 
$OVRSV =OVLY2" !OAT A 

* 
* CHECK FOR ERRORS 

* 
BNEZ $Rl, ERROR2 

* * DEFINE NORMAL RETURN ADDRESS FOR OVERLAY 

* 
XDEF 

OAT A DC <$ 

( 
5-233 CB08 



I 

OVERLAY, EXECUTE 

OVERLAY, EXECUTE 

Macro Call Name: $OVEXC 

Function Code: 07/00 

Equivalent Command: None 

Load the specified overlay of the bound unit being executed 
by the issuing task. Transfer control to the overlay at the 
specified entry point or at the start address declared to 
the language processor or to the Linker. 

FORMAT: 

[label] $OVEXC rlocation of overlay id], 
[location of entry point offset], 
[location of overlay base address] 

ARGUMENT DESCRIPTION: 

location of overlay id 

Any address form valid for an address register; pro­
vides the overlay id of the overlay to be executed. 
(The overlay id is a binary value generated by the 
Linker.) 

location of entry point offset 

Any address form valid for an address register; pro­
vides the offset (from the overlay load base) of the 
overlay entry point to which control is to be trans­
ferred. If this argument is omitted, control is 
transferred to the start address declared to the 
language processor or the Linker. 

FUNCTION DESCRIPTION: 

This call causes the named overlay to be loaded at the fixed 
(virtual) address established at link time. 

5-234 CB08 



If argument 2 is specified, the value it provides is the 
offset from the overlay load base. Control is transferred 
to that location. (Note that the offset must be less than 
the overlay size.) If argument 2 is not specified, control 
is transferred to the start address declared to the language 
processor 0 r the Lin ke r (defa ul t sta rt add ress) • If a rgu­
ment 3 is specified, it provides the location of the overlay 
load base. 

The overlay to be loaded and executed must have the proper 
access rights and must not be of zero length. 

NOTES: 1. The overlay id supplied by argument 1 is placed 
in SR2; if this argument is omitted, $R2 is 
assumed to contain the overlay ide 

2. The relative displacement of the entry point 
from the overlay load base, supplied by argument 
2, is placed in $R6; if this argument is omit­
ted, a value of -1 is placed in $R6 to designate 
that the default entry point is to be used. 

3. The overlay base address supplied by argument 3 
is placed in $B4; if this argument is omitted, 
the system assumes a null address. 

4. The address where the overlay is actually loaded 
is ascertained as follows: 

a. If the overlay is nonfloatable, it is loaded 
at the fixed address established at link 
time. 

b. If the referenced overlay is floatable and 
null pointer value is specified as the base 
address, the overlay is loaded into memory 
obtained by the loader from the memory pool 
of the issuing task's task group. 

c. If the overlay is floatable, and a nonnull 
pointer value is specified as the base 
address, the overlay is loaded at the 
specified base address. 

5. On overlay entry, $RI, $R2, $R6, and $B4 contain 
the following information: 

$Rl - 0000 
$R2 - Overlay id 
$R6 - Entry point offset 

5-235 CB08 



Example: 

11. If an erro r is made in the call ing sequence, 
return is to the caller. $Rl contains~one of 
the following status codes: 

Olxx - Media error 

0602 - Insufficient system memroy 

0817 - Memory access violation 

0829 - Group available memory exceeded 

1602 - Invalid overlay id 

1604 - Illegal start address (offset greater 
than or equal to overlay size) 

l60A - Insufficient memory 

In this example, the $OVEXC macro call causes the overlay 
named DPOSIT (of the bound unit being executed) to be loaded 
and started at the entry point whose offset is named ENTRY2. 
The example assumes that ENTRY2 has been defined as an 
external value when the bound unit was linked (or possibly 
when its source unit was assembled or compiled). 

XVAL 
$OVEXC 

DPOSIT, ENTRY2 
=DPOSIT, =ENTRY2 

5-236 CB08 



( 

OVERLAY, LOAD 

OVERLAY, LOAD 

Macro Call Name: $OVLD 

Function Code: 07/01 

Equivalent Command: None 

Load the specified overlay of the bound unit being executed 
by the issuing task. Return control to the issuaing task. 

FORMAT: 

[label] $OVLD [location of overlay id], 
[location of overlay base address] 

ARGUMENT DESCRIPTION: 

location of overlay id 

Any address form valid for an address register; pro­
vides the overlay id of the overlay to be loaded. 
(The overlay id is a binary value generated by the 
Linker.) 

FUNCTION DESCRIPTION: 

This macro call causes the loading of the named overlay at 
the fixed (virtual) address established at Link time. When 
the overlay is successfully loaded, control is returned to 
the issuing task with the overlay base address in $B4 and 
the overlay default start address offset in $R6. (The over­
lay default start address is that address specified to the 
language processor or the Linker.) 

NOTES: 1. The location of the overlay id, supplied by 
argument 1, is placed in $R2. If argument 1 is 
omitted, $R2 is assumed to contain the location 
of the overlay ide 

2. The location of the overlay base address, sup­
plied by argument 2, is placed in $B4; if this 
argument is omitted, a null address is assumed. 

5-237 CB08 

I 



3. The address where the overlay is actually loaded 
is ascertained as follows: 

a. If the overlay is nonfloatable, it is loaded 
at the fixed address established at link 
time. 

b. If the referenced overlay is floatable and 
null pointer value is specified as the base 
address, the overlay is loaded into memory 
obtained by the loader from the memory pool 
of the issuing task's task group. 

c. If the overlay is floatable, and a nonnull 
pointer value is specified as the base 
address, the overlay is loaded at the 
specified base address. 

4. On return, $Rl, $R2, $R6, and $B4 contain the 
following information: 

$Rl - Return status; one of the following: 

0000 - No error 

Olxx - Media error 

0601 - Requested contiguous memory exceeds 
defined pool size 

0602 - Insufficient system memory 

0817 - Memory access violation 

0829 - Group available memory exceeded 

1602 - Invalid overlay id 

l60A - Insufficient memory 

$R2 - Overlay id (on a successful return) 

$R6 - Overlay default start address offset (on a 
successful return) 

$B4 - Overlay base address 

5-238 CB08 

;J 



( 

* 
* 
* 

* 

* 
* 
* 

* 

Example: 

In this example, the $OVLD macro call causes the overlay 
named DPOSIT (of the bound unit being executed) to be loaded 
but not executed. Upon return from the system, $B4 will 
contain the overlay base address or a null pointer value for 
floatable overlays. For nonfloatable overlays, $B4 is not 
applicable, and $R6 will contain the offset from its base 
address to its default start address. The overlay base 
address and the offset to the default start address will be 
saved in OVLY A and OVLY E, respectively. Thus, the overlay 
can be entered later at Its default start address by an 
instruction sequence such as that shown in the middle of the 
example. When the overlay is no longer needed, it is 
unloaded by the $OVUN (overlay unload) macro call. 

LOAD THE DPOSIT OVERLAY 

XVAL DPOSIT 
$OVLD =DPOSIT 

BNEZ SRI, BAD LD CHECK FOR LOAD ERRORS 

SAVE THE BASE ADDRESS AND ENTRY POINT OFFSET 

STB $B4, OVLY A 
STR $R6, OVLY-E 

* JUMP TO DPOSIT'S DEFAULT ENTRY POINT 

* 

* 
* 
* 

LDB $B4, OVLY A 
LDR $RI, OVLY E 
JMP $B4. $RI 

UNLOAD THE OVERLAY 

SOVUN =DPOSIT, !OVLY A 

OVLY A DC 
OVLY-E DC 

<$ 
00 

5-239 CB08 



OVERLAY RELEASE, WAIT, 
AND RECALL 

OVERLAY RELEASE, WAIT, AND RECALL 

Macro Call Name: $OVRCL 

Function Code: 07/07 

Equivalent Command: None 

Exit from the calling overlay. When completion status has 
been posted to the specified request block, perform an over­
lay area reserve and execute overlay function for the 
specified overlay. Use the current definition of the over­
lay control table (OCT) and overlay area table (OAT). The 
calling overlay must have been loaded through the overlay 
area reserve and execute overlay macro call ($OVRSV). 

FORMAT: 

[label] $OVRCL [location of overlay id], 
[location of entry point offset] , 
[location of request block address] 

ARGUMENT DESCRIPTION: 

location of overlay id 

Any address form valid for an address register; pro­
vides the overlay id of the overlay to be called when 
the specified request block has been posted as com­
plete. (The overlay id is a binary value generated by 
the Linker.) If this argument is omi tted, the overlay 
that issued this macro call is recalled. 

location of entry point offset 

Any address form valid for an address register; pro­
vides the offset (from the overlay load base) of the 
overlay entry point to which control is to be trans­
ferred. If this argument is omitted, control is 
transferred to the start address declared to the 
language processor or the Linker. 

5-240 CB08 



( 

(, 

location of request block address 

Any address form valid for an address register; pro­
vides the address of the request block whose comple­
tion status is to be awaited. 

FUNCTION DESCRIPTION: 

This call enables the task to exit from the calling overlay 
and then to load the same or another overlay when the 
specified request block is posted as complete. The call 
releases the overlay previously reserved by the overlay area 
reserve and execute overlay ($OVRSV) macro call. This over­
lay is identified by the currently reserved overlay area 
field in the task control block of the issuing task. After 
the identity of the currently reserved area is retrieved, 
the field in the task control block is cleared and the usage 
count of the area is decremented. If this task is the last 
task using the area, the area is released as a resource of 
the associated overlay area table (OAT), and tasks waiting 
for an area are posted where applicable. 

The identity of the associated OAT is saved. The issuing 
task is then forced to wait on the specified request block 
(RB). When the requested block is posted as completed, the 
overlay area table is restored and the overlay area reserve 
and execute overlay ($OVRSV) function is performed to recall 
the specified overlay. The address and completion status of 
the request block are returned to the called overlay. 

If argument 1 specifies an overlay that is resident in the 
area defined by this OAT, the area's user count is incre­
mented and control is transferred to the overlay at the 
specified (or default) entry point (argument 2). If the 
overlay is not resident, an attempt is made to reserve an 
overlay area controlled by the OAT. If the area is success­
fully reserved, the user count is incremented and the over­
lay is loaded and executed. If no overlay area defined by 
the OAT is available, the issuing task is suspended until an 
area becomes available. When the area is available, the 
count is incremented and the overlay is loaded and executed. 

NOTES: 1. The overlay id supplied by argument 1 is placed 
in $R2; if this argument is omitted, a value of 
-1 is placed in $R2 to designate that the issu­
ing overlay is to be recalled. 

2. The relative displacement of the entry point 
from the overlay base, supplied by argument 2, 
is placed in $R6; if this argument is omitted, a 
value of -1 is placed in $R6 to designate that 
the default entry point established through the 
language processor or the Linker is to be used. 

5-241 CB08 



Example: 

3. The address of the request block to be w~ited 
on, supplied by argument 3, is placed in $B4; if 
this argument is omitted, $B4 is assumed to con­
tain the address of the request block. 

4. On entry to the called overlay (no error in 
calling sequence), SRI and $B4 contain the fol­
lowing information: 

$Rl - Posted completion status of specified 
request block, as follows: 

0000 - No error 

OOOO-FFFF - Request-spec! fic posted com­
pletion status 

$B4 - Start address of called overlay (used by 
debugger) or address of OAT (if no debug-
9 ing in effect) 

5. If the calling sequence is in error, return is 
made to the calling overlay. $Rl, $R2, and $B4 
contain the following information: 

SRI - Return status; one of the following: 

0802 - Invalid LRN 
0803 - Illegal wait 
1602 - Invalid overlay id 
1605 - Illegal start address 
1617 - OAT has no overlay to release 

$R2 - Overlay id value (as supplied) 

$R6 - Overlay entry point offset (as supplied) 

$B4 - Request block address (as supplied) 

In the following example, the task is to exit from the cur­
rent overlay and wait for the task request block named TRBI 
to be marked as complete before loading overlay OVLY2 and 
executing it at its default entry point. Note that the 
overlay to be exited from and the overlay to be loaded and 
executed are controlled by the OAT whose identity was 
stored in the task control block of the issuirig task by a 
previously issued overlay area reserve and execute overlay 
macro call. 

5-242 CB08 



(' XVAL OVLY2 

TRB1 $TRB 17 

$OVRCL =OVLY 2" ! TRB 1 

( " 

.~._' I 

5-243 CB08 



I 

OVERLAY STATUS 

OVERLAY STATUS 

Macro Call Name: $OVST 

Function Code: 07/03 

Equivalent Command: None 

Return the current status of the specified overlay. Among 
the items of status information returned are: 

o Sharable or nonsharable bound unit 
o Patched or nonpatched overlay 

FORMAT: 

[label] $OVST [location of overlay id] 

ARGUMENT DESCRIPTION: 

location of overlay id 

Any address form valid for an address register; pro­
vides the overlay id of the overlay whose status is 
desired. (The overlay id is a binary value generated 
by the Linker.) 

FUNCTION DESCRIPTION: 

This call causes the system to return an overlay status word 
in $R2. The description of $R2, below, contains the detail 
of the overlay status word. Bits 5 and 6 are meaningful 
only to the call/cancel/exit controller. 

When this call is executed, the overlay entry point is 
returned in $R6, the overlay size in $R7, and the overlay 
base address in $B4. 

NOTES: 1. The overlay id supplied by argument I is placed 
in $R2; if this argument is omitted, $R2 is 
assumed to contain the required overlay id. 

5-244 CB08 



(" 

(~ , 

2. On return, $Rl, $R2, $R6, $R7, and $B4 contain 
the following information: 

SRI - Return status; one of the following: 

0000 - No error 
1601 - Invalid overlay id 

$R2 - Overlay status indicator word: 

Bit 0 - Set to 1 if bound unit sharable; 
otherwise o. 

Bit 1 - Set to 1 if overlay permanently 
loaded; otherwise o. 

Bit 2 - Set to 1 if slow load section 
present; otherwise o. 

Bit 3 - Set to 1 if overlay floatable; 
otherwise o. 

Bit 4 - Set to 1 if bound unit can be 
executed in system task group; 
otherwise o. 

Bit 5 - Set to 1 if overlay resident in 
memory; otherwise 0; meaningful 
only to call/cancel/exit 
controller. 

Bit 6 - Set to 1 if overlay has been 
called but has not exited; other­
wise 0; meaningful only to calli 
cancel/exit controller. 

Bits 7 through 9 - Reserved for system 
use. 

Bit 10 - Set to 1 if overlay contains 
initialized relocatable pointers; 
otherwi se o. 

Bit 11 - Set to 1 if overlay contains 
symbolic references; otherwise o. 

Bit 12 - Set to 1 if overlay defines 
symbolic names; otherwise o. 

Bit 13 - Set to 1 if overlay is patched; 
otherwise o. 

5-245 CB08 



Example: 

Bit 14 - Set to 1 if overlay must be ~ ~ 
executed in SAF mode; otherwise ~ ~ 
o. 

Bit 15 - Set to 1 if overlay must be 
executed in LAF mode; otherwise 
o. 

$R6 - Overlay default entry point (as specified 
by the language processor or Linker); 
given as a word offset from the overlay 
base address. 

$R7 - Overlay size in words (0000 is returned if 
the si ze is 64K wo rd s) • 

$B4 - Base address of overlay if permanently 
loaded or nonfloatable. 

In this example, the $OVST macro call is used to determine 
the status of the overlay named DPOSIT, which is an overlay 
of the bound unit being executed. If the overlay is float­
able, the get memory macro call ($GMEM) obtains memory for 
the overlay. The overlay execute macro call ($OVEXC) then 
loads the overlay and starts it at its default entry point. 
To simplify the example, the return status will not be 
checked for possible errors. 

* * NAME THE STATUS INDICATORS TO BE USED. 
* 
FLOAT EQU B'0001000000000000' 

* * DECLARE THE OVERLAY'S NAME. 

* 
XVAL DPOSIT 

* * GET THE OVERLAY'S STATUS. 
* 

$OVST DPOSIT 

* * GET MEMORY FOR IT IF IT IS FLOATABLE. 

* 

* 

LB 
BBF 
LDV 
$GMEM 

=$R2, FLOAT 
>LOAD 
$R6,0 
=$R7,WAIT 

* LOAD AND EXECUTE THE OVERLAY. 

* 
LOAD $OVEXC DPOSIT 

5-246 

----------

CB08 



(" 

( 

OVERLAY, UNLOAD 

OVERLAY, UNLOAD 

Macro Call Name: $OVUN 

Function Code: 07/0C 

Equivalent Command: None 

Unload the specified overlay of the bound unit that contains 
the procedure being executed by the issuing task. 

FORMAT: 

[label] SOWN [location of overlay id], 
[location of overlay base address], 
[location of return point address] 

ARGUMENT DESCRIPTION: 

location of overlay id 

Any address form valid for an address register; pro~ 
vides the overlay id of the overlay to be unloaded. 
(The overlay id is a binary value generated by the 
Linker.) 

location of overlay base address 

Any address form valid for an address register; pro­
vides the base address of the overlay to be unloaded. 
The load overlay and execute overlay macro calls cause 
the overlay to be loaded at the fixed (virtual) 
address estab~ished at Link time. 

location of return point address 

Any address form valid for an address register; pro­
vides the address of the return point to which control 
will be returned after the macro call is executed. If 
this argument is omitted, the address of the first 
word following the generated monitor call sequence is 
assumed to be the return point address. 

5-247 CB08 

I 



FUNCTION DESCRIPTION: 

This call causes 
overlay must not 
the bo und unit. 
the overlay. 

the named overlay to be unloaded. The 
share a segment with any other overlay of 
You must have the proper access rights to 

NOTES: 1. The overlay id supplied by argument 1 is placed 
in $R2; if this argument is omitted, $R2 is 
assumed to contain the overlay ide 

2. The overlay base address supplied by argument 2 
is placed in $B4; if this argument is omitted, 
$B4 is assumed to contain the base address. 

3. The return point address supplied by argument 3 
is placed in $B5; if this argument is omitted, 
the return point address is assumed to be the 
address of the first word following the 
generated monitor call sequence. 

4. The overlay being unloaded must be floatable, 
and the memory it occupies must have been 
obtained by a get memory macro call, either 
directly by the user or indirectly by either the 
overlay load or overlay execute macro call. If 
that memory was obtained directly by the user, 
then the address of the first word of the memory 
block must have been specified as the base 
address of the overlay when it was loaded. 

5. On return, SRI contains one of the following 
status codes: 

0000 - No error 

0817 - Memory access violation 

08lS - No task group with specified id exists 
(system software error) 

OSIB - Roll-in of online task group attempted 
(system software error) 

OSIC - Roll-in attempted when the batch group 
was not rolled out (system software 
erro r) 

OSIE - Unrecoverable media error during roll-in 

OSIF - Group not suspended when roll-in 
attempted (system software error) 

5-24S CBOS 



( 

( 

Example: 

See the example given for the overlay load ($OVLD) macro 
call. 

5-249 CB08 



I 

PARAMETER BLOCK 

PARAMETER BLOCK 

Macro Call Name: $PRBLK 

Function Code: None 

Equivalent Command: None 

Generate a parameter block that is equivalent to the argu­
ment list portion of the task request block. 

FORMAT: 

[label] $PRBLK [user argument 1], 
[user argument 2], 

[user argument n] 

ARGUMENT DESCRIPTION: 

user argument 1 ••• user argument n 

User argument values; a parameter block is generated 
containing the specified user argument values in the 
parameter positions that correspond to the argument 
positions in the $PRBLK macro call. Pathname argu­
ments that include a trailing blank should be 
enclosed in single or double (' or ") quotation marks. 

If an argument value of zero is specified before the 
last argument, an argument pointer of zeros is 
generated in the corresponding position in the argu­
ment list. 

FUNCTION DESCRIPTION: 
, 

A parameter block is equivalent to the argument list portion 
of the task request block (see the task request block macro 
call). 

5-250 CBOS 

----------



( 

, , 

( 

A parameter block is the standard means of providing addi­
tional arguments to the request group, spawn group, and 
request batch macro calls. 

NOTE: This macro call cannot be used in programs 
written in SAF/LAF independent code (SLIC). 
See the Program Preparation manual for more 
information about SAF/LAF independent code. 

Example: 

In this example, the $PRBLK macro call is used to specialize 
a control file for the command processor by replacing &1 and 
&2 by -XREF and -PRINT. (The parameter block format is 
given in Appendix A.) 

ARGSI $PRBLK -XREF, -PRINT 

5-251 CB08 



I 

PERSON IDENTIFICATION 

PERSON IDENTIFICATION 

Macro Call Name: $PERID 

Function Code: 14/01 

Equivalent Command: None 

Returns the person component of the calling task group's 
user identification to a l2-character receiving field. 

FORMAT: 

[label] $PERID (location of person id field address] 

ARGUMENT DESCRIPTION: 

location of person id field address 

Any address form valid for an address register; pro­
vides the address of a l2-character, aligned, nonvary­
ing field into which the system will place the person 
component of the user identification associated with 
the issuing task group. 

FUNCTION DESCRIPTION: 

This call returns the person component (Le., the user's 
personal identifi~ation) of the task group's user identifi­
cation to a field in the issuing task. The person identi-
fication returned is that entered as part of the LOGIN com­
mand that established the user as a primary or secondary 
user of this task group. See the Commands manual for 
details. 

The entire user id is returned by the user identification 
($USRID) macro call. 

NOTES: 1. The address of the recelvlng person id field, 
supplied by argument 1, is placed in $B4; if 
this argument is omitted, $B4 is assumed to con­
tain the address of the field. 

5-252 CB08 

- - ------~~- ~~-



Example: 

2. On return, $RI contains one of the following 
status codes: 

0000 - No error 
0817 - Memory access violation 

3. On return, $B4 contains the address of the 
receiving field. 

In the following example, a 12-character field is set up in 
the issuing task and the $PERID macro call is issued to 
place the person identification of the task group in that 
field. 

ID02 $PERID !PRIDFL 

PRIDFL RESV 6,0 

5-253 CB08 



READ BLOCK 

READ BLOCK 

Macro Call Name: $RDBLK 

Function Codes: 12/00 (normal), 12/01 (tape mark), 12/02 
(beginning of tape), 12/03 (space), 12/04 (end 
of tape) 

Equivalent Command: None 

Read (i.e., transfer) a block from a file to a buffer in 
I main memory; you must supply a buffer and specify both the 

size of the block and its relative location in the file. 

I 

FORMAT: 

[label] $RDBLK [fib address] {:~~:MAL} 
, SPACE 
,EOT 

ARGUMENT DESCRIPTION: 

fib address 

Any address form valid for an address register; pro­
vides the location of the file information block 
(FIB). The following FIB entries are required. 

logical file number 

prog ram view 

Should include buffer alignment and whether the 
next read operation is synchronous or 
asynchronous. 

user buffer pointer 

transfer size 

5-254 CB08 



( 

( 

block size 

Must be a multiple of the physical sector size. 

block number 

{NORMAL} 
NOR 

TM 

{SPACE} 
SPA 

EOT 

For disk resident files this mode argument indicates 
that the block identified in the block number entry in 
the FIB is transferred from the file to the buffer 
area. 

For nondisk files this mode argument indicates that 
the next block is to be transferred from the file to 
the buffer. 

NORMAL is the default value for this macro call. 

(For tape-resident files only.) This mode argument 
indicates that the tape is to be moved forward or 
backward the number of tape marks specified in the 
block number entry in the FIB. Positioning is to a 
point immediately following the nth tape mark. A 
positive value indicates forward movement; a negative 
value indicates backward movement. 

(For tape-resident files only.) This mode argument 
indicates that the tape is to be moved forward or 
backward the number of blocks specified in the FIB 
block number entry. Positioning is to a point imme­
diately following the nth block. A positive value in 
the block number entry indicates forward movement; a 
negative value indicates backward movement. 

(For tape-resident files only.) This mode argument 
causes the tape to be positioned to its logical end, 
which is defined as the occurrence of two tape marks 
in succession. Positioning is to a point immediately 
following the second tape mark. 

5-255 CB08 



I 

* 

FUNCTION DESCRIPTION: 

Before this macro call is executed, the LFN must have been 
opened (see open file macro call) with a FIB program view 
word that allows access via storage management (bit 0 is 1) 
and allows read operations (bit 1 is 1). In order to read 
the file sequentially, it is necessary only to issue suc­
cessive read block macro calls in NORMAL mode, which causes 
the block-number entry to be incremented by 1 after each 
transfer. If there is not sufficient data in the block 
being transferred to fill the buffer, the transfer size 
entry in the FIB is set by the system to the number of bytes 
read and a return code of 0000 is delivered. 

After completion of a TM, BOT, or EOT operation, the block­
number entry in the FIB is automatically reset to 0; how­
ever, a SPACE operation causes the system to specify the 
actual relative number of the next block that would be read 
by a read block macro call. If a tape mark is encountered 
during a SPACE operation, the operation is terminated and a 
return-status code of 02lF is delivered. In addition, if 
the end-of-reel is reached, a 0105 error code (device not 
ready) is del ivered; however, if the end-of-tape is reached, 
it is treated like a normal operation and a return code of 
0000 is delivered on successful completion. 

Only one asynchronous I/O operation per file can be out­
standing at any given time. 

The file information block can be generated by a SFIB macro 
call. Displacement tags for the FIB can be defined by the 
$TFIB macro call. 

NOTES: 1. If the first argument is coded, the address of 
the FIB is loaded into $B4; if the argument is 
omitted, $B4 is assumed to contain the address 
of the FIB. 

2. Upon return, $Rl contains one of the following 
ret urn codes: 

0000 - No error 
0203 - Illegal function 
0205 - Illegal argument 
0206 - Unknown or illegal LFN 
0207 - LFN not open 
020A - Address out of file 
0217 - Access violation 
02lF - End of file 

In addition to the above codes, any system 
service codes received by the storage manager 
are passed on through $Rl. 

5-256 CB08 



( 

Example: 

In this example the FIB is defined as follows: 

BLKFIB DC 
DC 

DC 
RESV 
DC 
DC 
DC 

Z '0005' 
Z'EOOO' 

<BLKBUF 
2-$AF 
256 
256 
Z'OOOOOOOO' 

LFN=5 
PROGRAM VIEW = ALLOW READ/WRITE 
SYNCHRONOUS PROCESSING 
BUFFER POINTER 

TRANSFER SIZE = 256 
BLOCK SIZE = 256 

Based on the above FIB, block 0, which is 256 bytes long, is 
transferred to a buffer, labeled BLKBUF, in main memory. 

$RDBLK !BLKFIB,NORMAL 

5-257 CBoe 



· 
READ EXTERNAL SWITCHES 

READ EXTERNAL SWITCHES 

Macro Call Name: $RDSW 

Function Code: OB/OO 

Equivalent Command: None 

Return the current value of the specified switches in the 
task group's external switch word; return the inclusive 
logical OR of the current settings. 

FORMAT: 

[label] $RDSW external switch name, 
[external switch name], 

[external switch name] 

ARGUMENT DESCRIPTION: 

external switch name ••• external switch name 

A single hexadecimal digit specifying the external 
switch in the task group's external switch word to be 
read. A maximum of 16 external switch names (0 
through F) can be specified. If no arguments are sup­
plied, $R2 is assumed to contain the switches to be 
read. If ALL is specified, all switches are read. 

FUNCTION DESCRIPTION: 

This call provides a mask by which the current setting of 
selected switches in the task group's external switch word 
can be read. 

$R2 is the mask word. Each bit that is 1 in $R2 causes the 
corresponding bit in the external switch word to be read. 

5-258 CBOS 

- -.'/ 



(-

( 

When the $RDSW macro call is executed, $R2 contains the cur­
rent value of the external switch word. Bit 11 (bit-test 
indicator) of the I-register provides an indication of the 
setting of the switches, as follows: 

o If bit 11 is 0, none of the switches read was on. 
o If bit 11 is 1, at least one of the switches read was on. 

NOTES: 1. The bits corresponding to the external switches 
in the arguments are set on in $R2i if no argu­
ments are supplied, $R2 is assumed to contain 
the mask to be used. If ALL is specified for 
any argument, all bits are set on in $R2. 

Example: 

2. On return, $R2 and the I-register contain the 
following information: 

$R2 - Current value of external switch word 

I-register (Bit II) - Inclusive OR of switches 
read: 

o - No switch read was on 
1 - At least one switch read was on 

In this example, the $RDSW macro call is used to read the 
specified switches in the external switch word of the task 
group in which the issuing task is executing. The contents 
of $R2 (the mask word) are to be 2F4A so that switches 2, 4, 
5, 6, 7, 9, C, and E will be read, inclusive ORed, and 
stored in the central processor's bit indicator. To 
ill ustrate : 

Wo rd: 2 F 4 A 

Bits: 0123 4567 89AB CDEF 
0010 1111 0100 1010 

Switches: 2 4567 9 C E 

The BBT instruction is used to transfer control to the rou­
tine DO IT if one or more of the switches is turned on. 

RDSW A $RDSW 
BBT 

2,4,5,6,7,9,C,E 
DO IT 

5-259 CB08 



READ RECORD 

READ RECORD 

Macro Call Name: $RDREC 

Function Code: 11/10 (next), 11/11 (key), 11/12 (position 
equal), 11/13 (position greater than), 11/14 
(position greater than or equal) ,11/15 (position 
forward), 11/16 (position backward) 

Equivalent Command: None 

Retrieves one logical record from a file to your record area 
or merely positions the read pointer to a desired record. 
Whether to retrieve or position is specified by the second 
(i.e., mode) argument. 

FORMAT: 

[label] $RDREC 

ARGUMENT DESCRIPTION: 

fib address 

, NEXT 
,KEY 
,POSEQ 

[fib address] ,POSGR 
,POSGREQ 
, POSFWD 
, POSBWD 

Any address form valid for an address register; pro­
vides the location of the file information block 
(FIB) • 

5-260 CB08 

-- ---------------- -------------------



{NEXT} 
N~ 

KEY 

(For all files.) This mode argument indicates that 
the record pointed to by the read pointer is to be 
read next. The read pointer is set to the next 
logical record in the file after the read is complete. 
Only active records are read (i.e., deleted records 
are skipped unless bit 11 in the program view FIB 
entry is set to 1). This is the default for this 
macro call. You must code the following FIB entries: 

logical file number 

program view (record area alignment) 

user record pointer 

input record length 

After the record is transferred to main memory,the 
system updates the following FIB entries: 

output record length 

output record address 

(Serial sequence number if device file; BSN if 
tape file; simple key unless relative access 
specified at open time). 

This mode is referred to as read next. 

(For disk files accessed by key, only.) This mode 
argument indicates that the record identified by the 
key value pointed to by the FIB is to be read. The 
read pointer is set to the next logical record in the 
file after the read is complete. Only active records 
are read unless bit 11 in the program view FIB entry 
is set to 1. You must code the following FIB entries: 

logical file number 

program view (record and key area alignment) 

user-record pointer 

input record length 

5-261 CBD8 

I 
* 

I 
* 



{POSEQ} 
PEQ 

{POSGR} 
PGR 

input key pointer 

input key fo rma t 

input key length 

After the record is transferred to main memory, the 
system updates the following FIB entries: 

output record length 

output record address 

(Simple or relative key.) 

This mode is referred to as read with key. 

(For disk files accessed by key, only.) This mode 
argument positions the read pointer to the first logi­
cal record in the file whose key is equal to the one 
specified in the FIB. It is not necessary for the 
record pointed to to be active. The record can be 
read via a read next macro call (see above). You must 
code the following FIB entries: 

logical file number 
program view 
input key pointer 
input key fo rma t 
input key length 

This mode is referred to as read position equal. 

(For disk files accessed by key, only.) This mode 
argument positions the read and pointer to the first 
logical record in the file whose key is greater than 
the one specified in the FIB. It is not necessary for 
the record pointed to to be active. The record can be 
read via a read next macro call (see above). The same 
FIB entries as for POSEQ, above, must be coded. This 
mode is referred to as read position greater than. 

5-262 CB08 

-------~-- ----



(For disk files accessed by key, only.) This mode 
argument positions the read pointer to the first logi­
cal record in the file whose key is greater than or 
equal to the one specified in the FIB. It is not nec­
essary for the record pointed to to be active. The 
record can be read via a read next macro call (see 
above). The same FIB entries as for POSEQ, above, 
must be coded. This mode is referred to as read posi­
tion greater than or equal. 

{POSFWD} 
PFD 

(For tape-resident and relative files only.) This 
mode argument moves the read pointer forward the 
number of record positions specified by the key value 
identified in the FIB (but not beyond the end-of­
file). It is not necessary for the record pointed to 
to be active. The record can be read via a read next 
macro call (see above). The same FIB entries as for 
POSEQ, above, must be coded. This mode is referred to 
as read position forward. 

{POSBWD} 
PBD 

(For tape-resident and relative files only). This 
mode argument is the same as for POSFWD (above) except 
that the pointer is moved backwards the number of 
record positions specified by the key value in the FIB 
(but not before the first record). This mode is 
referred to as read position backward. 

FUNCTION DESCRIPTION: 

Before this macro call can be executed, the LFN must have 
been opened (see the open file macro call) with a program 
view word that allows access via data management (bit 0 is 
0) and allows read -operations (bit I is 1). The read 
pointer is a logical pointer to the next record to be read; 
it is maintained separately from the write pointer. There 
is one read pointer per file per user. At open-file time 
the pointer is set to the first record in the file, and is 
modified by each read record operation. 

The file information block can be generated by a $FIB macro 
call. Displacement tags for the FIB can be defined by the 
$TFIB macro call. 

5-263 CB08 

I 

* 



The following illustrate the effects of read actions accord­
ing to file organizations. 

File Organizations Effects of Read Actions 

Sequential Read next causes sequential read. Read 
with key causes direct read.' A simple 
key is used. 

Relative 

Indexed 

Read next causes a sequential read. Read 
with key causes a direct read. 1 A 
relative or simple key can be used. 

Read next causes a sequential read. The 
records returned are in logical sequence 
according to primary key value. (This is 
not necessarily in the same time-dependent 
or physical sequence that the records were 
loaded into the file.) Read with key 
causes a direct read~ A primary key or 
simple key can be used. 

Fi xed Re lati ve Read next causes a sequential read. Read 
with key causes a direct read. A relative 
key is used. 

Device Files Read next causes a sequential read, pro­
vided the device can be read and was 
defined as a readable device. 

NOTES: 1. If the first argument is coded, the address of 
the FIB is loaded into $B4; if the argument is 
omitted, $B4 is assumed to contain the address 
of the FIB. 

2. On return, $RI contains one of the following 
status codes: 

0000 - No error 
0203 - Illegal function 
0205 - Illegal argument 
0206 - Unknown or illegal LFN 
0207 - LFN not open 
020A - Address out of file 
020E - Record not found 
0217 - Access violation 
0219 - No current record pointer 

,A read, with any position mode, positions the read pointer to 
the desired record, so that a subsequent READ-NEXT will retrieve 

I 
* 

that record."' '\ 
~-~/ 

5-264 CB08 



( 

Example: 

02IA - Record length error 
02IE - Key length or location error 
02IF - End of file 
022A - Record lock overflow or not defined 
022B - Requested record is locked 

In addition to the above codes, any system 
service codes received by the data manager are 
passed on through $RI. 

This example assumes that the address of the FIB (i.e., 
MYFIB) was loaded in $B4. In addition, the required entries 
in the FIB are those defined in "Assumptions for File System 
Examples" in Section 3. Also, it is assumed that the file 

* was reserved (see "Get File"), and that the open file macro 
call was coded with the LFN and program-view entries as 
defined in the example for the open file macro call. 

The macro call is then specified as follows: 

$RDREC ,NEXT 

After the record is read, the system updates the following 
entries, which you can interrogate using the FIB offset 
tags: 

(Output record length) 
(Output record address) 

5-265 CB08 



RELEASE DIRECTORY 

RELEASE DIRECTORY 

Macro Call: $RLDIR 

Function Code: IO/AS 

Equivalent Command: Release (RL) 

Deletes a previously created directory from the system; all 
of the directory's attributes, including its name, are 
removed from the immediately superior directory that 
describes it, and all space allocated to the directory is 
released. This function is usually done outside program 
execution. 

FORMAT: 

[label] $RLDIR [a rg ument structur e add ress] 

ARGUMENT DESCRIPTION: 

argument structure address 

Any address form valid for an address register; pro­
vides the location of the parameter structure defined 
below. The parameter structure must contain the 
following entry. 

pathname pointer 

A 4-byte address, which may be any address form 
valid for an address register; points to a path­
name (which must end with an ASCII space char­
acter) that identifies the directory to be 
released. 

5-266 CBOS 



( 

FUNCTION DESCRIPTION: 

This macro call, in effect, reverses the create directory 
action, provided it has no subordinate directories or files 
(i.e., if the directory to be released contains a suborordi­
nate directory or file it is not released and an error code 
is returned). In addition, if it is currently the working 
directory in any task group, the directory cannot be 
released. 

NOTES: 1. If the argument is coded, the address of the 
parameter structure is loaded into $84; if the 
argument is omitted, $B4 is assumed to contain 
the address of the parameter structure. 

2. On return, $Rl contains one of the following 
status codes: 

0000 - Successful completion 

0201 - Illegal pathname 

0205 - Illegal argument 

0209 - Named directory not found 

020C - Volume not found 

0213 - Cannot provide requested concurrency 

I 

I 
0220 - Attempted deletion of nonempty directory 

0222 - Pathname cannot be expanded, no working I 
directory 

0225 - Not enough system memory for buffers or 
structures 

0226 - Not enough user memory for buffers or 
structures 

022C - Access control list (ACL) violation 

In addition to the above codes, any system 
service codes received by the file manager are 
passed on through $Rl. 

5-267 CB08 



Example: 

In this example, the $RLDIR macro call releases the direc­
tory created in the create directory example (i.e., 
SUBINDEX.A). The system uses the first entry to identify 
the directory to be released. The release directory macro 
call is coded as: 

SUBDIR 
DIRPTH 

DC <DIRPTH 
DC 'AVOL03>SUBINDEX.A~' 
$RLDIR !SUBDIR 

5-268 

- -.-----------------~----

CB08 



(- RELEASE FILE 

RELEASE FILE 

Macro Call Name: $RLFIL 

Function Code: 10/35 

Equivalent Command: Release (RL) 

Delete a previously created file from the system. All the 
file's attributes, including its name, are removed from the 
directory that describes it, and all space allocated to the 
file is released. You identify the file to be released by 
supplying either a logical file number (LFN) or a pathname. 
This function is usually done outside program execution. I 
FORMAT: 

rlabel] $RLFIL [argument structure address] 

ARGUMENT DESCRIPTION: 

argument structure address 

Any address form valid for an address register; pro­
vides the location of the argument structure defined 
below. The argument structure must contain the fol­
lowing entries in the order shown. 

logical file number 

A 2-byte logical file number (LFN) used to refer 
to the file; must be a binary number in the 
range a through 255; or blank (which indicates 
that an LFN is not specified). 

pathname pointer 

A 4-byte address, which may be any address form 
valid for an address register; points to a path­
name (which must end with an ASCII space char­
acter) that identifies the directory in the file 
hierarchy in which the file to be released is 
found (as well as the name of the file itself). 

5-269 CB08 



Zeros in this entry indicate that a pathname is 
not specified. 

FUNCTION DESCRIPTION: 

This macro call, in effect, reverses the create file action, 
provided the file is neither open in this task group, nor 
reserved by another task group. In the case of the former, 
a return status code of 0208 is loaded in $RI; in the latter 
case, the file is released after the other task group is 
finished using it. 

The file to be deleted can be specified by (1) an LFN only, 
or (2) a pathname only. If only an LFN is specified, the 
file must have been created or reserved (through a create 
file or get file macro call, or equivalent command) with 
that LFN. 

For files other than disk files, the release file function 
is equivalent to the remove file function. 

NOTES: 1. If the argument is coded, the address of the 
argument structure is loaded into $B4; if the 
argument is omitted, $B4 is assumed to contain 
the address of the parameter structure. 

2. On return, $R 1 contains one 0 fthe following 
status codes: 

0000 - No error 

0201 - Illegal pathname 

0205 - Illegal argument 

0206 - Unknown or illegal LFN 

0208 - LFN or file currently open in same task 
group 

0209 - Named file or directory not found 

020C - Vol ume not fo und 

0222 - Pathname cannot be expanded, no working 
directory 

0225 - Not enough system memory for buffers or 
structures 

0226 - Not enough user memory for buffers or 
structures 

5-270 

.--------_. ----

CB08 



( 

( 

Example: 

022C - Access control list (ACL) violation 

In addition to the above codes, any system 
service codes received by the file manager are 
passed on through $RI. 

In this example, the macro call releases the file created in 
the create file macro call example. To do this, it refer­
ences the same argument structure as the $CRFIL macro call; 
the system, in turn, uses the first two entries to identify 
the file to be released. The release file macro call is 
coded as: 

$RLFIL !FILE A 

5-271 CB08 



RELEASE SEMAPHORE 

RELEASE SEMAPHORE 

Macro Call Name: $RLSM 

Function Code: 06/03 

Equivalent Command: None 

Release a resource controlled by the specified semaphore and 
activate the first waiting task enqueued on that semaphore 
if the value of the semaphore is negative (both actions are 
known collectively as a V-op) • 

FORMAT: 

r label] $RLSM [locat ion 0 f semapho re ident i fi er] 

ARGUMENT DESCRIPTION: 

location of semaphore identifier 

Any address form valid for a data register; provides 
the two ASCII characters that identify the semaphore 
controlling the resource to be released. 

FUNCTION DESCRIPTION: 

A task issues a release semaphore macro call when it has 
finished using the resource controlled by the semaphore 
indicated in the call. The semaphore must have been pre­
viously defined by a define semaphore macro call. 

When the release function is executed, the counter whose 
initial value was set in the define semaphore macro call is 
incremented. 

If tasks are waiting for the resource to become available, 
the first task queued on this semaphore is awakened. 

NOTES: 1. The semaphore identifier supplied by argument 1 
is placed in $R6; if this argument is omitted, 
SRI is assumed to contain the correct 
identifier. 

5-272 CB08 



( 

Example: 

2. On return, $RI and $R6 contain the following 
informat ion: 

$RI - Return status; one of the following: 

0000 - No error 
0502 - Semaphore not defined 

SR6 - Semaphore identifier (as supplied) 

See the example given for the define semaphore macro call. 

5-273 CB08 



I 

RELEASE TERMINAL 

RELEASE TERMINAL 

Macro Call Name: $RLTML 

Function Code: 17/04 

Equivalent Command: None 

Issued by a task group to release a secondary user terminal 
back to the listener component after the terminal file has 
been closed and removed. 

FORMAT: 

[label] $RLTML rIocat ion 0 f term inal LRN], 
[location of status code] 

ARGUMENT DESCRIPTION: 

location of terminal LRN 

Any address form valid for a data register; provides 
the logical resource number (LRN) of the terminal to 
be released. 

location of status code 

Any address form valid for a data register; provides a 
completion status code that will be posted when the 
request is marked as terminated. Acceptable status 
codes are: 

0000 - Normal release 
3920 - Secondary login rejected 

FUNCTION DESCRIPTION: 

This call is used to return a secondary user terminal that 
was previously obtained by the calling task group through a 
request terminal ($RQTML) macro call. Until this call is 
issued, the terminal is reserved for the task group that 
issued the $RQTML call. 

5-274 CB08 



( 

( 

NOTES: 1. The LRN of the addressed terminal, supplied by 
argument 1, is placed in $R6; if this argument 
is omitted, $R6 is assumed to contain the 
terminal's LRN. 

Example: 

2. The status code supplied by argument 2 is placeo 
in $R7; if this argument is omitted, $R7 is 
assumed to contain the status code. 

3. On return, $Rl contains one of the following 
status codes: 

0000 - Terminal successfully released 

3902 - Invalid LRN 

3921 - Terminal not assigned to task group 

3928 - Unable to release terminal; file not 
removed 

In this example, the SRLTML macro call is used to release a 
terminal previously reserved through a request terminal 
call. Note that the terminal LRN is stored in word a of the 
area that received the login parameters (see the request 
terminal macro call). In this example, the LRN was later 
stored in the field LRN STR. A status code of 0000 is to be 
used. 

REL TA $RLTML 

5-275 CB08 



I 

REMOVE FILE 

REMOVE FILE 

Macro Call Name: $RMFIL 

Function Code: 10/25 

Equivalent Command: Remove (REMOVE) 

Cancels the file 
file macro call. 
supplying either 
This function is 

reservation previously established by a get 
You identify the file to be removed by 

a logical file number (LFN) or a pathname. 
usually done outside program execution. 

FORMAT: 

Dabel] $RMFIL [argument structure address] 

ARGUMENT DESCRIPTION: 

argument structure address 

Any address form valid for an address register; pro­
vides the location of the argument structure defined 
below. The argument structure must contain the fol­
lowing entries in the order shown. 

logical file number 

A 2-byte logical file number (LFN) used to refer 
to the file; must be a binary number from 0 
through 255, or ASCII blanks (2020), which indi­
cate that an LFN is not specified. 

pathname pointer 

A 4-byte address, which may be any address form 
valid for an address register; it points to a 
pathname (which must end with an ASCII space 
character) that identifies the directory in the 
file hie,rarchy in which the file to be removed 
is found (as well as the name of the file 
itself). Binary zeros in this entry indicate 
that a pathname is not specified. 

5-276 CB08 



FUNCTION DESCRIPTION: 

This macro call removes the file reservation established for 
the specified file, provided it is not currently open (see 
"Open File") in the task group in which you -are executing. 
It does not dissociate the LFN from a pathname (see 
"Dissociate File"). 

Also, if the file is a temporary file (see "Create File"), 
this macro call has the same effect as the release file 
macro call previously described. 

The file to be removed can be specified only by either an 
LFN or a pathname. When only an LFN is specified, the file 
must have been reserved previously with a get file or create 
file macro call or with an equivalent command. 

A remove file macro call does not remove a file that was 
reserved through the command GET; the command REMOVE must be 
used. 

Since the remove file macro call removes all information 
about the file from the system, subsequent get file macro 
calls may require that multiple directory levels be searched 
to again locate the file. Thus, the remove file macro call 
should be used carefully and only after all references to 
the file are complete. 

NOTES: 1. If the argument is coded, the address of the 
parameter structure is loaded into $B4; if the 
argument is omitted, $B4 is assumed to contain 
the address of the parameter structure. 

2. On return, $RI contains one of the following 
status codes: 

0000 - No error 

0201 - Illegal pathname 

0205 - Illegal argument 

0206 - Unknown or illegal LFN 

0208 - LFN or file currently open in same task 
group 

0209 - Named file or directory not found 

020C - Vol ume not fo und 

5-277 CB08 



Example: 

0222 - Pathname cannot be expanded, no working 
directory 

0225 - Not enough system memory for buffers or 
structures 

0226 - Not enough user memory for buffers or 
structures 

0229 - File not known to task group 

In addition to the above codes, any system 
service codes received by the file manager are 
passed on through $R 1. 

In the following example, the macro call specifies an argu­
ment structure built by a previous get file macro call; this 
technique, as opposed to building a separate argument struc­
ture, results in using fewer bytes of m~mory while achieving 
the cancellation. The macro call is coded as shown in two 
examples: 

Example 1: WRTFIL DC 5 LNF = 5 
DC 2,0 
$RMFIL !WRTFIL 

Example 2: WRTFIL DC Z '2020 ' NO LFN 
DC <FILE A PATHNAME POINTER 
RESV 2-$AF 

FILE A DC '~VOL03>SUB>FILE AA' 
$RMFIL !WRTFIL 

5-278 CB08 

~. 



( 

RENAME FILE/RENAME DIRECTORY 

RENAME FILE/RENAME DIRECTORY 

Macro Call Name: $RNFIL 

Function Code: 10/40 

Equivalent Command: Rename (RENAME) 

Change the name of a disk file or directory to the name 
specified by the macro call. You identify the disk file or 
directory to be renamed by supplying either a logical file 
number (LFN) or a pathname. This function is usually done 
outside program execution. 

FORMAT: 

[label] $RNF IL [arg umen t struc ture add ress] 

ARGUMENT DESCRIPTION: 

argument structure address 

Any address form valid for an address register; pro­
vides the location of the argument structure defined 
below. The argument structure must contain the fol­
lowing entries in the order shown. 

logical file number 

A 2-byte logical file number (LFN) used to refer 
to the file; must be a binary number in the 
range a through 255, or ASCII blanks (2020), 
which indicate that an LFN is not specified. 

pathname pointer 

A 4-byte address, which may be any address form 
valid for an address register; points to a path­
name (whic~ must end with an ASCII space char­
acter) that identifies the file or directory 
whose name is to be changed. Binary zeros in 
this entry indicate that a pathname is not 
specified. 

5-279 CB08 



new name 

A 1- to l2-byte name, specifying the new name of 
the file or directory; must be a simple name 
(i.e., must not contain" ", " ", " ", etc.). 

FUNCTION DESCRIPTION: 

This call changes the name of the specified file or direc­
tory. However, the volume major directory cannot be renamed 
(any attempt to do so will cause a status code of 0228 to be 
returned in $Rl). To rename the volume major directory, use 
the Create Volume command (see the Commands manual) • 

The file can be renamed by specifying (1) an LFN only or (2) 
a pathname only. If only an LFN is specified, the file must 
have been reserved (through a create file or get file macro 
call, or equivalent command) with that LFN. 

NOTES: 1. If the argument is coded, the address of the 
parameter structure is loaded into SB4; if the 
argument is omitted, $B4 is assumed to contain 
the address of the parameter structure. 

2. On return, SRI contains one of the following 
status codes: 

0000 - No error 

0201 - Illegal pathname 

0205 - Illegal arg ument 

0206 - Unknown or ill egal LFN 

0209 - Named file or directory not found 

020C - Volume not found 

0212 - Attempted creation of existing file or 
directory 

0213 - Cannot provide requested file concurrency 

0222 - Pathname cannot be expanded, no working 
directory 

0225 - Not enough system memory for buffers or 
structures 

0226 - Not enough user memory for buffers or 
structures 

5-280 CB08 



( 

Example: 

0228 - Illegal file type 

022C - Access control list (ACL) violation 

In addition to the above codes, any system 
service codes received by the file manager are 
passed on through $RI. 

In this example, assume a file has been created in the 
directory SUB.INDEX.A by the name of FILEA. Its full path­
name is AVOL03>SUB.INDEX.A>FILEA. In addition this file is 
reserved with LFN=2. User executes this code: 

ANEWAA $RNFIL !NEWNMI 

NEWNMI DC 2 LFN = 2 
RESV 2,0 NO PATHNAME POINTER 
DC 'OLDF 1l\ ' 

The resul t is that FILEA in the directory SUB.INDEX.A is 
renamed to OLDF 1. 

5-281 CB08 



REPORT ERROR CONDITION 

REPORT ERROR CONDITION 

Macro Call Name: $RPTER 

Function Code: OF/OO 

Equivalent Command: None 

Report error conditions that follow the standard error code 
format and provide optional error message expansion text. 

FORMAT: 

[label] $RPTER [location of component error code], 
[location of category/specific error codes], 
[location of message expansion text size], 
[location of message expansion text] 

ARGUMENT DESCRIPTION: 

location of component error code 

Any address form valid for a data register; provides 
the 2-byte hexadecimal error code of the software 
component that reports the error. The first byte must 
be zero; the second byte is the component error code 
(reporting component). The symbolic name, if any, 
specified in a Linker EDEF directive for the task 
start address is included with the message. 

location of category/specific error codes 

Any address form valid for a data register; provides 
the 2-byte hexadecimal error category code and spe­
cific error condition. Byte 0 is the error code of 
the component that detects the error; byte 1 is the 
specific error condition within that component. 

5-282 CBD8 



( 

(. 

location of message expansion text size 

Any address form valid for a data register; provides 
the size of the message expansion text that further 
explains the error. The text size must include the 
slew byte (format control byte), which is the first 
byte in the message expansion text (the actual text 
begins with the second byte); see "Printer Driver" in 
Section 6. If this argument is omitted, no expansion 
message text has been provided. 

location of message expansion text 

Any address form valid for an address register; pro­
vides the address of the message expansion that fur­
ther defines the error. The message expansion text 
must include the slew byte as the first byte. If 
argument 3 is omitted, and this argument is omitted, 
there is no expansion text. 

FUNCTION DESCRIPTION: 

This macro call enables the task to report error conditions 
that follow the standard system error code format (see the 
System Messages manual). Error conditions are recorded on 
the error-out file unless the category/specific error code 
(argument 2) is 01, in which case they are recorded on the 
operator terminal. The component, category, and specific 
error codes must be provided; message text is optional. 

NOTES: 1. The component error code supplied by argument 1 
is placed in $R3; if this argument is omitted, 
$R3 is assumed to contain the component error 
code. 

2. The category and specific error codes supplied 
by argument 2 are placed in $R7; if this argu­
ment is omitted, SRl is assumed to contain the 
category and specific error codes and $R7 is set 
to the value contained in $RI. 

3. The expansion text size supplied by argument 3 
is placed in $R6; if this argument is omitted, 
$R6 is set to zero to indicate that no expansion 
text is provided. 

4. The address of the expansion text supplied by 
argument 4 is placed in $B3; if this argument is 
omitted, $B3 is assumed to contain the address 
of the expansion text (if argument 3 was 
specified) • 

5-283 CBoa 



Example: 

5. On return, $R7 contains the following: 

$R7 - Codes: byte 0 is error category code; 
byte 1 is specific error code. 

In this example, the user in macro call ($USIN) is used to 
attempt to read a line from the user input file. If the 
attempt is unsuccessful, the $RPTER macro call is used to 
report this fact. The error message produced will include 
the expansion text PROCESS ABORTED. The abort group request 
macro call ($ABGRQ) is then used to abort processing of the 
current task group request with a completion status of one. 
Processing will begin with the next group request, if any. 

* 
* NAME MY OWN COMPONENT CODE. 

* 
MY CC EQU X '85 ' 
* 
* READ THE USER INPUT FILE. 
* 

$USIN 

* 
! IN_BUF, =IN_BLN 

* IF UNSUCCESSFUL GO TO BAD RD. 
* 

BNEZ $Rl, BAD_RD 

* * REPORT AN UNSUCCESSFUL USER INPUT READ 
* AND ABORT THE CURRENT GROUP REQUEST. 

* 
BAD RD 

X TEXT 
X TLNG 

$RPTER 

$ABGRQ 
TEXT 
EQU 

; 
=X TLNG; 
!X-TEXT 
=1 

MY COMPONENT CODE 
ERROR CODE IS IN $Rl 
EXPANSION TEXT LENGTH 
LOCATION OF EXPANSION 
TERMINATION STATUS 

'APROCESS ABORTED' 
2* ($-X_TEXT) 

5-284 

TEXT 

CB08 



REQUEST BATCH 

REQUEST BATCH 

Macro Call Name: $RQBAT 

Function Code: OE/OO 

Equivalent Command: Enter Batch Request (EBR) 

Add a request to the queue of command processor files to be 
processed by the command processor executing in the batch 
task group. 

FORMAT: 

[label] $RQBAT [location of address of argument list], 
[location of address of fixed parameter block] 

ARGUMENT DESCRIPTION: 

location of address of argument list 

Any address form valid for an address register; pro­
vides the address of the argument list, which can be 
generated by the parameter block macro call ($PRBLK), 
to be used to build the batch request block. The 
batch request block is built in the system area of 
memory, and is used by the command processor to 
specialize commands read from the command-in file. 

location of address of fixed parameter block 

Any address form valid for an address register; pro­
vides the address of a fixed parameter block, which 
can be generated by the parameter block macro call. 
This parameter block has the following arguments: 

Argument 1 

A string specifying the user id to be associated 
with this batch request (for system use). The I 
user id currently associated with the issuing 
task group will be used when the call is exe-
cuted from a user task group. 

2-285 CB08 



Argument 2 

A pathname string specifying the command-in and 
the initial user-in files for the batch request. 
A nonzero value is required. 

Argument 3 

A pathname string specifying the error-out and 
initial user-out files for this batch request. 
If this entry is zero, one of the following 
assumptions is made: 

o If the pathname string specifying the 
command-in and initial user-in files (in­
path) specifies a disk device, the pathname 
for the output files is in-path.AO. 

o If in-path specifies an interactive terminal, 
the pathname for the output files is the same 
as in-path. 

o If in-path specifies an input-only device, 
the pathname for the output files is null. 

Argument 4 

A pathname string specifying the initial value 
of the working directory for this batch request. 

FUNCTION DESCRIPTION: 

This call causes a request to execute the commands contained 
in the file identified by the second byte in the fixed 
parameter block (argument 2) to be queued against the batch 
task group. The batch task group has a first-in/first-out 
queue of command processor files. 

If the batch task group is dormant when the $RQBAT macro 
call is issued, execution begins immediately; otherwise, the 
request is queued. 

The command processor is executed as the lead task of the 
batch task group. Since the command processor obtains its 
commands from the file named in the second entry of the 
fixed parameter block, the file must begin with a command. 

Batch requests cannot be waited upon. 

5-286 CBD8 



NOTES: 1. The address of the argument list to be used to 
build the request block, supplied by argument 1, 
is placed in $B4; if this argument is omitted, 
$B4 is assumed to contain the correct address. 

2. The address of the fixed parameter block-, sup­
plied by argument 2, is placed in $B5; if this 
argument is omitted, $B5 is assumed to contain 
the correct address. 

3. On return, $Rl contains one of the following 
status codes: 

0000 - No error 
0209 - Invalid pathname 

Example: 

In this example, the $RQBAT macro call causes a request to 
execute the command contained in the file 
AVI124>UDD>TEST>JONES>ASM TST to be queued against the 
batch task group. This file will also be used as the user­
in file. Since argument 3 is null, the user-out and error­
out files will default to ~VI124>UDD>TEST>JONES ASM TST.AO. 
The user id and the initial working directory will be 
JONES.TEST.B and ~Vll24>UDD>TEST>JONES, respectively. The 
arguments -XREF and -PRINT will be passed to the command 
processor to specialize the control file ASM TST (&1 and &2 
in the control file will be replaced by -XREF and -PRINT, 
respectively). The $PRBLK macro call used in this example 
is described earlier in this section. 

INFO 

ARGS 

$RQBAT 

$PRBLK 

$PRBLK 

! ARGS, ! INFO 

~Vl124>UDD>TEST>JONES>ASM TST,; NULL USER-OUT 
~VI124>UDD>TEST>JONES -
-XREF, -PRINT 

5-287 CBOS 



REQUEST CLOCK 

REQUEST CLOCK 

Macro Call Name: $RQCL 

Function Code: 05/00 

Equivalent Command: None 

Request the clock manager to mark the specified clock 
request block (CRB) as complete when the interval specified 
in that CRB has elapsed. 

FORMAT: 

[label] $RQCL [location of CRB address] 

ARGUMENT DESCRIPTION: 

location of CRB address 

Any address form valid for an address register; pro­
vides the address of the clock request block to be 
posted when its specified time interval has elapsed. 

FUNCTION DESCTRIPTION: 

This call connects the specified CRB to the timer queue. 

If the clock request block is not cyclic (see "Clock Request 
Block" earlier in this section), when the specified interval 
elapses, the CRB is dequeued from the timer queue. Another 
$RQCL macro call must be issued to requeue the CRB. Note 
that a noncyclic CRB can specify an absolute time value 
rather than an interval. 

If the CRB is cyclic, when the specified interval elapses, 
the CRB is posted and a new request for the originally 
specified interval is automatically initiated. The auto­
matic resetting continues until a cancel clock request 
($CNCRQ) macro call is issued. A cyclic CRB cannot have a 
time interval of zero, and cannot specify an absolute time 
val ue. 

5-288 CB08 



NOTES: 1. The address of the CRB to be connected, supplied 
by argument 1, is placed in $84; if this argu­
ment is omitted, $B4 is assumed to contain the 
correct address. 

2. On return, $Rl and $B4 contain the following 
information: 

$RI - Return status; one of the following: 

0000 - No error 

0401 - Illegal time value (zero value for 
cyclic CRB) 

0402 - Invalid LRN 

0403 - Invalid basic timer specified 

$B4 - Address of CRB 

Example: 

See the example given for the wait on request list macro 
call later in this section. 

5-289 CB08 



REQUEST GROUP 

REQUEST GROUP 

Macro Call Name: $RQGRP 

Function Code: 00/00 

Equivalent Command: Enter Group Request (EGR) 

Request the execution of the lead task of a specified task 
group. The request is placed in the first-in/first-out 
request queue maintained for that task. 

FORMAT: 

rlabel] $RQGRP [location of group identifier], 
[location of address of argument list], 
[location of address of fixed parameter block] 

ARGUMENT DESCRIPTION: 

location of group identifier 

Any address form valid for a data register; provides 
the group identification of the task group to be 
requested. This task group must have been previously 
defined by a create group macro call. 

location of address of argument list 

Any address form valid for an address register; pro­
vides the address of the argument list, which can be 
generated by the parameter block macro call to be used 
to specialize a request block that will be used to 
request the lead task. 

location of address of fixed parameter block 

Any address form valid for an address register; pro­
vides the address of a fixed parameter block (which 
can be generated by the parameter block macro call). 
This parameter block has the following arguments: 

5-290 CB08 

,f '\ 
\ : 
",_-/1 



( 

( 

Argument 1 

A string specifying the user id to be associated 
with this request (for system use). If this 
entry is zero, the user id currently associated 
with the issuing task group will be used at the 
time the call is executed from a user task 
group. 

Argument 2 

A pathname string specifying the command-in and 
initial user-in files for this request for the 
lead task of the referenced task group. If this 
entry is zero, no command-in and initial user-in 
files will be available to the group. However, 
the group can later obtain a user-in file by 
means of the new user input macro call. A non­
zero entry is required if the command processor 
is the lead task. 

Argument 3 

A pathname string specifying the error-out and 
initial user-out files for this request of the 
task group. If this entry is zero, one of the 
following assumptions is made when the call is 
executed: 

o If the pathname string specifying the 
command-in and initial user-in files (in­
path) specifies a disk device, the pathname 
for the output files is in-path.AO. 

o If in-path specifies an interactive terminal, 
the pathname for the output files is the same 
as in-path. 

o If in-path specifies an input-only device, 
the pathname for the output files is null. 

Argument 4 

A pathname string specifying the initial value 
of the working directory for this request of the 
referenced task group. 

5-291 CB08 

I 

I 



FUNCTION DESCRIPTION: 

This call initiates the execution of the lead task of a task 
group previously created by a create group macro call. If 
the task group is dormant at the time the request group 
macro call is issued, execution begins immediately. If the 
task group has been activated by a previous request group 
function and has not yet terminated, execution of this 
request group macro call begins when the group becomes 
dormant. 

Execution begins with the lead task specified in the create 
group macro call. The second argument of the request group 
macro call provides an argument list to be used to special­
ize a request block that is, in turn, used to request the 
lead task. (This request block is built in space taken from 
the memory pool of the requested group.) 

It is not possible to wait on the execution of a request 
group macro call. 

NOTES: 1. The group id supplied by argument 1 is placed in 
$R2; if argument 2 is omitted, $R2 is assumed to 
contain the group id to be used. 

2. The address of the argument list supplied by 
argument 2 is placed in $B4; if this argument is 
omitted, $B4 is assumed to contain the address 
of the list. 

3. The address of the fixed parameter block sup­
plied by argument 3 is placed in $B5; if this 
argument is omitted, $B5 is assumed to contain 
the address of the fixed parameter block to be 
used. 

4. On return, $Rl contains one of the following 
status codes: 

0000 - No error 
0601 - Insufficient memory 
0602 - Insufficient memory 
0806 - Group id not currently defined 
1608 - Insufficient memory 

5-292 CB08 



( Example: 

In this example, the $RQGRP macro call causes a request to 
execute the commands contained in the file 
AVI1 24>UDD>TEST>JONES>ASM TST to be queued against the Q2 
task group. (It is assumed that task group Q2 has already 
been created with the command processor as its lead task. 
See the create group macro call for information on creating 
task groups.) The ASM TST file will also be used as the 
user-in file. The file AV1124>UDD>TEST>JONES>L>ASM_TST.AO 
will be used as both the user-out file and the error-out 
file. The user id and the initial working directory will be 
JONES.TEST.M and AVll.24>UDD>TEST>JONES, respectively. The 
arguments -XREF and -PRINT will be passed to the command 
processor (group Q2's lead task) to specialize the control 
file ASM TST (&1 and &2, in the control file, will be 
replaced-by -XREF and -PRINT, respectively). (See this sec­
tion for a description of the $PRBLK macro used in this 
example. ) 

$RQGRP 

INFO $PRBLK 

ARGS $PRBLK 

='Q2' ,!ARGS, !INFO 

,AI124>UDD>TEST>JONES>ASM TST; 
AV1124>UDD>TEST>JONES>L>ASM TST_AO; 
AV1124>UDD>TEST>JONES 
-XREF,-PRINT 

5-293 CB08 



REQUEST I/O 

REQUEST I/O 

Macro Call Name: SRQIO 

Function Code: 02/00 

Equivalent Command: None 

Request an I/O transfer in which the device involved in the 
transfer and the parameters defining the transfer are 
identified in the I/O request block (IORB) referred to in 
the call. 

FORMAT: 

[label] $RQIO [location 0 f IORB add ress] 

ARGUMENT DESCRIPTION: 

location of IORB address 

Any address form valid for an address register; pro­
vides the address of the IORB containing the device 
designation and all information about the nature of 
the I/O transfer. The IORB can be hand-coded or 
constructed through the $IORBD or SIORB macro calls. 

FUNCTION DESCRIPTION: 

This call requests an I/O transfer using a defining IORB. 

You should initially reserve the device named in the IORB. 
Device reservation can be accomplished by the get file 
($GTFIL) macro call using device-level access (i.e., the 
pathname is in the form SPD dev_name [volid]). 

The IORB requires a logical resource number (LRN) to refer 
to the device. The LRN can be obtained by issuing a get 
file info rmat ion ($GIFIL) macro call. The ,LRN returned by 
the $GIFIL call will be the LRN assigned to the device at 
system building time. 

5-294 CB08 



( 

( 

NOTES: 1. The address of the IORB supplied by argument 1 
is placed in $B4; if this argument is omitted, 
$B4 is assumed to contain the address of the 
IORB to be used. 

2. On return, $Rl and $B4 contain the following 
information: 

$Rl - Return status; one of the following: 

0000 - No error 

0801 - IORB in use (t-bit on) 

0802 - Invalid LRN 

0803 Illegal wait or the R/S/D bit in 
the IORB is nonzero 

If the IORB specifies that the issuing 
task is to wait for the completion of the 
request, one of the following codes could 
be returned: 

0104 - Invalid arguments 

0105 - Device not ready 

0106 - Device timeout 

0107 - Hardware error (check IORB status 
word) 

0108 - Device disabled 

0109 - File mark encountered 

OIOA - Controller unavailable 

OIOB - Device unavailable 

OIOC - Inconsistent request 

OIOD - Magnetic tape EaT marker (reflec­
tive strip) detected 

0817 - Memory access violation 

$B4 - Address of IORB 

5-295 CBoa 



Example: 

In this example, the $RQIO macro call is used to request an 
I/O transfer involving a device whose logical resource 
number is 143. The device has been reserved by a get file 
macro call; its LRN has been obtained by a get file informa­
tion macro call. In addition to the LRN, the IORB provides 
the following information about the I/O transfer: 

o The issuing task is to be suspended until the request is 
complete. 

o The address of the buffer to be used in the I/O transfer 
is BUFAD. 

o The buffer begins in the left byte of BUFAD. 

o The buffer is 326 bytes long. 

AFOOI $RQIO ! IORB21 

IORB21 $IORB l43,WAIT"BUFAD,L,326 

5-296 CB08 

" j 



REQUEST SEMAPHORE 

REQUEST SEMAPHORE 

Macro Call Name: $RQSM 

Function Code: 06/00 

Equivalent Command: None 

Request the reservation of a resource controlled by the 
semaphore specified in the indicated semaphore request block 
(SRB). If it is available, reserve the resource. If the 
resource is not available, queue the SRB until the resource 
becomes available. 

FORMAT: 

[label] $RQSM [locat ion 0 f SRB add ress] 

ARGUMENT DESCRIPTION: 

location of SRB address 

Any address form valid for an address register; pro­
vides the address of the semaphore request block to be 
queued if the resource is not available. See the 
semaphore request block ($SRB) macro call later in 
this section. 

FUNCTION DESCRIPTION: 

This call is an asynchronous request for a resource control­
led by the semaphore identified in the semaphore request 
block (SRB). The semaphore itself must have been defined by 
a define semaphore macro call. The semaphore request block 
can be generated by a $SRB macro call. 

When the request semaphore macro call is executed, the 
counter whose initial value was established by the define 
semaphore macro call is decremented by 1. 

If the resource is available, it is reserved. If the 
resource is not available, the SRB is queued until the 
resource becomes available. 

5-297 CB08 



If WAIT was specified in argument 2 of the $SRB macro call, 
the issuing task is suspended until the resource becomes 
available. The resource is then reserved, the SRB is marked 
as terminated, and control is returned to the issuing task. 

If argument 2 of the $SRB macro call is not WAIT, control is 
immediately returned to the issuing task, which can then 
perform other processing. When the resource becomes avail­
able, it is reserved and the SRB is marked as terminated. 
The issuing task can then use the test, wait, or wait on 
request list macro calls to check the completion status of 
the SRB. (Alternatively, the task can use the request-task 
or post-semaphore termination options.) 

NOTES: 1. The address of the SRB supplied in argument 1 is 
placed in $B4; if this argument is omitted, $B4 
is assumed to contain the SRB address. 

Example: 

2. On return, $Rland $B4 contain the following 
information: 

$RI - Return status; one of the following: 

0000 - No error 
0502 - Illegal SRB 

$B4 - Address of SRB 

In this example the $RQSM and $WAIT macro calls are used to 
replace the P-op on semaphore TH used in the example given 
for the define semaphore macro call. This technique allows 
the requesting task to start the process of reserving a 
~esource before it is actually needed and continuing concur­
rent processing until the resource is required (at which 
time the requesting task will wait for the semaphore request 
block). Processing then continues as in the define sema­
phore example. 

5-298 CB08 

J 



* * START THE PROCESS OF CAPTURING A RESOURCE BY ISSUING 
* A REQUEST SEMAPHORE CALL TO RESERVE A RESOURCE 
* 

$RQSM ! SRB 

* * NOW CONTINUE NORMAL PROCESSING 

* 

* 
* 
* 
* 
* 

* 

ROUTINE TO FINISH GETTING A RESOURCE 

WAIT FOR THE REQUEST SEMAPHORE CALL TO FINISH 

$WAIT !SRB 

* NOW LOCK THE FREE RESOURCE LIST 

* 
$RSVSM ='LK' 

* * NOW TAKE A RESOURCE FROM THE FREE RESOURCE LIST 

* 

* * THEN UNLOCK THE FREE RESOURCE LIST 

* 
$RLSM ='LK' 

* * NOW THE RESOURCE IS RESERVED 

* 

SRB $SRB TH, WAIT 

5-299 CBD8 



I 

REQUEST TASK 

REQUEST TASK 

Macro Call Name: $RQTSK 

Function Code: OC/OO 

Equivalent Command: Enter Task Request (ETR) 

Request the execution of a previously created task within 
the same task group from which this request is issued. 

FORMAT: 

rIabel] $RQTSK [location of request block address] 

ARGUMENT DESCRIPTION: 

location of request block address 

Any address form valid for an address register; pro­
vides the address of the task request block that iden­
tifies the requested task and specifies whether the 
issuing task is to wait for the completion of the 
request. 

FUNCTION DESCRIPTION: 

This call activates a task that was previously defined by a 
create task macro call. The request task macro call allows 
a running task to request the execution of another task. 
The issuing task must supply a task request block that iden­
tifies the requested task and the characteristics of the 
request. 

A task request block is constructed through the $TRB macro 
call. The first argument of the $TRB macro call specifies 
the logical resource number (LRN) of the requested task. 
The second and third arguments specify whether or not the 
issuing task is to be suspended until the request is com­
plete. The fourth argument specifies the start address of 
the task. 

5-300 CBoa 

/r' 



( 

( 

Using the LRN supplied in the request block, the task man­
ager ascertains the task control block of the requested 
task. The task manager then places the request block in the 
request queue of the requested task. If the request queue 
was previously empty, the task is queued to its priority 
level. If the priority level was empty, it is activated. 
In addition, if the newly activated priority level is higher 
than that of the calling task, the task manager (operating 
at the priority level of the calling task) is interrupted 
and the requested task begins execution. 

When the priority level of the calling task again becomes 
the highest active priority level, the task manager checks 
the task request block to ascertain if the calling task is 
to wait for the completion of this request (for the 
requested task) before continuing. If the calling task is * 
to wait (and the requested task has not already signaled its 
completion relative to the request), the task manager asso­
ciates the identity of the calling (and now waiting) task 
with the request block for the requested task. The task 
manager then removes the calling task from its priority 
level and activates the next task in the queue. If the 
calling task is not to wait for completion of this request I 
for the requested task, the task manager returns control to 
the calling task. 

The calling task can explicitly supply the address of the 
requested task's entry point in the request block it uses. 
If it does not, the requested task's entry point, derived 
when the task was created or last terminated, is used. 

When a requested task is entered, the task manager provides 
the address of the request block that is being honored. 
This address is that of the first request block in the 
request queue for the priority level of the requested task. 

If a calling task waits for the completion of its request 
for a requested task, the task manager returns the comple­
tion status of the request to the calling task when .the 
latter regains control. (See also the wait and wait on 
request list macro calls.) 

NOTES: 1. The address supplied by argument 1 is placed in 
$B4; if this argument is omitted, $B4 is assumed 
to contain the address of the task request block 
for the task. 

2. On return, $Rl and $B4 contain the following 
information: 

5-301 CB08 



Example: 

$Rl - Return status; one of the following: 

0000 - No error 

0801 - Request block in use 

0802 - Invalid LRN used in request block 

0803 Illegal wait ·(a task cannot wait on 
a request for itself) 

If wait specified: 

OOOO-FFFF - Completion status 

$B4 - Address of task request block 

In this example, the $RQTSK macro call is used to request 
the execution of the task created in the first example for 
the create task macro call (assuming that both macro calls 
are executed in the same task group). The task request 
block used is generated so that the issuing task will not be 
suspended awaiting completion of the requested task, the 
semaphore named TD will be V-oped at completion of the 
requested task, and the requested task will be started at 
entry point ENTRY3 instead of the address specified when the 
task was created. The task request block is also to contain 
the argument -PRINT, and by default will contain no addi­
tional space for use by the requested task. 

TRB 

$RQTSK !TRB 

$TRB 10,NWAIT,SM=TD; 
ENTRY3,,-PRINT 

5-302 CB08 

l , 



( 

REQUEST TERMINAL 

REQUEST TERMINAL 

Macro Call Name: $RQTML 

Function Code: 17/03 

Equivalent Command: None 

Permit the issuing task group to accept a user who is log­
ging into that task group through the listener component. 

FORMAT: 

r label] $RQTML [locat ion 0 f term inal IORS] 

ARGUMENT DESCRIPTION: 

location of terminal IORS 

Any address form valid for a data register; provides 
the address of the input/output request block (IORB) 
of the terminal associated with this task group. 

FUNCTION DESCRIPTION: 

This call enables the task group of the issuing task to be 
notified when a terminal user logs in as a secondary user of 
the task group. Notification is made at the terminal asso­
ciated with the task group issuing the call. 

If a secondary user logs in after this call has been issued, 
the terminal from which the user logs in is reserved by the 
task group issuing t-hecall. The issuing task group can use 
the $RLTML macro call to release the terminal. The issuing 
task group can cancel the request by a $CANRQ macro call. 

The buffer address field of the terminal IORS specifies an 
area that is to receive some or all of the login parameters 
in the fo rmat spec if i ed below. (The actual amo unt 0 f data 
transferred is determined by the IORS buffer range field.) 

5-303 CS08 

I 



Word (s) Contents 

o 

1-6 

7-12 

13-18 

19-22 

23-xx 

Terminal LRN 

Terminal symbolic peripheral device name 
(e • g ., TTY 0 ) 

Person identification from login line or 
the default account 

Account name for login line or the default 
acco unt 

Encrypted password from login sequence 
(networking use only) 

Entire login line as entered from terminal 

The setting of the IROBs W-bit determines whether control is 
returned immediately or is returned after a login has 
occurred. 

The IROB's I/O bit must be set; the D-bit is reset. The s­
and R-bits specify how the task group is to be notified when 
the request is satisfied. The requesting task group must 
issue a get file macro call to the terminal file to reserve 
the fi Ie. 

NOTES: 1. The address of the terminal IORB supplied by 
argument 1 is placed in $B4; if this argument is 
omitted, $B4 is assumed to contain the current 
add ress • 

2. On return, SRI contains one of the following 
return status codes: 

0000 - If no wait specified, request was issued 
successfully; if wait specified, success­
ful login 

0817 - Memory access violation 

0824 - Request canceled 

082E - Parameter error (invalid control bits in 
IORB) 

3. On return, $B4 contains the request block 
address. 

4. This macro call modifies item I CT2 of the TORB. 

5-304 CB08 

/ 



( 

(. 

Example: 

In this example, the $RQTML macro call is used to ensure 
that the issuing task group is notified when a terminal user 
logs in as a secondary user of the task group. The informa­
tion returned to the task group consists only of the termi­
nal LRN, terminal symbolic peripheral device name, person 
identification, and account name. Note that control i~ 
returned immediately to the issuing task group; the group 
does not wait for a login to occur. 

CHK 1 

* 
$RQTML 

* DEFINE IORB 
* 
IORB 

* 

RESV 
TEXT 

TEXT 

DC 
DC 
DC 
DC 
DC 

* END IORB 

* 
SEC USR 
IN LNG 

* 

RESV 
EQU 

! IORB 

$AF, a 
Z '00 ' ; 
B' 0'; 
B'l ' ; 
B '0 ' ; 
Z '0 ' ; 
B '1 ' ; 
Z '03' ; 
B '0 ' ; 
B '0 ' ; 
B '00 ' ; 
Z '1 ' ; 
<SEC USR 
IN LNG 
a 
a 
a 

18,0 

RSU 
RETURN STATUS 
T ... BIT (IN USE) 
W-BIT (DON'T WAIT) 
U-B IT (USER) 
MBZ 
MUST BE ONE 
LRN 
MBZ 
B-BIT (BYTE INDEX) 
MBZ 
FUNCTION CODE 
BUFFER ADDRESS 
RANGE 

RESIDUAL RANGE 
STATUS WORD 

2* ($-SEC_USR) 

5-305 CB08 



RESERVE SEMAPHO.RE 

I RESERVE SEMAPHORE 

Macro Call Name: $RSVSM 

Function Code: 06/02 

Equivalent Command: None 

Reserve a resource controlled by the specified semaphore if 
the resource is available (i.e., do a P-op or P-test). If 
the resource is not available, perform one of the following 
actions, depending on the value of argument 2: 

o Return immediately to the issuing task (do a p-test). 

o Suspend the issuing task until the resource becomes 
available. Then reserve the resource and return to the 
issuing task (these three actions are known collectively 
as a P-op). 

FORMAT: 

[label] $RSVSM [location of semaphore identifier], [{~!~~}] 

ARGUMENT DESCRIPTION: 

location of semaphore identifier 

DENY 

Any address form valid for a data register; provides 
the two ASCII characters that identify the semaphore 
associated with the resource to be reserved. 

Specifies that if the resource is not available for 
reservation, an immediate return to the issuing task 
is to be made (i.e., a P-test is to be done). 

5-306 CBOS 



( -" 

_/ 

WAIT 

Specifies that if the resource is not available for 
reservation, the issuing task is to be suspended until 
the resource becomes available; then the resource is 
to be reserved and a return to the issuing program is 
to be made (i.e., a P-op is to be done). 

WAIT is assumed if the argument is omitted. 

FUNCTION DESCRIPTION: 

This call is a synchronous request for a resource controlled 
by the semaphore identified in argument 1. This semaphore 
must have been defined by a define semaphore macro call. 

When a P-op is performed, the counter whose initial value 
was established by the define semaphore macro call is 
decremented by 1. 

Since the reserve function does not queue a semaphore 
request block (see request semaphore macro call), the 
reserve resource macro call must be reissued when DENY is 
specified for argument 2. 

NOTES: 1. The semaphore identifier supplied by argument 1 
is placed in $R6; if this argument is omitted, 
$R6 is assumed to contain the identifier of the 
semaphore to be tested. 

2. If DENY was specified for argument 2, $R2 is set 
to 0 (P-test to be done); if WAIT is specified 
for argument 2, or if the argument is omitted, 
$R2 is set to -1 (P-op to be done). 

3. On return, $Rl and $R6 contain the following 
info rmat ion: 

$Rl - Return status; one of the following: 

0000 - No error 

0501 - Unsuccessful reservation (only if 
DENY specified) 

0502 - Semaphore not defined 

0505 - Illegal return condition indicator 

$R6 - Semaphore identifier (as supplied) 

5-307 CB08 



Example: 

For an example of the reserve semaphore (SRSVSM) macro call 
see the example given for the define semaphore macro call. 

5-308 CB08 



RESET DEVICE ATTENTION 

RESET DEVICE ATTENTION (MOD 400 ONLY) 

Macro Call Name: $RDVAT 

Function Code: 02/03 

Equivalent Command: None 

Turn off the attention status indicator in the resource 
control table (RCT) of the specified device. 

FORMAT: 

[label] $RDVAT flocat ion 0 f LRN] 

ARGUMENT DESCRIPTION: 

location of LRN 

Any address form valid for a data register; provides 
the LRN of the device whose attention status indicator 
is to be reset. The LRN must be a system LRN (defined 
at system building) • 

FUNCTION DESCRIPTION: 

This call turns off the attention status indicator (bit 8 of 
the R FLGS entry) in the RCT of the specified device. 
$RDVAT can be used in synchronizing task operation with 
device availability. 

A task can issue a disable device on attention macro call 
($DSDV) to request notification of an interrupt. When the 
interrupt occurs, the device driver will set bit 10 (device 
disabled) and bit S (attention has occurred) of R FLGS. 
When a ready interrupt is generated, the task can-clear the 
disabled status by resetting bit 10 through the $ENDV macro 
call. 

5-309 CBOS 



I 

After clearing bit 8, using the reset device attention 
($RDVAT) macro call, and waiting for the device ready inter­
rupt to occur, a task can use the enable device ($ENDV) and 
the reset device attention ($RDVAT) macro calls to clear 
bits 8 and 10 to initial states. 

NOTES: 1. The LRN specified by argument 1 is placed in 
$R2; if this argument is omitted, $R2 is assumed 
to contain the correct LRN. 

Example: 

2. On return, SRI and $R2 contain the following 
information: 

$Rl - Return status; one of the following: 

0000 - No error 
0102 - Invalid Error 

$R2 - LRN of the device 

In this example, the $RDVAT macro call is used to turn off 
the attention status indicator in the RCT of the device 
whose LRN is 15. If the interrupt occurs, the device will 
be set to the disabled state. When a ready interrupt 
occurs, the device disabled condition is cleared through the 
$ENDV (enable device) macro call. 

ATTOFF $RDVAT =15 

CLRDIS $ENDV =15 

5-310 CB08 



RETURN 

RETURN 

Macro Call Name: $RETRN 

Function Code: None 

Equivalent Command: None 

Issues a standard return sequence for tasks or called 
subroutines. 

FORMAT: 

rIabel] $RETRN [locat ion 0 f compl et ion status], 
[location of return address] 

ARGUMENT DESCRIPTION: 

location of completion status 

Any address form val id for a data reg ister; prov ides 
the user-selected status code to be returned when the 
subroutine or system service routine finishes pro­
cessing. Any code can be selected. 

location of return address 

Any address form valid for an address register; pro­
vides the address in the calling task to which the 
subroutine or system service routine will retli-rn when 
it has finished processing. 

FUNCTION DESCRIPTIDN: 

I 

This macro call allows a procedure (which can be called as a 
subroutine or invoked to service a task request) to have a 
common return interface to the calling task. 

If the procedure was statically linked with its caller, the 
return address supplied in argument 2 is placed in $B5 and a 
JMP $B5 instruction is issued. The completion status is 
placed in $R 1. 

5-311 CB08 



I 

* 

If the procedure was invoked as a subtask, the procedure's (-~ 
task is terminated and its request block is marked as ~_~ 
complete. (See" Te rm inate Request" for further info rmation 
about task termination.) 

Note that $B5 is set to the address of a system-supplied 
termination routine when any of the following occur: 

o A task is initially activated to service a request. 
o A return request block macro call is issued. 

NOTES: 1. The status code specified by argument 1 is 
placed in $R2; if this argument is omitted, $R2 
is assumed to contain the intended status code. 

Example: 

2. The address supplied by argument 2 is placed in 
$B5 and a JMP $B5 instruction is executed. If 
this argument is omitted, $B5 is assumed to con­
tain the return address. 

In this example, the RETRN macro call is used by a semaphore 
to return to its caller with a completion status of zero. 
The example assumes the procedure was entered at the entry 
pointed named BEGIN, and that the contents of SAV 85 are 
not altered within the procedure - other than at Tts entry 
point. If the procedure was statically linked with its, 
caller, the macro call causes a JMP SB5 return to the 
caller, with the completion status in $Rl. If the procedure 
was invoked as a subtask, the macro call causes the pro-
cedure's task to be terminated and its request block marked 
as complete. 

BEGIN 
EDEF 
STB 

$RETRN 

BEGIN 
$B 5, SAV _B5 

=0, SAV _B5 

SAV B5 RESV 2 

5-312 CBOS 



( 

RETURN MEMORY IRETURN 
PARTIAL BLOCK OF MEMORY 

RETURN MEMORY/RETURN PARTIAL BLOCK OF MEMORY 

Macro Call Name: $RMEM 

Function Code: 04/04 (return memory) , 
04/05 (return partial block) 

Equivalent Comand: None 

Return all or part of the previously allocated memory block 
to the memory pool of the task group of the issuing task. 
If argument 2 is omitted, return all of the memory block; if 
argument 2 is specified, return the number of words it 
indicates. 

FORMAT: 

rlabel] $RMEM [location of memory block address], 
[location of number of words to be returned] 

ARGUMENT DESCRIPTION: 

location of memory block address 

Any address form valid for an address register; pro­
vides the location of the address of the leftmost word 
(excluding the block header) of the memory block to be 
returned (either partially or totally). 

location of number of words to be returned 

Any address form valid for a data register; provides 
the number of words to be returned (starting at the 
rightmost part of the block). If this parameter is 
omitted, the entire memory block is returned. 

FUNCTION DESCRIPTION: 

The return memory and return partial block of memory macro 
calls are the means by which a task returns a previously 
allocated memory block to the task group's ·memory area. If 
the entire block is to be returned, argument 2 is omitted. 
If a part of the block is to be returned, argument 2 speci­
fies the number of words to be returned. 

5-313 CB08 



When a partial block of memory is returned, the return is 
done in 32-word increments of memory; the actual amount of 
memory returned is the specified amount rounded down to the 
next lower 32-word increment. 

The memory block address referred to by argument 1 is the 
same address as that returned in $B4 when the task issued a 
get memory or get available memory macro call and was allo­
cated this block. 

NOTES: 1. The memory block address derived from argument 1 
is placed in $B4; if this argument is omitted, 
$B4 is assumed to contain the address of the 
memory block to be returned. 

2. The number of words to be returned (partial 
return only) derived from argument 2 is placed 
in $R6 and $R7. If argument 2 is =$R7, it is 
assumed that $R6 and $R7 contain the number of 
words to be returned. If argument 2 is omitted, 
the entire memory block is returned. 

3. On return, $RI, $R6, $R7, and $B4 contain the 
following information: 

$RI - Return status; one of the following: 

0000 No error 

0603 - Illegal memory block address 
specified 

0604 - Size of memory to be returned is 
greater than size of memory block 
(partial return only) 

0818 - No task group with specified group 
id exists (system software error) 

08lB - Roll-in of online task group 
attempted (system software error) 

08lC - Roll-in attempted when batch group 
not rolled out (system software 
error) 

08lE - Unrecoverable media error during 
roll-in 

08lF - Group not suspended when roll-in 
attempted (system software error) 

5-314 CB08 

\ .. / 



Examples: 

-------- -_._ .......... . 

$R6, $R7 - Partial return only; remaining size 
of block still allocated 

$B4 - Partial return only; address of first 
(leftmost) word of allocated memroy block 
(excluding header word). 

In this example, the $RMEM macro call is used to return all 
of the memory obtained in the first example for the get 
memory/get available memory macro calls. The $RMEM macro 
call is assumed to be contained in the same procedure as the 
coding shown in that example. 

$RMEM M PTR 

In this example, the $RMEM macro call is used to return 100 
words of the memory obtained in the first example for the 
get memory/get available memory macro calls. Upon return 
from the system $B4 will contain the address of the first 
usable word of the memory area and $R6 and $R7 will specify 
the number of words still remaining in the memory area. The 
$RMEM macro call is assumed to be contained in the same pro­
cedure as the coding shown in the get memory example. 

$RMEM 

5-315 CB08 



I 

RETURN REQUEST BLOCK ADDRESS 

RETURN REQUEST BLOCK ADDRESS 

Macro Call Name: $RBADD 

Function Code: 01/07 

Equivalent Command: None 

Return the address of the request block currently at the 
head (top) of the issuing task's request queue. 

FORMAT: 

rIabel] $RBADD 

ARGUMENT DESCRIPTION: 

No arguments are used with this call. 

FUNCTION DESCRIPTION: 

This call returns the address of the first request block in 
the request queue for the task. The request block is not 
removed or altered. 

The address of the request block is placed in $B4. The 
address of the argument list (if any) associated with the 
request block is placed in $B7. 

Upon return to the issuing task, $B5 contains the address of 
the system-supplied termination routine. 

NOTE: On return, $Rl, $B4, $B5, and 5B7 contain the fol­
lowing information: 

SRI - Return status; one of the following: 

0000 - No error 

0801 - No request block found (no dispatched 
request block exists for the issuing 
task) 

5-316 CB08 



( 

! • 

( 

$84 - Address of current request block (if $Rl is 
0000) 

$85 - Address of system-supplied termination routine 

$87 - Address of request block argument list (if $Rl 
is 0000) 

Example: 

In this example, the $R8ADD macro call returns the address 
of the issuing task's request block in $84. The address of 
the argument list contained within the request block is 
returned in $87 and the address of a system-supplied termi­
nation routine is returned in $85. 

CHEK L $R8ADD 

5-317 C808 



REWRITE RECORD 

REWRITE RECORD 

Macro Call Name: $RWREC 

Function Code: 11/40 (current), 11/41 (key) 

Equivalent Command: None 

Change the contents of the specified logical record in the 
file: this macro call is valid for all file organizations 
except tape-resident sequential files and device files. 

FORMAT: 

[ labe I] $RWREC [ fib addres s ] [ { : i~~RENT } J 
ARGUMENT DESCRIPTION: 

fib address 

Any address form valid for an address register: pro­
vides the location of the file information block 
(FIB) • 

{CURRENT} 
CUR 

This mode argument indicates that the record read by 
the immediately preceding read next or read with key 
(i.e., the last record read: see "Read Record") macro 
call is to be rewritten by the record defined in the 
FIB. This is the default value for this macro call. 
You must code the following FIB entries: 

logical file number 
user record pointer 
output record length 

This mode is referred to as rewrite current record. 

5-3lS CBOS 



( 

KEY 

This mode argument indicates that the position in the 
file associated with the key value specified in the 
FIB is to be written over by the record identified by 
the FIB. You must code the following FIB entries: 

logical file number 

input key pointer (unless this is an indexed 
file that contains the key embedded in the 
logical record) 

input key length 

This mode is referred to as rewrite with key. 

FUNCTION DESCRIPTION: 

Before this macro call can be executed, the file must have 
been opened (see the open file macro call) with a program 
view word that allows access via data management (bit 0 is 
0) and allows rewrite operations (bit 3 is 1). The file 
must have been reserved (see the get file call) with write 
access concurrency control (type 3, 4, or 5). The rewrite 
record macro call has no effect on the read or write 
pointer. If the file is an indexed file, the embedded key 
must not be altered. 

The file information block can be generated by a $FIB macro 
call. Displacement tags for the FIB can be defined by the 
$TFIB macro call. 

NOTES: 1. If the first argument is coded, the address of 
the FIB is loaded into $B4; if this argument is 
omitted, $B4 is assumed to contain the address 
of the FIB. 

2. On return, SRI contains one of the following 
status codes: 

0000 - No error 
0203 Illegal function 
0205 - Illegal argument 
0206 - Unknown or illegal LFN 
0207 - LFN not open I 
020A - Address out of file 
020E - Record not found 
0217 - Access violation 
0219 - No current record pointer 
02lA - Record length error 
02lD - Attempt to change the symbolic key value 

5-319 CBOS 



02lE - Key length or location error ',-_ ./ 

Example: 

022A - Record lock area overflow or not defined 
022B - Requested record is locked 

In addition to the above codes, any system 
service codes received by the data manager are 
passed on through $RI. 

In this example, it is assumed that the file is reserved 
with write access concurrency control and opened. TheFIB 
identified in the first parameter is defined in "Assumptions 
for File System Examples" in Section 3. The macro call is 

• specified as follows: 

BACREC $RWREC !MYFIB,CURRENT 

5-320 CB08 

"./ 



( SEMAPHORE REQUEST BLOCK 

SEMAPHORE REQUEST BLOCK 

Macro Call Name: $SRB 

Function Code: None 

Equivalent Command: None 

Generate a semaphore request block whose length is four 
words in SAF mode and five words in LAF mode. 

FORMAT: 

[label] $SRB [semaphore identifier], 
[issuing task suspension option] , 

or 

[termination action] 

ARGUMENT DESCRIPTION: 

semaphore identifier 

I 

A 2-character (ASCII) identifier that must have been 
defined by the task issuing the semaphore request. If I 
this argument is omitted, the semaphore identifier is 
set to an initial value of zero. 

issuing task suspension option 

One of the following values is specified to indicate 
whether the requesting task is to be suspended until 
the resource associated with the semaphore becomes 
available: 

WAIT 

NWAIT 

Suspend the issuing task until the resource 
becomes available (set w-bit to .0) 

Do not suspend the issuing task (set w-bit to 1) 

5-321 CBOS 



I 

If this argument is omitted, the value NWAIT is 
assumed. 

If WAIT is specified, argument 3 must be omitted. 

termination action 

One of the following values is specified to indicate 
the action to be taken when the resource becomes 
available.to the issuing task: 

SM=aa 

Do not suspend the issuing task; release (V-op) 
the semaphore identified by aa (two ASCII char­
acters) when requested task is completed. 

RB=label 

Do not suspend the issuing task; issue a request 
for the request block identified by label, when 
requested task is completed. 

If this argument is omitted (or argument 2 is WAIT), 
the generated SRB contains no termination option. 

FUNCTION DESCRIPTION: 

The semaphore request block (SRB) is used to request 
asynchronously the reservation of a resource controlled by 
the specified semaphore. The SRB contains a semaphore id 
which identifies the (previously defined) semaphore being 
requested. 

NOTE: This macro call cannot be used in programs written in 
SAF/LAF independent code (SLIC). See the Program 
Preparation manual for more information about SAF/LAF 
independent code. 

Example: 

In this example, the $SRB macro call generates a semaphore 
request block with identifier AA. The w-bit is set to zero 
to indicate the requesting task is to be suspended until the 
resource becomes available. No suspension action is given. 

GTRAA $SRB AA,WAIT 

5-322 CB08 



( 

SEMAPHORE REQUEST BLOCK 
OFFSETS 

SEMAPHORE REQUEST BLOCK OFFSETS (MOD 400 ONLY) 

Macro Call Name: $SRBD 

Counterpart: $SRB (see "Semaphore Request Block") 

Generated Label Prefixes: 

SRB label 
S RRB/S SEM 
offset 0 
S CTI 
S-CT2 
S-ADR 

See Appendix A for the format of the semaphore request 
block. 

NOTE: This macro call cannot be used in programs written in 
SAF/LAF independent code (SLIC). See the Program 
Preparation manual for more information about SAF/LAF 
independent code. 

5-323 CB08 

I 



SET DIAL 

SET DIAL 

Macro Call Name: $SDL 

Function Code: lB/OO 

Equivalent Command: Set Autodial Telephone Number (SOL) 

Insert the specified telephone number into the first entry 
in the autodial telephone number list for the specified 
line. This telephone number will be used first when the 
autodial facility attempts to establish a connection on the 
(switched circuit) line. 

FORMAT 1: 

[label] $SDL [location of channel number], 

FORMAT 2: 

[location of address of telephone number] , 
CHANNEL 

[label] $SDL [location of address of device pathname], 
[location of address of telephone number] , 
[PATHNAME] 

ARGUMENT DESCRIPTION: 

location of channel number 

Any address form valid for a data register; provides 
the four hexadecimal digits that define the 10-bit 
channel number of the data line. The channel number 
must be stored left-justified with low-order zero 
filling. (Applicable to format 1 only.) 

5-324 CBDa 



( 

( 

location of address of telephone number 

Any address form valid for an address register; pro­
vides the address of the telephone number to be asso­
ciated with the data line. The telephone number must 
be stored as an aligned, nonvarying, character string 
containing at least one trailing space and no embedded 
spaces. The telephone number can contain from 5 
through 16 ASCII characters chosen from the set 0, 1, 
2, 3, 4, 5, 6, 7, 8, 9, -, * (Applicable to formats 
1 and 2.) 

{
CHANNEL( 
CHAN j 

Incicates that format 1 of the macro cali is being 
used (channel number of line is provided). 

location of address of device pathname 

Any address form valid for an address register. For 
example, the device pathname could be >SPD>TTYl; see 
"Get File." The pathname must be stored as an 
aligned, nonvarying, character string containing at 
least one trailing space and no embedded spaces. 
(Applicable to format 2 only.) 

{ PATHNAME} 
PATH 

Indicates that format 2 of the macro call is being 
used (pathname of line is provided). 

FUNCTION DESCRIPTION: 

During system building, you can specify that the communica­
tions autodial facility be applied to one or more communica­
tions lines. For each line that is to employ autodialing, 
you construct a list of telephone numbers. The first entry 
in this list is left empty by the system. The other entries 
are filled in according to your specifications. 

The $SDL macro call allows you to dynamically insert a 
telephone number into the first entry in the list for a 
particular line. When the autodial handler is invoked, this 
telephone number will be dialed first in the attempt to 
establish a connection with the terminal(s) on the line. If 
no successful connection is established, the next entry 
(telephone number) in the list is dialed, and so on until a 
successful connection is made or every number in the list 
has been dialed. (Each telephone number is dialed three 
times at 40-second intervals.) 

5-325 CBoe 



NOTES: 1. For format 1, the channel number supplied by 
argument 1 is placed in $R6; if this argument is 
omitted, $R6 is assumed to contain the channel 
number. 

Example: 

2. The format 2, $R6 is cleared to zero and the 
address of the device pathname supplied by argu­
ment 1 is placed in $82. If argument 1 is 
omitted, $82 is assumed to contain the address 
of the device pathname. 

3. For formats 1 and 2, the address of the tele­
phone number supplied by argument 2 is placed in 
$84; if this argument is omitted, $84 is assumed 
to contain the address of the telephone number. 

4. For format 1, CHANNEL (or CHAN) must be coded. 

5. For format 2, all three arguments can be 
omitted. If this is done, $R6 is assumed to 
contain zeros, $82 is assumed to contain the 
address of the device pathname, and $84 is 
assumed to contain the address of the telephone 
number. 

6. On return, $Rl contains one of the following 
status codes: 

0000 - No error 

0201 - Illegal pathname 

0701 - Channel not configured 

0702 - Autodial control unit not configured on 
this channel 

0703 - ACU in progress 

1704 Illegal argument length 

l70F - Invalid digit in telephone number 

In this example, the terminal whose pathname is >SPD>TTYl is 
to be automatically dialed using the number 1-617-555-4444. 

5-326 C808 



(C 

DIALAA 

PTNM 
NUM 12 

$8DL 

TEXT 
TEXT 

!PTNM,!NUM_12,PATH 

'>8 PD>TTY 1 t!' 
'16175554444t!' 

5-327 CB08 



SET EXTERNAL SWITCHES ',- j 

SET EXTERNAL SWITCHES 

Macro Call Name: $SETSW 

Function Code: OB/Ol 

Equivalent Command: Modify External Switches (MSW) 

Set the specified external switches in the task group's 
external switch word to on; return the inclusive logical OR 
of the previous settings. 

FORMAT: 

r label] $SETSW external swi tch name, 
[external switch name], 

[external switch name] 

ARGUMENT DESCRIPTION: 

external switch name ••• external switch name 

A single hexadecimal digit (0 through F) specifying 
the external switch in the task group's external 
switch word. A maximum of 16 external switches (0 
through F) can be specified. If no arguments are sup­
plied, $R2 is assumed to contain a mask word specify­
ing the switches to be set on. If ALL is specified~ 
all external switches are set on. 

FUNCTION DESCRIPTION: 

This call provides a mask by which switches can be set in 
the external switch word of the issuing task's task group. 
It also provides an indication of the previous settings of 
these switches. 

5-328 CB08 



"' :t 

$R2 is the mask word. Each bit in $R2 that is 1 causes the 
corresponding bit in the external switch word to be set on; 
each bit that is 0 causes the corresponding bit to remain 
unchanged. 

When the $SETSW macro call is executed, $R2 contains the new 
settings of the external switch word. Bit 11 (bit-test 
indicator) of the I-register provides an indication of the 
previous setting of the switches in the switch word, as 
follows: 

o If bit 11 is 0, no switch set on had previously been set 
on. 

o If bit 11 is 1, at least one switch of those set on had 
previously been set on. 

NOTES: 1. The bits corresponding to the external switches 
in the arguments are set on in $R2; if no argu­
ments are supplied, $R2 is assumed to contain 
the mask to be used. If ALL is specified, all 
bits are set on in $R2. 

Example: 

2. On return, $R2 and the I-,register contain the 
following information: 

$R2 - External switch word after modification 

I-register (Bit 11) - Inclusive OR of previous 
settings of switches set on: 

o - No switch set on was on 

1 - At least one switch of those set on was 
on 

In this example, the $SETSW macro call is used to turn on 
external switches 2, 4, and B of the task group in which the 
issuing task is executing. • 

SET AA $SETSW 2,4,B 

5-329 CB08 



SET TERMINAL CHARACTERISTICS 

SET TERMINAL CHARACTERISTICS 

Macro Call Name: $STTY 

I Funct ion Code: 10/45 

* 

Equivalent Command: Set Terminal Characteristics (STTY) 

Set the file characteristics of a terminal. 

FORMAT: 

[label] $STTY [location of parameter structure address] 

ARGUMENT DESCRIPTION: 

location of parameter structure address 

Any address form valid for an address register; the 
format of the parameter structure is: 

Word 

0-2 

3 

4 

Field 

sympd 

line length 

deviee­
specific 
word 

Content 

Symbolic peripheral device name of 
the terminal to be affected. 

Binary integer specifying the line 
length (not including the slew 
byte) of the terminal. If this 
word is zero, the terminal's line 
length is not changed. 

An aligned 16~bit string that 
specifies the device specific word. 
If all zero bits, the terminal 
device-specific word is not 
changed. (See the Communications 
Processing manual for possible 
val ues.) 

5-330 CB08 



( 

Word 

5 

6-16 

Field 

file 
indicator 

Content 

An aligned 16-bit string that 
specifies the characteristics of 
the terminal to be changed (0 
means do not change the character­
istic; 1 means change the 
characteristic) • 

Bit Meaning 

o Input-only device type 

1 Output-only device type 

2 Bidirectional device type 

3 Detab on 

4 Detab off 

5 Asynchronous input 

6 Asynchronous output 

7 Synchronous input 

8 Synchronous output 

9 Synchronous nonbuffered input 

10 Synchronous nonbuffered 
output 

11-15 Must be zero 

The device type (bits 0, 1, and 2) 
cannot be changed if the file is 
open. 

Reserved for later use 

FUNCTION DESCRIPTION: 

This call allows the issuing task to dynamically alter 
terminal file characteristics. The original file character­
istics, established at system generation, can be altered to 
reflect the needs of the issuing task. 

NOTES: 1. The address of the parameter structure supplied 
by argument 1 is placed in $B4; if this argument 
is omitted, $B4 is assumed to contain the 
address. 

5-331 CBoa 

I 



I 

Example: 

2. On return, $Rl contains one of the following 
status codes: 

0000 - No error 
1302 - Device name not found 
1304 - Parameter missing or incomplete 
1306 - Parameter not consistent with device type 

In this example, the terminal whose symbolic peripheral 
device name is TTY4 is changed to an output-only device for 
asynchronous output. Neither the line length nor the 
device-specific word is changed. (It is assumed that the 
file is not open.) 

TER AA 

SETAA 

DC 
RESV 
DC 

$STTY 

'TTY4L\L\' 
2,0 
B'0100001000000000' 

!TER AA 
(10)-Z'0000' 

5-332 CB08 



( SPAWN GROUP 

SPAWN GROUP 

Macro Call Name: $SPGRP 

Function Code: OD/05 

Equivalent Command: Spawn Group (SG) 

Create the definition of a new task group within the system. 
Request the execution of the group's lead task. Delete the 
group from the system when the group request terminates. 

FORMAT: 

[label] $SPGRP [location of group identifier], 
(location of address of argument list], 

, [location of address of fixed parameter block], 
, [location of memory pool identifier], 

[location of base level], 

( 

[location of high logical resource number], 
[location of high logical file number] , 
[location of root entry name address] 

ARGUMENT DESCRIPTION: 

location of group identifier 

Any address form valid for a data register; provides 
the group identification of the task group to be 
spawned. The group identification must be a two­
character (ASCII) name that does not have the $ 
character as its first character. 

location of address of argument list 

Any address form valid for an address register; pro­
vides the address of the argument list, which can be 
generated by the parameter block macro call to be used 
to specialize a request block that will be used- to 
request the lead task of the spawned task group. 

5-333 CB08 



I 

I 

location of address of fixed parameter block 

Any address form valid for an address register; pro­
vides the address of a fixed parameter block, which 
can be generated by the parameter block macro call. 
Th is parameter block has the following arguments: 

Argument 1 

A string specifying the user id to be associated 
with the spawned task group (for system use). 
If this entry is zero, the user id currently 
associated with the issuing task group will be 
used when the call is executed from a user task 
group. 

Argument 2 

A pathname string specifying the command-in and 
initial user-in files for this request of the 
lead task of the spawned task group. If this 
entry is zero, no command-in and initial user-in 
files will be available to the spawned group. 
However, the spawned group can later obtain a 
uSer-in file by means of the new user input 
macro call. A nonzero entry is required if the 
command processor is the lead task. 

Argument 3 

A pathname 3tring specifying the error-out and 
initial user-out files of the spawned task 
group. If this entry is zero, one of the fol­
lowing assumptions is made when the call is 
executed: 

o If the pathname string specifying the 
command-in and initial user-in files (in­
path) specifies a disk device, the pathname 
for the output files is in-path.AO. 

o If in-path specifies an interactive terminal, 
the pathname for the output files is the same 
as in-path. 

o If in-path specifies an input-only device, 
the pathname for the output files is null. 

Argument 4 

A pathname string specifying the initial value 
of the working directory to be used by the 
spawned task group. 

5-334 CB08 

.", / 



(" location of memory pool identifier 

( 

Any address form valid for a data register; provides 
the identifier of the memory pool to be used to 
service all memory requests emanating from the spawned 
task group. The memory pool identifier consists of 
two ASCII characters that name a pool defined at 
system generation. If this argument is omitted, the 
spawned task group will use the memory pool associated 
with the issuing task group. 

location of base level 

Any address form valid for a data register; provides 
the base priority level, relative to the system level, 
at which the lead task will execute. 

A base level of 0, if specified, is the next higher 
level above the last system priority level. The sum 
of the highest system physical level plus 1, and the 
base level of a group, and the relative level of a 
task within that group, must not exceed 62 

location of high logical resource number 

Any address form valid for a data register; specifies 
the highest logical resource number (LRN) that will be 
used by any task in the spawned task group. The LRN 
can be a value from 0 through FF (hexadecimal). If 
this argument is omitted, or if the value specified is 
less than the highest LRN used by the system task 
group, the system task group's LRN will be used. 

location of high logical -file number 

Any address form valid for a data register; specifies 
the highest logical file number (LFN) to be used by 
any task in the spawned task group. The LFN can be a 
value from 0 through FF (hexadecimal). If this argu­
ment is omi t ted, the val ue 15 is ass umed. (Refer to 
the associate file macro call.) 

5-335 CBD8 



location of root entry name address 

Any address form valid for an address register; pro­
vides the address of the root entry name string that 
specifies the pathname of the bound unit to be exe­
cuted as the lead task of the spawned group. The 
bound unit pathname can have an optional suffix in the 
form of ?entry, where entry is the symbolic start 
address within the root segment. If this suffix is 
not given, the default start address (established at 
assembly or link time) is used. For example, to 
specify the command processor as the lead task, use 
the pathname EC?ECL. 

FUNCTION DESCRIPTION: 

This call combines the create group, enter group request, 
and delete group macro calls. Spawn group implicitly causes 
the execution of these calls in sequence (i.e., it (1) allo­
cates and creates the data structures required to define and 
control the execution of the task group, (2) places a 
request against the group, thereby activating it and, (3) 
when execution terminates, removes all controlling data 
structures and returns memory used by the task group to the 
appropriate memory pool). 

Spawned task groups cannot be requested, nor can they be 
wa i ted upon. 

The request block generated according to the second argument 
in the macro call is constructed in space taken from the 
memory pool of the spawned task group. 

A spawn group macro call can be issued from a task group 
that was itself spawned. 

NOTES: 1. The group identifier specified by argument I is 
placed in $R2; if this argument is omitted, $R2 
is assumed to contain the group id to be used. 

2. The address of the argument list supplied by 
argument 2 is placed in $B4; if this argument is 
omitted, $B4 is assumed to contain the address 
of the argument list to be used to build the 
request block. 

3. The address of the fixed parameter block sup­
plied by argument 3 is placed in $B5; if this 
argument is omitted, $B5 is assumed to contain 
the address of the block to be used. 

5-336 CB08 

./' 



( 

( 

4. The memory pool identifier specified by argument 
4 is placed in $R4; if this argument is omitted, 
$R4 is set to zero to indicate that the memory 
pool of the issuing task group is to be used by 
the spawned task group. 

5. The base priority level specified by argument 5 
is placed in $R5; if this argument is omitted, 
$R5 is assumed to contain the base priority 
level to be used. 

6. The high LRN value specified by argument 6 is 
placed in $R6; if argument 6 is omitted, $R6 is 
set to zero to indicate that the value of the 
highest LRN created for the system task group 
will be used. 

7. The high LFN value specified by argument 7 is 
placed in $R7; if this argument is omitted, $R7 
is set to 15. 

8. The address of the root entry name supplied by 
argument 8 is placed in $B2; if this argument is 
omitted, $B2 is assumed to contain the address 
of the root entry name of the bound unit to be 
executed by the lead task of the spawned group. 

9. On return, $Rl and $R2 contain the following 
i n form at ion: 

$Rl - Return status; one of the following: 

0000 - No error 
0601 - Insufficient memory 
0602 - Insufficient memory 
0804 - Group id in use 
0806 - Invalid group id 
0807 - Invalid memory pool identifier 
0808 - Invalid base level 
0809 - Invalid high LRN 
080A - Invalid high LFN 
080C - Unresolved start address 
l60A - Invalid pathname 
l60B - Insufficient memory 

$R2 - Group id of spawned task group 

5-337 CB08 



Example: 

In this example, the $SPGRP macro call is used to create a 
task group, execute a task in that group, and then delete 
the group. The task group is created with a group id of Q2, 
use of memory pool P2, and a base level of 40 (decimal). 
Both the high LRN and the high LFN are defaulted (only 
system logical resources will be available and the highest 
logical file number available will be 15, decimal). The 
task group's lead task will be the command processor. The 
request part of the spawn is the same as the request given 
in the example for the request group macro call. 

INFO 

ARGS 
ROOT 

$SPGRP 

$PRBLK 

$PRBLK 
TEXT 

= ' Q 2 ' , ! ARGS , ! I NF 0 ; 
='P2',=40",!ROOT 

,AVl124>UDD>TEST>JONES>ASM TST; 
AVl124>UDD>TEST>JONES>L>ASM TST.AO; 
AVlI24>UDD>TEST>JONES -
-XREF,-PRINT 
'EC?ZXECLL\' 

5-338 CB08 

,;/ 



(-

( 

SPAWN TASK 

SPAWN TASK 

Macro Call Name: $SPTSK 

Function Code: OCI05 (different bound unit), 
DC/06 (same bound unit) 

Equivalent Command: Spawn Task (ST) 

Create, request the execution of, and then cause a task to 
be deleted within the task group of the issuing task. 

FORMAT: 

[label] $SPTSK rIocation of task request block address], 
[location of relative priority level] , 
[location of start address], 
[location of root entry name address] 

ARGUMENT DESCRIPTION: 

location of task request block address 

Any address form valid for an address register; pro­
vides the location of the address of the request block 
for the spawned task. The request block indicates 
whether the issuing task is to wait for the execution 
of the spawned task; the request block may contain 
parameters to be passed to the spawned task. 

location of relative priority level 

Any address form valid for a data register; provides 
the location of the priority level, relative to the 
task group's priority level, at which the spawned task 
is to execute. If this argument is omitted, the 
priority level used is that of the issuing task. 

5-339 CB08 



location of start address 

Any address form valid for an address register; pro­
vides the location of the task start address to be 
used when the spawned task is to execute the same 
bound unit as the issuing task. Note that the bound 
unit must have been declared sharable at the time it 
was I inked. (Function code OC/O 6.) 

location of root entry name address 

Any address form valid for an address register; pro­
vides the location of the address of the pathname of 
the bound unit root segment to be loaded for execution 
by the newly created task. The bound unit pathname 
can have an optional suffix in the form ?entry, where 
entry is the symbolic start address within the root 
segment. If no suffix is given, the default start 
address (established at Link time) is used. (Function 
code DC/OS.) 

FUNCTION DESCRIPTION: 

This call combines the functions of the create task, request 
task, and delete task macro calls in that it constructs the 
requisite structures for the execution of the task, acti­
vates the task, and, when the .task becomes inactive, deletes 
the task. When the spawned task is deleted, its associated 
data structures are removed and the memory they occupied is 
returned to the task group's memory pool. 

A spawned task is not assigned a logical resource number 
(LRN); therefore, the spawned task is local to the spawning 
task (i.e., is visible only to the spawning task). A 
spawned task cannot be requested or referred to by any other 
task; nor can its memory space or code be shared. However, 
a spawned task can share the memory space and code of 
another task that was assigned an LRN by a previously issued 
create task macro call. This sharing is indicated by the 
presence of argument 3. 

Either the location of the start address or the location of 
the root entry name address, but not both, can be specified. 

Multiple task requests can be made to execute concurrently 
within a given task's bound unit; this is accomplished by 
the issuing of multiple spawn task macro calls. 

NOTES: 1. The address of the request block supplied by 
argument 1 is placed in $B4; if this argument is 
omitted, $B4 is assumed to contain the address 
of the request block. 

S-340 CBDs 

" ' ( 



( 2. The relative priority level supplied by argument 
2 is placed in $R6; if this argument is omitted, 
$R6 is set to -1 to indicate that the priority 
level of the issuing task is to be used. 

3. Arguments 3 and 4 are mutually exclusive; if 
both are supplied, argument 3 is used and a 
diagnostic is issued. Information derived from 
either argument is placed in $B2; if these argu­
ments are omitted, $B2 is assumed to contain the 
start address within the bound unit. 

4. On return, $Rl contains one of the following 
status codes: 

0000 - Task successfully spawned (if no wait 
condition was indicated in the request 
bloc k) 

OOOO-FFFF - Posted completion status of spawned 
task (if wait condition specified) 

Olxx - Media error 

0209 - Bound unit not found 

0602 - Insufficient memory 

0801 - Request block in use (t-bit on) 

0817 - Access violation on request block 

0827 - Bound unit is not a fixed-relative file 

1604 - Unresolved symbolic start address 

l60A - Insufficient memory 

1613 - Invalid bound unit pathname 

1614 - Access violation (root segment not user 
segmen t) 

1615 - Invalid bound unit file (header incorrect 
or number of overlays plus the root is 
equal to zero). 

5-341 CBOS 



Example: 

In this example, the $SPTSK macro call creates a task, 
requests its execution, and then deletes the task. The task 
creation part of the spawn is the same as that given in the 
first example for the create task macro call, except that 
there is no LRN. The request part of the spawn is the same 
as that given in the example for the request task macro 
call, except that a synchronous request is made instead of 
an asynchronous request and no semaphore is V-oped (see 
"Semaphore Functions" in Section 2). The delete part of the 
spawn is the same as given in the example for the delete 
task macro call. 

TRB 
ROOT 

$SPTSK 

$TRB 
TEXT 

! TRB , =2, , ! ROOT 

",ENTRY3,,-PRINT 
'PROGIO 6,' 

5-342 CB08 



( 

C' 

STATUS MEMORY POOL 

STATUS MEMORY POOL 

Macro Call Name: $STMP 

Function Code: 04/06 

Equivalent Command: None 

Determine the amount of memory available in a specified 
memory pool. 

FORMAT: 

[label] $STMP [location of memory pool id] 

ARGUMENT DESCRIPTION: 

location of memory pool id 

Any address form valid for a data register; provides 
the memory pool id of the memory pool to be examined. 
If this argument is omitted, the memory pool examined 
is that associated with the task group of the issuing 
task. 

FUNCTION DESCRIPTION: 

This call allows the issuing task to determine the amount of 
memory currently available in a specified memory pool. The 
amount of available memory is returned to the issuing task 
both as the actual number of words now available in the pool 
and as the percentage of the pool's total memory now avail­
able. The total av~ilable memory may not be contiguous. 

If the memory pool being examined has the preempt batch 
option, the statistics returned are for the specified memory 
pool combined with the batch task group's memory pool. 

NOTES: 1. The memory pool id of the memory pool to be 
examined, supplied by argument 1, is placed in 
$R2; if this argument is omitted, $R2 is set to 
-1 to indicate that the memory pool of the task 
group of the issuing task is to be examined. 

5-343 CB08 



Example: 

2. On return, $Rl, $R2, $R6, and SR7 contain the 
following information: 

$RI - Return status; one of the following: 

0000 - No error 
0606 - Illegal or undefined memory pool id 

$R2 - If $RI is 0000, percentage of the memory 
pool's total memory that is currently 
available. The percentage is returned as 
an integer with the fractional value 
truncated. 

$R6, $R7 - If $Rl is 0000, the number of words 
of memory currently available in the 
memory pool. 

In this example, the $STMP macro call is used to determine 
the amount of memory available in the memory pool of the 
issuing task's task group. The number of words of memory 
available in the pool is returned in $R6 and $R7. A double­
word 2500 is subtracted from the double word size, .and the 
high-order word of the result is checked if the result is 
s till po sit i v e • 

POOLCT 
SUB 
BCT 
ADV 

$A BGEZ 

SOMMEM $GMEM 

5-344 

$STMP 
$R7 = 2500 
>+SA 
$R6 -J 
$R6,SOMMEM 

=2500 

CBOS 

;/ 



SUSPEND GROUP 

SUSPEND GROUP 

Macro Call Name: $SUSPG 

Function Code: OD/08 

Equivalent Command: Suspend Group (SSPG) 

Suspend the specified task group. 

FORMAT: 

[label] $SUSPG rlocation of group id] 

ARGUMENT DESCRIPTION: 

location of group id 

Any address form valid for a data register; provides 
the group id of the task group to be suspended. This 
task group must have been previously defined by a 
create group macro call. 

FUNCTION DESCRIPTION: 

This call causes the system to suspend the specified task 
group. The task group is marked as suspended when: 

o All tasks of the group have exited from critical areas of 
the Monitor. 

o All active task control blocks have been removed from 
their level queue. 

o All external requests (system driver, clock, memory, 
semaphore) have been satisfied. 

A suspended task group can be activated through the $ACTVG 
macro call. 

If the group id argument is $B, the $SUSPG macro call forces 
the rollout of the current batch task group. Rollin cannot 
occur until the $ACTVG $B macro call is issued. 

5-345 CB08 



I If the suspended task group is aborted, or if no other task 
group issues a $ACTVG macro call to enable the suspended 
group, the operator must issue an ACTB or ACTG command to 
allow the suspended group to continue. 

NOTES: 1. The group id of the task group to be suspended, 
supplied by argument 1, is placed in $R2; if 
this argument is omitted, $R2 is assumed to con­
tain the correct group ide 

Example: 

2.· On return, $RI and $R2 contain the following 
information: 

$RI - Return status; one of the following: 

0000 - No error 

0806 - Specified group id not currently 
defined 

$R2 - Group id as supplied 

In this example, the $SUSPG macro call is used to suspend 
the task group whose group id is GI. Task group Gl will not 
be suspended until all its tasks have exited from critical 
areas of the Monitor and all external requests have been 
satisfied. 

SUSGAA $SUSPG ~l 

5-346 CB08 



( SUSPEND FOR INTERVAL 

SUSPEND FOR INTERVAL 

Macro Call Name: $SUSPN 

Function Code: 05/02 

Equivalent Command: None 

Remove the issuing task from the active queue for its 
priority level until the specified interval has elapsed. 

FORMAT: 

[label] $SUSPN interval unit designator, 
[location of interval value] 

ARGUMENT DESCRIPTION: 

interval unit designator 

One of the following codes must be specified to indi­
cate the manner in which the interval is to be 
measured. 

Code 

MS 
T 
S 
M 
C 

Interval Measurement 

Milliseconds 
Tenths of a second 
Seconds 
Minutes 
Clock resolution units 

location of interval value 

Provides the interval for which the i.ssuing task is to 
be suspended; can be one of the following: 

=$R7 

Interval value is in $R6 and $R7 

5-347 CBOR 



I 

=hexadecimal string 

String specifies the interval value 

fieldname 

fieldname represents the first word of a 2-word 
field containing the interval value 

FUNCTION DESCRIPTION: 

This call causes the issuing task to be suspended for the 
period of time specified in the call arguments. 

The suspend until time macro call ($SUSPN, function code 
05/03) also suspends the issuing task, but the suspension 
exists until a particular date/time is reached. 

NOTES: 1. The interval unit designator supplied by argu­
ment 1 is placed in $R2. The contents of $R2 
depend on the interval designator chosen, as 
follows: 

Interval 
Unit 

Designator 

MS 
T 
S 
M 
C 

Contents 
of $R2 

1 
2 
3 
4 
5 

2. The interval value supplied by argument 2 is 
placed in $R6 and $R7; if this argument is 
omitted, or is =$R7, it is assumed that $R6 and 
$R7 contain the correct interval value. 

3. On return, $Rl contains one of the following 
return status codes: 

0000 - Specified time has elapsed 
0401 - Invalid time interval specified 

4. Periodic use of this call by central processor 
bound tasks will allow other tasks with the same 
hardware priority level to obtain CPU time mor~ 
often. 

5-348 CB08 

-\ 



( ,- Example: 

In this example, the $SUSPN macro call suspends the issuing 
task for one unit of time measured in units of clock 
resolution. 

ASTPA $SUSPN C, =1 

5-349 CBOS 



SUSPEND UNTIL TIME 

SUSPEND UNTIL TIME 

Macro Call Name: $SUSPN 

Function Code: 05/03 

Equivalent Command: None 

Remove the issuing task from the active queue for its 
priority level until the date/time specified in the call. 

FORMAT: 

[label] $SUSPN [TIME], 
[location of internal date/time value] 

ARGUMENT DESCRIPTION: 

TIME 

Optional keyword; explicitly notes that date/time 
value will be used to .govern the suspension of the 
issuing task. 

location of internal date/time value 

Any address form valid for an address register; pro­
vides the address of a 3-word internal date/time value 
until which the task is to be suspended. The value is 
a binary count of milliseconds since January 1, 1901. 

FUNCTION DESCRIPTION: 

This call causes the issuing task to be suspended until the 
date/time value indicated by argument 2 is reached. 

The suspend for interval macro call ($SUSPN, function code 
05/02) also suspends the issuing task, but for a particular 
interval of time. 

NOTES: 1. If argument 1 is omitted, date/time format is 
assumed. 

5-350 CBOS 

./ 



( 

(~ 

Example: 

2. The internal date/time value supplied by argu­
ment 2 is placed in SR2, $R6, and $R7. If this 
argument is omitted, or is either =$R2 or =SR7, 
these registers are assumed to contain the cor­
rect internal date/time value. 

3. On return, SRI contains one of the following 
status codes: 

0000 - Specified date/time has been reached 
0401 - Invalid internal date/time value 

The get date/time macro call $GDTM is used to get the cur­
rent date/time (in internal format), leaving it in registers 
$R2, $R6, and $R7. The convert to external date/time macro 
call ($EXDTM) is then used to convert this internal format 
to an external format, replacing the date portion (first ten 
characters) of the field labeled TODAY. The convert to 
external time macro call ($EXTIM) is then used to convert 
the internal format date/time to an external format, storing 
the hour of the day in the field labeled HOUR. The convert 
to internal date/time macro call ($INDTM) converts the con­
tents of the field TODAY back to internal format contained 
in $R2, $R6, and $R7. The field HOUR is then compared to 
the constant OS. If HOUR is greater than or equal to OS, 
one day (86,400,000 milliseconds) is added to $R2, $R6, and 
$R7. Thus SR2, $R6, and $R7 now contain the internal format 
date/time value for the next time, either today or tomorrow, 
that OSOO hours will occur. The suspend until time macro 
call ($SUSPN) then suspends the issuing task until the next 
time the clock reads OSOO hours. The addition of one day to 
$R2, $R6, and $R7 is programmed assuming a central processor 
that has the add integer double (AID) instruction. (See the 
example given for the convert to internal date/time macro 
call for the same addition performed without the use of the 
AID instruction.) 

5-351 CBOS 



* 
* 
* 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

SUSPND 

TODAY 
HOUR 
A DAY 

GET THE CURRENT DATE/TIME VALUE. 

$GDTM 

CONVERT IT TO AN EXTERNAL FORMAT DATE. 

$EXTDT , ! TODA Y , =10 

CONVERT IT TO AN EXTERNAL FORMAT HOUR OF DAY. 

$EXTIM , ! HOUR, =2 

NOW CONVERT THE EXTERNAL FORMAT DATE/TIME 
BACK TO THE INTERNAL FORMAT. 

$INDTM ! TODAY, ,=15 

IF ITS BEFORE 0800 HOURS THE INTERNAL 
DATE/TIME IS CORRECT ELSE ITS ONE DAY 

LDR 
CMR 
BL 
AID 
CAD 
$SUSPN 

TEXT 
TEXT 
DC 

$R1,HOUR 
$R 1, =' 08 ' 
>SUSPND 
A DAY 
=$R2 
TIME 

'YYYY/MM/DD 0800' 
'HH' 
86400000B (31,0) 

5-352 

--~- ---- -----

FORMAT 
TOO SMALL. 

CB08 



SYSTEM IDENTIFICATION 

SYSTEM IDENTIFICATION 

Macro Call Name: $SYSID 

Function Code: 14/04 

Equivalent Command: None 

Returns the identification of the system under which this 
task is running to a receiving field. The format of the 
receiving field is one word containing the number of charac­
ters in the system id, followed by 15 words containing the 
system id itself. 

FORMAT: 

[label] $SYS ID r locat ion 0 f system id fi eld add ress] 

ARGUMENT DESCRIPTION: 

location of system id field address 

Any address form valid for an address register; pro­
vides the address of a 30-character, aligned, varying 
receiving field into which the system will place the 
system identification. 

FUNCTION DESCRIPTION: 

This call returns the system id to a field in the issuing 
task. The system id is in the form: 

GCOS6/MOD400-rrrr-mm/dd/hh/mm 

where rrrr is the system software release number and 
mm/dd/hh/mm are the date and time that the Monitor was 
linked. 

NOTES: 1. The address of the receiving system id field 
supplied by argument 1 is placed in $B4; if this 
argument is omitted, $B4 is assumed to contain 
the address of the field. 

5-353 CBOS 



I 

2. On return, $R1 contains following status code: 

0000 - No error 
0817 - Memory access violation 

Example: 

In this example, the $SYSID macro call is used to return the 
identification of the currently executing system to a field 
whose address is SYIDFL. 

ASYSID $SYSID !SYIDFL 

SYIDFL RESV 15,A'~~' 

5-354 CB08 

"'--.. 



TASK GROUP INPUT 

TASK GROUP INPUT 

Macro Call Name: $TGIN 

Function Code: l4/DC 

Equivalent Command: None 

Returns the pathname of the initial command-in file of the 
call ing task g ro up. 

FORMAT: 

[label] $TGIN (location of task group input address] 

ARGUMENT DESCRIPTION: 

location of task group input address 

Any address form valid for an address register; pro­
vides the address of a 58-character, aligned, non­
varying field into which the system will place the 
pathname. 

FUNCTION DESCRIPTION: 

This macro call returns the pathname of the initial command­
in file of the calling task group into a 58-character, 
aligned, nonvarying field whose address is provided by 
argument 1. 

NOTES: 1. When the_argument is entered, the task group 
input address is loaded into $B4. When the 
argument is omitted, $B4 is assumed to contain 
the address of the receiving home directory 
field. 

2. On return, $RI and $B4 contain the following 
info rmat ion: 

5-355 CBD8 



SRI - Return status; one of the following: 

0000 - No error 
0817 - Memory access violation 

$B4 - Address of the receiving task group 

5-356 CB08 



( 

:; , 

TASK REQUEST BLOCK 

TASK REQUEST BLOCK 

Macro Call Name: $TRB 

Function Code: None 

Equivalent Command: None 

Generate a task request block (TRB) whose length is 
variable. 

FORMAT: 

[label] $TRB Dog ical reso urce number], 
[issuing task suspension option), 

or 

[termination option] , 
[task start address], 
[size of request block argument], 
[user argument l], 
[user argument 2], 

[user argument nJ 

ARGUMENT DESCRIPTION: 

logical resource number 

A value from 0 through 252 specifying the LRN for this 
task. If this argument is omitted, the task request 
block does not have an LRN. 

issuing task suspension option 

One of the following values is specified to indicate 
whether the requesting task is to be suspended until 
the completion of the request: 

5-357 CB08 

I 



I 

* 

* 

WAIT 

NWAIT 

Suspend the issuing task until the request is 
complete (set w-bit to 0). 

Do not suspend the issuing task (set w-bit 
to 1). 

If this argument is omitted, the value NWAIT is 
assumed. 

If WAIT is specified, argument 3 must be omitted. 

termination option 

One of the following values is specified to indicate 
the action to be taken upon the completion of the 
request. 

SM=aa 

Release (V-op) the semaphore identified by aa 
(two ASCII characters), when requested task is 
completed. 

RB=label 

Issue a request for the request block identified 
by label, when requested task is completed. 

If this argument is omitted (or argument 2 is WAIT), 
the generated task request block contains no termina­
tion option. 

task start address 

Any address form valid for an address register; pro­
vides the start address to be used when the requested 
task is turned on to service the request. If this 
argument is omitted, the implicit task start address 
is to be used (bit 15 of the T CTI word is set to 1; 
see Appendix A). 

5-358 CB08 

'-- / 



, 

'I! , 

size of argument to request block 

Value specifying the number of words in the added por­
tion of the task request block. If this argument is 
omitted, the generated request block will be large 
enough to contain only the user arguments specified in 
the macro call. If no user arguments are specified, 
the request block will be generated to contain only 
the standard fixed format request block fields (argu­
ments I through 4). If this argument is specified in I 
addition to user arguments, an area is reserved fol­
lowing those arguments. 

user argument I ... user argument n 

Begins the optional, variable-sized area containing 
user arguments to be passed to the requested task in 
response to a spawn task or request task macro call or 
command. This variable portion of the task request 
block is built in the following .standard format. 

entry 1 - One-word count of number of argument 
pointers 

entry 2 - Address of first argument length field 

entry 3 Address of second arg ument length field 

entry n - Address of nth argument length field 

entry z - Length (in bytes) of first argument (one 
word) 

entry y - First argument value (of specified size) 

entry x - Length (in bytes) of second argument (one 
word) 

entry w - SecQnd argument value (of specified size) 

entry p - Length (in bytes) of nth argument (one word) 

entry 0 - nth argument value (of specified size) 

5-359 CB08 



FUNCTION DESCRIPTION: 

The task request block is used to communicate between tasks. 
It serves as the means by which arguments are passed between 
the requested and requesting tasks within a task group. 
When a previously created task is requested, the task 
request block contains the LRN (logical resource number) 
that identifies the requested task. When a task is spawned, 
the TRB does not require an LRN. 

The task request block may contain the start address to be 
used when the requested task is turned on to service the 
request. 

The task request block may contain a variable size portion 
that contains optional information to be passed to the 
requested task, and has a fixed size portion that contains 
standard control information. 

When a task is activated, its $B4 register points to offset 
o of the request b.lock and its $B7 register points to a 
parameter list (if one is expected by the task). The proper 
$B7 address is established by the $TRB macro call when it 
has a parameter list pointer, or by placing that pointer at 
the $TRBD macro call's T PRM offset. 

Any task specific arguments are permitted (as if the TRB had 
been constructed by the command processor). 

NOTE: This macro call cannot be used in programs written in 
SAF/LAF independent code (SLIC). See the Program 
Preparation manual for more information about SAF/LAF 
independent code. 

Example: 

In this example, the $TRB macro call is used to create a 
task request block that has a 10-word argument (in addition 
to space added) to accommodate the parameters passed to the 
task in control arguments when the task is requested. The 
generated request block will be 18 words long, have an LRN 
of 30, and, when its task terminates, will release semaphore 
AA. 

ATRBA $TRB 30, ,SM=AA" 5,X 

5-360 CB08 

j 



<--. 

TASK REQUEST BLOCK 
OFFSETS 

TASK REQUEST BLOCK OFFSETS (MOD 400 ONLY) 

Macro Call Name: $TRBD 

Generated Label Prefixes: 

TRB label 
T RRB/T SEM 
offset 0 
T CTI 
T-CT2 
T-ADR 
T-PRM 

See Appendix A for the format of the task request block. 

Description: 

See the task request block macro call. 

NOTE: This macro call cannot be used in programs written in 
SAF/LAF independent code (SLIC). See the Program 
Preparation manual for more information about SAF/LAF 
independent code. 

5-361 CBD8 

I 

I 



I 

TERMINATE REQUEST 

TERMINATE REQUEST 

Macro Call Name: $TRMRQ 

Function Code: 01/04, 01/03 

Equivalent Command: None 

Terminate the current request being processed by the issuing 
task. End the current request for the execution of the task 
and mark its associated request block as terminated. 

FORMAT: 

rlabel] $TRMRQ [location of completion status], 
[location of new task error address] 

ARGUMENT DESCRIPTION: 

location of completion status 

Any address form valid for a data register; provides 
the user-selected status code that is to be returned 
when the current request and its associated request 
block are terminated. Completion status codes 0801, 
0802, and 0803 should not be used; they will be 
indistinguishable from error codes with the same 
val ues. 

location of new task start address 

Any address form valid for an address register; pro­
vides the new task start address for the terminating 
task. This address will subsequently be requested by 
a request block that does not explicitly specify a 
start address. 

FUNCTION DESCRIPTION: 

This call is used to end a request for the execution of a 
task. The $TRMRQ function marks a current request block as 
terminated and removes it from the appropriate request 
queue. 

5-362 CBOS 

i",- .. 



If there are no other request blocks on the request queue 
affected by the terminate function, the task manager places 
the task in a dormant state. If there are one or more 
request blocks in the affected queue, the task manager imme­
diately uses the next request block to begin execution of 
the task at the indicated start address. If the task is 
requested for deletion and there is no other request for it 
the task is deleted; if this is a spawned task, it is 
deleted. 

The task manager will do one of the following: 

1. Activate a task if that task is awaiting completion of 
the current request block being terminated. 

2. Release (V-op) the semaphore indicated by the current 
request block. 

3. Schedule the task request block indicated by the current 
request block being terminated. 

If the terminating task will subsequently be requested by a 
request block that does not explicitly specify a task start 
address, the terminating task can specify the new task 
address through argument 2. 

NOTES: 1. The completion status code supplied through 
argument 1 is placed in $R2; if this argument is 
omitted, $R2 is assumed to contain the comple­
tion status code. 

2. If argument 2 contains the location of the new 
task start address, that address is placed in 
$84 and an MCL 01/04 -is issued. If argument 2 
specifies =$84, $84 is assumed to contain the 
new start address and an MCL 01/04 is issued. 
If argument 2 is omitted, $84 is not modified 
and an MCL 01/03 is issued (no new task start 
address) • 

3. On return, $84, $85, and $87 contain the follow­
ing information: 

$84 - Address of request block for new request. 

$85 - Address of system supplied termination 
routine. 

$87 - Address of the request block parameter 
list. 

5-363 C808 



Example: 

In thi s example, the $TRMRQ macro call labeled TRM NM 
terminates the issuing task with a completion status of zero 
without changing the task's start address. The $TRMRQ macro 
call labeled TRM AB terminates the issuing task with a com­
pletion status of one and changes the task's start address 
to RETRY. 

TRM NM $TRMRQ =0 

TRM AB $TRMRQ =l,! RETRY 

5-364 CB08 



(" 

( 

TEST COMPLETION STATUS 

TEST COMPLETION STATUS 

Macro Call Name: $TEST 

Function Code: 01/02 

Equivalent Command: None 

Return the completion status of any type of specified 
request block (e.g., task, clock, I/O, or semaphore). 

FORMAT: 

rIabel] $TEST r location 0 f request block add ress] 

ARGUMENT DESCRIPTION: 

location of request block address 

Any address form valid for an address register; pro­
vides the address of the request block whose comple­
tion status is to be tested. 

FUNCTION DESCRIPTION: 

This call permits a running task to ascertain whether a 
specified request block has been marked as terminated by 
another task. When the call is executed, control is 
returned to the issuing task with $Rl containing a return 
status that shows whether the request block has been 
terminated and $B4 containing the address of the tested 
request block. 

The test macro call does not cause a wait for the request 
block to be terminated; that function is performed by the 
wait macro call. 

A given request block can be tested by any number of tasks. 

NOTES: 1. The request block address supplied by argument 1 
is placed in $B4; if this argument is omitted, 
$B4 is assumed to contain the address of the 
request block to be tested. 

5-365 CB08 



Example: 

2. On return, $Rl and $B4 contain the following 
information: 

$Rl - Return status; one of the following: 

yyzz - Where yy can be 00, or 00 through 
EE for user status, or as defined 
for other yy values in the System 
Messages manual. 

$B4 - Address of tested request block. 

In this example, the $TEST macro call is used to determine 
the status of a task that was requested using a request 
block labeled TRB. If the requested task has not run to 
completion yet, a status of 0801 (hexadecimal) will be 
returned in $Rl and the t-bit in the request block will be 
on. If the requested task has run to completion, or has so 
indicated by posting the request block through a terminate 
request macro call, the posted completion status will be 
returned in $Rl and the t-bit in the request block will be 
off. 

$TEST !TRB 

5-366 CB08 



( 

TEST FILE 

TEST FILE 

Macro Call Names: $TIFIL (input), $TOFIL (output) 

Function Codes: 10/62 ($TIFIL), 10/63 ($TOFIL) 

Equivalent Command: None 

Test the status of any outstanding I/O activity. These 
macro calls are used in conjunction with I/O operations 
where the device to/from which the data transferred is a 
terminal. You identify the file by supplying its logical 
file number (LFN) in the file information block (FIB). 

FORMAT: 

{ 
$TIFIL} 
$TOFIL 

[label) [,fib address] 

ARGUMENT DECRIPTION: 

fib address 

Any address form valid for an address register; pro­
vides the location of FIB. The FIB must contain a 
valid LFN. 

FUNCTION DESCRIPTION: 

When a terminal file is opened (see "Open File"), a physical 
connect is issued asynchronously; a wait-until-complete 
(i.e., line physically connected) is not done. Issuing a 
test file macro cal-l after the file ... is opened causes a busy 
code to be returned until the connect is complete. If the 
connect is not complete within 5-minute standard time, a 
physical I/O time-out code (0106) is returned by any file or 
data management function (e.g., $TIFIL, $RDREC) issued by 
your program. Since the time-out code does not cause the 
file to be closed, any further access to the terminal (i.e., 
reopen to raise the connect again) must be preceded by a 
close file macro call. Once the connect is satisfied, the 
first test file macro call issued to an input or bidirec­
tional LFN (after a successful connect) causes a read-ahead 

5-367 CB08 

* 



* 

I 

(i.e., anticipatory read) to be issued. Furthermore, a read 
is requeued following a successful read record macro call. 

When the terminal file is closed, the sytem waits for the 
completion of any outstanding write orders, dequeues any 
anticipatory reads, and issues a disconnect. 

The file information block can be generated by a $FIB macro 
call. Displacement tags for the FIB can be defined through 
the $TFIB macro call. 

NOTES: 1. If the argument is coded, the address of the FIB 
is loaded into $B4; if the argument is omitted, 
$B4 is assumed to contain the address of the 
FIB. 

Example: 

2. On return, $Rl contains one of the following 
status codes: 

0000 - No error 
0204 - File busy 
0205 - Illegal argument 
0206 - Unknown or illegal LFN 
0207 - LFN not open 

In addition to the above codes, any system 
service codes received by the file manager are 
passed on through $RI. 

In this example, a terminal file, FILE T, associated with 
LFN 0006, has been reserved (see "Get Pile") and opened (see 
"Open File"). The following macro calls function as shown 
in the flowchart below. The FIB for FILE T is defined as: 

FILE T DC Z'0006' 

(Remainder is the FIB) 

5-368 CB08 



( 

YES 

RETURN 
(NOT BUSY) 

$TIFIL FILE_ T 

NO 

ISSUE 
READ 

YES 

NO 

RETURN 
(BUSY) 

,;ETURN 
(NOT BUSY! 

RETURN 
(BUSY) 

5-369 

NO 

NO 

NO 

RETURN 
(NOT BUSY) 

$TOFIL FILE T 

YES 

RETURN 
(BUSY) 

CB08 



TRAP HANDLER CONNECT 

TRAP HANDLER CONNECT 

Macro Call Name: $TRPHD 

Function Code: OAjOO 

Equivalent Command: None 

Connect a user-written generalized trap handling routine 
entry point to the issuing task. 

FORMAT: 

flabel] $TRPHD rlocation of trap handling routine address] 

ARGUMENT DESCRIPTION: 

location of trap handling routine address 

Any address form valid for an address register; pro­
vides the address of the user-written trap handling 
routine. This address (entry point) is entered at 
each occurrence of a user trap that has been enabled 
for that task. 

FUNCTION DESCRIPTION: 

The connect trap function identifies a user-written routine 
that provides an alternative to the system default trap 
handler's response to user trap conditions. If user trap 
conditions are handled by the system default trap handler, 
the task in which the condition occurs is aborted. 

Since trap conditions are handled in a task context, each 
task must identify the trap handler and enable the partic­
ular trap numbers to be serviced on behalf of the task (see 
enable user trap macro call). When an enabled user trap 
condition occurs, control is transferred to the user-written 
trap handling routine rather than the system default 
routine. See Section 7 for more in~ormation about trap 
handl ing. 

5-370 CBD8 



(- NOTES: 1. The address of the user-written trap handling 
routine supplied by argument 1 is placed in $84; 
if this argument is omitted, $B4 is assumed to 
contain the correct address. 

Example: 

2. On return, $RI contains one of the following 
status codes: 

0000 - No error 
0341 - Invalid trap handling routine address 

3. This macro call is required in order to enable a 
software simulated trap in a task that the user 
interrupts with the break function, and for 
which a PI or UW break response is entered. 

In this example, the connect trap handler ($TRPHD) macro 
call connects the routine labeled TRAPS as the issuing 
task's trap handler. The enable user trap macro call 
($ENTRP) enables the program interrupt and unwind traps for 
the task. All program interrupt and unwind traps for the 
issuing task will be directed to the routine labeled TRAPS. 
The disable user trap macro call ($DSTRP) disables all user 
traps for the issuing task. 

The remaining code illustrates the basic techniques used to 
write a user trap handler; it is not meant to be typical. 

5-371 CBOS 

I 



* 
* NAME THE PROGRAM TRAPS 
* 
PI T EQU 1 
UW T EQU 49 

* 
* NAME THE PERTINENT TSA FIELDS 

* 
TSA W EQU $B3.4 

* 
* CONNECT " TRAPS" AS THE TRAP HANDLER. 
* 

$TRPHD !TRAPS 

* 
* ENABLE PROGRAM INTERRUPT AND UNWIND. 

* 
$ENTRP =PI T 
$ENTRP =UW-T 

* * READ A NEW DIRECTIVE FROM USER INPUT. 

* 
GETLIN $USIN !LINE,=80 

* * DISABLE ALL TRAPS. 

* 
$DSTRP =-1 

FINISH $TRMRQ =$R2 

* * TRAP HANDLER FOR THIS TASK: 
* SEND PROGRAM INTERRUPT TO "GETLIN" 
* SEND UNWIND TO "FINISH". 
* 
TRAPS CMN 

STB 
LAB 
CMV 
BE 
LAB 
STB 
LDB 
RTT 

+$B3 
$B4, TSA W 
$B4,GETLIN 
$R 3, PI T 
>+$A -

INCREMENT B3 BY POINTER SIZE 
SAVE B4 

$A 
$B 4 ,FINISH 
$B 4, $B 3 
$B4,TSA_W RESTORE 84 

5-372 CBOS 



( USER IDENTIFICATION 

USER IDENTIFICATION 

Macro Call Name: $USRID 

Function Code: 14/00 

Equivalent Command: None 

Returns the user identification of the calling task group to 
a 29-character receiving field, plus a terminating space. I 

FORMAT: 

flabel] $USRID [location of user id field address] 

ARGUMENT DESCRIPTION: 

location of user id field address 

Any address form valid for an address register; pro­
vides the address of a 29-character, aligned, non­
varying field, followed by a blank, into which the 
system will place the user identification associated 
with the issuing task group. 

FUNCTION DESCRIPTION: 

This call returns the task group's user id to a field in the 
issuing task. The user identification will consist of 
person, person.account, or person.account.mode, depending on 
the login id used. See the Operator's Guide for further 
details. 

NOTES: 1. The address of the receIvIng user id field, 
supplied by argument 1, is placed in $B4; if 
this argument is omitted, $B4 is assumed to con­
tain the address of the receiving field for the 
user id. 

2. On return, $Rl contains the following status 
code: 

0000 - No error 
0817 - Memory access violation 

5-373 CB08 



Example: 

In the following example, a IS-word field is set up in the 
issuing task and the $USRID macro call is issued to place 
the user identification of the task group in that field. 

IDOl $USRID !USIDFL 

USIDFL RESV 15, A 't\ /1' 

5-374 CB08 



( 

USER INPUT 

USER INPUT 

Macro Call Name: $USIN 

Function Code: 08/00 

Equivalent Command: None 

Read the next record from the current input file for the 
task group of the issuing task. 

FORMAT: 

flabel] $USIN [location of record area address], 
[location of record size], 
[byte offset of beginning of record area] 

ARGUMENT DESCRIPTION: 

location of record area address 

Any address form valid for an address register; pro­
vides the address of a record area in the issuing task 
into which the next record read from the current user­
in file will be placed. 

location of record size 

Any address form valid for a data register; provides 
the size (in bytes) of the input record area whose 
address is given in argument 1. 

5-375 CB08 



I 

byte offset of beginning of record area 

Any address form valid for a data register; provides 
the byte offset of the beginning of the record area 
(from the address provided in argument 1). If argu­
ment 3 is L, the record area begins at the left byte 
of the address specified in argument 1. If argument 3 
is R, the record area begins at the right byte of this 
address. Any other value is taken to be the location 
of the byte offset of the beginning of the record area 
from the address specified in argument 1. If argument 
3 is omitted, the record area is assumed to begin at 
the left byte or the address specified in argument 1. 

FUNCTION DESCRIPTION: 

This call allows a task to read the next record from the 
current user-in file. Unless it has been changed by a new 
user-in ($NUIN) macro call, the user-in file is that file 
identified in the request group ($RQGRP) or enter batch 
request ($RQBAT) macro call. 

NOTES: 1. The address of the record area supplied by 
argument 1 is placed in $B4; if this argument is 
omitted, $B4 is assumed to contain the record 
area address. 

2. The record size supplied by argument 2 is placed 
in $R6; if argument 2 is omitted, $R6 is assumed 
to contain the record size. 

3. If argument 3 is L, $R7 is set to zero to desig­
nate that the record area begins in the left 
byte of the specified address. If argument 3 is 
R, $R7 is set to one to designate that the 
record area begins in the right byte of the 
specified address. Any other argument 3 value 
is assumed to designate the location of the byte 
offset from the address specified by argument 1 
and is placed in $R7. If argument 3 is omitted, 
the record area is assumed to begin in the left 
byte of the specified address and $R7 is set to 
zero. 

4. On return, $R1, $R6, $R7, and $B4 contain the 
following information: 

$R1 - Return status; one of the following: 

0000 - No error 
0817 - Memory access violation 

5-376 CBD8 



( 

Example: 

All data management read-next-record 
error codes may also be returned in SRI. 
See the System Messages manual. 

SR6 - Residual range (number of bytes not filled 
in input record area) 

$R7 - File status/type (see "Command In") 

$B4 - Address of input record area 

In this example, the issuing task is to read the next record 
of the current user-in file into a 64-byte record area 
whose address is in RECAD. The record area begins at the 
left byte of the indicated address. 

INAA $USIN !RECAD,=I28 

RECAD RESV 64,0 

5-377 CB08 



I 

USER OUTPUT 

USER OUTPUT 

Macro Call Name: SUSOUT 

Function Code: 08/01 

Equivalent Command: None 

Write the next output record to the current user-out file 
for the task group of the issuing task. 

FORMAT: 

flabel] SUSOUT flocation of record area address], 
[location of record size], 
[byte offset of beginning of record area] 

ARGUMENT DESCRIPTION: 

location of record area address 

Any address form valid for an address register; pro­
vides the address of the output record area containing 
the record to be written to the user-out file. The 
first byte of the record must be a slew byte (print 
file format control byte; see "Printer Driver" in 
Section 6). The record text begins in the second 
byte. 

location of record size 

Any address form valid for a data register; provides 
the size (in bytes) of the record area whose address 
is given in argument 1. The size value must include 
the slew byte. 

5-378 CBOS 



byte offset of beginning of record area 

Any address form valid for a data register; provides 
the byte offset of the beginning of the record area 
(from the address provided in argument 1). If argu­
ment 3 is L, the record area begins in the left byte 
of the address specified in argument 1; if argument 3 
is R, the record area begins in the right byte of this 
address. Any other value is taken to be the location 
of the byte offset of the beginning of the record area 
from the address specified in argument 1. If argument 
3 is omitted, the record area is assumed to begin at 
the left byte of the address specified in argument 1 
and $R7 is set to o. I 

FUNCTION DESCRIPTION: 

This call allows a task to write the next record to the cur­
rent user-out file. Unless it has been changed by a new 
user output ($NUOUT) macro call, the user-out file is as 
identified by the request group ($RQGRP) or enter batch 
request ($RQBAT) macro call. 

NOTES: 1. The address of the record to be written, sup­
plied by argument 1, is placed in $B4; if this 
argument is omitted, $B4 is assumed to contain 
the address of the "output record. 

2. The output record size, supplied by argument 2, 
is placed in SR6; if this argument is omitted, 
$R6 is assumed to contain the size of the output 
record. 

3. If argument 3 is L, $R7 is set to zero to desig­
nate that the record area begins in the left 
byte of the specified address. If argument 3 is 
R, $R7 is set to one to designate that the 
record area begins in the right byte of the 
specified address. Any other value is assumed 
to be the location of the byte offset to be 
used, and is placed in SR7. If argument 3 is 
omitted, the record area is assumed to begin in 
the left byte of the specified address and $R7 
is set to zero. 

4. On return, SRI, $R6, and $B4 contain the follow­
ing information: 

$Rl - Return status; one of the following: 

0000 - No error 

5-379 CBOS 



Example: 

All data management write-next-record 
error codes may also be returned. See the 
System Messages manual. 

$R6 - Residual range (number of bytes not 
transferred from record area). 

$B4 - Address of record area containing output 
record. 

In this example, the issuing task is to write the next 
record to the current user-out file for its task group. The 
record length is 137 bytes (including the slew byte). The 
output record begins at the right byte of the word labeled 
REC AR. 

$USOUT !REC AR, =137,R 

REC AR TEXT 'L\A', (13E!) 'L\' 

5-380 CBoe 



WAIT 

WAIT 

Macro Call Name: $WAIT 

Function Code: 01/00 

Equivalent Command: None 

Wait for the completion of the operation that uses the 
specified request block (task, I/O, semaphore, clock, or 
overlay) • I 

FORMAT: 

r label] $WAIT [location 0 f request block address] 

ARGUMENT DESCRIPTION: 

location of request block address 

Any address form valid for an address register; pro­
vides the address of the request block whose termina­
tion is to be awaited by the issuing task. 

FUNCTION DESCRIPTION: 

This call permits a running task to indicate, as a separate 
action, that it wishes to wait for the completion of a 
particular request for the execution of another task. (The 
capability of the synchronous wait function is available 
through the request task function.) 

When a wait macro call is issued, the issuing task must sup­
ply the address of the request block to be waited upon. If 
the task manager discovers that this request block is marked 
as terminated, it immediately returns control to the calling 
task, supplying the completion status code of the terminated 
request. If the request block is not marked as terminated, 
the task manager stores the identity of the calling (and now 
waiting) task in the request block and then suspends the 
calling task - another task can run at this task's level. 
Later, when the task manager is notified of the completion 
of the request being waited upon, it activates the waiting 

5-3Sl CBOS 



task and reports the completion status code of the termi­
nated request. 

A given request block can be waited upon by only one task. 

NOTES: 

Example: 

1. The request block address derived from argument 
I is placed in $B4; if this argument is omitted, 
$B4 is assumed to contain the address of the 
request block. 

2. On return, $RI and $B4 contain the following 
information: 

$RI - Return status; one of the following: 

yyzz - Where yy can be 00 or 80 through EE 
for user status, or as defined for 
other yy values in the System 
Messages manual. 

OOOO-FFFF - Posted completion status 

0802 - Invalid LRN 

0803 - Illegal wait (request block already 
waited on, waiting on self, or 
request block not pending for this 
task) • 

$B4 - Address of request block being waited upon 

In this example the $WAIT macro call is used to block the 
issuing task until a task that was requested using the 
request block labeled TRB posts its completion to that 
request block. See "Terminate Request" for information 
about task termination. When the issuing task is returned 
to the ready state, the task's posted completion status will 
be in $R 1. 

WAIT 1 SWArT !TRB 

5-382 CBDe 

"'- .. / 



WAIT BLOCK 

WAIT BLOCK 

Macro Call Name: $WTBLK 

Function Code: 12/20 

Equivalent Command: None 

Wait for the completion of the I/O operation associated with 
the specified buffer. This macro call is used only when the 
asynchronous bit is set in the program view entry in the 
file information block (FIB) for the preceding read block or 
write block macro call. 

FORMAT: 

[label] $WTBLK [fib address] 

ARGUMENT DESCRIPTION: 

fib address 

Any address form valid for an address register; pro­
vides the location of the FIB. The following FIB 
entries are required. 

logical file number 
program view (must specify asynchronous I/O) 
user buffer pointer 
transfer size 
block si ze 
block number 

FUNCTION DESCRIPTION: 

This macro call immediately follows a read block or write 
block macro call. The buffer identified by the user buffer 
pointer entry in the FIB must not be accessed between the 
read block or write block macro call and the wait block 
macro call, as shown below: 

5-383 CB08 



$RDBLK (block 0) 
SWTBLK (block 0) 
$RDBLK (block I) 
(process block 0) 
$WTBLK (block 1) 
$RDBLK (block 2) 
(process block 1) 

Furthermore, only one asynchronous operation per file can be 
outstanding at any given time. 

The file information block (FIB) can be generated by a $FIB 
macro call. Displacement tags for the FIB can be defined by 
the $TFIB macro call. 

NOTES: 1. If the argument is coded, the address of the FIB 
is loaded into $B4; if the argument is omitted, 
$B4 is assumed to contain the address of the 
FIB. 

Example: 

2. On return, $Rl contains one of the following 
sta tus codes: 

0000 - No error 
0203 - Illegal function 
0205 - Illegal argument 
0206 - Unknown or illegal LFN 
0207 - LFN not open 
020A - Address out of file 
0217 - Access violation 
02lF - End of file 

In addition to the above codes, any system 
service codes received by the storage manager 
are passed on through $Rl. 

In this example, it is assumed that the read block macro 
call was coded as described above, except that the program 
view entry specified Z'EOOl'. Based on this assumption, the 
wait block macro call would be coded as follows: 

WAITAA $WTBLK ! BLKFIB 

5-384 CB08 

,---- / 



( WAIT FILE 

WAIT FILE 

Macro Call Name: $WIFIL (input), $WOFIL (output) 

Function Codes: 10/64 ($WIFIL), 10/65 (SWOFIL) 

Equivalent Command: None 

Wait for the completion of an asynchronous I/O activity. 
SWIFIL and $WOFIL are used in conjunction with I/O opera­
tions in which the device to/from which data is transferred 
is a terminal. You specify a list of logical file numbers 
(LFNs) identifying the files to be checked by the wait func­
tion. If the $WIFIL macro call is used, the function waits 
until at least one anticipatory read to one of the specified 
files is complete. If the $WOFIL calf is used, the function 
waits until at least one write to one of the specified files 
is complete. The first LFN for which an anticipatory read 
($WIFIL) or an asynchronous write (SWOFIL) is complete is 
placed in a field that you specify. 

FORMAT: 

{ $WIFIL} [label] $WOFIL [parameter structure address] 

ARGUMENT DESCRIPTION: 

parameter structure address 

Any address form valid for an address register; pro­
vides the location of the argument structure defined 
below. The argument structure must contain the fol­
lowing entries in the order shown. 

out-LFN 

A 2-byte field into which file management places 
the LFN (logical file number) that was the first 
LFN in the list for which I/O was complete. 

5-385 CB08 



list length 

A 2-byte field containing a binary number that 
specifies the number of LFNs in the list. If 
this field is zero (meaning no list of LFNs is 
specified), file management assumes a list of 
LFNs consisting of all LFNs in the task group 
that are currently associated with opened, 
interactive devices. 

LFN entries 

A series of 2-byte fields, each containing the 
2-byte logical file number (LFN) used to refer 
to the file. LFN is a binary number in the 
range 0 through 255. Each referenced file must 
have been reserved (see "Get File") and opened 
(see "Open File") through this LFN. The LFNs in 
the list are considered to be in order of prior­
ity; the first LFN specified for which I/O has 
completed will be returned in the out-LFN field. 

FUNCTION DESCRIPTION: 

A wait-file-input function ($WIFIL) is meaningful only for 
interactive device files that allow asynchronous input; this 
function gives up control of the central processor until at 
least one anticipatory read to any of the specified files is 
complete. A wait-file-output function ($WOFIL) is meaning­
ful only for interactive device files that allow asynchro­
nous output; this function gives up control of the central 
processor until output to one of the specified files is 
complete. 

When a wait-file-input function is executed, the out-LFN 
field is set to identify the first LFN in the list for which 
an anticipatory read is complete. Since more than one read 
may be completed at the same time, a $TIFIL (see "Test 
File") macro call can be used after the $WIFIL call to 
ascertain those LFNs for which input is complete. Note that 
the first $WIFIL call issued after the file has been opened 
waits for the connect termination (initiated at the time of 
the open) in addition to waiting for the completion of the 
first read. 

When a wait-file-output function is executed, the out-LFN 
field is set to identify the first LFN in the list for which 
an asynchronous write operation is complete. This function 
returns the status of the write operation. If the write 
terminated normally, the file can be considered as available 
for output. 

5-386 CB08 



The LFNs in the list are considered to be ordered by prior­
ity; thus the first LFN for which I/O has completed will be 
returned in the out-LFN field. You can ignore the output 
LFN and establish your own priority by using the test-file­
input and test-file-output functions (see "Test File"). For 
example you could: 

1. Issue a $WIFIL for LFNs 1, 2, and 3. 
2. Issue a $TIFI L for LFN 2; read and process if not busy. 
3. Do the same for LFN 1 and LFN 3. 
4. Return to 1. 

NOTES: 1. If the argument is coded, the address of the 
argument structure is loaded into $B4; if the 
argument is omitted, $B4 is assumed to contain 
the address of the argument structure. 

Example: 

2. On return, SRI contains one of the following 
status codes. 

0205 - Illegal argument (duplicate LFN) 
0206 - Unknown or illegal LFN 
0207 - LFN not open 
0217 - Access violation 

In addition to the above codes, any system 
service codes received by file manager are 
passed on through $RI. 

In this example, a wait-file-input function is executed to 
wait for the completion of a write operation on any of three 
interactive files whose LFNs are 1, 2, and 3. The comple­
tion of a write operation on the file associated with LFN 3 
is checked first; if the write is complete, LFN 3 is placed 
in the out-LFN field. If the write is not complete, LFN lis 
file is checked; if not complete, the file associated with 
LFN 2 is checked. If none of the write operations are 
completed, the task is placed in the wait state. 

IWT1.ST 

ONWTBB 

DC 
DC 
DC 
DC 
DC 
$WIFIL 

5-387 

o 
3 
3 
1 
2 
!IWTLST 

CB08 



I 

I 

I 

I 

WAIT LIST, GENERATE 

WAIT LIST, GENERATE 

Macro Call Name: $WLIST 

Function Code: None 

Equivalent Command: None 

Generate a wait list consisting of a count field followed by 
the specified number of request block pointers. A maximum 
of 35 request block pointers can be specified. 

FORMAT: 

[label] $WLIST [request block 1 abel l], 
[request block label 2], 

[request block label 35] 

ARGUMENT DESCRIPTION: 

request block label 1 ••• request block label 35 

Label of the request block to be placed in the wait 
list. A maximum of 35 blocks can be specified. 

If a label having a value of 0 is specified before the 
last label is supplied, an address of 0 is generated 
for the wait list entry that corresponds to that argu­
ment position. See Appendix A for the format of the 
wait list. 

FUNCTION DESCRIPTION: 

A wait list consists of a count of the number of request 
blocks to be waited on, followed by the specified number of 
request block pointers. 

When any request block referenced in the wait list provided 
in a wait on request list macro call has been posted as 
complete, the issuing task is awakened. 

5-388 CB08 



( A wait list can refer to any mixture of request blocks. 

If any pointer in the wait list is zero, it is ignored by 
the wait on request list macro call. 

The count field format is Olnn (where nn is the number of 
request block pointers specified in the macro call). 

NOTE: This macro call cannot be used in programs written in 
SAP/LAP independent code (SLIC). See the Program 
Preparation manual for more information about SAP/LAP 
independent code. 

Example: 

In this example, a $WLIST macro call is used to generate a 
list of three request block addresses (following the count 
field of 0103). 

ALSTA $WLIST TSKBOl,TSKB02,TSKB03 

5-389 CB08 



I 

I 

I 

I 

WAIT ON REQUEST LIST 

WAIT ON REQUEST LIST 

Macro Call Name: $WAITL 

Function Code: 01/01 

Equivalent Command: None 

Check the completion status of request blocks. The request 
blocks specified in the list can be a mixture of types 
(task, clock, I/O, semaphore, or overlay). 

FORMAT: 

[label] $WAITL [request block labe 1 1], 
[request block label 2], 

[request block label 35] 

ARGUMENT DESCRIPTION: 

request block label 1 ••• request block label 35 

Label of the request block to be placed in the wait 
list. A maximum of 35 blocks can be specified. 

If a label having a value of 0 is specified before the 
last label is supplied, an address of 0 is generated 
for the wait list entry that corresponds to that argu­
ment position. See Appendix A for the format of the 
wait list. 

FUNCTION DESCRIPTION: 

This call permits a running task to indicate that it wishes 
to wait for anyone of up to 255 request blocks (of any 
type) to be marked as terminated. (Note that only 35 
request blocks can be specified directly in the macro call.) 

5-390 CB08 



( 

The task manager scans the wait list and checks the status 
of the specified request blocks. If it finds any request 
block marked as terminated, the task manager returns imme­
diately to the calling task. If it finds that no request 
block in the list is marked as terminated, the task manager 
suspends the calling task until at least one of the blocks 
is marked as terminated. When the task manager is notified 
of the termination of a request block specified in the list, 
it activates the waiting task and reports the completion 
code of the terminated request. 

NOTES: 1. If arguments are specified, a wait list is 
generated. The address of the wait list sup­
plied by argument 1 is placed in $B2; if the 
arguments are omitted, $B2 is assumed to contain 
the address of the wait list. 

2. Upon return to the issuing task, $RI, $B2, and 
$B4 contain the following information: 

$Rl - Return status; one of the following: 

yyzz - Where yy can be 00 or 00 through EE 
for user status, or as defined for 
other yy values in the System 
Messages manual. 

OOOO-FFFF - Posted completion status of 
first completed request block 
detection. 

0802 - Invalid LRN. 

0803 - Illegal wait; (request block 
already waited on; or not pending 
for this task; or all pointers on 
this wait list were null). 

$B2 - Address of wait list 

$B4 - Address of request block that caused 
return (i.e., first completed request 
block found); if null, all pointers in the 
wait list were null. 

3. If arguments are present, this macro call cannot 
be used in programs written in SAF/LAF indepen­
dent code (SLIC). See the Program Preparation 
manual for more information about SAF/LAF 
independent code. 

5-391 CB08 



Example: 

In this example, the request clock macro call ($RQCL) is 
issued to start a 5-second timer using the clock request 
block labeled TIMER. Then the wait on request list macro 
call ($WAITL) is used to block the issuing task until either 
the task that was requested using a request block labeled 
TRB posts its completion or the clock manager posts comple­
tion of the 5-second interval on the clock request block 
labeled TIMER. If the task goes to completion first, the 
cancel clock request macro call (SCNCRQ) will cancel the 
request on TIMER, thus freeing it for later reuse. To 
simplify the example, the return status will not be checked 
for errors that might occur. 

$RQCL ! TIMER 
SWAITL TRB,TIMER 
CMB $B4, =TIMER 
BE TOUT 

* 
* THE SUB TASK COMPLETED FIRST 

* 
$CNCRQ ! TIMER 

* 
* 
* 

THE CLOCK TIMED OUT FIRST 

TOUT EQU $ 

TIMER $CRB R, NWAIT"MS=5000 

5-392 CB08 

'~ / 

-'-. .j 

,---,---



( 

<. 

WRITE BLOCK 

WRITE BLOCK 

Macro Call Name: $WRBLK 

Function Code: 12/10 (normal), 12/11 (tape mark) 

Equivalent Command: None 

Write (i.e., transfer) a block from a buffer in main memory 
to a file. The user must supply a buffer and specify both I 
the size of the block and its relative location in the file. 

FORMAT: 

[label] $WRBLK [fib address] [{;~~RMAL}J 

ARGUMENT DESCRIPTION: 

fib address 

Any address form valid for an address register; pro­
vides the location of the file information block 
(FIB). The following FIB entries are required. 

logical file number 

program view (should include buffer alignment and I 
whether the next write operation is synchronous or 
asynchronous) 

user buffer pointer 

transfer size 

block size (must be a multiple of the physical sector 
si ze) 

bloc~ number 

5-393 CB08 



I 

{ ~ORMAL'} NOR 

TM 

For disk-resident files this mode argument indicates 
that the contents of the buffer are to be written in a 
control interval whose block number is specified in 
the block number entry in the FIB. 

For nondisk-resident files this mode argument indi­
cates that the block is to be transferred from the 
buffer to the next sequential position on the file. 

NORMAL is the default value for this macro call. 

(For tape-resident files only.) This mode argument 
indicates that a tape mark is to be written in the 
next sequential position on the tape. 

FUNCTION DESCRIPTION: 

Before this macro call can be executed, the LFN must have 
been opened (see open file macro call) with a FIB program 
view word that allows access via storage management (bit 0 
is 1) and allows write operations (bit 2 is 1). To write a 
file sequentially, it is necessary only to issue successive 
write block macro calls in NORMAL mode, which causes the 
block number entry to be incremented by 1 after each 
transfer. The system extends the file space up to the limit 
specified in the create file macro call when required to do 
so as a result of a write block macro call. In addition, 
the system updates the logical end-of-file as the file is 
extended. 

The following end-of-file/end-of-tape considerations must be 
noted: 

o Tape-resident files. If logical end-of-tape (i.e., EOT 
reflector) is detected during a write block macro call, 
all data is written and status code 0231 is returned. If 
physical end-of-tape is reached before all data is 
written, a code of 0231 is also returned. 

o Disk-resident files. If there is insufficient space to 
contain the data defined by the transfer size entry in 
the FIB (Le., the file has reached its maximum size), a 
status code of 0223 is returned. If ihe file has not 
reached its maximum size but no more sectors are avail­
able to be allocated to it, a code of 0215 is returned. 

/ 

No data is written. /"-

o All files. Partial blocks are not written. 

5-394 CBoa 



( 

Only one asynchronous I/O operation per LFN can be out­
standing at any given time. 

The file information block (FIB) can be generated by a $FIB 
macro call. Displacement tags for the FIB can be defined by 
the $TFIB macro call. 

NOTES: 1. If the first argument is coded; the address of 
the FIB is loaded into $B4; if the argument is 
omitted, $B4 is assumed to contain the address 
of the FIB. 

2. On return, $Rl contains one of the following 
status codes: 

0000 - No error 

0203 - Illegal function 

0205 - Illegal argument 

0206 - Unknown or ill eg al LFN 

0207 - LFN not open 

020A - Address out of file 

0215 - Not enough contiguous logical sectors 
available 

0217 - Access violation 

0223 - File space limit r~ached or file not 
expandable 

0224 - Directory space limit reached or not 
expandable 

0231 - Unexpected tape EOT encountered 

In addition to the above codes, any system 
service -codes received by the storage manager 
are passed on through $Rl. 

5-395 CBOS 

I 



Example: 

This example assumes that the FIB was defined as follows: 

BLKFIB DC 
DC 

DC 
RESV 
DC 
DC 
DC 

Z'0005' 
Z'EOOO' 

<BLKBUF 
2-$AF 
256 
256 
Z'OOOOOOOO' 

LFN = 5 
PROGRAM VIEW = ALLOW READ/WRITE; 
SYNCHRONOUS PROCESSING 
BUFFER POINTER 

TRANSFER SIZE = 256 
BLOCK SIZE = 256 
BLOCK NUMBER 

When the above FIB is defined, and assuming the appropriate 
open file and get file macro calls are specified, the fol­
lowing macro call can be executed to write the contents of 
the buffer into the first block (i.e., block 0) in the file: 

$WRBLK !BLKFIB,NORMAL 

5-396 CBD8 



WRITE RECORD 

WRITE RECORD 

Macro Call Name: $WRREC 

Funtion Code: 11/20 (next), 11/21 (key), 11/22 (position equal) , 
11/23 (posi t ion greater than), 11/24 (po sit ion 
·greater than or equal), 11/25 (position forward), 
11/26 (position backward) 

Equivalent Command: None 

Transfers logical records to a file from your record area or 
merely positions the write pointer to a desired record. 
Whether to transfer or position is specified by the second 
(Le., mode) parameter. 

FORMAT: 

[labe11 SWRREC [f ib add res s1 

ARGUMENT DESCRIPTION: 

fib address 

, NEXT 
,KEY 
,POSEQ 
, POSGR 
,POSGREQ 
, POSFWD 
, POSBWD 

Any address form valid for an address register; pro­
vides the location of the file information block 
(FIB) • 

5-397 CB08 



I 

I 

* 

i ~ 
~NEXT~ 
(NXT ) 

KEY 

(For all files.) This mode argument indicates that 
the record is to be written into the position in the 
file identified by the write pointer. The write 
pointer is set to the next logical record in the file 
after th~ write is complete. The system ensures that 
the position pointed to is unused or contains a 
deleted record. Records are written in the file as 
described in the Data File Organizations and Formats 
manual. This is ~default for this macro call. You 
must code the following FIB entries: 

logical file number 
program view (record area alignment) 
user record pointer 
output record length 

After the record is transferred to the file, the 
system updates the following FIB entry: 

output record address (serial sequence number if 
device file; BSN if tape file; simple key unless 
relative access specified at open time). 

This mode is referred to as write next. 

(For disk files accessed by key, only.) This mode 
argument indicates that the record is to be written 
into a position in the file, based upon the key value. 
The write pointer is set to the next logical record in 
the file after the write is complete. Records are 
written as described in the Data File Organizations 
and Formats manual. You must code the following FIB 
entries: 

logical file number 
program view (record and key area alignment) 
user record pointer 
output record length 
input key pointer 
input key fo rmat 
input key length 

5-398 CB08 



* 

{ POSEQ} 
PEQ 

{ :g~GR} 

After the record is transferred to the file, the 
system updates the following FIB entry: 

output record address 

This mode is referred to as write with key. 

(For disk files accessed by key, only.) This mode 
argument positions the write pointer to the first 
position in the file whose key value is equal to the 
one specified in the FIB. It is normally followed.by 
write next macro calls to load the file starting from 
that position. You must code the following FIB 
entries: 

logical file number 
program view 
input key pointer 
input key format 
input key length 

This mode is referred to as read position equal. 

(For disk files accessed by key, only.) This mode 
argument positions the write pointer to the first 
position in the file whose key value is greater than 
the one specified in the FIB. It is normally followed 
by write next macro calls to load the file starting 
from that position. The same FIB entries as for POSEQ 
above must be coded. This mode is referred to as 
write position greater than. 

JpOSGREQ} 

tPGE 

(For disk files accessed by key only.) This mode 
argument positions the write pointer to the first 
position in the file whose key value is greater than 
or equal to the one specified in the FIB. It is 
normally followed by write next macro calls to load 
the file starting from that position. The same FIB 
entries as for POSEQ above must be coded. This mode 
is referred to as write position greater than or 
equal. 

5-399 CB08 



I 

I 

{~~~FWD} 
(For tape-resioent and relative files only.) This 

mode argument moves the write pointer forward the 
number of record positions specified by the key value 
identified in the FIB (but not beyond the end of 
file). The same FIB entries as for POSEQ above must 
be coded. This mode is referred to as write position 
forward. 

{ POSBWD{ 
PBD ~ 

(For tape-resident and relative files only.) This 
mode argument is the same as for POSFWD above except 
that the pointer is moved backward the number of 
record positions specified by the key value in the 
FIB (but not before the first record). This mode is 
referred to as write position backwaro. 

FUNCTION DESCRIPTION: 

Before this macro call can be executed, the LFN must have 
been opened (see the open file macro call) with a program 
view word that allows access via data management (bit 0 is 
0) and allows write operations (bit 2 is 1). The file must 
be reserved (see the get file macro call) with write access 
concurrency control (type 3, 4, or 5). The write pointer is 
a logi~al pointer to where the next record is to be written; 
it is maintained separately from the read pointer. There is 
one write pointer per LFN per user. At open file time, the 
write pointer is set to the first record (if RENEW 
specified) or logical end-of-file (if PRESERVE specified). 
The write pointer is modified by each write record 
operation. 

The file information block can be generated by a $FIB macro 
call. Displacement tags for the FIB can be defined by the 
$TFIB macro call. 

The following illustrates the effect of write actions 
according to file organizations. 

5-400 CB08 

, / 



( 

File Organization 

Sequential 

Relative 

Indexed 

Effects of Write Action 

Write next: If the file is being created 
(i.e., opened in RENEW mode), the records 
start at the beginning of the file. If the 
file is not being created, the records are 
appended to the end of the existing file. 

The position modes POSEQ, POSGR, or POSGREQ 
may be specified to do a "partial file 
renewal" or a "file shrink." These modes 
use a simple key to address (set write 
concurrency) an active record. The result­
ing new end-of-data must lie within the file 
limits that existed before the write 
operation. 

Write next, issued immediately after an 
open file, appends a record to the end of 
an existing file. In RENEW mode, this 
action can be used to create the file 
sequentially. Write next issued after a 
write next, write with key or with any 
position mode, inserts a record in the 
next available (unused or deleted) space. 
A write next searches for the next available 
spaces in which to place the record. 

Write with key uses a relative or simple 
key that must address a deleted record or 
an unused space. 

All position modes use a relative or 
simple key to address (set write currency 
to) an active record, deleted record, or 
unused space. 

Write next and write with key (using a key 
format that indicates a primary key) pro­
duce identical results. A write with key 
operation verifies that the key lengths 
and key format information in the FIB are 
correct and that the key pointer refers to 
the proper position in the user record 
area. The write next operation does not 
perform these checks. 

5-401 CBOS 

I 



File Organization 

Indexed (cont) 

Fi xed Re la ti ve 

I 

Device Files 

~~~---.--.-------

Effects of Write Action

If the file is being initially loaded, it
should be opened in RENEW mode, with the
data to be written sequenced in ascending
order by primary key. Data management
will verify that the supplied keys are in
order, and will generate a key out of
sequence error if they are not. When
inserts are to be made, the existing file
should be opened in PRESERVE mode.

Fixed relative with nondeletable records:
Write next, issued immediately after an
open file, appends a record to the end of
an existing file. In RENEW mode, this
action can be used to create the file
sequentially. When issued after a write
next, write with key, or any position
mode, it inserts a record in the next
logical record position.

Write with key inserts a record in the
space addressed by the relative key. All
position modes set write concurrency to
the specified record.

Fixed relative with deletable records:
Write next, issued immediately after an
open file, appends a record to the end of
an existing file. In RENEW mode, this
action can be used to create the file
sequentially. Issued after a write next,
write with key, or any position mode,
write next inserts a new record in the
next available (unused or deleted) space.
This write next operation sear~hes for the
next available space in which to place the
record.

Write with key uses a relative key that
must address a deleted record or an unused
space.

All position modes use a relative key that
addresses (sets write concurrency to) an
active record, deleted record, or an
unused record.

Write next allows sequential writing, pro­
vided the device can be written to and has
been so defined.

5-402 CB08

NOTES: 1. If the first argument is coded, the address of
the FIB is loaded into $B4; if this argument is
omitted, $B4 is assumed to contain the address
of the FIB.

2. On return, SRI contains one of the fol19win9
status codes:

0000 - No error

0203 - Illegal function

0205 - Illegal arg ument

0206 - Unknown or illegal LFN

0207 - LFN not open

020A - Address out of file

0217 - Access violation

0219 - No current record pointer

02lA - Record length error

021B Duplicate key

021C - Key out of sequence

02lE - Key length or location error

0223 - File space limit reached or file not
expandable

0224 - Directory space limit reached or not
expandable

0227 - Index limit exceeded while loading an
indexed file

022A --Record lock area overflow

022B - Requested record is locked

In addition to the above codes, any system
service codes received by the data manager are
passed on through $Rl.

5-403 CB08

I

Example:

In this example, the FIB (i.e., MYFIB) described under
"Assumptions for File System Examples" in Section 3 is
identified by the first argument. Assuming that the file
has been reserved with write-access concurrency control, and
that it has been opened as defined in the open file example,
the macro call is specified as follows:

SWRREC !MYFIB,NEXT

After the record is written in the file, the system updates
the following entry, which you can interrogate with the FIB
offset tag:

F ORA (output record address)

5-404 CB08

(

r

'0

SECTION 6

INPUT/OUTPUT DEVICE DRIVERS

This section describes the internal system software, known
as device drivers, that provide data transfer facilities for
system and application programs with peripheral devices. Macro
calls pertaining to standard system file input/output and to
physical input/output are summarized in Section 2 and described
in detail in Section 5.

INPUT/OUTPUT DRIVERS

Input/output peripheral drivers and the analogous communica­
tions device drivers (called line protocol handlers) perform all
data transfers between a peripheral device and the system or
application program that uses it. Drivers are provided for all
Honeywell-supplied peripheral devices and the teleprinter, VIP,
and BSC2780/3780 protocols.

The remainder of the section describes the peripheral device
drivers. Line protocol handlers are described in the
Communications Processing manual.

Applications programs can call the drivers directly or can
use them indirectly by calling the file manager. If you want to
write a peripheral driver for a nonstandard device, or modify the
function of an existing peripheral driver, refer to Appendix B.

You select a driver and the priority level at which it exe­
cutes at system building.

The input/output drivers are reentrant programs capable of
supporting the concurrent operation of several devices of the
same type. The driver runs at the priority level assigned to the
particular device at system building. The drivers provide fully
simultaneous operation of the central processor with multiple
input/output operations. Device interrupts signal the termina­
tion of data transfers.

6-1 CB08

DEVICE DRIVER CONVENTIONS

The following conventions apply to all input/output device
drivers.

o The I/O request block (IORB) is the standard control
structure used by a driver (see "Data Structures," later
in this section for definition).

o The $RQIO macro call is used to request a driver.

o The B4-register contains the address of the IORB supplied
by the caller; the IORB contains the LRN of the device to
be used.

o The I/O-specific words of the IORB (I_CT2 through I_DVS)
are not modified by the driver.

o If a device becomes inoperable, it can be disabled with
an operator command and another device can be
substituted.

o Drivers are reentrant and interrupt driven; one driver
supports many devices of the same type.

o Synchronous and asynchronous I/O are supported.

o Work space, if required, is located in the device's re­
lated resource control table (ReT).

o The hardware status is always mapped into the software
status word in the task's lORB (l_ST) before the driver
relinquishes control.

Driver Functions and Function Codes

All drivers perform similar functions on behalf of the de­
vices and application tasks they service. These functions are
carried out by the driver's request processing and interrupt
processing code.

The application task can request specific functions by pro­
viding a function code in the IORB it supplies when it requests
I/O service. These specific function codes are summarized in
Table 6-1 and discussed under the specific function heading in
the following pages.

6-2 CB08

" ,11

(

The application
I CT2 to enter

in Table 6-1.
entry
marized

task
the

uses the last
function code

four bits of the
for the functions

IORB
sum-

Table 6-1. Input/Output Function Code

Device

lORB ASR/KSR
Function Keyboard/ Card Reader/

Code Printer Card Reader Punch Pr inter Disk Magnetic Tape

a Wait online Wait online Wait online Wait online Wait online Wait online

1 Write NA' Write (punch) Write Write Write

2 Read Read NA NA Read Read

3 NA NA Write file mark NA Write deleted data Write file mark
(punch)

4 NA NA NA NA Read deleted data Posi ticn blockb

S NA NA NA NA Format write NA

6 NA NA NA NA Format read Posi ticn filec

9 Br~ak Notification NA NA NA NA NA
(KSR only)

A Connect Connect Connect Connect Connect Connect

B Disconnect Disconnect Disconnect Disconnect Disconnect Disconnect

E NA NA NA NA Read disabled device Read disabled device

aNot applicable.
~

bpOS i ti ve range of one is forward space to start of next block.
Negative range of one is backspace to beg inning of prev ious block.

Cpositive range of one is forward space to next tape mark.
Zero range is backspace to prev io us tape mark.
Negative range of FFFF is rewind to BOT.
Negative range of FFFF is rewind to BOT and unload.

6-3 CB08

WAIT ONLINE FUNCTION (fc=O)

The "wait online" function, one element of a control mecha­
nism used to synchronize task operation with device availability,
allows a caller to wait until a device becomes ready for use, or
until a specific time interval has passed.

All noncommunications devices (except KSR-like devices) gen­
erate interrupts when the.ir availability changes. For example,
when a printer runs out of paper, an interrupt is generated and
the device is not ready for use; when the paper is installed and
the device is again ready, another interrupt is generated.

When a driver receives a service request from a task using
the "wait online" function code in the IORS that it supplies
(0000 in the last four bits of I CT2), and the device is not
ready, the driver sets a timer for 5 minutes and suspends. When
the driver is reactivated, either by a ready interrupt from the
device or by a time-out, it deactivates the timer, checks the de­
vice-ready bit in the hardware status word and places a 0 or 6
value in the return status field of the IORS depending on the
condition of that bit. See the return status codes for the $RQIO
(Request I/O) macro call; the rightmost hexadecimal character is
placed in the return status field.

The wait online function should not be issued to a device
that is currently ready for use unless you expect it to become
not ready before it becomes ready again (e.g., the operator has
been instructed to change a volume mounted on a disk device cur­
rently in use). When the ready state of a device changes, the
attention bit set in the RCT (R FLGS, bit 8) may be reset by a
reset device attention ($RDVAT}-macro call.

A task can ask to be notified about the occurrence of an
interrupt by a device by setting bit 9 of R FLGS of the RCT (see
the disable device ($DSDV) macro call.) When such an interrupt
occurs, the driver will set bit 10 of R FLGS, and place the value
8 in I ST of subsequent IORS's supplied-by the requesting task.
Subsequently, when a ready interrupt for the device is generated,
the using task can clear the disabled status by resetting bit 10
of R_FLGS (see $ENDV (enable device) macro call}.

WRITE FUNCTION (fc=l)

The write function is available for use by all devices ex­
cept the card reader. This function allows the writing of data
to a particular device. When a driver receives a write request,
it transfers the indicated data from a user buffer to the device
according to the specifications supplied in the task's IORS.

6-4 CS08

---~-----~--~------ -----------

(-

(-

Table 6-2. Return Status Codes

Code Number
(Hexadecimal) Meaning

o No error, operation complete
I Request block already busy (T=l)
2 Invalid LRN
3 Illegal wait
4 Invalid parameters
5 Device not ready
6 Device time-out
7 Hardware error, check IORB status worda

8 Device disabled b

9 File mark encountered
A Controller unavailable
B Device unavailablea

C Inconsistent requestC

a When these codes are found in I CTI (IORB), or in
$RI on a resume after wait, look at I ST (IORB) to
identify the specific error. The status B is re­
returned with every read or write IORB that has been
aborted by a disconnect request with queue abort.

bThis status will be returned on an I/O request if
the user program has disabled the logical resource.
This event is indicated in the device resource
control table (See Figure 6-2) by bit 10 of R_FLGS.

CThis status indicates illogical peripheral driver
requests: read or write before connect; duplicate
connect or disconnect requests; write after
disconnect.

READ FUNCTION (fc=2)

The read function is available for use by all devices for
local and remote printers. This function allows reading data
from a particular device. When a driver receives a read request,
it transfers the data from the specified device to a user buffer
according to the specifications supplied in the requesting task's
IORB.

READ DISABLED DEVICE FUNCTION (fc=E)

This function, available only to disk or magnetic tape de­
vices, allows the driver to bypass the device-disabled test dur­
ing validity checking.

6-5 CB08

This function is used by the system's automatic volume rec­
ognition (AVR) module, which recognizes the volume label of the
volume on the disabled device, then enables the device so that
attempts ro read data from it can continue.

WRITE TAPE MARK FUNCTION (fc=3)

The write tape mark function, which is available to magnetic
tape devices, allows you to put a mark block on a referenced mag­
netic tape.

POSITION BLOCK FUNCTION (fc=4)

The position block function, which is available to magnetic
tape devices, allows you to position a referenced magnetic tape
forward or backward one block.

POSITION TAPE MARK FUNCTION (fc=6)

The position tape mark function, which is available to mag­
netic tape dp.vices, allows you to:

o Position a referenced magnetic tape forward to beyond the
nex t tape mar k.

o Position a referenced magnetic tape backward to ahead of
the current tape mark.

o Rewind to BOT

o Rewind to BOT and unload

BREAK NOTIFICATION FUNCTION (fc=9)

This function, available only for KSR devices, is a request
to notify the issuing task when a break occurs on a specific
device. When a break does occur, the driver posts the break
notification request ~nd declares the device to be in break mode
for the issuing task.

In break mode, all I/O requests issued from the "broken"
task are rejected, i.e., posted without any data transfers being
started. Execution of a subsequent break notification request
will cause the driver to return to normal mode.

Communications Function Codes

The following function codes are for communications, and for
interactive and noninteractive (such as card reader or printer)
dev ices.

6-6 CB08

(~ CONNECT FUNCTION (fc=A)

(

This function provides the logical and physical connection
between an application program and a communications device. The
function may be used for noncommunications devices for program
compatibility; i.e., no matter how these devices are connected to
the computer, all interactive KSR and KSR-like devices, and
noninteractive devices such as card reader and printer, can be
controlled by the same application program.

See the Communications Processing manual for descriptions of
the connect function, and disconnect function (described below) ,
as they pertain to communications devices.

DISCONNECT FUNCTION (fc=B)

This function code provides the logical (normal and ab­
normal) and physical disconnect between an application program
and an interactive device. The function is processed as a no-op
for noninteractive devices for program compatibility, i.e., a
card reader or printer may be controlled by the same application
program.

The disconnect function as a logical function indicates that
use of the indicated device is terminated. Termination may be
either normal or an abort of all queued read or write requests
issued only by this user program.

DATA STRUCTURES

Two data structures control the interactions among an appli­
cation program, its device drivers, and the devices it uses.
These structures are the input/output request block (IORB) and
the resource control table (RCT). The IORB is the interface
between the application task and the device driver; the RCT is
the interface between the driver and its device(s) •

Input/Output Request Block

The input/output request block (IORB) contains all informa­
tion that a task requesting an I/O service can specify to define
the operation to be performed. In addition, it contains informa­
tion returned by the driver to the requesting task concerning the
outcome of its I/O request.

The format of the IORB is shown in Figure 6-1; Tables 6-3
and 6-4 define the individual IORB entries; these entries are
common to drivers for all device types. Device-specific IORB

6-7 CBD8

information is provided in the separate device driver descrip­
tions later in this section.

NOTE: The labels (I CT2, I ADR, etc.) used in
referring to the laRS entries are employed
only for ease of presentation. The labels
cannot be used for programming purposes.

-$AF { {
\ °111213141516171 s 191AIBlc1DIEIF

-1 -1 f LRRB/LSEM REQUEST BLOCK POINTER/SEMAPHORE NAME

o 1nHgglilggglggmR~~~RY.~P.:f.QR:~X~t~M.!-!i.~.~~?:.~.:r9.i~X~~,:rr~:::::::::::::t:~:~:t~:r::::::::::
$AF I cn::.::::::::::::!::::RETUR"NSTATUS :::::::::::.::::':::: T W U Sol Rio I 1 ':::::!.:::::::::.::::... "... ;:::::::.:::'!:;p:::!":;:

1 + $AF

2 + $AF

2 + 2 * $AF

3 + 2 * $AF

4 + 2 * $AF

5 + 2 * $AF

I CT2

I ADR

I RNG

I DVS

I_RSR

I ST

lRN C B P M FUNCTION

BUFFER ADDRESS

RANGE

DEVICE SPECIFIC WORD

'i:::::~::::::;i:::::;;~:::~:!:~:::~:~:::::;:;:~~;:;:t;:;:;~;:~m~w~::~~:~~~:~:;:~:::::~:::::;::::::~:::::~:~:::::~:::::;:::::;:~:~:;:;:;:;:;~;:;:;:;:;:
@~:;:~:~:~:~:t~:~~K~:8~:~~8).~B~~.~~:~~.:~).T.~:.~~.)y'~.~9 j;f:c?(~~~.-~-!~~Q~V~!i}:;:r~:;:~:;:;

Figure 6-1. Format of I/O Request Block

Table 6-3. Contents of I/O Request Block

Item Label Bits Contents

-$AF I RRB/ 0 through 15 Depending on the condition of - the
for SAF; or R-bits of I CTl, this word con-

S-

-1 I SEM 0 through 31 tains a request block pointer (R-bi t - for LAF on) , or a semaphore name (S-bi t on);
set by user, used by system at ter-
mination of request.

0 0 through 15; Reserved for system use. l- or
0 through 31 2-word pointer to indirect request

block.

$AF I CTI 0 through 7 Return status -
8 (T) This bit is set (on) while the re-

quest using this block is executing;
it is reset when the request termi-
nates. System controls this bit;
user should not change it.

6-8 CB08

:1

(

Table 6-3 (cont). Contents of I/O Request Block

Item

$AF
(cont)

Label

I CTL
(cont)

l+$AF I CT2

Bits

9 (W)

A (U)

B (S)

C

D (R)

E (D)

F

o thro ugh 7

8 (C)

9 (B)

A (P)

B (M)

Contents

Wait bit - set if the requesting
task is not to be suspended pending
the completion of the request that
uses this block.

User bit. User mayor may not use
this bit; system does not change
it.

Release semaphore indicator.
Values: O=No release, I=Release on
time-out of item named in I RRB.

Must be zero.

Return request block indicator.
Values: O=No dispatch, I=Dispatch
of request block named in I RRB,
after time-out of this request.
(System executes $RQTSK, using
I_RRB, upon task termination.

Delete IORB. Values: O=No delete;
l=return IORB to dynamic memory
pool where IORB is first entry of
memory block.

I/O bit - must be set.

Logical resource number (LRN);
identifies device to be used.

IBM-type request. Changes inter­
pretation of I DVS to task word,
and I RSR and I ST to configuration
words-A and B respectively.

Byte index; O=buffer begins in
leftmost byte of word, l=buffer
begins in rightmost byte.

Reserved for system use.

o = Standard IORB; 1 = IORB is ex­
tended at least 6+2*$AF items.

6-9 CB08

Table 6-3 (cont). Contents of I/O Request Block

Item Label Bit Contents

l+$AF
(cont)

I CT2 C through F
(cont)

Function code. Driver function,
See Table 6-1.

2+$AF I ADR

2+2*$AF I RNG

3+2+*$AF I DVS

4+2*$AF I RSR

5+2*$AF I ST

o through 15 Buffer address, SAF mode.
(See Note.)

o through 31 Buffer address, LAF mode.
1- or 2-word pointer. (See note.)

o through 15 Range - number of bytes to be
transferred; used as input field
for cartridge disk or disk storage
unit.

o through 15 Device-specific information.

o through 15 Residual range. Indicates the
number of bytes not transferred.
Filled in by the system on com­
pletion of the order. Used by
cartridge ~isk and mass storage
unit driver as a data offset
val ue •

o through 15 Status word. Reflects the map­
ping of the hardware status into
software status format; used as
input field high-order bits of
sector number for mass storage
uni t. (See Table 6-4)

NOTE: For break notification requests, the KSR driver
stores the TCB of the issuing task in this word.
When brea~ occurs, the contents of this word are
transferred to the RCT.

6-10 CB08

,/

,~ c-...
Table 6-4. lORS Software Status Word1 (1 ST)

0'\
I
~
~

I

I

I

Bit
Position

0

1

2

3

t1

5

(,

7

S

a

In

11

] 2

1]

p

lS

ASR/KSR

0

0

over/underrun

Even parity
error

0

No stop bi t

Long record

Checksun error

CC2 term inat ion

CC3 term ination

0

n

n

n

n

Fatal 2rror

Card Reader

0

0

OVer /under r un

Mark sense mode

40-colll1ln

51-coll11ln mode

Ex ternal clock
track

Read check

ASCII code
error

0

0

0

0

0

0

Fatal error

NOTES: l.

2.

() l-Equ-ivai-;~r1t-to a modified status word l.

OJ
o
CO

Disk Storage
Card Reader/Punch Printer Diskette Cartridge Disk Unit Magnetic Tape

0 0 0 0 0 0

0 0 0 0 0 Rewinding

Data service rate 0 OVer/underrun Over/underrun Over/underrun Retryable error
error

Invalid ASCII End of form D=leted field Write protect Write/protect Write protect
code error error error

Punch echo or 0 Read error Read error Read error 0
read registration

Light/dark check 0 D=vice fault Illegal seek Illegal seek 0

Card jam 0 Missed data Missed data Missed data BOT
synchronization synchroni zation synchroni zation

0 0 Unsuccessful Unsuccessful Unsuccessful EOT
search search search

0 0 'IWo sided Missed clock Missed clock Long record
pulse pulse

0 0 0 Missed sector Successful Nonret:ryable
pulse retry error

0 0 Seek error Seek error 0

0 0 0 0 0 Operation check

0 0 0 0 0 High density

0 0 0 0 0 0

(' 0 0 0 0 0

Fatal error Fatal error Fatal error Fatal error Fatal error Fatal error

Nonex istent resource, bus pari ty, and uncorrected memory.
errors are combined into bit 15 of I_ST, but each occurrence
is noted separately in the RCT.

The online drivers will flag, in the ReT, corrected manory
errors and driver or hardware corrected errors.

I

I

Resource Control Table (RCT)

The resource control table (RCT) is a system-defined table
that contains task or device parameters. A task RCT consists
of a pointer to the interrupt save area (ISA) servicing the task.
A device RCT contains a pointer to the interrupt save area
servicing the task and the device-specific information shown in
table 6-5. An entry in the logical resource table (LRT) points
to the resource control table, thus establishing a correspondence
between the logical resource number (LRN) and the interrupt save
area.

Table 6-5 shows specific entries in the RCT.

Table 6-5. Resource Control Table (RCT) Field Definitions

Field
(bi ts)

R TCB

*

R TYP

R FLGS

R_TRCV(O)

R_DDEN(O)

R_IN(O)

R_CRED(l)

R_IBM(I)

R_BNVL (2)

R_NFS(2)

R_FLSM(3)

Word
Offset

-$AF

o

1

2

Content

Pointer to TCB (and ISA) of the driver.

Channel of the referenced device; set
before driver initialization.

Device type as read from the device by
the initialization routine.

Flags for use by the drivers. The first
5 bits (0-4) are device specific. Flags
that are dynamically modified by the
drivers are indicated by an asterisk (*).

*(Tape) - Tape recovery requested.

*(Diskette) - Double density (set by
AVR) •

*(KSR) - Input attention to process.

*(Tape) - Tape recovery successful.

*(Diskette) - IBM type volume (set by
AVR)

*(Tape) - Block count invalid.

* Not connected to file system.

(For disk driver) - Large disk address
(mass storage unit).

(For KSR) Not single character mode.

6-12 CB08

r- Table 6-5 (cont). Resource Control RabIe (RCT) Field Definitions

Field Word
(bi ts) Offset Content

R _AVR(4) 2 (cont) (Disk) Do AVR when set.

R_FLDT(5) Disk type device.

R_FLCM(6) Communication connected device.

R_FLSL(7) Slew type device.

R FATN (8) *Attention has occurred. -
R_FDOA(9) Disable device on attention.

R DSAB(A) *Device disabled. -
R_ELBZ(8) *Error log busy.

(C-F) *The last four bits of status word one.

R STTS 3 Last hardware status word one. -
R ERLG 4 Pointer to the error log structure or - null (if log is not active) • error

R TrOT 4+$AF Timeout val ue (seconds) • -

R FMSK S+$AF The 32-bit mask defining the global -
action to be taken for a given function
(see r CT2). The first word has a bit
corresponding to function, set if the
function for this device is illegal or
no-operation.
The second word will have the corre-
sponding bit set for illegal function
(e .g . , read for printer) or special,
globally handled functions (wait on
1 ine .)

R_DRQ 7+$AF Pointer to driver's request handler.

R DRAT 7+2$AF Pointer to driver's attention handler. -

6-13 CB08

Table 6-5 (cont). Resource Control Table (RCT) Field Definitions

Field Word
(bi ts) Offset Contents

The following fields are device-specific, for device shown:

Disk Specific

R SCCL 7+3$AF Number of sectors per cylinder. For - dev ices, depending on the media, it must
be set by AVR.

R SCTR 8+3$AF Number of sectors per track. -
R SRCH 9+3$AF Z'FFFF' for devices with the automatic -

track crossing Z' FEFF' for diskette.

R FXPL 10+3$AF Z'0800' for fixed cartridge disk, zero -
for others.

KSR Specific

R CWA 7+3$AF - Configuration words A, B

R BTDB 9+3$AF Two-word unique identifier of task for - which "break" must inhibit messages.

R BUF 11+3$AF Pointer to single character mode buffer - and its control structures.

Magnetic Tape Specific

R SW2 7+3$AF Status words two -

R TMCT 8+3$AF Tape mark count -
R BLCT 9+3$AF Block count

CALLER INTERFACE WITH DEVICE DRIVER

To request execution of an I/O operation, the caller must
issue a $RQIO macro call with $B4 pointing to the IORB that is
to be serviced. If the IORB specifies synchronous I/O (W-bit
reset), the issuing task will be suspended until the I/O opera­
tion is completed.

If IORB specifies asynchronous I/O, the instruction at the
return point will be executed as soon as the system queues the
IORB on the driver's level. The application should issue a $WAIT
macro call when appropriate for the asynchronous request.

6-14 CB08

/

Thus, upon return from the driver at the completion of the
I/O operation, the caller must check the RI register first to see
if the request was successful. If there was an error it will be
defined here. Hardware errors are defined in IORB entry I ST
(see Table 6-4).

Residual range denotes how much of the requested data trans­
fer was actually performed. If I RSR equals zero all data was
transferred (see "Device Drivers"-for details on device-specific
basi s) •

Those fields not shaded in Figure 6-1 must be initialized by
the task requesting the I/O operation. The remaining fields are
set by the driver in order to return information about the I/O
request back to the caller or are controlled by the Monitor.
Table 6-3 describes the purpose of each field.

The channel number, defined at system building, is located
in the device's resource control table (RCT) entry. (See the
GCOS 6 MOD 400 System Building manual). The LRN supplied by
the caller in the IORB serves as an index into a system table
(LRT) which in turn contains the pointer to the RCT entry
defining the device as in Figure 6-2.

USERIORB LRT RCT ENTRY

/
CHANNEL

LRN I POINTER

Figure 6-2. LRN as Pointer to RCT

Thus, with the LRN, the driver can indirectly access the RCT
entry which defines the particular device the calling task wishes
to access.

The rest of the information needed to perform the I/O re­
quest is found in the IORB itself. The caller-supplied standard
function code in I CT2 is mapped by each driver into one or more
device functions required to perform the actual request (e.g.,
read function code from disk translated by the disk driver into
a "seek" to the correct track, and a "read" of the correct physi­
cal sector).

Finally a timer is started in order to protect against a
device fault prohibiting the sending of a completion interrupt to
the central processor.

At the completion of any central processor-to-I/O instruc­
tion the driver can test the I/O flag in the indicator (I) regis-

6-15 CB08

ter in order to tell if the central processor instruction was
accepted by the device.

When the I/O operation terminates, the device interrupts the
central processor at the level of the driver. The device knows
which level to interrupt at since the corresponding driver trans­
mitted the level value to th~ device itself prior to any I/O
being performed. (Within the device ISA, the DEV field (see
Figure 7-1) contains the channel number of the device and the
interrupting level. Thus, the driver can explicitly tell which
device is interrupting, and can perform the I/O completion
processing.)

DEVICE DRIVERS

The remainder of this section discusses the device drivers
in the following order:

o Card reader/Card reader-punch driver
o Printer driver
o Disk driver
o ASR/KSR driver
o Magnetic tape driver

Card Reader/Card Reader-Punch Driver

The card reader and card reader-punch devices are serviced
by a single driver. The driver uses only three function codes;
i.e., read, write, and wait online. In addition, its IORB word
I DVS can be coded to define the character code of the input;
namely, ASCII or verbatim. These values are specified in the
IORB as defined in Table 6-7.

The translation/mapping of these codes from punched card
format, into memory on reading, is described below.

In addition to the standard driver functionality discussed
earlier, this driver also:

o Detects and discards unsolicited interrupts ($B4=0 upon
entry to dr i ver) •

o Detects an end-of-file condition and sets the appropriate
return status (ASCII GS character in column 1 of any
card=EOF) •

o Detects "device not ready" condition and sets appropriate
error condition.

6-16 CB08

/

(

.~
)~

(

ASCII MODE

In this mode, punched cards are processed as shown in Figure
6-3. Each card column consisting of a 12-bit ASCII card code is
converted into an 8-bit ASCII byte and stored in the main memory.

The ASCII card code table as specified in American National
Standard X3.26 is given in Table 6-6. Note that no multiple
punches in rows I through 7 are allowed and thus the l2-bit card
code allows a maximum of 256 unique codes to be defined.

Translation is done by the card reader attachment which also
provides a software-visible IORB status indicator that is set
whenever an illegal ASCII card code is detected. This error con­
dition is signaled by a 7 in Rl register if any card column read
had a hole pattern which was not one of the legal hole patterns
given in Table 6-6. The illegal card code causes an ASCII-EO
(alII's) code to be loaded in the main memory.

BYTES
READ

COLUMN COLUMN
N N+1 r-,

I 12
r-'
I I I 11 I I I 0 I I

I
1

I I
2 I 3 I I

I
4 I I

I 5 I I
I

6 I I
J

7 I J
I

8 I I
I

I I J 9
L.._..J L_J

HOLLERITH
TO ASCII
TRANSLATOR

N+2

r-'

L_.J

r------,
I N+2 I L ____ .J

NOTES: 1. This translator will provide a status indicator which
will be set whenever an illegal Hollerith code is read.

2. The translator shown above is in the card reader
attachment.

Figure 6-3. ASCII Card-to-Memory Code Formatting

6-17 CB08

0'1
I

I-'
CD

()
OJ
o
CD

.,
{

I
\,

"

\
}

I

b4b3b2bl

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

IIII

b8
b7
b6
b5

~COL
ROW

0

I

2

3

4

5

6

7

8

9

10

II

12

13

14

15

0 0
0 0
0 0

0 I

0 I

NliL DLF
12-0-9-8-1 12-11-9-8-1

SCII DC!
12-9-1 11-9-1

STX DO
12-9-2 11-9-2

ETX DC3
12-9-3 11-9-3

ECT DC4
9-7 9-8-4

ENQ NAK
0-9-8-5 9-8-5

ACK SYN
0-9-8-6 9-2

BEL ETB
0-9-8-7 0-9-6

BS CAN
11-9-6 11-9-8

liT EM
12-9-5 1i-9-8-1

IF SliB
0-9-5 9-8-7

VT ESC
12-9-8-3 0-9-7

FF FS
12-9-8-4 11-9-8-4

CR GS
12-9-8-5 11-9-8-5

SO RS
12-9-8-6 11-9-8-6

SI liS
12-9-8-7 11-9-8-7

Table 6-6.

0 0 0 0
0 0 I I

I I 0 0
0 I 0 I

2 3 4 5

SP 0 " P
NO PCII 0 8-4 11-7

! 1 A Q
12-8-7 1 12-1 11-8

" 2 B R
8-7 2 12-2 11-9

3 C S
8-3 3 12-3 0-2

$ 4 D T
11-8-3 4 12-4 0-3

r:; 5 E li
0-8-4 5 12-5 0-4

& 6 F V
12 6 12-6 0-5

7 G W
8-5 7 12-7 0-6

(8 H X
12-8-5 8 12-8 0-7

) 9 I Y
11-8-5 9 12-9 0-8

* j Z
11-8-4 8-2 11-1 0-9

+ K I
12-8-6 11-8-6 11-2 12-8-2

< L ,
0-8-3 12-8-4 11-3 0-8-2

- - M J
11 8-6 11-4 11-8-2

> N A

12-8-3 0-8-6 11-5 11-8-7

I ? 0
0-1 0-8-7 11-6 0-8-5

Hollerith-ASCII Code Table

0 0 I I I I I I I I
I I 0 0 0 0 I I I I

I I 0 0 I I 0 0 I I
0 I 0 I 0 I 0 I 0 I

6 7 8 9 10 II 12 13 14 15 ~ ROW

P
8-1 \2-11-7 11-0-9-8-1 12-11-0-9-8-1 12-0-9-1 12-11-9-8 12-11-0-9-6 12-11-8-7 12-11-0-8 \2-11-9-8-4 0

a q
12-0-1 12-11-8 0-9-1 9-1 12-0-9-2 11-8-1 12-11-0-9-7 11-0-8-1 12-11-0-9 12-11-9-8-5 I

b r
12-0-2 12-11-9 0-9-2 11-9-8-2 12-0-9-3 11-0-9-2 12-11-0-9-8 11-0-8-2 12-11-G-8-2 12-11-9-8-6 2

c s
12-0-3 11-0-2 0-9-3 9-3 12-0-9-4 11-0-9-3 12-0-8-1 11-0-8-3 12-11-0-8-3 12-11-9-8-7 3

d t

\2--0-4 11-0-3 0-9-4 9-4 12-0-9-5 11-0-9-4 12-0-8-2 11-0-8-4 12-11-0-8-4 11-0-9-8-7 4

c u
12-0-5 11-0-4 11-9-5 9-5 12-0-9-6 11-0-9-5 12-0-8-3 11-0-8-5 12-11-0-8-5 11-0-9-8-3 5

r v

12-0-6 11-0-5 12-9-6 9-6 12-0-9-7 11-0-9-6 12-0-8-4 11-0-8-6 12-11-0-8-6 11-0-9-8-4 6

g w
12-0-7 11-0-6 11-9-7 12-9-8 12-0-9-8 11-0-9-7 12-0-8-5 11-0-8-7 12-11-0-8-7 11-0-9-8-5 7

h ,
12-0-8 11-0-7 0-9-8 9-8 12-8-1 11-0-9-8 12-0-8-6 12-11-0-8-1 12-0-9-8-2 11-0-9-8-6 8

i y
12-0-9 11-0-8 0-9-8-1 9-8-1 12-11-9-1 0-8-1 12-0-8-7 12-11-0-1 12-0-9-8-3 11-0-9-8-7 9

j z
12-11-1 11-0-9 0-9-8-2 9-8-2 12-11-9-2 12-11-0 12-11-8-1 12-11-0-2 12-0-9-8-4 12-11-0-9-8-2 10

k I
12-11-2 12-0 0-9-8-3 9-8-3 12-11-9-3 12-11-0-9-1 12-11-8-2 12-11-0-3 12-0-9-8-5 12-11-0-9-8-3 II

I
12-11-3 12-11 0-9-8-4 12-9-4 12-11-9-4 12-11-0-9-2 12-11-8-3 12-11-0-4 12-0-9-8-6 12-11-0-9-8-4 12

m I
\2-1 J-4 11-0 12-9-8'1 11-9-4 12-11-9-5 12-11-0-9-3 12-11-8-4 12-11-0-5 12-0-9-8-7 12-11-0-9-8-5 13

n -
12-11-5 11-0-1 12-9-8-2 9-8-6 12-11-9-6 12-11-0-9-4 12-11-8-5 12-11-0-6 12-11-9-8-2 \2-11-0-9-8-6 14

0 DEL EO
\2-11-6 12-9-7 1\-9-8-3 11-0-9-1 12-11-9-7 12-11-0-9-5 12-11-8-6 12-11-0-7 12-11-9-8-3 12-11-0-9-8-7 15

/
i) '-. , -

(

(

VERBATIM MODE

In this mode, punched cards are processed as shown in Figure
6-4. The card column pattern is stored in bits 4 through 15 of
the main memory word with bits 0 through 3 set to zero. All
2 hole patterns will be valid during a verbatim mode operation
The device-specific fields in the IORB and RCT are given below.

WORDS
READ

COLUMNS N

12
11
o
1
2
3
4
5
6
7
8
9

N+1
r-,
I I
I I
I I
I I
I I
I I
I I
I I
I I
L_J

.
WORD N

,---- ------
I L-__________ _
, .

WORD N+1

Figure 6-4. Verbatim Mode Formatting

CARD READER/CARD READER-PUNCH DEVICE-SPECIFIC IORB FIELDS

Table 6-7 defines the device-specific fields in the IORB not
previously defined.

Item

I CT2 -

Table 6-7. Card Reader Card/Reader-Punch
Device-Specific IORB Fields

Field Definition Use

Function code O=wait-on-line Refer to "Driver
l=write Functions and Func-

tions Codes" earlier
in this section.

2=read Driver " read s" cards
for " range" number of
bytes.

3=write file mark Driver "writes" cards
for "range" number of
bytes.

6-19 CB08

Item

I RNG -

I DVS -

I RSR -

Table 6-7 (cont). Card Reader/Card Reader-Punch
Device-Specific IORS Fields

Field Definition Use

Range 0:C;;range~32K-l If range is greater
than card size, re-
sidual range will
reflect the differ-
ence.

Device-specific 0 12 13 14 15 Defines character set
of data being read.

10 0 I mode I
mode: O=ASCII

2=verbatim

Residual range O,:c;;initial range Detects device
malfunction.

CARD READER/CARD READER-PUNCH DEVICE-SPECIFIC RCT FIELDS

The following RCT fields contains device-specific values for
the card reader and card reader-punch.

Item Field Definition Use

R TYP Device Type 2008-200F Card reader device type
2088-208F Card reader-punch device

type

R STTS Device Status See Table 6-8 Status as read from device
6-9.

CARD READER/CARD READER-PUNCH RCT/IORS STATUS CODE MAPPING

The card reader/card reader-punch controller returns to the
driver various codes that are placed in the RCT. The status code
is then made visible to the application by placing it in the IORS
as shown in Tables 6-8 and 6-9.

6-20 CS08

/

,~-",

(

!

("

Table 6-8. Card Reader IORB Hardware/Software
Status Code Mapping

RCT IORB
Word Word
R S'rTS I ST - -

0 -
1 -
2 2
3 3
4 4
5 5
6 6
7 7
8 8
- -
- -
- -
12 -
13 15
14 15
15 15

Table 6-9.

RCT IORB
Word Word
R STTS I ST - -

0 -
1 -
2 2
3 3
4 4
5 5
6 6
7 -
8 -
- -
- -
- -

12 -
13 .15
14 15
15 15

Meaning If Bit Set

Device ready
Attention
Data service rate error
Mark sense mode
40-column card mode
51-column card mode
External clock track
Read check error
ASCII code error

Corrected memory error
Nonexistent resource/fatal error
Bus parity error/fatal error
Uncorrectable memory error/fatal error

Card Reader/Punch Hardware/Software
Status Code Mapping

Meaning If Bit set

Device ready
Attention
Data service rate error
Invalid ASCII code
Punch echo or read registration
Light/dark check
Card jam

Corrected memory error
Nonexistent resource/fatal error
Bus parity error/fatal error
Uncorrectable memory error/fatal error

6-21 CB08

Printer Driver

The printer driver performs all data transfers to
and serial printers as well as terminal print devices.
control of printing is achieved by supplying a control
the first entry in a data buffer.

all line
Format

byte as

PRINT CONTROL BYTE

A print control byte can precede text data sent to output
"print" devices (e.g., console, printer, VIP, etc.). This byte
must be the first character in the data buffer and is included in
the range count of the IORB for the request.

Forms control differs between printers (which uses prespace,
then print format conventions), and consoles (terminals), (which
use print, then postspace format conventions). These are indi­
cated separately below.

Field

Y

PP

The contents and meanings of the control byte are:

Action Caused

Line Printer
(Space Before Print)

Not Used

00 Print; ignore V and
count/fields; single
space except at end­
of-form, skip to head­
of-form.

01 Don't print; perform
actions defined in V and
count fields.

10 Print; perform actions
defined in V and count
fields.

11 Reserved for system use.

6-22

Terminal Printer
(Space After Print)

O=Use IORB word I DVS for
device-specific informa­
tion

I=Ignore IORB word I_DVS

Not Used.

CB08

f- Field

v

Code

Action Caused

Line Printer
(Space Before Pr in t)

o Prespace according to
Count Field.

1 If count = 0, skip to
head-of-form. If count
is between 1 and 12, and
the VFU option is present,
skip to the VFU channel
defined by the count
fie ld •

If count is greater than
12, or there is no VFU
option, do one prespace.

Terminal Printer
(Space After Print)

o =No prespace.

l=prespace three lines,
count field must be o.

The control byte summary is as follows:

Line/Serial Printers

Hexadecimal ASCII Resulting Action

OO-IF NUL-US Single space, then print; skip to head-of-
form at end-o f- fo rm.

20-2F ~ - / Space Count 1 ines , don't print.

30-3F 0 - ? Skip to VFU channel number in Count, don't
print.

40-4F @ - 0 Space Count number of lines, print.

50-SF P - - Skip to VFU channel number in Count, print;
50 = skip to head-of-form.

60-6F \- 0 Re-served for future use.

70-7F p - DEL Reserved for future use.

6-23 CB08

Code

Hexadecimal ASCII

Terminal Printers

~O-OF

20-2F

40-4F

10-lF
30-3F
50-SF

60-6F

70-7F

~ - /

@ - 0

, - 0

p - DEL

Resulting Action

No prespace, print.

Prespace three lines, print.

Reserved for future use.

Reserved for future use.

PRINTER DEVICE-SPECIFIC IORS FIELDS

Table 6-10 defines the IORS fields whose contents are
specific to the printer driver.

Table 6-10. Printer Device-Specific IORS Fields

IORS Item Field Definition Use
,

,

I CT2 Function code O=wait-on-line See "Driver Function - l=write and Function Codes. "
Driver will "write"
from I ADR "rang e"
number -of bytes.

I RNG - Range 0~range~32K-1 If range is greater
than line size re-
sidual range will
reflect the
difference.

I DVS Device-specific 0 1 2 3 4 5 6-7 a 9 10 11 12 13 14 15 - 0 0 0 F 0 0 0 0 0 0 0 0 0 0 0 0

F: O=Assumes line printer format
control

l=Assumes terminal format control

All other bits must be zero.

6-24 csoa

(

(

TABLE 6-10 (cont). Printer Device-Specific lORB Fields

lORB Item Field Definition Use

I ST Software Status Shown below Mapped from RCT hard-- word ware status.

I RSR Residual range See Note -
NOTE: For cases where original range is less than or equal

to line length, the value in the residual range has
the following meanings:

0 - Completed space/print operation.
original range - Neither space nor print occurred.
original range-1 - Spacing occurred but no printing.
Other residual range val ues imply spacing and
partial printing.
The preceding implies modulo line 1eng th.

PRINTER DEVICE-SPECIFIC RCT FIELDS

The fields in Table 6-11 were not defined previously since
they are device-dependent.

Table 6-11. Printer Device-Specific RCT Fields

Item Field Definition Use

R TYP Device type 2000-2007 Identifies device type. -
R STTS Device status Shown below Status as read from - device.

PRINTER RCT/IORB HARDWARE/SOFTWARE STATUS CODE MAPPING

Table 6-12 indicates the hardware/software status code map­
ping for printers.

6-25 CB08

Table 6-12. Printer RCT/lORS Hardware/Software
Status Code Mapping

RCT
R STTS -

0
1
-
3
-
-
-
-
-
-
-
-

12
13
14
15

Disk Driver

lORS
I ST -
-
-
-
3
-
-
-
-
-
-
-
-
-

15
15
15

Meaning If Sit Set

Device ready
Attention

End-of-form

Corrected memory error
Nonexistent resource/fatal error
Sus parity error/fatal error
Uncorrectab1e memory error/fatal error

A single disk driver supports the following disk devices:
diskette, cartridge disk, and mass storage unit.

DISK DRIVER PROCESSING FOR DISKETTE

Disk driver processing for diskette is as follows:

o The driver does not explicitly reference the volume id of
the diskette; therefore, you must ensure that volumes
addressed are on the proper drives.

o All sector addresses used in the lORS are relative to
track O/sector O.

o The driver converts the volume relative sector number,
defined in the IORS, into physical track and sector
numbers, which it then sends to the device to define the
operation. It does this by dividing the sector number by
26, which is the number of sectors/track on a diskette.

o The driver can support more than one diskette device, as
long as each device is configured at a different level.
The reason for this is that each device requires an RCT
and there is only one RCT per level.

6-26 CS08

(o Note that a diskette sector is 128 bytes long. If
range is less than 128 bytes, a write command will zero
fill the rest of the sector. If range is greater than
128 bytes on either a read or a write, the driver will
read/write multiple sectors including switching to the
next adjacent track, if necessary. Thus, from a user
point of view, a read or write request for "range" number
of bytes will take place regardless of the number of
physical sectors or track switches involved.

o If hardware errors occur, the operation (seek or read/
write) will be retried up to eight times (four rereads
and four rereads wi th recal ibrate) •

o If the device is not ready, a return status of "device
not ready" (5) will be returned.

Diskette Device-Specific IORS Fields

Table 6-13 defines diskette device specific IORS fields not
previously defined. Other IORS fields are as already defined.

Table 6-13. Diskette Device-Specific IORS Fields

IORS
Item Field Definition Use

I CT2 Function code O=wait-online Previously defined. -
l=write data Driver performs appro-
2=read data priate I/O commands to
E=read disabled transfer the data.
device

I DVS Device- Relative sector Driver converts this to - specific number physical track number and
physical sector number on
the track.

I ST Software status Shown below Hardware status word from - diskette.

I RSR Resid ual range o ~ original Residual range will - range always be equal to zero
(i.e., transfer com-
pleted) unless there is
either a hardware mal-
function, or invalid
track number accessed
during a extended read or
write operation.

6-27 CS08

Diskette Device-Specific RCT Fields

The fields in Table 6-14 were not defined earlier due to
their device-specific nature.

Table 6-14. Diskette Device-specific RCT Fields

Item Field Definition Use

R TYP Device type 2010-2017 Identification of device. -
R STTS Device status Shown below Status word 1 as read from - device.

Diskette RCT/IORB Hardware/Software Status Code Mapping

Table 6-15 indicates the hardware/software status code
mapping for diskette.

Table 6-15. Diskette RCT/IORB Hardware/Software
Status Code Mapping

RCT IORB
R STTS I ST Meaning If Bi t Set - -

0 - Device ready
1 - Attention
2 2 Data service rate error
3 3 Deleted file
4 4 Read error
5 5 Device fault
6 6 Missed data sync
7 7 Unsuccessful search
- -
- -

10 10 Seek error
12 - Corrected memory error
13 15 Nonexistent resource/fatal error
14 15 Bus parity error/fatal error
15 15 Uncorrectab1e memory error/fatal error

6-28 CB08

, ,

(. DISK DRIVER PROCESSING FOR CARTRIDGE DISK

Disk driver processing for cartridge disk is as follows:

o Sector size is 256 bytes.

o The driver does not explicitly refer to the volume id of
the disk; you must ensure that the volumes addressed are
on the proper drives.

o All sector addresses used in the IORB are relative to
cylinder 0, track 0, sector O.

o The driver converts the volume relative sector number,
defined in the IORB, into physical cylinder, track, and
sector numbers, which it then sends to the device to
define the operation. It does this by dividing the
sector number by 24, which is the number of sectors/track
on the disk.

o Cartridge disk requires two RCTs, one for the fixed and
one for the removable platter; each platter has. its own
LRN.

o Cartridge disk driver logic combines seek and data trans­
fer functions. When errors occur, eight attempts are
made to correct art error, four seek/data transfers and
four seek/data transfers with recalibrate.

o Offset read (not write) capability is provided by speci­
fying the desired displacement in the I RSR field of the
IORB.

o The offset read and offset write capabilities are not
provided.

o When the driver notes a change in the ready state, it -is
disabled the device (by a software switch) and notifies
the file manager, which executes the automatic volume
recognition procedures.

See the Data File Organizations and Formats manual about
data format on cartridge.

Cartridge Disk Device-Specific IORB Fields

The fields in Table 6-16 are specific to cartridge disk; all
other fields are previously defined.

6-29 CBD8

Table 6-16. Cartridge Disk Device-Specific IORB Fields

IORB
ITEM Field Definition Use

I CT2 Function Code O=Wait online Specifies I/O operation.
A read with range of zero
performs a verify of the
selected sector, with no
data transfer to memory.

I DVS Device - specific

I ST Software - status word

I RST Residual - range

l=Write

2=Read

E=Read disabled
device

Relative sector Driver converts this to
number physical cylinder, track,

and sector number in order
to locate the data needed.

See Table 6-22

o ~ orig inal
range

Hardware status from disk.

Prior to a read, an offset
value may be specified
here so that reading can
begin at other than the
physical sector boundary;
after I/O operation the
field contains the number
of bytes not transferred
in the operation.

Cartridge Disk Device-Specific RCT Fields

Table 6-17 defines the RCT fields whose contents are speci­
fic to the online cartridge disk driver.

6-30 CB08

.~'

Table 6-17. Cartridge Disk Device-Specific RCT Fields

RCT Item Definition

R TYP Device type. The - values are: 2330-2333, and have
these meanings:

2330 Low density, removable only
2331 Low density, removable and fixed
2332 Hig h densi ty, removable only
2333 High density, removable and fixed

S STTS Device status; see Table 6-18. -

R FXPL Bit 15 is set if this RCT is for a fixed platter. -
Cartridge Disk RCT/IORB Hardware/Software Status Code Mapping

Table 6-18 indicates the hardware/software status code map­
ping for cartridge disk.

Table 6-18. Cartridge Disk RCT/IORB Hardware/
Software Status Code Mapping

RCT IORB
R STTS I ST Meaning If Bit Set - -

0 -
1 -
2 2 Over or underrun
3 3 Write protect error
4 4 Read error
5 5 Illegal seek
6 6 Missed data synchronization
7 7 Unsuccessful search
8 8 Missed clock pulse
9 9 Missed sector pulse

10 10 Seek error
11 -
12 -
13 -
14 -
15 15 Fatal error

6-31 CB08

DISK DRIVER PROCESSING FOR MASS STORAGE UNIT

Disk driver processing for the mass storage unit is as
follows:

o Sector size is 256 bytes; there are 64 sectors per track.

o The driver does not explicitly refer to the volume id of
the disk pack, so you must ensure that the volumes ad­
dressed are on the correct drives.

o All sector addresses in the OIRS are relative to cylinder
0, track 0, sector o. There are four models:

5 tracks per cylinder
411 cylinders
823 cylinders

19 tracks per cylinder
411 cylinders
823 cylinders

The driver converts the volume relative sector number, de­
fined in the IORS, into physical cylinder, track, and sector
numbers, which it then sends to the device to define the opera­
tion.

It does this by dividing the sector number by 64, i.e., the
number of sectors/track on a disk.

o The mass storage unit requires only one RCT, and one LRN.

o The driver combines seek and data functions. When errors
occur, eight attempts are made to correct the error,
four seek/data transfers, and four seek/data transfers
with recalibrate.

o Offset read (not write) capability is provided by spec­
ifying the required displacement in the I_RSR field of
the IORS.

o The offset read and offset write capabilities are not
provided.

o When the driver notes a change in the ready state, it
disables the device (by a sofware switch) and notifies
the file manager to execute the automatic volume recog­
nition procedures.

See Data File Organizations and Formats manual about data
formats on the mass storage unit.

6-32 CS08

\~ /

(0 Mass Storage Unit Device-Specific IORS Fields

The fields in Table 6-19 are specific to the mass storage
unit; all other fields are as previously defined.

Table 6-19. Mass Storage Unit Device-Specific IORS Fields

IORS Item Field Definition Use

I CT2 Function Code O=Wait online Specifies I/O - operation.
l=Write

2=Read

E=Read disabled
device

I DVS Device-specific Rela tive sector Driver converts - number this to the physi-
cal cylinder,
track, and sector
number in order to
locate the data
needed.

I RSR - Residual range Of:original range After an I/O opera-
tion, the field
contains the number
of bytes not
transferred.

I ST Software status See Table 6-21 Prior to an order, - word this field contains
the high-order sec-
tor bits of the
I DVS field. After
the operation, it
contains the hard-
ware status from
dev ice.

Mass Storage Unit Device-Specific RCT Fields

Table 6-20 defines the RCT fields whose contents are speci­
fied to the disk driver for mass storage units.

6-33 CS08

Table 6-20. Mass Storage Unit Device-Specific RCT Fields

RCT Item Description

R TYP Device type. The - values are: 2360-2363, and have
these meanings:

2360 411 cylinders, 5 tracks/cylinder
2361 823 cylinders, 5 trac ks/cyl inder
2362 411 cylinders, 19 tracks/cylinder
2363 823 cylinders, 19 tracks/cylinder

R STTS Device status; see Table 6-21. -

Mass Storage Unit RCT/IORB Hardware/Software Status Code Mapping

Table 6-21 indicates the hardware/software status code
mapping for the mass storage unit.

Table 6-21. Mass Storage Unit Status Code Mapping

RCT IORB
R STTS R ST Meaning If Bit Set - -

0 -
1 -
2 2 Over-/underrun
3 3 Device fault
4 4 Read error
5 5 Illegal seek
6 6 Missed data synchronization
7 7 Unsuccessful search
8 8 Missed clock pulse
9 9 Successful recovery

10 10 Reserved
11 -
12 -
13 -
14 -
15 15 Fatal error

ASK/KSR Drivers

The standard directive DEVICE is used at system building to
configure a KSR or ASR terminal. The keyboard/printer functions
of an ASR are supported; the paper tape reader/punch functions
are not. Thus, the k-field within I DVS word (Table 6-22) must
be zero.

6-34 CB08

(

(-

To examine the first character of a message sent in single
character mode (from a local KSR terminal) before the rest of the
message is transmitted, proceed as follows:

1. Issue a single charactor asynchronous read with no echo
to the terminal.

2. When the read is completed, examine the character; then
if the rest of the message is wanted, write the charac­
ter to the terminal (with no carriage return or line
feed) •

3. Issue a read for the rest of the message (with echo) •

Note that the operator terminal (keyboard/printer), when used,
must be configured at LRN=O. For information about dialog with
the operator's terminal, see the Operator's Guide.

Character codes, function codes, and device control avail­
able for the keyboard/printer are described below.

KEYBOARD INPUT

o Keyboard input is accepted until end-of-range, or car­
riage return, whichever occurs first. The carriage
return character is not indicated as part of the input
data.

o Keyboard control (line feed, carriage return, etc.) is
definable in the IORB.

o Editing characters can control input:

@ Deletes the previous character entered.

(control X) (an ASCII CAN code)

\ Deletes all the previous characters entered on the
same input line.

NOTE: Since CAN is a nonprinting character, the *DEL*
are displayed on a separate line when CAN is
struck. Further input may begin after completion
of the DEL output.

Causes character immediately following (@, CAN,
CR, and \), to be treated as data input and not as
editing characters; the back slash itself is not
placed in memory.

6-35 CB08

PRINTER OUTPUT

o Printer output is accepted until end-of-range.

o Time-out period for keyboard/printer operation is 5
minutes.

ASR/KSR DEVICE-SPECIFIC IORB FIELDS

Table 6-22 shows the values of device-specific fields for
ASR/KSR devices.

IORB Item

I CT2

I DVS

Table 6-22. ASR/KSR Device-Specific IORB Fields

Field

Function

Device-
Specific

Definition
Keyboard/
Printer Use

code l=write A=Connect Used by driv-
2=read B=Disconnect er to com-
3=break plete the
notifica-

I
description

tion of the re-
quested I/O
function.

3 4 5 6 7 8 9 10 11 12 13 14 15
S F T 0 Q D K E L C 0 A H

S=O Must be zero.

F=O Assumes line printer format control.

=1 Assumes terminal format control.

T=O Use control characters as defined to
adapter.

=1 Treat all characters as data; perform
no special character action.

Q=O Stop output operation immediately upon
"attention" detection if the detected
character has a No Stop Bit status (e.g.,
a "Break" key).

=1 Post "attention" but allow output data
transfer to complete.

D=O Read attention character with input (if

',-- ... /

~,

present) • / "

6-36 CB08

(Ta ble 6-22 (cont). ASR/KSR Dev ice-Spec i f ic IORB Fi elds

IORB Item Field

I DVS
(cont)

I ST

Device
(con t)

Software
status
word

Definition
Keyboard/
Printer

Use

=1 Discard attention character on input.

K=O Transfer to keyboard/printer.

E=O Do not echo keyboard input.

=1 Echo keyboard input.

L=O No line feed at end of transfer.

=1 Line feed at end of transfer.

C=O Carriage return at end of
transfer.

=1 No carriage return at end
of transfer mode.

A=O Must be zero.

H=O Disconnect without phone hang up.

=1 Disconnect with phone hang up.

NOTE: The MDC-connected ASR/KSR driver
does not check this bit.

Shown
below

Mapped by
driver from
the hardware
status in
order to
tell re­
questing
task the
hardware
status of
the I/O
operation.

ASR/KSR DEVICE-SPECIFIC RCT FIELDS

The fields in Table 6-23 were not defined earlier due
to their device-specific nature.

6-37 CB08

Table 6-23. ASR/KSR Device-Specific RCT Fields

Item Field Definition Use

R TYP Device Status 20l8-20lF Identifies device type; value - read from device at initiali-
zation time.

R STTS Device Status Shown below Last status word read from - device.

The following kinds of processing data are kept in the RCT
workspace for the terminal.

o Configuration word A

o Configuration word B

o Identifier for last task to receive a "break" from this
term inal

ASR/KSR RCT/IORB HARDWARE/SOFTWARE STATUS CODI.NG MAPPING

Table 6-24 indicates the status code mapping for ASR/KSR
devices.

RCT

Table 6-24. ASR/KSR RCT/IORB Hardware/Software
Status Code Mapping

IORB
R STTS I ST Meaning If Bit Set -

0
1
2
3
-
5
-
-
8
9
-
-

12
13
14
15

-
-
-
2
3
-
5
6
7
8
9
-
-
-

15
15
15

Device ready
Attention
Data service rate error
Parity error (even)

No stop bit
Long record
Checksum error
Control character number 2 termination
Control character number 3 termination

Corrected memory error
Nonexistent resource/fatal error
Bus parity error/fatal error
Uncorrectable memory error/fatal error

6-38 CB08

,.,,/

(Magnetic Tape Driver

.. ~

(

The magnetic tape driver manages all standard qata transfer
requests to and from 9-track phase encoded (PE), and 7- and
9-track nonreturn to zero inverted (NRZI) tape drives on one or
more magnetic tape controllers. The tape drive characteristics
supported by this tape driver are shown in Table"6-25.

Figure 6-5 illustrates 6-bit and packed modes on 7-track
tape and in memory in the transfer of data between the tape
device and memory.

Data on Tape Data in Memory

a a a a a a p o 0 a a a a a a o 0 b b b b b b

b b b b b b p o 0 c c c c c c

c c c c c c p a, b, c = data bits
p = parity bits (odd or even)

6-bit mode on 7-track (read tape into memory)

Data in Memory Data on Tape

a a a a a a p

b b b b b b P

t-x_x __ a_a_a_a_a __ a_x_x_b __ b_b._b._b._b_. -I r\
x x c c c c c c Y

c c c c c c p

a, b, c = data bits
x = ignored bits
p = parity bits (odd or even)

6-bit mode on 7-track tape (write tape from memory)

Figure 6-5. Packed and 6-Bit MOdes on 7-Track Tape

6-39 CB08

Data on Tape Data in Memory

a a a a a a p a a a a a a a a b b b b b b b b

a a b b b b P
I

X x b b b b 'p

a, b = data bits
x = ignored bits
p = parity bit (odd)

Packed mode on 7-track tape (read tape into memory)

Da ta in Memory Data on Tape

a a a a a a a a bbbbbbbb ¢ a a a a a a p

a a b b b b P

0 0 b b b b p

a, b = data bits
p = parity bits (odd)

Packed mode on 7-track tape (write tape from memory)

Figure 6-5 (cont). Packed and 6-Bit Modes on 7-Track Tape

Table 6-25. Characteristics Of Supported Tape Drives

Speed Density
(ips) (bp i) Parity Mode

Tape Drive
Type 45 75 1600 800 556 200 Odd Even Packed 6-Bit

9-track X X - X - - X - - -
NRZI

9-track X X X X - - X - - -
PE

7-track X X - X X X X X X X
NRZI 8

8 The application program must provide for tape positioning,
creation and interpretation of labels, tape marks, control
info rmation, and data contents.

6-40 CB08

(The driver provides the following callable functions:

o Wait online

o Wri te

o Read (forward)

o Position block (forward and backward)

o position forward or backward by tape mark, rewind to
beginning of tape (BOT), rewind to BOT and unload.

The driver operates in the following modes:

o Odd parity (9-track tape only)

o Odd parity 6-bit (7-track tape)

o Even parity 6-bit (7-track tape)

o Packed, always odd parity (7-track tape)

o Minimum data block, MOB (American National Standard
specifies 18 or more charac~ers per block in write, 8
or more in read)

o MOB-inhibited (If fewer than the specified number of
characters must be read or written, this mode is
requi red.)

If MOB mode is specified for a write and the range is less
than 18 characters, a parameter error is reported. If MOB mode
is specified for a read and the range is less than 12 characters,
the user will receive the first portion (requested range) of the
first valid block and an unequal length check. If a "short
record" is detected, a corrected media error is reported in
status word, I ST. If a record of less than 18 characters is
written or less than 12 characters is read, the inhibit block
size check bit (bit 12 of the device specific word, I OVS) must
be set. -

Beginning of tape (BOT), end of tape (EaT), and end of file
(EOF) conditions are reported for appropriate user action. If an
error occurs in a case when the operation can be retried, the
driver backspaces and reissues the order up to eight times before
reporting a hardware error. If an error occurs and no retry is
possible, the driver rewinds and forward spaces to the problem
block and reissues the order once before reporting a hardware
error. The driver does not check the tape volume identifier.

6-41 CBD8

The EOT return status is not returned for read operations;
only the EOT status word bit is set. It is assumed that appro­
priate application software conventions will prevent reads that
would force the tape off the end of the reel.

The resident magnetic tape driver is interrupt driven and
must execute with a resident Monitor and with the central pro­
cessor in the privileged state. It can support, on an adapter,
one data transfer simultaneously with one or more rewind/rewind­
unload orders.

MAGNETIC TAPE DEVICE-SPECIFIC IORS FIELDS

The IORS fields defined in Table 6-26 are specific to magne­
tic tape devices. All other IORS fields are defined in previous
subsections.

Item

I CT2 -

I DVS -

Table 6-26. Magnetic Tape Device-Specific IORS Fields

Field

Function code 0 =
1 =
2 =
3 =
4 =
5 =

Device specific 0

10 0

I:

Definition

Wait online
Write
Read
Write filemark
Posi tion by block (see range)
Position file (see range)

12 13-15

0 0 0 0 0 0 0 0 0 o II I mode I
O=Normal American National Standard

block sizes

l=Inhibit sensing for American
National Standard block size

mode: 0 = 9-track tape; or 7-track
in odd parity 6-bit mode

6-42

I = 7-track tape in even
parity 6-bit mode

2 = 7-track tape in packed
mode

csoa

(

.i
i

Table 6-26 (cont). Magnetic Tape Device-Specifiec IORB Fields

Item Field Definition

I RSR - Range Write: 1 through 7FFF

Read: 0 means verify; 1 through
7FFF'6 is valid

Position by block: Negative is backspace
0 is illegal

positive is forward
space

Position by file: -2 = Rewind unload

-1 = Rewind

0 = Backspace to
tapemark

1 = Forward space
tapemark

I RNG Residual range Nonzero when physical block exceeds - range.

A read with a range of zero verifies the selected sector
with no data transfer to memory.

MAGNETIC TAPE DEVICE-SPECIFIC RCT FIELDS

to

The device-specific fields in an RCT for magnetic tape de­
vices are given in Table 6-27.

Table 6-27. Magnetic Tape Device-Spe~ific RCT Fields

Item Definition

R TYP Device type; values are 2045 - 207A -R STTS Status word -R SW2 Tape status word 2 -R TMCT Tape mark count
R-BLCT Block count -

MAGNETIC TAPE RCT/IORB HARDWARE/SOFTWARE STATUS CODE MAPPING

The hardware/software status code mapping for magnetic tape
devices is shown in Table 6-28.

6-43 CB08

Table 6-28. Magnetic Tape RCT/IORB Hardware/Software
Status Code Mapping

RCT IORB
R STTS I ST

o
1

2
3

4
5
6
7
8
9

10
11
12

1
2

3

6
7
8
9

10
11

Device ready
Attention
Rewind ing

Meaning If Bit Set

Error - Operation can be retried
MBZ
Write protected
Corrected media error
Tape mark
BOT
EOT
Unequal record length
Error - Operation cannot be retried
MBZ
Operation check
Corrected memory error
High density
Nonexistent resource/fatal error
Bus parity error/fatal error

13
14
15

12
15
15
15 Memory error - correction impossible/fatal error

6-44 CB08

(

(

SECTION 7

TRAP HANDLING

A trap is a special software- or hardware-related condition
that may occur during execution of a task. The Level 6 hardware/
firmware responds to many trap conditions. The design of any
application program should provide that when a trap occurs, the
hardware/software response will include calling a dedicated soft­
ware routine (a trap handler) to react to the trap. When trap
handlers are provided, handling the trap is invisible to the task
that caused the trap.

See the System Building manual for detailed information
about the system building directives that are referred to below.

Using the trap facilities of Level 6 hardware/firmware and
the Honeywell trap handlers (Floating-point and Scientific Branch
Simulators) require that you:

o Provide enough trap save areas (TSA's) in the system
memory pool, by coding a value for the TSA parameter of
the CLM directive SYS. The default value for this
parameter results in six TSA's.

o Include any Honeywell-supplied trap handlers, and any
user-written generalized trap handling routine, in your
configured software. These are the initial trap
handlers.

o Provide a generalized trap handling routine (see Table
7-1). The code for each task must identify this trap
handler by providing its address in the $TRPHD macro
call.

o On a task-by-task basis, enable all the trap numbers to
be handled for the task, by including a $ENTRP macro call
in the code for each task.

7-1 CBoa

*

I

I

TRAP CONDITIONS DURING TASK EXECUTION

A trap handler that was configured at initialization time
(by a SYS directive with an SSIP, CSIP, or DSIP argument, or by
an LDBU directive) will handle a trap as follows. If more than
one trap handler is connected to the same trap, the order of
their execution is: (1) LDBU-created trap handlers are executed
first, in reverse order of their definition. (2) SYS directive­
created trap handlers are executed following execution of any
LDBU-created trap handlers.

The trap may then be handled (i.e., passed along) by a
series of trap handlers. If those trap handlers do not handle
the trap, one of the following conditions (trap enabled or trap
not enabled) occurs, according to whether the trap number of the
trap condition was enabled by the task.

Trap Enabled

If the task's code contains the $ENTRP macro call with the
pertinent trap number for this condition, the trap handler is
invoked to execute at the priority level of the task in which the
trap occurred. The trap handler responds to the trap, and exits
via an RTT instruction to return to the task's code at the next
sequential instruction following the one that caused the trap.
The trap handler always runs in privileged mode.

Should another trap condition occur during the execution of
the handler the sequence is repeated unless the nested traps are
the same type, in which case the sequence is as described for
traps that are not enabled.

Trap Not Enabled

When a trap condition occurs in task code that has not en­
abled this particular trap, an error message is written to the
error-out file; the delete bit in the task control block is
reset, the task is terminated, but the task's resources (memory
and peripherals) are not released. Thus, a memory dump can be
taken so that the error-condition can be examined.

The usual way to continue processing after a trap-not­
enabled condition is to issue a new process (NPROC) command
against the group containing the terminated task.

CONTENTS OF TRAP-RELATED MEMORY AREAS

In examining a dump to determine the nature of a trap condi­
tion, check particularly the contents of the TSA. The trap
handling mechanism is illustrated in Figure 7-1; the contents of
the trap save area are described in the following pages. /'.

'-.. .. /

7-2 CB08

HARDWARE·
DEDICATED
MEMORY
LOCATIONS

OOOOR

,

AVAILABLE TSA'S
,~ ______________ ~A~ ______________ ~,

TSA TSA TSA

NATSAP TSAL TSAL H~ I I

~
ETC. ETC. ETC. _

0010

007E TV"2
TRAP

007F TV"I ISA TSA HANDLER

0080 IV~ TSAP TSAL --I ~ 10-

0081 IV"I DEV I

0082 IV,,2 ISM R3

RFU INSTR.

~ P Z

"I.- ETC., A TASK , ,,--OOBF I V #63 P

B3
l.- V

OPT. I.-
WORK

SPACE V

NATSAP POINTER TO NEXT AVAILABLE TRAP SAVE AREA

TSA TRAP SAVE AREA

TSAL TRAP SAVE AREA LINK

TV TRAP VECTOR

IV INTERRUPT VECTOR

ISA INTERRUPT SAVE', AREA

Figure 7-1. Trap Handling Mechanism

o Trap Save Area Link (TSAL) - When the trap save area
resides in the "available" pool, TSAL points to the
next trap save area in the pool; the TSAL of the last
trap save area in the pool contains a null pointer.
When the trap save area is in use (i.e., connected to an
interrupt save area), TSAL contains a null pointer (if
this is the only or last, trap save area connected to
this interrupt save area) or it points to the next trap
save area connected to this interrupt save area.

7-3 CBOS

I
o I-Register - The contents of this register are saved by

hardware/firmware when a trap occurs. This register is
then available for use by the trap handler. The high­
order byte contains the quantity (40'6 - trap number).
This byte is stored by. software on Models 33, 6/34, 6/36
central processors, and by firmware on Models 43 and 47
processors.

o R3-Register - The contents of this register are saved by
hardware/firmware when a trap occurs. This register is
then available for use by the trap handler.

o Instruction - The hardware/firmware stores the instruc­
tion associated with the trap. If a multiword instruc­
tion is involved, the first word is saved.

o Z-Word - This word contains miscellaneous information
relative to the trap. The format of this word is shown
below:

R

BI

PR

BIT: 0 1 3 4 789 11 12 15

IS

If R=O, the saved contents of the A-word are meaning­
ful relative to this trap condition; if R=l, the saved
contents of the A-word are not meaningful.

4~bit field that is meaningful only when an indexed
bit or byte instruction is associated with the trap.
If an indexed bit instruction is involved BI indicates
the four low-order bits of the associated index reg­
ister; bit 7 of BI stores the least significant bit.
If an indexed byte instruction is involved, bit 4 of
BI indicates t~east significant bit of the as­
sociated index register and bits 5 through 7 are
zeros.

The privilege state of the task was running when the
trap occurred. 0 = nonprivileged state; I = privi­
leged state. The value is taken from the P-bit of the
S-reg ister.

7-4 CBoa

/

IS

The length (in words) of the instruction associated
with the trap. If a multiword instruction is involved
and the trap occurs before the entire instruction has
been fetched, IS indicates the number of words that
were fetched, before the trap.

o A-Word. In many cases, this word contains an address
associated with the trap. (This word is not meaningful
if bit 0 of the Z-word contains a 1.) The nature of the
saved address is governed by the specific trap condition
and the specific instruction associated with the trap.
Details relative to each trap condition are in Table 7-1.

o Program Counter - The contents of the program counter are
saved by the hardware/firmware when a trap occurs. This
is the address to which a return is made when the trap
handler completes. In most cases the program counter
will point to the instruction or location following the
instruction associated with the trap. However, when an
input/output instruction is involved, the program counter
may point to an address within the instruction; in this
case, the trap handler must modify this word before
issuing a return to "normal" task processing.

o B3-Register - The contents of this register are saved by
hardware/firmware when a trap occurs. This register is
then available for use by the trap handler; as the trap
handler is entered; the B3-register points to the A-word
in the trap save area.

Trap save areas (TSA's) are 64 words long in SAF mode, and
104 words in LAF mode. The discussions about memory dumps in the
Program Execution and Checkout manual include discussions about
optional work space used by trap handlers and about saving regis­
ters for a Monitor macro call.

Pointer to Next Available Trap Save Area (NATSAP)

Memory location 0010 16 (NATSAP in Fig ure 7 -1) po int~ to
the first trap save area in the "available" pool. If there are
no trap save areas in this pool, NATSAP contains a null pointer.

When a trap occurs, hardware/firmware examines the pointer
in NATSAP to ascertain the address of the start of the trap save
area in which information will be stored for use by the trap
handler (if any) that reacts to the trap.

7-5 CB08

Trap Vector

A trap vector is a hardware-dedicated memory location that
can be used to point to the entry address of a trap handler.
Each trap vector is associated with a specific trap condition and
can point to only one trap handler's entry address.

Trap Save Areas

Initially, when processing of an application begins, all
trap save areas exist in a linked "pool", which is pointed to by
memory location ,0010'6 (NATSAP in Figure 7-1). All trap save
areas remain in this pool until a trap condition occurs within a
running task, at which point the hardware/firmware (1) stores
information in the first available trap save area in the pool,
(2) links this trap save area to the interrupt save area for the
priority level of the task that was running when the trap oc­
curred, and (3) unlinks this trap save area from the pool.
Later, after the trap handler (if any) has completed its work,
the trap save area is returned to the pool of available trap save
areas. Thus, at any time, a given trap save area is either in
the pool of available trap save areas or in use because of a trap
condi tion

The trap save areas reside in the system pool.

Interrupt Vector

An interrupt vector is a hardware-dedicated memory location
that (if "connected n) points to the second entry of the interrupt
save area fo r a spec i fic pr io r i ty 1 evel. (Se e Figure 7 -1, where
interrupt vector I is pointing to an interrupt save area.)

Interrupt Save Area (ISA)

An interrupt save area is a block of memory in which hard­
ware/firmware performs a context save when a interrupt occurs.

When a trap occurs, if the appropriate trap handler is
available in the application, the first word (TSAP) of the inter­
rupt save area (for the current priority level) is set to point
to the link word (TSAL) of the trap save area in which hardware/
firmware has just stored information relative to the trap (see
Figure 7-1). TSAP is subsequently used by the trap handler to
gain access to the trap save area.

7-6 CB08

-..,J

I
-..,J

()
tJj
a
(X)

.~

Trap Number
and Condition

1
Monitor call;
implicitly handled
by the operating
system

1
Software trap

2
Breakpoint instruction

3
Scientific floating
point operation when
SIP hardware not in
system

4
Unrecognized op code

5
Scientific Branch
instruction when SIP
hardware not in
system, or any other
operation not
supported

6
Integer arithmetic
overflow (with
appropriate overflow
trap enable bit of Ml
register set to 1)

7
Scientific divide
by zero

8
Exponential overflow

1-6 -.t;.

Table 7-1. Contents of Selected Words of Trap
Save Area When Trap Occurs

Specific Event Saved Instruction Saved Z-Word Saved A-Word

MCL instruction 0001 SOxl Unspec if ied

PI Unspecified Unspecified Unspec if ied

BRK instruction 0002 SOxl Unspecified

Scientific instruction whose Instruction that SOxl Un spec if ied
address expression generates caused trap
a reference to a register

Sci.entific instruction whose First word on in- DOxy Effective address
address expression generates struction that generated by
a reference to memory caused trap address expressionb

Instruction not recognized Same as for trap 5 Same as for Effective address
by CPU or SIP trap 5 of trap operand

Undefined instruction whose Instruction that SOxl Unspecified
address expression generates caused trap
a reference to a register

Undefined instruction whose First word of in- Ouxy Effective address
address expression generates struction that generated by ad-
a reference to memory caused trap dress expression

Overflow of target R-regis- Instruction that BOxl Unspecified
ter during execution of caused trap
instruction whose address
expression generates a
reference to a register

Overflow of target R-regis- First word of in- OOxy Effective address
ter during execution of struction that generated by
instruction whose address caused trap address
expression generates a
reference to memory

A scientific divide (SDV:) Un spec if ied Unspecified Pointer to scien-
instruction has a divisor tific instruction
of zero that caused trap

A scientific operation Unspec if ied Unspecified' Pointer to scien-
produces an exponent greater tific instruction
than +63 that caused trap

~,

Saved
Program Counter

Next location

Unspecified

Next location

Unspecified

Next instruction

Next instruction

Next instruction

Next instruction

Next instruction

Next instruction

I
Next CPU
instructio,n

Next CPU
instruction

-.J
I

co

()
tp
o
CO

Table 7-1 (cont). Contents of Selected Words of Trap Save
Area When Trap Occurs

Trap Number
and Condition

13
Unprivileged use of
privileged operation

15
Reference to
unavailable resource

\

Specific Event

HLT, RTCN, RTCF, WDTN, or
WDTFCinstruction

LEV instruction whose ad­
dress expression generates
reference to a register

LEV instruction whose ad­
dress expression generates
a reference to-memory

Input/output instruction
whose first-word address
expression generates a
reference to a register

Input/output instruction
whose first-word address
expression generates a
reference to memory

Instruction whose address
expression generates a
reference to (1) a memory
address higher than the
highest memory address
available but less than 64K
or (2) through indexing, a
"wrap-around" memory address
higher than 64K or less than
o

Input/output instruction
that specifies an improper
channel number: address
expression generates a
reference to a register

Input/output instruction
that specifies an improper
channel number: address
expression gen~rates a
reference to memory

WDTN or WDTF instruction
and watchdog timer not
installed

Saved Instruction

Instruction that
caused trap

Instruction that
caused trap

First word of
instruction that
caused trap

First word "of in­
struction that
caused trap

First word of
instruction that
caused trap

First word of
instruction that
caused trap

First word of in­
struction that
caused trap

First word of in­
struction that
caused trap

0006 (WDTN): 0007
(WDTF)

Saved Z-Word

8001

8001

OOOy

8002

OOOy

OOxy

808y

008y

80xl

Saved A-Word

Unspecified

Unspec if ied

Effective address
generated by ad­
dress expression

Unspec if ied

Effective address
generated by
address
expression

Effective address
generated by ad­
dress expression

Unspecified

Effective address
generated by ad­
dress expression

Unspecified

Saved
Program Counter

Next location

Next instruction

Next instruction

First word of
instruction that
caused trap,
plus 2

First word of
instruction
that caused
trap, plus y

Next instruction

First word of
instruction that
caused tr ap,
plus y

First word of
instruction that
caused trap,
plus y

Next location

'"\.) \. \.

~

I
~

(')
00
a
co

,

..... , 4-li'~-

\

Table 7-1 (cont). Contents of Selected Words of Trap
Save Area When Trap Occurs

Trap Number
and C.ond i Hon Specific Event Saved Instruction Saved Z-Word Saved A-Word

16 RTT instruction while TSAP Instruction that BOxl Unspecified
Program logic error contains a null pointer caused trap

Instruction whose address Instruction that aOd Unspec if ied
expression illegally gen- caused trap
erates reference to a regis-
ter (i.e. , this instruction
is not permitted to use a
register address syllable)

17 Bus parity error or un- Unspecified Unspecified Unspec if ied
Bus parity or memory recoverable memory data
error error

19 An operation produces an Unspecified Unspecified Pointer to scien-
Scientific underflow exponent value of less tific instruction

than -64 while the asso- that caused trap
ciated enable bit in reg-
ister M5 is set.

20 A program error is detected Unspecified Unspecified Pointer to scien-
Program error (SIP) by the SIP tific instruction

that caused trap

21 An integer is truncated Unspecified Unspec if i ed Pointer to scien-
Scientific signifi- during floating point to tific instruction
cance error integer conversion while that caused trap

the associated enable bit
in reg ister M5 is set.

22 The nonzero portion of a Unspecified Unspecified Pointer to scien-
Scientific precision fraction is truncated tific instruction

while the associated enable that caused trap
bit of register M5 is set.

23 The SIP or CIP attempts a Unspecified Unspec if ied Pointer to scien-
Nonexistent write or read request bus tific instruction
resource error cycle and receives a NAK that caused trap

24 A read error occurs which Unspec if ied Unspecified Un'<pecified
Noncorrectable memory the EDAC cannot correct, or
error or Megabus error the SIP or CIP detects a

parity error.

25 The divisor of a deci'mal Unspec if ied Unspecified Pointer to CIP
CIP divide by zero divide instruction (DDV) instruction that

is equal to zero. caused trap

,~

Saved
Program Counter

Next instruction

Next instruction

Unspecified

Next CPU
instruction

Next CPU
instruction

Next CPU
instruction

Next CPU
instruction

Next CPU
instruction

Unspecified

Next CPU
instruction

-.J
I
o

()
03
o
00

Trap Number
and Condition

26d

ClP illeg-al
specification

(\.,
\,

Table 7-1 (cont). Contents of Selected Words of Trap
Save Area When Trap Occurs

Specific Event Saved Instruction Saved Z-word Sa ed A-word

Any of the following: Unspec if ied Unspecified Pointer to ClP
i~struction that

0 Undefined CIP op code caused trap
detected.

0 One or both descriptors
of an alphanumeric
instruction is packed
decimal.

0 Decimal operand has a
zero length.

0 Operand in an Edit, VRF,
or SRH instruction has
a zero length.

0 A separate signed decimal
operand consists of only
a sign (i.e. , no digits).

0 In a Move and Edit in-
struc.tion, the leng th of
the receiving field was
not exhausted, but either
there are no micro-ops or
the sending field length
is exhausted.

0 A second data descriptor
specifies an IMO, except
for DCM and ACM
instructions.

0 The first data descriptor
in a DSH specifies an
IMO.

0 A third data descriptor
specifies an IMO.

0 In an SRH instruction,
the search length list is
less than the search ar-
gument list, or operand
length less than operand
element length.

0 In a VRF instruction,
verify list length is
less than verify argument
length, or operand length
is less than operand ele-
ment length.

-

\,

Saved
Program Counter

Next CPU
instruction

i

I

I

!

:

I

I

!

!

I

\

...J
I

......

(')
OJ
o
00

~ :ii.-t·-,_';i

Table 7-1 (cont). Contents of Selected Words of Trap
Save Area When Trap Occurs

Trap Number
and _Condition Specific Event Saved Instruction Saved Z-Word Saved A-Word

27d Any of the following: Unspecified Unspecified Pointer to CIP
CIP illegal character instruction that

0 Illegal decimal digit caused trap
detected (low-order four
bits are not 0 through
9) .

0 Illegal sign digit
detected (not a recog-
nized sign value) •

0 Illegal overpunch digit
detected •

• 2Sd Receiving field of an alpha- Unspecified Unspecified Pointer to CIP
CIP truncation error numeric instruction cannot instruction that

contain all characters of caused the trap
the result. Whether or not-
a trap occurs, the receiving
field is altered to contain
the leftmost part of the re-
suI t and the CI (TR) is set.

29d Any of the following: Unspecified Unspecified Pointer to CIP
CIP overflow instruction that

0 Receiving field of a caused the trap
decimal instruction
cannot contain all signi-
ficant digits of the
result.

0 During a Shift Lift in-
struction, a nonzero
digit is shifted out.

49 UW command
Software trap

Unspecified Unspecified Un spec if ied

aThe Z-word format is described earlier in this section.

bThis is the address of the high-order (leftmost) end of a two-word operand.

clf the watchdog timer is not present, this instruction causes a trap to vector 15 regardless
of the privilege mode of the central processor. -

d~he Assembly Language Reference manual describes CIP trap handling in detail.

~\

Saved
Program Counter

Next CPU
instruction

Next CPU
instruction

Next CPU
instruction

Unspecified

i

I
HONEYWELL-SUPPLIED TRAP HANDLERS

The following software components provide trap handling
facilities: Debug program, Commercial Simulator, and two ver­
sions of the Floating-Point Simulator and the Scientific Branch
Simulator - one for single-precision and one for double-precision
operations. The double-precision versions represent full hard­
ware simulation. The simulators are used when the hardware
feature for scientific instruction processing is not installed.
The Assembly Langua~e Reference manual describes commercial and
scientific instructlons.

Trap Handling by the Debug Program

The Debug program operates as a unique task group identified
by $D. It is loaded by use of the spawn group (SG) command which
also specifies the terminal from which the debug directives are
issued. (For a detailed description of the Debug program, see
the Program Execution and Checkout manual.) Once the Debug pro­
gram is loaded, you may set, clear, or print breakpoints in the
task code by use of Debug directives.

When the application program is executed, the Debug program
is activated by trap number 2 which occurs each time a breakpoint
is encountered. The action specified by the Debug directive (for
that breakpoint) will then be executed. For example, designated
memory locations may be printed out and execution of the applica­
tion program continued without operator intervention. Alterna­
tively, the Debug program may be placed in the interactive mode.
In which case, you may use the Debug directives to display,
change, and dump memory 0 r reg isters. Information may be pr inted
on a console or a line printer.

Commercial Simulator

The Commercial Simulator is the software component that
simulates the capabilities of the Honeywell Commercial Central
Processor Model on other models that do not have native commer­
cial instructions.

The Commercial Simulator reacts to trap vector 5 (uninsta11-
ed instructions). It permits Intermediate COBOL, RPG, and as­
sembly language programs to simulate the use of commercial
instructions.

The following programming considerations concern the
Commercial Simulator:

o The SIP/eIP arguments of the system building SYS direc­
tive indicate existence of the Commercial Simulator.

7-12 CBD8

(-

,.

o All other operation codes not handled by the Commercial
Simulator are passed to the next trap handler for trap
number 5.

Floating-point Simulator

The Floating-Point Simulator reacts to trap number 3
(scientific operation not in hardware). Trap number 3 (i.e., a
trap to trap vector 3) occurs each time the central processor
encounters a scientific instruction during the processing of a
task.

While processing scientific instructions, the simulator
provides automatic alignment of the operand's hexadecimal
mantissas. It achieves maximum available precision by requiring
that mantissas have no leading zeros (i.e., all mantissas must be
no rmal i zed) •

Note the following programming considerations relative to
the simulator:

o The choice of the single-precision version (SSIP) or the
double-precision version (DSIP) of the simulator is
indicated in the SIP argument of the SYS directive for
system building.

jf For SSIP only:

o The simulator uses the R4 register, the R5 register, and
the R7 register to simulate a scientific register. A
task that includes scientific instructions should dedi­
cate these three registers to the simulator's use.

For SSIP and DSIP:

o During its processing, the simulator may encounter an
error condition specific to a scientific instruction:
the following actions can occur:

- The simulator will consult trap vector 5 if it en­
counters (1) a scientific instruction it does not sup­
port or (2) if a supported scientific instruction
generates a reference to a register other than the
simulated scientific register or the R6 register.

- The simulator will consult trap vector 7 if an SDV
(Scientific Divide) instruction has a divisor of o.
The instruction will not be executed.

- The simulator will consult trap vector 8 if execution
of a scientific instruction produces exponential over­
flow. The instruction will have been executed.

7-13 CB08

- To use a 'software routine to react to any of these
trap conditions, you must provide your own trap
handler. The simulator will be invoked to handle traps
caused by execution of scientific instructions only if
the trap numbers have been enabled for the task execu­
ting those instructions.

o No "overflow trap enable" bit of the M register should
set to I as the simulator begins operation.

Scientific Branch Simulator

The Scientific Branch Simulator reacts to traps to trap
vector 5. It provides FORTRAN and assembly language programs
with the means to simulate the use of the scientific branch
instructions.

Note the following programming considerations relative to
the simulator:

o The choice of the single-precision version (SSIP), or the
double-precision (DSIP) of the simulator is indicated in
the SIP argument of the system building SYS directive.

For SSIP only:

o The simulator uses registers R4, R5, and R7 as scientific
accumulator (Sl) for comparisons; it uses RI, R2, and R3
as work registers.

o The simulator uses the G, L, and U bits of the I register
to determine if the branch condition is true or false.
When a normal return is made to the user program, the
branch will be executed if the branch condition is true;
otherwise, the next sequential instruction following the
one that was trapped will be executed.

For both SSIP and DSIP:

o All other operation codes not handled by the Floating­
Point Simulator or the Scientific Branch Simulator are
passed to the trap handler for trap 5.

Software Generated Traps

The following trap numbers (see Table 7-1) supports the task
interrupt (break) function on KSR and TTY type devices.

1 - User typed in a PI response following tbe **BREAK**
prompter message.

7-14 CB08

-,_ . .. _/-1

48 - The user pressed the break or interrupt key on a KSR
or TTY device while trap 48 was enabled. The user will
receive a software trap as well as the opportunity to
respond to the **BREAK** message.

49 - User typed in a UW response following a **BREAK**
prompter message.

For a user program to receive one of these traps, it must
have been enabled for the trap with the $TRPHD and $ENTRP macro
calls. The A- and Z-words in the TSA are meaningless; all other
words are the same as for a hardware trap.

USER-WRITTEN TRAP HANDLERS

The system allows traps to be serviced in two ways:

1. Trap handler connect ($TRPHD) and enable user trap
($ENTRP) macro calls.

2. Trap handler directly attached to trap vector.

The macro call approach requires that each task explicitly
use the macro calls, and either include a user-supplied trap
handler in its bound unit (trap handler is part of task group
dynamic memory pool) or reference an entry (linked with an EDEF
directive) of a Monitor extension trap handler (trap handler is
part of resident system). The user-supplied handler receives the
TSA and register context exactly as if it was directly connected
to the trap vector, but the Monitor has intercepted and analyzed
the trap.

The direct attachment approach requires a Monitor extension
trap handler. This approach bypasses the Monitor overhead to
analyze the trap, but requires the trap handler to be permanently
memory resident and to be attached to the trap vector by user
code.

In either approach, the trap handlers must handle situations
described below under "Trap Handlers Designed as Program Exten­
sions" and "Programming Considerations for User-Written Trap
Hand 1 ers ."

Trap Handlers Designed as Monitor Extensions ,

It is assumed that all Honeywell and possibly some user­
written trap handlers attached to the vector can encounter
situations which should be passed to the system default trap
handler. Also, several handlers may process the same trap. To
pass a trap in GCOS 6 from one handler attached to a trap vector
to the next handler:

7-15 CB08

I

I

*

I

1. Load the trap handler, with an LDBU directive. The trap .r·

handler becomes a permanent part of the system and will
allow privileged mode operation. The system, at system
building, does implicit LDBU's for SIP/Commercial Simu-
lator handlers if the hardware is not present, and SSIP
and DSIP arguments were specified in a SYS directive.

2. Write the handler to include initialization subroutine
table (IST) code that will execute when the LDBU load
operation occurs and save the current address contents
of the trap vector(s) to be simulated, inserting its
own po inter (s) instead.

3. Code the user-written simulator to save the contents of
all registers upon entry ~o that if the trap should be
passed to the next trap handler, this handler can:

a. Restore all saved registers.

b. Execute a jump-indirect through the location con­
taining the pointer of the next handler saved in
step 2 above. The J-bit in the $Ml register must be
off when the jump-indirect is executed.

The rule is that each trap handler must get exactly the same
information in registers and TSA that it would have received if
it was the first trap handler accessed.

Directly attached handlers are assumed to run in privileged
mode. All handlers must contain IST code to insure that the trap
vector pointer is to an odd location so that privileged mode is
established. This is especially important when handlers are
"chained" together on the same trap vector, since privilege must
be set for all trap handlers regardless of the order in which
they are loaded.

PROGRAMMING CONSIDERATIONS FOR USER-WRITTEN TRAP HANDLERS

o Any trap descr ibed in Tabl e 7-1 can occur if the a s­
sociated software- or hardware-related condition exists.
As you are creating your application, you must consider
which traps you wish to service with trap handlers.

o A trap handler operates at the same priority level as the
task whose execution caused the trap. The trap handler
always executes in privileged mode.

7-16 CBD8

*

I
.~

(

When the trap handler has finished its work, the pri­
vilege mode for "normal" task processing is restored as
follows: A logical AND operation is performed using (1)
the current setting of the P-bit of the S-register
and (2) the saved value of the privilege bit in the
Z-word of the trap save area.

o When a trap occurs, the hardware/firmware saves the task
related contents of the I-register, the R3 register, and
the 83 register in the trap save area. The trap handler
is free to use these registers.

o See Table 7-1 for a description of the contents of se­
lected words in the trap save area when various traps
occur.

o Upon entry to the user trap handler, the J-bit in the MI
register is arbitrarily turned off. Other bits in the
MI register remain as they were when the trap occurred.
Register 83 contains a pointer to the A word in the TSA.

0

0

Register R3 contains the vector number of the trap.

Traps that occur within the user trap handler abort the
task if they are the same type as the trap currently
being processed. This is done to prevent all TSArs from
being tied up due to recursive traps, and to prevent
traps within the MCL interface from going to the user
trap handler.

Every trap handler should be reentrant; i.e., it should
not use an internal work area to store interim informa­
tion, since this information could be lost if an inter­
rupt occurs and, later, the same trap handler is called
upon to execute at a different priority level.

o If you choose to define instructions of your own and have
them interpreted by a trap handler connected to trap
vector 5, you should limit the instructions to the user­
reserved subset of the generic instructions. The fol­
lowing diagram illustrates the memory format of generic
instructions.

7-17 C808

BIT: 0 7 8 15

1 0 o 0 0 0 0 0 0 01 f

f - Function; the user-reserved range of values
for f is 128<f<256 (decimal).

o When a trap handler has finished its work, it must issue
an RTT (Return From Trap) instruction. The J-bit in the
Ml register is not restored. This instr.uction uses the
current trap save area to restore the task-related con­
tents of the I-register, the R3 register, the program
counter, and the B3 register. Consequently, when the
RTT instruction is executed, these elements of the trap
save area should be "correct" (i.e., as saved when the
trap occ urred) •

Note that in some cases, particularly when a trap condi­
tion is related to an input/output instruction, the
saved value of the program counter (in the trap save
area) will point to a memory location within the instruc­
tion itself. This is not a legitimate point of return to
"normal" task process ing. In thi s case, the trap handler
must modify the saved value of the program counter before
issuing an RTT instruction.

After the trap save area has been used to restore the
registers indicated above, it is returned to the pool of
available trap save areas pointed to by memory location
0010'6 •

o System wide user-written trap handlers may be loaded into
the system area by including them, when the system is
built, on LDBU directives. Alternatively, the trap
handler may be linked and made a part of the same bound
unit as the task code whose traps it will handle. These
handlers use the $ENTRP and $TRPHD macro calls to
associate the handler to the system.

o When a trap occurs, the contents of registers MI through
M7 are not saved in the TSA. Particular attention is .
drawn to the RI through R7 overflow trap enable bits of
register MI, which can be set by a privileged user. If
the trap handler does not temporarily clear these bits
during its execution, another user trap handler could be
invoked erroneously on data register overflow. Such bits
must be restored upon exit from the handler.

7-18 CB08

/'

(

APPENDIX A

DATA STRUCTURE FORMATS

This appendix describes the data structures referred to in
Sections 2, 3, and 4. The following structures are described:

o Clock request block (CRB)
o File information block (FIB)
o Input/output request block (IORB)
o Task request block (TRB)
o Parameter block
o Wait list
o Semaphore request block (SRB)
o Message group request blocks (MGCRB, MGIRB, MGRRB)

•
Any of the structures can be hand coded. The CRB, FIB, SRB,

and TRB can also be generated by macro calls or defined by macro
call templates. The parameter block, input/output request block,
wait list and message group request blocks, can be generated by
macro calls.

The first four items of the request blocks have an identical
format (but slightly different contents, depending on the block
type) as shown in Figure A-I. Later diagrams show the format of
each block type; tables show the contents of the block entries.

The data structures described here are as they appear for
short address format (SAF) central processors, namely, one word
items; the same structures for long address format (LAF) equip-
ment would be 2-word entries for all pointers. .

The first field (-$AF or -1) of a request block need be pre­
sent only when the request block pointer/semaphore name is
needed.

A-I CB08

o I 1 J 2 I 3 141516 17 1 8 1 9 I AI B 1 C 1 D 1 ElF

REQUEST BLOCK POINTER/SEMAPHORE NAME

o RESERVED FOR SYSTEM USE AS A POINTER

$AF R CT1 RETURN STATUS T W U S o I RID I 1

1+$AF R_CT2 LRN/-1 C B P M FUNCTION

Figure A-I. First Four Items of Request Blocks

CLOCK REQUEST BLOCK FORMAT

Figure A-2 shows the format of the clock request block;
Table A-I shows its contents.

r----
o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I A I B I C I DIE I

f$AF}. -1 ,C_RRB/C_SEM REQUEST BLOCK POINTER/SEMAPHORE NAME

0 RESERVED(FOR SYSTEM USE

$AF C CT1 - RETURN STATUS T W U S 0 R D

1+$AF C CT2 -1 C 0 0 M 0 0 0

2+$AF C TM IF M=O. NEXT 3 WORDS ARE A DATEITIME VALUE.

OTHERWISE, NEXT 2 WORDS ARE AN INTERVAL
IN UNITS SPECIFIED BY M~(SEE TABLE A-U

F

1

0

Figure A-2. Format of Clock Request Block

A-2 CB08

/

.1· , Table A-I. Contents of Clock Request Block

Item Label Bit(s) Contents

-$AF C_RRB/ 0-15
C 8EM

Depending on the condition or the 8 or R
bits of C CTl, this word contains a request
block poi~ter (R-bit on), or a semaphore
name (8-bit on).

o

$AF C CTI

l+$AF C CT2

0-15 Reserved for system use.

0-7 Return status

8(T) This bit is set on while the request
using this block is executing; it is
reset when the request terminates. The
system controls this bit; user should not
change it.

9(W) Wait bit - set if the requesting task is
not to be suspended pending the comple­
tion of the request that uses this block.

A (U)

B (8)

User bit. User mayor may not use this
bit; the system does not change it.

Release semaphore indicator. Values:
O=No release, l=Release, on timeout, of
item named in C RRB.

C Must be zero.

D(R) Return request block indicator. Values:
O=No dispatch, l=Dispatch of request
block named in C_RRB, after timeout of
this request.

E(D) Delete clock request block. Values:

F

0-7

O=No delete, l=Return memory to the pool
where CRB is the first entry of its mem­
ory block.

I/O bit. Must be set in absence of start
add ress.

Value is -1.

8(C) When set, indicates this block is associ­
ated with a cyclic clock function.

A-3 CBoa

Table A-I (cont). Contents of Clock Request Block

Item Label Bi t (s) Contents

l+$AF C CT2 9-B(M) When set, last two words contain an in-
(cont) (cont) terval in units specified by M. Each in

terval value is as follows: 001 - in
milliseconds; 010 - in tenths of a sec-
ond; 011 - in seconds; 100 - in minutes;
101 - in units of clock resolution.

When reset (off) , the last three words
contain a date/time interval.

2+$AF C TM Contents depend on M bit of C CT2. - -

FILE INFORMATION BLOCK FORMAT

Figure A-3 shows the format of the file information "block;
Table A-2 shows its contents.

01112131415161718/91 AI BI ci 01 E/ F

0 F _LFN LOGICAL FILE NUMBER

F _PROV PROGRAM VI EW

2 F _URP/F _UBP
USER RECORD/BUFFER POINTER

3

4 F _IRLIF _BFSZ INPUT RECORD LENGTH/BUFFER SIZE

5 F_ORLlF_BKSZ OUTPUT RECORD LENGTH/BLOCK SIZE

6 F _LI RT/F _BKN01 RECORD TYPE RANGE/BLOCK NUMBER

7 F_HIRT/F_BKN02 RECORD TYPE RANGE/BLOCK NUMBER

8 F_ORT RESERVED

9 F_IKP
-INPUT KEY POINTER

10

11 F _IKF/F_IKL INPUT KEY FORMAT/INPUT KEY LENGTH

12 F_ORA1 (LEFT) OUTPUT RECORD ADDRESS

13 F_ORA2 (RIGHT) OUTPUT RECORD ADDRESS

14 F_RFU

15
r-RESERVED

Figure A-3. Format of File Information Block (FIB)

A-4 CB08

(

Table A-2. Contents of File Information Block (FIB)

Item Label

o F LFN

1 F PROV

2

4

5

Bit(s) Contents

0-15 Logical file number (LFN)

o Access level - set on for storage manage­
ment, off for data management.

1-4 Process rules - bit 1 for $RDREC/$RDBLK,
bit 2 for $WRREC/$WRBLK, bit 3 for $RWREC,
bit 4 for $DLREC.

5-9 Key type - bit 5 for primary keys, bit 8
for relative keys, bit 9 for simple keys
(bits 6 and 7 must be 00).

10 Record class - set on for fixed-length re­
cords only, off for fixed- and variable­
length records.

11 Record visibility - set on if deleted re­
cords are to be visible, off if invisible.

12 Key storage alignment - set on if storage
area begins at ood-byte boundary, off if
even-byte boundary.

13 Record storage area/buffer alignment - set
on if record storage area (or buffer) be­
gins on odd-byte boundary, off if even­
byte boundary.

14 Transcription mode - set on if data trans­
ferred in binary transcription mode, off
if ASCII mode.

15 Synchronous/asynchronous indicator - set
on if $RDBLK/$WRBLK calls executed asyn­
chronously, off if executed synchronously.

0-31

0-15

0-15

Start address of user record area (data
management) or start address of buffer
area (storage management) •

Input record length (data management) or
transfer size (storage management) •

Output record length (data management) or
block size (storage management) •

A-5 CB08

Table A-2 (cont). Contents of File Information Block (FIB)

Item Label Bit(s} Contents

6 F_LIRT/ 0-15 Must be 0000 for data management; is the
F BKNO left hal f of the block number (F BKN01) - . - for storage management.

7 F HIRT/ 0-15 Must be FFFF for data management; is right
F-BKN02 half of the block number for storage - management.

8 F ORT 0-15 Must be 0000.
-

9 F IKP 0-31 Start address of user key area. -
11 F IKF/ 0-7 Input key fo rma t (0 for none specified,

F-IKL 1 for primary key, 2 for simple key) -
8-15 Input key length.

12 F ORAl - 0-15 Output record address (left hal f) •

13 F ORA2 0-15 Output record address (r ight hal f) •
-

14 F RFU 0-31 Reserved for future use. -
INPUT/OUTPUT REQUEST BLOCK FORMAT

Figure A-4 shows the format of the input/output request
block; Table A-3 shows its contents; Table A-4 summarizes the
IORB fields for the operator interface functions.

A-6 CB08

(/ - ."\

\.'¢.---/

o I 1 I 2 I 31415161718191AIBI CIDIEI F

{ -$AF}
-1 il_RRB/I_SEM REQUEST BLOCK POINTER/SEMAPHORE NAME

o RESERVED FOR SYSTEM USE AS A POINTER

$AF I CT1 - RETURN STATUS T W U S o I RID I 1

1+$AF I CT2 LRN C B P M FUNCTION -
2+$AF I ADR BUFFER ADDRESS

-

2+2*$AF I RNG RANGE
-

3+2*$AF I DVS DEVICE SPECIFIC WORD -

4+2*$AF I RSR RESIDUAL RANGE -

5+2*$AF I - ST STATUS WORD/HIGH-ORDER BITS OF WORD7 FOR STORAGE MODULE

Figure A-4. Format of I/O Request Block

Table A-3. Contents of I/O Request Block

Item Label Bit(s) Contents

-$AF I RRB/ 0-15 Depending on the condition or the S or - for SAF; R bits of I CTl, this word contains a
request block pointer (R-bi ton) , or a

-1 I SEM 0-31 semaphore name (S-bi t on) • Set by - for LAF used by system termination user; at
of request.

0 0-15; Reserved for system use. 1- or 2-word
0-31 pointer to indirect request block.

$AF I CTI 0-7 Return status -
8 (T) This bit is set (on) while the request

using this block is executing; it is
reset when the request terminates. The
system controls this bi t; user sho uld
not change it.

(

A-7 CB08

Item

$AF
(con t)

l+$AF

Table A-3 (cont). Contents of I/O Request Block

Label Bit(s)

I CTI 9 (W)
(cont)

A(U)

B (8)

Contents

Wait bit - set if the requesting task
is not to be suspended pending the com­
pletion of the request that uses this
block.

User bit. User mayor may not use this
bit; the system does not change it.

Release semaphore indicator. Values:
O=No release, l=Release, on timeout,
of item named in I RRB.

C Must be zero.

D(R) Return request block indicator.

E (D)

F

I CT2 0-7

Values: O=No dispatch, I=Dispatch of
request block named in I RRB, after
timeout of this request.- (System
executes $RQTSK, using I RRB, upon
task termination). -

Delete I/O request block. Values:
O=No delete, l=Return memory to the
pool where IORB is the first entry of
its memory block.

I/O bit. Must be set.

Logical resource number (LRNO; identi­
fies device to be used.

8(C) IBM-type request. Changes interpreta­
tion of I DVS to task word, and of
I RSR and-I 8T to configuration words
A-and B respectively.

9(B) Byte Index: O=buffer begins in left­
most byte of word, l=buffer begins in
rightmost byte.

A(P) Private space; reserved for system use.

B(M) O=Standard IORB; l=IORB is extended to
at least 6+2*$AF items.

C-F Function code. Driver or LPH function,
see Table 6-1.

A-8 CB08

(

Table A-3 (cont). Contents of I/O Request Block

Item Label Bi t (s) Contents

2+$AF I ADR 0-15 Buffer address, SAF. - 0-31 Buffer address, LAF 1- or 2-word
pointer.

2+2*$AF I RNG 0-15 Range - number of bytes to be - transferred. Used as input field for
cartridge disk or disk storage tin it.

3+2*$AF I DVS 0-15 Device-specific information. -
4+2*AF I RSR 0-15 Residual range. Indicates the number - of bytes not transferred. Fi lIed in by

the system on completion of the order.
Used by the cartridge disk and mass
storage unit drivers as a data offset
val ue.

S+2*$AF I ST 0-15 Status word. Reflects the mapping 0 f - the hardware status into software
status format; used as input field
high-order bits of sector number for
mass storage uni t.

Table A-4. Summary of IORB Fields for Operator Interface

Item Label Bi t (s)

$AF I CTI 9 (W)

l+$AF I CT2 0-7

9 (B)

Contents

For a $OPMSG call, the setting of the
W-bit in the output IORB controls re­
turn to the caller. For a $OPRSP call,
the setting of the W-bit in the input
IORB controls return to the caller; the
setting of the W-bit in the output IORB
has no significance. For either call,
return to the caller is immediate if
the significant W-bit is on. If the
significant W-bit is off, return to the
caller occurs after the order is
completed.

LRN=O

Must be off if the input/output buffer
begins at the left byte of the word
whose address is containeo in word 3
(I ADR) of this IORB. Must be on if
the input/output buffer begins at the
right byte.

A-9 CBD8

Item

2+$AF

2+2*$AF

Table A-4 (cont). Summary of IORB Fields
for Operator Interface

Label Bit(s} Contents

I ADR 0-15 The word address of the message buffer - (which contains an output message or
is to receive an input messag e) •

I RNG 0-15 The buffer size in bytes. This is the - length of an output message or the
maximum length allowed for an input
message.

SEMAPHORE REQUEST BLOCK FORMAT

Figure A-5 shows the format of the semaphore request
block; Table A-5 shows its contents.

C~AF} S_RRB/S_SEM

o

$AF S CT1

1+$AF S_CT2

o 1 1 I 2 1 314151617181 9 J A t B I

REQUEST BLOCK POINTER/SEMAPHORE NAME

RESERVED FOR SYSTEM USE

RETURN STATUS T W U S

-1 0 0 0 0

SEMAPHORE IDENTIFIER

C1D1E1F

0 R D 1

0 0 0 1

Figure A-5. Format of Semaphore Request Block

Table A-5. Contents of Semaphore Request Block

Item Label Bi t (s) Contents

-$AF S RRB Depending on the condition of the S or - R bits of S CTl, this word contains a
-1 S SEM request block pointer (R-bi ton) , or a - semaphore (S-bit on) • name

C 0-15 Reserved for system use.

$AF S CTI 0-7 Return status -
8 (T) This bit is set (on) while the request

using the block is executing; it is re-
set when the request terminates. The
system controls this bit; user should
not change it.

A-IO CB08

Item

1+$AF

2+$AF

Table A-5 (cont). Contents of Semaphore Request Block

Label Bit(s)

9 (W)

A(U)

B(S)

C

Contents

Wait bit - set if the requesting task
is not to be suspended pending the
completion of the request that uses
this block.

User bit. User mayor may not use this
bit; the system does not change it.

Release semaphore indicator. Values:
O=No release, I=Release, on timeout,
of item named in S RRB.

Must be zero.

D(R) Return request block indicator.

E (D)

F

S CT2 0-7

8-14

15

S ADR 0-15

Values: O=No dispatch, I=Dispatch of
request block named in S RRB, after
timeout of this request.-

Delete semaphore- request block.
Values: O=No delete; I=Return memory
to the pool where SRB is the first
entry of its memory block.

I/O bit. Must be set in absence of
start address.

Value is -1.

Must be zero.

Must be one.

Semaphore identifier - two ASCII
characters.

TASK REQUEST BLOCK FORMAT

Figure A-6 shows the format of the task request block;
Table A-6 shows its contents.

A-II CB08

o I 1 I 2 I 3,415,61718191Aj BIC I DIE I F

[~AF} T _RRB/T _SEM

o

REQUEST BLOCK POINTER/SEMAPHORE NAME

RESERVED FOR SYSTEM USE AS A POINTER

1 T cn

1+$AF T_CT2

2+$AF T ADR

Item

-$AF
-1

o

$AF

RETURN STATUS T W U S 0 R D I

LRN 0 0 0 0 0 0 0 0

START ADDRESS IF 1=0

BEGINNING OF ARGUMENT LIST

Figure A-6. Format of Task Request Block

Table A-6. Contents of Task Request Block

Label Bi t (s)

T RRB/ 0-15
T-SEM

0-15

T CT1 0-7

8 (T)

9 (W)

A(U)

B(S)

C

Contents

Depending on the condition of the S or
R bits of T CT1, this word contains a
request block pointer (R-bit on), or a
semaphore name (S-bit on).

Reserved for system use.

Return status

This bit is set (on) while the request
using this block is executing; it is
reset when the request terminates. The
system controls this bit; the user
should not change it.

Wait bit - set if the requesting task
is not to be suspended pending the com­
pletion of the request that uses this
block.

User bit. User mayor may not use this
bit; the system does not change it.

Release semaphore indicator. Values:
O=No release, l=Release on timeout of
item named in T RRB.

Must be zero.

A-12 CB08

(Table A-6 (cont). Contents of Task Request Block

Item Label Bi t (s) Contents

D(R) Return request block indicator.
Val ues: o =No dispatch, I =Dispatch of
request block named in T _RRB, after
timeout of this request.

E (D) Delete task request block. Values: 0=
No delete; I=Return memory to the pool
where TRB is the first entry of its
memory block.

F(I) I bit. Must be set in absence of start
add ress •

1+$AF T CT2 0-7 Logical resource number (LRN) • -
8-15 Must be zero.

2+$AF T ADR 0-15 Start address if the I-bit of T CTI is - -reset (zero) •

2+2*$AF T PRM Beginning of arg ument list. -
PARAMETER BLOCK FORMAT

Figure A-7 shows the format of the parameter block.

A-13 CB08

NOTE:

NUMBER OF PARAMETERS

,...-- ADDRESS OF PARAMETER 1

ADDRESS OF PARAMETER 2

1 ADDRESS OF PARAMETER n ~
--- NUMBER OF BYTES

ASCII CHARACTER I ASCII CHARACTER

ASCII CHARACTER I 6.

NUMBER OF BYTES

I
ASCII CHARACTER I ASCII CHARACTER

I

I

6. I UNSPECI FI ED

The parameter value strings need not be contiguous
with the address portion of the paramter block;
if the block is system generated, each paramter will
have a trailing blank that is not included in the
byte co unt.

Figure A-7. Format of Parameter Biock

WAIT LIST FORMAT

Figure A-8 shows the format of the wait list.

NUMBER/ITEMS TO WAIT FOR I TOTAL ITEMS IN LIST

ADDRESS OF FIRST REQUEST BLOCK

".
.... ~

1 ADDRESS OF EIGHTH REQUEST BLOCK J
Figure A-8. Format of Wait List

A-14 CBD8

, ,/

,£

(MESSAGE FACILITY MESSAGE GROUP REQUEST BLOCKS

(

Tables A-7, A-S, and A-9 respectively show the content of
the following message facility message group request blocks:

o Message group control request block (MGCRB)
o Message group initialization request block (MGIRB)
o Message group recovery request block (MGRRB)

Templates for these request blocks are generated by the
$MGCRT, $MGIRT, and $MGRRT macro calls respectively.

The request blocks can be generated by the $MGCRB, $MGIRB,
and $MGRRB macro calls respectively.

Table A-7. Message Group Control Request Block (MGCRB)

Item Label

o MC as

$AF MC MAJ

Bi t (s) Contents

Address Po inter

0-15 (SAF) Reserved for system use.

0-31 (LAF) Reserved for system use~

0-7

S (T)

9 (W)

A (U)

B (S)

Major status.

Left byte: reserved for system
use.

Right byte: This byte is set (on)
while the request using this block
is executing; it is reset when the
request terminates. The system
controls this bit; user should not
change it.

Wait bit - set if the requesting
task is not to be suspended pending
the completion of the request that
uses this block.

User bit.
this bit;
change it.

User mayor may not use
the system does not

Release semaphore indicator.
Va lues: O=No reI ease, I=Release,
on timeout, of item named in I_RRB.

A-IS CB08

Table A-7 (cont). Message Group Control Request Block (MGCRB)

Item

$AF
(cont)

l+$AF

2+$AF

2+2*$AF

3+2*$AF

Label

MC MAJ
(cant)

MC OPT

Bit(s)

C

D(R)

E (0)

F

0-7

8

9

A

B

C-F

MC BIF Address

Contents

Must be zero.

Return request block indicator.
Values: O=No dispath, l=Dispatch
of request block named in I_RRB,
after timeout of this request.
System executes $RQTSK, ~sing I_RRB
upon task termination.

Delete I/O request block. Values:
O=No delete, l=Return memory to the
pool where IORB is the first entry
of its memory block.

I/O bit. Must be set.

General options:

Reserved for system use.

Must be o.

Byte index: 0 = Buffer begins in
leftmost byte of the
word.

Must be o.

1 = Buffer begins in
rightmost byte.

Must be 1 (extended IORB).

Must be O.

Pointer

0-15 (SAF) Buffer po inter.

0-31 (LAF) Buffer pointer.

MC BSZ O-F Buffer range.

MC DVS Record-type code.

A-16 CB08

, /

(Table A-7 (cont). Message Group Control Request Block (MGCRB)

Item Label Bi t (s) Contents

MC REC O-F On send, insert record-type code. -

On receive, return assigned record-
type code.

4+2*$AF MC RSR O-F Residual range. -
5+2*$AF MC MRU 0-7 Left byte: end message recovery - unit (MRU) • Reserved for system

use.

MC WTI 8-F Right byte: wait test indicator. -
00 = Return null value

to application.

01 = Wait

6+2*$AF MC EXT Extens ion mechanism. -
0-7 Left byte: binary value of

13+2*$AF, i • e. , number of words in
IORB following the extension word.

Right byte: must be hexadecimal 7.

7+2*$AF Next seven words. Reserved for system physical I/O use.

14+2*$AF MC FNC 0-7 Left byte: function. Reserved for - system use.

MC REV 8-F Right byte: revision. Must be - hexadecimal 1.

lS+2*$AF MC MGI Message group i .d. -
O-F Returned in the $MINIT and $MACPT

macro calls.

16+2*$AF MC LVL Enclosure level. -
0-7 Left byte: enclosure level

requested.

(

A-17 CB08

Table A-7 (cont). Message Group Control Request Block (MGCRB)

Item Label Bi t (s) Contents

l6+2*$AF MC LVL 8-F Right byte: enclosure level de--(cont) (con t) tected according to following ASCII
val ues:

0 = Not end of record
1 = End of record
2 = End of quarantine unit
5 = End of message.

l7+2*$AF MC PCI O-F Must be O. -
l8+2*$AF MC VDP Address Name-l ist po inter. -

0-15 (SAF) Must be o.
0-31 (LAF) Must be o.

l8+3*$AF MC TGI O-F Reserved for system use. -
19+3*$AF MC TSK Address Pointer. -

0-15 (SAF) Reserved for system use.
0-31 (LAF) Reserved for system use.

19+4*$AF MC NPI O-F Must be o.

Table A-8. Message Group Initialization Request Block (MGIRB)

Item Label Bit(s) Contents

0 MIaS Address Po inter: reserved for system use. -
0-15 (SAF)
0-31 (LAF)

$AF MI MAJ Major status. -
0-7 Left byte: reserved for system

use.

8 (T) Right byte: This bit is set (0 n)
while the request using this block
is executing; it is reset when the
request term inates. The system
controls this bit; user should not
change it •.

A-18 CB08

(

(

Item

$AF
(cont)

l+$AF

2+$AF

2+2*$AF

3+2*$AF

Table A-8 (cont). Message Group Initialization
Request Block (MGIRB)

Label Bi t (s)

MI MAJ 9 (W)
(cent)

MI OPT

MI BUF

MI BSZ

MI MPD

A (U)

B (S)

C

D (R)

E (D)

F

0-7
8-A
B
C-F

Address
0-15 (SAF)
0-31 (LAF)

O-F

O-F

Contents

Wait bit - set if the requesting
task is not to be suspended pending
the completion of the request that
uses this block.

User bit. User mayor may not use
this bit; the system does not
change it.

Release semaphore indicator.
Values: O=No release, l=Release,
on timeout, of item named in I_RRB.

Must be zero.

Return request block indicator.
Values: O=No dispatch, l=Dispatch
of request block named in I RRB,
after timeout of this request.
(System executes $RQTSK,using
I_RRB, on task termination.)

Delete I/O request block. Values:
O=No delete, l=Return memory to the
pool where IORB is the first entry
of its memory block.

I/O bit. Must be set.

General options.

Reserved for system use.
Must be O.
Must be 1 (extended IORB).
Must be o.

Pointer.
Must be O.
Must be O.

Buffer range.
Must be O.

Must be hexadecimal 1.

A-19 CB08

Item

4+2*$AF

5+2*$AF

6+2*$AF

7+2*$AF

l4+2*$AF

15+2*$AF

16+2*$AF

18+2*$AF

19+2*$AF

20+2*$AF

Table A-8 (cont). Message Group Initialization
Request Block (MGIRB)

Label Bi t (s) Contents

MI RSR Residual range. - O-F Reserved for system use.

MI MOE 0-7 Left byte: must be o. - 8-F Right byte: must be o. MI lOP -
MI EXT Extension mechanism. -

0-7 Left byte: binary val ue of
31+2*$AF, i • e • , number of words in
IORB following the extension word.

8-F Right byte: must be hexadecimal 7.

Next seven words. Reserved for system physical I/O use.

MI FNC Function.
-

0-7 Left byte: reserved for system
use.

MI REV Revision. -
8-F Right byte: must be hexadecimal 1.

MI MGI Message group i.d. -
O-F Returned in the $MINIT and $MACPT

macro calls.

MI PCM
(Two O-F Must be O.

word s) O-F Must be O.

MI AOT Address type. -
0-7 Left byte: address type

(ini tiator) ; must be hexadecimal l.

8-F Right byte: address type
(acceptor) ; must be hexadecimal 1.

MI NWI O-F Must be o. -
MI NOI O-F Must be O. -

A-20 CBOS

(

Item

21+2*$AF

27+2*$AF

28+2*$AF

29+2*$AF

35+2*$AF

36+2*$AF

37+2*$AF

3S+2*$AF

38+3*$AF

(

Table A-S (cont). Message Group Initialization
Request Block (MGIRB)

Label Bit(s) Contents

MI MBI Initiator mailbox name. -
(Si x O-F Must be from 1 to 12 ASCI I
words) characters, blank-f i 11 ed, left

O-F justified.

O-F

O-F

O-F

O-F

MI NWA O-F Must be O. -
MI NDA O-F Must be o. -
MI MBA Acceptor mailbox name. -
(S ix O-F Must be from 1 to 12 ASCII charac-

word s) ters, blank-filled, left justified.
O-F

O-F

O-F

O-F

O-F

MI _QSZ O-F Initiator - maximum size of quaran-
tine unit.

MI CNT O-F Count of number of active messages
- in the mailbox. Returned with

$MCMG macro call.

MI TGI O-F Reserved for system use. -
MI TSK Address Po inter. Reserved for system use. -
MI SIP Address Reserved for system use. -

A-21 CB08

Table A-9. Message Group Recovery Request Block (MGRRB)

Item Label

o MR as

$AF MR MAJ

Bi t (s)

Address
0-15 (SAF)
0-31 (LAF)

0-7

8 (T)

9 (W)

A (U)

8(S)

C

D(R}

E (D)

F

Contents

Po inter.
Reserved for system use.
Reserved for system use.

Major status.

Left byte: reserved for system
use.

Right byte: This bit is set (on)
while the request using this block
is executing; it is reset when the
request terminates. The system
controls this bit; user should not
change it.

Wait bit - set if the requesting
task is not to be suspended pending
the completion of the request that
uses this block.

User bit. User mayor may not use
this bit; the system does not
change it.

Release semaphore indicator.
Values: O=No release, l=Release,
on timeout, of item named in I_RRB.

Must be zero.

Return request block indicator.
Values: O=No dispatch, l=Dispatch
of request block request. (System
executes $RQTSK, using I RRB, upon
task termination.) -

Delete I/O request block. Values:
O=No delete, l=Return memory to the
pool where IORB is the first entry
of its memory block.

I/O bit. Must be set.

A-22 CBOS

rtem

l+$AF

2+$AF

2+2*$AF

3+2*$AF

4+2*$AF

S+2*$AF

6+2*$AF

(- 7+2*$AF

Table A-9 (cont). Message Group Recovery
Request Block (MGRRB)

Label Bit(s) Contents

MR OPT General options. -
0-7 Left byte: reserved for system

use.

Right byte:

8-A Must be o.

B Must be 1 (extended rORB) •

C-F Must be o.

MR BUF Address Pointer. - 0-15 (SAF) Must be o.
0-31 (LAF) Must be o.

MR BSZ Buffer range. - O-F Must be o.

MR rTP O-F Must be O.
-

MR RES - Residual range.
O-F Reserved for system use.

MR RSN 0-7 Reason-for-terminate code: -
0 = Normal message group

termination.

34-44 = User-defined abnormal
termination of message
group.

8-F Reserved for system use.

MR EXT Extension mechanism. -
0-7 Lett byte: binary value of

14+2*SAF, i.e., number of words
in rORB following the extension
word.

8-F Right byte: must be hexadecimal 7.

Next seven words. Reserved for system physical rio use.

A-23 CBD8

Item

14+2*$AF

lS+2*$AF

16+2*$AF

l7+2*$AF

lS+3*$AF

19+3*$AF

Table A-9 (cont). Message Group Recovery
Request Block (MGRRB)

Label Bi t (s) Contents

MR FNC Left byte: function. - 0-7 Reserved for system use.
MR REV Right byte: . rev lSlon. - 8-F Must be hexadecimal Ol.

MR MGI Message group Ld. - Returned in the $MINIT and O-F
macro calls.

MR CNC O-F Reserved for system use. -
MR FMT Address Po inter. -

0-15 (SAF) Must be o.
0-31 (LAF) Must be o.

MR MRU
(Two O-F Reserved for system use.
word s) O-F Reserved for system use.

MR AMU
(Two O-F Reserved for system use.
words) O-F Reserved for system use.

A-24

$MACPT

CBOS

L
\

APPENDIX B

WRITING A PERIPHERAL I/O DRIVER

To add a new function to a Honeywell-supplied driver, the
user must modify its existing source code, then relink the system
with the new driver (see Section 6).

To operate with a device that is not supported, the user
must write his own driver. This appendix describes what the user
must be aware of in writing a driver.

SYSTEM BUILDING CONSIDERATIONS IN WRITING A DRIVER

The system building process defines the driver and those
i data structures necessary for the driver to interface with the

user and with the system. The driver can reference only two data
structures, input/output request blocks (IORBs), and resource
control tables (RCTs).

(

An RCT is generated by the DRIVER directive in system build­
ing (see "Driver Directive" in the GCOS 6 MOD 400 System Buildin~
manual). The RCT must be at lease three words, in both short
address form (SAF) and long address form (LAF). Requirements for
stack space are 22 words in SAF, and 40 words in LAF. RCT and
stack sizes are specified by the left and right bytes, respec­
tively, in the RCT size argument of the system building DRIVER
directive. The flags word R FLGS in the RCT must be set up dur­
ing driver intialization. -

The user must link the driver as a separate bound unit. Any
references to any system function routine (described under
"Driver Usable System Fun~tions" below), must be specified in an
EDEF directive to the Linker.

Example:

The following system building DRIVER directive generates a five­
word RCT with 22 words of stack space:

DRIVER AVOLl>OWNDRIVER,4,9,X'1380',X'1605'

B-1 CB08

The user-written driver OWNDRIVER will be loaded from the volume
major directory on volume VOLle A task control block (TCB) is
generated and will be fixed to level 9. A pointer in the LRN 4
position of the logical resource table (LRT) will be set up to
point to the generated RCT. The device channel X'1380' will be
set up in the first word of RCT.

DRIVER INTERFACE IN WRITING A DRIVER

The user interfaces with the driver by placing task requests
against the driver via the $RQIO macro. The system uses an LRN­
to-RCT-to-TCB (priority level) association to associate a request
with a specified driver. When the driver is turned on to service
a request, $B4 will point to the IORB to be serviced. Since de­
vices may interrupt to a specified level when an attention oc­
curs, the user-written driver should first check $84 for null to
ascertain if a request or attention is being processed.

Drivers should not alter the first six entries of an IORB.
IORB's should be generated as described in Section 6.

Drivers must terminate with an internal terminate as des­
cribed under "Driver Usable System Functions."

USER-WRITTEN DRIVER INITIALIZATION

On entry to the driver for the first request, the driver
must locate the resource control table for the device, using the
LRN in the input/output request block (IORB). The driver must
set register $B7 to point to a stack area, and must store in the
stack a pointer to the RCT. Thus, when an attention occurs, the
driver may locate the RCT by retrieving the RCT pointer from the
stack. The following instructions sequence locates the RCT and
sets the stack pointer:

LLH
LNJ
LAB
STB

$R 2, $B 4, leT 2
$B5,<ZXSRCT
$B 7, $82. -$AF
$B 2, -$B7

GET LRN FROM IORB
LOCATE RCT
SET STACK POINTER
SAVE POINTER TO ReT

Driver initialization must also set up the flags word R FLGS
in the RCT to reflect the characteristi.cs of the device (see­
Section 6),

Finally, the driver must set the device interrupt level, and
read the device status. These functions may be accomplished by
calling one of the subroutines described under "Driver Usable
System Functions" below.

B-2 CB08

(The d river may a I so set up the dev ice type (R TYP) dur,ing
initialization, with the I/O instruction with a function code
"input device ID" (see the Honeywell Level 6 Minicomputer
Handbook).

DRIVER USABLE SYSTEM FUNCTIONS

To provide compatibility with the system, user-written
drivers may call only the following system functions, using the
format and register contents as shown for each function:

o I/O subroutines (ZIOSUB)
o Locate RCT for a device (ZXSRCT)
o Terminate driver (ZXD TR)
o Output address and range (ZIOLD)

I/O Subroutines (ZIOSUB) For User-Written Drivers

The common driver subroutines are called by executing the
instruction: LNJ $B5,<ZIOSUB with standard register contents
as follows:

Function code in SRI
RCT address in $B6
Current stack position in $B7

~ INITIALIZE FUNCTION (Code 0)

(-

The initialize subroutine intializes the device interrupt
level, removes the level from the first word of the RCT, and
exits with the device status in RSTTS of the RCT.

Input registers: Standard registers for I/O subroutines
Return registers:

0 $RI = Return status
0 = Normal
A = Controller unavailable

0 $R4 = Channel number
0 $R2, $R6 altered

WAIT ON LINE FUNCTION (Code 1)

If the attention flag in the RCT is 0, wait for the next
online interrupt, or until five minutes have elapsed.

If the attention flag is 1, return with successful comple­
tion status if the device is ready; otherwise wait for the next
online interrupt or until five minutes have elasped.

B-3 CB08

Input registers:

o Standard registers for I/O subroutines
o $R4 = Channel number

Return registers:

o $R1 = Return status

o = Normal

6 = Five minutes elapsed; not yet online

-1 = Status of device could not be read following
interrupt.

A = Controller not available.

o $R5, $R6, $R7 altered

STOP I/O FUNCTION (Code 2)

Issue "Stop I/O" order to the device whose channel number is
in the $R4 register; call the Wait for Interrupt function.

Input registers: Same as Wait on Line function above.

Return registers:

o $Rl = Return status

o = Normal
6 = Time-out

-1 = Negative acknowledgement to status request

o $R5 = Modified status. Bits 0, 1, and 12 cleared to 0;
bits 13 through 15 cleared and logical OR performed
with the result placed into bit 15 (fatal error
bi t) •

o $R6 = Status (same as R STTS in the RCT)

o $R7 = Residual range

WAIT FOR INTERRUPT (Code 3)

Activate timer to time the number of seconds specified in
$R6; call the Read/Modify Status function.

B-4 CB08

(

Input registers:

o Standard registers for I/O subroutines
o $R4 = Channel number
o $R6 = Timer value, in seconds

Return registers:

o $RI = Return status

o 6 = Timeout (same as Read/Modify Status if no time-out)

o $R5 = Modified status. Bits 0, 1, and 12 cleared to 0;
bits 13 through 15 are c~eared and logical OR per­
formed with result placec into bit 15 (fatal error
bi t) •

o $R6 = Status (same as R STTS in the RCT)

o SR7 = Residual range

READ/MODIFY STATUS FUNCTION (Code 4)

Input registers:

o Standard registers for I/O subroutines
o $R4 = Channel number

Return registers:

o $RI = Return status

-1 = Status request received negative acknowledgement

o $R5 = Modified status. Bits 12 through 15 cleared to 0
and logical OR performed with result placed into
bit 15 (fatal error bit).

Locate RCT for Device (ZXSRCT)

This system function, to locate an RCT for a specific de­
vice is called with the instruction: LNJ $B5,<ZXSRCT, with $R2
containing the LRN for the device.

Input registers:

o $R2 = LRN value

B-5 CB08

Return registers:

0 $RI = Return status
0 = RCT found for LRN

0802 = Illegal LRN
0 $B2 = Pointer to RCT
0 $R2 = altered

Driver Terminate (ZXD_TR)

The system function to terminate a driver is called with the
instruction: LNJ $B5<ZXD TR.

Input registers:

o $R2 = Return status for current request
o $B4 = Start address for next execution of driver
o $B7 = Current stack position.

Output Address and Range (ZIOLD)

The system function to output the address and range for a
data transfer is called with the instruction: LNJ SB5<ZIOLD.
The ZIOLD subroutine adjusts any necessary change of address
space and also performs the IOLD order.

Input registers:

o $B3 = Buffer address
o $R2 = Buffer byte offset
o $R3 = Range
o $R4 = Channel number.

No registers are altered by ZIOLD.

B-6 CB08

I ,
GET LRN FROM IORS,
LOCATE RCTWITH
LNJ $85, . ZXSACT

SET UP STACK
POINTER IN $87;
SAVE RCT POINTER
IN STACK .

INITIALIZE R FLOS
IN RCT; REA(fbEVICE
id INTO R_ TYP

. _._------------------------------'

INITIALIZE
Z10SUB
Fe ~O

DEVICE
SPECIFIC
INITIALIZATION

READY/MODIFY
STATUS
Z10SUB Fe ~4

SET $R2 ~STATUS,
$84" START
ADDRESS.

TERMINATE
ZXD_TR

SET$R2" STATUS, NORMAL

~=---'--_-I ~'bri"Rrs~~TTERMI·NATE I-'S"TA",R"T_~
VIA ZXO_TR.

STOP 1/0
zlosua
FC-2

PREPARE DEVICE
FOR TRANSFER
START 110

RESTORE RCT
POINTER
FROM STACK

SET CONTROLLER
UNAVAILABLE
STATUS

WAITONLINE
zlosua Fe-1

TIMED WAIT
Z10SUB
FC=3

Figure 8-1. Typical Device Driver

B-7 C8D8

o

DEVICE
SPECIFIC
COMPLETION

SET NO
ERROR

STPP 1/0

ZIOSUB

FC=2

SET TIME OUT
STATUS

SET DEVICE NOT
~------~------------~ READY STATUS

SET HARDWARE
ERROR STATUS 1-:--<

UPOATE RETRY
COUNT

NO

YES

Figure B-1 (cont). Typical Device Driver

GENERAL I/O REQUIREMENTS FOR USER DEVICE DRIVER

This subsection describes in general terms how to initiate
an I/O operation. The central processor instructions that are
designed to initialize the data for an I/O operation and to
actually start the operation are:

o 10
o
o

IOLD
IOH

B-8 CB08

(

(

For GCOS 6 system compatibility, the user should perform
IOLD instructions by using the ZIOLD subroutine instead of
directly executing IOLD.

These instructions, described in the Assembly Language
manual and in the Honeywell Level 6 Minicomputer Handbook, can
define all required information about an I/O operation. After
I/O completion they can be used for input status to verify the
results of the I/O operation. Some output and input functions
that can be performed with these instructions are shown below.

Instruction Function

10 Output-interrupt control

IO Input device id

10 Input status

10 Output configuration

10 Output task

10 Input range

Description

Set interrupt level
for the dev ice.

Read the device id
for the device.

Test the state of
the device.

Define operation
explicitly (for
disk, this defines
track and sector
number of the I/O
opera t ion) •

Task defines the
o pe rat ion (i. e • ,
seek, read, write ...) .
Get the residual
range (i.e., number
of bytes not trans­
ferred bu~equest­
ed in the IOLD in­
struction in
Z IOLD) •

Note that every device type has different requirements as to
which functions are necessary to start an I/O operation. For
example, the card reader has only one operation (i.e., read); so
the IOLD (output address and range) actually initiates the I/O,
and there is no I/O output task command.

B-9 CBC8

To start a disk I/O operation, the sequence would be:

Output configuration
Output address and range
Output task
Input status

(Define sector ann track)
(Use ZIOLD subroutine)
(Define operation and start I/O)
(Check resul ts)

B-10 CB08

(

(

APPENDIX C

SUMMARY OF REGISTER CONTENTS FOR SYSTEM SERVICE MACRO CALLS

Table C-l lists the register contents before and after exe­
cution of the system service macro calls. Since data structure
macro calls do not affect registers, these are not listed.

The table is arranged in function code sequence.

C-I CB08

(')
I

IV

(')
OJ
o
00

;.f ,

"
-., ,

Macro Call

$WAIT

$WAI'lL

$TESI'

$RE'lRN

$TImQ

$TR-1RQ

$RJWl)

$ROlO

$Il3DV

$RDVAT

$ENDV

$EIBT

-

Table C-l. Macro Calls, Function Codes, and Register Contents

Cbntents Before Execution Cbntents Returned

Rl R2 R6 R7 B2 B4 lfRl R2 R6 R7 B2 B4 B5 B7

Request and Return Fmctions

01/00 Address Status Address
RB RB

01/01 Wait Status Wait Address
list list RB
address address

01/02 Address Status Address
RB RB

none Code Status Terminate
routine
address -

01/03 Code Status Address Terminate RB
RB routine para-

address meter
list
address .

01/04 Code Start Status
address

01/07 Status Address Terminate RB
RB routine para-

address meter
list
address

Physical I/O Functions

02/00 Address Status Address
1008 ICRB

02/02 IRN Status IRN

02/03 LRN Status LRN

02/04 LRN Status IRN

02/05 Device USer log Status
name table
address address

-~ --

" r'
\. \:

o
I

w

o
t:P
o
co

~

Macro Call

SEIEX

$ELGT

$ELEN)

SGMEM

SGMEM

SR-lEM

SR-lEM

SS'lMP

$ROCL

$CNCRQ

SSUSRl

SSUSRl
--

Rl

02/07

02/08

02/09

04/02

04/03

04/04

04/05

04/06

05/00

05/01

05/02

05/03

Table C-I (cant) .

. Contents Before Execution

R2 R6 R7 82

Fhysical I/O Functions (cant)

Device
name
address

Device
name
address

Device
name
address

Memory Allocation Functions

Return Size Size
condition

Size Size

Size Size

Pool id

Clock Functions

Code Internal Internal
value value

Internal val ue

Macro Calls,
and Register

84 Rl R2

User log Status
table
address

User log Status
table
address

User log Status
table
address

Status

Status

Address Status
menory

Address Status
menory

Status Menory

Function Codes,
Contents

Contents Returned

R6 R7 82

Size Size

Size Size

Size Size

Menory Memory
(percent) (words) (words)

Address Status
CRE

Address Status
CRE

Status

Status

... ,

84 85 87

i'ddress
menory

i'ddress
menory

Address
memory

i'ddress
CRB

Address
CRE

(')

I
~

(')
to
o
ex>

\,

Macro Call

$EXlUl'

$EXTIM

$GIJIM

$INIYlM

$ROOM

$CNSRQ

$ffiVEM

$DF9'1

SRL9'1

$OVEXC

$OVID

$OVST

$OVR)V

Table C-I (cont) .

Contents Before Execution

Rl R2 R6 R7 B2

Date/Time FUnctions

05/04 Internal date/time

-05/05 Internal date/time

05/06 Internal date/time

05/07 Internal date/time
R5:size

Semaphore Functions

06/00

06/01

06/02 Code Identifier

06/04 Value Identifier

06/03 Identifier

Overlay Handling FUnctions

07/00 Overlay Offset
id

07/01 Overlay
id

07/03 Overlay
id

07/05 Overlay Offset
id

Macro Calls,
and Reg ister

Function Codes,
Contents

Contents Returned

B4 Rl R2 R6 I R7 B2

Receiving Status Internal date/time
field
address

Receivil'lJ Status Internal date/time
field
address

Status Internal date/time

External Status Internal date/time
date/time

Address Status
SRB

Address Status
SRB

Status Identifier

Status Identifier

Status Identifier

Base Status
address

Base Status Overlay Offset
address id

Status Overlay Offset Isize
status

Overlay Status Overlay
area id
table
address

I
B4 B5 B7 I

I
I

Receiving
field
address I
Receiving I
field
address

External
date/time
address

Jlddress
SRB

Address
SRB

Base
address

Base
address

Overlay
area
table
address

~ " ,

()
I

U1

()
tp
o
ex>

~

Macro Call

$OVRIS

$OVR:L

$CRQl\T

$OVUN

$USlN

$USarr

:;ern

$ERarr

$NUIN

$NUarr

Rl

07/06

07/07

07/0A

07/OC

08/00

08/01

08/02

08/03

08/04

08/05

Table C-I (cont) •

Contents Before Execution

R2 R6 R7 B2

$85 = Return point address

OIlerlay
id

Offset

Size of Number of
overlay entries
area entry in overlay

area

OIlerlay B5 = Return point
id address

Standard System File I/O Functions

Record Offset
size

Record Offset
size

Record Offset
size

Record Offset
size

0,1,
or 2

o or 1

--

.......

Macro Calls,
and Reg i ster

Function Codes,
Contents

Contents Returned

B4 Rl R2 R6 R7 82

Code
0006

Request Status OIlerlay Offset
block id
address

Status Actual Actual
size of size of
overlay entries
area in

overlay
area

Base Status
address

Address Status Range File
record Type
area

Address Status Range
record

Address Status Range File
record 'I'ype
area

Address Status Range
record

Address Status· Record File
pathname length 'I'ype

Address Status Record File
pathname length 'I'ype

, \ .

B4 B5 B7

Request
block
address

OIlerlay
area
table
address

Address
record
area

Address
record
area

Address
record
area

Address
record
area

Address
pathname

Address
pathname

(')

I
0'\

(')
O:l
o
00

/-" \

Macro Call

$OPMOO

$OPRSP

$QoISUP

$CMSUP

$TRRID

$EN'IRP

$DS'IRP

$RIEW

$SE'IS'l

$Cl.RS'1

$RQI'SK

$CAmQ

Rl

09/00

09/01

09/02

09/03

M/OO

OA/Ol

OA/02

OB/OO

OB/Ol

08/02

DC/DO

OC/Ol

Table C-l (cont) •

Contents Before Execution

R2 R6 R7 B2

Operator Interface Functions

Trap Handling Functions

Trap
nunber

Trap
mmber

External SWitch Functions

Mask

Mask

Mask

Task Control Functions

Macro Calls,
and Register

Function Codes,
Contents

Contents Returned

B4 Rl R2 R6 R7 B2

Address Status
IORl

Address Status
IORB
list

0002

0003

Address Status
handler

Status Trap
mmber

Status Trap
nLlllber

value
switch
word

Value
switch
word

Value
switch
word

Address Status
TRB

Request Status Rlsted
block request
address block

code

84 85 87

Address
ICRB

Address
input
ICRB

Address
TRB

Request
block
address

\

()
I

-...J

()
tl:I
o
00

~

Macro Call

$CR'ISK

$CR'ISK

$DL'ISK

SSPl'SK

$SP'ISK

$CJ'IIDr.N

$CLPNT

SRQ3RP

$CRGRP

$DLGRP

$SFGRP

RI

DC/D2

aC/D3

OC/04

0<:/05

OC/06

DC/OS

OC/13

ODjOD

CD/03

00/04

00/05

Table C-I (cant) •

COntents Before Execution

R2 R6 R7 B2

Task Cbntrol Functions (cont.)

LRN Level Address
start

LRN Level Address
root
name

LRN

Level !\cldress
root
name

Level Address
start

Size

Task Group Control Functions

Group B5 = Address fixed !\clcress
id parameter block argunent

list

Group LAN LFN Address
id root

name

R4 = Memory pool id
R5 = Priority level

Group
id

Group LRN LFN Andress
id root

name

B5 = Address fixed parameter block
R4 = Memory pool id
R5 = Priority leVel

~,

Macro Calls,
and Reg i ster

B4 RI R2

Status LRN

Status LRN

Status LRN

!\cldress Status
TRB

Address Status
TRB

Address Status
command
line

FIB Status
address

Status

Status Group
id

Status Group
in

!\cldress Status Group
argunent id
list

Function Codes,
Contents

COntents Returned

R6 R7 B2

.... ,

B4 B5 B7

Address
command
line

()
I

00

()
OJ
a
00

f- '" (
"
~

Macro Call

SABGRQ

$SUSFG

SACl'\G

$NPRCC

SRQBAT

SRPTER

$ASFIL

SDSFIL

$G'IFIL

SRMFIL

Table C-I (cont) •

Contents Before Execution

Rl R2 R6 R7 B2

Task Group Control Functions (oont.)

00/07 Group Abort
id

00/08 Group
id

00/09 Group
id

rD/Oe

Batch Functions

DE/DO

B5 = Adnress fixed
parameter block

Error H~nnling Function

OF/OO Size Cocle

R2 = Component error code
B3 = Expansion text anclress

File Management Functions

1(\/10

10/15

10/20

10/25

'---

Macro Calls,
and Reg ister

B4 Rl R2

Status Group
id

Status Group
id

Status Group
icl

Status

Address Status
argument
list

Status

Adclress Status
argLl11ent
structure

Address Status
argunent
structure

Acldress Status
argunent
structure

Address Status
argunent
structure

Function Codes,
Contents

Contents Returned

R6 R7 B2

Cone

B4, B5 r~

c

(
I,

,- ,
/

()

I
1.0

()
00
o
ex>

~,

Macro Call

$CRFIL

$RLFIL

$RNFIL

SSTl'Y

$OPFIL

$::LFIL

$GIFIL

$TIFIL

STCFIL

:;WIFIL

:;WOFIL

$CRDIR

R1

10/30

10/35

10/40

10/45

10/50,
10/51

10/55,
10/5fi,
10/57

10/60

10/fi2

10/63

10/64

10/fi5

10/AD

Table C-I (cant) .

Oontents Before Execution

R2 R6 R7 B2

File Management Functions (cont)

~--

~~f.~,{.~;

Macro Calls,
and Register

B4 R1 R2

Andress Status
argLlTlent
structure

Address Status
argument
structure

Address Status
argunent
structure

Address Status
argunent
structure

Address Status
FIB

Address Status
FIB

Address Status
argunent
structure

Address Status
FIB

Address Status
FIB

Address Status
argument
structure

Address Status
argunent
structure

Address Status
argunent
structure

Function Codes,
Contents

Oontents Returned

R6 R7 B2

~l

B4 B5 B7

I
I
I

I

(')

I
I-'
o

(')
tp
o
ex:>

(

Macro Call

$RLDIR

$(WDIR

$GWDIR

$XPA'IH

SRmEC

SWRREC

$DlREC

$RWREC

$RffiLK

$WRBLK

~LK

\

R1

10/A5

10/80

10/CO

10;00

11/10
throu:Jh
11/16

11/2(1
throu:Jh
11/26

11/30,
11/31

11/40,
11/41

12/00
throu:Jh
12/04

12/10,
12/11

12/20

Table C-I (cont) .

Contents Before Execution

R2 R6 R7 B2

File Management Functions (cont)

Data Management Functions

Storage Management Functions

Macro Calls,
and Register

B4 R1 R2

Address Status
argunent
structure

AdC!ress Status
argl.l!lent
structure

Address Status
argl.l!lent
structure

Address Status
argl.l!lent
structure

Address status
FIB

Address Status
FIB

k!dress Status
FIB

k!dress status
FIB

Address Status
FIB

k!dress Status
FIB

Address Status
FIB

Function Codes,
Contents

Contents Returned

Rfi R7 B2 B4 B5 B7

I

I

(')
I

I-'
I-'

(')

tIl
a
(Xl

~

Macro Call

$USRID

$PERID

$ACTID

$I10DID

$SYSID

$BUID

$HDIR

$'!'GIN

$MAePI'

$I1INIT

~~

Rl

14/00

14/01

14/02

14/03

14/04

14/06

14/08

14/0C

15/01

15/02

Table C-l (cont).

Contents Before Execution

R2 R6 R7 82 84

~~<4'-~

Macro Calls, Function Codes,
and Register Contents

Contents Returned

Rl R2 R6 R7 82

Identification and Infonnation Functions

Address Status
receiving
field

Address Status
receiving
field

Address Status
receiving
field

Address Status
receiving
field

Address Status
receiving
fieM

Address Status
receiving
field

Address Status
receiving
field

Adclress Status
receiving
field ,

Intergroup Message Facility Functions

Request Status
block
address

Request Status
block
address

~----- -- ------ ---- --- -~ -

JIIIIIi."

84 5 87

Address
receiving
field

Address
receiving
field

Address
receiving
field

Address
receiving
field

Address
receiving
task grouI

Request
block
address

Request
block
address

L....--- - --- -

(')

I
......
!I..)

(')
!Xl
o
ex>

/ \
'" .

Macro Call

SMRECV

SM'IMG.

SMSEW

$MO'IG

SRQI'ML

SRL'IML

$SDL

Rl

15/03

15/04

IS/OS

15/07

17/03

17/04

18/0(1

Table C-I (cont) .

Contents Before Execution

R2 R6 R7 B2

Intergroup Message Facility Functions (cant)

User Terminal Functions

I.RN Release
status
code

Communications Function

Channel Address
nll!1ber device
or 0 pathname

---- _.

Macro Calls,
and Reg ister

B4 Rl R2

Request Status
block
address

Request Status
block
request

Request Status
block
address

Request Status
block
address

Request Status
block
address

Status

Address Status
telephone
number

_.

Function Codes,
Contents

Contents Returned

R6 R7 B2 B4 B5 B7

Request
block
address

Request
block
address

Request
block i
address

Request
block
address

Request
block
address

i

'" f

(

APPENDIX D

ASCII AND EBCDIC CHARACTER SETS

Tables D-l and D-2 illustrate the ASCII and EBCDIC character
sets, respectively. In addition to the ASCII characters, Table
D-l shows the hexadecimal equivalents; Table D-2 shows the binary
and hexadecimal equivalents of the EBCDIC character set.

Following are lists of the control characters and special
graphic characters that appear in the two tables:

CONTROL CHARACTERS

ACK
BEL
BS
BYP
CAN
CC
CR
CU 1
CU2
CU 3
DCl
DC2
DC3
DC4
DEL
DLE
DS
EM
ENQ
EO
EOT
ESC
ETB
ETX
FF
FS

Acknowledge
Bell
Backspace
Bypass
Cancel
Cursor Control
Carriage Return
Customer Use 1
Customer Use 2
Customer Use 3
Device Control 1
Device Control 2
Device Control 3
Device Control 4
Delete
Data Link Escape
Digit Select
End of Medium
Enquiry
Eight Ones
End of Transmission
Escape
End of Transmission Block
End of Text
Form Feed
Field Separator

GE
GS
HT
IFS
IGS
IL
IRS
IUS
LC
LF
NAK
NL
NUL
PF
PN
RES
RLF
RS
SI
SM
SMM
SO
SOH
SOS
SP
STX

D-l

Graphic Escape
Group Separator
Horizontal Tab
Interchange File Separator
Interchange Group Separator
Idle
Interchange Record Separator
Interchange Unit Separator
Lowercase
Line Feed
Negative Acknowledgment
New Line
Null
Punch Off
Punch On
Restore
Reverse Line Feed
Reader Stop
Shift In
Set Mode
Start of Manual Message
Shift Out
Start of Heading
Start of Significance
Space
Start of Text

CB08

CONTROL CHARACTERS (cont)

SUB Substitute
SYN Synchronous Idle
TM Tape Mark

SPECIAL GRAPHIC CHARACTERS

Cent Sign

UC
US
VT

<
(

Period, Decimal Point
Less-than Sign

+

&

$
*
;

/
I
,
%

Left Parenthesis
Plus Sign
Log ical OR
Ampersand
Exclamation Point
Dollar Sign
Asterisk
Right Parenthesis
Semicolon
Log ical NOT
Minus Sign
Slash
Vertical Line
Comma
Percent
Underscore
Ci rcumflex

,

>
?

@ ,
=
" -
{
J
Y
}
\
r1
I
[
]

Uppercase
Un it Sepa rato r
Vertical Tab

Greater-than Sign
Question Mark
Grave Accent
Colon
Number Sign
At Sign
Prime, Apostrophe
Equal Sign
Quotation Mark
Tilde
Opening Brace
Hook
Fork
Closing Brace
Reverse Slant
Chair
Long Vertical Mark
Opening Bracket
Closing Bracket

Table D-l. ASCII/Hexadecimal Equivalents

HI
'" H2 0 I 2 3 4 S 6 7

0 NUL DLE SP 0 (a' p .
P

I SOH DCl ! 1 A Q a q

2 STX DC2 " 2 B R . b r

3 ETX DC3 # 3 C S c s

4 EaT DC4 $ 4 D T d t

5 ENQ NAK % 5 E U e u

6 ACK SYN & 6 F V f v

7 BEL ETB ,
7 G W g w

8 BS CAN (8 H X h x
9 HT EM) 9 I Y i y

A LF SUB * : J Z j z

B VT ESC + ; K [k I
I'

C FF FS < L \ 1 I , I

D CR GS - = M 1 m I ,
E so RS > N /\ n -
F SI us I ? a - 0 DEL

D-2 CB08

Table D-2. EBCDIC/Hexadecimal/Binary Equivalents

';0

0
-ci -;;

.n E
'2 .,. -;
~ 00 01 fo II

";;;;

~ 2- 00 01 10 II 00 01 10 II 00 01 10 II 00 01 10

::i5 " '" 0 I ~ 3 4 5 6 7 8 9 A B C D E - -
0000 0 NUL DLE DS SP & 1" la \"

0001 I SOH IXI SOS / a i ,.JI A J

0010 C STX IX~ FS SYN b k s B K S

0011 3 ETX TM " I t C L T

0100 4 PF RES BYP PN d m u D M U

0101 5 HT NL LF RS c n v E N V

0110 6 LC BS ETB UC f () .. F a w

0111 7 DEL IL ESC EaT g p x G P X

1000 8 CEa CAN h q y H Q Y

1001 <) RLFa EM ,a i r z I R Z

1010 A SMM CC SM ¢ , • a

1011 B VT CUl a CU~a CU3 a S - #

II 00 (' FF IFS DC4 < . fir (<< Sa ~a

1101 0 CR IGS ENQ NAK (
,

)

1110 E SO IRS ACK + > = 'l'a

1I11 F SI IUS BEL SUB
, -, ? "

aTtus character is 1I0t supported in the 2780 character set.

(

D-3

II

F

0

I

2

3

4

5

6

7

8

9

I"

EO'

f
f

Bit Positions 0,1

Bit Positions 2,3

f First Hexadecimal Digit

CB08

ABORT
ABORT GROUP REQUEST ($ABGRQ)

MACRO CALL, 5-4
ABORT GROUP ($ABGRP)

MACRO CALL, 5-2

ACCEPT
MESSAGE GROUP ACCEPT ($lf~CPT)

MACRO CALL, 5-172

ACCEPTOR
MESSAGE GROUP ACCEPTOR GROUP,

5-172, 5-189

ACCOUNT
ACCOUNT IDENTIFICATION ($ACTID)

MACRO CALL, 5-6

ACTID
ACCOUNT IDENTIFICATION ($ACTID)

MACRO CALL 5-6

ACTIVATE
ACTIVATE GROUP ($ACTVG)

MACRO CALL, 5-8

ADDRESS
RETURN REQUEST BLOCK ADDRESS

($RBADD) MACRO CALL, 5-316
USER-DRIVER OUTPUT ADDRESS AND

RANGE (ZIOLD) SUBROUTINE, B-6

ADDRESSING
ADDRESSING CONVENTIONS, 1-3

ALLOCATE
INITIALIZE, ALLOCATE GROUP DATA

STRUCTURES, 5-57
INITIALIZE, ALLOCATE TASK DATA

STRUCTURES, 5-64

ALLOCATION, MEMORY
MONITOR SERVICE FUNCTIONS, MEMORY

ALLOCATION, 2-4

APPEND CHARACTERS
APPEND ASCII CHARACTERS TO

PATHNAME, 5-133

AREA
CONTENTS OF TRAP-RELATED MEMORY

AREAS, 7-2
POINTER TO NEXT TRAP SAVE AREA

(NATSAP), 7-5
TRAP INTERRUPT SAVE AREA

(ISA), 7-6
TRAP SAVE AREAS, 7-6

ARGUMENT VALUES FOR MESSAGE GROUP
MACRO CALLS

ARGUMENT VALUES FOR $MGCRB
MACRO CALL (TBL), 5-176

ARGUMENT VALUES FOR $~GIRB
MACRO CALL (TBL), 5-185

INDEX

ARGUMENT VALUES FOR MESSAGE GROUP
MACRO CALLS (CONT)

ARGUMENT VALUES FOR $MGRRB
MACRO CALL (TBL), 5-197

MGCRB ARGUMENT VALUES FOR $MRFCV
MACRO CALL (TBL), 5-193

MGCRB ARGUMENT VALUES FOR $MSEND
MACRO CALL (TBL), 5-202

MGIRB ARGUME~'I' VALUES FOR $MACPT
MACRO CALL (TBL), 5-173

MGIRB ARGUMENT VALUES FOR $MCMG
MACRO CALL (TBL), 5-182

MGIRB ARGUMENT VALUES FOR $MINIT
MACRO CALL (TBL), 5-190

MGRRB ARGUMENT VALUES FOR $MTMG
MACRO CALL (TBL), 5-207

ASCII
APPEND ASCII CHARAC'.i.'ERS TO PATHNAME,

5-133
ASCII AND EBCDIC CHARACTER SETS, D-1
CARD ASCII MADE, 6-17

ASCII/HEXADECIMAL
ASCII/HEXADECIMAL EQUIVALENTS

(TBL), D-2

ASR/KSR
ASR/KSR DRIVERS, 6-34
ASR/KSR lORB FIELDS, 6-36
ASR/KSR KEYBOARD INPUT, 6-35
ASR/KSR PRINTER OUTPUT, 6-36
ASR/KSR RCT FIELDS, 6-37
ASR/KSR RCT/IORB HARDWARE/SOFTWARE

STATUS MAPPING, 6-38

ATTENTION
DISABLE DEVICE ON ATTENTION ($DSDV)

MACRO CALL, 5-78
RCT ATTENTION STATUS

INDICATOR, 5-309
RESET DEVICE ATTENTION ($RDVAT)

MACRO CALL, 5-309

AUTODIAL (AUTO CALL UNIT)
AUTODIAL TELEPHONE LIST, 5-324

BATCH
MONITOR SERVICE FUNCTIONS, BATCH

FUNCTIONS, 2-1
REQUEST BATCH ($RQBAT)

MACRO CALL, 5-285

BLOCK

i-I

CLOCK REQUEST BLOCK FORMAT, A-2
CLOCK REQUEST BLOCK OFFSETS ($CRBD)

MACRO CALL, 5-31
CLOCK REQUEST BLOCK (CRB), 5-288
CLOCK REQUEST BLOCK ($CRB)

MACRO CALL, 5-28
DEVICE-DRIVER POSITION BLOCK

FUNCTION (FC=4), 6-6
FILE INFORMATION BLOCK FORMAT, A-4

CB08

INDEX

BLOCK (CONT)
FILE INFORMATION BLOCK OFFSETS

($TFIB) MACRO CALL, 5-119
FILE INFORMATION BLOCK (FIB),

3-2, 4-5
FILE INFORMATION BLOCK ($FIB)

MACRO CALL, 5-111
FIRST FOUR ITEMS OF REQUEST BLOCK

(FIG), A-2
INPUT/OUTPUT REQUEST BLOCK, 6-7
INPUT/OUTPUT REQUEST BLOCK

FORMAT, 6-8, A-6
INPUT/OUTPUT REQUEST BLOCK OFFSETS

($IORBD) MACRO CALL, 5-168
INPUT/OUTPUT REQUEST BLOCK ($IORB)
(MACRO CALL, 5-165
MESSAGE GROUP CONTROL REQUEST BLOCK

(MGCRB), 5-17 9
MESSAGE GROUP CONTROL REQUEST BLOCK

(MGCRB) (TBL) , A-IS
MESSAGE GROUP CONTROL REQUEST BLOCK

($MGCRB)MACROCALL, 5-175
MESSAGE GROUP INITIALIZATION

REQUEST BLOCK (MGIRB), 5-187
MESSAGE GROUP INITIALIZATION

REQUEST BLOCK (MGIRB) (TBL) , A-18
MESSAGE GROUP RECOVERY REQUEST

BLOCK (MGRRB), 5-199
MESSAGE GROUP RECOVERY REQUEST

BLOCK (MGRRB) (TBL) , A-22
MESSAGE GROUP RECOVERY REQUEST

BLOCK ($MGRRB) MACRO CALL, 5-196
PARAMETER BLOCK AND WAIT Ll::i'l', 4-3
PARAMETER BLOCK FORMAT, A-13
PARAMETER BLOCK ($PRBLK)

l4ACRO CALL, 5-250
READ BLOCK ($RDBLK)

MACRO CALL, 5-254
REQUEST BLOCK OFFSETS, 4-4
REQUEST BLOCK TERMINATION STATUS,

5-365, 5-390
REQUEST BLOCK (RB), 1-17
RETURN REQUEST BLOCK ADDRESS

($RBADD) MACRO CALL, 5-316
SEMAPHORE REQUEST BLOCK

FORMAT A-I0
SEMAPHORE REQUEST BLOCK OFFSETS

($SRBD) MACRO CALL, 5-323
SEMAPHORE REQUEST BLOCK ($SRB)

MACRO CALL, 5-321
SEMAPHORE REQUEST BLOCK

(SRB), 5-322
TASK CONTROL BLOCK - DEFINITION,

1-17
TASK REQUEST BLOCK FORMAT, A-II
TASK REQUEST BLOCK OFFSETS ($TRBD)

MACRO CALL, 5-361
TASK REQUEST BLOCK ($TRB)

MACRO CALL, 5-357
TASK REQUEST BLOCK (TRB)

FUNCTIONS, 5-300, 5-360
WAIT BLOCK ($WTBLK)

MACRO CALL, 5-383

BLOCK (CONT)
WRI TE BLOCK ($WRBLK)

MACRO CALL, 5-393

BOUND UNIT IDENTIFICATION
BOUND UNIT IDENTIFICATION ($BUID)

MACRO CALL, 5-13

BREAK
DEVICE BREAK NOTIFICATION FUNCTION

(FC 9), 6-6

BYTE, PRINT CONTROL
PRINT CONTROL BYTE, 6-22

CALLS, MACRO
MACRO CALLS FUNCTION CODES AND

REGISTER CONTENTS (TBL) , C-2
REGISTER CONTENTS FOR SYSTEM

SERVICE MACRO CALLS, C-l

CANCEL
CANCEL CLOCK REQUEST ($CNCRQ)

MACRO CALL, 5-15
CANCEL REQUEST ($CANRQ)

MACRO CALL, 5-17
CANCEL SEMAPHORE REQUEST ($CNSRQ)

MACRO CALL, 5-19

CARD
CARD ASCII MODE, 6-17
CARD HOLLERITH-ASCII CODE TABLE

(TBL) , 6.-18
CARD READER IORB HARDWARE/SOFTWARE

STATUS MAPPING (TBL) , 6-21
CARD READER/CARD READER-PUNCH

DRIVER, 6-16
CARD READER/CARD READER-PUNCH IORB

FIELDS, 6-19
CARD READER/CARD READER-PUNCH RCT

FIELDS, 6-20
CARD READER/CARD READER-PUNCH RCT/

IORB STATUS MAPPING, 6-20
CARD VERBATIM MODE, 6-19

CARD-TO-MEMORY CODE
ASCII CARD-TO-MEMORY CODE FORMAT

(FIG), 6-17

CARTRIDGE DISK
CARTRIDGE DISK IORB FIRLDS, 6-29
CARTRIDGE DISK RCT FIELDS, 6-30
CARTRIDGE DISK RCT/IORB

HARDWARE/SOFTWARE STATUS MAPPING,
6-31

DISK DRIVER PROCESSING FOR
CARTRIDGE DISK, 6-29

CHARACTERS

i-2

APPEND ASCII CHARACTERS TO PATHNAME,
5-133

CONTROL CHARACTERS, D-l
SPECIAL GRAPHIC CHARACTERS, D-2

CB08

('

("

INDEX

CLEAN POINT
CLEAN POINT ($CLPNT)

MACRO CALL, 5-24

CLEAR
CLEAR EXTERNAL SWITCHES ($CLRSW)

MACRO CALL, 5-26

CLOCK
CANCEL CLOCK REQUEST ($CNCRQ)

MACRO CALL, 5-15
CLOCK REQUEST BLOCK FORMAT, A-2
CLOCK REQUEST BLOCK OFFSETS ($CRBD)

MACRO CALL, 5-31
CLOCK REQUEST BLOCK (CRB), 5-29
CLOCK REQUEST BLOCK ($CRB)

MACRO CALL, 5-28
MONITORS SERVICE FUNCTIONS, CLOCK

FUNCTIONS, 2-2
REQUEST CLOCK (RQCL)

MACRO CALL, 5-288

CLOSE FILE
CLOSE FILE ($CLFIL)

MACRO CALL, 5-32

CODE
ASCII CARD-TO-MEMORY CODE FORMAT

(FIG), 6-17
CARD HOLLERITH-ASCII CODE TABLE

(TBL), 6-13

CODE, FUNCTION
INPUT/OUTPUT FUNCTION CODE

(TBL) 6-3
USER DRIVER INITIALIZE FUNCTION

.(CODE 0), B-3
USER DRIVER READ/MODIFY STATUS

FUNCTION (CODE 4), B-5
USER DRIVER STOP I/O FUNCTION (CODE
2), B-4

USER DRIVER WAIT FOR INTERRUPT
(CODE 3), B-4

USER DRIVER WAIT ON LINE FUNCTION
(CODE 1), B-3

CODES
COMMUNICATIONS FUNCTION CODES, 6-6
DRIVER FUNCTIONS AND FUNCTION

CODES, 6-2
MACRO CALLS FUNCTION CODES AND

REGISTER CONTENTS (TBL), C-2
RETURN STATUS CODES IN $R1

REGISTER, 1-6
RETpRN STATUS CODES (TBL), 6-5
SYSTEM SERVICE MACRO CALLS AND

FUNCTION CODES, 1-6

COMMAND
COMMAND IN ($CIN) MACRO CALL, 5-36
COMMAND LINE PROCESS ($CMDLN)

MACRO CALL, 5-39

i-3

COMMAND-IN FILE
RETURN COMMAND-IN FILE

PATHNAME, 5-355

COMMERCIAL SIMULATOR
COMMERCIAL SIMULATOR TRAP, 7-12

COMMUNICATION, TASK
TASK COMMUNICATION, 5-360

.COMMUNICATIONS
COMMUNICATIONS FUNCTION CODES, 6-6
MONITOR SERVICE FUNCTIONS

COMMUNICATIONS, 2-2

CONCURRENCY CONTROL
ALTER CONCURRENCY CONTROL, 5-133
CONCURRENCY CONTROL, 5-125

CONDITION, ERROR
REPORT ERROR CONDITION ($RPTER)

MACRO CALL, 5-282

CONNECT
CONNECT FUNCTION (FC A), 6-7
TRAP HANDLER CONNECT ($TRPHD)

MACRO CALL, 5-370
USER WRITTEN TRAP HANDLER

CONNECT, 5-370

CONNECTION, MESSAGE
INITIATE MESSAGE CONNECTION, 5-189

CONSOLE MESSAGE
CONSOLE MESSAGE SUPPRESSION

($CMSUP) MACRO CALL, 5-42

CONTROL
ALTER CONCURRENCY CONTROL, 5-133
SONCURRENCY CONTROL, 5-125
CONTROL CHARACTERS, D-1
MONITOR SERVICE FUNCTION, TASK

CONTROL, 2-11
MONITOR SERVICE FUNCTION, TASK

GROUP CONTROL, 2-12
PRINT CONTROL BYTE, 6-22
~RINTER FORMS CONTROL, 6-22
RECORD LOCKS CONTROL, 5-125
RESOURCE CONTROL TABLE DEFINITION

1-17 '
RESOURCE CONTROL TABLE (RCT), 6-12
TASK CONTROL BLOCK DEFINITION

1-17 '

CONVERT
EXTERNAL DATE/TIME CONVERT TO

($EXTDT) MACRO CALL, 5-105
EXTERNAL TIME CONVERT TO ($EXTIM)

MACRO CALL, 5-108
INTERNAL DATE/TIME CONVERT TO

($INDTM) MACRO CALL, 5-169

CBQ8

COUNT MESSAGE GROUP
MESSAGE GROUP COUNT ($MCMG)

MACRO CALL, 5-181

CREATE MACRO CALLS
CREATE DIRECTORY ($CRDIR)

MACRO CALL, 5-44
CREATE FILE ($CRFIL)

MACRO CALL, 5-47
CREATE GROUP ($CRGRP)

MACRO CALL, 5-56
CREATE OVERLAY AREA TABLE ($CROAT)

MACRO CALL, 5-60.
CREATE TASK ($CRTSK)

MACRO CALL, 5-63

DATA STRUCTURES
DATA STRUCTURE FORMAT, A-I
DATA STRUCTURE GENERATION, 4-1
DATA STRUCTURES, 6-7
FILE SYSTEM DATA STRUCTURES, 4-5
INITIALIZE, ALLOCATE GROUP DATA

STRUCTURES, 5-57
INITIALIZE, ALLOCATE TASK DATA

STRUCTURES, 5-64
MONITOR SERVICES DATA STRUCTURES,

4-1 .
REMOVE GROUP DATA STRUCTURES, 5-71
REMOVE TASK DATA STRUCTURES, 5-76

DATA MANAGEMENT
DATA MANAGEMENT FUNCTIONS, 3-16

DATE/TIME
EXTERNAL DATE/TIME CONVERT TO

($EXTDT) MACRO CALL, 5-105
GET DATE/TIME ($GDTM)

MACRO CALL, 5-121
INTERNAL DATE/TIME CONVERT TO

($INDTM) MACRO CALL, 5-169

INDEX

DELETE
DELETE A FILE, 5-269
DELETE GROUP ($DLGRP) MACRO CALL,

5-71
DELETE RECORD ($DLREC), MACRO CALL,

5-73
DELETE TASK($DLTSK) MACRO CALL, 5-76

DEVICE
DEVICE BREAK NOTIFICATION FUNCTION

(FC 9), 6-6
DEVICE ERROR LOGGING, 5-94, 5-96
DEVICE DRIVER READ DISABLED DEVICE

FUNCTION (FC E), 6-5
DISABLE DEVICE ON ATTENTION ($DSDV)

MACRO CALL, 5-78
ENABLE DEVICE ($ENDV) MACRO CALL,

5-84
RESE~ DEVICE ATTENTION ;($RDVAT)

MACRO CALL, 5-309
USER DRIVER, LOCATE RCT FOR DEVICE

(ZXSRCT) SUBROUTINE, B-5

DEVICE DRIVER
CALLER INTERFACE WITH DEVICE DRIVER,

6-14
DEVICE DRIVER CONVENTIONS, 6-2
DEVICE DRIVERS, 6-16
DEVICE DRIVER, POSITION BLOCK

FUNCTION (FC 4), 6-6
DEVICE DRIVER, POSITION TAPE MARK

FUNCTION (FC 6), 6-6
DEVICE DRIVER, READ DISABLED DEVICE

FUNCTION (FC E), 6-5
DEVICE DRIVER, READ FUNCTION

(FC 2), 6-5
DEVICE DRIVER, WAIT ONLINE FUNCTION

(FC 0), 6-4
DEVICE DRIVER, WRITE FUNCTION

(FC 1), 6-4
MONITOR SERVICE FUNCTIONS, DATE/TIME

FUNCTIONS, 2-3
DEVICE DRIVER, WRITE TAPE MARK

FUNCTION (FC 3), 6-6
INPUT/OUTPUT DEVICE DRIVERS, 6-1
USER-WRITTEN DEVICE DRIVER, B-1 DEFINE SEMAPHORE

DEFINE SEMAPHORE ($DFSM)
MACRO CALL, 5-67

DEFINITIONS
LOGICAL RESOURCE NUMBER (LRN) ,

1-16
LOGICAL RESOURCE TABLE (LRT) ,

1-16
OFFSETS DEFINITION MACRO CALLS

(TBL), 3-12
RESOURCE CONTROL TABLE (RCT)

1-17
TASK CONTROL BLOCK, 1-17

DEFINITION, OFFSETS
FIB OFFSETS DEFINITIONS, 3-11
FILE SYSTEM OFFSETS

DEFINITIONS, 4-5

DIAL, SET
SET DIAL ($SDL) MACRO CALL, 5-324

DISABLE
DISABLE DEVICE ON ATTENTION ($DSDV)

MACRO CALL, 5-78
DISABLE USER TRAP ($DSTRP)

MACRO CALL, 5-80

DISCONNECT FUNCTION

i-4

DISCONNECT FUNCTION (FC B), 6-7

DISK
CARTRIDGE DISK IORB FIELDS, 6-29
CARTRIDGE DISK RCT FIELDS, 6-30
CARTRIDGE DISK RCT/IORB HARDWARE/

SOFTWARE STATUS MAPPING, 6-31
DISK DRIVER, 6-26

CB08

~ ..

(

INDEX

DISK (CONT)
DISK DRIVER PROCESSING FOR

CARTRIDGE DISK, 6-29
DISK DRIVER PROCESSING FOR

DISKETTE, 6-26
DISK DRIVER PROCESSING FOR MASS

STORAGE UNIT, 6-32

DISKETTE
DISK DRIVER PROCESSING FOR

DISKETTE, 6-26
DISKETTE IORB FIELDS, 6-27
DISKETTE RCT FIELDS, 6-28
DISKETTE RCT/IORa HARDWARE/SOFTWARE

STATUS MAPPING, 6-28

DISSOCIATE
DISSOCIATE FILE ($DSFIL)

MACRO CALL, 5-82

DRIVER
ASR/KSR DRIVER, 6-34
CALLER INTERFACE WITH DEVICE

DRIVER, 6-14
CARD READER/CARD READER-PUNCH

DRIVER, 6-16
DEVICE DRIVER CONVENTIONS, 6-2
DISK DRIVER, 6-26
DISK DRIVER PROCESSING FOR

CARTRIDGE DISK, 6-29
DISK DRIVER PROCESSING FOR

DISKETTE, 6-26
DISK DRIVER PROCESSING FOR MASS

STORAGE UNIT, 6-32
DRIVER FUNCTIONS AND FUNCTION

CODES, 6-2
DRIVER INTERFACE IN WRITING A

DRIVER, B-2
DRIVER USABLE SYSTEM

FUNCTIONS, B-3
INPUT/OUTPUT DRIVER, 6-1
1/0 REQUIREMENTS FOR USER DEVICE

DRIVER, B-3
MAGNETIC TAPE DRIVER, 6-39
PRINTER DRIVER, 6-22
REQUEST DEVICE DRIVER, 6-2
SYSTEM BUILDING IN WRITING A

DRIVER, B-1
USER-WRITTEN DRIVER, B-1

DRIVES, TAPE
CHARACTERISTICS OF SUPPORTED TAPE

DRIVES (TBL), 6-40

EBCDIC
ASCII AND EBCDIC CHARACTER

SETS, D-1

EBCDIC/HEXADEClMAL/BINARY
EBCDIC/HEXADECIMAL/BINARY

EQUIVALENTS (TBL), D-3

ENABLE
ENABLE DEVICE ($ENDV)

MACRO CALL, 5-84
ENABLE USER TRAP ($ENTRP)

MACRO CALL, 5-86

ENABLED, TRAP
TRAP ENABLED, 7-2
TRAP NOT ENABLED, 7-2

ENCLOSURE, MESSAGE GROUP

END

MESSAGE GROUP ENCLOSURE LEVEL,
5-192, 5-202

ERROR LOGGING END ($ELEND)
MACRO CALL, 5-88

EQUIVALENTS, CHARACTER
ASCII/HEXADEClMAL EQUICALENTS

(TBL), D-2
EBCDIC/HEXADEClMAL/BINARY

EQUIVALENTS (TBL), D-3

ERROR
DEVICE ERROR LOGGING, 5-94, 5-96
ERROR LOGGING END ($ELEND)

MACRO CALL, 5-88
ERROR LOGGING INFORMATION EXCHANGE

($ELEX) MACRO CALL, 5-90
ERROR LOGGING INFORMATION, GET

($ELGT) MACRO CALL, 5-94
ERROR LOGGING START ($ELST)

MACRO CALL, 5-96
ERROR OUT ($EROUT)

MACRO CALL, 5-99
MONITOR SERVICE FUNCTIONS, ERROR

HANDLING, 2-3
REPORT ERROR CONDITION ($RPTER)

MACRO CALL, 5-282
RESET ERROR LOGGING TABLE, 5-97
SAVE ERROR LOG VALUES, 5-90
SUMMARY ERROR LOG

INFORMATION, 5-88
USER-GENERATED TABLE FOR ERROR

LOGGING MACRO CALLS (TBL), 5-91

ERROR-OUT FILE
ERROR-OUT FILE, 5-99

EXAMPLES FOR FILE SYSTEM MACRO CALLS
ASSUMPTIONS FOR FILE SYSTEM

EXAMPLES, 3-13

EXCHANGE ERROR LOGGING
ERROR LOGGING INFORMATION EXCHANGE

($ELEX) MACRO CALL, 5-90

EXECUTE
EXECUTE LEAD TASK, 5-292
OVERLAY AREA RESERVE, AND EXECUTE

OVERLAY ($OVRSV)
~CRO CALL, 5-230

i-5 CB08

EXECUTE (CONT)
OVERLAY EXECUTE ($OVEXC)

MACRO CALL, 5-234

EXPAND PATHNAME
EXPAND PATHNAME ($XPATH)

MACRO CALL, 5-102

EXTERNAL
CLEAR EXTERNAL SWITCHES ($CLRSW)

MACRO CALL, 5-26
EXTERNAL DATE/TlME,CONVERT TO

($EXTDT) MACRO CALL, 5-105
EXTERNAL TIME,CONVERT TO ($EXTIM)

MACRO CALL, 5-108
MONITOR SERVICE FUNCTIONS EXTERNAL

SWITCH FUNCTIONS, 2-3
READ EXTERNAL SWITCHES ($RDSW)

MACRO CALL, 5-258
SET EXTERNAL SWITCHES ($SETSW)

MACRO CALL, 5-328

FACILITY, MESSAGE
MESSAGE FACILITY MESSAGE GROUP

REQUEST BLOCKS, A-15
MONITOR SERVICE FUNCTIONS MESSAGE

FACILITY, 2-5

FIB (FILE INFORMATION BLOCK)
CONTENTS OF FILE INFORMATION BLOCK

(FIB) (TBL) , 3-2, A-5
FIB OFFSETS DEFINITIONS, 3-11
FILE INFORMATION BLOCK (FIB),

3-2, 4-5
FILE INFORMATION BLOCK ($FIB)

MACRO CALL, 5-111
FORMAT OF FILE INFORMATION BLOCK

(FIB) (FIG), A-4
PROGRAM VIEW ENTRY IN FIB, 3-6

FILE
ASSOCIATE FILE ($ASFIL)

MACRO CALL, 5-10
ASSUMPTIONS FOR FILE SYSTEM

EXAMPLES, 3-l3
CLOSE FILE ($CLFIL)

MACRO CALL, 5-32
CREATE FILE ($CRFIL)

MAC,RO CALL, 5-47
DELETE A FILE, 5-269
DISSOCIATE FILE ($DSFIL)

MACRO CALL, 5-82
ERROR-OUT FILE, 5-99
FILE INFORMATION BLOCK OFFSETS

($TFIB) MACRO CALL, 5-119
FILE INFORMATION BLooK (FIB)

3-2, 4-5, A-4
FILE INFORMATION BLOCK ($FIB)

MACRO CALL, 5-111
GET FILE INFORMATION ($GIFIL)

MACRO CALL, 5-143
GET FILE ($GTFIL)

MACRO CALL, 5-124

INDEX

FILE (CONT)
LIFE CYCLE OF A FILE (FIG), 3-17
LOCATE RESERVE FILE, 5-124
OPEN FILE ($OPFIL)

MACRO CALL, 5-215
READ USER-IN FILE, 5-376
RELEASE FILE ($RLFIL)

MACRO CALL, 5-269
REMOVE FILE ($RMFIL)

MACRO CALL, 5-276
RETURN COMMAND-IN FILE

PATHNAME, 5-355
TERMINATE FILE PROCESSING, 5-32
TEST FILE ($TOFIL)

MACRO CALL, 5-367
TEST FILE ($TIFIL)

MACRO CALL, 5-367
USER-IN FILE, 5-211
USER-OUT FILE, 5-213
WAIT FILE ($WIFIL)

MACRO CALL, 5-385
WAIT FILE ($WOFIL)

MACRO CALL, 5-385
WRITE TO USER-OUT FILE, 5-378

FILE MANAGEMENT
FILE MANAGEMENT FUNCTIONS, 3-14

FILE SYSTEM
FILE SYSTEM DATA STRUCTURES, 4-5
FILE SYSTEM FUNCTIONS, 3-1
FILE SYSTEM OFFSETS

DEFINITIONS, 4-5

FILE /RENAME
RENAME FILE/RENAME DIRECTORY

($RNFIL) MACRO CALL, 5-279

FUNCTION AND FUNCTION CODE
COMMUNICATIONS FUNCTION CODES, 6-6
CONNECT FUNCTION (FC A), 6-7
DEVICE BREAK NOTIFICATION FUNCTION

i-6

(FC 9), 6-6
DEVICE DRIVER, POSITION BLOCK

FUNCTION (FC 4), 6-6
DEVICE DRIVER, POSITION TAPE MARK

FUNCTION (Fe 6), 6-6
DEVICE DRIVER, READ DISABLED DEVICE

FUNCTION (FC E), 6-5
DEVICE DRIVER, READ FUNCTION

(FC 2), 6-5
DEVICE DRIVER, WAIT ONLINE FUNCTION

(FCD), 6-4
DEVICE DRIVER, WRITE FUNCTION

(FC 1), 6-4
DEVICE DRIVER, WRITE TAPE MARK

FUNCTION (FC 3), 6-6
DISCONNECT FUNCTION (FC B), 6-7
DRIVER FUNCTIONS AND FUNCTION

CODES, 6-2
INPUT/OUTPUT FUNCTION CODE

(TBL), 6-3

CB08

(

INDEX

FUNCTION AND FUNCTION CODE (CONT)
MACRO CALLS, FUNCTION CODES, AND

REGISTER CONTENTS (TBL) , C-2
SYSTEM SERVICE MACRO CALLS AND

FUNCTION CODES, 1-6
USER DRIVER, INITIALIZE FUNCTION

(CODE 0), 3-3
USER DRIVER, READ, MODIFY STATUS

FUNCTION (CODE 4), B-5
USER DRIVER, STOP I/O FUNCTION

(CODE 2), B-4
USER DRIVER, WAIT ON LINE FUNCTION

(CODE 1), B-3

FUNCTIONS
DATA MANAGEMENT FUNCTIONS, 3-16
DRIVER FUNCTIONS AND FUNCTION

CODES, 6-2
DRIVER USABLE SYSTEM

FUNCTIONS, B-3
FILE MANAGEMENT FUNCTIONS, 3-14
MONITOR SERVICE FUNCTIONS, BATCH

FUNCTIONS, 2-1
MONITOR SERVICE FUNCTIONS CLOCK

FUNCTIONS, 2-2
MONITOR SERVICE FUNCTIONS, DATE/TIME

FUNCTIONS, 2-3
MONITOR SERVICE FUNCTIONS, EXTERNAL

SWITCH FUNCTIONS, 2-3
MONITOR SERVICE FUNCTIONS, SECONDARY

USER TERMINAL FUNCTIONS, 2-8
MONITOR SERVICE FUNCTIONS, SEMAPHORE

FUNCTIONS, 2-9
MONITOR SERVICE FUNCTIONS, STANDARD

SYSTEM FILE I/O FUNCTIONS, 2-10
$RQIO MACRO CALL FOR I/O

FUNCTIONS, 6-14
STORAGE MANAGEMENT FUNCTIONS, 3-18

GENERATE, WAIT LIST

GET

WAIT LIS~ GENERATE ($WLIST)
MACRO CALL, 5-388

ERROR LOGGING INFORMATION GET
($ELGT) MACRO CALL, 5-94

GET DATE/TIME ($GDTM)
MACRO CALL, 5-121

GET FILE INFORMATION ($GIFIL)
MACRO CALL, 5-143

GET FILE ($GTFIL)
MACRO CALL, 5-124

GET MEMORY/GET AVAILABLE MEMORY
($GMEM) MACRO CALL, 5-156

GET WORKING DIRECTORY ($GWDIR)
MACRO CALL, 5-161

.:;ROUP
ABORT GROUP REQUEST ($ABGRQ)

MACRO CALL, 5-4
ABORT GROUP ($ABGRP)

MACRO CALL, 5-2

GROUP (CONT)
ACTIVATE GROUP ($ACTVG)

MACRO CALL, 5-8
CREATE GROUP ($CRGRP)

MACRO CALL, 5-56
DELETE GROUP ($DLGRP)

MACRO CALL, 5-71
INITIALIZE, ALLOCATE GROUP DATA

STRUCTURES, 5-57
MESSAGE GROUP ACCEPTOR GROUP,

5-172, 5-189
MESSAGE GROUP INITIATOR GROUP,

5-172, 5-189
MONITOR SERVICE FUNCTIONS, TASK

GROUP CONTROL, 2-12
REACTIVATE SUSPENDED TASK

GROUP, 5-8
REMOVE GROUP DATA STRUCTURES, 5-71
REQUEST GROUP ($RQGRP)

MACRO CALL, 5-290
SPAWN GROUP ($SPGRP)

MACRO CALL, 5-333
SUSPEND GROUP ($SUSPG)

MACRO CALL, 5-345
TASK GROUP INPUT ($TGIN)

MACRO CALL, 5-355
TASK GROUP USER

IDENTIFICATION, 5-373

HOLLERITH-ASCII CODE
CARD HOLLERITH-ASCII CODE TABLE

(TBL), 6-18

HOME DIRECTORY
HOME DIRECTORY ($HDIR)

MACRO CALL, 5-163

IDENTIFICATION
ACCOUNT IDENTIFICATION ($ACTID)

MACRO CALL, 5-6
BOUND UNIT IDENTIFICATION ($BUID)

MACRO CALL, 5-13
MODE IDENTIFICATION ($MODID)

MACRO CALL, 5-208
MONITOR SERVICE FUNCTIONS

IDENTIFICATION AND INFORMATION,
2-4

PERSON IDENTIFICATION ($PERID)
MACRO CALL, 5-252

SYSTEM IDENTIFICATION ($SYSID)
MACRO CALL, 5-353

TASK GROUP USER
IDENTIFICATION, 5-373

USER IDENTIFICATION ($USRID)
MACRO CALL, 5-373

IDENTIFIER
MESSAGE GROUP IDENTIFIER, 5-192
SEMAPHORE IDENTIFIER, 5-68

I ST IN IORB
IORB SOFTWARE STATUS WORD (I_ST)

(TBL), ~-ll

i-7 CB08

INFORMATION
MONITOR SERVICE FUNCTIONS

IDENTIFICATION AND INFORMATION
2-4

OPERATOR INFORMATION MESSAGE
($OPMSG) MACRO CALL, 5-222

SUMMARY ERROR LOG INFO~mTION,
5-88

INITIALIZATION
MESSAGE GROUP INITIALIZATION

REQUEST BLOCK (MGIRB), 5-187
MESSAGE GROUP INITIALIZATION

REQUEST BLOCK (MGIRB) (TBL), A-18
USER-WRITTEN DRIVER

INITIALIZATION, B-2

INITIALIZE
INITIALIZE, ALLOCATE, GROUP DATA

STRUCTURES, 5-57
INITIALIZE, ALLOCATE, TASK DATA

STRUCTURES, 5-64
USER-DRIVER INITIALIZE FUNCTION

(CODE 0), B-3

INITIATE
INITIATE MESSAGE CONNECTION, 5-189
MESSAGE GROUP INITIATE ($MINIT)

MACRO CALL, 5-189

INITIATOR, MESSAGE GROUP
MESSAGE. GROUP INITIATOR GROUP,

5-172, 5-189

INPUT
ASR/KSR KDYBOARD INPUT, 6-35
NEW USER INPUT ($NUIN)

MACRO CALL, 5-211
TASK GROUP INPUT ($TGIN)

MACRO CALL, 5-355
USER INPUT ($USIN)

MACRO CALL, 5-375

INPUT/OUTPUT
INPUT/OUTPUT DEVICE DRIVERS, 6-1
INPUT/OUTPUT DRIVERS, 6-1
INPUT/OUTPUT FUNCTION CODE

(TBL), 6-3
INPUT/OUTPUT REQUEST BLOCK, 6-7
INPUT/OUTPUT REQUEST BLOCK

FORMAT, A-6
INPUT/OUTPUT REQUEST BLOCK OFFSETS

($IORBD) MACRO CALL, 5-168
INPUT/OUTPUT REQUEST BLOCK ($IORE)

MACRO CALL, 5-165

INTERNAL
INTERNAL DATE/TIME, CONVERT TO

($INDTM) MACRO CALL, 5-169

INTERRUPT
TRAP INTERRUPT SAVE AREA

(ISA), 7-6

INDEX

INTERRUPT (CONT)
TRAP INTERRUPT VECTOR, 7-6
USER-DRIVER WAIT FOR INTERRUPT

(CODE 3), B-4

INTERVAL, SUSPEND
SUSPEND FOR INTERVAL ($SUSPN)

MACRO CALL, 5-347

I ORB
ASR/KSR lORE FIELDS, 6-36
CARD READER CARD/READER-PUNCH IORB

FIELDS (TBL), 6-19
CARD READER/CARD READER-PUNCH IORB

FIELDS, 6-19
CARTRIDGE DISK IORB FIELDS, 6~29
DISKETTE lORE FIELDS, 6-27
INPUT/OUTPUT REQUEST BLOCK ($IORE)

MACRO CALL, 5-165 .
lORE IN I/O TRANSFER, 5-294
IORB SOFTWARE STATUS WORD (I ST)

(TBL); 6-11 -
MAGNETIC TAPE IORB FIELDS, 6-42
MASS STORAGE UNIT IORB

FIELDS, 6-33
PRINTER lORE FIELDS, 6-24
SUMMARY OF IORB FIELDS FOR OPERATOR

INTERFACE (TBL) , A-9

I/O
FORMAT I/O REQUEST BLOCK

(FIG), 6-8, A-7
lORE IN I/O TRANSFER, 5-294
I/O OPERATION SEQUENCE, 6-14
I/O REQUIREMENTS FOR USER DEVICE

DRIVER, B-8
I/O SUBROUTINES (ZIOSUB) FOR

USER-WRITTEN DRIVERS, B-3
MONITOR SERVICE FUNCTIONS, PHYSICAL

I/O, 2-7
MONITOR SERVICE FUNCTIONS, STANDARD

SYSTEM FILE I/O FUNCTIONS, 2-10
REQUEST I/O ($RQIO)

MACRO CALL, 5-294
$RQIO MACRO CALL FOR I/O

FUNCTIONS, 6-14
USER-DRIVER, STOP I/O FUNCTION

(CODE 2), B-4
WAIT FOR I/O COMPLETION, 5-385
WRITING PERIPHERAL I/O DRIVER, B-1

ISA
TRAP INTERRUPT SAVE AREA (ISA) , 7-6

KEYBOARD INPUT
ASR/KSR KEYBOARD INPUT, 6-35

LEAD TASK, EXECUTE
EXECUTE LEAD TASK, 5-292

LEVEL, ENCLOSURE
MESSAGE GROUP ENCLOSURE LEVEL,

5-192, 5-202

CB08

,~
"

(, ..

LIST
AUTODIAL TELEPHONE LIST, 5-324
FORMAT OF WAIT LIST (FIG), A-14
PARAMETER BLOCK AND WAIT LIST, 4-3
WAIT LIST FORMAT, A-14
WAIT LIS~ GENERATE ($WLIST)

MACRO CALL, 5-388
WAIT ON REQUEST LIST ($WAITL)

MACRO CALL, 5-390

LOCATE
LOCATE RESERVE FILE, 5-124
USER-DRIVER LOCATE RCT FOR DEVICE

(ZXSRCT) SUBROUTINE, B-5

LOCKS

LOG

RECORD LOCKS, 5-24
RECORD LOCKS CONFLICT, 5-136
RECORD LOCKS CONTROL, 5-125
RECORD LOCKS OPERATION, 5-134
UNLOCK RECORD LOCKS, 5-24

SAVE ERROR LOG VALUES, 5-90
SUMMARY ERROR LOG

INFORMATION, 5-88

LOGGING

LRN

DEVICE ERROR LOGGING, 5-94, 5-96
ERROR LOGGING END ($ELEND)

MACRO CALL, 5-88
ERROR LOGGING INFORMATION EXCHANGE

($ELEX) MACRO CALL, 5-90
ERROR LOGGING INFORMATION, GET

($ELGT) MACRO CALL, 5-94
ERROR LOGGING, START ($ELST)

MACRO CALL, 5-96
RESET ERROR LOGGING TABLE, 5-97
USER-GENERATED TABLE FOR ERROR

LOGGING MACRO CALLS (TBL) , 5-91

LOGICAL RESOURCE NUMBER (LRN)
DEFINITION, 1-16

LRN AS POINTER TO RCT (FIG), 6-15

MACRO
LOCATION OF MACRO ROUTINES, 1-6
MACRO CALLS FUNCTION CODES AND

REGISTER CONTENTS (TBL), C-2
MACRO ROUTINE/CALL, DESCRIPTIONS OF'

MACRO CALLS, 5-1
REGISTER CONTENTS FOR SYSTEM

SERVICE MACRO CALLS, C-1

MACRO CALL LIST, MACRO NAMES
ABORT GROUP ($ABGRP), 5-2
ABORT GROUP REQUEST ($ABGRQ), 5-4
ACCOUNT IDENTIFICATION ($ACTID), 5-6
ACTIVATE GROUP ($ACTVG), 5-8
ASSOCIATE FILE ($ASFIL), 5-10
BOUND UNIT IDENTIFICATION

(BUID), 5-;13
CANCEL CLOCK REQUEST ($CNCRQ), 5-15

MACRO CALL LIST, MACRO NAMES (CONT)
CANCEL REQUEST ($CANRQ), 5-P
CANCEL SEMAPHORE REQUEST ($CNSRQ), 5-19
CHANGE WORKING DIRECTORY ($CWDIR), 5-21
CLEAN POINT ($CLPNT), 5-24
CLEAR EXTERNAL SWITCHES ,d($CLRSW), 5-26
CLOCK REQUEST BLOCK ($CRB), 5-28
CLOCK REQUEST BLOCK OFFSETS

($CRBD), 5-31
CLOSE FILE ($CLFIL), 5-32
COMMAND IN ($CIN), 5-36
COMMAND LINE PROCESS ($CMDLN), 5-39
CONSOLE MESSAGE SUPPRESSION

($CMSUP), 5-42
CREATE DIRECTORY ($CRDIR), 5-44
CREATE FILE ($CRFIL), 5-47
CREATE FILE PARAMETER STRUCTURE

BLOCK - OFFSETS ($CRPSB), 5-55
CREATE GROUP ($CRGRP), 5-56
CREATE OVERLAY AREA TABLE

($CROAT), 5-60
CREATE TASK ($CRTSK), 5-63
DEFINE SEMAPHORE ($DFSM), 5-67
DELETE GROUP ($DLGRP), 5-71
DELETE RECORD ($DLREC), 5-73
DELETE TASK ($DLTSK), 5-76
DISABLE DEVICE ON ATTENTION

($DSDV), 5-78 '
DISABLE USER TRAP ($DSTRP), 5-80
DISSOCIATE FILE ($DSFIL), 5-82
ENABLE DEVICE ($ENDV), 5-84
ENABLE USER TRAP ($ENTRP), 5-86
ERROR LOGGING, END ($ELEND), 5-88
ERROR LOGGING INFORMATION, EXCHANGE

($ELEX), 5-90
ERROR LOGGING INFORMATION, GET

($ELGT), 5-94
ERROR LOGGING, START ($ELST), 5-96
ERROR OUT ($EROUT), 5-99
EXPAND PATHNAME ($XPATH), 5-102
EXTERNAL DATE/TIME, CONVERT TO

($EXTDT), 5-105
EXTERNAL TIME, CONVERT TO

($EXTIM), 5-108
FILE INFORMATION BLOCK ($FIB), 5-111
FILE INFORMATION BLOCK OFFSETS

($TFIB), 5-119
GET DATE/TIME ($GDTM), 5~121
GET FILE ($GTFIL), 5-124
GET FILE PARAMETER STRUCTURE BLOCK

OFFSETS ($GTPSB), 5-142
GET FILE INFORMATION ($GIFIL), 5-143
GET FILE INFORMATION, FILE

ATTRIBUTE BLOCK OFFSETS
($GIFAB).5-153

GET FILE INFORMATION, KEY
DESCRIPTORS BLOCK OFFSETS
($GIKDB), 5-154

GET FILE INFORMATION, PARAMETER
STRUCTURE BLOCK OFFSETS
($GIPSB), 5-155

GET MEMORY/GET AVAILABLE MEMORY
($GMEM), 5-156

i-9 CB08

INDEX

MACRO CALL LIST, MACRO NAMES (CONT)
GET WORKING DIRECTORY ($GWDIR),

5-161
HOME DIRECTORY ($HDIR), 5-163
INPUT/OUTPUT REQUEST BLOCK ($IORB),

5-165
INPUT/OUTPUT REQUEST BLOCK OFFSETS

($IORBD), 5-168
INTERNAL DATE/TIME, CONVERT TO

($INDTM), 5-169
MESSAGE GROUP, ACCEPT ($MACPT),

5-172
MESSAGE GROUP CONTROL REQUEST BLOCK

($MGCRB), 5-175
MESSAGE GROUP CONTROL REQUEST BLOCK

OFFSETS ($MGCRT), 5-180
MESSAGE GROUP, COUNT ($MCMG), 5-181
MESSAGE GROUP INITIALIZATION

REQUEST BLOCK ($MGIRB), 5-184
MESSAGE GROUP INITIALIZATION

REQUEST BLOCK OFFSETS ($MGIRT),
5-188

MESSAGE GROUP, INITIATE ($MINIT),
5-189

MESSAGE GROUP, RECEIVE ($MRECV),
5-192

MESSAGE GROUP RECOVERY REQUEST
BLOCK ($MGRRB), 5-196

MESSAGE GROUP RECOVERY REQUEST
BLOCK OFFSETS ($MGRRT), 5-200

MESSAGE GROUP, SEND ($MSEND), 5-201
MESSAGE GROUP, TERMINATE ($MTMG),

5-205
MODE IDENTIFICATION ($MODID), 5-208
NEW PROCESS ($NPROC), 5-210
NEW USER INPUT ($NUIN), 5-211
NEW USER OUTPUT ($NUOUT), 5-213
OPEN FILE ($OPFIL), 5-215
OPERATOR INFORMATION MESSAGE

($OPMSG), 5-222
OPERATOR RESPONSE MESSAGE ($OPRSP),

5-225
OVERLAY AREA, RELEASE ($OVRLS) ,

5-228
OVERLAY AREA RESERVE, AND EXECUTE

OVERLAY ($OVRSV), 5-230
OVERLAY, EXECUTE ($OVEXC), 5-234
OVERLAY, LOAD ($OVLD), 5-237
OVERLAY RELEASE, WAIT, AND RECALL

($OVRCL), 5-240
OVERLAY STATUS ($OVST), 5-244
OVERLAY, UNLOAD ($OVUN), 5-247
PARAMETER BLOCK ($PRBLK), 5-250
PERSON IDENTIFICATION ($PERID),

5-252
READ BLOCK ($RDBLK), 5-254
READ EXTERNAL SWITCHES ($RDSW),

5-258 /
READ RECORD ($RDREC), 5-260
RELEASE DIRECTORY ($RLDIR), 5-266
RELEASE FILE ($RLFIL), 5-269
RELEASE SEMAPHORE ($RLSM), 5-272
RELEASE TERMINAL ($RLTML), 5-274
REMOVE FILE ($RMFIL), 5-276

MACRO CALL LIST, MACRO NAMES (CONT)
RENAME FILE/RENAME DIRECTORY

($RNFIL), 5-279

i-10

REPORT ERROR CONDITION ($RPTER),
5-282

REQUEST BATCH ($RQBAT), 5-285
REQUEST CLOCK ($RQCL), 5-288
REQUEST GROUP ($RQGRP), 5-290
REQUEST I/O ($RQIO), 5-294
REQUEST SEMAPHORE ($RQSM), 5-297
REQUEST TASK (RQTSK), 5-300
REQUEST TEru~INAL ($RQTML), 5-303
RESERVE SEMAPHORE ($RSVSM), 5-306
RESET DEVICE ATTENTION ($RDVAT),

5-309
RETURN ($RETRN), 5-311
RETURN MEMORY/RETURN PARTIAL BLOCK

OF MEMORY ($RMEM), 5-313
RETURN REQUEST BLOCK ADDRESS

($RBADD), 5-316
REWRITE RECORD ($RWREC), 5-318
SEMAPHORE REQUEST BLOCK ($SRB),

5-321
SEMAPHORE REQUEST BLOCK OFFSETS

($SRBD), 5-323
SET DIAL ($SDL), 5-324
SET EXTERNAL SWITCHES ($SETSW),

5-328
SET TERMINAL CHARACTERISTICS ($STTY),

5-330
SPAWN GROUP ($SPGRP), 5-333
SPAWN TASK ($SPTSK), 5-339
STATUS MEMORY POOL ($STMP), 5-343
SUSPEND GROUP ($SUSPG), 5-345
SUSPEND FOR INTERVAL ($SUSPN), 5-347
SUSPEND UNTIL TIME ($SUSPN), 5-350
SYSTEM IDENTIFICATION ($SYSID),

5-353
TASK GROUP INPUT ($TGIN), 5-355
TASK REQUEST BLOCK ($TRB) , 5-357
TASK REQUEST BLOCK OFFSETS ($TRBD),

5-361
TERMINATE REQUEST ($TRMRQ), 5-362
TEST COMPLETJON STATUS ($TEST),

5-365
TEST FILE ($TIFIL), 5-367
TEST FILE ($TOFIL), 5-367
TRAP HANDLER CONNECT ($TRPHD), 5-370
USER IDENTIFICATION ($USRID), 5-373
USER INPUT ($USIN), 5-375
USER OUTPUT ($USOUT), 5-378
WAIT ($WAIT), 5-381
WAIT BLOCK ($WTBLK), 5-383
WAIT FILE (WIFIL), 5-385
WAIT FILE ($WOFIL), 5-385
WAIT LIST, GENERATE ($WLIST), 5-388
WAIT ON REQUEST LIST ($WAITL), 5-390
WAIT BLOCK ($WRBLK), 5-393
WAIT RECORD ($WRREC), 5-397

CB08

INDEX

MACRO CALLS
OFFSETS DEFINITION MACRO CALLS

. (TBL), 3-12
SYSTEM SERVICE MACRO CALLS AND

FUNCTION CODES, 1-6
SYSTEM SERVICE MACRO CALLS

(TBL), 1-7

MAGNETIC TAPE
MAGNETIC TAPE DRIVER, 6-39
MAGNETIC TAPE FILE SEARCH

RULES, 5-217
MAGNETIC TAPE IORB FIELDS, 6-42
MAGNETIC TAPE RCT FIELDS, 6-43
MAGNETIC TAPE RCT/IORB

HARDWARE/SOFTWARE STATUS
MAPPING, 6-43

MAILBOX
MESSAGE QUEUE MAILBOX, 5-172

MARK, TAPE
DEVICE-DRIVER, POSITION TAPE MARK

FUNCTION (FC 6), 6-6
DEVICE-DRIVER, WRITE TAPE MARK

FUNCTION (FC 3), 6-6

MASS STORAGE UNIT
DISK DRIVER PROCESSING FOR MASS

STORAGE UNIT, 6-32
MASS STORAGE UNIT IORB

FIELDS, 6-33
MASS STORAGE UNIT RCT FIELDS, 6-33
MASS STORAGE UNIT RCT/IORB

HARDWARE/SOFTWARE STATUS
MAPPING, 6-34

MEMORY
CONTENTS OF TRAP-RELATED MEMORY

AREAS, 7-2
GET MEMORY/GET AVAILABLE MEMORY

($GMEM) MACRO CALL, 5-156
MONITOR SERVICE FUNCTIONS, MEMORY

ALLOCATION, 2-4
STATUS MEMORY POOL ($STMP)

MACRO CALL, 5-343

MESSAGE
CONSOLE MESSAGE SUPPRESSION

($CMSUP) MACRO CALL, 5-42
INITIATE MESSAGE CONNECTION, 5-189
MESSAGE FACILITY MESSAGE GROUP

REQUEST BLOCKS, A-15
MESSAGE QUEUE MAILBOX, 5-172
MONITOR SERVICE FUNCTIONS, MESSAGE

FACILITY, 2-5
OPERATOR INFORMATION MESSAGE

($OPMSG) MACRO CALL, 5-222
OPERATOR RESPONSE MESSAGE ($OPRSP)

MACRO CALL, 5-225

MESSAGE GROUP
MESSAGE FACILITY MESSAGE GROUP

REQUEST BLOCKS, A-15
MESSAGE GROUP, ACCEPT ($MACPT)

MACRO CALL, 5-172
MESSAGE GROUP ACCEPTOR GROUP,

5-172, 5-189
MESSAGE GROUP CONTROL REQUEST BLOCK

(MGCRB), 5-179
MESSAGE GROUP CONTROL REQUEST BLOCK

(MGCRB) (TBL), A-IS
MESSAGE GROUP CONTROL REQUEST BLOCK

($MGCRB) MACRO CALL, 5-175
MESSAGE GROUP, COUNT ($MCMG)

MACRO CALL, 5-181
MESSAGE GROUP ENCLOSURE LEVEL,

5-192, 5-202
MESSAGE GROUP IDENTIFIER, 5-192
MESSAGE GROUP INITIALIZATION

REQUEST BLO.CK (r:tGIRB), 5-187
MESSAGE GROUP INITIALIZATION

REQUEST BLOCK (MGIRB) (TBL), A-18
MESSAGE GROUP INITIATE ($MINIT)

MACRO CALL, 5-189
MESSAGE GROUP INITIATOR GROUP,

5-172, 5-189
MESSAGE GROUP QUARANTINE UNIT,

5-192, 5-201
MESSAGE GROUP RECEIVE ($MRECV)

MACRO CALL, 5-192
MESSAGE GROUP RECOVERY REQUEST

BLOCK (MGRRB), 5-199
MESSAGE GROUP RECOVERY REQUEST

BLOCK (MGRRB) (TBL), A-22
MESSAGE GROUP RECOVERY REQUEST

BLOCK ($MGRRB) MACRO CALL, 5-196
MESSAGE GROUP SEND ($MSEND)

MACRO CALL, 5-201
MESSAGE GROUP TERMINATE ($MTMG)

MACRO CALL, 5-205
TERMINATE MESSAGE GROUP, 5-203

MGCRB
ARGUMENT VALUES FOR $MGCRB

MACRO CALL (TBL), 5-176
MESSAGE GROUP CONTROL REQUEST BLOCK

(MGCRB), 5-179
MESSAGE GROUP CONTROL REQUEST BLOCK

(MGCROB) (TBL), A-IS
MGCRB ARGUMENT VALUES FOR $MRECV

MACRO CALL (TBL), 5-193
MGCRB ARGUMENT VALUES FOR $MSEND

MACRO CALL (TBL), 5-202

MGIRB
ARGUMENT VALUES FOR $MGIRB

MACRO CALL (TBL), 5-185
MESSAGE GROUP INITIALIZATION

REQUEST BLOCK (MGIRB), 5-187
MESSAGE GROUP INITIALIZATION

REQUEST BLOCK (MGIRB) (TBL). A-18

i-ll CB08

MGIRB (CONT)
MGIRB ARGUMENT VALUES FOR $MACPT

MACRO CALL (TBL), 5-173
MGIRB ARGUMENT VALUES FOR $MCMG

MACRO CALL (TBL), 5-182
MGIRB ARGUMENT VALUES FOR $MINIT

MACRO CALL (TBL), 5-190

MGRRB
ARGUMENT VALUES FOR $MGRRB

MACRO CALL (TBL), 5-197
MESSAGE GROUP RECOVERY REQUEST

BLOCK (MGRRB), 5-199
MESSAGE GROUP RECOVERY REQUEST

BLOCK (MGRRB) (TBL), A-22
MGRRB ARGUMENT VALUES FOR $MTMG

MACRO CALL (TBL), 5-207

MODE
CARD ASCII MODE, 6-17
CARD VERBATIM MODE, 6-19
CARD VERBATIM MODE FORMAT (FIG),

6-19
MODE IDENTIFICATION ($MODID)

MACRO CALL, 5-208

MONITOR SERVICE FUNCTIONS
MONITOR SERVICE FUNCTIONS, 2-1
MONITOR SERVICE FUNCTIONS, BATCH

2-1
MONITOR SERVICE FUNCTIONS, CLOCK

2-2
MONITOR SERVICE FUNCTIONS,

COMMUNICATIONS, 2-2
MONITOR SERVICE FUNCTIONS,

DATE/TIME, 2-3
MONITOR SERVICE FUNCTIONS, ERROR

HANDLING, 2-3
MONITOR SERVICE FUNCTIONS, EXTERNAL

SWITCH, 2-3
MONITOR SERVICE FUNCTIONS,

IDENTIFICATION AND INFORMATION,
2-4

MONITOR SERVICE FUNCTIONS, MESSAGE
FACILITY, 2-5

MONITOR SERVICE FUNCTIONS, OPERATOR
INTERFACE, 2-6

MONITOR SERVICE FUNCTIONS, OVERLAY
HANDLING, 2-6

MONITOR SERVICE FUNCTIONS, PHYSICAL
I/O, 2-7

MONITOR SERVICE FUNCTIONS, REQUEST
AND RETURN, 2-8

MONITOR SERVICE FUNCTIONS,
-SECONDARY USER TERMINAL, 2-8

MONITOR SERVICE FUNCTIONS, STANDARD
SYSTEM FILE I/O, 2-10

MONITOR SERVICE FUNCTIONS, TASK
CONTROL, 2-11

MONITOR SERVICE FUNCTIONS, TASK
GROUP CONTROL, 2-12

MONITOR SERVICE FUNCTIONS, TRAP
HANDLING, 2-13

INDEX

MONITOR SERVICES DATA STRUCTURES
MONITOR SERVICES, DATA

STRUCTURES, 4-1

NUMBER, LOGICAL RESOURCE
LQGICAL.:..:.RESOURCE NUMBER (LRN) ...

DEFINITION, 1-16

OFFSETS
CLOCK REQUEST BLOCK OFFSETS ($CRBD)

MACRO CALL, 5-31
FIB OFFSETS DEFINITIONS, 3-11
FILE INFORMATION BLOCK OFFSETS

($TFIB) MACRO CALL, 5-119
FILE SYSTEM OFFSETS DEFINITIONS,

4-5
INPUT/OUTPUT REQUEST BLOCK OFFSETS

($IORBD) MACRO CALL, 5-168
OFFSETS DEFINITION MACRO CALLS

(TBL), 3-12
REQUEST BLOCK OFFSETS, 4-4
SEMAPHORE REQUEST BLOCK OFFSETS

($SRBD) MACRO CALL, 5-323
TASK REQUEST BLOCK OFFSETS ($TRBD)

MACRO CALL, 5-361

OPEN FILE
OPEN FILE ($OPFIL)

MACRO CALL, 5-215

OPERATOR
MONITOR SERVICE FUNCTIONS, OPERATOR

INTERFACE, 2-6
OPERATOR INFORMATION MESSAGE

($OPMSG) MACRO CALL, 5-222
OPERATOR RESPONSE MESSAGE ($OPRSP)

MACRO CALL, 5-225
SUMMARY OF IORB FIELDS FOR OPERATOR

INTERFACE (TBL), A-9

OUTPUT
ASR/KSR PRINTER OUTPUT, 6-36
NEW USER OUTPUT ($NUOUT)

MACRO CALL, 5-213
USER OUTPUT ($USOUT)

MACRO CALL, 5-378
USER-DRIVER, OUTPUT ADDRESS AND

RANGE (ZIOLD) SUBROUTINE, B-6

OVERLAY

i-12

CREATE OVERLAY AREA TABLE ($CROAT)
MACRO CALL, 5-60

MONITOR SERVICE FUNCTIONS, OVERLAY
HANDLING, 2-6

CBOc

INDEX

OVERLAY (CONT)
OVERLAY AREA, RELEASE ($OVRLS)

MACRO CALL, 5-228
OVERLAY AREA, RESERVE AND EXECUTE

OVERLAY ($OVRSV)
MACRO CALL, 5-230

OVERLAY, EXECUTE ($OVEXC)
MACRO CALL, 5-234

OVERLAY, LOAD ($OVLD)
MACRO CALL, 5-237

OVERLAY, RELEASE, WAIT AND RECALL
($OVRCL) MACRO CALL, 5-240

OVERLAY STATUS ($OVST)
MACRO CALL, 5-244

OVERLAY, UNLOAD ($OVUN)
MACRO CALL, 5-247

PACKED TAPE
PACKED AND 6-BIT MODESON 7-TRACK

TAPE (FIG), 6-39

--PARAMETER
FORMAT OF PARAMETER BLOCK

(FIG), A-14
PARAMETER BLOCK AND WAIT LIST, 4-3
PARAMETER BLOCK FORMAT, A-13
PARAMETER BLOCK ($PRBLK)

MACRO CALL, 5-250

PATHNAME
APPEND ASCII CHARACTERS TO

PATHNAME, 5-133
EXPAND PATHNAME ($XPATH)

MACRO CALL, 5-102
RETURN COMMAND-IN FILE

PATHNAME, 5-355
RETURN WORKING DIRECTORY

PATHNAME, 5-161

PERSON
PERSON IDENTIFICATION ($PERID)
~~CRO CALL, 5-252

PHYSICAL I/O FUNCTIONS
PHYSICAL I/O, 2-7

P-OP
P-OP OPERATION, 5-306

P-TEST
P-TEST OPERATION, 5-306

POINT
CLEAN POINT ($CLPNT)

MACRO CALL, 5-24

POINTER
LRN AS POINTER TO RCT (FIG), 6-15
POINTER TO NEXT TRAP SAVE AREA

(NATSAT), 7-5
READ POINTER, 5-263

POOL,MEMORY
S'fATUS MEMORY POOL ($STMP)

MACRO CALL, 5-343

POSITION .
DEVICE DRIVER, POSITION BLOCK

FUNCTION (FC 4), 6-6
DEVICE DRIVER POSITION TAPE MARK

FUNCTION (FC 6), 6-6

PRINT CONTROL
PRINT CONTROL BYTE, 6-22

PRINTER
ASR/KSR PRINTER OUTPUT, 6-36
PRINTER DRIVER, 6-22
PRINTER FORMS CONTROL, 6-22
PRINTER IORB FIELDS, 6-24
PRINTER RCT FIELDS, 6-25
PRINTER RCT/IORB HARDWARE/SOFTWARE

STATUS MAPPING, 6-25

PROCESS
COMMAND LINE PROCESS ($CMDLN)

MACRO CALL, 5-39
NEW PROCESS ($NPROC)

MACRO CALL, 5-210

PROCESSING
DISK DRIVER PROCESSING FOR

CARTRIDGE DISK, 6-29
DISK DRIVER PROCESSING FOR

DISKETTE, 6-26
DISK DRIVER PROCESSING FOR MASS

STORAGE UNIT, 6-32
TERMINATE FILE PROCESSING, 5-32

PROGRAM VIEW
CONTENTS OF PROGRAM VIEW ENTRY IN

FIB (TBL), 3-7
PROGRAM VIEW ENTRY IN FIB, 3-6

QUARANTINE UNIT
MESSAGE GROUP QUARANTINE UNIT,

5-192, 5-201

QUEUE
MESSAGE QUEUE MAILBOX, 5-172
REQUEST QUEUE, 1-17
TASK REQUEST QUEUE, 1-16, 1-17

$R1 REGISTER
RETURN STATUS CODES IN $R1

REGISTER, 1-6

RANGE
RESIDUAL RANGE, 6-13
USER-DRIVER OUTPUT ADDRESS AND

RANGE (ZOILD) SUBROUTINE, B-6

i-13 CB08

INDEX

RCT
ASR/KSR RCT FIELDS, 6-37
CARD READER/CARD READER-PUNCH RCT

FIELDS, 6-20
CARTRIDGE DISK RCT FIELDS, 6-30
DISKETTE RCT FIELDS, 6-28
LRN AS POINTER TO RCT (FIG), 6-15
MAGNETIC TAPE RCT FIELDS, 6-43
MASS STORAGE UNIT RCT FIELDS, 6-33
PRINTER RCT FIELDS, 6-25
RCT ATTENTION STATUS INDICATOR,

5-309
RESOURCE CONTROL ':FABLE (RCT) , 6-12
USER-DRIVER LOCATE RCT FOR DEVICE

(ZXSRCT) SUBROUTINE, B-5

REACTIVATE TASK GROUP
REACTIVATE SUSPENDED TASK

GROUP, 5-8

READ
DEVICE DRIVER, READ DISABLED DEVICE

FUNCTION (FC E), 6-5
DEVICE DRIVER, READ FUNCTION

(FC 2), 6-5
READ BLOCK ($RDBLK) MACRO CALL,

5-254
READ EXTERNAL SWITCHES ($RDSW)

MACRO CALL, 5-258
READ POINTER, 5-263
READ RECORD ($RDREC)

MACRO CALL, 5-260
READ USER-IN FILE, 5-376

READER-PUNCH
CARD READER/CARD READER-PUNCH

DRIVER, 6-16
CARD READER/CARD READER-PUNCH IORB

FIELDS, 6-19
CARD READER/CARD READER-PUNCH RCT

FIELDS, 6-20
CARD READER/CARD READER-PUNCH

RCT/IORB STATUS MAPPING, 6-20

READ/MODIFY
USER-DRIVER, READ/MODIFY STATUS

FUNCTION (CODE 4), B-5

RECALL OVERLAY
OVERLAY RELEASE, WAIT, AND RECALL

($OVRCL) MACRO CALL, 5-240

RECEIVE MESSAGE GROUP
MESSAGE GROUP RECEIVE ($MRECV)

MACRO CALL, 5-192

RECORD
DELETE RECORD ($DLREC)

MACRO CALL, 5-73
READ RECORD ($RDREC)

MACRO CALL, 5-260
RECORD LOCKS, 5-24
RECORD LOCKS CONFLICT, 5-136

RECORD (CONT)
RECORD LOCKS CONTROL, 5-125
RECORD LOCKS OPERATION, 5-134
REWRITE RECORD ($RWREC)

MACRO CALL, 5-318
UNLOCK RECORD LOCKS, 5-24, 5-136
WRITE RECORD ($WRREC)

MACRO CALL, 5-397
WRITE UPDATED RECORDS, 5-24

REGISTER
MACRO CALLS FUNCTION CODES AND

REGISTER CONTENTS (TBL), C-2
REGISTER CONTENTS AT TASK

ACTIVATION, 1-5
REGISTER CONTENTS FOR SYSTEM

SERVICE MACRO CALLS, C-1
REGISTER CONVENTIONS AND

CONTENTS, 1-2
RETURN STATUS CODES IN $R1

REGISTER, 1-6

RELEASE
OVERLAY AREA, RELEASE ($OVRSL)

MACRO CALL, 5-228
OVERLAY, RELEASE, WAIT, AND RECALL

($OVRCL) MACRO CALL, 5-240
RELEASE DIRECTORY ($RLDIR)

MACRO CALL, 5-266
RELEASE FILE ($RLFIL)

MACRO CALL, 5-269
RELEASE SEMAPHORE ($RLSM)

MACRO CALL, 5-272
RELEASE TERMINAL ($RLTML)

MACRO CALL, 5-274

RENAME FlLE/DIRECTORY
RENAME FILE/RENAME DIRECTORY

($RNFIL) MACRO CALL, 5-279

REPORT ERROR
REPORT ERROR CONDITION ($RPTER)

MACRO CALL, 5-282

REQUEST

i-14

ABORT GROUP REQUEST ($ABGRQ)
MACRO CALL, 5-4

CANCEL CLOCK REQUEST ($CNCRQ)
MACRO CALL, 5-15

CANCEL REQUEST ($CANRQ)
MACRO CALL, 5-17

CANCEL SEMAPHORE REQUEST ($CNSRQ)
MACRO CALL, 5-19

CLOCK REQUEST BLOCK OFFSETS ($CRBD)
MACRO CALL, 5-31

CLOCK REQUEST BLOCK (CRB) , 5-288,
A-2

CLOCK REQUEST BLOCK ($CRB)
MACRO CALL, 5-28

FIRST FOUR ITEMS OF REQUEST BLOCK
(FIG), A-2

INPUT/OUTPUT REQUEST BLOCK, (IORB)
6-7, 6-8, A-6, A~7

CB08

,/" '\

(

INDEX

REQUEST (CONT)
INPUT/OUTPUT REQUEST BLOCK OFFSETS

($IORBD) MACRO CALL, 5-168
INPUT/OUTPUT REQUEST BLOCK ($IORB)

MACRO CALL, 5-165
MESSAGE GROUP REQUEST BLOCKS,

A-15
MESSAGE GROUP CONTROL REQUEST

BLOCK (MGCRB), 5-179, A-15
MESSAGE GROUP CONTROL REQUEST

BLOCK ($MGCRB) MACRO CALL,
5-175

MESSAGE GROUP INITIALIZATION
REQUEST BLOCK (MGIRB),
5-187, A-18

MESSAGE GROUP RECOVERY REQUEST
BLOCK (MGRRB), 5-199, A-22

MESSAGE GROUP RECOVERY REQUEST
BLOCK ($MGRRB) MACRO CALL,
5-196

MONITOR SERVICE FUNCTIONS, REQUEST
AND RETURN, 2-8

REQUEST BATCH ($RQBAT)
MACRO CALL, 5-285

REQUEST BLOCK OFFSETS, 4-4
REQUEST BLOCK TERMINATION STATUS,

5-365, 5-390
REQUEST BLOCK (RB), 1-17, 4-1
REQUEST CLOCK ($RQCL)

MACRO CALL, 5-288
REQUEST DEVICE DRIVER, 6-2
REQUEST GROUP ($RQGRP)

MACRO CALL, 5-290
REQUEST I/O ($RQIO)

MACRO CALL, 5-294
REQUEST QUEUE, 1-17
REQUEST SEMAPHORE ($RQSM)

MACRO CALL, 5-297
REQUEST TASK ($RQTSK)
~mCRO CALL, 5-300

REQUEST TERMINAL ($RQTML)
MACRO CALL, 5-303

RETURN REQUEST BLOCK ADDRESS
($RBADD) MACRO CALL, 5-316

SEMAPHORE REQUEST BLOCK OFFSETS
($SRBD) MACRO CALL, 5-323

SE~mpHORE REQUEST BLOCK ($SRB)
MACRO CALL, 5-321

SEMAPHORE REQUEST BLOCK
(SRB), 5-322, A-I0

TASK REQUEST BLOCK, A-II, A-12
TASK REQUEST BLOCK OFFSETS ($TRBD)

MACRO CALL, 5-361
TASK REQUEST BLOCK ($TRB)

MACRO CALL, 5-357
TASK REQUEST BLOCK (TRB)

FUNCTIONS, 5-300, 5-360
TASK REQUEST QUEUES, 1-16, 1-17
TERMINATE REQUEST ($TRMRQ)

MACRO CALL, 5-362
WAIT ON REQUEST LIST ($WAITL)

MACRO CALL, 5-390

RESERVE
LOCATE AND RESERVE FILE, 5-124
OVERLAY AREA, RESERVE AND EXECUTE

OVERLAY ($OVRSV) MACRO CALL,
5-230

RESERVE RESOURCE, 5-297
RESERVE SEMAPHORE ($RSVSM)

MACRO CALL, 5-306

RESET
RESET DEVICE ATTENTION ($RDVAT)

MACRO CALL, 5-309
RESET ERROR LOGGING TABLE, 5-97

RESIDUAL RANGE
RESIDUAL RANGE, 6-13

RESOURCE
LOGICAL RESOURCE NUMBER (LRN)

DEFINITION, 1-16
LOGICAL RESOURCE TABLE

DEFINITION, 1-16
RESERVE RESOURCE, 5-297
RESOURCE CONTROL TABLE

DEFINITION, 1-17
RESOURCE CONTROL TABLE (RCT), 6-12

RESPONSE OPERATOR
OPERATOR RESPONSE MESSAGE ($OPRSP)

MACRO CALL, 5-225

RETURN
MONITOR SERVICE FUNCTIONS, REQUEST

AND RETURN, 2-8
RETURN COMMAND-IN FILE

PATHNAME, 5-355
RETURN REQUEST BLOCK ADDRESS

($RBADD) MACRO CALL, 5-316
RETURN STATUS CODES IN $Rl

REGISTER, 1-6
RETURN STATUS CODES (TBL) , 6-5
RETURN WORKING DIRECTORY

PATHNAME, 5-161
RETURN ($RETRN) MACRO CALL, 5-311
STANDARD RETURN SEQUENCE, 5-311

REWRITE RECORD
REWRITE RECORD ($RWREC)

MACRO CALL, 5-318

ROUTINES, MACRO
LOCATION OF MACRO ROUTINES, 1-6

$RQIO
$RQIO MACRO CALL FOR I/O

FUNCTIONS, 6-14

RULES FOR TAPE FILE SEARCH
TAPE FILE SEARCH RULES FOR $OPFIL

MACRO CALL (TBL), 5-217

i-IS CB08

INDEX

SAVE
CONTENTS TRAP SAVE AREA WHEN TRAP

OCCURS (TBL) , 7-7
POINTER TO NEXT TRAP SAVE AREA

(NATSAP), 7-5
SAVE ERROR LOG VALUES. 5-90
TRAP SAVE AREAS I 7-6

SCIENTIFIC BRANCH SIMULATOR
SCIENTIFIC BRANCH SIMULATOR TRAP,

7-14

SEARCH. RULES FOR TAPE FILES
TAPE FILE SEARCH RULES FOR $OPFIL

MACRO CALL (TBLl, 5-217

SEMAPHORE
CANCEL SEMAPHORE REQUEST C$CNSR<.:!I

MACRO CALL, 5-19
DEFINE SEMAPHORE ($DFSMI

MACRO CALL, 5-67
MONITOR SERVICE FUNCTIONS,

SEMAPHORE FUNCTIONS, 2-9
RELEASE SEMAPHORE ($RLSMI ~CRO CALL,

5-272
REQUEST SEMAPHORE ($RQSM) MACRO CALL,

5-297
RESERVE SEMAPHORE ($ RSVSM)

MACRO CALL, 5-306
SEMAPHORE IDENTIFIER, 5-68
SEMAPHORE REQUEST BLOCK OFFSETS

($SREDI MACRO CALL, 5-323
SEMAPHORE REQUEST BLOCK ($SRB)

MACRO CALL, 5-321
SEMAPHORE REQUEST BLOCK (SRE),

5.,..322, A-10

SEND MESSAGE GROUP
MESSAGE GROUP, SEND l$MSEND)

MACRO CALL, 5-201

SEQUENCE

SET

I/O OPERATION SEQUENCE, 6; ... 14
STANDARD RETURN SEQUENCE,. 5.,...311

SET DIAL ($SDL) MACRO CALL, 5"-324
SET EXTERNAL SWITCHES C$SETSWJ

MACRO CALL, 5-328
SET TERMINAL CHARACTERISTICS

($STTY) MACRO CALL, 5.,.330

SIMULATOR TRAP
COMMERCIAL SIMULATOR TRAP, 7-12
FLOATING-POINT SIMULATOR TRAP,

7 .. 13
SCIENTIFIC BRANCH SIMULATOR TRAP,

7-14

SPAWN
SPAWN GROUP ($SPGRP)

MACRO CALL, 5-333

SPAWN (CONT)
SPAWN TASK C$SPTSK)

MACRO CALL, 5-339

SPECIAL
SPECIAL GRAPHIC CHARACTERS, D-2

SPGRP
SPAWN GROUP ($SPGRP)

MACRO CALL, 5-333

SPTSK
SPAWN TASK ($SPTSK)

MACRO CALL, 5-339

START ERROR LOGGING
ERROR LOGGING START ($ELST)

MACRO CALL, 5-96

STATUS
lORE SOFTWARE STATUS WORD (I_ST)

(TBL) , 6-11
OVERLAY STATUS ($OVST)

MACRO CALL, 5-224
RCT ATTENTION STATUS INDICATOR,

5-309
REQUEST BLOCK TERMINATION STATUS,
5-365, 5-390

RETURN STATUS CODES IN $R1
REGISTER, 1-6

RETURN STATUS CODES (TBL) , 6-5
STATUS MEMORY POOL ($STMP)

MACRO CALL, 5-343
TEST COMPLETION STATUS ($TEST)

MACRO CALL, 5-365
USER-DRIVER READ/MODIFY STATUS

FUNCTION (CODE 4), B-5

STOP
USER DRIVER, STOP I/O FUNCTION

(CODE 2), B-4

STORAGE MANAGEMENT
STORAGE MANAGEMENT FUNCTIONS,

3-18

STRUCTURE
DATA STRUCTURE FORMAT, A-1
DATA STRUCTURE GENERATION,

4-1
DATA STRUCTURES, 6-7
FILE SYSTEM DATA STRUCTURES,

4-5
INITIALIZE, ALLOCATE GROUP DATA

STRUCTURES, 5-64
MONITOR SERVICES DATA STRUCTURES,

4-1
REMOVE GROUP DATA STRUCTURES, 5-71
REMOVE TASK DATA STRUCTURES, 5-76

SUPPRESSION, MESSAGE
CONSOLE MESSAGE SUPPRESSION

($CMSUP) MACRO CALL, ~-42

i-16 CB08

\-,-.

INDEX

SUSPEND
SUSPEND A TASK, 5-347, 5-350
SUSPEND FOR INTERVAL ($SUSPN)

MACRO CALL, 5-347
SUSPEND GROUP ($SUSPG)

MACRO CALL, 5-345
SUSPEND UNTIL TIME ($SUSPN)

MACRO CALL, 5-350

SUSPENDED GROUP, REACTIVATE
REACTIVATE SUSPENDED TASK

GROUP, 5-8

SWITCHES
CLEAR EXTERNAL SWITCHES ($CLRSW)

MACRO CALL, 5-26
READ EXTERNAL SWITCHES ($RDSW)

MACRO CALL, 5-258
SET EXTERNAL SWITCHES ($SETSW)

MACRO CALL, 5-328

SYNTAX, MACRO CALL
MACRO CALL SYNTAX, 1-1

SYSTEM
DRIVER USABLE SYSTEM

FUNCTIONS, B-3
MONITOR SERVICE FUNCTIONS, STANDARD

SYSTEM FILE I/O FUNCTIONS, 2-10
REGISTER CONTENTS, SYSTEM SERVICE

MACRO CALLS, C-l
SYSTEM BUILDING IN WRITING A DRIVER,

B-1
SYSTEM IDENTIFICATION ($SYSID)

MACRO CALL, 5-353
SYSTEM SERVICE MACRO CALLS AND

FUNCTION CODES, 1-6, 1-7

TAPE
CHARACTERISTICS OF SUPPORTED TAPE

DRIVES (TBL), 6-40
DEVICE DRIVER, POSITION TAPE MARK

FUNCTION (Fe 6), 6-6
DEVICE DRIVER, WRITE TAPE MARK

FUNCTION (FC 3), 6-6
MAGNETIC TAPE DRIVER, 6-39
MAGNETIC TAPE IORB FIELDS, 6-42
MAGNETIC TAPE RCT FIELDS, 6-43
MAGNETIC TAPE RCT/IORB

HARDWARE/SOFTWARE STATUS
MAPPING, 6-43

TASK (CONT)
INITIALIZE, ALLOCATE, TASK DATA

STRUCTURES, 5-64
MONITOR SERVICE FUNCTIONS, TASK

CONTROL, 2-11
MONITOR SERVICE FUNCTIONS, TASK

GROUP CONTROL, 2-12
REACTIVATE SUSPENDED TASK GROUP,

5-8
REGISTER CONTENTS AT TASK

ACTIVATION, 1-5
REMOVE TASK DATA STRUCTURES, 5-76
REQUEST TASK ($RQTSK)

MACRO CALL, 5-300
SPAWN TASK ($SPTSK)

MACRO CALL, 5-339
SUSPEND A TASK, 5-347, 5-350
TASK COMMUNICATION, 5-360
TASK CONTROL BLOCK DEFINITION,

1-17
TASK GROUP INPUT ($TGIN)

MACRO CALL, 5-355

TASK GROUP USER IDENTIFICATION
5-373 '

TASK REQUEST BLOCK (TRB) , A-II,
A-12

TASK REQUEST BLOCK OFFSETS ($TRBD)
MACRO CALL, 5-361

TASK REQUEST BLOCK ($TRB)
MACRO CALL, 5-357

TASK REQUEST BLOCK (TRB)
FUNCTIONS, 5-300, 5-360

TASK REQUEST QUEUES, 1-16, 1-17
TRAP CONDITIONS DURING TASK

EXECUTION, 7-2

TELEPHONE LIST, AUTODIAL
AUTODIAL TELEPHONE LIST, 5-324

TERMINAL
MONITOR SERVICE FUNCTIONS,

SECONDARY USER TERMINAL FUNCTIONS
2-8 '

RELEASE TERMINAL ($RLTML)
MACRO CALL, 5-274

REQUEST TERMINAL ($RQTML)
MACRO CALL, 5-303

SECONDARY USER TERMINAL,
5-274, 5-303

SET TERMINAL CHARACTERISTICS
($STTY) MACRO CALL, 5-330

PACKED AND 6-BIT MODES ON 7-TRACK
TAPE (FIG), 6-39 TERMINATE

TAPE FILE SEARCH RULES FOR $OPFIL
MACRO CALL (TBL), 5-217

TASK
CREATE TASK ($CRTSK)

MACRO CALL, 5-63
DELETE TASK ($DLTSK)

MACRO CALL, 5-76
EXECUTE LEAD TASK, 5-292

i-17

MESSAGE GROUP, TERMINATE ($MTMG)
MACRO CALL, 5-205

TERMINATE FILE PROCESSING, 5-32
TERMINATE MESSAGE GROUP, 5-203
TERMINATE REQUEST ($TRMRQ)

MACRO CALL, 5-362
USER DRIVER TERMINATE (ZXD TR)

SUBROUTINE, B-6 -

CB08

INDEX

TERMINATION STATUS
REQUEST BLOCK TERMINATION STATUS,

5-365, 5-390

TEST
TEST COMPLETION STATUS ($TEST)

MACRO CALL, 5-365
TEST FILE ($TOFIL)

MACRO CALL, 5-367
TEST FILE ($TIFIL)

MACRO CALL, 5-367

TIME
EXTERNAL TIME, CONVERT TO ($EXTIM)

MACRO CALL, 5-108
SUSPEND UNTIL TIME ($SUSPN)

MACRO CALL, 5-350

T~P

COMMERCIAL SIMULATOR T~P, 7-12
CONTENTS T~P SAVE AREA WHEN T~P

OCCURS (TBL) , 7-7
DISABLE USER T~P ($DSTRP)

MACRO CALL, 5-80
ENABLE USER T~P ($ENTRP)

MACRO CALL, 5-86
FLOATING POINT SIMULATOR T~P,

7-13
HONEYWELL SUPPLIED T~P HANDLERS,

7-12
MONITOR SERVICE FUNCTIONS, T~P

HANDLING, 2-13

T~

POINTER TO NEXT T~P SAVE AREA
(NATSAP), 7-5

PROG~ING USER WRITTEN TRAP
HANDLERS, 7-16

SCIENTIFIC BRANCH SIMULATOR T~P,
7-14

SOFTWARE GENE~TED TRAP, 7-14
T~P CONDITIONS DURING TASK

EXECUTION, 7-2
T~P ENABLED, 7-2
T~P HANDLERS AS MONITOR

EXTENSIONS, 7-15
T~P HANDLER CONNECT ($TRPHD)

MACRO CALL, 5-370
T~P HANDLING BY DEBUG PROGRAM,

7-12
TRAP HANDLING, 7-1
TRAP INTERRUPT VECTOR, 7-0
T~P NOT ENABLED, 7-2
T~P SAVE AREAS, 7-6
T~P VECTOR, 7-6
USER WRITTEN TRAP HANDLER CONNECT,

5-370
USER WRITTEN TRAP HANDERS, 7-15

TASK REQUEST BLOCK (T~)
FUNCTIONS, 5-300, 5-360

UNIT
BOUND UNIT IDENTIFICATION ($BUID)

MACRO CALL, 5-13

UNLOAD
OVERLAY, UNLOAD ($OVUN)

MACRO CALL, 5-247

UNLOCK RECORD
UNLOCK RECORD LOCKS, 5-24
UNLOCK RECORDS, 5-136

UPDATED RECORDS
WRITE UPDATED RECORDS, 5-24

USER DRIVER
USER DRIVER, INITIALIZE FUNCTION

(CODE 0), B-3
USER DRIVER, LOCATE RCT FOR DEVICE

(ZXSRCT) SUBROUTINE, B-5
USER DRIVER, OUTPUT ADDRESS AND

RANGE (ZIOLD) SUBROUTINE, B-6
USER DRIVER, READ/MODIFY STATUS

FUNCTION (CODE 4), B-5
USER DRIVER, STOP I/O FUNCTION

(CODE 2), B-4
USER DRIVER, TERMINATE (ZXD TR)

SUBROUTINE, B-6 -
USER DRIVER, WAIT FOR INTERRUPT

(CODE 3), B-4
USER DRIVER, WAIT ON LINE FUNCTION

(CODE 1), B-3

USER-IN FILE
READ USER-IN FILE, 5-376
USER-IN FILE, 5-211

USER-OUT FILE
USER-OUT FULE, 5-213
WRITE TO USER-OUT FILE, 5-378

VALUES FOR MACRO CALL ARGUMENTS
ARGUMENT VALUES FOR $MGC~

MACRO CALL (TBL), 5-176
ARGUMENT VALUES FOR $MGIRB

MACRO CALL (TBL) , 5-185
ARGUMENT VALUES FOR $MGR~

MACRO CALL (TBL), 5-197
MGCRB ARGUMENT VALUES FOR $MRECV

MACRO CALL (TBL) , 5-193
MGCRB ARGRMENT VALUES FOR $MSEND

MACRO CALL (TBL) , 5-202
MGIRB ARGUMENT VALUES FOR $MACPT

MACRO CALL (TBL) , 5-173
MGIRB ARGUMENT VALUES FOR $MCMG

MACRO CALL (TBL), 5-182
MGIRB ARGUMENT VALUES FOR $MINIT

MACRO CALL (TBL) , 5-190
MGR~ ARGUMENT VALUES FOR $MTMG

MACRO CALL (TBL) , 5-207

VECTOR, TRAP
TRAP INTERRUPT VECTOR, 7-6

TRAP VECTOR, 7-6

VE~ATIM CARD MODE
CARD VERBATIM MODE, 6-19

i-18 CB08

\
~.

c

INDEX

VIEW, PROGRAM
PROGRAM VIEW ENTRY IN FIB, 3-6

V-OP
V-OP OPERATION, 5-272

WAIT
DEVICE DRIVER, WAIT ONLINE FUNCTION

(FC 0), 6-4
FORMAT OF WAIT LIST (FIG), A-14
OVERLAY RELEASE, WAIT, AND RECALL

($OVRCL) MACRO CALL, 5-240
PARAMETER BLOCK AND WAIT LIST, 4-3
USER DRIVER, WAIT FOR INTERRUPT

(CODE 3), B-4
USER DRIVER, WAIT ON LINE FUNCTION

(CODE 1), 3-3
WAIT BLOCK ($WTBLK)

MACRO CALL, 5-383
WAIT FILE ($WIFIL)

MACRO CALL, 5-385
WAIT FILE ($WOFIL)

MACRO CALL, 5-385
WAIT FOR I/O COMPLETION, 5--385
WAIT LIST FORMAT, A-14
WAIT LIST GENERATE ($WLIST)

MACRO CALL, 5-388
WAIT ON REQUEST LIST ($WAITL)

MACRO CALL, 5-390
WAIT ($WAIT) MACRO CALL, 5-381

WORD, IORB SOFTWARE STATUS
IORB SOFTWARE STATUS WORD (I_STl

(TBL) , 6-11

WORKING DIRECTORY
CHANGE WORKING DIRECTORY ($CWDIR)

MACRO CALL, 5-21
GET WORKING DIRECTORY ($GWDIR)

MACRO CALL, 5-161
RETURN WORKING DIRECTORY

PATHNAME, 5-161

WRITE
DEVICE DRIVER, WRITE FUNCTION

(FC 1), 6-4
DEVICE DRIVER, WRITE TAPE MARK

FUNCTION (FC 3), 6--6
WRITE BLOCK ($WRBLK)

MACRO CALL, 5-393
WRITE RECORD ($WRREC)

MACRO CALL, 5-397
WRITE TO USER-OUT FULE, 5-378
WRITE UPDATED RECORDS, 5-24

WRITING
DRIVER INTERFACE, WRITING A

DRIVER, B-2
SYSTEM BUILDING, WRITING A

DRIVER, B-1
WRITING PERIPHERAL I/O DRIVER,

B-1

ZIOLD SUBROUTINE
USER DRIVER OUTPUT ADDRESS AND

RANGE (ZIOLD) SUBROUTINE, B-6

ZIOSUB SUBROUTINES
I/O SUBROUTINES (ZIOSUB) FOR

USER-WRITTEN DRIVERS, B-3

ZXD TR SUBROUTINE
USER DRIVER, TERMINATE (ZXD_TR)

SUBROUTINE, B-6

ZXSRCT SUBROUTINE
USER DRIVER, LOCATE RCT FOR

DEVICE (ZXSRCT) SUBROUTINE, B-5

• i-19 CB08

{

I
I
I
I
I

J

~

:::i
<.:l
Z
o
oJ
<!
I­
:J
U

(J,

I
I
I
I
I
I
I
I

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

SERIES 60 (LEVEL 6)
TITLE GCOS 6

SYSTEM SERVICE MACRO CALLS

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

ORDER NO.' CB08, REV. 1

DATED 1-1 __ J_U_L_~ __ 1_9_7_8_-1

r\ Your comments will be promptly investigated by appropriate technical personnel and action will be taken 0 II as required. If you require a written reply. check here and furnish complete mailing address below.

FROM: NAME __ __ DATE ______________ __

TITLE __ _

COMPANY __ _

ADDRE~ __ __

PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms

I
J
I
I
I

)- -,
'~.'/

-oJ
(.:J
z
o
-oJ
<!
I­
:J
U

I
I
I
I
I UJ
I z
I :::i
I ~

--.--------------------------------- lcs
I ~
I <5

ATTENTION: PUBLICATIONS, MS 486

Business Reply Mail
Postage Stamp Not Necessary if Mailed in the United States

Postage Will Be Paid By:

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

FIRST CLASS
PERMIT NO. 39531
WALTHAM,MA
02154

I u..

J
I
I
I
I
I
I
I
I

------ /}.

,
I
I
I
I
I
I
I
I Ll<

I z
I~
I z -- ~s

Honeywell

I <!

I g
I~
I
I
I
I
I
J
I
I
I
I
I
I
I

rt

(\

· \,.-

c

Honeywell
Honeywell Information Systems

In the U.S.A.: 200 Smith Street, MS 486, Waltham, Massachusetts 02154
In Canaaa: ~u~::. Sheppard Avenue East, Wiiiowc:iaie, Ontario ivi2J i W5

In Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F.

21415, 1.2778, Printed in U.S.A.

o

o
CB08, Rev. 1

