
(

I

SERIES 60 (LEVEL 6)

GCOS
ASSEMBLY LANGUAGE

REFERENCE
ADDENDUMB

SUBJECT·

Changes and Additions to the Manual

SPECIAL INSTRUCTIONS

Insert the attached pages into the manual (Revision 1, dated June 1978)
according to the Collating Instructions on the back of this cover. Except for
new Appendixes Land M, change bars in the margins indicate new or
changed information and asterisks denote deletions.

Note:
Insert this cover behind the manual cover to indicate that the manual
has been updated with this Addendum.

SOFI'WARE SUPPORTED

This update. describes Release 0200 of the Assembler, which executes under
the Series 60 (Level 6) GCOS 6 MOD 400 Releases 0110 and 0120 and MOD
600 (Release 0110) Executives. See the Manual Directory of the appropriate
System Concepts manual for information as to later releases supported by this
document.

ORDER NUMBER

CB07~01B July 1979

24022
2779
Printed in U.S.A. H.oneywell

COLLATING INSTRUCTIONS

To update this manual, remove old pages and insert new pages as follows:

Remove

iii, iv
ix through xii
1-9,1-10
2-7 through 2-12

3-1,3-2

4-17,4-18
4-23,4-24
5-17 through 5-20
5-27 through 5-30
5-87,5-88
5-103 through 5-106
5-123,5-124
5-133,5-134
5-143,5-144
6-25,6-26
6-53,6-54
6-57,6-58
6-61,6-62
8-1,8-2
8-5,8-6

A-9 through A-H, blank
C-l, C-2

© Honeywell Information Systems Inc., 1979

Insert

iii, iv
ix through xii
1-9,1-10
2-7 through 2-12
2-12.1, blank
3-1, blank
3-1.1,3-2
4-17,4-18
4-23,4-24
5-17 through 5-20
5-27 through 5-30
5-87,5-88
5-103 through 5-106
5-123,5-124
5-133,5-134
5-143,5-144
6-25,6-26
6-53,6-54
6-57,6-58
6-61,6-62
8-1,8-2
8-5,8-6
8-26.1, blank
A-9 through A-H, blank
C-l, C-2
AppendixL
AppendixM

File No.: 12Q3
7/79

CB07-OlB

•

(

MANUAL DIRECTORY

The following publications constitute the GCOS 6 manual set. See the Manual
Directory of the appropriate System Concepts manual for the current revision
number, and addenda (if any) of the relevant operating system specific
publications.

Order
No.

CBOl
CB02
CB03
CB04
CB05
CB06
CB07
CB08
CB09
CB10
CB12
CB13
CB14
CB15
CB16
CB20
CB21
CB22
CB23
CB24
CB27
CB28
CB30
CB31
CB32
CB33
CB34
CB35
CB36
CB37
CB38
CB39
CB40
CB41
CB42
CB43
CB44
CB50
CB51
CB52
CB53
CB54
CB55
CB56
CB57
CB58
CB59
CD46

Manual Title

GCOS 6 Program Preparation
GCOS 6 Commands
GCOS 6 Communications Processing
GCOS 6 SortlMerge
GCOS 6 Data File Organizations and Formats
GCOS 6 System Messages
GCOS 6 Assembly Language Reference
GCOS 6 System Service Macro Calls
GCOS 6 RPG Reference
GCOS 6 Intermediate COBOL Reference
GCOS 6 Entry-Level COBOL Reference
GCOS 6 FORTRAN Reference
GCOS 6 Advanced COBOL Reference
GCOS 6 Advanced COBOL Reference Guide
GCOS 6 I-D-SIII Reference Card
GCOS 6 MOD 400 System Concepts
GCOS 6 MOD 400 Program Execution and Checkout
GCOS 6 MOD 400 Programmer's Guide
GCOS 6 MOD 400 System Building
GCOS 6 MOD 400 Operator's Guide
GCOS 6 MOD 400 Programmer's Pocket Guide
GCOS 6 MOD 400 Master Index
Remote Batch Facility User's Guide
Data Entry Facility User's Guide
Data Entry Facility Operator's Quick Reference Guide
Level 61Level 6 File Transmission Facility User's Guide
Level 61Level 62 File Transmission Facility User's Guide
Level61Level64 (Native) File Transmission Facility User's Guide
Level61Level66 File Transmission Facility User's Guide
Level61Series 20012000 File Transmission Facility User's Guide
Level61BSC 278013780 File Transmission Facility User's Guide
Level61Level64 (Emulator) File Transmission Facility User's Guide
278013780 Workstation Facility User's Guide
HASP Workstation Facility User's Guide
Level 66 Host Resident Facility User's Guide
Terminal Concentration Facility User's Guide
Interactive Function User's Guide
GCOS 6 MOD 600 System Concepts
GCOS 6 MOD 600 Program Execution and Checkout
GCOS 6 MOD 600 Programmer's Guide
GCOS 6 MOD 600 System Building
GCOS 6 MOD 600 Administrator's Guide
GCOS 6 MOD 600 Transaction Driven System
I-D-SIII Data Base Administrator's Guide
I-D-SIII Data Base User's Guide
GCOS 6 MOD 600 Operator's Guide
GCOS 6 MOD 600 Master Index
Display Formatting and Control

iii
7/79

CB07-01B

CD47
CD48
CD49
CD50
CD51
CD52

CFll
CG65
COO6
CG71
CG72

GCOS 6 MOD 200 System Concepts
GCOS 6 MOD 200 Application Development Guide
GCOS 6 MOD 200 Operators Guide
GCOS 6 MOD 200 HASP Workstation Facility Users Guide
GCOS 6 MOD 200 L6 to L6 File TransmissionFacility Users Guide
GCOS 6 MOD 200 L6 to L66 File Transmission Facility Users
Guide
RBFI64 Users Guide
GCOS 6 MOD 600 Operators Pocket Guide
GCOS 6 MOD 600 Programmers Pocket Guide
GCOS 6 MOD 600 System Building Memory Calculator
GCOS 6 MOD 600 Software and Documentation Directory

In addition, the following publications provide supplementary information:

Order
No. Manual Title
AT97 Level 6 Communications Handbook
CC71 Level 6 Minicomputer Systems Handbook
FQ41 Writable Control Store Users Guide

iv
7179

CB07-01B

•

;£,

~j

c

(

Indirect P-Relative Addressing 6-8
Commercial Processor B-Relative

Addressing 6-9
Commercial Processor Direct B-Relative

Plus Displacement Addressing 6-9
Commercial Processor Indirect B-Relative

Plus Displacement Addressing 6-9
Commercial Processor Direct B-Relative

Plus Displacement With Indexing
Addressing , .. 6-10

Commercial Processor Indirect B-Relative
Plus Displacement With Indexing
Addressing , 6-10

Immediate Operand (IMO) Addressing .. 6-11
Micro Edit Functions 6-12

Edit Insertion Table 6-13
Edit Flags 6-14
Change Edit Insertion Table (CHT)

Micro Operation 6-14
End Floating Suppression (EN F) Micro

Operation 6-15
Ignore Source Character (lGN) Micro

Operation 6-16
Insert Asterisk on Suppress (lNSA)

Micro Operation 6-16
Insert Blank on Suppress (lNSB) Micro

Operation 6-16
Insert Multiple Characters (lNSM)

Micro Operation 6-16
Insert Character on Negative (INSN)

Micro Operation 6-16
Insert Character on Positive (INSP)

Micro Operation 6-17
Move with Float Currency Symbol

Insertion (MFLC) Micro
Operation 6-17

Move with Float Sign Insertion (MFLS)
Micro Operation 6-17

Move Source Character (MVC) Micro
Operation '" .. 6-18

Move with Zero Suppression and
Asterisk Replacement (MVZA)
Micro Operation 6-18

Move with Zero Suppression and Blank
Replacement (MVZB) Micro
Operation 6-18

Set Edit Flags (SEF) Micro Operation ... 6-19
Commercial Processor Traps 6-20

Trap 23 Unavailable Resource (UK) 6-21
Trap 24 Bus or Memory Error (BE) 6-21
Trap 25 Divide by Zero (DZ) 6-21
Trap 26 Illegal Specification (IS) 6-22
Trap 27 Illegal Character (lC) 6-22
Trap 28 Truncation (TR) 6-22
Trap 29 Overflow (OV) 6-22
Trap 30 Quality Logic Test (QLT)

Error (QE) &.22
Execution Details for Commercial

Instructions 6-22
Detailed Descriptions of Commercial

Instructions &.23
ACM 6-24
ALR 6-25
AME &.26
CRn 6-27

ix

CBE 6-28
CBG··································6-29
CBGE 6-30
CBL····························· 6-31
CBLE 6-32
CBNE 6-33
CBNOV 6-34
CBNSF·······························6_35
CBNTR·······························6_36
CBOV 6-37
CBSF 6-38
CBTR 6-39
CDB 6-40
CSNCB 6-41
CSYNC 6-42
DAD 6-43
DCM 6-44
DDV 6-45
DLS 6-46
DMC 6-47
DME 6-48
DML 6-52
DRS 6-53
DSB 6-54
DSH 6-55
MAT 6-57
SRCH 6-58
VRFY 6-62

Section 7. Scientific Instructions
Scientific Traps .. 7-1

Scientific Instruction Processor (SIP)
Programming Considerations 7-2

Detailed Descriptions of Scientific
Instructions 7-2

SAD 7-3
SBE 7-4
SBEU•.. 7-5
SBEZ 7-6
SBG 7-7
SBGE 7-8
SBGEZ 7-9
SBGZ 7-10
SBL 7-11
SBLE 7-12
SBLEZ 7-13
SBLZ 7-14
SBNE 7-15
SBNEU, 7-16
SBNEZ 7-17
SBNPE 7-18
SBNSE 7-19
SBPE 7-20
SBSE 7-21
SCM 7-22
SCZD 7-23
SCZQ 7-24
SDV 7-25
SLD 7-26
SML 7-27
SNGD 7-28
SNGQ 7-29
SSB 7-30
SST 7-31
SSW 7-33

11178
CB07A

Section 8. Macro Facility
Order of Statements within a Source

Program 8-1
Macro Routines .. 8-1

Creating a Macro Routine 8-2
MAC Macro Control Statement,

without Parameters 8-2
Contents of Macro Routine. 8-2
ENDM Macro Control Statement. 8-3

Specializing a Macro Routine by
Parameter Substitution 8-4

MAC Macro Control Statement,
Including Parameters 8-4

Protection Operators. 8-5
Situating Macro Routines 8-6

LIBM Macro Control Statement 8-7
INCLUDE Macro Control Statement . 8-9

Macro Calls 8-11
Nested Macro Call 8-12
Recursive Macro Calls 8-13

Controlling Expansions 8-13
Macro Variables. .. 8-13

Macro Substitution 8-14
SETA Macro Control Statement 8-15
SETN Macro Control Statement 8-16

Conditional Macro Control Statements .. 8-17
FAIL Macro Control Statement 8-17
GOTO Macro Control Statement 8-18
IF Macro Control Statement 8-19
NULL Macro Control Statement 8-22

Macro Functions 8-23
Format of Macro Functions 8-23
Length Attribute Macro Function 8-23
Type Attribute Macro Function. 8-24
Hexadecimal Conversion Macro

Function 8-25
Index Macro Function 8-26
Requote Macro Function 8-26.1
SearchMacroFunction 8-27
Substring Macro Function 8-28
Translate Macro Function 8-29
Vector Orientation Macro Function 8-30
Verify Macro Function 8-31

Example TIlustrating Macro Facility 8-31
Programming Considerations 8-34

Initialized Values of Macro Variables 8-34
Designating Numeric Values 8-35
Designating Alphanumeric Values. 8-35

Alphanumeric Value Conventions 8-36
Balanced Apostrophes. 8-36
Balanced Parentheses. 8-36
Commas and Semicolons 8-37
Spaces and Horizontal Tabs 8-37

Appendix A. Programmer's Reference
Information

Summary of Hardware Registers A-I
Assembly Language Internal Formats by

Type A-4
Hexadecimal Representation of

Instructions A-6
Valid Address Expressions A-I0

x

Appendix B. Hexadecimal Numbering
System

Decimal-to-Hexadecimal Conversion B-2
Hexadecimal-to-Decimal Conversion B-2
Hexadecimal-to-ASCII Conversion B-4
Hexadecimal Addition B-5
Hexadecimal Subtraction B-5
Hexadecimal Multiplication B-6
Hexadecimal Division B-6

Appendix C. Sample Assembly
Language Program

Appendix D. Debugging Assembly
Language Programs

Debug D-l
Dmnp Edit D-l
Reading and Interpreting Memory

Dumps D-l

Appendix E. Notification Flags Issued
by Assembler

Source Code Error Flags E-l
Statement Reference Flags E-l

Appendix F. Source Code Error
Notification by Macro
Preprocessor

Appendix G. Reserved Symbolic
Names

Appendix H. Programmer's Reference
Information for Commercial
Processor Operation

Internal Formats of Commercial
Processor Instructions H-l

Internal Format of Data Descriptors H-4
Decimal Data Descriptors H-4

Unpacked Decimals H-4
Packed Decimals H-5

Alphanumeric Data Descriptor H-6
Binary Data Descriptor H-6
Address Syllable H-7

AppendixJ. Programmer's Reference
Information for Queue
Instructions

Appendix K. Programmer's Reference
Information for Stack
Instructions

Stack Frame K-l
Stack Instruction Formats K-2

Load Stack Address Register (LDT) K-2
Store Stack Address Register (STT) K-2
Acquire Stack Frame (ACQ) K-2
Relinquish Stack Frame (RLQ) K-2

11/78
CB07A

/

(

Appendix L Assembly Language
Program Independence

Assembly Language Program
Hardware Independence L-l

Self-modifying Procedures L-l
Writing Source Programs That Can Be

Executed in Both SAF and
LAF Configurations L-l

SAF/LAF Independence by Assembly L-3
SAF/LAF Independence by

Loading L-3
Differences between SAF and LAF L-3
General Rules for Writing

SLIC Programs L-4
Procedures for Writing Specific

Parts of a SLIC Program L-4
Addressing Mode L-4
Data Structures Containing

Pointers L-5
Data Management Structures L-5
Argument Lists and Pointer

Arrays L-5
Request Blocks L-6
Individual Pointers L-7
Hardware-Defined Structures L-7
Immediate Memory Address

Operands L-7
Absolute Addresses L-7

Appendix M. Reentrant Programs

1-1
1-2
5-1

5-2

5-3

5-4

5-5

5-6
5-7
5-8
5-9
5-10
5-11

5-12

5-13

5-14

5-15

Figures

Assembler Functions 1-1
Level 6 Registers 1-6
Direct Immediate Memory

Addressing 5-8
Indirect Immediate Memory

Addressing 5-9
Indexed Direct Immediate Memory

Addressing 5-10
Indexed Indirect Immediate

Memory Addressing 5-11
Immediate Operand

Addressing-Scientific
Instruction 5-11

Immediate Operand Addressing 5-12
DirectP-Relative Addressing 5-12
IndirectP-Relative Addressing 5-13
DirectB-RelativeAddressing 5-14
Indirect B-Relative Addressing 5-15
Indexed Direct B-Relative

Addressing 5-16
Indexed Indirect B-Relative

Addressing 5-17
Direct B-Relative Plus

Displacement Addressing 5-17
Indirect B-Relative Plus

DisplacementAddressing 5-18
Direct B6-Relative Plus

Local Common Block Plus
Displacement Addressing 5-19

xi

5-16

5-17
5-18
5-19

5-20

5-21
5-22
5-23
5-24
6-1

6-2

6-3

6-4

6-5

6-6

6-7

6-8
6-9
8-1

A-I
A-2

C-l
C-2
D-l

H-l

H-2

H-3
H-4

H-5
H-6

H-7

J-l
K-l
L-l

L-2

Indirect B6-Relative Plus
Local Common Block Plus
Displacement Addressing 5-20

B-Relative Push Addressing 5-20
B-RelativePopAddressing 5-21
Indexed B-Relative Push

Addressing 5-22
Indexed B-Relative Pop

Addressing 5-23
Short Displacement Addressing 5-23
Specialized Address Expressions. . .. 5-24
Interrupt Vector Addressing 5-25
VLD Instruction Operations 5-149
Commercial Processor Direct

P-relative Addressing 6-6
Commercial Processor Indexed

Direct P-relative Addressing .. 6-7
Commercial Processor Indirect

P-relative Addressing 6-8
Commercial Processor Direct and

Indirect B-Relative Plus
Displacement Addressing 6-10

Commercial B-Relative Plus
Displacement With Indexing
Addressing 6-11

Commercial Processor IMO
Addressing. 6-12

Flow Diagram of SEF Micro
Operation 6-19

Trap Context 6-21
Shift Instruction Formats 6-55
Sample Unexpanded Source

Module and Assembler Listing of
Resulting Expanded Source
Module 8-32

Level 6 Hardware Registers A-I
Internal Formats of Assembly

Language Instructions A-5
Listing of CHKNML Program C-l
Listing of Bubble Sort Program C-3
ASCII/Hexadecimal Memory

Dump D-2
Internal Formats of Commercial
Processor Instructions H-l
Remote Descriptor Address

Generation H-4
Decimal Data Descriptor Format .. H-4
Alphanumeric Data Descriptor

Format H-6
Binary Data Descriptor Format H-6
Commercial Processor Address

Syllable Format H-7
Commercial Processor Hardware

Test Program H-8

Queue Management J-2
Stack Structure : K-l
Methods of Achieving SAF/LAF

Independence L-2
Valid Combinations of Compilation

Units for Linking L-2

7179
CB07-0lB

I

Tables

2~1 Defining Symbolic Names 2~3
2-2 Rules of Truncation/Padding

String Constants 2-6
2-3 Internal Sign Convention and

Range of
Values for Unpacked Decimal
Integers 2-S

2-4 Prefix Letter and Range of Values
forSigned and Unsigned
Packed
Decimal Integers. 2-S

5-1 IndexedAddressing Modes 5-25
6-1 Micro Operations for Edit

Instructions 6-13
6-2 Edit Insertion Table at

Initialization 6-13
6-3 Edit Flags for Micro Operations. 6-14
6-4 Code for Replacing EIT Entries 6-15.
6-5 Character Insertion by MFLS

Micro Operation 6-1S
6~6 Commercial Processor Trap Vectors

and Events 6-21
7-1 Scientific Traps '" 7-2
A-I Internal Representation of

Assembly Language
Instructions A-6

A-2 Address Syllables for CPU &
SIPJnstructions A-9

A-3 Summary of Valid Forms of
Address Expressions for CPU .
and SIP Instructions _ A-lO.

B-1 Comparison of Binary ,Decimal,
and,HexadecimalSymbols B-1

B-2 Storage and Printout of V alue 32 B-2
B-3 HexadecimallDecimal

Conversion B-3
B-4 HexadecimallASCnConversion B-4
B-5 Hexadecimal Addition Table B-5
B-6 Hexadecimal 'Multiplication

Table B-6
H-I Commercial Instruction

Summary H-2
H-2 Commercial Processor Address

Syllables H-7

xii
7179

CB07-OlB

.'

(

(~

SIP TRAP MASK (MS) REGISTER

The SIP Trap Mask, or M5, register is an 8-bitcontrol register residing in the SIP but with a
copy in the CPo Both versions are set to 0 upon CP initialization and both may be modified with
an MTM instruction (see Section 5). If only the SIP is initialized, the CP copy of the register is not
cleared, and the contents of both versions must be reestablished with an MTM.

The format of the M5-register is as tollows:
01234567

EUM . ..

Precision error trap mask

Significance error trap mask

Exponent underflow trap mask
SOFTWARE SIMULATION OF THE SCIENTIFIC INSTRUCTION PROCESSOR

For systems on which a Scientific Instruction Processor (SIP) is not available, GCOS provides
the equivalent SIP functions through software simulation. Two simulators are available: the
Single-Precision SIP Simulator (SSIP) and the Double-Precision SIP Simulator (DSIP). If a
configuration is to support scientific instructions when a SIP is not present, SSIP or DSIP must
be specified in the CLM directive SYS for MOD 400, or DSIP must be specified in SYSTEM
macro routine for MOD 600. (See System Building manual.)

The DSIP simulates all functions of the SIP. The SSIPis partial simulator which is available
in MOD 400 only. The simulators are entered via trap vector 3 (for scientific floating-point
instructions) or trap vector 5 (for scientific branch instructions).

Note the following considerations with respect to the use of the SSIP. See also the Section
"Scientific Instructions" later in this manual.

• SSIP uses registers R4, R5, and R7 to simulate a scientific register (assumed to be $Sl). A
task that executes scientific instructions that might be simulated by SSIP should dedicate
these three registers to the use of the simulator.

• SSIP uses the CPU-1 register to store the results of a scientific compare instead of
simulating the scientific indicator register. Thus, if scientific compare instructions are to
be simulated by SSIP (as opposed to being simulated by DSIP or executed by the SIP), then:
- Either CPU branch instructions or simulated SIP branch instructions may be used to

test these indicators. The simulated SIP branch instructions are recommended since
they are upward compatible with the DSIP and the SIP hardware.

- Execution of scientific instructions alters the CPU I-register instead of the SIP's SI
register.

• The SSIP does not support the MTM or STM instruction on Models 20 and 30.
• SSIP rounds results when appropriate; DSIP truncates results unless otherwise in­

structed. Thus, results produced by the SSIP may not agree exactly with those produced by
the DSIP.

COMMERCIAL PROCESSOR REGISTERS

The Commercial Processor, an optional hardware unit, contains two registers: the Commer­
cial Processor mode register, and the Commercial Processor indicator register.

COMMERCIAL PROCESSOR MODE REGISTER

The 8-bit Commercial Processor mode register is a copy of the M3 register (in the CPU) which
is provided for use with the Commercial Processor. Both are set to zero at initialization ofthe
CPU. Both registers may be modified with an MTM instruction. If only the Commercial
Processor is initialized, the M3 register is not cleared, and the contents of both registers must be
.established with an MTM instruction. The format of the Commercial Processor mode register
and theM3 register is shown below. When set to binary 1, the bits have the following meanings:

INTRODUCTION 1-9
7179

CB07-0lB

I

I
0 1 2 3 4 5 6 7

OV TR

I Trap on truncation
Trap on overflow

Note that, although the contents ofthe Commercial Processor mode register is not saved, the
equivalent information in the M3 register is saved or restored as a function of the mask bits in
the interrupt save area. When a restore is done, the restored value is sent to the Commercial
Processor by the CPU.

COMMERCIAL PROCESSOR INDICATOR REGISTER

The 8-bit Commercial Processor indicator register is cleared at initialization. During the
execution of an instruction that affects the register, only the bits pertinent to the instruction are
preset (set or reset). All other bits remain unchanged. During the execution of a branch
instruction, all bits including the one being tested are left unchanged. When set to binary 1, the
bits have the following meaning:

0 2 3 4 5 6 7

OV TR SF G L OE

Result of
OL Terror

last compare is:

Less than
Greater than

'---.... S i gn fau 1t
(negative operand is stored
in unsigned field)

L-------Alphanumeric result is truncated

'-------- Overflow occurred during
decimal instruction

The contents of the Commercial Processor indicator register will be saved or restored as a
function of the mask bits in the interrupt save area.

SOFTWARE SIMULATION OF THE COMMERCIAL PROCESSOR

For systems on which a Commercial Instruction Processor (CIP) is not available, GCOS
provides a subset of the CIP instructions through software simulation. The CIP simulator is
entered via trap vector 5.

Note the following considerations with respect to the use of the CIP simulator.

• The Alphanumeric Search (SRCH) and Alphanumeric Verify (VRFY) opcodes are not
supported.

• On Model 30, the CIP simulator supports the MTM, STM, LRDB, and SRDB instructions.

• On Model 20, the CIP simulator supports the MTM and STM instructions.

• Bit 7 of the Commercial Processor Mode Register must be set to zero.

INTRODUCTION 1-10
11178

CB07A

(~\.

~_/

(

(-

ARrrHMETIC CONSTANTS

An arithmetic constant specifies the value of a real number. An arithmetic constant is either a
binary integer constant, a decimal integer constant, a fixed-point constant, or a floating-point
constant.

BINARY INTEGER CONSTANTS

Binary integer constants can be represented in decimal or hexadecimal notation. They may be
preceded by a plus(+) or minus(-) sign, indicating a positive or negative value respectively, and
must be within the range -32768 to +32767; if unsigned, a binary integer constant is assumed
to be positive.

[+] {n~n ...] ,}
- Xh[h ...]

[~]
Specifies whether the value is positive (+, the default value) or negative (-).

n[n ...]

Specify decimal digits.

h[h ...]

Specify hexadecimal digits

Binary Integer Constants in Decimal Notation

A binary integer constant expressed in decimal notation is written as a character string
composed of the decimal digits 0 through 9. The following examples illustrate valid binary
integer constants in decimal notation.

1. 31764

2. +4652

3. -6781

Binary Integer Constants in Hexadecimal Notation

A binary integer constant expressed in hexadecimal notation is written as the letter X
followed by a character string composed of the hexadecimal digits 0 through 9 and A through F
(the lowercase letters a through f are considered equivalent to the corresponding uppercase
letters) within apostrophes. The following examples illustrate binary integer constants in
hexadecimal notation.

1. +X'2F'

2. X'7FFF'

3. -X'8000'

The decimal equivalent of these examples is +47, +32767 and -32768 respectively as can be
determined by reference to Table B-3.

DECIMAL INTEGER CONSTANTS

Decimal integer constants are represented by a letter from the set L,T,O,N,P,U followed by a
character string enclosed in apostrophes. In general, they may be preceded by a plus (+) or
minus (-) sign indicating a positive or negative value. The letter indicates whether the value is
internally represented as a packed or unpacked number and designates the internal sign
convention. The character string is composed of the digits 0 through 9. Decimal integer
constants begin at a word boundary and occupy an integral number of words, possibly including
trailing digits which may be unused.

ELEMENTS OF
ASSEMBLY LANGUAGE 2-7

7179
CB07-01B

Unpacked Decimal Integers

The prefix letter designating the internal sign convention and the range of values allowed for
each convention of unpacked decimal integers are shown in Table 2-3.

TABLE 2-3. INTERNAL SIGN CONVENTION AND RANGE OF VALUES FOR UNPACKED
DECIMAL INTEGERS

Sign Convention

Leading separate
Trailing separate
Trailingoverpunch
Unsigned

Letter

L
T
o
N

Range of Values

-l()'ll<n<+l()'ll
-l()'ll<n<+l()'ll
-l(Jl1<n<+l(Jl1

O"'n<+l(Jl1

The storage formats for separate signed unpacked decimal integers are as follows:

Trailing sign \dl I d2\.;; IdPI S I Leading sign

~8 (p+l) bits~
In these formats, dn is the ASCII representation of a decimal digit, S indicates the sign, and p
indicates the precision, which must be greater than zero and less than 32. The plus sign is
represented by the ASCII character +(hexadecimaI2B) the minus sign by the ASCII character
- (hexadecimal 2D).

The format of an unpacked decimal integer with the sign indicated by a trailing overpunch is
as follows:

Idl I d2\'::.\ S/dPI
I~ 8p 'bits -I

The rightmost character in storage depends on the least significant digit of the integer and on
whether the integer is positive or negative as shown below.

Least Significant Digit

0 1 2 3 4 5 6 7 8 9
Positive ASCII graph; c ~B A B C D E F G H I

Hexadecimal code 41 42 43 44 45 46 47 48 49

Negative ASCII graphic
JD

J K L M N 0 P Q R
Hexadecimal code 4A 48 4C 4D 4E 4F 50 51 52

The format of an unsigned unpacked decimal integer is as follows:

I dll d21.~:E
~8p bits -I

Packed Decimal Integers

The prefix letter and the range of values for signed and unsigned packed decimal integers are
shown in Table 2-4.
TABLE 2·4. PREFIX LETTER AND RANGE OF VALUES FOR SIGNED AND UNSIGNED

PACKED DECIMAL INTEGERS

Prefix Letter Type Range

P Signed -l()'ll<n<+l()'ll
U Unsigned O~n<+l(Jl1

The formats of packed decimal integers are as follows:

ELEMENTS OF
ASSEMBLY LANGUAGE· 2-8

7/79
CB07-01B

(

(--,

,."

I dl I d2\ .:;. I dp I s I Format for packed signed decimal integers

1--4 (p+ 1) bits---f

I dl I d21 ·Z· I dp I Format for packed unsigned decimal integers

1--4 p bits-\

Examples of Decimal Integers

The source language and the associated stored value for the various types of decimal integers
are given in the following examples:

Source language
P'125'
-P'99436'

U125'
U99436'

L'125'
-L'99436'

T'125'
-T'99436'

0'125'
-0'99436'
0'20'
-0'20'

N'125'

FIXED-POINT CONSTANTS

Stored Value
(hexadecimal)
125B
99436DOO

1250
99436000

2B313235
2D39 3934 3336

3132352B
3939 3433 362D

31324530
3939 3433 4F30
327B
327D

31323530

A fixed-point constant is written as a decimal number with an associated scale factor and an
optional precision field. When the resultant value is stored in memory, a fIXed-point constant
appears as a signed integer with negative values in two's complement form. The scale factor (s)
gives the location of the implied binary point in the stored constant. A positive scale factor
means that the binary point is situated s bits to the left of the rightmost bit stored in memory. A
negative scale factor means that the binary point is situated s bits to the right of the rightmost
bit stored in memory. Thus, the true value of a fixed point binary number may be calculated by
multiplying its integer representation by 2-8 •

The two formats for writing fixed-point constants are, as follows:

Format 1

[:]{ ~;;[:ll } B [:]. SINGLE PRECffiION

Format 2

[±]

SINGLE OR DOUBLE
PRECISION

Specifies the sign of the constant. The + sign may be omitted.

ELEMENTS OF
ASSEMBLY LANGUAGE 2-9

7179
CB07-OlB

•
I

I

i
Specifies the integer part of the decimal number.

f
Specifies the fractional part of the decimal number.

r
Specifies the precision of the constant,0<r.;;;31.

[±]s
Specifies the value and sign of the scale factor.

Format 1 has an implied precision of 15 bits. The value of a fixed-point constant must fall
within the range

2-8 .;;; I R 1<231- 8

where R is the value of the decimal number.

Fixed-point constants are stored as aligned signed two's complement binary numbers; that is
they occupy one word if they are single precision and two words if they are double precision. The
assumed binary point is located s bits to the left of the rightmost bit if the scale factor is positive,
and -s bits to the right of the rightmost bit when the scale factor is negative.

The following examples illustrate how to specify fixed-point constants and show the
hexadecimal representations of the resultant values in memory.

Source Language Stored Value
2.5B4 0028
2.5B8 0280

65536B-15 0002
65536B-7 0200

-2.5B8 FD80
-65536B-15 FFFE
262144B(20,0) 0004
262144B(20,-7) 0000
262144B(15,-7) 0800

-262144B(20,O) FFFC
-262144B(20,-7) FFFF

FLOATING-POINT CONSTANTS

0000
0800

0000
F800

The assembly language provides a convenient method with which you can write a decimal
number and have the Assembler convert it into floating-point format. (See Section 1 for a
description of floating-point data.)

There are three formats for floating-point constants:

Format 1

[+] I i..[f]} SHORT PRECISION
- [1].f

Format 2

{ SHORT PRECISION r+l (i[.[f]]jEf+]c

L - J l [i].f L -
Format 3

[:]I ~;;[:]]} D[:]. DOUBLE PRECISION

[±]
Specifies the si~ of the constant. The + sign may be omitted if desired.

ELEMENTS OF
ASSEMBLY LANGUAGE 2-10 CB07

/

.)
-..... .. --'

(

('

i
Specifies the integer part of a decimal number.

f
Specifies the fractional part of a decimal number.

E
Indicates that a short-precision floating-point representation is desired.

o
Indicates that a double-precision floating-point representation is desired.

[±]c
Expresses the power of 10 by which the coded decimal number should be multiplied to
produce the value wanted. The + sign may be omitted if desired.

Note:
If the decimal point is omitted, the number is assumed to be an integer.

The absolute value of a floating-point constant must be greater than or equal to Z-260 (approxi­
mately 5.3976 X lOW) less than 2252 (approximately 7.2370 X 1075).

Nonnalization

Floating-point constants are stored as normalized hexadecimal floating-point numbers with a
7 -bit excess 64 power-of-16 characteristic and a 25-bit or 57-bit signed magnitude mantissa. A
normalized floating-point number has a nonzero high-order hexadecimal fraction digit. If one or
more high-order fraction digits are zero, the number is said to be unnormalized. Normalization
consists of shifting the fraction left until the high-order hexadecimal digit is nonzero and
reducing the characteristic by the number of hexadecimal digits shifted.

Examples

The following examples illustrate how to specify floating'-point constants and show the
hexadecimal representations of the resultant values in memory. You can determine sign,
characteristic, and mantissa of the resulting floating-point numbers by dividing the
hexadecimal representations into parts according to the patterns described in Section 1.

Source Language Stored Value

-.5 8180 0000
5. 8250 0000
0.5E12 9474 6A52
0.5012 9474 6A52 8800 0000

-0.5012 9574 6A52 8800 0000
6.665039063E-2 8011 1000

-6.665039063E - 2 8111 1000

Expressions are combinations of symbolic names and constants used as operands within
Assembler control and assembly language (machine) instructions. Expressions can represent
locations (internal, external, or common), values, and addresses. Components of an expression
can be joined by various functions and arithmetic operators, as follows:

Arithmetic Operator Meaning
+ Addition (or Unary +)

*

Boolean Function
AND
OR
XOR
NOT

ELEMENTS OF
ASSEMBLY LANGUAGE

Subtraction (or Unary -)
Multiplication
Division

Meaning
Conjunction of argumentl and argument2
Inclusive disjunction of argument 1 and argument2
Exclusive disjunction of argument 1 and argument2
Negation of argumentl

2-11
7179

CB07-0lB

I

I

Shift Furwtwn
ALB

ARS

LLS

LRS

Arithmetic Function
'MOD

MAX

MIN

Meaning
Arithmetic left shift of argumentl
by argument2 bits
Arithmetic right shift: of argumentl
by argument2 bits
Logical left shift of argumentl
by argument2 bits
Logical right shift of argumentl
by argument2 bits

Meaning
Remainder after division when argument1
is divided by argument2
The value of the algebraically
largest argument
The value of the algebraically
smallest argument

General Format of a Function:
function-name (argument 1, argument 2)

NOTE: The Boolean NOT function has only one argument.

When a value is operated upon by an arithmetic operator or function or by an arithmetic shift
function the value is considered to be a 16-bit signed (two's complement) binary integer. When a
value is operated upon by a Boolean or logical shift"function the value is considered to be a 16-bit
bit string. You must ensure that the results of a Boolean or shift operation will be meaningful
when subsequently interpreted as an integer value by the Assembler. The results of each
computation must be within the allowable range of integer dimensionless values. The range is
from -32768 to +32767.

The shift functions must satisfy the conditions specified below or else the function will not be
performed and the operation will be flagged as an error condition.

ALS o "",argument2 <15
ARB 0 "",argument2 <15
LLS and LRS 0.::;;:argument2 <15

Argument2 in the arithmetic function MOD must not equal O. Ifthis condition is not satisfied,
an error condition is flagged and the function is performed as if argument2 is equal 1.

The arguments in all arithmetic operations and functions must be binary integers.

To use a function within an expression you write the function name followed by its operands,
enclosed in parentheses and separated by a comma; e.g., AND (TAGI,TAG2).

Below are examples offunctions:

VALl EQU X'100'
VAL2 EQU X'1OF'
VAL3 EQU3
LOCI EQU . $ (at location 200 hexadecimal)

ELEMENTS OF
Aa3EMBLY LANGUAGE 2-12

7/79
CB07~OlB

~,
\

(~'

(

AND
DC <LOCI + AND(VALI,VAL2)
resolves to address 300 hexadecimal

OR
DC <LOCl+0R(VALI,VAL2)
resolves to address 30F hexadecimal

XOR
DC <LOCI+XOR(VALI,VAL2)
resolves to address 20F hexadecimal

NOT
VAL4 EQU NOT(VAL2)
resolves to value FEFO hexadecimal

ALS
VAL5 EQU ALS(VALI,VAL3)
resolves to value 800 hexadecimal

ELEMENTS OF
ASSEMBLY LANGUAGE 2-12.1

7/79
CB07-01B

(

Section 3

Programming
Considerations

Before writing an assembly language source program, you should take into consideration
both features and constraints inherent in the design of the Assembler and the system. This
section describes the considerations that should be made, as well as the various rules that must
be followed, when coding your source program. These jnclude:

• Rules of formatting your source language statements

• Ordering of statements in an assembly language program

• Rules governing the calling of system services and external procedures

• Utility programs that supplement assembly language source programs

ASSEMBLY LANGUAGE SOURCE STATEMENT FORMATS

As mentioned in Section 2, the assembly language consists of Assembler controlling
statements and assembly language (operational) instructions. Assembly language source code
must be submitted to the Assembler in a recognizable format so that it can be interpreted
accurately. Therefore, when coding assembly language source statements, you must conform to
the following formatting conventions:

Columnl--.

{ ~~be~ } opcode {aoperand {~perand {~perand[.J}}}[acomments]
hnenuma a;;
linenum-Iabela

The semicolon (;) indicates to the Assembler that the next operand is contained in the next
sequential source line (Le., the continuation statement), which has the following format:

cOlumnl+

[linenum][a]operand {iperand[. . .J} [acomments]

In addition to comments being included on individual assembly language source
statements, comment statements, which have the following format,_ can be included in the
source language program.

columnl.

*
/

@
linenum*
linenuml
linenum#
linenum@

comments

PROGRAMMING CONSIDERATIONS 3-1
7179

CB07-01B

$

." .. /

The asterisk (*) indicates that the comment line is to be included in the listing wherever it is
included in the source language program. The slash (I) indicates that the Assembler is to cause
the printer to skip to the top of the next page of the listing before printing the comment. The
pound sign (#) and the at-sign (@) designate macro processor comment lines. Upon request the
macro processor generates comment lines that begin with the at-sign (@). These lines are macro
control statements without errors. The macro processor unconditionally generates comment
lines that begin with the pound sign (#). These lines are statements that generate macro
processing errors. Printing of lines can be overridden by the inclusion of an NLST Assembler
control statement in the source code (see Section 4).

In the above formats, label is any user-specified tag, linenum is any user-specified line
number, linenum-Iabel indicates a line number followed by a label with no intervening spaces,
opcode and operand indicate the required assembly language .fields described in Sections 4
through 7, and blank (A) indicates that one or more blanks or horizontal tab characters must be

PROGRAMMING CONSIDERATIONS 3·1.1
7/79

CB07·01B

I

coded. Any number of blanks and/or horizontal tab characters can follow a comma (,). A line
number is an unsigned decimal integer of any length. Line numbers are ignored by the
Assembler.

Except for the order in which information must be supplied, the source language format is a
free-form. However, it is suggested that you establish a fixed format for coding source
statements (e.g., always starting op codes in the eleventh position and operands in the twenty­
first) so that you can read your listing more easily.

ORDER OF STATEMENTS IN SOURCE PROGRAM

With the following exceptions, Assembler control statements can be entered in any order:

1. The TITLE statement must be the first statement in the source program.

2. The END statement must be the last statement in the source program.

CALLING SYSTEM SERVICES

System services (e.g., the Task Manager) can be requested through the use of monitor service
calls and macro calls. For information concerning requests for system services see the System
Services Macro Calls manual.

CALLING EXTERNAL PROCEDURES

Procedures that are assembled separately from the invoking procedure are designated
external procedures.

The individual elements of data passed to an external procedure are known as arguments. The
external procedure interprets these arguments as parameters; to the external procedure, the
order of the parameters is the same as the order of the arguments passed from the invoking
procedure.

External procedures can be requested by coding request sequences such as the following:

LAB $B7,arglist
LNJ $B5,<entry

In the above sequence, 'entry' is the external label of the appropriate entry point ofthe called
(external) procedure, and 'arglist' is the argument list to be passed to the called (external)
procedure.

Alternatively, you could use a request such as the following:

CALL entry,argl,arg2, ...

This request is similar to the preceding sequence except that the CALL Assembler control
statement automatically generates the argument list, loads its address into B7, and sets the
return address in B5. As a result, when the external procedure completes its work, control is
returned to the next sequential instruction or statement in the calling program.

ALTERNATE METHOD OF HANDLING
INPUT/OUTPUT AND FILE MANIPULATION

Input/output and file manipulation can be accomplished by writing Assembler routines or by
using monitor service requests. Details concerning monitor service requests are contained in
the System Service Macro Calls manual.

ASSEMBLER

The Assembler processes source statements written in assembly language, translates the
statements into object code, and produces a listing of the source program together with its
associated assembly information.

The Assembler accepts arguments that allow you to control its operation in various ways.
Detailed information about the Assembler and its arguments can be found in the Commands
manual.

PROGRAMMING CONSIDERATIONS 3-2
7/79

CB07/0lB

(

(

(

IF

IF

Instruction:

Conditional skip

Source Language Format:

Dabel]aIF i: {HI d m~val~xpres&o~ label

Description:
If the specified condition is met, the Assembler skips (reads but does not process) subsequent I
statements until the label is encountered; otherwise, the next sequential instruction is proc-
essed. (0 is neither positive nor negative.)

The opcode is interpreted as follows:

IFP
Skip to label if int-val-expression is positive (i.e. > 0).

IFNP
Skip to label if int-val-expression is not positive (i.e. ,,;; 0).

IFN
Skip to label if int-val-expression is negative! (i.e. < 0).

IFNN
Skip to label if int-val-expression is not negative (i.e. ~ 0).

IFZ
Skip to label if int-val-expression is zero.

IFNZ
Skip to label if int-val-expression is not zero.

IFOD
Skip to label if int-val-expression is odd.

IFEV
Skip to label if int-val-expression is even.

The operands have the following meanings:

int-val-expression
Internal value expression (see "Expressions" in Section 2); forward references are not
permitted.

label
Label (see "Labels" in Section 2) identifying the next statement or instruction to be
processed by the Assembler if the condition is met.
If a label is specified, it is not entered in the Assembler's symbol table; as a result, it can be
referred to only by a preceding IF statement.

Example:
IFNZ AND($SW,Z'4000'),SKIPIT

External Switch 1 is checked. If it is set the Assembler skips the subsequent statements
until the label SKIPIT is encountered. If External Switch 1 is not set, the Assembler goes to
the next lie of assembly code. This is an example of varying an assembly procedure without
altering the assembly language source program.

ASSEMBLER CONTROL STATEMENTS 4-17
7179

CB07-01B

LCOMM

LCOMM

Instruction:

Define local common block

Source Language Format:

labeIALCOMMAint-val-exp

Description:

Provides a way for a block of data local to a program to ~ allocated not by the Assembler, but by
the Linker using standard linking procedures for allocating common blocks. The data allocated
by use of the LCOMM statement is not shared.

The label field and op~rands have the following meanings

label
The name of the common area.

NOTE: LCOMM does not allow a temporary label to be specified.

int-val-exp
Specifies the size (in words) of the common area. The Linker (see the Program Execution and
Checkout manual) assigns all common blocks with the same name to the same memory area
regardless of the memory location in the source program at which they are defined (Le., the
LCOMM statement does not alter the Assembler's location counter). In the case of a local
common block, the Linker removes the name of the local common block from its symbol
table after it has linked the program which defined the local common block.

int-val-exp is an internal value expression (see Section 1), and must be defined prior to the
occurrence of this LCOMM statement. It must not contain a forward reference. Elements in
a common block can be referenced by the name of the common block plus the element's
displacement within the block. ,_./

~ " ..
~~.~

ASSEMBLER CONTROL STATEMENTS 4~18 CB07

(

•

PTRAY

Instruction:

Create pointer array

Source Language Format:

[label].1PTRA Y.1location-expl [,location-exp2] ...

Description:

PrRAY

Creates an array of pointers. The address of a memory word is referred to as a pointer. Pointers
may occur at the level of machine language both as direct addresses and as indirect addresses.

The Assembler generates the object unit code as if the statement were transformed into the
following DC statement.

[label].1DC.1 < location-expl [, <location-exp2] ...

If the Assembler is invoked with the SLIC argument, it will also identify the object unit text
resulting from the PTRA Y statement as being a pointer array .. This is necessary so that in
loading a SLIC program, the Loader will compress addresses if executing in SAF mode.

ASSEMBLER CONTROL STATEMENTS 4-23 CB07

I

RESV

RESV

Instruction:

Reserve main memory space

Source Language Format:

[label].::lRESV .::lint-val-expa[,int-val-expb]

Description:

Reserves space in main memory for use by the bound unit as work or storage space.

The label field and operands have the following meanings:

label
If specified, the first word of the reserved area is given that name.

int-val-expa
This is an internal value expression (see Section 2) that specifies the size (in words) of the
reserved area, and must be ~ O. It must not contain a forward reference.

int-val-expb
If specified, it is an internal value expression (see Section 2) specifYing the initial value to
which each word in the reserved area is initialized when the bound unit is loaded. If this
operand is not specified, the contents of the reserved area are undefined.

ASSEMBLER CONTROL STATEMENTS 4-24
7179

CB07-01B

•

(

MEMORY

ASSEMBLED INSTRUCTION
(ADD $R2,*$B5.$R1)

B5

I------~~ LOCATION 2022

LOCATION 1000

+ 1A WORDS

R1 • L.--8---------___ J

LOCATION 101A
(EFFECTIVE ADDRESS)

Figure 5-12. Indexed Indirect B-Relative Addressing

ASSEMBLED INSTRUCTION
(SUB $R6.$B5.XVAL2A)

B5

MEMORY

____ +AWORDS

LOCATION 200A
(EFFECTIVE ADDRESS)

Figure 5-13. Direct B-Relative Plus Displacement Addressing

ASSEMBLY LANGUAGE INSTRUCTIONS 5-17 CB07

I

INDIRECT B-RELATIVE PLUS DISPLACEMENT ADDRESSING

This form of addressing effectively adds a displacement value to the contents of the specified
base register. Then, the effective address is the contents of the location whose address is derived
through this preceding operation.

In the following example of this form of addressing, EXP10 is an internal value expression
equated to 0010, $B4 contains the address 30FF, location 310F contains the address 10FE,
location 10FE contains the value 400D, and $R7 contains the value 1013.

Example:

ADD $R7,*$B4.EXP10

In this example, the displacement value 0010 is added to the contents of $B4 (Le., 0010 +
30FF), producing the address 310F. Then, applying the indirection operator, the contents of
the location 310F (Le., 10FE) are used as a memory address. The value found at location 10FE
(i.e., 400D) is added to the contents of $R7. The result (5020) is stored in $R7.

Figure 5-14 illustrates how this form of addressing generates an effective address when stored
in memory.

t

MEMORY

I
I
I
I
I
I
I

LOCATION 10FE
(EFFECTIVE ADDRESS)

" ___ -..v-.... __ J

,-- - - -_+ 10WORDS

Figure 5-14. Indirect B-Relative Plus Displacement Addressing

DIRECT B6-RELATIVE PLUS LOCAL COMMON BLOCK PLUS DISPLACEMENT ADDRESSING

In this form of addressing, the effective address is computed by adding a specified value to the
contents of base register $B6. This addressing form assumes that $B6 contains the address of the
combined $LCOMW local common blocks. For information on the loading of $B6, see Appendix
M. The value that is added to the contents of $B6 is assumed to be an offset value (before
adjustment by the Linker) into the local common biock, $LCOMW.

Example:

TEN
$LCOMW

EQU
LCOMM
ORG
DC

10
300
$LCOMW+10
100

ASSEMBLY LANGUAGE INSTRUCTIONS 5-18
7179

CB07-01B

(

In this example, suppose that the constant 100 which is contained in the eleventh word of the
local common block, $LCOMW, is to be loaded into data register $Rl. If at execution time, $B6
contains the address of the combined $LCOMW local common blocks, then either of the
following instructions will accomplish the desired result.

LDR $R1,$B6.$LCOMW +TEN

LDR $Rl,$B6.$LCOMW + 10
Figure 5-15 illustrates how this form of addressing generates an effective address when stored

in memory.

MEMORY

B6

POINTER TO
'--_-"'1 WORD 0 OF

$LCOMW

NOTE: THIS EXAMPLE ASSUMES THAT THE
COMPILE UNIT CONTAINING THIS
EXAMPLE IS LINKED AS THE FIRST
COMPILE UNIT IN A GIVEN OVERLAY;
THE LINKER ACTUALLY INCREMENTS
THE DISPLACEMENT (OOOA IN THIS
EXAMPLE) BY THE SUM OF THE SIZES
OF THE $LCOMW LOCAL COMMON
BLOCKS IN THOSE COMPILE UNITS
THAT ARE LINKED PRIOR TO THE
CONCERNED COMPILE UNIT WITHIN
ANY GIVEN OVERLAY.

WORD 0 (i.e., FIRST WORD)
OF LOCAL COMMON BLOCK
$LCOMW EFFECTIVE ADDRESS

i \) 1,,:]1[:111 1 I 1
I y

I
- - -- - - - - -- - - - ---- -~ + 10WORDS

Figure 5-15. Direct B6-Relative Plus Local Common Block Plus Displacement Addressing

INDIRECT B6 -
RELATIVE PLUS LOCAL COMMON BLOCK PLUS DISPLACEMENT ADDRESSING

In this form of addressing, the effective address is specified by the contents of the location
computed by effectively adding a value to the contents of base register $B6. This addressing form
assumes that $B6 contains the address of the combined $LCOMW local common blocks. The
value that is added to the contents of $B6 is assumed to be an offset value (before adjustment by
the Linker) into the local common block, $LCOMW.

Example:

$LCOMW

CONST

LCOMM
ORG
DC
ORG
DC

300
$LCOMW
<CONST
$LCOMW+20
100

In this example, assume that the constant 100 which is contained in the 21st word of the local
common block, $LCOMW, is to be loaded into data register $Rl, and that the address of the
constant is known to be in word zero of the local common block. If at execution time, $B6
contains the address of the local common block, then the following instruction will accomplish
the desired result.

LDR $Rl,*$B6.$LCOMW

Figure 5-16 illustrates how this form of addressing generates an effective address when stored
in memory.

.ASSEMBLY LANGUAGE INSTRUCTIONS 5-19
7179

CB07-01B

*

ASSEMBLED INSTRUCTION NOTE: THIS EXAMPLE ASSUMES THAT THE (LOR $R 1. *$86. $LCOMW) COMPILE UNIT CONTAINING THIS-"-.. EXAMPLE IS LINKED AS THE FIRST

\ I 984E I 0000 I / COMPILE UNIT IN A GIVEN OVERLAY;
THE LINKER ACTUALLY INCREMENTS
THE DISPLACEMENT (0000 IN THIS

: B6
EXAMPLE) BYTHE SUM OF THE SIZES
OF THE $LCOMW LOCAL COMMON

I POINTER TO BLOCKS IN THOSE COMPILE UNITS
I WORD OOF THAT ARE LINKED PRIOR TO THE
I $LCOMW CONCERNED COMPILE UNIT WITHIN
I ANY GIVEN OVERLAY.

MEMORY I
I

\ WORD 0 (FIRST WORD) I EFFECTIVE
I OF $LCOMW ADDRESS
I ". I

~
POINTER TO CONST.]·5 I

I WHICH IS $LCOMW + 20 0064
I (i.e •• <$+2O)
I I t I OWORDS . "INDIRECTION" ...

Figure 5-16. Indirect B6-Relative Plus Local Common Block Plus Displacement Addressing

B-RELATIVE PUSH ADDRESSING

This form of B-relative addressing causes the contents of the specified base register to be
decremented before the effective address is formed. The new address in the register is the
effective address of the location or data to be used in the operation. The B register is decremented
by:

• One for all instructions accessing one-bit, one-byte, or one-word operands.

• Two for all instructions accessing double-word operands.

• Four for all instructions accessing quadruple-word operands.

• One for SAF configurations or two for LAF configurations for the LDB, STB, SWB, CMB,
and CMN instructions.
NOTE:

LAB is an instruction accessing a one-word operand.

In the following example, $R5 contains the value 30FF,$B5 contains the address 4011, and
memory location 4010 contains the value 000l.

Example:

ADD $R5,-$B5

In this example, the contents of location derived by subtracting one from the address con­
tained in $B5 are added to the contents of$R5, and the result (3100) is stored in $R5. The next
time $B5 is used, it will contain the address 4010.
Figure 5-17 illustrates how the sample instruction described above is stored in memory and

how it derives the effective address of the data to be used in the operation.

MEMORY

ASSEMBLED INSTRUCTIONS
(ADD $R5,$B5)

BEFORE:

AFTER:

LOCATION 4010
(EFFECTIVE ADDRESS)

Figure 5-17. B-Relative Push Addressing

ASSEMBLY LANGUAGE INSTRUCTIONS 5-20
11/78

CB07A

(

ACQ

ASSEMBLY LANGUAGE INSTRUCTIONS

The remainder of this section lists (alphabetically) and describes the assembly language
instructions for the Central Processing Unit (CPU). Assembly language instructions for the
Commercial Processor and the Scientific Instruction Processor (SIP) are given in Sections 6 and
7 respectively. The description of each instruction includes the name, type, format, and explana­
tion of operands.

When an operand specifies a symbolic name, constant, or expression (other than an address
expression), refer to Section 2 for a detailed description of those elements. Address expressions
are defined in this section under "Addressing Techniques." Before using the following
instructions you should fully understand the assembly language elements described in Section 2
and in this section.

Although not shown in the source language formats, all assembly language instructions can
be labeled.

ACQ

Instruction:

Acquire stack space

Type:

GE

Source Language Format:

MCQd {~~: I ,$Rn

Description:
This stack instruction acquires an additional frame, of the size specified by the contents of$Rn,
from the currently available stack space. $Bn is set to point to this newly acquired frame (lower
memory address, see Figure K-l).
If the size specified by Rn is such that the currently available stack space is exceeded, a trap to
trap vector 10 occurs.

Stack instructions are double-word instructions with the following characteristics.

• A common first word.

• Bits 0 through 8 and bit 12 of the second word contain zeros.

Ifbits 0 through 8 and bit 12 of the second word are not zero, the result is a trap to trap vector 16.

Bits 9 through 11 of the ACQ instruction specify the register $Rn bits 13 through 15 specify
register $Bn.

This instruction is executable only on Models 40 and 50.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-27
7/79

CB07-01B

I

ADD

ADD

Instruction:

Add Contents to R-register

Type:

DO

Source Language Format:

AADD~ { ~~} , address-expression

Description:

Adds the contents of the location or R-register identified in the address expItession to the
contents of the R-register specified in the first operand. The result is saved in the first operand
R-register.

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

= $Bn} register addressing
=$Sn
Short displacement addressing
Specialized addressing

The contents of the I-register are affected as follows:

• If the result is more than 215 -1 (32767) or less than -215 (-32768), the OV-hit is set to 1:
otherwise, it is set to o.

• If, during the summation, a carry occurs, the C-hit is set to 1; otherwise, it is set to O.

ASSEMBLY LANGUAGE INSTRUCTIONS CB07

(." ..
"'j

--_._---

(-

ADV

ADV

Instruction:

Add value to R-register

Type:

SI

Source Language Format:

{
$Rnj

AADVA ;'n' ,[=] { internal-value-expression }
single-precision-fixed-point-constant

Description:

Adds the 8-bit value (with sign extended) specified in the second operand to the contents of the
R-register identified in this operand. The result is saved in R-register.

The contents of the I-register are affected as follows:

• If the result is more than 21L 1 (32767), or less than -215 (-32768), the OV-bit is set to 1;
otherwise, it is set to O.

• If, during the summation, a carry occurs, the C-bit is set to 1; otherwise, it is set to o.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-29 CB07

I

AID

AID

Instruction:

Add integer double

Type:

SO

Source Language Format:

LlAIDLladdress-expression

Description:

Adds the value of the double-word integer specified by the address expression to the value in the
register pair $R6, $R7. The result is saved in ~R6 and $R7, with the most significant part in $R6
and the least significant part in $R7.

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

: :::} registers addressing

Short displacement addressing
Specialized addressing

If the address expression specifies memory addressing with indexing, the index register is
aligned to count double-words relative to the word specified.

If Immediate Operand Addressing is specified, the immediate operand may only use a binary
integer constant (which is sign extended to 32 bits by the Assembler), a double precision
fixed-point constant, or a string constant of exactly two words (Le., four bytes or 32 bits). In all
cases, the immediate operand must be a constant that has not been assigned a symbolic name.

1f=$Rn is used, only =$R3 (adds the contents ofR2 and R3 into R6 and R7 respectively), =$R5
(adds the contents of R4 and R5 into R6 and R7, respectively), or =$R7 (doubles the value
contained in R6 and R7) may be used.

If a carry occurs, the C-bit of the I-register is set to 1, else it is set to o.
If overflow occurs, the OV-bit if the I-register is set to 1, else it is set to O.

This instruction is executable only on Models 40 and 50.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-30
7/79

CB07-0lB

ENT

Instruction:

Enter

Type:

SO

Source Language Format:

{
immediate-memory-address}

aENTa B-relative-addressing
P-relative-addressing
interrupt-vector-addressing

Description:

ENT

Jumps to the memory location specified by the operand; also, sets the P-bit of the ring field in the
S-register to 0 (i.e., sets the bit to indicate the unprivileged state).

IftheJ-bit in the Ml-register contains a binary 1, the trace procedure is entered via trap vector
2. Upon completion, or if the J-bit contains a binary 0, execution commences at the specified
location.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-87
7179

CB07-01B

*

·HLT

HLT

Instruction:

Halt

Type:

GE

Source Language Format:

AHLT
Description:

Stops program execution. HLT state is indicated on the control paneL All interrupts are
honored.

The P-bit of the S-register must be set to 1, or the ring field of the S-register must be set to lx,
whichever is appropriate; Le., the central processor must be in the privileged state for this
instruction to be executed. lfnot, the unprivileged use of a privileged operation results in a trap
to trap vector 13.

A halt instruction on a user level may prevent a lower priority user level from completing a
Monitor service operation. The Monitor may be interrupted in a way that causes a system
interlock. If user level halts are used during program development, the level specified should be
the lowest priority in the system.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-88 CB07

o

("

LDI

WI

Instruction:

Load double-word integer

Type:

SO

Source Language Format:

ALDlAaddress-expression

Description:

Loads the contents of the location specified by the address expression into register R6 and the
contents of the next location into register R7.

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

= $Bn} register addressing
=$Sn
Short displacement addressing
Specialized addressing

If the address expression specifies memory addressing with indexing, the index register is
aligned to count double-words relative to the word specified.

If Immediate Operand Addressing is specified, the immediate operand may only use a binary
integer constant (which is sign extended to 32 bits by the Assembler), a double precision
fixed-point constant, or a string constant of exactly two words (Le., four bytes or 32 bits). In all
cases, the immediate operand must be a constant that has not been assigned a symbolic name.

1f=$Rn is used, only =$R3 (loads the contents ofR2 and R3 into R6 and R7, respectively) or
=$R5 (loads the contents ofR4 and R5 into R6 and R7, respectively) and =$R7 may be used.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-103
7/79

CB07-0lB

I

LDR

LDR

Instruction:

Load R-register

Type:

DO

Source Language Format:

Aill&\' {~~} ,address-expression

Description:

Loads the contents of the location or R-register identified in the address expression into the
R-register identified in the first operand.

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

= $Bn} register addressing
=$Sn
Short displacement addressing
Specialized addressing

ASSEMBLY LANGUAGE INSTRUCTIONS 5-104 CB07

(

LDT
Instruction:

Load stack address register

Type:
GE

Source Language Format:

~LIYr~ {;~:.l
Description:

Loads the T register with the address contained in $Bn (see Figure K-1).

Stack instructions are double-word instructions with the following characteristics:

• A common first word.

• Bits 0 through 8 and bit 12 of the second word contain zeros.

LDT

Ifbits 0 through 8 and bit 12 of the second word are not zero, the result is a trap to trap vector 16.
Register $Bn is specified in bits 13 through 15 of the second word of the LDT instruction.

Stack instructions can be executed only on Models 40 and 50.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-105
7/79

CB07-01B

I

LDV

LDV

Instruction:

Load value

Type:

SI

Source Language Fonnat:

,1LDV,1 {;~} • [~lintemal-value-expre.ssion
Description:

Loads the 8-bit value identified in the second operand into the right half~word of the R-register
specified in the first operand. The contents of bit 8 are extended through the left half-word ofthe
R-register.

Exceptfor the string constant form of the second operand, all values are assumed to be numeric.

ASSEMBLY LANGUAGE INSTRUCTIONS :5-10S CB07

(..

... ~

.. /

RLQ

Instruction:

Relinquish stack space

Type:

GE

Source Language Format:

~RLQ~$Bn

Description:

RLQ

This stack instruction releases the most recently acquired stack frame. If the stack is emptied by
this instruction, the result is a trap to trap vector 9. If the stack is not emptied, the current
length of the stack is adjusted and the base register specified, $Bn (bits 13 through 15 of the
second word of the instruction, see Figure K-l), is set to point to the new top frame. I
Stack instructions are double-word instructions with the following characteristics:

• A common first word.

• Bits 0 through 8 and bit 12 of the second word contain zeros.

Ifbits 0 through 8 and bit 12 of the second word are not zero, the result is a trap to trap vector 16.

Stack instructions can be executed only on Models 40 and 50.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-123:
7179

CB07-01B

RSTR

RSTR

Instruction:

Restore context

Type:

SO
Source Language Format:

{
immediate-memory-address} {external-value-label 1

~RSTRd . B-relat~ve-address , internal-value-expression
~-relatIve-address . single-precision-fixed-point-constant
mterrupt-vector-addressmg

Description:

Restores the registers specified in the second operand mask starting from the location specified
in the address expression.

The second operand is a mask that specifies which registers are to be restored. If the mask is all
zeros, the contents of R1 are used as the mask.

Depending on which bits in the specified mask !ire set to 1, the registers that can be restored are
as follows:

Bit: 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I MljR1 iRZjR31 R41R5jR61R71 I IB1 IB21 B31B41B5186IB71

This mask should be the same as the one used to save the registers (see the SAVE instruction).

ASSEMBLY LANGUAGE INSTRUCTIONS 5-124
11/78

CB07A

(

SDI

Instruction:

Store Double word integer

Type:

SO

Source Language Format:

dSDIdaddress-expression

Description:

SDI

Stores the contents of register R6 into the location specified by the address expression and the
contents of register R7 into the next location.

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

=$Bn}
= $Rn register addressing
=$Sn

If the address expression specifies memory addressing with indexing, the index register is
aligned to count double-words relative to the word specified.

If Immediate Operand Addressing is specified, the immediate operand may only use a binary
integer constant (which is sign extended to 32 bits by the Assembler), a double precision
fixed-point constant, or a string constant of exactly two words (i.e., four bytes or 32 bits). In all
cases, the immediate operand must be a constant that has not been assigned a symbolic name.

Note:
=$R3, =$R5, and =$R7 are permitted and refer to register pairs $R2, $R3; $R4, $R5,
and $R6, $R7, respectively.

Short displacement addressing
Specialized addressing

ASSEMBLY LANGUAGE INSTRUCTIONS 5-133
7/79

CB07-01B

I

I

SID

SID

Instruction:

Subtract integer double

Type:

SO

Source Language Format:

ASIDAaddress-expression

Description:

Subtracts the value of the double-word integer specified by the address expression from the
value in the register pair $R6, $R7. The result is saved in $R6 and $R7, with the most significant
part in $R6 and the least significant part in $R7.

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

= $Bn} register addressing
=$Sn
Short displacement addressing
Specialized addressing

If the address expression specifies memory addressing with indexing, the index register is
aligned to count double-words relative to the word specified.

If Immediate Operand Addressing is specified, the immediate operand may only use a binary
integer constant (which is sign extended to 32 bits by the Assembler), a double precision
fixed-point constant, or a string constant of exactly two words (Le., four bytes or 32 bits). In all
cases, the immediate operand must be a constant that has not been assigned a symbolic name.

If = $Rn is used, only = $R3 (subtracts the contents ofR2 and R3 from R6 and R7 respectively), or
$R5 (subtracts the contents ofR4 and R5 from R6 and R7 respectively), or =$R7 (clears R6 and
R7) may be used.

If a borrow is required during the subtraction, the C-bit of the I-register is set to 0; otherwise it is
set to 1.

If overflow occurs, the OV-bit of the I-register is set to 1, otherwise it is set to O.

This instruction is executable only on Models 40 and 50.

ASSEMBLY LANGUAGE INSTRUCTIONS' 5~134
7/79

CB07-OlR

f'"

\,,-/

(/

(

STS

STS

Instructions:

Store S-register

Type:

SO

Source Language Format:

aSTSaaddress-expression

Description:

Stores the contents of the system status (s) register in the location or R-register identified in the
address expression.

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

=$Bn} register addressing
=$Sn
Short displacement addressing
Specializeq addressing

ASSEMBLY LANGUAGE INSTRUCTIONS 5~143 CB07

STT

STT

Instruction:

Store Stack Address Register

Type:

GE

Source Language Format:

~STT

Description:

This stack instruction moves the address contained in the T register to register $B7.

Stack instructions are double-word instructions with the following characteristics:

• A common first word.

• Bits 0 through 8 and bit 12 of the second word contain zeros.

Jfbits 0 through 8 and bit 12 of the second word are not zero, the result is a trap to trap vector 16.

Stack instructions can be executed only on Models 40 and 50.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-144
7179

CB07-OlB

ALR

Instruction:
Alphanumeric move

Type:
Character string

Source Language Format:

d~ {DESCA(deScriPtiOn)}

int-val-expression

Description:

{
DESCA(deScriPtion}

, int-val-expression

ALR

The character string is moved from the address specified by the first operand (sending field) to
the address specified by the second operand. If the length ofthe receiving field is zero, the TR-bit
(truncation bit) of the Commercial Processor indicator register is set to 1, and the instruction is
aborted. Trap 28, truncation, may then be generated as described previously under "Commer­
cial Processor Traps."

If the length of the sending field is zero, the receiving field is filled or not as specified by the.
second data descriptor.

If the value of the byte length specified by the first data descriptor is zero, the length is contained
in the right byte of register R4 and can be from 0 through 255 bytes. If the value of the byte
length specified in the first data descriptor is not zero, that value, which can be from 1 through
31, is the length.

If the value of the byte length specified by the second data descriptor is zero, register R5 contains
the fill character (in the left byte) and the length (in the right byte). When escape to register R5
occurs, the length can be from 1 through 255 characters. If the value of the byte length specified
in the second data descriptor is not zero, that value is the length, and the fill character is an
ASCII blank (20 hexadecimal). In this case, the length can be from 1 through 31 bytes.

Applicable Traps:

Trap 23 Reference to unavailable resource

Trap 24 Bus or memory error

Trap 26 Illegal specification

Trap 28 Truncation

The contents of the Commercial Processor indicator register are affected as follows:

• If the length of the first operand string is greater than the length of the second operand
string, the TR-bit is set to 1; otherwise, it is set to O.

COMMERCIAL INSTRUCTIONS 6-25
7179

CB07-01B

I

AME
AME

Instruction:

Alphanumeric move and edit

Type:

Edit

Source Language Format:

AAMEA {DESCA(deScriPtiOn)}, {DESCA(deScriPtiOn)} , {DESCA(deSCriPtiOn)}

int-val-expression int-val-expression int-val-expression

Description:

The character string in the sending field specified by the first data descriptor (DD1) is edited in
accordance with the micro operations in the field specified by, the third data descriptor (DD3),
and moved to the receiving field specified by the second data descriptor (DD2).

The number of edited characters stored in the receiving field can be either more or less than
those in the sending field. The receiving field may have more characters when micro operations
specify one or more characters are to be inserted. The receiving field may have less characters
when a micro operation specifies that one or more characters of the sending field are to be
skipped.

The instruction terminates normally when the receiving field is filled. Normal termination
occurs even though the sending field or the string of micro operations have not been exhausted.

An illegal specification trap (Trap 26) is generated if either the sending field or the string of
micro operations are exhausted before the receiving field is filled.

Execution details are as follows:

• The effective address developed from a data descriptor .points to the leftmost character of
the operand.

• All operations take place from left to right.

• The valid length ofthe sending field, the receiving field, and the string of micro operations
ranges from 1 through 255. Lengths from 32 through 255 are specified via escape to an R
register. (See Appendix H.)

• During execution of the instruction, the sending field count indicates the current number
of characters remaining to be processed. The count is decremented every time a character
is moved out or skipped over;

• During execution ofthe instruction, the receiving field count indicates the current number
of positions that remain to be filled. The count is decremented every time a character is
moved into the receiving field.

• The Edit Insertion Table (EIT) is always initialized when the edit instruction is initiated.

• The edit flags are always initialized when the edit instruction is initiated.

APPlicable Traps:

Trap 23- Reference to unavailable resource

. Trap 24 Bus or memory error

Trap 26 Illegal Specification

Conditions causing trap=

• The sending field or the string of micro operations is exhausted before the receiving
field is filled.

• The length of the sending field. or the receiving field, or the string of micro operations
iszera.

COMMERCIAL INSTRUCTIONS 6-26 CB07

/

~'"

l~,)

(-.... \

DRS
Instruction:

Decimal right shift

Type:

Shift

Source Language Format:

{
DESCP(deSCriPtiOn))

ADRSA DESCU(description)
int-val-expression .'

Description:

DRS

[Gint-val-expression] eR[OUNDED]]]

The decimal value specified by the first operand is shifted right. The vacated digit positions are
zero filled. The second operand, if present, specifies the distance (number of digits shifted) and
must be an integer from 0 through 3l.

When the second operand is present, the assembler:

• Sets shift control word 1 (SCWl) to 0178 (hexadecimal).

• Sets bit 0 of SCW2 to 1 (i.e., right shift).

• Loads the value specified by the second operand in bits 3 through 7 of SCW2.

• Sets bit 8 of SCW2 to 1, if the third operand is present (i.e., rounding).

• Clears bit 8 of SCW2 to 0, if the third operand is absent (Le., no rounding).

When the second and third operands are omitted, thE:' assembler generates the shift control
words as it does for the DSH instruction when the second operand is omitted. The shift direction,
the distance, and the rounding control must then be obtained from register R5. For an
explanation of shift control words, see Decimal Shift instruction DSH.

Applicable Traps:

The traps that may be generated during execution of this instruction are the same as those for
the DSH instruction.

Note that only one shift instruction, decimal shift (DSH), is available in the hardware. The
decimal left shift (DLS) and the decimal right shift (DRS) instruction are provided by the
Assembler for the programmer's convenience.

, COMMERCIAL INSTRUCTIONS 6-53
7179

CB07-OlB

I

DSB
DSS

Instruction:

Decimal subtract

Type:

Decimal arithmetic

Source Language Format:

{
DESCP(description) .j

aDSBa DESCU(description) ,
int-val-expression

Description:

{ DESCP(deScr~Pt~on) I DESCU(descnptIon) .
int-val-expression

Subtracts the decimal value (the subtrahend) at the address specified by the first operand from
the decimal value (the minuend) at the address specified by the second operand and stores the
result (the difference) at the address specified by the second operand.

Applicable Traps:

Trap 23 Reference to unavailable resource

Trap 24 Bus or memory error

Trap 26 Illegal specification

Trap 27 Illegal Character

Trap 29 Overflow

The contents of the Commercial Processor indicator register are affected as follows:

• If the number of significant digits in the difference is greater than the number of digit
positions available in the receiving field, the OV-bit is set to 1; otherwise, it is set to O.

• If the difference is ngative and the receiving field is described as unsigned, the SF-bit is set
to 1; otherwise, it is set to O.

• If the difference is less than zero, the L-bit is set to 1; otherwise, it is set to O.

• If the difference is greater than zero, the G-bit is set to 1; otherwise, it is set to O.

COMMERCIAL INSTRUCTIONS 6-54- CB07

, /
~ .. _/

(

MAT

Instruction:

Alphanumeric move and translate

Type:

Character string

Source Language Format:

I DESCA(description)) {DESCA(deScriPtiOn)\. {DESCA(deScriPtiOn)!
aMATa , ,

int-val-expression int-val-expression,' int-val-expression .

Description:

MAT

The character string in the sending field (specified by the first data descriptor) is translated and
moved to the receiving field (specified by the second data descriptor). The third data descriptor
specifies a 256-byte translation table. Each character in the sending field is used as a displace­
ment from the base of the table and the corresponding character from the table is stored in the
receiving field.

If the byte length specified by the first data descriptor is zero, the length is contained in the right
byte of register R4 and can be from ° through 255 bytes. If the byte length specified in the first
data descriptor is not zero, that value, which can be from 1 through 31, is the length. If the length
of the sending field specified by register R4 is zero, the receiving field is filled or not filled as
specified by the second data descriptor. Fill characters, if specified, are ASCII blanks and are not
translated.

If the byte length specified in the second data descriptor is not zero, that value, which can be from
1 through 31, is the length. If the byte length specified by the second data descriptor is zero, the
length is contained in register R5 and can be from ° through 255 bytes. If the length of the
receiving field specified by register R5 is zero, the instruction is aborted and the truncation bit
(TR bit) ofthe Commercial Processor indicator register is set to 1. Trap 28 (truncation) may then
be generated as previously described under "Commercial Processor Traps."

The length field of the third data descriptor is ignored by the hardware.

The contents of the Commercial Processor indicator register are affected as follows:

• If the number of characters in the sending field is greater than the number of character
positions in the receiving field, the TR-bit is set to 1; otherwise, it is set to 0.

Example:

IN DC
TR DC

OUT RESV

MAT

= Z'00020409'
='abcdefg$.!" ,
4:

DESCA(lN ,O,4,NO_FILL);
DESCA(OUT,O,4,NO_FILL);
DESCA(TR,O,ll,NO_FILL)

After execution of the MAT instruction the receiving field OUT will contain the following
string: ace!

COMMERCIAL INSTRUCTIONS 6-57 CB07

I

I

SHea
SRCH
Instruction:

Alphanumeric search

Type:

Character string

Source Language Format:

ASRCm {~ESCA(deScri~tiOn)}
tnt-val-expressIon

{ DESCA(deSCriPtiOn)} { DESCA(description) }
, int-val-expression .' int-val-expression

Description:

The character string or array of character strings defined by the third data descriptor (DD3) is
searched to see ifit contains any ofthe search arguments (one or more) in the search list defined
by the first data descriptor (DDl). If a match is found, the G and L bits of the Commercial
Processor indicator register are cleared to zero, and the displacement and search argument
number are loaded into the receiving field defined by the second data descriptor (DD2). (This
simulator does not support the Alphanumeric Search (SRCH) and Alphanumeric Verify (VRFY)
opcodes.) The receiving field must be four bytes long and word aligned; otherwise the results are
unspecified. The displacement is the distance in bytes between the origin of the string (or array)
to be searched and the position at which the first match occurs. The search argument number
designates the one that caused the match. The first argument in the list is identified as 0, the
second as 1, etc. The format of the receiving field is shown below.

o 15 0 15

IsearCh argument number I displacement I
If a match is not found, the G-bit of the Commercial Processor indicator register is cleared to
zero, the L-bit is set to one, and the receiving field is not changed.

The search argument list can contain one or more search arguments each consisting of one or
more characters. If multiple arguments are specified, each must be the same length.

If the length field ofDDl is not equal to zero, the search argument list contains only one search
argument whose length (1 to 31 bytes) is specified by the length field~

If the length field ofDDl is equal to zero, the search argument list is specified by register R4. The
format of register R4 is shown below.

o 7 8 15
search argument length search list length

If the search argument length is equal to the search list length, the search list consists of only
one argument.

If the ratio of the search list length to the search argument length is an integer, that integer
designates the number of search arguments.

Iftne ratio of the search Hst iength to the search argument length is not an integer, the ratio is
truncated to the integer value and that integer designates the number of search arguments.

The character string (or array) to be searched is specified by DD3. If the length field ofDD3 is not
equal to zero, the operand is a character string whose length (1 through 31) is specified by the
length field. If the length field is equal to zero, the operand to be searched is specified by register
RS. The format of register R6 is shown below.

o 7 8

I operand element length}

COMMERCIAL INSTRUCTIONS 6-58

15
operand length I

7179
CB07-OlB

/

(

SRCH

The results of a search instruction for this array and various search arguments are as follows.

SA
ca
a

mjo
mjpo
acbec
eacba

bac
cade

(;ontntercUllJ>rocessor
Indicator Register
L-Bit G-Bit

o 0
o 0
o 0
1 0
o 0
1 0
1 0
o 0

DD2 Field
SA Nuntber

o
Displacentent

08
o
o

o

o

00
10

unchanged
04

unchanged
unchanged

08

Example 4: Search Array - Multiple Search Arguments

The search list defined by DD1 contains multiple search arguments. Each search argument can
consist of one or more characters but all search arguments must be the same length. The search
argument length (SAL) and the search list length (SLL) is specified by register R4.

If a match is found, the search argument number and the displacement are stored in the
receiving field specified by DD2. If a match is not found, DD2 is not changed.

Assume that DD3 defines the following array for which register R6 specifies the length of each
element (OEL) as 4 and the operand length (OL) as 24.

Displacentent String
00 abdf
04 acbe
08 cade
OC defg
10 mj 0 p
14 eacb

The results of a search instruction for this array and various search arguments are as follows.

SALSLL
3 6
1 3
4 8
2 6
3 9
5 10

SA
acb,acd

c,a,d
defg,abcd
ad,ea,mj

aab,abb,eac
abdfb,mjope

COMMERCIAL INSTRUCTIONS

(;ontntercial J>rocessor
Indicator Register
L-Bit G-Bit

o 0
o 0
o 0
o 0
o 0
o 0

DD2 Field
SA Nuntber

o
1
o
2
2
1

Displacentent
04
00
OC
10
14
10

CBO'7

I

VRFY
VRFY

Instruction

Alphanumeric verify

Type:

Character string

Source Language Format:

Ll VRFY Ll {DESCA(descriPtiOn)}
int-val-expression

Description:

{ DESCA(deScriPtiOn)} { DESCA(deScriPtiOn)}
'int-val-expression 'int-val-expression

The character string or array of character strings defined by the third data descriptor (DD3) is
examined. If at least one character of the string (or element of the array) does not match anyone
of the verify arguments, the G-bit of the Commercial Processor indicator register is cleared to
zero, the L-bit is set to one, and the receiving field specified by the second data descriptor (DD2)
is loaded with the displacement. (This simulator does not support the Alphanumeric Search
(SRCH) and Alphanumeric Verify (VRFY) opcodes.) The displacement is the distance in bytes
between the origin of the string (or array) and the place where the first mismatch is found. The
format of the receiving field is shown below.

o 15

displacement

-

If each of the characters of the string (or elements of the array) is equal to anyone of the verify
arguments, the G- and L-bits of the CIP indicator register are cleared to zero and the receiving
field is not changed.

If the length field ofDD1 is not equal to zero, the verify argument list contains only one search
argument whose length (1 through 31 bytes) is specified by the length field.

If the length field ofDD1 is equal to zero, the verify argument list is specified by register R4. The
format of register R4 is shown below.

o 7 8 15

verify argument length verify list length

If the verify argument length is equal to the verify list length, the verify list consists of only one
argument.

If the ratio of the verify list length to the verify argument length is an integer, that integer
designates the number of verify arguments.

If the ratio of the verify list length to the verify argument length is not an integer, the ratio is
truncated to the integer value and that integer designates the number of verify arg'uments.

The character string (or array) to be verified is specified by DD3. If the length field ofDD3 is not
equal to zero, the operand is a character string whose length (1 through 31) is specified by the
length field. If the length field is equal to zero, the operand to be searched is specified by register
R6. The format of register R6 is shown below.

o 78

operand element length operand length

7/79 .
COMMERCIAL INSTRUCTIONS 6-62 CB07-OlB

(

(""' ...

Section 8

Macro Facility

The Macro Preprocessor is a program development tool that provides a convenient method for
including in a source module sequences of statements that are specified in a macro routine.

A macro routine is a block of source code that is written only once and can be included multiple
times within a given source program. A single statement, known as a macro call, is specified in
the source program each time the sequence of statements is to be included. A source program
containing one or more macro calls is called an unexpanded source program. Macro routines can
be at the beginning of a source program or in a macro library; those occurring with a source
program are called inline macro routines.

The Macro Preprocessor produces an expanded source program which is used as input to the
Assembler. The expanded source program may contain an error flag for each nonfatal error.
Each statement that contains a nonfatal error flag appears in the expanded source module as a
comment statement with the appropriate error. (Nonfatal error flags are described in Appendix
F.) If a fatal error occurs, processing terminates, an error message is issued to the error-out
stream, and control returns to the Command Processor. (Error messages issued by the Macro
Preprocessor are described in the Systems Messages manual.) The pound sign (#) and the at sign ,
(@) designate macro processor comment lines. Upon request the macro processor generates
comment lines that begin with the at sign (@). These lines are macro control statements without
errors. The macro processor unconditionally generates comment lines that begin with the pound
sign (#). These lines are statements with macro processing errors contained in them.

NOTE:
Honeywell provides a library of macro routines that support MLCP programming.
(See the MLCP Programmer's Reference Manual.)

ORDER OF STATEMENTS WITHIN A SOURCE PROGRAM

Statements within a source program must be in the order listed below:
1. TITLE Assembler control statement.

2. LIBM macro control statements and/or macro routines delimited by MAC and ENDM
macro control statements.
(Optional) LIST or NLST Assembler control statement
(Optional) comment statements

Note:
LIBM statements, macro routines, comment statements, and a LIST or NLST
statement can be intermixed.

3. Statements that constitute the body of the source module; includes macro calls.

4. END Assembler control statement. Identifies the end of the assembly language program.
Statements subsequent to this statement will be ignored by the Assembler. If this
statement is missing, both the Assembler and the Macro Preprocessor will generate an
END statement.

Macro control statements and macro calls are described in this section. Assembler control
statements are described in Section 4.

MACRO ROUTINES

A macro routine can be either generalized or specialized. A generalized macro routine causes
a fIXed expansion in the source module. A specialized macro routine permits specified values to
be included in the expanded source module.

MACRO FACILITY 8-1
7/79

CB07-0lB

MAC WITHOUT PARAMETERS

The following information is described below.

• Creating a macro r.outine

• Specializing a macro routine

• Including protection operators

• Situating a macro routine

CREATING A MACRO ROUTINE

A macro routine must be preceded by a MAC macro control statement and followed by an
ENDM macro .:!ontrol statement.

MAC MACRO CONTROL STATEMENT, WITHOUT PARAMETERS

The MAC statement assigns a name to a macro routine; it must immediately precede every
macro routine. MAC must be the last entry on the source line, or it must be immediately
followed by a comma and an optional comment.

Format:

macro-nameaMAC [, [comment]]

macro-name
Name of the macro routine; must be a valid symbolic name. To include the macro routine
within .a source module, specify the macro name in a macro call.

NOTE:
A macro routine can be specialized by including macro parameters in the MAC
statement. (See "MAC Macro Control Statement, Including Parameters" later in
this section.)

CONTENTS OF MACRO ROUTINE

A macro routine can include:

• Macro control statements,excluding MAC and ENDM

• Macro functions

• Assembler control statements, excluding END

• Assembly language statements

Macro control statements.and macro functions are described in this section. Assembler control
statements and assembly language statements are described in Sections 4 and 5 through 7,
respectively.

MACRO FACILITY 8-2
11/78

CB07A

•

(.

..

(

(~\

MAC WITH PARAMETERS

Expanded source module:

TITLE EXMPL

LDV $R1,=Sj

LOR $R2,='6:

PROTECTION OPERATORS

Macro call replaced by contents of macro
routine named SAMPLE

Protection operators are brackets; they enclose one or more characters that are not to be
interpreted by the Macro Preprocessor. Protection operators can be included in macro routines
and/or in statements that constitute the body of a source program.

NOTE:
Brackets illustrated in each command's Format are not protection operators; they
enclose optional characters.

Example:

This example illustrates an unexpanded source module, which includes protection operators,
and the resulting expanded source module.

Unexpanded source module:

SAMPLE

TITLE EXMPL

MAC P7=3

NEWA [?]P7

NEWB ?P7

ENDM

[SAMPLE]

SAMPLE

Expanded source module:

TITLE EXMPL

SAMPLE

NEWA 1P7j'

NEWB3

Designates beginning of macro routine and
assigns value to parameter P7

Substitution operator will not be inter­
preted by Macro Preprocessor, so no value
will be substituted

Reference to P7 will be replaced with its
value

Designates end of macro routine

Not interpreted as macro call because name
of macro routine is enclosed within protec­
tion operators

Macro call; in the expanded source module
will be replaced by contents.of macro rou­
tine named SAMPLE

Contents of macro routine named SAMPLE

Protection operators cannot extend over operand or argument delimiters; to protect adjacent
operands or arguments, enclose each one individually in brackets.

MACRO FACILITY 8-5
11/78

CB07A

Example 1:

FOOa[AB],[CD]

The above macro call FOO designates that parameter PI equals [AB] and parameter P2 equals
[CD].

Example 2:

FOOa[AB,CD]
The above macro call FOO is not equivalent to the macro call illustrated in example 1. The
macro call in example 2 specifies that parameter PI equals the character string consisting of the
following three characters: [AB, and parameter P2 equals the character string consisting of the
following three characters: CD].

If any part of a label or operation code is protected, the entire label or operation code is
orotected.
Example:

LAB[EL]aLD[R]a$RI,= 100

The above statement is considered to have no label and no operation code.
Protection operators do not appear in expanded source modules unless the operators are

embedded in other protection operators.

Example 1:

NEWA[?]P7

The above statement appears in the expanded source module as NEW A?P7.

Example 2:

DC 'A[BC[DEF]GH]I'

The above statement appears in the expanded source module as DCa' ABC[DEF]GHI'. Only
the outermost protection operators are removed, unless the expanded source module is then
reprocessed by the Macro Preprocessor.

Protected comment statements appear in the expanded source module with the protection
operators removed. If protected comment statements appear in a macro routine, they are
substituted in the expanded source module as described previously. Unprotected comment
statements which appear in a macro routine are considered to document the macro routine
itself; thus they are not substituted into the expanded source module.

Example:

ABC MAC
HLT

*COMNTI
[*]COMNT2

ENDM

In the above example COMNT2 is considered a macro routine comment and will appear in the
expanded source module as

*COMNT2

COMNTI is not considered a macro routine comment and will not appear in the expanded source
module.

srrUATING MACRO ROUTINES

Macro routines can be in the source module in which t"ltey are requested by macro call(s)
and/or in macro libraries on a mass storage volume. A macro library is a directory whose files are
macro routines. Each file must be a single macro routine that is referenced in a macro call by its
file name. Its file name must be identical to the label of its MAC statement.

All macro routines within a source module must be at the beginning of the module. (See
-"Order of Statements Within a Source Module" earlier in this section.)

MACRO FACILITY 8-6
7179

CB07-0lB

I

(

(

RQ

REQUOTE MACRO FUNCTION

The requote macro function replaces each apostrophe in an alphanumeric character string
with two adjacent apostrophes, and encloses the entire resultant string within single apostro­
phes. All characters in the original character string that are not apostrophes remain unchanged
and appear in the resultant string.

Format:

?RQ(arg)

arg

An alphanumeric character string to be requoted. (See "Designating Alphanumeric
Values" in this section.)

Example 1:

?RQ(ABC) yields
'ABC'

Example 2:

?RQ('WHO') yields

"'WHO'"

8-26.1
7/79

CB07-0lB

---~-- --- -----------

(J
....... .Y

c\

TABLE A-I (CONT). INTERNAL REPRESENTATION OF ASSEMBLY LANGUAGE INSTRUCTIONS

First Second Third Fourth
Hexadecimal Hexadecimal Hexadecimal Hexadecimal
Digit Digit Digit Digit Instruction Type

3 O+addsyl DIV
3 8+addsyl LNJ
4 O+addsyl OR
4 8+addsyl ORH

9-F 5 O+addsyl AND
5 8+addsyl ANH
6 O+addsyl XOR
6 8+addsyl XOH
7 O+addsyl STM
7 8+addsyl STH
8 O+addsyl LDR

9-B 8 8+addsyl SLD

D-F 8 8+addsyl SCM

9-F 9 O+addsyl CMR

9-B 9 8+addsyl SAD
DO

D-F 9 8+addsyl SSB

A O+addsyl ADD
A 8+addsyl SRM

9-F B O+addsyl MUL
B 8+addsyl LAB

9-B C O+addsyl SML

D-F C O+addsyl SDV

C 8+addsyl LDB
D 8+addsyl CMB

9-F E O+addsyl SWR
E 8+addsyl SWB
F O+addsyl STR
F 8+addsyl STB

TABLE A-2. ADDRESS SYLLABLES FOR CPU & SIP INSTRUCTIONS

mmm rrr = 000 rrr = ddd

i = 0 i = I i = 0 i = I

000 < location *< location $Bn *$Bn

001 < locatioIl.$RI *< locatioIl.$R I $Bn.$RI *$BIl.$RI

010 < locatioIl.$R::! *< location.$R::! $Bn.$R::! *$Bn.$R2

011 < locatioIl.$R3 *< location.$R3 $Bn.$R3 *$Bn.$R3

100 location *location $Bn.value *$Bn.value I
101 reserved reserved r$Rn} =$Bn

=$Sk
$Bk.-$RI $Bq.+$RI

110 reserved reserved -$Bn $Bk.-$R2 $Bq.+$R2

III { =location} $IV. value +$Bn $Bk.-$R3 $Bq.+$R3
=valuc

NOTE: An address syllable can be represented as mmmirrr, which are the last seven bits in the word; n can be any number
between 1 and 7 and is equal to rrr for rrr-FO; k is a number within the range 1 through 3 and is equal to rrr for
rrr = 1,2,3; and q is a number within the range 1 through 3 and is equal to rrr4 for rrr = 5,6,7. For more in­
formation about these address expressions, see "Addressing Techniques" in Section 5.

PROGRAMMER'S REFERENCE
lNFORMATION A-9

11178
CB07A

I

I

VALID ADDRESS eXPRESSIONS

Table A-3lists all ofthe valid address expressions and shows graphically how each derives the
effective address of the data to be used in the operation.

The various types of symbolic names, constants, and expressions (other than address
expressions) are described in detail in Section 2.

TABLE A-3. SUMMARY OF VALID FORMS OF ADDRESS EXPRESSIONS FOR CPU
AND SIP INSTRUCTIONS

Addressing
Technique

. Register
Addressing

Immediate Direct
Memory
Addressing

Indirect

Indexed
Direct

Indexed
Indirect

Immediate
Operand
Addressing

P-Relative
Addressing Direct

Indirect

B-Relative Direct
Addressing

Indirect

Indexed
Direct

Indexed
Indirect

Direct +
Displacement

PROGRAMMER'S REFERENCE
INFORMATION

Address
Expression
Form

=$Rn
=$Bn
=$Sn

{ 10mp""iOn}

< {:} tempi abel

{ 10mpre,"00}
*< {+}

- tempi abel

{ loeoxP"'"OO} n
< {+} .$R 2

- tempi abel 3

{ loe"P""iOO} n
*< t} .$R 2

- templabel 3

=locexpression

=stringconstant

= {intvalexpression}
extvallabel

{ iOtioe",P""iOO}

t} tempi abel

{ intioe",p""iOO}

* {:} templabel

$Bn

*$Bn

$Bn.$R HI

'SBn.SRU}

$B fntValeXpreSSion}
n. extvallabel

A-IO

Generation of
Effective Address

.B!!. =,M
.fu!., = EA
Sn = EA --- ~
location = EA

,location = EA

lo"tioo + R U} = EA

~

,Io'''ioo,+ ~ m, = EA

Address of current address
syllable + 1 = EA

/internallocation = EA

,internal location, = EA

.fu!. = EA

~= location
,location, = EA

m~ Bn + R EA
-......J

.

,Bn. = location

,Ioe"ion.+ R m = EA

~

,Bn + value = EA

7179
CB07-0lB

(

TABLE A-3 (CONT). SUMMARY OF VALID FORMS OF ADDRESS EXPRESSIONS FOR CPU

Addressing
Technique

B-Relative
Addressing
(Cont.)

Short
Displacement

Special

Indirect +
Displacement

B6 direct +
Displacement

86 indirect +
Displacement

Push

Pop

Indexed Push

Indexed Pop

Interrupt Vector

Address
Expression
Fonn

{ intvalexpreSSion}
*$Bn. extvallabel

$B6.$LCOMW +
intvalexpression

*$B6.$LCOMW +
intvalexpression

-$Bn

+$Bn

$8 m .+$R W

{
intloccxprcssion t

> t} templabel f
_{intvalexpression}

> - extvallabel

$IV {intvalexpression l
. extvallabel I

NOTE: The symbols used in this table have the following meanings:

"--' - Contents of ...
EA - Effective Address
+- - Replaces the element pointed at
locexpression -location expression (any type)
templabel- temporary label
stringconstant - string constant
intvalexpression - internal value expression
extvallabel - external value label
intiocexpression - internal location expression

*
<
>
>=

Generation of
Effective Address

J!!!. + value = location
location = EA .

.!!§ + value = EA

J!§, + value = location
,location,= EA

Jm,+­

Bn =
~

.fu1=
Bn +-
""--oj

<l!!!. - I)
EA

EA
(l!!1 + 1)

location = EA

Word following the word(s)
containing op code + first
operand address syllable = EA

IV + value = EA
\-.....J

Indirect memory addressing
Immediate memory addressing
Short displacement addressing
Specified Addressing
Component separator
(indexing and displacement)

All other notations represent standard usage as defined in the preface of this manual or
required Assembler-specific symbols.

PROGRAMMER'S REFERENCE
INFORMATION A-ll

7179
CB07-01B

I

(

(

Appendix C

Sample Assembly
Language Program

The following sample programs illustrate many of the aspects of the assembly language ,:f:
described in this manual.

CHKNML -SAF 1977/11/21 0940: 05.6 ASSEMBLER-OI00-11/09/1223 GCOS6 MOD0400-S100-11/17/0634 PAGE 0001

000001
000002
000003
000004
OOOO~,

OOOOOb
000007
000008
000009 DIDO
000010
0000 II 0000 ~~a3 Ff'EF
000012 0002 ~~A3

00001.! 0003 BbCJ FH:C
000014 0005 9~73

000015 OOOb 1002
000010 0(' 0 7 09RI Ou7C
000017 0004 98a3 OuU7
000018
000019 OOOB CBCO 0079
000020 0000 D380 0000
000021 OOOF 1981 OObF
000022
000023 0011 I C I E
000024 0012 2COO
000025 0013 bHCO 0081
000026 0015 CBCO OObF
000027 0017 0380 000 l'
000028 0019 1981 006b
00002Q 001~ 3CFF
000030 OOIC 3EOI
000031 OOID 8'17 0 0000
000032 OOIF 0301 OOUE
000033 0021 CCDO 0000
000034 0023 CSC4 OOIC
00003~ 0025 F830 0000
000030 0027 F9UU 0003
000037 002Q 0973
00003b 002A EBCO 007A
000039 002C D830 0000
OOOO'lU 002E F 3C 0 0027
0000'11 0030 EKCO 0077
0000'12 0032 D804
000043 0033 F 3CD 0022
000044 0035 C~C4 0001
000045 0037 EbCU 0073
00004b 003Q 0804
000047 003A F 3CO 001~
0000'18 003C CtlC4 0001
000049 003E EBCO OObF
000050 0040 D804
000051 0041 F3CO 0014
000052 0043 CBC4 0001
000053 0045 EIlCO OOoB
000054 0047 0804
000055 00118 F3CO OOO~
00005h
000057 004A IClI:.
000058 00'16 2COO
000059 004C 6BCO OU57
000000 004E C!:lCO 003b

SAMPLE ASSEMBLY
LANGUAGE PROGRAM

T ITLf eHKW1l

* PPOC;RA~' C()~IPARfS TEST RESULTS Of Tt: S T

* ~ 1 U,illl IN S(UtlM TO THE lXPECHIJ TEST
xVAL i !1~ r..,A X
XLOC TAIH.DC
Xloe ZIUSUl
XLOC ZI ()S~:R
XLor LI oseo
C()Mr1 x I 1 no I

· GET FILE~AMl M'~ CHoJ.tJrwEL NO
S 1 ><1 LI:oIi SR~,~b.).-17

lilt' .~~.\, ~~s. ~R"

LAu "Itj),.~b:;.-20

LOR .'fiR 1, + q:.H3
cr1\, ~,H 1,2
b~'l UniLST
LUi! ~R!,_~H3.7 · OPI:N LIST FILF
LAB SHIJ,LSTDCH
LNJ ~B5, <ZJ OSOL
~r,LZ $R\ ,EtIUPFI,

· ',k I T I: hEADI:.R ~~!:i G
lI) , Cj)1-(1 ,X' 1('
L L) v ~~2,). '0 I

LAt; ;~I·L~, ;'It"wr 0 1
LAH 5~~,L:;TOCb

U,J $~~, <lIOS."
H~JE / ,;ii-< t, F kHl.)R
LOV :t>R3,-X' l'

TLOOP ADV 'nt~ ~, x ' 1 I
C"R ,;~3,=TST~AX

8~ ENLlTST
LD~ :;OU, <$CO''''.'ld
LAH 1-HU,$H~.X' 1(,'
LllR $~·,,<TAr.LCC.~ld

C"1i $~7,$H4.X'51

BE >TLOOP
LAH :itUo, ;\!JIJF 2A

K LOw $R5, <~CO~~·. $P3
LNJ ~B 7, DU'~Pr'D
LAb 'illb, .'~lJF 2~
LOI< .115, >~"
lI',.j :;H7, Dur~pv,u
LoB $HIl,$UIl.X'I'
LoB $tlh, ,',8UF 2C
LOR :bR5,:)i;4
LN.) 5e7,DlIMP.D
LAB $[l",$~u.x' I'
LoB $Hbol'tlIJF20
LOR >R'>,~bu

U"J $1l7, Dut/,P.O
LAb $H4,$lill.X'I'
LAB)H~.,·.~UF 2E
Lilli ~1<5,SBU

LNJ SR7,OUMP'·.D · I'~ I TE VALU~S

LDV $R 1, x, I ~'
LDV ;)~2,)('O'

L"~ $H~, ,-,HUF 20
LAb SHj~, L!3TOCH

Figure C-l. Listing of CHKNML Program

C-l

MUDULES wHOSE ADORESHS ARE
RESLJl T5 AS DESCRIBED IN TABLOC

SE T ~3 1(1 LIST FlU. AT
SET b3 TU FILE~jA~1t

Nn LIST FILL ATTACHlD
SI:T RI TO CHANNEL NO.

OPE~, ROUTINE

MSG LENGT>;

~ISG ADD~[SS

wR ITf ~OUTINt

CHECKEI) ALL TEST RESULTS

C~I:.AH STATUS HlOCK PTR
GET EXPECTED VALUE
COMPARE TO ACTUAL STATWD
TEST OK - CHECK NEXT TEST

CO'JVlRT TEST ADO~ TO ASCII

CONVERT SYML VALUE TU ASCII

CONVERT nST NUt< TO ASCII

CONVERT SY~V VALUE TO ASCII

CO~!V~RT STATUS ~O~O TO ASCII

MSG

MSG

lENGTP'i

AOtJRESS

7179
CB07-0lB

CHKNML -8AF 1977/11/21 0940 : 05.6 ASSEMBLER--Q10o-11/09/1223 GCOS6 MD0400-S1 00-11/17/0634 PAGE 0002 i

000061
000062
00G063
OOOOb~
OOOOo~
000006
000067
OUOU68
000069
000070
000071
000072
000073
000074
000075
000076
000077
000078
000079
000080
000081
000082
000083
000064
000085
00008b
0000b7
000088
000089
0000'10
000091
000092
000093
000094
000095
00009b
0000'17
0000'18
000u99
000100
000101
000102
000103
000104

00010~
OOOIOb

CHK"'''L

000107

0001<,8

00010'1

rI n n, , {\
vvv~ ,"v

0050
0052
0054

00'>0
0057
005 0

005A
0058
OOSC
0050
005F
0060
0061
OObe'
OOb~
0065
OObb
00b7
OOb'l
OOb~

OOOl
OObD

UObE
006F
0070
u072
00 7 ~.
007"

OU78
DOH
007C
007E
007F
0080
0081
0082
001:!3
0084
0085
0095
0096
o U '17
0098
0099
00'11
0098
009C
0090
009E
009F
OOAO
OOAI
00A2
0013
OOAu
0015

OOAb
OOll
OOA8
OOA9
OOAI
OOAB
00 AC
OOAU
00AE
OOlF
OOBO
0081

D31I0 O"Ou
1981 0[)2E
83CO FFC7

4UC
CFUO ,UOuo
7C 0 ('

"CCO
508.
uUO
C940 0000
0380
4C07
F~,,"
RACO FFf5
ObOO
7088
UFF4
CFu" 0000
FFub 0001
8387
0000
0034

lCUA
2COO
BeCa 00~3

C8CO 0012
(380 0000
1981 UOOH

CRCO OOOC
D380 0000
1981 OOOb
0000
0000
0000
0000
0000
o (J 0 (1

0000
0000
412u
74bC
bFb3
2020
7473
796D
2020
7460
75,,0
2020
"/470
blbC
2020
7473
77b4
4120
2U20

2020
2020
2020
2020
2020
2020
2020
202v
2U2')
2020
2020 .,,,..,,,
c.vc:.:v

001;2 c020
00B3 2G?O

000111 onf'4
OOH~
00B6
00B7
00b8

000112 00b9
0000 ERR COUNT

412U
oSbE
0420
7u65
7374

U:J

"ioU
JMP

• ROUTINf ACCtPTS
* I~J THf flA.:O t'jUHDS
l}1 r""l I-J ~'iU L ['l v

STR
,_ 0 V

;,A LOV
DOL
ADV
eMil
Rl.E
!'},pv

~t o~

PIC
liCT
nllL
I'

$D 5T,

:be ,F

STR
J ~'P
DC
DC

• ~RjT~ ENO TEST
ENDTS! LD'!

Lnv
LAb
LAlJ
UIJ
H rIJE l

• CL8SE LIS! FILE
LA8
L ~'J
R~'EZ
HI T

(f,OPl" ~L T
ERtlDR HL T
!:"kVAL HL 1
E~O:D HL T
ERCLS HL1
EPNLST HL T
LSTDCh RESV
'.BuFel DC

~~UF20 DC
"bUF2A DL

wuUF211 OC

~BUF2l or

DC

~·~HuF 2E DC

DC

;;'!3S.<ZIUSVtJ~

:f,I.(1, L hl V AL

TLOUP
VILUE IN R~ A~O PUTS ITS ASCII EQUIVALENT

l'OI~)TEIJ TO ~y "6
:';~r.j, - X' .:J I

~RlJ, +:£C
:;1'0,)('0 I

.lIku,X'I)'

$k5,4
SRu, X' 30'
$Ru,+$F
;.o+$E
$r(:~,X'C7'

:1R7, ==$I·U.J
+$L
>+$[)

'Ri,8
>-$A
$Rb,;~H6.X'O'

~k7.:St'o.xt 1t
~H7

Z' I) t

l t (JOYJ'

$R 1, X I A I

'i>kr.,X'O'
'~H3, ~~BUF03

$U4,LSTDCb
~l!S,<ZIOS~;~

5Rl,EREI,D

.\;B4,LsrDCb
:;Jl~, <l!OSC"
$Rl,ERCLS

1 b, 11

5,.1 COuNT~R

RETURN TO CALLER

~ISG LENGTH

MSG ADDRESS

CLuSE ROUTIN~

'i' tloc tsy~ tnu~ tva1 tswd '

'A '

PAGE 0003

'A pnn' t es t '

CliKNML

Figure C-l (cont). Listing of CHKNML Program

SAMPLE ASSEMBLY
LANGUAGE PROGRAM C-2 CB07

(

(

(-~\
/

AppendixL
Assembly Language

Program Independence

ASSEMBLY LANGUAGE PROGRAM HARDWARE INDEPENDENCE

If an assembly langu~ge program written for a Series 6/20 or 6/30 is to be used on a Series 6/40
or 6/50, the program must be written to be program independent of the hardware model. The
additional features in the larger Series 6/40 and 6/50 that must be considered are instruction
prefetching that affects self-modifying procedures and long address form (LAF). The GCOS 6
MOD 400 Linker produces SAF, LAF, or SAF-LAF Independent Code (SLIC) bound units.

SELF-MODIFYING PROCEDURES

Use of a self-modifying procedure should be carefully considered for two reasons: (1) a
self-modifying procedure cannot be made reentrant, and (2) the instruction, as modified, might
not be executed because of the instruction prefetching feature of the Series 6/40 and 6/50. With
instruction prefetching, an arbitrary number of words are prefetched in parallel with the
execution of the current instruction. The prefetch buffer is emptied only when a transfer of
control occurs. If an instruction is stored in a word that previously was prefetched, the prefetch
buffer isnot cleared and the prefetched instruction will be executed as it was prior to modification.

However, if a self-modifying procedure must be used, the program must contain code to
remove the prefetched instruction from the prefetch buffer after modification is complete but
before the modified code is executed. This can be done by executing an unconditional branch of
the form:

B $+2 FLUSH THE PREFETCH

WRITING SOURCE PROGRAMS THAT CAN BE EXECUTED IN BOTH
SAF AND LAF CONFIGURATIONS

There are two methods for writing a source program so that it can be executed in both SAF and
LAF configurations: SAF/LAF independence by assembly, which produces a program that is
assembled differently for each type of configuration, and SAF/LAF independence by loading,
which produces a program that is assembled and linked in the same way but is loaded differ­
ently. For the second method, SAF/LAF Independent Code (~LIC) is used to create the source
program.

A SLIC program consists entirely of Assembler control statements, assembly instructions,
and macro calls, all of which are described in the Assembly Language Reference manual. These
items must be selected and combined according to the rules and restrictions described in the
following text. SLIC is the code that results from this procedure.

As shown by Figure L-l, a program can run on a SAF and LAF configuration, if all the
compilation units are SLIC compilation units and linking is done by a GCOS 6 MOD 400 Linker.
When requested, the Assembler produces SLIC compilation units. However, the Assembler does
not check that the code conform to the SLIC rules and restrictions. If the code does not conform,
the results of the program are unpredictable.

The valid ways in which SAF and SLIC compilation units and LAF and SLIC compilation
units can be linked into bound units are shown in Figure L-2.

The following system service macro calls should not be used in a program written in SAF/LAF
independent code (SLIC):

$CRB $PRBLK $TRB $MGCRB $MGCRT
$CRBD $RBD $TRBD $MGIRB $MGIRT
$IORB $SRB $WAITL $MGRRB $MGRRT
$IORBD $SRBD $WLIST

~EMBLYLANGUAGEPROGRAM 7/79
INDEPENDENCE L-l CB07-0lB

SOURCE ASSEMBLER GCOS 6 MOD 400 SAF
PROGRAM r-r- (-SAF) r-- LINKER ~ LOADER r-- CONFIGURATION

L-___ .--J '----___ --' I ,-(_-S_A_F) __ ~ I '--___ ----' I '----___ ~

a. SAF/LAF Independence at Assembly

SOURCE
PROGRAM
(SLlC)

b. SAF/LAF Independence at Loading

COMPILATION
UNITS

ASSEMBLER
(-LAF)

GCOS6
LINKER
(-LAF)

ASSEMBLER
(-SLlC) r-- GCOS 6 MOD 400

LINKER

I
COMPLIATION
UNITS

BOUND
UNITS

1
I--

BOUND
UNITS

L

LOADER

LOADER

LOADER

LOAD
UNITS

I r--

r----

I
LOAD
UNITS

LAF
CONFIGURATION

SAF
CONFIGURATION

LAF
CONFIGURATION

Figure L-l. Methods of Achieving SAF/LAF Independence

SOURCE f--PROGRAM

SOURCE f-----PROGRAM

SOURCE ---PROGRAM

SOURCE ---PROGRAM

SOURCE r----PROGRAM

SAF COMPILATION
ASSEMBLER UNITS
(-SAF)

ASSEMBLER
r-~ GCOS 6 MOD 400

(-SLlC) LINKER

SLiC COMPI LATION
UNITS

ASSEMBLER
r-~

GCOS6
(-SUC) LINKER

ASSEMBLER
(-LAF)

LAF CONFIGURATION

'-_____ --', UNITS

r-
I

BOUND
UNITS

r--
I

BOUND
UNITS

SLiC ONLY COMPILATION UNITS

ASSEMBLER -- GCOS6 r-(-SUC) LINKER

LOADER r-- SAF I CONFIGURATION

LOAD
UNITS

LOADER
LAF T CONFIGURATION

LOAD
UNITS

LOADER I--
SAF OR LAF
CONFIGURATION

Figure L·2. Valid Combinations of Compilation Units for Linking

ASSEMBLY LANGUAGE PROGRAM
INDEPENDENCE ' L-2

7/79
CB07-0lB

c

SAFILAF INDEPENDENCE BY ASSEMBLY

An assembly language program assembled to execute under a SAF system can be converted to
execute under a LAF system by simply reassembling the program for execution on the LAF
system. Reassembly is usually possible provided that the following rules are observed when the
program is written.

1. The program must be written so it will assemble without errors in either configuration;
e.g., a short displacement branch must satisfy the conditons -64~d~1 or 2~d~63 words
on the LAF configuration as well as on the SAF configuration.

2. All memory locations should be referenced by their symbolic names. The assembly
language label $AF can also be used in expressions to correctly reference the desired
memory location; however, the $AF reference should be used with care since its use
requires a good understanding of how the hardware operates.

3. Offsets to elements of a data structure containing pointers must be defined symbolically.
When the data structure actually exists in another program, the assembly language label
$AF can be used in an equate statement to provide the proper template.

4. All constants used in index computation to reference arrays of structures containing
pointers must be symbolically defined.
For example: if the span of an array element is "a" words plus "b" addresses, then the
constant should be defined by the expression a + b*$AF. This constant can then be used to
compute an index register value which is in turn used in a LAB instruction to set a base
register to the beginning of the desired occurrence of the array element.

5. All fields that are to contain pointers must be defined as address constants or a reserve of
$AF words. Such fields must be referenced by their symbolic names.

6. All external procedure calling sequences that modify their argument list must be
designed to operate correctly, through the use of $AF, whether assembled for a SAF or
LAF configuration.

7. The size of a common block that contains pointers must be specified by an expression
involving the label $AF to give the correct size, whether the program is assembled for a
SAF or LAF configuration.

8. All address manipulation must be performed using base registers (B1-B7). The LAB
instruction with base plus displacement or base plus index addressing is useful for
address manipulation.

SAFILAF INDEPENDENCE BY LOADING

This section contains rules for writing assembly language programs that can be executed
(without reassembly or relinking, but with suitable modifications by the loader) in either a SAF
or LAF configuration. That is, the source language program can be assembled and linked into a
bound unit. This bound unit can then be loaded and executed on either a SAF or LAF configuration.

DIFFERENCES BETWEEN SAF AND LAF

Memory is allocated and most memory addresses are determined by the Assembler or a
compiler. SAF and LAF differ in their definition and use of memory addresses. This difference
affects the following items:

1. Instructions or data whose size (space allocated) depends on the addressing mode; that is,

a. Instructions that use IMA operands (and base register instructions that use IMO
operands).

b. Declarations of memory addresses as data; that is, address constants or address
variables.

2. Data whose location in memory depends on the addressing mode; in particular, data
structures whose address or format is determined by hardware specifications, such as
interrupt and trap vector and save areas (lV, TV, ISA, TSA).

ASSEMBLY LANGUAGE PROGRAM
INDEPENDENCE L-3

7179
CB07-0lB

3. References to such instructions or data. The significant instances of this are:

a. References to (sequences of) instructions using IMA operands.

b. References to data structures containing pointers.

c. References to data structures defined by hardware.
Such references are resolved by (1) the Assembler or compiler (for most internal or
common references), (2) the Linker (for some internal references, some common
references, and external references), or (3) the loader (for some external references and for
relocation).

4. Memory addresses, whether in instructions or in data declarations, that contain values
prior to the start of execution. The significant instances of this are:

a. IMA operands and IMO operands in base register instructions.

b. Declarations of pointers with initial values; that is, address constants
(DC <location-expression).

These memory addresses must be examined because the value of the memory address
must be resolved in a single word for SAF and in two words for LAF.

5. Addressing formats and instructions whose execution is different in the two addressing
modes. Specifically, the addressing formats for indexing with or without pre-decrement or
post-increment (the .$R, . +$R, . -$R types) and for push and pop (+$B and -$B) operate
differently when used with the five base register instructions:

LDB, STB, CMB, SWB, CMN

GENERAL RULES FOR WRITING SLiC PROGRAMS

1. Allocate two words for all memory addresses, whether they are instruction operands or
data declarations. That is, generate or assemble essentially in LAF. This ensures that
sufficient space is allocated to execute in LAF. (The Assembler will set $AF equal to 2
when invoked with the -SLIC control argument.)

2. When loading a SLIC program for execution in SAF, the loader will:

a. Replace a sequence of (two word) pointers in an argument list or a pointer array by a
sequence of one-word pointers followed by an equal number of one word NOPs. That
is, the sequence is compressed into consecutive words. Adjustment of references to
such argument lists and pointer arrays is not performed. In the case of an argument
list, the control word is also adjusted appropriately.

b. Replace an individual (two word) memory address, whether an instruction operand or
a data item, by a single-word memory address followed by a one-word NOP. That is,
the value is moved into the first of the two words. References to the leftmost of the two
words work for both SAF and LAF execution.

PROCEDURES FOR WRITING SPECIFIC PARTS OF A SLiC PROGRAM

The following procedures for writing specific parts of a SLIC program are derived from the
general rules described previously. Methods for handling data structures, pointers, argument
lists, and other commonly used items are described.

ADDRESSING MODE

Invoke the language processor with the -SLIC argument. For the Assembler, this sets $AF
equal to 2. Assembly language programs should use the ARGLST and PTRA Y Assembler
control statements to define argument lists and pointer arrays, respectively. The CALL state­
ment will also generate an appropriately identified argument list. Individual pointers should be
defmed as address constants or by a RESV statement with the reserved label $AF.

ASSEMBLY LANGUAGE PROGRAM
INDEPENDENCE L-4

7/79
CB07-01B

o

..

..

--~- --------~--~----- --- -----------~-~-~-- -~-~~----~------

•

(

•

DATA STRUCTURES CONTAINING POINTERS

The techniques used for declaring, allocating, and referencing data structures containing
pointers differ somewhat, depending on the kind of data structure. The most commonly used
data structures containing pointers are classified as follows:

• Data management structures (FIBs).

• Argument lists (in calls) and pointer arrays.

• Request blocks (RBs).

• Individual pointers.

• Hardware defined structures.

For FIBs, two words are allocated for each pointer whether execution is to be in SAF or LAF.
For argument lists, pointer arrays, and request blocks, one word is allocated for each pointer
when execution is to be in SAF or two words are allocated when execution is to be in LAF.

For argument lists and pointer arrays in a SLIe program, the loader compresses the sequence
of two-word pointers into consecutive single-word pointers for execution in SAF. For request
blocks, the loader does not compress the structure.

With this approach, software - including the operating system - has to deal with only one
form for a given system data structure. For FIBs (and individual pointers), there is only one
form, regardless ofthe addressing mode in which the program is executing. For argument lists,
pointer arrays, request blocks, and hardware defined structures, a program executing in a given
addressing mode receives only the form corresponding to that address mode.

An individual pointer must always be addressed by its first (or only) word. This is how the
hardware works, and is why the loader moves the value into the first word when loading for
execution in SAF. (Elements of an argument list or a pointer array, other than the first, cannot
be referenced symbolically, as noted later.)

References to a pointer should be with instructions that explicitly operate on addresses; e.g.,
LDB. Other instructions, such as those that always operate upon two-word items, should be used
carefully in a SLIe program. For example, arithmetic operations cannot be performed because
when they are executed in SAF, the value of a pointer appears in the high-order position (first of
the two words), not in the low-order position (second ofthe two words) appropriate for arithmetic.

DATA MANAGEMENT STRUCTURES (FIBS)

Data management structures (FIBs) must be allocated with two words for each pointer in
them. A FIB is not compressed when loaded for execution in SAF; but the loader does move the
value of the pointer from the second word into the first.

This kind of structure can be declared symbolically. Honeywell supplies the declaration as a
macro for use in assembly language programs.

Data items, including pointers, can be referred to symbolically via the declaration. Refer to a
data item by the label assigned to it or by an expression not using $AF.

When referring to pointers with base register instructions, do not use the indexed, push, or pop
addressing formats. These addressing formats will not work with this kind of structure, because
they index, increment, or decrement by one-word units when executing SAF and two-word units
when executing in LAF.

An initial value can be declared for any data item, including pointers.

ARGUMENT LISTS AND POINTER ARRAYS

When argument lists and pointer arrays are used as system data structures (e.g., in inter-program
communication), a standard form is required. Argument lists and pointer arrays use one-word
(consecutive) pointers when they are executed in SAF. They must be allocated with two-word
pointers in a SLIe program, so that it can be executed in LAF. However, they arc compressed by
the loader when they are loaded for execution in SAF. This permits them to be declared with
initial values - in particular, it minimizes the need to assign values to arguments at execution
time.

ASSEMBLY LANGUAGE PROGRAM
INDEPENDENCE L-5

7179
CB07-0lB

Thus, when a SLIe program executes in SAF, the pointers in an argument list or a pointer
array occupy consecutive words, and the remainder of the structure is initialized to a sequence of
one-word NOPs.

Although this kind of structure can be declared with initial values (because it will be altered
appropriately by the loader for execution in SAF), it should be referenced only by base register
instructions because the addresses of the pointers in it depend on the addressing mode used at
execution time.

Assembly language programs should define argument lists via the CALL statement or
through use of the ARGLST Assembler control statement. Pointer arrays should be defined by
the PTRA Y Assembler control statement.

The first pointer of an argument list or pointer array and the control word of an argument list
can be referred to symbolically. When a SLIe program is loaded for execution in SAF, the
pointers are compressed from a sequence of two-word values into a sequence of one-word
(consecutive) values. As a result, references to other data items in this kind of structure must be
computed at execution time.

Refer to a pointer in this kind of structure only with base register instructions with indexed,
push, or pop addressing formats. These addressing formats will work because they index,
increment, or decrement by one-word units when executing in SAF and two-word units when
executing in LAF. For example, suppose there are n elements (arguments or elements of a
pointer array), and the location named N contains the desired element number in the range 1 to
n. Let register B7 point either to the argument list's control word or directly to the first word of
the pointer array. Then, a convenient way of referring to the desired element is:

For argument lists

LAB
LDR
LDB

$Bl, $B7.1
$Rl,N
$B2, $Bl.-$Rl

For arrays

LAB
LDR
LDB

$Bl, $B7
$Rl, N
$B2, $Bl.-$Rl

Ifthe element number is known at assembly time, rather than being a variable as assumed in
the code sequences above, then the references to N can be replaced by an immediate memory
operand (=N) or the LDR may be replaced by an LDVifN,;;;127. Donot use the base register plus
displacement addressing format (as in LDB $B2,$Bl.N-l), because that addressing format does
not adjust for addressing mode.

REQUEST SLOCKS (RSS)

A request block must be allocated with two words for each pointer in it when it is executed in
LAF, but only one word for each pointer when it is executed in SAF. In a SLIe program, the
two-word allocation is not compressed by the loader for execution in SAF.

A request block cannot be declared symbolically in a SLIe program. Since it has one-word
pointers when it is executed in SAF and two-word pointers when it is executed in LAF, the same
declaration cannot be used for execution in both addressing modes. This kind of structure must
be constructed (have values placed in it) at execution time.

Data items (including pointers) in request blocks cannot. in general, be referred to symboli­
cally. Since pointers occupy a different number of words in the two addressing modes, addresses
within the structure are not known at assembly time. References to data items in a request block
must be computed at execution time.

A convenient technique for constructing a request block is to step through it item by item,
using the automatic incrementation addressing formats. When pointers are referenced, base
register instructions can be used with the indexed, push, or pop addressing formats. These
instructions work on either addressing mode because they use one-word units when executed in
SAF and two-word units when executed in LAF. Do not use the LAB instruction with indexing,
incrementation, or decrementation, since the LAB uses one-word units in both addressing
modes.

An initial value cannot be declared for a data item in a request block.

ASSEMBLY LANGUAGE PROGRAM
INDEPENDENCE L-6

7179
CB07-0lB

..

..

(

..

('~
./

INDIVIDUAL POINTERS

An individual pointer ("DC <location-expression" in assembly language) can be declared
symbolically. Each pointer must be declared as an individual data item.

An individual pointer should be referred to by its label. However, as is the case in SAF/LAF
independence by assembly, an individual pointer can also be referred to by a location expression
involving the use of $Al".

When referring to an individual pointer (with a base register instruction), do not use the
indexed, push, or pop addressing formats.

An initial value can be declared for an individual pointer. Thus, a SLIC program can contain
individual address constants (as well as address constants in FIBs, argument lists, and pointer
arrays).

HARDWARE-DEFINED STRUCTURES

Certain data structures are defined by the hardware. These structures have one-word
pointers when executing in SAl", and two-word pointers when executing in LAF. Structures of
this kind are:

• Base register areas used with SAVE and RSTR instructions. The same mask should be used
to restore registers as was used to save them, and the save area must have two words
reserved for each base register to be saved.

• Trap and interrupt vectors and save areas:
User programs must reference trap save areas in the same way that request blocks are
referenced; i.e., the addresses needed must be computed at execution time. Only the
operating system is allowed to access the trap vectors, interrupt vectors, and interrupt
save areas.

• Queue frames and stack headers:
Queue frames and stack headers are treated the same as request blocks for the purpose of
creating a SLIC program.

IMMEDIATE MEMORY ADDRESS OPERANDS

An immediate memory address (lMA) operand ("< location-expression" in assembly
language) cannot be followed by other fields of the instruction because the loader would not
move those other fields when loading for execution in SAl". The loader places the value of the
IMA operand only into the first word, and sets the second word to a NOP.

This constraint applies to the following instructions:

• Input/output instructions - la, IOH, and IOLD.

• Bit instructions - LB, LBC, LBl", LBS, and LBT; these instructions cannot be masked, but
can be indexed if they use the IMA operand field.

• SAVE, RSTR, SRM .

Other instructions either do not allow IMA operands or have only one possible address
operand and do not have control fields following, so they can be used without restriction.

ABSOLUTE ADDRESSES

Only the operating system and certain system programs such as Debug need to reference
absolute memory locations. If any programs that need absolute addressing are to be written as
SLIC programs, all absolute addresses must be generated at execution time.

ASSEMBLY LANGUAGE PROGRAM
INDEPENDENCE L-7

7179
CB07-01B

(

c

7

•

AppendixM

Reentrant Programs

A program is defined as reentrant if a single copy of its code can be simultaneously executed by
several tasks; the tasks may be in the same task group or in different task groups.

There are two categories of reentrant assembly language programs:

1. "Code only" programs that use no statically (permanently) allocated data storage (except
the hardware registers). Data storage required by such programs is dynamically allo­
cated. Normally, only system programs and small service subroutines (e.g.; binary to
decimal conversion) are written this way.

2. Programs in which the code and statically allocated data are separated by the use of
common blocks, with the allocation of static data storage being managed by the system.

Programs belonging to the second category are discussed below. It is assumed that the
reentrant programs must operate in both MOD 400 and MOD 600. The use of dynamically
allocated data storage is not discussed in this appendix.

A reentrant program defines the following three address spaces and their initial content:

• Pure code section

• Local data section

• Nonlocal data section

Pure code consists of pure procedures and constants. A pure procedure is one that never
modifies any part of itself during execution. One copy ofthe pure code is shared by all users of the
reentrant program.

Local data is data that has a scope of identification no greater than the source unit in which it
is declared. All other data is considered to be nonlocal.

In an assembly language program, these three sections are identified as follows:

1. Anything that does not have its origin defined as any kind of a common block is part ofthe
pure code section.

2. Anything that has its origin defined in the local common block named $LCOMW is part of
the local data section.

3. Anything that has its origin defined in a local common block other than $LCOMW or in a
nonlocal common block is part of the non local data section.

The distinction oflocal data from nonlocal data is strictly for addressing purposes; the Linker
combines them into a single load element.

The use of pointer data is restricted as follows:

1. A pointer, including IMA operands and IMO operands of the five base register instruc­
tions, in a pure code section may refer only to objects in a pure code section.

2. A pointer in a data section may refer only to objects in a data section; it may not refer to a
pure code section.

All references made by executable code to local data must use B6 relative addressing. The first
word of local data is referenced by $B6.$LCOMW, the second by $B6.$LCOMW + 1, etc.

The program has no direct access to nonlocal data. Instead, the program must use indirect
addressing through the local data to reference nonlocal data. Normally, this is done as follows:

1. Allocate a pointer in the local data section initialized with the address of the common
block (or some location within it) to be referenced,

2. Load that pointer into a base register, other than B6, using B6 relative addressing, and

REENTRANT PROGRAMS M-l
7/79

CBOI-OlB

------ ... ~-- --------.-~ ... - ----

3. Access the nonlocal data using base relative addressing with the base register loaded in
step 2.

The second step given above may be omitted when a base register is known to contain a
pointer to the desired common block.

When a set of programs, written as described above, is linked in a "Link Separate environ­
ment", the Linker maintains the separation of code from data by placing the code and data in
different load elements. The Linker also adjusts all B6 relative displacements, referring to local
data, found in the code to reflect the positioning of that local data in the data load element. At
execution time, the loading of a data load element causes B6 to be set to provide addressability to
that data.

Example:

Assume there are two programs: ABLE and BAKER. Assume that ABLE declares and
references common blocks A and B, and that BAKER declares and references common
blocks Band C. The programmer will "see" ABLE and BAKER as shown below.

f$B60
! ~ III III I

ABLE: I I ;,~
'V' v

pure code local common common common
section block $LCOMW block A block B

¥ V

local data section nonlocal data section

f$B60
l !

BAKER: I ~ III III I I ; "'''s ;

v v 'V
pure code local common common common
section block $LCOMW block B block C

local data section nonlocal data section

After ABLE and BAKER are linked as a bound unit, the executing code sees the following:

..... "V" ;~

ABLE's pure BAKER's pure
code section code section

combined pure code section

'-..... --v ,., ~ ""'"-----v.---", v._--.J '--..... --v---",
ABLE's local common common BAKER's local common
data section block A block B data section block C

combined data section

In the above illustration, the Linker has adjusted the displacement in all of BAKER's B6
relative references to its local data by the size of ABLE's local data plus the size of common block

REENTRANT PROGRAMS M-2
7179

CBOI-OlB

o

.,

, \ ("

, j
"-..J"

(i

(

«

A plus the size of common block B. This assumes that the bound unit was llnked for MOD 400
and the size of the combined data section is less than 32K words. If the bound unit was linked for
MOD 600 or the size of the combined data section is greter than 32K words, B6 would point to a
location 32K words, B6 would point to a location 32K words further to the right, and the
displacement in all of ABLE's and BAKER's B6 relative references to their local data would
have an additional adjustment of -32768 words.

The preceding example only considered programs linked into the root of a bound unit. When a
reentrant program has overlays, some formal call/return mechanism, such as the Call/Cancel/
Exit Controller, must be used to save the calling overlay's B6 and set the called overlay's B6 on
the call and to restore the calling overlay's B6 on the return.

The use ofB6 relative addressing to reference local data places some limitations on the scope
of data in a reentrant bound unit having overlays when compared to non-reentrant bound units.
Data that may be referenced from a particular overlay of a bound unit linked in a "Link Separate
environment" consists of:

1. That overlay's local data. This data may be referenced directly using B6 relative addressing.

2. That overlay's nonlocal data. This data may be referenced indirectly via a pointer
contained in the overlay's local data.

3. When an overlay is formally called by another overlay, it may access any data received as
a formal parameter using standard methods for accessing parameters.

The following is a summary of the rules for writing reentrant programs with statically
allocated data.

1. Data must be separated from code through the use of common blocks and local common
blocks. All local data must be placed in the local common block named $LCOMW (i.e.,
$LCOMW must be declared by the Assembler control statement "$LCOMW LCOMM
int-val-expression").

2. In the executable code, all references to local data must be through B6 relative addressing;
e.g., $B6.$LCOMW +int-val-expression.

3. In the executable code, all references to nonlocal data must be made via pointers (to the
nonlocal data) contained in the local data.

4. The program must be linked in a "Link Separate enviropment". A "Link Separate
environment" is specified by the -R control argument of the LINKER command in MOD 400
or through the use of LINKS Linker commands in MOD 600.

REENTRANT PROGRAMS M-3
7/79

CBOI-OIB

I

1
1
1
1
1
1

("/ l
w
Z
-l

c.9
Z
o
-l «
I­
:::l
U

1
1
1
1
!
1

(
" 1

.1
1
1
1
1

1
• 1

1
1
1
1
1
1
1
1
1
1
1
1

__ 1 (:;:
1
1
1
1
1

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

SERIES 60 (LEVEL 6) GCOS
TITLE ASSEMBLY LANGUAGE REFERENCE

ADDENDUM B

ORDER No·1 CB07·01B

DATED I JULY 1979

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be promptly investigated by appropriate technical personnel
and action will be taken as required. If you require a written reply, check here
and furnish complete mailing address below.

FROM: NAME --__ __

TITLE __ __

COMPANY------_________________________________ __

AOORESS __ __

o

DATE ____________ __

PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms

IIIIII
BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

Honeywell

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

~ ,/
..J

1'.
2
o
..J
«
I­
::)
u.

I
I
I
I
I
I W

I ~ .r
-J 'Ii

I t:J

~61
I ~
I 0
I (3

u.

I
I w
I 2
I ..J

I~co
1 ~
lot
16
I u. ,

1 "
I
1
!
1
I
1
1
I
1

