

(-

SUBJECT

SERIES 60 (LEVEL 6)

COMMUNICATIONS PROCESSING

Descriptions and User Procedures for Communications Processing Software

SPECIAL INSTRUCTIONS

This revision supersedes Revision 0 of the manual dated January 1978. Change
bars are omitted because of extensive reorganization in sections and content
that are too numerous to identify separately. .

SOFTWARE SUPPORTED

This manual supports Release 0110 of the Series 60 (Level 6) GeOS 6 MOD 400
Operating System. See the Manual Directory of the latest GCOS 6 MOD 400
System Concepts manual (Order No. CB20) for information as to later releases
supported by this document.

ORDER NUMBER

CB03, Rev. 1 July 1978

Honeywell

---------~----.-----

PREFACE

This manual describes the operation and use of GCOS communi­
cations software for Honeywell-supported Series 60 (Level 6)
communications devices and protocols. The term GCOS as used in
the manual refers to GCOS 6 software. The term Level 6 refers to
a specific series of Series 60 (Level 6) hardware models on which
GCOS software is executed.

Section 1 is a brief overview of GCOS software in general
and its communications subsystem.

Section 2 summarizes the Monitor and file system macro·calls
and services.

Sections 3 and 4 discuss the use of communications with
r'f"'Ill("\T :::Iinr:l 'C'nOrJ1D1\l\T ""''''''1.; __ ~.; __ __ _____ ______ ~.: ... _1
____ _L. j,\..L.i.'u:u:" ut..JtJ..L..L'--UI......LV11 t-J.LV'j.LOUli::), Lt:::~~t::::L.L..Lvt::=..1.y.

Section 5 describes the use of communications in assembly
language applications, using the GCOS file system interface.

Section 6 describes the use of communications in assembly
language applications, using GCOS physical I/O for more direct
access to data structures and physical devices. ,~

Sections 7, 8, 9, and 10 describe the operation and use of
Honeywell line protocol handlers for teleprinter-type (TTY),
visual-information projection (VIP), polled VIP emulator (PVE),
and binary synchronous communication (BSC) device/protocols,
respectively.

Appendix A provides more details about communications sub­
system functions~ Appendix B contains tables of possible values
for the STTY command and $STTY macro call. Appendix C describes
the system's resource control table (RCT), used as an interface
between the software and the devices that use it. Appendix D
contains various examples, intended for illustration only, of
communications application programs for COBOL, FORTRAN, and
assembly language.

© 1978, Honeywell Information Systems Inc. File No.: 1S23 CB03

(

Appendix E lists communictions control characters and char­
acter code sets. Appendix F lists the various device control
characters and corresponding device keys. Appendix G describes
how to obtain a dump of the multiline communications processor's
(MLCP) and/or the dual commun icat ions processo r' s (DLC P) memory.

How to Use the Manual

The following are general guidelines to using the manual
according to the reader's interests and responsibilities:

Sections

1

2, 3, 4, 5

6

7, 8, 9, 10

Appendix G

Applicable To:

All users

Applications programmers/analysts
using higher-level languages

Those responsible for system building;
applications programmers/analysts using
assembly language

All users, but according to the device
or protocol being used

All users.

Remaining appendixes Users of corresponding numbered sections

iii CB03

MANUAL DIRECTORY

The following publications comprise the GCOS 6 manual set.
The Manual Directory in the latest GCOS 6 MOD 400 Systems
Concepts manual (Order No. CB20) lists the current revision
number and addenda (if any) for each manual in the set.

Order
Numhp),"

CBOI
CB02
CB03
CB04
CBOS
CB06
CB07
CB08
CB09
CBIO
CB20
CB2I
CB22
CB23
CB24
CB2S
CB26
CB27
CB28
CB30
CB3I
CB32
CB33
CB34
CB3S

CB36
CB37

CB38

r.1anual Title

GCOS 6 Program Preparation
GCOS 6 Command s
GeOS 6 Communications Processing
GCOS 6 Sort/Merge
GCOS 6 Data File Organizations and Formats
GCOS 6 Systems Messages
GCOS 6 Assembly Language Reference
GCOS 6 System Service Macro Calls
GCOS 6 RPG Reference
GCOS 6 Intermediate COBOL Reference
GCOS 6 MOD 400 System Concepts'
GCOS 6 MOD 400 Program Execution and Checkout
GCOS 6 MOD 400 Programmer's Guide
GCOS 6 MOD 400 System Guilding
GCOS 6 MOD 400 Operator's Guide
GCOS 6 MOD 400 FORTRAN Reference
,GCOS 6 MOD 400 Entry-Level COBOL Reference
GCOS 6 MOD 400 Programmer's Pocket Guide
GCOS 6 MOD 400 Master Index
Remote Batch Facility User's Guide
Data Entry Facility User's Guide
Data Entry Facility Operator's Quick Reference Guide
Level 6/Level 6 File Transmission Facility User's Guide
Level 6/Level 62 File Transmission Facility User's Guide
Level 6/Level 64 (Native) File Transmission Facility

User's Guide
Level 6/Level 66 File Transmission Fadility User's Guide
Level 6/Series 200/2000 File Transmission Facility User's

Guide
Level 6/BSC 2780/3780 File Transmission Facility User's

Guide

iv CB03

(

Order
Number Manual Title

CB39 Level 6/Level 64 (Emulator) File Transmission Facility

CB40
CB4l
CB42
CB43

User's Guide
IBM 2780/3780 Workstation Facility User's Guide
HASP Workstation Facility User's Guide
Level 66 Host Resident Facility User's Guide
Terminal Concentration Facility User's Guide

The following documents provide general hardware
in fo rma t ion:

Order
Number

AS22
AT04
AT97
FQ4l

Manual Title

Honeywell Level 6 Minicomputer Handbook
Level 6 System and Peripherals Operation Manual
MLCP Programmer's Reference Manual
Writable Control Store User's Guide

v CB03

Section 1

Section 2

CONTENTS

Communications Overview •••••••••••••
GCOS Software Overview ••••••.•.•••

GCOS 6 File System ••••••••••••••
Physical Input/Output (Physical

I/O) ••••••.•.•••••••••••••••••
GCOS Communications Subsystem

Overview
Communications Supervisor •••••••
Line Protocol Handler (LPH) •••••
Multiline Communications Pro-

cessor (MLCP) and MLCP Driver.
Communications Subsystem Interface

With Applications Programs ••••
File System Interface •••••••••
Physical Input/Output

Interface •••••••••••••••••••
TTY and VIP Line Protocol Handler

Dev ice Suppo rt •••••••• , ••••••••
BSC and PVE Host-Communications

Support

File System Functions and Macro
Routines ••••••••••••••••••••••••••
File Management Macro Calls •••••••
Data Management Macro Calls •••••••
Storage Management Macro Calls ••••
File Information Block (FIB) ••••••

FIB Format and Contents •••••••••
Program View Entry in the FIB •••
FIB Displacement Definitions ••••

File System Considerations in
Communications ••••••••••••••••••

Defining File/Terminal
Characteristics •••••••••••••••••

vi

Page

1-1
1-1
1-2

1-2

1-2
1-3
1-3

1-4

1-4
\,,-

1-4

1-5

1-5

1-5

2-1
2-1
2-2
2-2
2-3
2-3
2-6
2-6

2-10

2-12

('\
'~~

CB03

Section 3

Section 4

(

CONTENTS (cont)

Communications Via COBOL ••••••••••••
Interactive Devices and Files •••••
File System Considerations ••••••••
Source Program Entries in

Communications ••••••••••••••••••
Specifying Files in the Source

Program •••••••••••••••••••••••
Use of ASSOC or GET Commands ••••

Assigning a File to a Device/
Terminal•

SELECT and ASSIGN Examples ••••••
Carriage Control ••••••••••••••••
Printer Emulation •••••••••••••••
Specifying Asynchronous or

Synchronous Read and Write
Execution •••••••••••••••••••••
Synchronous Read and Write

Operation (Call "ZCSYNC") •••
Asynchronous Read and Write

Operation (Call "ZCASN") ••••
WAIT for Completion -­

Asynchronous Input and Output •
Binary Synchronous Communication

(BSC) With COBOL ••••••••••••••
BSC Data Transmission

Conventions •••••••••••••••••
BSC Data Codes ••••••••••••••
BSC Data Transmission Modes •
BSC 2780 and BSC 3780 •••••••

Macro Call Procedures for BSC 2780
in Basic Transmission Mode ••••

Macro Call Procedures for BSC 2780
in Advanced Data Transmission
Mod e ••••••••••••••••••••••••••

Macro Call Procedures for BSC 3780
in Advanced Data Transmission
Mode ••••••••••••••••••••••••••

Communication Via FORTRAN •••••••••••
Interactive Devices and Files •••••
FORTRAN Program Execution With

Communications ••••••••••••••••••
Assigning Interactive Devices at

Page

3-1
3-1
3-1

3-1

3-1
3-2.

3-2
3-3
3-3
3-4

3-4

3-4

3-4

3-5

3-8

3-8
3-8
3-8
3-8

3-9

3-11

3-11

4-1
4-1

4-1

Execution •.•.••.••••••••..•••. 4-1
Changing Terminal's File

Characteristics •••••••••••••••
FORTRAN File Status Check (ZFSTIN

and ZFSTOT) •••••••••••••••••••••

vii

4-1

4-2

CB03

Section 4 (cont)

Section 5

CONTENTS (cont)

CALL Statement for ZFSTIN or
ZFSTOT ••••••••••••••••••••••••

ZFSTIN and ZFSTOT Programming
Examples •••••••••• ~ •••••••••••

Assembly Language Communications Using
the File System •••••••••••••••••••
File System Considerations ••••••••
File-Processing Macro Calls in

Assembly Language Applications ••
Get File ($GTFIL) Macro Call

Guidelines ••••••••••••••••••••
Open File ($OPFIL) Macro Call

Guidelines ••••••••••••••••••••
Tp.~t File ($TIFIL i $TOFIL) Macro

Call Guidelines •••••••••••••••
Wait File ($WIFIL, $WOFIL) Macro

Call Guidelines •••••••••••••••
Device Dependent Macro Call

Procedures ••••••••••••••••••••
Device Modes and Device Types •••
Macro Call Procedures for Data

Entry Terminals •••••••••••••••
Macro Call Procedures for Output

Only Terminals ••••••••••••••••
Macro Calls for a Single Inter­

active Terminal •••••••••••••••
Macro Call Procedures for Multiple

Interactive Terminals •••••••••
Binary Synchronous Communication

(BSC) •••••••••••••••••••••••••
BSC Data Transmission

Convention ••••••••••••••••••
BSC Data Codes ••••••••••••••
BSC Data Transmission Modes •

BSC 2780 and BSC 3780 •••••••••••
Macro Call Procedures for BSC 2780

in Basic Transmission Mode ••••
Macro Call Procedures for BSC 2780

in Advanced Data Transmission
Mode ••••••••••••••••••••••••••

Macro Call Procedures forBSC 3780
in Advanced Data Transmission
Mod e ••••••••••••••••••••••••••

vii i

«

~/

Page

4-2

4-4

5-1
5-1

5-1

5-1

5-2

5-2

5-2

5-3
5-3 ("

\, ~

5-4

5-5

5-7

5-9

5-11

5-11
5-11
5-11
5-11

5-12

5-16

5-20

;--"
~-)

CB03

(

Section 6

Section 7

(

CONTENTS (cont)

Assembly Language Communications
Using Physical Input/Output •••••••
Communications Subsystem

Page

6-1

Conventions ••••••••••••••••••••• 6-1
Using Physical I/O •••••••••••••••• 6~2
Data Structures ••••••••••••••••••• 6-3

Resource Control Table (RCT) •••• 6-4
Input/Output Request Block

(I ORB) •••••••••••••••••••••••• 6-4
IORB Software Status Word

(I ST) ••••••••••••••••••••••••
CommunIcations Function Codes •••••

Wait Online Function (Code 0) •••
Write Function (Code 1) •••••••••
Read Function (Code 2) ••••••••••
Connect Function (Code A) •••••••
Di sconnect Function (Code B) ••••
Requesting Communications

Functions •••••••••••••••••••••
Physical I/O Macro Calls for

Communications ••••••••••••••••••

TTY Line Protocol Handler •••••••••••
General TTY Line Protocol Handler

6-8
6-9
6-9
6-10
6-10
6-10
6-11

6-11

6-12

7-1

Operation ••••••••••••••••••••••• 7-1
TTY Message Formats ••••••••••••• 7-1
TTY Character Mode and Buffered

Mode Transmission ••••••••••••• 7-2
TTY Character Mode •••••••••••• 7-2
TTY Buffered Mode (VIP 7200 and

7800) ••.•.••..•...••••.••... 7-3
VIP 7200 and 7800 Hardware

Switch Options With Character
or Buffered Mode •••••••••••• 7-3

VIP 7200 and 7800 Function and
Control Keys •••••••••••••••• 7-4

TTY Line Protocol Handler Time-Out
Intervals ••••••••••••••••••••• 7-4

Using the TTY Line Protocol
Handler ••••••••••••••••••••••••• 7-5
TTY-Specific IORB Values........ 7-5
Control and Characteristics of TTY

Input Data ••••••••••••••••••••
TTY Control Byte (Input) ••••••
TTY Nontransparent Input ••••••
TTY Transparent Input •••••••••
TTY Line Feed (LF) and Carriage

Return (CR) Input Sequence ••

ix

7-7
7-8
7-8
7-8

7-8

CB03

Section 7 (cont)

Section 8

CONTENTS (cont)

Keyboard Input Character and
Line Control •••••..••••••••.

TTY Display of Input
Characters ••••••••••••••••••

TTY Input in Buffered Mode
(VIP 7200 and 7800 Only) ••••

Control and Characteristics of TTY
Output Data •••••••••••••••••••
TTY Control Byte (SEND) •••••••
End-of-Message (EOM) Sequence on

TTY Output ••••••••••••••••••
TTY Detection of BRK

Characters ••••••••••••••••••
TTY Output in Buffered Mode •••

VIP Line Protocol Handler •••••••••••
General VIP Line Protocol Handler

Page

7-8

7-9

7-9

7-9
7-9

7-10

7-10
7-11

8-1

Operation •••••••.•••.••••••••••• 8-1
Software Functional Support for

the VI P ••••••.••...•.••••••••.
User-Supplied Software Functions

for VIP Support •••••••••••••••
VIP Time-Out Intervals ••••••••••

Using the VIP Line Protocol
Handler ••••••••• ~ •••••••••••••••
VIP-Specific IORB Values ••••••••
VIP Polling Options •••••••••••••

VIP Poll Interval •••••••••••.•
VIP Poll Duration (Time-Out) ••
VIP Line Protocol Handler Poll

Functions •••••••••••••••••••
Control and Characteristics of VIP

Input· (Keyboard/Screen) •••••••
VIP Input Message Header ••••••
VIP Hardware Function Codes ~ ••
VIP Input Data ••••••••••••••••

Control and Characteristics of VIP
Output ••••••••••••••••••••••••
VIP Output Message Header •••••
VIP Control Byte (SEND) •••••••
VIP Output Data •••••••••••••••
VIP Keyboard/Screen Output

Editing Control •••••••••••••
VIP Read-Only Printer Editing

Sequence ••••••.•••••••••••••
VIP Read-Only Printer Form Feed

Sequence ••••••••••••••••••••

x

8-1

8-2
8-2

8-3
8-3
8-6
8-7
8-7

8-7

8-7
8-7
8-8
8-8

8-8
8-8
8-8
8-9

8-10

8-10

8-11

CB03

{

Section 8 (cont)

Section 9

Section 10

(

CONTENTS (cont)

Error Processing by VIP Line
Protocol Handler ••••••••••••••••

Processing Nonpolled VIP Errors •••

Polled VIP Emulator (PVE) Line

Page

8-11
8-14

Protocol Handler •••••••••••••••••• 9-1
General PVE Operation ••••••••••••• 9-1
Using the PVE Line Protocol

Handler ••••••••••••••••••••••••• 9-2
PVE-Specific IORB Values •• ~..... 9-2
VIP Protocol Message Structure for

PVE ••••••••••••••••••••••••••• 9-5
Control and Characteristics of PVE

Input ••••••••••••••••••••••••• 9-6
PVE Input Message Header •••••• 9-6
PVE Hardware Function Codes ••• 9-6
PVE Input Data •••••••••••••••• 9-7

Control and Characteristics of PVE
Ou t put ••••••••••••••••••••••••
PVE Output Message Header •••••
PVE Terminal Address (ADR) and

Message Status (STA) ••••••••
PVE Output Data •••••••••••••••

PVE Line Protocol Handler Time-Out

9-7
9-7

9-7
9-7

Intervals ••••••••••••.•.•••••.•• 9-8
Error Reporting by PVE Line Protocol

Handler ••••••••••••••••••••••••• 9-8

SSC 2780/3780 Line Protocol Handler •
General SSC Line Protocol Handler

10-1

Operation ••••••••••••••••••••••• 10-1
BSC Transmit and Receive

Operations ••••••••••••• ~...... 10-1
SSC Data Transmission Modes ••••• 10-2

BSC Basic Data Transmission
Mode •••••••••••••••••••••••• 10-2

BSC Advanced Data Transmission
Mod e •••••••••••••••••••••••• 10-2

BSC 2780 and BSC 3780 Differences. 10-3
BSC 2780/3780 Features •••••••••••• 10-3

BSC Two-Buffer Feature •••••••••• 10-3
BSC Temporary Text Delay (TTD)

Feature ••••••••••••••••••••••• 10-5
BSC Wait Before Acknowledge (WACK)

Feature ••••••••••••••••••••••• 10-6
BSC Reverse Interrupt (RVI)

Feature ••••••••••••••••••••••• 10-7

xi CB03

Section 10 (cont)

Appendix A

CONTENTS (cont)

Page

BSC End of Transmission (EOT)
Feature ••••••••••••••••••••••• 10-8

BSC Line Protocol Handler Time-
Out Interval ••••••••••••••••••

BSC Features Specific to 3780 •••
BSC 3780 Conversational Reply

Feature •••••••••••••••••••••
BSC 3780 Two-Buffer Feature •••
BSC 3780 Transmission/Receipt

of BSC Control Characters •••
Using theBSC 2780/3780 Line

Protocol Handler ••••••••••••••••
BSC-Spec i fic IORB Val ues ••••••••
Specifying Use of BSC 2780 and/or

3780 to the System ••••••••••••
Formats and Characteristics of

BSC Input Data ••••••••••••••••
BSC Control Byte (Receive) ••••
ASCII Input for BSC •••••••••••
EBCDIC Input for BSC ••••••••••
Transparent EBCDIC Input for

Bse ••.•.•.••••.••••.••••••.•
Formats and Characteristics of

BSC Output Data •••••••••••••••
BSC Control Byte (SEND) •••••••
BSC ASCII Output ••••••••••••••
BSC EBCDIC Output •••••••••••••
BSC Transparent EBCDIC Output •

Communications Subsystem ••••••••••••
Communications Supervisor •••••••••
Line Protocol Handlers (LPHs) •••••
Multiline Communications Processor

10-9
10-10

10-10
10-10

10-10

10-12
10-12

10-13

10-14
10-15
10-16
10-16

10-17

10-17
10-18
10-19
10-19
10-20

A-I
A-I
A-I

(MLCP) •••••••••••••••••••••••••• A-3
Multiline Communications Processor

Driver •••••••••••••••••••••••••• A-3
Modem Support ••••••••••••••••••••• A-3
Auto Call Unit •••••••••••••••••••• A-4
Communications Subsystem Operation

Example •••••••••••••••••••••••••
Communications Subsystem Error and

Correction Procedures •••••••••••
Parity Error Check ••••••••••••••
Block Error Check •••••••••••••••

Longitudinal Redundancy Check
(LRC) •••••••••••••••••••••••

Cyclic Redundancy Check (CRC) •

xii

A-4

A-8
A-8
A-8

A-8
A-8

CB03

--~--~ - --- - --~~ --~

Appendix A (cont)

Append-ix B

Appendix C

Appendix D

Appendix E

Appendix F

Appendix G

CONTENTS (cont)

Page

BSC Block Check Character
(BCC) ••••••••••••••••••••••• A-8

Time-Out Check •••••••••••••••••• A-9

Changing Terminal's File
Characteristics •••••••••••••••••••

Resource Control Table (ReT) ••••••••

Sample Application Programs •••••••••
COBOL Program Examples ••••••••••••

COBOL TTY or VIP Application

B-1

C-1

D-1
D-1

Example ••••••••••••••••••••••• D-1
Commands in the COBOL Example. D-1
File Assignments in COBOL

Example ••••••••••••••••••••• D-2
Error Messages in COBOL

. Example ••••••••••••••••••••• D-2
Status Codes in COBOL Example. D-3
Execution of COBOL TTY or VIP

Program Example •••••••••••••
COBOL BSC Application Example •••
FORTRAN Application Example for

TTY •••••••••••••••••••••••••••
Assembly Language Example for TTY

or VIP Using Physical 1/0 •••••

ASCII and EBCDIC Control Characters

D-3
D-12

D-16

D-19

and Character Sets •••••••••••••••• E-1
Control Characters ••••••• ~........ E-1
Special Graphic Characters •••••••• E-2

Device-Specific Control Characters

Dump Routine (DUMCP) for Multiline
Communications Processor (MLCP) •••
Linking the Bound Unit Containing

F-l

G-1

DUMCP ••••••••••••••••••••••••••• G-l
Linking DUMCP as a Self-Contained

Bound Unit •••••••••••••••••••• G-2
Linking DUMCP With the Applica-

tion Program •••••••••••••••••.• G-3
STRTDO Entry Point in Using

DUMCP ••••••••••••••••••••••• G-4
STRTD1 Entry Point in Using

DUMCP ••••••••••••••••••••••• G-5
STRTD2 Entry Point in Using

DUMCP •• -..................... . G-7

xiii CB03

Appendix G (cont)

Figure 2-1.
Figure 2-2.

Figure 2-3.

Figure 3-1.
Figure 3-2.

ti'';,... ''1'''''''0 "l_"
~ ";::1 u&. "'" ...J ...J.

Figure 3-4.
Figure 5-1.

Figure 5-2.

Figure 5-3.

Figure 5-4.

Figure 5-5.

Fig ure 6-1.

Figure 7-l.
Figure 7-2.

Figure 8-1.
Fig ure 9-1.
Figure 9-2.

Figure 10-1.
Figure 10-2.

Figure 10-3.

Figure 10-4.

Figure 10-5.

Figure 10-6.

Figure 10-7.

CONTENTS (cont)

DUMCP Dump Formats ••••••••••••••••
DUMCP Programming •••••••••••••••••

ILLUSTRATIONS

File Information Block (FIB) ••••••••••
Format of File Information Block (FIB)

for Data Management •••••••••••••••••
Format of File Information Block (FIB)

for Storage Management ••••••••••••••
COBOL SELECT and ASSIGN Examples ••••••
Simplified COBOL Program Logic for

Multiple Interactive Terminals ••••••
c.;~~,.;~.;~~ n ___ p~~ T_,....;~ ~_"""' ~7Qn DC~
....,.'u.t"'~L'-\.A ... &.v'::J"' uu v";::J.L"" .. va. "/VV -~- •

Simplified Program Logic for BSC 3780 •
Simplified Program Logic for Single

Interactive Terminal •••••••••••••.••
Simplified Program Logic for Multiple

Interactive Terminals •••••••••••••••
Simplified Program Logic for BSC 2780

in Basic Transmission Mode ••••••••••
Simplified Program Logic for 2780 BSC

in Advanced Transmission Mode •••••••
Simplified Program Logic for BSC 3780

in Advanced Transmission Mode •••••••
Communications Input/Output Request

Bloc k (I ORB) ••••••••••••••••••••••••
TTY Message Formats •••••••••••••••••••
Control Byte for TTY Line Protocol

Hand 1 e r ••••••••••••••••••••••••••• " ••
VIP Control Byte (Send) •••••••••••••••
Typical PVE Configuration •••••••••••••
VIP Protocol MesSage Structure for

PVE •••••••••••••••••••••••••••••••••
Example of BSC Communication ••••••••••
BSC Two-Buffer Feature in Record

--- -- - -- ---

Page

G-7
G-8

2-4

2-7

2-9
3-3

3-6
3-10
3-12

5-8

5-10

5-13

5-17

5-22

6-5
7-2

7-10
8-9
9-2

9-6
10-3

/' ~\

Transmission •••••••••••••••••••••••• 10-4
BSC Temporary Text Delay (TTD) Sequence

Example •••••••••••••••••••••••••••••
BSC Wait Before Acknowledge (WACK)

Sequence Example ••••••••••••••••••••
BSC Reverse Interrupt (RVI) Sequence

Example •••••••••••••••••••••••••••••
Example of Conversational Reply in BSC

3780 Transmission Sequence ••••••••••
BSC Input Data Format and Contents ••••

xiv

10-6

10-7

10-8

10-11
10-15

CB03

(

Figure 10-S.

Figure 10-9.
Figure 10-10.

Figure A-I.

Figure C-1.

Figure 0-1.
Figure 0-2.
Figure 0-3.
Figure 0-4.

Figure G-l.

Table 2-1.

Table 2-2.
Table 2-3.

Table 5-1.

Table 5-2.

Table 5-3.

Table 5-4.

Table 5-5.

Table 5-6.

Table 5-7.

Table 5-:-S.

Table 5-9.

Table 6-1.

Table 6-2.

Table 6-3.
Table 6-4.

ILLUSTRATIONS (cont)

Control Byte (Receive) for BSC Line
Protocol Handler ••••••••••••••••••••

Format and Content o~ BSC Output ••••••
Control Byte (Send) for BSC Line

Protocol Handler ••••••••••••••••••••
Simplified Flow - Communications

Subsystem •••••••••••••••••• ~ ••••••••
Format of Communications Resource

Control Table (RCT) •••••••••••••••••
COBOL TTY or VIP Application Example ••
COBOL BSC Application Example •••••••••
FORTRAN Application Example for TTY ...
Assembly Language Example for TTY or

VIP Using Physical I/O ••••••••••••••
OUMCP Dump Example ••••••••••••••••••••

TABLES

Contents of File Information Block
(F IB) ••••••.••.•••.•••••••••••••••••

Contents of FIB for Oata Management •••
Contents of FIB for Storage

Management ••••••••••••••••••••••••••
Arguments for Get File ($GTFIL) Macro

Page

10-15
10-lS

10-1S

A-6

C-2
0-4
0-13
0-17

0-20
G-9

2-4
2-8

2-10

Call•.....• 5-2
Program View Bit Settings for $OPFIL

Macro Call.......................... 5-3
Macro Call Procedures for Oata Entry

Term inals•.......... 5-4
Macro Call Procedures for Output Only

Terminals ••••••••••••••••••••••••••• 5-5
Macro Call Procedures for Single Inter-

active Terminal .••............••...• 5-7
Macro Call Procedures for Multiple

Terminals ••••••••••••••.•••••••••••• 5-9
Macro Call Procedures for BSC 27S0 in

Basic Transmission Mode •••••••••••••
Macro Call Procedures for BSC 27S0 in

Advanced Transmission Mode ••••••••••
Macro Call Procedures for BSC 37S0 in

Advanced Transmission Mode ••••••••••
Return Status Error Codes for Logical

Result of I/O Request •••••••••••••••
Contents of Communications Input/Output

Request Bloc k (IORB) ••••••••••••••••
Software (I ST) Status Codes ••••••••••
Communications LPH Function Codes •••••

xv

5-14

5-lS

5-24

6-3

6-6
6-S
6-9

CB03

Table 7-1.

Table 7-2.
Table 7-3.

Table 7-4.

Table 8-1.

Table 8-2.
Table 8-3.

Table 8-4.

Table 8-5.

Table 8-6.

Table 8-7.

Table 8-8.

Table 9-1.
Table 9-2.

Table 9-3.

Table 9-4.
Table 9-5.

Table 10-1.

Table 10-2.

Table 10-3.

Table B-1.

Table C-1.

Table C-2.

Table E-1.

Table E-2.

Table F-l.

TABLES (cont)

TTY Line Protocol Handler Time-Out
Intervals •••••••••••••••••••••••••••

Function Codes in I CT2 of the IORB •••
TTY Device-Specific-Word I DVS in the

rORS •••••• _ .•••••••••••• -:-••••••••••••
TTY Software Status Word I ST in the

Page

7-4
7-5

7-5

IORB ••••••••••••••••••• :-............ 7-7
VIP Line Protocol Handler Time-Out

Intervals •••••••••••••••••••••••••••
Function Codes in I CT2 of the IORB •••
VIP Device-Speciffc-Word I DVS in the

lORB ••••••••••••••••••••••••••••••••
VIP Software Status Word I ST in the

8-3
8-4

8-4

lORS •••••••••••••••••••••••••••••••• 8-6
VIP Receive-Only Printer Editing

Sequence ••••••••••••••••••••••••••••
VIP Receive-Only Printer Form Feed

Sequence ••••••••••••••••••••••••••••
Errors Reported by VIP Line Protocol

Handler •••••••••••••••••••••••••••••
MLCP Error Condition Reported by VIP

Line Protocol Handler •••••••••••••••
Function Codes in I CT2 in IORB •••••••
PVE Device-Specific-Word I DVS in the

IORB ••••••••••••••••••••••••••••••••
PVE Software Status Word I ST in the

IORB ••••••••••••••••••••••••••••••••
PVE Time-Out Intervals ••••••••••••••••
Errors Reported by PVE Line Protocol

8-10

8-11

8-12

8-13
9-3

9-3

9-5
9-8

Handler ••••••••••••••••••••••••••••• 9-9
Function Codes in I CT2 Field in the

IORB •••••••••••• :-•••••••••••••••••••
BSC Device-Specific Word I DVS in the

lORS ••••••••••••••••••• -:-••••••••••••
BSC Software Status Word I ST in the

rORS ••••••••••••••••••••••••••••••••
Possible Argument Values for STTY

Command and $STTY Macro Call ••••••••
Communications-Specific Items in the

10-12

10-12

10-14

B-2

ReT ••••••••••••••••••••••••••••••••• C-3
Terminal Attributes and Status Word

R STS of the RCT •••••••••••••••••••• C-3
ASCII/Hexadecimal Character

Equivalents ••••••••••••••••••••••••• E-2
EBCDIC/Hexadecimal/Binary Character

Equivalents ••••••••••••••••••••••••• E-3
TTY Nonalphanumeric Control

Characters ••••••••••••••••••••.•••••• F-l

xvi CB03

~-~ ... ---.- -------. -' --

./

(

Table F-2.

Table F-3.

Tabl~ G-l.

Table G-2.

(

TABLES (cont)

Page

VIP Nonalphanumeric Control
Characters •••••••••••••••••••••••••• F-2

BSC Nonalphanumeric Control
Characters •••••••••••••••••••••••••• F-3

Register Values and DUMCP Dump
Contents •••••••••••••••••••••••••••• G-6

Register $R2 at Dump Execution - DUMCP
Linked to Application •••••••••••••••

xvii

G-7

CBD3

SECTION 1

COMMUNICATIONS OVERVIEW

GCOS SOFTWARE OVERVIEW

The GCOS 6 Operating System includes the Monitor, file sys­
tem, physical input/output (P I/O), and communications software.

The Monitor controls loading of user programs, supports exe­
cution of user applications tasks, and provides system services
for users to control execution of separate tasks. Monitor func­
tions are obtained through commands, through system macro calls,

4 and through statements in higher level languages.
'~

The operating system has two levels of interface with remote
and local terminals; they may be accessed indirectly through the
sequential file interface of the file system's file management
facility, or directly through the system's physical I/O facility.

The file system, which is based on a tree-like hierarchical
directory/pathname structure, provides software to create and
maintain that structure, to create and manage files, and to pro­
vide the logical transfer of data between an application and an
external device. These functions are available through commands,
and for an assembly language programmer, through the system ser­
vice macro calls of the file system.

The physical input/output (or physical I/O) driver software
(for peripheral devices), and similar line protocol handler soft­
ware (for communications devices) work at the physical hardware
level. Physical I/O is used with assembly language programs to
call device drivers and line protocol handlers directly.

Communications software, through the file system, uses sys­
tem service macro calls for communications data operations with
all languages. For assembly language applications, communica­
tions software, through physical I/O, provides the data opera­
tions that are provided by the file system, plus additional con­
trols over terminal functions at the hardware physical level.

1-1 CBD3

The System Concepts manual describes the file system and
file system structure in detail, and is necessary in understand­
ing system terms, directory/pathname structures, and system func­
tions that may be referred to in this manual.

GCOS 6 File System

The file system includes an extensive set of logical input/
output access methods that handle logical input/output for all
supported peripheral devices and terminals. The file system pro­
vides sequential file processing for communications, treating
communlcatlons devices as sequential files. A file is the basic,
or lowest level structural unit that can be referred to in the
file system software. Within the file system, a file can be
generally defined as a peripheral device, as a ter~inal device,
or as an aggregate of data.

Section 2 summarizes the file system macro calls and data
structures ~hnt ~r~ used in communications precessing. Sections
3, 4, and 5 discuss the file system interface in communications
processing in COBOL, FORTRAN, and assembly language,
respectively.

Physical Input/Output (Physical I/O)

Physical I/O provides all services that are availble through
the file system, plus other services that permit user control
over data structures that affect terminals' hardware and operat­
ing characteristics. With the physical I/O interface, assembly
language applications can call line protocol handlers directly,
rather than through the indirect interface provided by the file
system.

GCOS COMMUNICATIONS SUBSYSTEM OVERVIEW

GCOS communications software can be considered as a func­
tional group of components known as the communications subsystem,
which when specified at system building, defines the communica­
tions environment of the operating system.

The communications subsystem interacts with the Monitor to
service applications programs, and provides all the communica­
tions software needed with Honeywell-supported communications
devices, so that the user need not write his own. Communications
software is user-driven, responding to connects, reads, or writes
issued by user programs. Through the request I/O ($RQIO) macro
calls, the communications subsystem provides a common physical
I/O interface with user programs.

1-2 CB03

------------------------- ---

(

(

The communications subsystem comprises the communications
supervisor, the line protocol handlers (one for each class of
supported communication device), the multiline communications
processor (MLCP) driver, and the MLCP itself.

Appendix A describes the overall £unctions of the communica­
tions subsystem in more detail. The line protocol handlers for
specific devices and protocols are described in Sections 7
through 10.

Communications Supervisor

The communications supervisor, which resides in the central
processor's main memory, provides the interface at the physical
I/O level to communications applications programs. It queues
user programs' requests for services, activates the appropriate
line protocol handler, interacts with a user application through

.system software when a transaction is complete, and services
connect/disconnect requests and timeouts for line protocol
handlers.

Line Protocol Handler (LPH)

A communications protocol is a set of conventions for trans­
mitting data over a communications line. A line prot~col handler
(usually referred to as an LPH) is the memory-resident reentrant
and interrupt-driven program that transfers data between a commu­
nications device and the application program or system that uses
that device. Each LPH supports a specific class of device, e.g.,
teleprinter-compatible terminal (TTY), or supports a communica­
tions protocol, e.g., binary synchronous communications (BSC) •

. Other functions of an LPH are:

o Handling error recovery (by parity or block control
check)

o Initializing the LPH and the channel control program of
the multiline communications processor

o Processing interrupts, timeouts, and I/O requests

o Handling affirmative or negative acknowledgments

Defined at system building, an LPH can be any of the following:

TTY

Supports asynchronous terminal devices generically
classified as teleprinter-compatible (TTY), including
certain ASR, KSR, and visual information projection
(VIP) term inals •

1-3 CB03

VIP

PVE

BSC

Supports synchronous VIPs and receive-only printers
(ROPs)

Services the polled VIP emulator (PVE) , or keyboard/
screen features of the VIP 7700 operating according to
the polled VIP protocol

Supports a station (device) operating under binary
synchronous communication (BSC) 2780 or 3780
compatible protocol.

Appendix A has a more detailed description of line protocol
handler functions.

The user may write his own line protocol handler provided it
conforms to the same internal interface requirements used by the
Honeywell-supplied line protocol handlers.

Multiline Communications Processor (MLCP) and MLCP Driver

The multiline communications processor includes a channel
control program (CCP) for each class of supported device. The
MLCP driver, which resides in main memory when defined at system
building, sets up and processes input/output orders from the line
protocol handlers, and services MLCP interrupts. The Series 60
(Level 6) MLCP Programmer's Reference Manual describes the multi­
line communications processor in detail.

Communications Subsystem Interface With Applications Programs

FILE SYSTEM INTERFACE

The file system interface, operating between the application
program and the terminal, provides, through communications soft­
ware, system service file management macro calls that:

o Open the file
o Read data from the file (or device)
o Write to the file (or device)
o Test for completion of processing
o Wait for completion ~f processing
o Close the file

COBOL and FORTRAN run-time routines issue these macro calls

I'~-\

'0

according to the corresponding input/output statements in the ~~
compiled programs (see Sections 3 and 4). File system services
are available also to assembly language programs (see Section 5) •

1-4 CB03

--------- ---- - ------- --- -- --_.

(

Section 2 describes these system services macro calls and
data structures briefly, the srstem Service Macro Calls manual
describes all GCOS 6 macro cal s and related data structures in
detail.

PHYSICAL INPUT/OUTPUT INTERFACE

The physical I/O interface permits direct user control over
communications processing. The physical I/O interface can be
used only with assembly language programs, which can call a line
protocol handler directly rather than indirectly through the file
system interface.

Physical I/O macro calls used in communication between an
application and line protocol handler are:

o Request I/O transfer ($RQIO)
o Input/output request block, generate ($IORB)
o Set terminal characteristics ($STTY)

Section 6 discusses physical I/O, the macro calls, and data
structures in more detail.

TTY and VIP Line Pr6tocol Handler Device Support

Asynchronous devices supported by the TTY line protocol
handler are referred to throughout the manual as teleprinter­
compatible or TTY devices.

Synchronous devices supported by the VIP line protocol
handler are referred to throughout the manual as VIP devices.
The VIP designation applies also to receive-only printers (ROPs)
associated with a VIP terminal.

BSC and PVE Host-Communications Support

Binary synchronous communications (BSC) permits communica­
tion between a Level 6 and another computer system that suppoorts
the 2780/3780 protocols.

The polled VIP emulator (PVE) permits a Level 6 computer to
communicate with another Level 6, Level 66, or any other
Honeywell host system.

Sections 9 and 10 have detailed descriptions of the BSC and
PVE line protocol handlers.

1-5 CB03

(

(

SECTION 2

FILE SYSTEM FUNCTIONS AND MACRO ROUTINES

This section discusses those macro routines and related data
structures that pertain to communications processing and are
often referred to throughout this manual. The System Service
Macro Calls manual describes in detail the format, functional
description, and arguments for each macro routine, and corre­
sponding data structures.

The macro routines summarized and listed in this section
have the following file system functions, which are organized
according to the following major functional groups:

o File/management
o Data management
o Storage" management

The file management macro routines provide service functions
at the file level (i.e., reserving files, opening and closing
files, testing the status of I/O activity, etc.). Data manage­
ment macro routines supply service functions at the record level,
such as read, write, delete, and rewrite. Storage management
macro routines furnish service functions such as read and write
at the block (unit of transfer) level. Since terminal files are
are considered to be simple, unblocked sequential files, storage
and data management functions are equivalent.

FILE MANAGEMENT MACRO CALLS

The file management macro calls let the user manipulate his
files within the file system hierarchy (described in the System
Concepts manual). File management macro functions that apply to
communications processing are:

o Get a file (reserve a file for processing) ($GTFIL)

o Open a file ($OprIL)

o Close a file ($CLFIL)

2-1 CB03

o Remove a file from processing ($RMFIL)

o Associate a logical file number with a pathname ($ASFIL)

o Dissociate a logical file number from a pathname ($DSFIL)

o Get information about a file ($GIFIL)

o Test the status of an outstanding I/O activity (terminal)
($TIFIL/$TOFIL)

o Wait for the completion of an asynchronous I/O activity
(term inal) ($WIFIL/$WOFIL)

The file reservation function (get-file) can be done out­
side program execution by the GET command.

DATA MANAGEMENT MACRO CALLS

The data management macro calls allow manipul~tion of logi­
cal records within a file. The macro calls that apply to com­
munications processing are:

o Write a record" ($WRREC)
o Read a record ($RDREC)

Arguments required by these functions are passed in a file
information block (FIB), described later in this section. The
macro calls to generate and change FIBs and to define FIB offsets
are discussed in the System Service Macro Calls manual.

Before any data management macro calls can be executed, the
terminal file must have been reserved and opened with the LFN
supplied in the FIB (get file ($GTFIL) and open file ($OPFIL)
macro calls).

STORAGE MANAGEMENT MACRO CALLS

The storage management macro calls provide a primitive
interface for transferring blocks directly between the user buf­
fer and a file. Storage management itself is used by data
management to perform input/output.

The complexities of blocking and deblocking logical records,
and conforming at the same time to the various file organizations
and formats, recommend against using storage management when
dealing with I/O at the logical record level. To ensure maximum
efficiency in terms of space and access, let the system (i.e.,
data management) handle the records.

2-2 CB03

(
However, for unblocked re.cords or large blocks wi th simple

fixed-length records to be blocked by the user, the storage
management macro calls can be used to perform I/O transfers
between the user buffer and the file.

Storage management macro functions are:

o Read a block ($RDBLK)
o Write a block ($WRBLK)
o Wait for the completion of an I/O activity ($WTBLK)

FILE INFORMATION BLOCK (FIB)

Some macro routines, particularly for data and storage
management, use a data structure called the file information
block (FIB), which provides the interface between a user program
and the system for data and storage management. In order for the
file to be accessed, there must be one FIB for each file.

The $FIB macro call is used to build a file information
block, alter its contents, or to provide labels for its entries.

The FIB must be provided to each of the following macro
calls:

$OPFIL:
$CLF IL:
$TIFIL:
$TOFIL:
$RDREC:
$WRREC:
$RDBLK:
$WRBLK:

open file
close file
test file for input
test file for output
read record
write record
read block
write block

FIB Format and Contents

Figure 2-1 shows the format of the FIB; Table 2-1 shows its
contents.

Figure 2-2 shows the format of the FIB for data management
applications; Table 2-2 shows its contents.

Figure 2-3 shows the format of the FIB for storage
management applications; Table 2-3 shows its contents.

2-3 CB03

o F_ LFN

F_PROV

2 F _URP/F _UBP

3

4 F_IRLlF_BFSZ

5 F_ORLlF_BKSZ

6 F_lIRT/F_BKNOl

7 F_HIRT/F_BKN02

S F_ORT

9 F_IKP

10

11 F_IKF/F_IKL

12 F_ORAl

13 F_ORA2

14

15

011121 31 41 51 6171 sl g 110111112113j,J15

LOGICAL FILE NUMBER

PROGRAM VI EW

~ USER RECORD/BUFFER POINTER

INPUT RECORD LENGTH/BUFFER SIZE

OUTPUT RECORD LENGTH/BLOCK SIZE

RECORD TYPE RANGE/BLOCK NUMBER

RECORD TYPE RANGE/BLOCK NUMBER

RESERVED

-INPUT KEY POINTER

INPUT KEY FORMAT/INPUT KEY LENGTH

(LEFT) OUTPUT RECORD ADDRESS

(RIGHT) OUTPUT RECORD ADDRESS

r-I"r-" ... _

[nL~L.nVCU

Figure 2-1. File Information Block (FIB)

Table 2-1. Contents of File Information Block (FIB)

Item Label Bit(s)

o F LFN 0-15

1 F PROV 0

Contents

Logical file number (LFN)

Access level - set on·for storage
management, off for data management.

1-4 Process rules - bit 1 for $RDREC/
$RDBLK, bit 2 for $WRREC/$WRBLK, bit 3
for $RWREC, bit 4 for $DLREC.

5-9 Key type - bit 5 for primary keys, bit
8 for relative keys, bit 9 for simple
keys (bits 6 and 7 must be 00).

10 Record class - set on for fixed-length
records only, off for fixed- and
variable-length records.

11 Record visibility - set on if deleted
records are to be visible, off if
invisible.

12 Key storage alignment - set on if stor­
age area begins at odd-byte boundary,
off if even-byte boundary.

2-4 CB03

('
~j

(
Table 2-1 (cont). Contents of File Information Block (FIB)

Item Label Bit (s) Contents

1 F PROV 13 Record storage area/buffer alignment -
(con t) { cont} set on if record storage area {or buf-

fer} begins on odd-byte boundary, off
if even-byte boundary.

14 Transcription mode - set on if data
transferred in binary transcription
mode, off if ASCII mode.

15 Synchronous/asynchronous indicator -
set·on if $RDBLK/$WRBLK calls executed
asynchronously, off if executed
synchronously.

2 F_URP/ 0-31 Start address of user record area data
3 F UBP managemen t} or start address of buffer - area {storage management} •

4 F IRL/ 0-15 Input record length {data management}
F-BPSZ or transfer size {storage management} • -

5 F ORL/ 0-15 Output record length (data management)
F BKSZ or block size (storage management) • -

6 F LIRT/ 0-15 must be 0000 for data management; is
F-BKNOI the left half of the block number - (F _BKNOl) for storage management.

7 F HIRT/ 0-15 Must be FFFF for data management; is
F-BKN02 right half of the block number for - storage management.

8 FORT 0-15 Must be 0000. -
9 F IKP 0-31 Start address of user key area. -

11 F IKF/ 0-7 Input key forma t (0 for none specified,
F IKL 1 for pr imary key, 2 for simple key) -

8-15 Ihput key length.

12 F ORAl 0-15 - Output record address (left half).

13 F ORA2 - 0-15 Output record address (r ight hal f) •

14 F RFU 0-31 Reserved for future use. -

2-5 CB03

Program View Entry in the FIB

The FIB's program view entry (item 1 in the FIB) describes
to the file system how the file is to be accessed, and what the
file looks like from the programmer's point of view. The file
system uses the FIB's contents to ensure that the file is
accessed only as intended.

The bits in the program view entry are read when the file is
opened. After the file is opened, the user can change only bits
11, 12, and 13. Other bits cannot be changed until the file is
closed and then reopened.

Table 2-1 above shows the contents of the program view
entry indicated as item 1 and labeled F PROVo The System Service
Macro Calls manual describes the program view entry in detail,
with reference to its usage for specific file system services and
macro calls.

FIB Displacement Definitions

Displacement definition macro calls are used to refer to
specific locations in the FIB and in the various macro call argu­
ment structures. These calls define standard displacement tags.

The $TFIB macro call defines tags for the FIB for the fol­
lowing macro calls:

Open file ($OPFIL)
Close file ($CLFIL)
Test file ($TIFIL, $TOFIL)
Read record ($RDREC)
Write record ($WRREC)
Rewrite record ($RWREC)
Delete record ($DLREC)
Write block ($WRBLK)
Wait block ($WTBLK)

2-6

--------~ --" "-""--

CB03

(
Word

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Label

F FLN LOGICAL - FILE NUMBER

F PROV PROGRAM VIEW -
F URP - USER RECORD POINTER

F IRL INPUT RECORD LENGTH -

F ORL OUTPUT RECORD LENGTH -
F RFUI - RESERVED

F IRT - INPUT RECORD TYPE

FORT - OUTPUT RECORD TYPE

F IKP - INPUT KEY POINTER

F_IKF/F_IKL INPUT KEY FORMAT INPUT KEY LENGTH

FORA OUTPUT RECORD ADDRESS -

F RFU2 -
RESERVED

Figure 2-2. Format of File Information Block
(FIB) for Data Management

2-7 CB03

Table 2-2. Contents of FIB for Data Management

Word Label

o F LFN

1 F PROV

2,3 F URP

4 F IRL

5 F ORL

6 F RFUI

7 F IRT

9 FORT

(Bits)

0-15

o

1-4

Contents

Logical file number (LFN)

Access level - OFF to indcate
to access via data management

Access rules -
Bit 1: ON if $RDREC will be

issued
Bit 2: ON if $WRREC will be

issued
Bits 3, 4: does not apply -

set to OFF

5-9 DO not apply - set OFF

10

11-12

13

14-15

0-31

0-15

0-15

0-15

0-15

0-15

Record length verification -
ON when expecting fixed
length record and OFF for
variable length record

Do not apply - set OFF

User record area alignment -
ON if user record record area
begins on odd-byte boundary,
off if even-byte boundary.

Do not apply - set OFF

Start address of user record
area

Input user record area size in
bytes

Output user record area size
bytes

Actual record .si ze in bytes
filled by data management on
each macro call

Reserved - set to 0

Do not apply - set to FFFF

Do not apply - set to 0

2-8

Applicable
MaC"rnR

$OPFIL

$OPFIL

$RDREC

$RDREC
$WRREC

$RDREC
$WRREC

$RDREC

$RDREC

$RDREC
$WRREC

CB03

(

.i

.~.

Word

9,10

11

12,13

14,15

Table 2-2

Label

F IKP -
F IKF -F IKT -
F ORL -

F RFU2 -

(cont) • Contents of FIB for Data Management

Bit(s}

0-31

0-7
8-15

0-31

0-31

~'10 rd

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Contents

Do not apply - set to 0

Do not apply - set to 0
Do not apply - set to 0

Output record address
- line sequence number

filled by data management
on each macro call

Reserved - set to 0

Label

F LFN LOGICAL FILE

F PROV PROGRAM VIEW

F UBF USER BUFFER POINTER

F BFSZ USER BUFFER SIZE

F BKSZ USER BLOCK SIZE

F BKNO B LOCK NUMBER

F RFU3

RESERVED

Applicable
Macros

$RDREC
$WRREC

Figure 2-3. Format of File File Information Block (FIB)
For Storage Management

2-9 CB03

Table 2-3. Contents of FIB for Storage Management

Word Label Bit(s) Contents Applicable
Macro!=:

0 F LFN 0-15 - Log ical Flle Number (LFN)

1 F PROV 0 Access level - ON (to indicate $OPFIL - via storage management) access

1-4 Access Rules:
Bit 1 : ON IF $RDBLK will be $OPFIL

issued
Bit 2: ON if $WRBLK will be

issued
Bits 3-4: Does not apply - set

to OFF

5-12 Do not apply - set to OFF

13 User buffer area alignment - $RDBLK
ON if user buffer area beg ins $WRBLK
on odd-byte bo undary, OFF if
even-byte boundary

14-15 Do not apply - set to OFF

2,3 F UBP 0-31 Start address of user buffer $RDBLK -
area $WRBLK

4 F BFSZ 0-15 User .- buffer size in bytes $RDBLK
$WRBLK

Actual transfer size in bytes $RDBLK
filled by storage management $WRBLK
on each macro call

5 F BKSZ 0-15 Do not apply - set to 256 -
6,7 F BKNO 0-31 Block Number - does not apply -

Line sequence number filled $RDBLK
by storage management on $WRBLK
macro call

8-15 Reserved - set to 0

FILE SYSTEM CONSIDERATIONS IN COMMUNICATIONS

The file system provides device independent facilities so
that terminals can be reserved, removed, opened, closed, read and
written just like standard sequential files. In addition, asyn­
chronous I/O facilities are provided for efficient processing in

2-10 CB03

(a multiterminal environment. Asynchronous I/O refers to the
capability of the file system to perform I/O between a terminal
and a system buffer while the application program executes in
parallel. Facilities are available for the application program
to test whether or not the I/O is complete and, alternatively, to
give up control of the central processor until the I/O is com­
lete. This buffering capability is a device attribute and can
be set at system build time or dynamically via the STTY command.
The' system buffer is actually acquired when the terminal is
opened and returned when it is closed.

From the application program point of view:

o An application program can be written to be device
independent. The terminals, whether or not buffered,
whenever a logical read or write is issued, control
returns only to the application program when data has
been moved to or from the application area. Buffering
improves performance by providing the same level of
asynchronous I/O as for unit record devices like the
card reader or line printer -that is, while the applica­
tion is processing one message the file system maybe
reading the next. This kind of application is efficient
in a single terminal environment.

o A more complex level of asynchronous I/O is necessary
when the application program must interact with multiple
terminals, establish its own polling priorities and run
efficiently with high response time. One example is
the traditional online/batch environment where, when
terminal input is available, the online task has highest
priority with. respect to CP time, memory, etc., with
batch processing operating efficiently while online
processing is dormant. Facilities are available to
schedule I/O without waiting for its completion, to
continue task execution in parallel with the I/O
transfer, to test to see if the I/O is complete, and
to wait until I/O is complete.

o For interactive terminals an open causes an asynchronous
physical connect to be performed while the application
continues executuion. The application can then test to
determine if the connect is complete and input is avail­
ble, or if the device is ready for output.

2-11 CB03

o Before reading, the application task can test the file
status to see if a read can be done without stalling
task execution. File status remains busy until the
system buffer is full (i.e.~ the anticipatory read is
complete). When the file status is not busy the appli­
cation can issue a read with the assurance of receiving
data immediately. The anticipatory read allows an appli­
cation to control input from more than ~ne terminal, each
of which represents a data entry terminal. By testing
the status of the system buffer before a read
(FORTRAN ,assembly) or by checking for the 9I status after
a COBOL READ, the application will not be stalled and it
can continue to poll other terminals. The user can
establish the order of the tests and thus the polling
priority.

o The application can also wait for input from a list of
terminals. CP time is then made available to lower
priority tasks until input is ~v~iluble from one or
more terminals in the list.

o A buffered write opera·t'ion to a terminal works on behalf
of the application program in the same logical manner as
the read, that is, the program is allowed to execute in
parallel with the physical transfer to the device. Each ! ~
write call is completed by moving data from the,applica- ~ ~
tion area to the file system buffer (with detabbing if
required), initiating the output transfer and returning
control to the application program. If the program
performs a second write while the system buffer is still
in use for the previous transfer, the application is
stalled until the buffer is available and new data moved
into it again. The application can avoid the stalling
the execution by testing the status of the system buffer
before issuing a write (FORTRAN,assembly) or by testing
for the 9I status return after a WRITE in COBOL.

o The application program can also issue a wait for output
to a list of terminals. CP time is then made available
to lower priority tasks until output is complete to one
or more terminals in the list.

DEFINING FILE/TERMINAL CHARACTERISTICS

There are these considerations in defining terminal file
characteristics for the file system. The first deals with a
file's operational characteristics (with respect to the device)
when the system is first build. The DEVICE directive permits
the user to specify among others the default record size of the
file and the use of an intermediate buffer (this option is
specified by the buffered/unbuffered argument). Buffered device

2-12 CB03

--- - -~-~- ---- --

(

(

operation is advantageous in synchronous operations against a
file, and is mandatory in asynchronous operations against a
file.

The second consideration involves the secondary specializa­
tion of a file's device's operational characteristics. This
specialization can be done at system build by using the STTY
directive, from the user's terminal via an STTY command, and
during program execution with the $STTY macro call. In each case
the $STTY macro call or STTY command permits the following:

o Modification of default record size.

o Specification of the device-specific word which
determines the operational characteristics of the
device (e.g., whether a control byte is used or a
disconnect will force a queue abort).

o Specification of the file indicator word which
determines the operational characteristics of the file
system (e.g., if the file system is to support input
and/or output operations, and whether these operations
are synchronous/asynchronous).

The final consideration deals with specifying selected file
characteristics at open time. Of particular interest is the
program view word of the file information block (FIB), which
defines whether the file system is to support input and/or output
operations against a file.

2-13 eB03

(

(

SECTION 3

COMMUNICATIONS VIA COBOL

The file system interface (see Sections 1 and 2) provides
the logical transfer between the COBOL program and an external
device (terminal or another computer). The COBOL run-time rou­
tines issue file system macro calls according the the correspond­
ing input/output statements in the compiled programs.

INTERACTIVE DEVICES AND FILES

The operating system defines communications devices and
local TTY terminals in COBOL communications processing as
"interactive."

Interactive devices can be considered as logical reposito­
ries of sequential files in COBOL. Data is read or written with
the same COBOL read/write interface as for a file on a noninter­
active device.

FILE SYSTEM CONSIDERATIONS

Aside from the use of various COBOL I/O statements the user
should be aware of other considerations in using the file system
within a communications environment. These considerations are
detailed in Section 2.

SOURCE PROGRAM ENTRIES IN COMMUNICATIONS

This subsection refers to certain COBOL source program
entries in the context of COBOL communications. The 'appropriate
COBOL Reference manual describes COBOL source program language in
detail.

Specifying Files in the Source Program

The user must describe every file with a separate SELECT
statement in the FILE-CONTROL paragraph of the Environment
Division. File organization and access mode must be stated as
sequential.

3-1 CB03

Each file must have a unique name and, and in the
ASSIGN clause, be identified by.a 2-character COBOL internal file
name (IFN) consisting of a combination of the letters A through I
and the digits 0 through 9; one letter must be included. The
logical file number (LFN) is specified in the ASSOC or GET com­
mands. (before execution) to connect the COBOL internal file name
to the external file. This LFN is the sam~ as the COBOL internal
file name with letters A through I replaced by the digits 0
tnrough 9 •. For example, a COBOL IFN of OC would correspond to an
LFN of 03 and an IFN of 00 to an LFN of 04, as in the commands.

ASSOC 03
GET '04

Use of ASSOC or GET Commands

>SPD>VIPI
>SPD>TTYI

In addition to connecting the internal file name to the
external file, the GET command reserves the interactive file for
precessing until it is removed via Lh~ REMOVE command. ~~T

allows the user to guarantee exclusive use of the file prior to
progr~m execution and maintain use of the file until the corre­
sponding REMOVe command.

ASSOC, on the other hand, merely connects the internal file
name to the external file, without reserving it for use. Each
COBOL OPEN statement will cause the file to be reserved exclu- ./
sively while each COBOL CLOSE statement will remove this
reservation.

In a multi-user environment the use of ASSOC command may
cause an OPEN to fail because some other user has reserved the
file exclusively while the GET command guarantees that OPEN will
not fail as a result of some other user's reservation request.

ASSIGNING A FILE TO A DEVICE/TERMINAL

A device-type name of MSD used in the ASSIGN clause of the
SELECT statement is the way that the user informs COBOL that the
internal file is assigned toa terminal/device file.

For data entry applications (TTY or VIP) the file should be
opened in INPUT mode.

For output-only terminals such as the Receive Only Printer
(RaP) the file should be opened in OUTPUT mode. Bidirectional
devices, such as the BSC 2780 can be opened in INPUT mode or
OUTPUT mode but not for both INPUT. and OUTPUT at the same time.

For interactive applications (TTY, VIP or BSC3780), the file
can be opened in I-a mode allowing both input and output co

\

operations. .. /

3-2 CB03

(

(

SELECT and ASSIGN Examples

Figure 3-1 shows an example of a FILE-CONTROL paragraph with
SELECT and ASSIGN statements for the input file COMIN and the
output file COMOUT. The internal file name for COMIN is OC and
for COMOUT is ODe Before the program is executed, the user must
associate these files with the appropriate device(s) with either
an ASSOC or GET command. In this example, the commands could be:

GET 03
GET 04

>SPD>TTYI
>SPD>TTYI

Although these are different files, they can be associated with
the same interactive device, i.e., TTYl, by matching the logical
file numbers (03 and 04 for the device pathname >SPD>TTYl) with
the internal file name OC and OC, respectively.

FILE-CONTROL

SELECT COMIN

ASSIGN TO OD-MSD
ORGANIZATION IS SEQUENTIAL WITH VLR
ACCESS MODE IS SEQUENTIAL
FILE STATUS IS IN-STAT.

SELECT COMOUT

ASSIGN TO OD-PRINTER
ORGANIZATION IS SEQUENTIAL WITH VLR
ACCESS MODE IS SEQUENTIAL
FILE STATUS IS OUT-STAT.

Figure 3-1. COBOL SELECT and ASSIGN Examples

Carriage Control

Some devices can be configured such that print carriage con­
trol is visible on output to the application program. If the
device-type name is MSD, then the application program controls
the carriage directly by inserting a program-accessible control
byte as the first character in each output record. This byte is
the first character in each level-Ol record description entry for
the output file. It is counted as part of the record area and is
directly accessible through statements in the COBOL application
program.

3-3 CB03

Printer Emulation

The user can pretend the device is a printer and more auto­
matically control the carriage. If the device-type name is
PRINTER in the ASSIGN clause then COBOL will automatically gener­
ate the carriage control byte as a result of an ADVANCING phase
in the WRITE statement. This one byte print control character is
inserted before each data record being written to the file. It
is not counted as part of the record area and is not directly
accessible tot he application program. .

Specifying Asynchronous or Synchronous Read and Write Execution

If the device is cQnfigured with the asynchronous I/O attri­
bute then READ and WRITE statements may be executed synchronously
or asynchronously, as indicated by the programmer through calls
to the COBOL run-time routines ZCASYN (asynchronous execution) or
ZCSYNC (synchronous execution). If neither call is specified,
reads and writes are executed asynchronously.

A separate call to ZCSYNC or to ZCASYN is not necessary for
each read or write, but when first issued, remains effecti~e
until changed by another call. However, if the same run unit is
to execute several COBOL programs, each program must separately
define its own synchronous or asynchronous condition.

SYNCHRONOUS READ AND WRITE OPERATION (CALL "ZCSYNC")

In synchronous operation, the COBOL routine issues a read or
write order without any file status checks. This causes the
application program to be put in the wait state until the read or
write operation is complete, thus allowing other tasks to be
executed.

The source language for synchronous read and write execution
is:

CALL "ZCSYNC"

Synchronous operation is not very useful in a multiterminal en­
vironment since each read or write to a terminal must be satis­
fied before the next terminal can be processed.

ASYNCHRONOUS READ AND WRITE OPERATION (CALL "ZCASN")

In asynchronous operation COBOL READ/WRITE run-time routines
issue a test-file call prior to issuing a read or write order.
For READ orders, a 91 return status is returned to the applica~
tion if no data is available to be read. Likewise, for a WRITE
order, a 91 status is returned to the application if the device
is busy with the previous output. This permits the COBOL program
to support terminal I/O without giving up control of the central
processor until the I/O is complete. .

3-4 CB03

, /

If '\

~)

(

~

WAIT for Completion -- As¥nchronous Input and Output

In a multi-terminal system the user can control asynchronous
read and write operations by calling the COBOL run-time routines
ZCWIN and ZCWOUT.

A call to ZCWIN results in a wait file ($WIFIL) macro call
which waits until input is available from one or more of the
specified terminals.

A call to ZCWOUT results in a wait-file ($WOFIL) macro call
which waits until output is complete to one or more of the
specified terminals.

The System Service Macro Calls manual describes the wait
file macro calls, their format and arguments, in detail. Note
that the macro call arguments are similar to the values for the
data-name description for the CALL statements (see below).

The source language to call ZCWIN

CALL {"ZCWIN" }USING
" ZCWOUT"

or ZCOUT is:

data-name

\ Data-name is defined as follows:

(

01 data-name
02 out-LFN USAGE COMP-l.
02 list-length USAGE COMP-l.
02 LFN-entry-l USAGE COMP-l.

02 LFN-entry-n USAGE COMP-l.

The values for out-LFN, list-length, LFN-entry-l and LFN-entry-n
are identical to those for the wait file ($WIFIL and ($WOFIL)
macro calls, and are passed by the ZCWIN or ZCWOUT routine to the
file system.

When CALL "ZCWIN" is specified, the list of LFNs may refer
only to hose devices for which READ statements have been issued.
When call "ZCWOUT" is specified, the list of LFNs can refer only
to those devices for which WRITE statements have been issued.

When an input/output operaton is completed on any device in
the list of LFNs, the application program resumes execution fol­
lowing the CALL statement. The LFN for the device for which
input/output is complete is stored in the out-LEN data item.

3-5 CB03

Figure 3-2 provides simplified program logic for processing
multiple terminals. The call to ~ZCWIN" stalls program execution
until input is available from at least one of the terminals.

OPEN 1-0 (FILE 11 ,
OPEN 1-0 (FILE 2) ,
OPEN 1-0 (FILE 3) ,

---~ CALL "ZCWIN" (FOR FILES 1, 2, 3)

NOT BUSY - FILE N ,
READ (FILE N)

~

WRITE (FILE N)

YES

CLOSE (FILE 31 ,
CLOSE (FILE 21 , .
CLOSE (FILE 11

d0
Figure 3-2. Simplified COBOL Program Logic for

Multiple Interactive Terminals

3-6 CB03

i"'\

\._~

(

(-

The following is an example of a COBOL program which pro­
cesses two terminals which have been configured to allow asyn­
chronous input and synchronous output operations. The call to
ZCWIN gives up control of the central processor until input is
available from one of the terminals.

FILE-CONTROL.

SELECT COMI

ASSIGN TO OC-MSD
ORGANIZATION IS SEQUENTIAL WITH VLR
ACCESS MODE IS SEQUENTIAL
FILE STATUS IS CI-STAT.

SELECT COM2

ASSIGN TO OD-MSD
ORGANIZATION IS SEQUENTIAL WITH VLR
ACCESS MODE IS SEQUENTIAL
FILE STATUS IS C2-STAT.

PROCEDURE DIVISION.

OPEN 1-0 COMl.
OPEN 1-0 COM2.

RDl.

CALL "ZCWIN" USING FLN-LIST.
READ COMl.
IF CI-STATE "91" GO TO RD2.
IF CI-STATE "00" GO TO WRI.
GO TO ERROR.

RD2.

READ COM2.
IF C2-STAT "00" GO TO ~R2.
GO TO ERROR.

WRl.

WRITE COMLI.
IF Cl-STAT "00" GO TO RDI.
GO TO ERROR •

. WR2.

WRITE COM2.
IF C2-STAT "00" GO TO RDI.
GO TO ERROR.

3-7 CB03

r"\
Before program execution, specify these commands to connect\'-~/

the LFNs to the specific terminal files.

GET 3
GET 4

>SPD>TTYI (for IFN OC-MSD)
>SPD>TTU2 (for IFN OD-HSD)

Binary Synchronous Communication (BSC) With COBOL

Binary Synchronous Communication (BSC) , operating in 2780 or
3780 mode, permits a COBOL program to transmit data over communi­
cations lines from one Level 6 system to another Level 6, to a
Level 66 system, or to a non-Honeywell host system.

BSC DATA TRANSMISSION CONVENTIONS

BSC Da ta Codes

Data can be in alphanumeric ADCII, alphanumeric EBCDIC, or
binary format. In communication between Level 6 and remote host.
each system must use the same code set (either ASCII or EBCDIC).
When EBCDIC is used, the application programs must know whether
transmission is nontransparent or transparent (i.e., BSC control
characters are interpreted as data).

BSC Data Transmission Modes -

There are two BSC transmission modes: basic and advanced.

In basic transmission mode there is no control byte. The
absence of a control byte limits the functionality of the proto­
col (e.g., an application cannot send or receive two message
blocks or cannot initiate a reverse interrupt (RVI) sequence).

In advanced transmission mode there is a control byte which
is the first byte in the program's input or output buffer. The
control byte is used to control the transmission of data and is
used to convey information concerning the receipt of data. With
the control byte, the application has complete control over the
transmission and reception of data to a remote host.

BSC 2780 and BSC 3780

BSC 2780 is a subset of BSC 3780. Technical differences
between the two piotocols can be summarized as a set of exten­
sions to the 2780 protocol which are as follows:

o The ability to receive a conversational reply without a
preliminary bid sequence.

- / -,,- ./

o The ability to receive and transmit selected BSC control
characters. ~~

3-8 CB03

~~~-- . __ .. _ .. _--_._-- ---~-- --------



I , 

( 

From a user's point of view the differences between the two 
protocols can be summarized below: 

o BSC 2780 

Specified at system building time by the BSC device 
directive. 

Operates in basic or advanced mode. 

The file system supports bidirectional usage of 
BSC 2780 communication line. A CLOSE/OPEN sequence 
must be initiated prior to the reversal of the com­
munication line. 

o BSC 37aO 

Specified a system building time by the XBSC 
directive. 

Operates only in advanced mode. 

The file system supports interactive usage of the 
BSC 3780 communication line. To terminate a transmis­
sion the application must initiate an EOT sequence by 
setting the appropriate bit within the control byte. 
An ETX message transmission sequence can also be 
terminated if the other application sends a conversa­
tional reply. The receipt of conversational reply is 
indicated by a bit setting within the transmit control 
byte. The receipt of a conversational reply forces 
the application to issue a read order to receive the 
conversational response. The termination of a read 
sequence is indicated by the AT END condition. 

Macro Call Procedures for BSC 2780 in Basic Transmission Mode 

The following conditions apply in the use of binary synchro­
nous communications in basic data transmission mode: 

o An application cannot send an RVI (reverse interrupt) 
control character through the file system. 

o BSC devices in basic transmission mode cannot initiate 
double (ITB) message transmission .(see Section 10). 

o An application can send only the ETB (end of' transmission 
block) BSC control character, not the ETX (end of text). 
BSC control character. 

o An application can send data in either transparent or 
nontransparent mode. 

3-9 CB03 



o An application can send EOT (end of transmission) control 
characters by a CLOSE call. 

o SSC operation assumes that the de tab option is set off. 

Figure 3-3 illustrates the necessary logic to support a 
SSC 2780 application in basic transmission mode. 

0f----
r------'-----, 

Figure 3-3. Simplified Program Logic for 2780 SSC 

3-10 CS03 



( 

, , 

Macro Call Procedures for SSC 2780 in Advanced Data 
Transmission Mode 

In the SSC advanced data transmission mode, the first byte 
of the application program's input or output buffer is a control 
byte that controls or supplies information about read/write oper­
ations. This byte can indicate, for example, whether data is to 
be transferred in transparent or nontransparent mode, or whether 
an ETS (end of transmission block) or ETX (end of text) control 
character is to be sent or received. Section 8 describes the 
control byte formats. 

The following conditions apply in using the file system in 
2780 binary synchronous communications in advanced data transmis­
sion mode: 

It is not necessary to send EOT control characters through 
the control byte since the user must close the file in 
output mode before attempting to read. Closing the file 
forces SSC if not in idle mode, to send an EOT control 
character. 

Macro Call Procedures for SSC 3780 in Advanced Data 
Transmission Mode 

The first byte of the application program's input or output 
buffer is a control byte. The control byte controls or supplies 
information about read/write operations. 

The following conventions apply in using 3780 binary syn­
chronous communication in advanced data transmission mode: 

o The receipt of an optional conversational reply is indi­
cated by a bit setting in the transmit control byte. 
(This can occur if the application has transmitted the 
last (ETX) block of a message). The application must 
issue a read in order to receive the conversational 
response. 

o The termination of a transmit sequence is signaled (via 
control byte) by the transmission of an EOT control char­
acter following the last block of a message. Once this 
has been done a read macro call will be needed to receive 
transmissions from the remote system. (It is not neces­
sary to close and reopen the file to turn the line 
around) • 

o The termination of a receive sequence is indicated by the 
AT END condition. A transmission sequence can be reini­
tiated by issuing another write macro call. (It is not 
necessary to close and reopen the file to turn the line 
around). 

3-11 CS03 



o A line turnaround (receipt of an EOT) is indicated at the 
AT END condition. At this point the application can use 
the line for data transmission by issuing another write 
request. It is also possible to receive an EOT control 
character which indicates the abortion of the current 
transmission sequence by the remote host. Such an occur­
rence is indicated by an AT END condition. If this 
occurs the application must close the line. 

Figure 3-4 illustrates the necessary logic to support a 
SSC 3780 application. 

~LL"ZCWIN" 
I 

READ 

EXIT 

Figure 3-4. Simplified Program Logic for SSC 3780 

3-12 

---- ---------- -- -------

CS03 



WRITE 
(WITH ETX) 

YES NO WRITE 
(WITH ETB) 

YES WRITE 
(WITH EOT) 

YES 

Figure 3-4 (cont). Simplified Program Logic for BSC 3780 

3-13 CB03 





SECTION 4 

COMMUNICATION VIA FORTRAN 

The file system interface (see Sections I and 2) provides 
the logical transfer between the FORTRAN program and an external 
device (terminal or another computer) in FORTRAN communications. 
The FORTRAN run-time routines issue file system macro calls 
according to the corresponding input/output statements in the 
compiled programs. 

INTERACTIVE DEVICES AND FILES 

: The operationg system defines communications devices and 
, local TTY terminals in FORTRAN communications processing as 

"interactive." Interactive devices can be considered as logical 
repositories of sequential files in FORTRAN. Data is read or 
written with the same FORTRAN read/write interface as for a file 
on a noninteractive device. 

FORTRAN PROGRAM EXECUTION WITH COMMUNICATIONS 

Assigning Interactive Devices at Execution 

Before the compiled FORTRAN progran can be executed, the 
user must specify the actual interactive device for the specified 
file, using the system command ASSOC (associate path). The 
logical file number (LFN) specified in the command must be the 
same as the unit specifier (u) that was included in the control 
information list (clist) in the FORTRAN input/output statement 
READ, WRITE, or PRINT for that file. See the FORTRAN Reference 
manual for descriptions of FORTRAN statements and the unit 
specifier. See the Commands manual for descriptions of the ASSOC· 
and other system commands. 

Changing Terminal's File Characteristics 

The user can change the file characteristics of a terminal 
e.g., line length (or record size), detabbing, device type 
(input, output, etc.,) with the system command STTY (set terminal 
characteristics), or with the $STTY macro call. This permits the 

4-1 CB03 



user to modify the characteristics established at system build­
ing, and is issued before program execution. 

Appendix B shows possible values for the device-specific 
word and file-indicator word arguments of the STTY command and 
$STTY macro call. 

FORTAN FILE STATUS CHECK (ZFSTIN AND ZFSTOT) 

Before a FORTRAN file can be used in communications, the 
FORTRAN statement OPEN must be specified before any other input/ 
output statement. 

The FORTRAN subroutines ZFSTIN (for input files) and ZFSTOT 
(for output files) enable the application program to check the 
status of the input or output communications device (file) before 
issuing a READ or WRITE statement. 

When the program issues an I/O request statement (a READ or 
WRITE), it stalls until that request is completed. 

The FORTRAN subroutines ZFSTIN and ZFSTOT, when called 
before an I/O request is issued, check the availability of the 
communications device (file), and can prevent the problem of pro­
gram inactivation or program execution due to file or device . 
unavailability. 

The subroutine ZFSTIN checks the status of the ~nput file, 
ZFSTOT checks the output file. Their use monitors the status of 
the files without loss of program control and prevents the impos­
ition of file system waits. 

A CALL statement to either subroutine should be issued 
before the application issues any I/O requests to ascertain (1) 
whether the file (device) is available, and (2) any device error 
status. 

The subroutine ZFSTIN o.r ZFSTOT, when called, issues a 
request to the file system, which in turn (without waiting for 
any pending I/O request to be completed) returns status informa­
tion about the file'S availability. When the file is not busy, 
the file system will return status information about the previous 
I/O request. 

CALL Statement for ZFSTIN or ZFSTOT 

The CALL statement for subroutine ZFSTIN or ZFSTOT is 
specified as: 

CALL {ZFSTIN} (lfn,arg) 
ZFSTOT 

4-2 CB03 



( 

( 

lfn 

arg 

The logical file number, in an ASSOC systems command, 
that identifies the unit specifier (u) for the file to 
be checked. 

The symbolic integer variable into which the file sys­
tem will ret~rn one of the following statis values: 

516 10 

51910 

File is available (READ or WRITE can be issued). 
The last request, if a READ or WRITE, was suc­
cessful. 

Request rejected; undefined LFN was used, or the 
file system is not available. 

File is busy (READ or WRITE in progress). If 
ZFSTIN, then a READ is in progress and not yet 
complete. If ZFSTOT, the previous WRITE is not 
yet complete. 

File is not open; last request was not success­
ful. Issuance of another READ or WRITE will 
result in an error return. 

A call to ZFSTIN or ZFSTOT made to a noncommunications file 
always results in a 000 (not busy) status return. Such a call 
allows a user to debug the application program by first using 
noncommunicsatons files, then write the program so that it can 
use either communications or noncommunications files. 

The FORTRAN subroutine ZFSTIN, when called before issuing a 
READ request, checks for the availability of input. It prevents 
the loss of program control until data is available in a file 
system buffer. When ZFSTIN indicates that the file is not busy 
then a READ can be issued to move the data just read from the 
file system to the application program area. 

The FORTRAN subroutine ZFSTOT, when called before issuing a 
WRITE request, checks to see if previous output is complete and 
the terminal is free to accept more data. When ZFSTOT indicates 
that the file is not busy then a WRITE can be issued to move data 

4-3 BC03 



from the application program area to a file system buffer and 
schedule it to be writteri to the terminal. 

ZFSTIN and ZFSTOT Programming Examples 

The following are examples of (1) coding that causes the 
program to stall when input from a terminal is not completed 
before a second READ is issued, and (2) a call to subroutine 
ZFSTIN to check the file status before the second READ is issued. 
Note that in each case the first FORTRAN statement is OPEN. 

Example 1: 

OPEN (UNIT=8) 
READ (8,100) IN 
READ(8,199)IN 

100 FORMAT (12) 

50 

100 
200 
900 
910 

OPEN(UNIT=8) 
READ(8,200)IN 
CALL ZFSTIN(8,ISTAT) 
IF(ISTAT .EQ. 0) GO TO 100 
IF(ISTAT .EQ. 512) GO TO 900 
IF(ISTAT .EQ. 519) GO TO 900 
GO TO 50 
READ(8,200)IN 
FORMAT(15) 
WRITE(4,9l0) 
FORMAT(ERROR FOUND) 

Appendix D contains an example of a FORTRAN communications 
program. 

4-4 CB03 



( 

( 

SECTION 5 

ASSEMBLY LANGUAGE COMMUNICATIONS USING THE FILE SYSTEM 

This section discusses the use of file system macro calls in 
writing communications programs. 

FILE SYSTEM CONSIDERATIONS 

Aside from the use of macro calls, the user should be aware 
of other considerations in using the file system within a commun­
ications environment. These considerations are detailed in 
Sect ion 2. 

FILE-PROCESSING MACRO CALLS IN ASSEMBLY LANGUAGE APPLICATIONS 

The following describe the use of the get file ($GTFIL), 
open file ($OPFIL), test file ($TIFIL and $TOFIL), and wait file 
($WIFIL and $WOFIL) mac'ro calls in assembly language communica­
tions processing with the file system. 

Get File ($GTFIL) Macro Call Guidelines 

The get file function reserves a file for processing and 
connects a file to a logical file number (LFN). The LFN is used 
in other file system calls ($OPFIL, $RDREC, $WRREC,etc.) to 
reference the file in question. Normally the get file function 
is involved via a GET command outside of program execution. 

The arguments for the get file ($GTFIL) macro call in an 
assembly language communications program must have the values 
shown in Table 5-1. 

5-1 CBD3 



Table 5-1. Arguments for Get File ($GTFIL) Macro Call 

Argument Argument Value 

Pathname pointer Must point to a pathname of a communica-
tions device (e.g., >SPD>TTYOl) 

Concurrency control According to how the application uses the 
dev ice (normally zero for exclusive use) 

Remaining arguments Zero 

Open File ($OPFIL) Macro Call Guidelines 

The open file function allocates buffer space (if required) 
and physically connects the device or terminal. 

The open file macro call $OPFIL, when used in communica­
tions, must include the location of the file information block 
(FIB) which in turn must contain a valid program view item. 

Table 5-2 indicates bit settings in the program view item 
for the $OPFIL macro call, such settings are dependent on the 
actions taken by the communications application program. 

Test File {$TIFIL, $TOFIL} Macro Call Guidelines 

Before the application issues a $RDREC or $RDBLK macro call, 
it can issue the test input file ($TIFIL) macro call to check 
whether input is available. Note that when the operator terminal 
is checked, the $TIFIL macro call always returns a not busy 
status. 

Before the application issues a $WRREC or $WRBLK macro call, 
it can issue the test output file {$TOFIL} macro call to check 
whether the preceding output operation was completed. 

Wait File {$WIFIL, $WOFIL} Macro Call Guidelines 

The use of the wait file ma~ro call will permit an applica­
tion to wait for the completion of ~n outstanding read or write 
order. The wait file macro call can be used against a set of 
multiple terminals or devices. Test and wait file macro calls 
differ in terms of when control is returned to the calling rou­
tine. A test file call will return immediately with a busy or 
not busy status. An application can block the execution of 
lower level tasks with repeated test file calls to a busy file. 
Such problems can be avoided by issuing a wait macro call in 
lieu of successive test macro calls. 

$WIFIL is used to wait for input from any device/terminal; 
$WOFIL to wait for completion of output to any device/terminal. 

5-2 CB03 



( 

( 

Table 5-2. Program View Bit Settings for $OPFIL Macro Call 

Bit Set 
Number Actions by Assembly Language Application Program Bi t (s) 

To 

0 Will use read record ( $RDREC) and write record 0 
($WRREC) macro calls 

Will use read block ($RDBLK) and write block I 
($WRBLK) macro calls 

1 Will read data from the device (see note 1) 1 
(read 
bi t) Will not read data from the device 0 

2 Will write data to the dev ice (see note 1 ) 1 
(write 
bit) Will not write data to the device 0 

3 0 
through 
12 

13 As appropriate (see Table 2-1) 0 or 

14 0 

15 Synchronous/asynchronous indicator (see note 2) 0 

Notes: l. Bit value must be consistent with device type being 
used. 

2. When application uses $RDBLK or $WRBLK macro calls, 
execution of the calls indicates asynchronous. 

Device Dependent Macro Call Procedures 

The following subsections describe the procedures for 
issuing device dependent file system macro calls. 

Device Modes and Device Types 

There are four basic processing modes for communications 
devices: 

Input only (TTY or VIP data entry applications); 
Output only (receive only printer application (ROP); 
Bidirectional - either the device is opened for input or 
output, but not both applications (BSC 3780); 
Interactive (TTY, VIP or BSC 3780 applications). 

1 

5-3 CB03 



Macro Call Procedures for Data Entry Terminals 

Table 5-3 shows the procedure for using file system macro 
calls in communications application involving data-entry 
term inals. 

Table 5-3. Macro Call Procedures for Data Entry Terminals 

Proced ure 
Step 

1 

2 

Action by Application Program 

Issue $GTFIL macro call (see 
Table 5-1) 

Issue &OPFIL macro call (see 
Table 5-2) with 1 set to 1, 
bit 2 set to D. 

System Actions 

Bit 2 program view 

Issues asynchronous 
connect, returns a 
normal status to the 
program. 

~-----+---~------- -------------------~~--------------------~ 
3 

4 

5 

Issue $WIFIL macro call to 
wait unil connect is complete 
and input is available. 
(With multiple devices, the 
$WIFIL macro call can be 
issued with a list of LFNs, 
effectively giving up con­
trol until input is available 
from one or more devices in 
the list.) 

Otherwise, if application is 
to do other processing (not 
giving up control), issue 
$TIFIL macro call. 

If not busy status is re­
turned, issue $RDREC or 
$RDBLK macro call. 

If an error status is re­
turned, exit from the 
proced ure. 

5-4 

Will return when a 
read has been satis­
fied. 

If connect is not 
complete return a 
busy status. If 
connect is complete, 
issue an asynchro­
nous read and return 
a busy status until 
read is complete. 

With read operation 
complete, move data 
from system buffer 
to application's 
buffer, issues 
another asynchronous 
read, and returns a 
normal status to the 
program. 

CBD3 



.4-
'~ 

( 

Table 5-3 (cont). Macro Call Procedures for Data Entry Terminals 

Proced ure 
Step Action by Application Program System Actions 

6 When read is successful, 
return to step 3 to request 
more data from the device. 

7 When application process- Issues a disconnect. 
ing completed, issue $CLFIL 
macro call. 

Macro Call Procedures for Output Only Terminals 

Table 5-4 shows the procedure for using macro calls in com­
munications applications involving output only terminals. 

Table 5-4. Macro Call Procedures for Output Only Terminals 

Proced ure 
Step Action by Application Program 

1 

2 

3 

Issue $GTFIL macro call (see 
Tabl e 5-1). 

Issue $OPFIL macro call (see 
Table 5-2) with bit 1 set to 
0, bit 2 set to 1. 

Issue $WOFIL macro call to 
wait until connect is com­
plete and output can be 
transmitted. (With multiple 
devices, the $WOFIL macro 
call can be issued with a list 
of LFNs, effectively giving up 
control until output can be 
sent to one or more of the 
devices in the list. 

Otherwise, if the application 
is to do other processing (not 
give up control), issue a 
$TOFIL macro call. 

5-5 

System Actions 

Issues a asynchronous 
connect, returns a nor­
mal status to the 
program. 

Will return when output 
can be transmitted 

If connect is not com­
plete return a busy 
status. If connect is 
complete return a not 
busy status if output 
can be transmitted. 

CB03 



Table 5-4 (cont). Macro Call Procedures For Output Only Terminals 

Proced ure 
Step Action by Application Program System Actions 

4 If not busy status is re- Moves data from appli-
turned, issue $WRREC or cation buffer to sys-
$WRBLK macro call. o tern buffer. Issues 

asynchrono us write and 
returns a normal sta-
tus to the applica-
tion. 

5 If error status is returned, 
exit from the procedure. 

6 When write is successful, Issues disconnect ac-
return to step 3 to trans- cording to device 
mIt more data to the devIce. type. I 

5-6 CB03 



( 

(~ 

Macro Calls For a Single Interactive Terminal 

Table 5-5 describes the procedures for using macro calls in 
communications applications involving only one interactive termi­
nal which has been configured for synchronous input/output opera­
tion. 

Figure 5-1 illustrates th~ procedure's flow~ 

Table 5-5. Macro Call Procedures for Single Interactive Terminal 

Proced ure 
Step Action by Application Program System Actions 

1 Issue $GTFIL macro call (see 
Table 5-1) 

2 Issue $OPFIL macro call (see 
Table 5-2) with program view 
bit 1 set to 1, program view 
bit 2 set to l. 

To read from the terminal followed by a write to the te rm inal: 

3 Issue $RDREC or $RDBLK macro Data is read directly 
call. (This effectively into the application 
gives up control until the buffer. 
read is satisfied.) 

If error status returned, exit 
from the proced ure. 

4 Process the data just read. 

5 Issue $WRREC or $WRBLK. (This Data is written 
effectively gives up control directly from the 
until the write is complete. ) application buffer 
If an error status is re-
turned, exit from the proce-
dure. 

6 If additional input is ex-
pected refer to step 3. 

7 When application processing Issues a disconnect. 
is complete, issue $CLFIL 
macro call. 

5-7 CB03 



YES 

$GTFIL 

$OPFIL (PROGRAM VIEW BITS 1 AND2 = 11) , 
A'$ROBLKI 

~RRO~~------------------Y-~-~------------~~~ EXIT ~ 

r O 

$WRREC ($WRBLKI 

Fig ure 5-1. 

YES 
EXIT 

Simplified Program Logic for Single 
Interactive Terminal 

5-8 CB03 



( 
Macro Call Procedures for Multiple Interactive Terminals 

Table 5-6 describes the procedures for using macro calls in 
communications applications involving multiple terminals. 

Figure 5-2 illustrates the procedure's flow. 

Table 5-~. Macro Call Procedures for Multiple Terminals 

Proced ure 
Step Action by Application Program System Actions 

1 Issue $GTFIL macro call to each 
terminal (see Table 5-1) • 

2 Issue $OPFIL macro call to each Issues asynchronous 
terminal (see Table 5-2 with connect, returns nor-
program view bit 1 set to 1, mal status to the 
bit 2 set to l. program. 

To read from a terminal followed by a write to a terminal: 

3 Issue $WIFIL macro call with a Will return when a 
list of LFNs. (This will ef- read is complete and 
fectively give up control data is available. 
until input is available from Returns the LFN of 
one or more terminals in the the first terminal in 
1 i st. ) the list for which 

data is available. 

4 Issue $RDREC or $RDBLK macro Moves data from sys-
call. tern buffer to appli-

cation's buffer, 
issues another asyn-
chronous read, and 
returns a normal sta-
tus to the program. 

5 If an error status is re-
turned, process the error. 

6 Process the data just read. 

7 Issue $WRREC or $WRBLK macro Waits until output can 
can. (This will give up con- be sent; moves data 
trol unitl output can be sent from the application's 
to term inal.) buffer to system bu 

fer and issues an 
asynchronous write. 

8 If additional input is ex .... 
pected from any terminal see 
step 3. 

5-9 CB03 



Table 5-6 (cont.) Macro Call Procedures for Multiple Terminals 

Proced ure 
Step 

9 

Action by Application Program System 

When application processing Issues 
is complete, issue $CLFIL 
call. 

$GTFIL&$OPFIL (FILE 11 

I 
$GTFIL & $OPFIL (FILE 2) 

! 
~r,TFIl Jtr $npJ:1I ~S:II -= ~~ 

l 
$WIFIL (ONFILES1,2,3) 

NOT BUSY - FILE n) 

$RDREC (FILE n) 

YES 

$CLFIL o 

FOR $OPFIL, PROGRAM VIEW 
BITS 1 AND 2 ARE SET TO 11. 

YES 

YES 

Actions 

disconnect. 

Figure 5-2. Simplified Program Logic for Multiple 
Interactive Terminals 

5-10 CB03 



( 

( 

Binary Synchronous Communication (BSC) 

Binary synchronous communication (BSC), operating in 2780 or 
3780 mode, permits a program to transmit data over communications 
lines from one Level 6 to another Level 6, or a Level 66 system, 
or to a non-Honeywell host system. 

BSC DATA TRANSMISSION CONVENTIONS 

BSC Data Codes 

Data can be in alphanumeric ASCII, alphanumeric EBCDIC, or 
binary format. In communication between Level 6 and a remote 
host, each system must use the same code set (either ASCII or 
EBCDIC). When EBCDIC is used, the application programs must know 
whether transmission is nontransparent or transparent (i.e., BSC 
control characters are interpreted as data) • 

BSC Data Transmission Modes 

There are two BSC transmission modes: basic and advanced. 

In basic transmission mode there is no control byte. The 
absence of a control byte limits the functionality of the proto­
col (e.g., an application cannot send or receive two message 
blocks or cannot initiate a reverse interrupt (RVI) sequence). 

In advanced transmission mode there is a control byte which 
is the first byte in the program's input or output buffer. The 
control byte is used to control the transmission of data and to 
convey information concerning the receipt of data. With the con­
trol byte the application· has almost complete control (subject to 
limitations imposed by the protocol) over the transmission and 
reception of data to and from a remote host. (The control byte 
formats are detailed in Section 10). 

BSC 2780 and BSC 3780 

BSC 2780 is a subset of BSC 3780. Technical differences 
between the two protocols can be summarized as a set of exten­
sions to the 2780 protocol which are as follows: 

o The ability to receive a conversational reply without a 
preliminary bid sequence. 

5-11 CB03 



o The ability to receive and transmit selected BSC control 
characters. 

From a user's point of view the differences between the two 
protocols can be summarized as follows:· 

BSC 2780 

o Specified at system building time by the BSC device 
directive. 

o Operates only in advanced mode. 

o The file system supports bidirectional usage of BSC 
2780 communications line. A CLOSE/OPEN sequence must 
be initiated prior to the reversal of the communica­
tion line. 

BSC 3780 

o Specified at system building time by the XBSC 
directive. 

o Operates only in advanced mode. 

o The file system supports interactive usage of the BSC 
3780 communications line. To terminate a transmission 
the application must initiate an EOT sequence by set­
ting the appropriate bit within the control byte. An 
ETX message transmission sequence can also be termi­
nated if the other application sends a conversational 
reply. The receipt of conversational reply is indi­
cated by a bit setting within the transmit control 
byte. The receipt of a conversational reply forces 
the application to issue a file system read order to 
receive the conversational response. The termination 
of a read sequence is indicated by a EOF return code 
(02lF) and by the EOT bit being set in the receive 
control byte. (Note that the terms EOF (end of file) 
and EOT (end of transmission) are synonymous). 

Macro Call Procedures for BSC 2780 in Basic Transmission Mode 

The following conditions apply in the use of the file system 
in binary synchronous communications in basic data transmission 
mode: 

o An application cannot send an RVI (reverse interupt) con­
trol character through the file system. 

o BSC devices in basic transmission mode can operate only 
in single-buffer mode (see Section 10). 

5-12 CB03 



( 
o An application can send only the ETS (end of transmission 

block) control character, not the ETX (end of text) 
character. 

o An application can send data in either transparent or 
nontransparent mode. 

o An application can send EOT (end of transmission) con­
trol characters only after it has issued a $CLFIL macro 
call. 

o SSC operat"ion assumes that the detab option is set off. 

Table 5-7 shows the procedure for using macro calls in 
applications that use SSC in basic data transmission mode. 

Figure 5-3 illustrates a simplified program logic for these 
proced ures. 

SGTFIL 

I 0- PROGRAM VIEW 
A $OPFIL (BITS 1 AND2 -01, WRITEI 

$GTFIL 

PROGRAM VIEW 
(BITS 1 AND 2' la, READ 

$WOFIL 

0-- $OPFIL , 
0-- $WIFIL~ 

BUSY 

YES 
r----ofD 

$WRREC ($WRBLKI 
NOT BUSY ~ 

,-__ ....J 

$ROREC (SROBLKI 

Figure 5-3. Simplified Program Logic for SSC 2780 in 
Basic Transmission Mode 

5-13 CS03 



Table 5-7. Macro Call Procedures for BSC 2780 in 
Basic Transmission Mode 

Proced ure 
Step Action by Application Program 

1 Before a file is first opened 
issue $GTFIL macro call (see 
Table 5-1). 

System Actions 

To read data from a BSC line: 

2 

3 

4 

Issue $OPFIL macro call (see 
Table 5-2, with program view 
bit I set to 1, program view 
bit 2 set to O. 

Issue $WIFIL macro call to 
wait until connection is com­
plete and input available. 
If application is to do other 
procesisng (not give up con­
trol) issue $TIFIL macro 
call. 

Issue $RDREC or $RDBLK macro 
call. 
If error status other than 
EOF (end of file) is re­
turned, exit from the pro­
cedure. (An EOF status in­
dicates that EOT (end of 
transmission) control 
character was received, 
indicating sender completed 
its transmission. 

5 Test for EOF return status. 

6 

If status is normal, do 
other processing and return 
to step 3 if more data 
expected. 

If application is to send 
data, issue $CLFIL macro call 
and continue with step 7. 
If application is not to send 
or receive data, issue $CLFIL 
macro call and continue with 
other processing. 

5-14 

Issue asynchronous 
connect; returns a 
status to the program. 

If connect is not 
complete, $TIFIL re­
turns a busy status 
or, issues an asyn­
chronous read and 
returns a busy status 
until read is 
complete. 

Moves data from system 
buffer to the applica­
tion's buffer,'and 
again issues an asyn­
chronous read. If 
there are no errors, 
returns a normal 
status. 

CB03 

, 
\ 

, j ,_ .F· 

r:f "", 

~,~/ 



( 
Table 5-7 (cont). Macro Call Procedures for BSC 2780 in 

Basic Transmission Mode 

Proced ure 
Step Action by Application Program System Actions 

To write data to a BSC line: 

7 Issue $OPFIL macro call (see 
Table 5-2) with program view 
bit.l set to 0, program view 
bit 2 set to 1. 

8 Issue $TOFIL macro call to 
test that connection is com­
plete. 

9 

10 

11 

If file was already opened, and 
closed without a phone hangup, 
the line is still connected; 
$TOFIL is not required. 

Issue$WRREC ·or $WRBLK macro 
call. 
If an error status is re­
turned, ex i t from the proce­
dure. 

Issue $WOFIL macro call to 
wait for completion of pre­
viously scheduled output. 
Issue $TOFIL to continue 
other processing while write 
is in progress. 

Can now issue another $WRREC 
or $WRBLK macro call, or issue 
a $CLFIL macro call if the 
preceding write macro call was 
the last one, 6r if $CLFIL 
macro call was issued, and 
more data is to be read from 
the line, return to step 2. 

5-15 

If no writes are pend­
ing, moves data from 
application's buffer 
to system buffer, 
issues asynchronous 
write to the BSC line, 
and returns a normal 
status. 

If the write is not 
complete $TOFIL re­
turns a busy status. 

When $CLFIL macro 
call is issued, the 
system: sends an EOT 
(end of transmission) 
character if the BSC 
is in send or receive 
mode for that line. 
Sends nothing if the 
BSC line is idle. 

CB03 



Macro Call Procedures for BSC 2780 in Advanced Data Transmission 
Mode 

In the BSC advanced data transmission mode, the first byte 
of the application program's input or output buffer ~s a control 
byte that controls or supplies information about read/write op­
erations. This byte can indicate, for example, whether data is 
to be transferred in transparent or nontransparent mode, or 
whether an ETB (end of transmission block) or ETX (end of text) 
control character is to be" sent or received. (Section 10 details 
the usage of BSC control characters). 

The following condition applies in using the file system in 
2780 binary synchronous communications in advanced data transmis­
sion mode: 

o It is not necessary to send EOT control characters 
through the control byte since the user must close the 
file in output mode be[Ul~ dLL~mpL~ng to C€dd. Closing 
the file forces the BSC, if not in idle mode, to send an 
EOT control character. 

Table 5-8 shows the procedure for using macro calls in 
applications that use BSC lines in 2780 advanced data transmis­
sion mode. 

Figure 5-4 illustrates the program logic for these proce­
d ures. 

5-16 CB03 



( 

$GTFIL 
$GTFIL 

0--- $OPFIL PROGRAM VIEW 
(BITS 1 AND 2 = 10, READ) 

8~--~·-
l 

$OPFIL 

I 
PROGRAM VIEW 
(BITS 1 AND 2 = 01, WRITE) 

$WIFIL $WRREC ($WRBLK) , 
$WOFIL 

YES 
$RDREC $RDBLK) >---_~ $CLFIL 

YES o 
YES 

$CLFIL 
NO 

NO 

$CLFIL 

$CLFIL 

Figure 5-4. Simplified Program Logic for 2780 BSC in 
Advanced Transmission Mode 

5-17 CBO? 



Table 5-8. Macro Call Procedures for BSC 2780 in 
Advanced Transmission Mode 

Procedure 
Step Action by Application Program 

I Before the file is first 
opened issue $GTFIL macro 
call. 

System Actions 

To read data from a BSC 2780 line: 

2 

3 

4 

Issue $OPFIL macro call (see 
Table 5-2) with program view 
bit I set to 1, program view 
bit 2 set to O. 

Issue $WIFIL macro call to 
wait unitl connect is complete 
and input is available. If 
application is to do other 
processing (not give up 
control), issue $TIFIL macro 
call. 

Issue $RDREC or $RDBLK macro 
call. If error status other 
than EOF (end-of-file) is 
returned, exit' from the pro­
cedure. (An EOF status indi­
cates that an EOT (end of 
transmission) control 
character was received, de­
noting that the sender has 
completed its transmission.) 

5 Test for EOF return status. 
If return status is normal, an 
application can check for ETB 
or ETX control characters, or 
for transparent or non­
transparent processing, and 
return to step 3. 

6 When EOF or EOT status is re­
turned, and more data is ex­
pected, return to step 3. 

5-18 

Issues an asynch­
ronous connect; re­
turns a normal status 
to the program. 

If connect is not 
complete, returns 
a busy status, $TIFIL 
issues an asynchronous 
read, and returns a 
busy status unitl the 
the read is complete. 

Moves the data from 
the system buffer to 
the application's 
buffer, and again 
issues an asynchronous 
read. If there are no 
error, returns a nor­
mal status. 

CB03 

/ 

/r ", 

~J 



( 

Table 5-8 (cont). Macro Call Procedures for BSC 2780 in 
Advanced Transmission Mode 

Proced ure 
Step Action by application Program 

7 If application is to send 
data, issue a $CLFIL macro 
call and continue with step 
8. If appl ication is not to 
send or receive data, issue 
$CLFIL macro call and con­
tinue with other processing. 

System Actions 

To write data to a BSC line: 

8 Issue $OPFIL macro call (see 
Table 5-2) with program view 
bit 1 set to 0, program view 
bit 2 to set to 1. 

9 

10 

Issue $WRREC or $WRBLK macro 
call. Application can set 
control byte to control trans­
mission (send ETB or ETX con­
control characters, or send 
in normal or transparent 
EB C D I C mod e) • 

Issue $WOFIL macro call to 
wait for completion of pre­
viously scheduled output. 
Issue $TOFIL to continue 
other processing while write 
is in progress. 

11 If an error status is re­
turned, close the file and 
exit from the procedure. 

12 Can now test for RVI-received 
bit in the control byte of the 
record that was just sent. If 
the bit is set on, can either: 

a. Close the file and return 
to step 2, or 

b. Ignore the RVI condition 
and continue to write. 

5-19 

If no writes are 
pending, moves the 
data from the applica­
tion's buffer, issues 
an asynchronous write 
to the BSC line, and 
returns a normal 
status. 

If the write is not 
complete $TOFIL re­
turns a busy status. 

CB03 



Table 5-8 (cont). Macro Call Procedures for 2780 BSC in 
Advanced Transmission Mode 

Proced ure 
Step Action by Application Program 

13 After the write is complete, 
the application can: 

I 

If there is more data to be 
written, issue another 
$WRREC or WRBLK by return­
ing to step 9, or 

If more data is expected, 
issue a $CLFIL macro call 
and return to step 2, or 

Simply issue a $CLFIL macro I 
call and exit the procedure. 

System Actions 

Macro Call Procedures for BSC 3780 in Advanced Data Transmission 
Mode 

The first byte of the application program's input or output 
buffer is a control byte. The control byte controls or supplies 
information about read/write operations. 

The following conventions apply when using the file system 
with 3780 binary synchronous communication in advanced data 
transmission mode: 

o The receipt of an optional conversational reply is indi­
cated by a bit setting in the transmit control byte. 
(This can occur if the application has transmitted the 
last (ETX) block of a message). The application must 
issue a read macro' call in order to receive the conver­
sational response. 

o The termination of a transmit sequence is signaled (via 
control byte) by the transmission of an EOT control 
cha racte r followi ng the last block if a message. Once 
this has been done, a read macro call will be needed to 
receive transmissions from the remote system. (It is not 
necessary to close and reopen the file to turn the line 
aro und.) 

o The termination of a receive sequence is indicated by the 
receipt of an EOF return status or an EOT status in the 
receive control byte. A transmission sequence can be re­
initiated by issuing anotherwr i te macro call. (It is 
not necessary to close and reopen the file to turn the 
line around). 

5-20 CB03 



( 

~ 

o A line turnaround (receipt of an EOT) is indicated by an 
021F EOF return code (and the setting of the EOT bit in 
the receive control by~e). At this point the application 
can use the line for data transmission by issuing another 
write request. It is also possible to receive an EOF/EOT 
status, which indicates the abnormal termination of 
transmit/receive sequence. (This can occur for a variety 
of reasons, most notably ha~dware problems.) Such an 
occurrence is also indicated by an 021F return code. The 
application can differentiate between these end-of-file 
conditions by considering when the EOF status was re­
received. For example, two applications agree that the 
last record of a message transmission is demarked by an 
ETX control character. If the transmission is terminated 
by the receipt of an EOT and the last record of the 
transmission was not marked with an ETX control charac­
ter, the application can assume that the transmitter 
aborted the transmission sequence. If such a condition 
is detected, the application must close the line by issu­
ing a close file macro call (all other file system 
requests will be rejected. 

Table 5-9 shows the procedure for using macro calls that use 
BSC lines in 3780 advanced data transmission mode. 

\ Figure 5-5 illustrates the program logic for these proce-
dures. 

( 

5-21 CBD3 



$GTFIL 

I 
$OPFIL (BITS 1 AND 2 = 11, READ AND WRITF\ 

tw~'L -.~--------~~ 
1 NQTBUSV 

$RDREC ($RDBLK) 

A 
YES 

NO 

YES 

$CLFIL 

EXIT 

Figure 5-5. Simplified Program Logic for BSC 3780 in 
Advanced Transmission Mode 

5-22 CB03 



( 

YES 

$WRREC ($WRBLK) 
-WITH EXT 

YES 

NO 

$WRREC ($WRBLK) 
-WITH ETB 

NOT BUSY 
$WOFIL 

NOT BUSY 

YES >-___ .. $WRREC ($WRBLK) 
-LAST BLOCK WITH EOT 

$CLFIL 

Figure 5-5 (cont). 

YES 

Simplified Program Logic for 3780 BSC in 
Advanced Transmission Mode 

5-23 CBD] 



Table 5-9. Macro ,Call Procedures for BSC 3780 in 
Advanced Transmission Mode 

Procedure 
Step Action by Application Program 

I Before the file is first 
opened, issue $GTFIL macro 
call (see Table 5-1). 

System Action 

To read data from a BSC line: 

2 

3 

4 

5 

issue $OPFIL macro call (see 
Table 5-2) with program view 
bit I set to 1, program view 
bi t 2 set to 1. 

Issue $WIFIL macro call to 
., - ---­.l.t.JI vV1U 

plete and input is available. 
If application is to do other 
processing (not give up 
control), issue $TIFIL macro 
call. 

Issue $RDREC or $RDBLK macro 
call. If error status other 
than EOF (end-of-file) is 
returned, exit from the pro­
ced ure. (An EOF sta tus ind i­
cates that an EOT (end of 
transmission) control charac­
ter was received, denoting 
that the sender has completed 
its transmission. 

Test for EOF return status. 
return status is normal, the 
application can check for ETB 
or ETX control characters, or 
for transparent or non­
transparent processing, and 
return to step 3. 

If 

6 If the application has data to 
send continue with step 8. 

7 If the applicastion has no 
data to send, issue a $CLFIL 
macro call and continue with 
other processing. 

5-24 

Issues an asynchronous 
connect; returns a 
normal status to the 
program. 

If connect is not com-
_, _ ..... _ cmT~Tr __ ....... __ _ 
l:"" .. '-'- ..... , .,,~.&..L.L ..... .L\';';'-U~"~ 

a busy status. If 
connect is complete, 
issues an asynchronous 
read, and returns a 
busy status until the 
read is complete. 

Moves the data from 
the system buffer to 
application's buffer, 
and again issues an 
asynchronous read. If 
there are no errors, 
returns a normal 
status. 

CB03 



( 

Table 5-8 (cont). Macro Call Procedures for BSC 3780 in 
Advanced Transmission Mode 

Proced ure 
Step Action by Application Program System Action 

To write data to a BSC line: 

8 If the application wishes to 
send the last (ETX) block of 
message, continue with step 
16. 

9 

10 

Issue $WRREC or $WRBLK macro 
call. Application can set 
control byte to control 
transmission of an ETB con­
trol character. If an error 
status is returned close the 
file and exit from the pro­
ced ure. 

If application is to do other 
processing (not give up con­
trol) issue $TOFIL. Else, 
issue $WOFIL macro call to 
give up control of the central 
processor until the write is 
completed. 

11 Can now test the transmit con­
trol byte for the receipt of a 
conversational reply. If the 
bit is set on, initiate 
another read sequence by re­
turning to step 3. 

12 Can now test for RVI-received 
bit in the control byte of the 
record that was just sent. If 
the bit is set on, can 
either: 

a. Close the file and ini­
tiate another read 
sequence by returning to 
step 3, or 

b. Ignore the RVI condition 
and continue to write. 

5-25 

If no writes, moves 
the data from the 
application's buffer 
to the system buffer, 
issues an asynchronous 
write to the BSC line, 
and returns a normal 
status. 

If the write is not 
complete, returns a 
busy status. Returns 
a not busy status when 
the write is complete. 

CB03 



Table 5-9 (cont). Macro Call Procedures for SSC 3780 in 
Advanced Transmission Mode 

Proced ure 
Step Action by Application Program System Action 

13 If there is any more data to 
t ransm it, continue with 
step 8. 

14 If data is expected from the 
remote host, initiate another 
read sequence by returning 
to step 3. 

15 Transmission and reception se-
quences are complete. Issue a 
$CLFIL macro call and exit 
~---

..... 1.. _ _____ ri,"'Y",... 
.L.LUIlI Lilt:;:' ,tJLV\..oCUU .... "" • 

16 Issue $WRREC or $WRSLK macro Moves the data from 
call. Application can set the application's 
control byte to control trans- buffer to the system 
mission of an ETX control buffer, issues an 
character. If an error status asynchronous write to 
is returned close the file .and the SSC line, and re-
exit from the procedure. turns a normal status. 

17 If application is to do other If the write is not 
processing (not give up con- complete, returns a 
trol) issue $TOFIL. Else busy status. Returns 
issue $WOFIL macro call to a not busy status when 
give up control of the the write is 
central processor until the completed. 
write is completed. 

18 Continue·with common proces-
sing of transmit sequence 
by continuing with step 12. 

5-26 CS03 



( 

( 

SECTION 6 

ASSEMBLY LANGUAGE COMMUNICATIONS USING PHYSICAL INPUT/OUTPUT 

The physical input/output (I/O) interface permits more 
direct user control over communications processing than does the 
file system. 

Used only with assembly language programs, the physical I/O 
interface enables communications applications to: 

o Call appropriate line protocol handlers (LPH) more 
directly through the communications subsystem rather than 
through the file system. 

o Control the data structure, specifically the input/output 
request block (IORB), that directly controls device oper­
ations and/or characteristics. (See "Data Structures" 
below for description of the IORB.) 

COMMUNICATIONS SUBSYSTEM CONVENTIONS 

The following conventions apply to use of the communications 
subsystem: 

o The I/O request block (IORB) is the standard control 
structure used by an LPH of the communications subsystem. 

o Use the request I/O ($RQIO) macro call in the application 
program to request an I/O transfer. 

o The B4 register contains the address of the IORB supplied 
by the application program; the IORB contains the logical 
resource number (LRN) of the device to be used. 

o The I/O-specific words of the IORB (I CT2 through I DVS) 
are not modified by the line protocol-handler. 

6-1 CB03 



o The communications subsystem maps the hardware return 
status into the software status word I ST of the applica­
tion's IORB before the line protocol handler gives up 
control. 

Table 6-1 lists the return error status codes that indicate 
logical result of an I/O request. 

USING PHYSICAL I/O 

Two fields within the IORB spe~ify the operation to be 
performed. 

1. The function code (Table 6-4), indicated by bits C 
through F of I CT2 in the IORB (see Table 6-2), spe­
cifies the particular operation. 

2. The I DVS item in the IORB,used with the function code, 
special i zes the input/output order. 

For example, in TTY processing, the user can specify a write 
request (function code 1), with or without a carriage return at 
end-of-message, as indicated by the C-bit of the I_DVS (see 
Table 7-3). 

To request execution of an I/O operation, the application, 
with the $RQIO macro call, must transfer control to the physical 
I/O interface. At the time of the request the $B4 register must 
contain the address of the IORB being requested. The $RQIO macro 
routine executes the I/O operations, then returns to the request­
ing appl i ca tion. 

The IORB may define either synchronous or asynchronous con­
trol •. When the IORB specifies synchronous I/O (W (wait) bit in 
I CTI reset), return to the calling application is delayed by the 
Monitor until the I/O operation is complete. On return, the 
return status field of the IORB, and the $Rl register, will con­
tain one of the status codes shown in Table 6-1. 

When the IORB specifies asynchronous I/O (W (wait) bit set 
in I CTI) , control returns immediately without waiting for I/O 
completion, and the instruction at the return point is executed 
as soon as the system queues the IORB. To obtain the return 
status (in $Rl register), when using asynchronous I/O, the appli­
cation should issue a $WAIT macro call. 

At completion of the I/O operation, the application should 
first check the $Rl register to see that the I/O request was suc­
cessful. Any error will be defined there. Hardware errors will 
be indicated in the IORB software status word I ST (see 
Table 6-3). 

6-2 CB03 



Residual range, indicated in the IORS, shows how much of the 
requested data was transferred. With a write request, the resid­
ual range value is the number- of bytes remaining to be transmit­
ted. With a read request, the residual range value is the number 
of bytes remaining to be received. The residual range value in 
I RSR of the IORB is meaningful only when the A-bit in the I ST 
item (Table 6-3) of the IORS has been set on. 

Table 6-1. Return Status Error Codes for 
Logical Result of I/O Request 

Code Number 
(Hexadecimal) Meaning 

o 
1 
2 
3 
4 
5 
6 
7 

8 
9 
A 
B 
C 
F 

No error, operation complete 
Request block already busy (T=l) 
Invalid LRN 
Illegal wait 
Invalid arguments 
Device not ready 
Dev ice time-out 
Hardware error, check IORS status word 

(see Ta ble 6-3) 
Device disabled a 

File mark encountered 
Controller unavailable 
Dev ice unavai lable b 

Inconsistent request c 

EOT received (for BSC 3780 only) 

a This status is returned on an I/O request when the 
application has disabled the logical resource, and 
for a communications resource, when the result of 
either a connect or disconnect for this logical 
resource is pending. 

b When these codes are found in I CTI (IORB), or in $RI 
on a resume after wait, look at-I ST (IORB) to iden­
tify the specific error. The status B is returned 
with every read or write IORB that has been aborted 
by a disconnect request with queue abort. 

c 
This status indicates illogical device requests: 
read or write before connect, duplicate connect or 
disconnect requests; write after disconnect. 

DATA STRUCTURES 

Two data structures control the interactions among an appli­
cation program, its line protocol handlers, and the devices it 
uses: (1) the input/output request block (IORB), and (2) the 
resource control table (RCT). The IORB is the interface between 

6-3 CS03 



the application and line protocol handler; the RCT is the inter­
face between the line protocol handler and its devices. 

This section describes the input/output request block (IORB) 
in general. Later sections describe device-specific fields in 
the IORB for the TTY, VIP, PVE, and BSC line protocol handlers. 

Resource Control Table (RCT) 

The device's resource control table (RCT) contains a channel 
number and level entry, whose values were initially defined at 
system building. The logical resource number (LRN) supplied by 
the application in the IORB serves as an index into a system 
logical resource table (LRT), which in turn contains a pointer to 
the RCT entry defining the device, as illustrated below. 

USER IORB LR, RCT ENTRY 
, 

/ 
CHANNEL 

LRN I POINTER 

Thus, with the logical resource number, a line protocol 
handler can indirectly access the RCT entry that defines the 
specific device that the application is to use. 

Appendix C describes the resource control table (RCT). 

Input/Output Request Block (IORB) 

The IORB is the standard means for requesting a physical I/O 
service. Generated by the input/output request block macro call 
($IORB), the IORB contains all the "information that an applica­
tion requesting an I/O service must specify to define the opera­
tion to be performed. In addition, the IORB includes the 
following: 

o Logical resource number (LRN) that identifies the I/O 
device being addressed. 

o Location and size of the buffer to be used for physical 
I/O transfers. 

o Information returned by the line protocol handler to the 
application, concerning results of the I/O request. 

6-4 CB03 



( 

Figure 6-1 shows the format of the IORB. Table 6-2 defines 
the separate entries in the IORB. Later sections in the manual 
describe the device-specific word (I DVS) and software status 
word I_ST for each line protocol handler. 

NOTES: 1. The IORB as described here is as it appears for 
short address format (SAF) central processors, 
namely with one-word items. For long address 
format (LAF) processors, the same structure 
would have two-word entries for all pointers. 

2. The labels (I CT1, I ADR, etc.) used in the IORB 
are only for eas~er presentation. The labels 
cannot be used for programming purposes. 

3. The asterisk (*) in the formulas in the "Item" 
column of Table 6-2 is a multiplication sign. 

4. The shaded fields in Figure 6-1 are for system 
use only. The field I FCS is used only by the 
VIP and PVE line protocol handlers. Fields not 
shaded must be initialized by the application 
requesting the I/O operation. 

When the IORB is used with a $RQIO macro call, the device 
named in the IORB should have been initially reserved. The 
logical resource number (LRN) required by the IORB can be 
obtained by issuing a get file information ($GIFIL) macro call. 
See the description of the request I/O ($RQIO) macro call in the 
System Service Macro Calls manual for details. 

{ 
-$AF I_RRB } 
-1 I SEM 

o 

$AF I_CT1 

H$AF I_CT2 

2+$AF I_ADR 

2+2*$AF I_RNG 

3+2*$AF I_DVS 

o F 

REQUEST BLOCK POINTER/SEMAPHORE NAME 

BUFFER ADDRESS 

RANGE 

DEVICE SPECIFIC WORD 

Figure 6-1. Communications Input/Output Request Block (IORB) 

6-5 CB03 



Item 

-$AF 
-1 

o 

$AF 

Table 6-2. Contents of Communications Input/Output 
Request Block (IORB) 

Label (Bits) 

I_RRB/ o through 15 
I SEM (SAF) - o through 31 

(LAF) 

o through 15 
o through 31 

I CTI o through 7 

8 (T) 

9 (W) 

A (U) 

B (S) 

C 

D (R) 

E (D) 

Contents 

Depending on the condition of the 
S- or R-bits of I CTl, this word 
contains a request block pointer 
(R-bit on), or a semaphore name 
(S-bit on). Set by user; used by 
system at termination of request. 

Reserved for system use; one-word 
pointer (SAF); two-word pointer 
(LAF) • 

Return status. (See Tabl e 6-1). 

This bit is set ';lhi Ie 
quest using this block is execut­
ing; it is reset when the request 
terminate~. The system controLs 
this bit; user should not change 
it. 

Wait bit - set if the requesting 
task is not to be suspended pend­
ing the completion of the request 
that uses this block. 

User bit - user mayor may not use 
this bit; system does not change 
it. 

Release semaphore indicator. 
Values: O=No release, l=Release, 
on time-out, of item named in 
named in I. RRB. 

Must be zero. 

Return request block indicator. 
Values: O=No dispatch, l=Dispatch 
of request block named in I RRB, 
after timeout of this request. 
System executes $RQTSK, using 
I_RRB upon task termination. 

Delete I/O request block. Values: 
O=No delete·, l=Return memory to 
the pool where IORB is the first 
entry of its memory block. 

6-6 CB03 



( 

( 

Table 6-2 (cont). Contents of Communications Input/Output 
Request Block (IORB) 

Item 

$AF 
(con t) 

l+$AF 

2+$AF 

2+2*$AF 

3+2*$AF 

4+2*$AF 

S+2*$AF 

6+2*$AF 

Label 

I CTI 
(cont) 

I CT2 

I ADR 

I RNG 

I DVS 

I RSR 

I ST 

I FCS 

(Bits) 

F 

o through 7 

8 

9 (B) 

A (P) 

B 

C through F 

Description 

I/O bit - must be set. 

Logical resource number (LRN); 
identifies device to be used. 

Reserved for later use. 

Byte index; O=buffer begins in 
leftmost byte of word, l=buffer 
begins in rightmost byte. 

Reserved for system use. 

Reserved for later use. 

Function code. See Table 6-4. 

o through IS Buffer address; SAF mode, I-word 
po inter. 

o through 31 Buffer address, LAF mode; 2-word 
pointer. 

o through IS 

o through IS 

o through IS 

o through IS 

o through 7 
8 through IS 

Range - number of bytes to be 
transferred. 

Device-specific information. 

Residual range. Indicates the 
number of bytes not transferred. 
Filled in by the system on comple­
tion of the order. 

Status word. Reflects the mapping 
of the hardware status into soft­
ware status format. See Table 6-3. 

Function code 1 (VIP and PVE only). 
Function code 2 (VIP and PVE only). 

6-7 CB03 



IORB Software Status Word (I_ST)' 

The line protocol handler maps into the IORB software status 
word I ST (see Table 6-3) the return status of the hardware, 
obtained from the device status field R STTS of the resource con­
trol table (RCT). (Appendix C describes the resource control 
table. ) 

The bit settings in the software status word I ST indicate 
to the application the status of the hardware, as shown in 
Table 6-3. 

The meanings of bit settings in the software status word 
I ST for specific devices are shown in tables in later sections 
that describe the line protocol handlers for those devices. 

Table 6-3. Software (I_ST) Status Codes 

Hit in 
, IORB's 

I ST 

o 

Meaning When Bit Set On 

1 VIP, PVE read error 

2 Data service rate error 

3 Lost line bid; RVI received (BSC only) 

4 Communication control block service error 

5 No stop bit on character input (TTY only); con­
versational reply rec~ived (BSC 3780 only) 

6 Long record 

7 For BSC: O=ITB/ETB received; l=ETX received 
For VIP and PVE: poll failure 

8 For VIP and PVE: NAK limit reached 

9 For VIP and PVE: Checksum or parity error limit 
reached 

A Nonzero residual range 

B Phone disconnect 

C BSC only: End-of-transmission (EaT) received 

6-8 

-, ---,_.,---- ---

CB03 

,/ 



( 

( 

Table 6-3 (cont). Software (I_ST) Status Codes 

Bit in 
IORB's 

I ST Meaning When Bit Set On 
-

D For VIP: page overflow 
For BSC: transparent message received 

E For VIP: busy or not available 
For BSC: NAK limit reached 

F Nonexistent resource; bus parity error; fatal 
uncorrectable memory error 

COMMUNICATIONS FUNCTION CODES 

All line protocol handlers perform similar functions for the 
devices and applications they service. These functions are per­
formed by the line protocol handler's request and interrupt pro­
cessing codes. 

An application can request specific functions by providing a 
function code in the IORB supplied when it requests I/O service. 
The application uses the last four bits of its IORB's I CT2 entry 
(see Figure 6-1) to enter the function code for the functions 
summarized in Table 6-4. 

The connect and disconnect functions may be used with non­
communications devices (processed as no-ops) for program compat­
ibility; i.e., no matter how connected to the Level 6 system, all 
TTY devices and noninteractive (e.g., card reader and printer) 
devices can be controlled by the same application program. This 
is useful for program development and test purposes. 

Table ~-4. Communications LPH Function Codes 

Function 
Code in 

IORB Communications Function 

0 Wait online 
1 Write 
2 Read 
A Connect 
B Disconnect 

Wait Online Function (Code 0) 

The wait online function, is used to synchronize task opera­
tion with device availability, and allows a caller to wait until 
a device becomes ready for use, or until a specific time interval 
has passed before using it. 

6-9 CB03 



When an LPH receives a service request from a task using the 
wait online function code in the IORB that is supplied (0000 in 
the last four bits of I CT2), and the device is not ready, the 
dr i ver sets a timer fo r -5 minutes and suspends.. When the LPH is 
reactivated, either by a ready interrupt from the device or by a 
time-out, it deactivates the timer, checks the device-ready bit 
in the hardware status word and places a 0 or 6 value in the 
return status field of the IORB depending on the condition of 
that bit. See the return status codes for the $RQIO (request 
I/O) macro call; the rightmost hexadecimal character is placed in 
the return status field. See Table 6-1. 

The wait online function should not be issued to a device 
that is currently ready for use unless it is expected to become 
temporarily unavailable. 

NOTE: For compatibility with higher level languages, using 
the wai t for opera t ion complete mac ro C!i'lll ($WAIT) 
results in an immediate return of o. 

Write Function (Code 1) 

This function allows data to be written to a specific 
device. When a line protocol handler (LPH) receives a write 
request, it transfers the indicated data from the application's 
buffer to the device, according to the specifications supplied in 
the device-specific word of the application's IORB. 

Reid Function (Code 2) 

This function allows data to be read from a specific device. 
When the LPH receives a read request, it transfers data from the 
device to the application's buffer, according to the information 
supplied in the device-specific word of the application's IORB. 

Connect Function (Code A) 

The connect function provides a logical and physical connec­
tion between an application program and a communications device. 

As a logical function, the connect function is a request to 
use the specified communications device. If that resource is 
being used, an error return results. In that case the applica­
tion must determine whether that resource is sharable (as estab­
lished by the installation's procedures), and proceed 
accord ingl y. 

As a physical function, the connect function establishes a 
physical path to the communications device associated with the 
specified logical resource number (LRN). This implies, when the 
device is to be connected over a switched line, that the system 
software should answer the telephone on the line ~ssociated with 
that device. The request times out after five minutes. 

6-10 CB03 



( 
If the connect function is not completed,· the system will 

not process any requests for communication devices, and will 
return an error status. 

The connect function must be requested before any other 
function, since communications devices are configured into the 
system in a disconnected state. 

Disconnect Function (Code B) 

The disconnect function provides both the logical (normal 
and abnormal) and physical disconnection between the application 
and a communications device. 

As a logical function, the disconnect function indicates 
that the use of the designated device is to be terminated. 

For a logical disconnect, issue a disconnect request (func­
tion code B) with a queue abort (E-bit in I DVS set on), and no 
phone hangup (F-bit in I DVS set on). (See-Table 7-3.) At this 
point, any pending read ~r write requests are returned to the 
application program with a B status (device unavailable). Con­
tinued use of the device requires that the application program 
issue a connect • 

. .f­
l;; 
~ As a physical function, the disconnect function must specify 

the physical disconnection of a line. 

Requesting Communications Functions 

The following is the sequence for an application to request 
a transaction with a communications resource: 

1. Set up an IORB with the connect function (code A) • 

2. Call the physical I/O interface (request I/O macro call 
$RQIO) • 

3. When the connection is complete, supply the appropriate 
IORBs for those operations that the application will 
perform. 

4. Perform the functions, e.g., read, write, and/or wait 
online required by the application's logic. 

5. When application processing is complete, supply an IORB 
with the disconnect function (code B) and issue the 
request I/O macro call ($RQIO) to execute the function. 

6-11 CB03 



PHYSICAL I/O MACRO CALLS FOR COMMUNICATIONS 

The input/output request block ($IORB) and request I/O 
($RQIO) macro calls· provide direct communication from a communi­
cations application to the appropriate line protocol handler 
(LPH). The System Service Macro Calls manual describes these and 
related macro calls in detail. 

6-12 CB03 

--- -------



( 

SECTION 7 

TTY LINE PROTOCOL HANDLER 

The TTY line protocol handler supports asynchronous terminal 
devices, generically classified as teleprinter-compatible (TTY), 
that include certain ASR, KSR, and visual information projection 
(VIP) term inal s • 

A basic TTY terminal consists of either a printer and key­
board or a VIP 7100/7200/7800 display and keyboard. (Paper tape 
is not supported.) Each type of TTY terminal has an asynchronous 
communications interface that permits operation at up to 9600 
baud. 

GENERAL TTY LINE PROTOCOL HANDLER OPERATION 

TTY Message Formats 

Figure 7-1 illustrates TTY message formats. On input, the 
application receives only the text portion of the message. On 
output messages, the application can control print format with a 
control byte that is specified as the first character of the 
output buffer (in the IORS device-specific word I DVS, described 
later). At connect, read, or write, the applicatlon can, with 
the I DVS word, dynamically specify which message format is to be 
used. 

7-1 CS03 



DYNAMIC 
CONTROL, 
BYTE 

I DYNAMIC 
~ CONTROL 

_ BYTE 

TEXT 

TEXT 

CR, ETX, EOT; OR BUFFER FULL 

TEXT EOM 

EOM. 

TEXT 

Figure 7-1. TTY Message Formats 

TTY Character Mode and Buffered Mode Transmission 

TTY CHARACTER MODE 

INPUT 

OUTPUT 

OUTPUT 

OUTPUT 

Transmission for all TTY terminals is usually in character 
mode (one character at a time), a characteristic of the hardware 
that provides that: 

o The TTY line protocol handler does all editing of data 
before any transmission. 

o Multiple input lines are not allowed at the same time. 

7-2 CB03 

/' 



( 

( 

TTY BUFFERED MODE (VIP 7200 AND 7800) 

For VIPs 7200 and 7800 only~ the buffered mode, available as 
a hardware option, permits: 

o The TTY line protocol handler to process multiple lines 
of input at the same time. 

o The operator to do local editing of data before it is 
transm i tted. 

o The application to instruct the TTY line protocol handler 
not to edit input data. 

Buffered mode permits the TTY line protocol handler to pro­
cess a write order while a read order is pending. A "quasi full 
duplex" operation gives the line protocol handler the ability to 
have the application send to the terminal, sequ~nces that cause 
the terminal to send information back to the application's 
buffer. 

Buffered quasi full duplex operates as follows: 

1. When the channel control program (CCP) of the multiline 
corom unica tions processor (MLCP) is cur rentl y process ing 
a write order to the terminal, a subsequent read or 
write operation is not given to the CCP until the cur­
rent write order completes. 

2. When the CCP is processing a read order and the next 
following order is a write order, that write order is 
processed while the read order is active. 

3. When the write order (2 above) completes and the read 
order has not yet completed, a suhsequent read or write 
order will not be processed until the read is completed. 
When the read order is completed before the write order, 
actions in I above take effect. 

4. When the read order is completed, the line protocol 
handler returns to its original state, i.e., no orders 
pending. The line protocol handler can initiate read or 
write orders to the CCP. 

VIP 7200 AND 7800 HARDWARE SWITCH OPTIONS WITH CHARACTER 
OR BUFFERED MODE 

The TTY line protocol handler supports the following VIP 
7200/7800 hardware switch options for character mode or buffered 
mode as follows: 

7-3 CB03 



Character Mode Buffered Mode 

Character/buffered mode switch 
on character mode~ 

Character/buffered mode switch 
on buffered mode. 

Parity switch on even. 

Full/half duplex switch ·on 
full. 

Parity switch on even. 

Full/half duplex switch on 
full. Page/line switch as 
necessary. End-of-message 
(EOM) character internal 
switch set to ETX or EOT (not 
to CR). 

VIP 7200 AND 7800 FUNCTION AND CONTROL KEYS 

Function and control keys on the VIP 7200 and 7800 are sup­
ported only in buffered mode •. 

When issuing a write request that will cause an automatic 
response by the terminal, the application must first issue an 
asynchronous read request, then issue a write request that con­
tains a control message to the terminal. 

TTY Line Protocol Handler Time-Out Intervals 

Table 7-1 lists the TTY line protocol handle.r's time-out 
intervals for the LPH functions. . 

Table 7-1. TTY Line Protocol Handler Time-Out Intervals 

Line Protocol 
Handler Function Time-Out Interval 

Connect Five minutes 

Read Character mode: five minutes after receipt 
of the first character of 
the message; 

Buffered mode: five minutes after the 
line protocol handler 
receives the request. 

Write Thirty seconds 

7-4 CB03 

~--~ --~ -~~ ---~----~--- -----



USING THE TTY LINE PROTOCOL HANDLER 

TTY-Specific lORB Values 

The TTY-specific lORB item I CT2, device-specific word 
I DVS, and software status word l-ST are shown and defined in 
Tables 7-2, 7-3, and 7-4, respectively. Section 6 describes the 
general form of the lORB. 

Table 7-2. Function Codes in I CT2 of the 10RB 

Function 
Code Definition Use 

0 Wait online Used by the line protocol handler 
I Write to complete the description of 
2 Read the requested I/O function 
A Connect 
B Disconnect 

Table 7-3. TTY Device-Specific Word I DVS in the lORB -
Bit Bit 

Number Setting Meaning of Bit Setting 

0 0 Must be zero. 

I 0 Must be zero. 

For connect call only (function code A) 

2 0 Do not use Auto Call Unit. 

I Use Auto Call Unit. 

3 0 Must be zero. 

4 0 First byte in buffer on output is a control 
byte. 

I First byte in buffer on output is a data byte. 

For read call only (function code 2) 

5 0 Input data is in nontransparent mode. 

I Input data is in transparent mode. 

6 0 Must be zero. 

7-5 CB03 



Table 7-3 (cont). TTY Device-Specific Word I DVS in the IORB 

Bit Bit 
Number Setting Meaning of Bit Setting 

For write call only (function code 1) 

7 0 Stop output immediately on detecting a BRK 
received from the terminal. 

1 Continue output when BRK detected. 

8 0 Must be zero. 

9 0 Must be zero. 

For read call only (function code 2) 

.. 0 Do not. echo keyboard input. .t'\ 

1 Echo keyboard input. 

For read and write calls (function codes 2, 1) 

B 0 No LF (line feed) at end of message. 

I LF (line feed) at end of message. 

C 0 CR (carriage return) at end of message. 

No CR (carriage return) at end- of message. 

- For connect call only (function code A) 

0 0 Data transfer is in character mode. 

1 Data transfer is in buffered (bloc k) mode. 

For disconnect call (function code A) 

E 0 Abort ( dequeue) all IORBs on the request queue. 

1 Process outstanding requests on the request 
queue. 

F 0 Hang up phone after disconnect. 

I Do not hang up phone after disconnect. 

7-6 CB03 



( 
Table 7-4. TTY Software Status Word I ST in the IORB 

Bit Meaning When Bit Set to 1 

a N/A 

1 N/A 

2 Data service rate error 

3 N/A 

4 Communications control block (CCB) service 
error 

5 No stop bit in character input 

6 Long record 

7 N/A 

8 N/A 

9 N/A 

A Nonzero residual range 

B Phone h~ng-up 

C N/A 

D N/A 

E N/A 

F Fatal error: bus parity or memory error 

Although nonexistent resource, bus parity, and 
uncorrectable memory errors are combined in 
bit F, each occurrence is noted separate~y in 
the resource control table (RCT). See 
Fig ure C-l. 

Control and Characteristics of TTY Input Data 

This subsection describes user control over the character­
istics of TTY input data, and applies to character-mode process­
ing unless otherwise noted. 

7-7 CB03 



TTY CONTROL BYTE (INPUT) 

The description of the TTY control byte for output (see "TTY 
Control Byte (Send)" below) applies also to the TTY line protocol 
handler's control byte for input. 

TTY NONTRANSPARENT INPUT 

TTY input is nontransparent when the application sets to a 
bit 5 of the IORB's device-specific word I DVS (Table 7-3). 
Input is accepted until the end-of-range or a CR (carriage 
return), ETX (end of text), or EOT (end of transmission) control 
character, whichever is first, is reached. The line protocol 
handler does not transmit the CR, ETC, or EOT control character 
as part of the message. 

TTY TRANSPARENT INPUT 

TTY input text is trallSlJdrent when the application sets to 1 
bit 5 of the device-specific word I DVS at read time (Table 7-3). 
All input data, including and control characters, is stored in 
the buffer until end-of-range is reached. 

TTY LINE FEED (LF) AND CARRIAGE RETURN (CR) INPUT SEQUENCE 

The application can specify at read time a sequence of LF 
and CR characters, with the B~ and C-bits of the IORB's device­
specific word I DVS, as indicated in Table 7-3. When the message 
is received successfully, the specified character combinations 
are retransmitted back to the terminal. 

KEYBOARD INPUT CHARACTER AND LINE CONTROL 

When an input character with a parity error is received, the 
line protocol handler sends a BEL character back to the terminal. 
The user must then retype that input character if it is to be 
included in the text being sent to the application. 

The user can correct or delete erroneous characters or lines 
and can declare control characters to be data characters, as 
described below. 

To correct one or more characters in the current line, i.e., 
before the CR is pressed, press the @ key. This deletes the 
character that immediately preceded the @ character, and displays 
the @ symbol. Each succeeding @ entry deletes another character, 
moving from right to left to the beginning of the line. 

to delete the current line, i.e., before the CR is entered., 
press and hold the CTRL (control) key and press X. This deletes 
the current line, displays the message *DEL* on the next line, 
and results in a carriage return. The user can then enter a cor­
rect line. 

7-8 CB03 

,/-\, 

\~ 

/ 



( 

( 

To declare a control character (e.g., @, CTRL X, CR, and 
be accepted as a data 'character (transparent mode) press the back 
slash ( ) key before entering that control character. The system 
interprets the back slash as an escape character. In transparent 
mode, all input characters are data characters and have no edit-
ing funct ions. . 

TTY DISPLAY OF INPUT CHARACTERS 

The user can cause an input character to be sent back to the 
terminal (displayed on the screen or typed on the console) by 
setting to I the A-bit of the device-specific word I DVS (Table 
7-3). For full duplex printers, the application need specify 
that characters be returned only when they are to be echoed by 
the system software. 

TTY INPUT IN BUFFERED MODE (VIP 7200 AND 7800 ONLY) 

When the application at connect time sets to 1 the D-bit of 
the device-specific word I DVS, input is accepted until an ETX or 
EOT control character or end-of-range is encountered. 

When the application sets bit 5 of I DVS to 1 at read time, 
TTY input in buffered mode is transparent~ i.e., there is no 
editing. When the bit 5 is set to 0, TTY input in buffered mode 
is nontransparent, i.e., control characters are edited. 

As in character mode, the application can specify an LF and 
CR sequence, as described above under "Line Feed (LF) and Car­
riage Return (CR) Input Sequence." 

Control and Characteristics of TTY Output Data 

This subsection describes user control of the character­
istics of TTY output data and is applicable to character-mode 

. processing unless otherwise stated.· 

TTY CONTROL BYTE (SEND) 

The TTY line protocol handler's control byte, included as 
the first character of the application's buffer, controls the 
message's head-of-form sequence. At connect time, the applica­
tion specifies the control byte by setting to 0 bit 4 of the 
IORB's device-specific word I_DVS (Table 7-3). 

Figure 7-2 shows the format and content of the TTY control 
byte. 

7-9 CB03 



BITS 0 THROUGH 2: 

BIT3: 

NOT USED 

0= DO NOT GENERATE A 
HEAD-OF-FORM SEQUENCE 

1 = GENERATE HEAD-OF-FORM 
SEQUENCE CONSISTING OF 
LF, DL ISSUED THREE TIMES 

BITS 4 THROUGH 7: 

NOT USED, MUST BE ZERO 

Figure 7-2. Control Byte for TTY Line Protocol Handler 

END-OF-MESSAGE (EOM) SEQUENCE ON TTY OUTPUT 

The EOM sequence is controlled by the B- and C-bits of the 
IORB's device-specific word I DVS (Table 7-3), as specified by 
~hp ~pplication at write time: The TTY line protocol handl~L 
sends an EOM sequence according to the following B- and C-bit 
val ues : 

I DVS Bits 

B 

o 
o 
1 
I 

C 

o 
I 
o 
I 

EOM Sequence 

CR, DEL 
None 
LF, CR, DEL 
LF, DEL 

At read time, the application can specify the same B- and C­
bit values in order to send an EOM sequence back to the terminal 
when the message is successfully received. 

TTY DETECTION OF BRK CHARACTERS 

When the application sets to 0 bit 7 of the device-specific 
word I DVS at write time, the line protocol handler will immedi­
ately stop all output when it detects a BRK key character in the 
input stream from the terminal. The line protocol handle.r 
ignores the BRK ch'aracter when bit 7 is set to 1, until the write 
order is completed. 

7-10 CB03 



( 

( 

TTY OUTPUT IN BUFFERED MODE 

Control and characteristics for TTY output in buffered mode 
are the same as described above for character mode. However, in 
processing in buffered mode (VIP 7200/7800 only) the line 
protocol handler processes all physical I/O requests in the same 
sequence as they are received. If there is already an outstand­
ing read request, only a subsequent write request can be ini­
tiated before the read request is satisfied or the time-out for 
that read request is elapsed. 

7-11 CB03 





( 

( 

SECTION 8 

VIP LINE PROTOCOL HANDLER 

The vIP line protocol handler supports synchronous VIP 
(visual information projection) terminals, and the synchronous 
receive-only printers (ROP). 

The basic VIP comprises a cathode ray tube (CRT) display 
screen and keyboard, with a synchronous communications interface, 
with operating speeds as follows: 

VIP Baud Rate 

7760 
7700R 
7700 

9600 
Up to 9600 
Up to 4800 

GENERAL VIP LINE PROTOCOL HANDLER OPERATION 

Software Functional Support for the VIP 

The following VIP line protocol handler software functions 
support the basic VIP terminal: 

o Poll and select communications procedures 

o Nonpoll communications procedures 

o Point-to-point and multipoint configuration support 

o Switched and private line operation 

o Auto-answer for switched network operation 

o Modem, direct connect, and modem bypass interconnection 
modes 

o Message transfer to and from a CRT (1920-character 
forma t) 

8-1 CB03 



o Fully addressable CRT entry marker control 

o Pre-editing (control byte) and post-editing (I_DVS) 

o Transfer of hardware function code to and from the 
application 

o Error recovery procedures 

The following functions support added terminal options: 

o User-controlled CRT forms mode 

o Message transfer to receive-only printer (ROP) 

User-Supplied Software Functions for VIP Support 

The application program must supply the following functions 
to support data exchange between the VIP and th~ application: 

o User-specified device arguments, (polling interval, and 
at system building, station addresses) 

For messages to the VIP terminal, the application should provide: 

o Optional; hardware function codes (1, 2) 

o Complete message text 

o Opti6nal; pre-editing and post-editing characters within 
message text 

o Mandatory; complete forms definition message text for 
forms mode 

For messages received from the VIP, the application must provide: 

o Interpretation of hardware function codes (1, 2) 

o Message processing 

o Interpretation of format codes (LF, CR, HT) in the 
message text 

VIP Time-Out Intervals 

Table 8-1 lists the time-out intervals used by the line 
protocol handler for the connect, read, and for ROP write func­
tions for the listed devices. The line protocol handler will 
try and retry the connect, read, and write functions until the 
indicated time-out period has elapsed. 

8-2 ca03 



Table 8-1. VIP Line Protocol Handler Time-Out Intervals 

Function 

Connect 

Read 

Write (ROP) 

Time-Out Interval (Oevice) 

5 minutes Communications supervisor 

Tries connect one Nonpolled 
time, returns S 
status 

Tries five times Polled 

Tries Tributary station 
indefinitely 

None 

10 minutes 
According to the settings 
of bits 0 and 1 in I DVS -(see Table 8-3) 

Indefinite 

15 seconds Sc reen (nonpolled) 

1 second Screen ( polled) 

21 seconds TN1200, 7717 

95 seconds TN 30 0, 7714, 7716 (300 baud) 

180 seconds TN300, 7714, 7716 (150 baud) 

190 seconds TN 30 0, 7714, 7716 (110 baud) 

190 seconds TTY33, TTY35 

NOTE: Sased on 1920-character display screen. 

USING THE VIP LINE PROTOCOL HANDLER 

VIP-Specific IORS Values 

The VIP-specific input/output request block (IORS) item I_CT2, 
device specific word I DVS, and software status word I ST, are 
shown in Tables 8-2, 8=3, and 8-4, respectively. SectTon 6 
describes the general form of the IORS. 

8-3 CSD3 



Table 8-2. Function Codes in I CT2 of the IORB 

Function 
Code Definition Use 

0 Wait online Used by the line protocol handler 
to complete the description of 

1 Write the requested I/O function. 

2 Read 

A Connect 

B Disconnect 

Table 8-3. VIP Device-Specific Word I DVS in the IORB 

Blt I Blt I Number (s) Setting Meaning of Bit Setting 

For connect call only (function code A) 

0, 1 00 Time-out after 10-minute interval. 

01 No time-out on read requests (i.e., 
indefinite) • 

10 Immediate time-out, no time-out interval. 

11 Reserved for later use by the system. 

2 0 Do not use Auto Call Unit. 

1 Use Auto Call Unit. 

3 0 Set cursor to home position on page overflow. 

1 Do not set cursor to home position on page 
overflow. 

4 0 Incl ude control byte in first byte of buffer. 

1 Do not include control byte in buffer. 

5, 6, 7 Logical E£l! interval (polled lines only): 

000 Poll continuously. 

001 I-second poll interval. 

Ole 2-second poll interval. 

8-4 CB03 



Table 8-3 (cont). VIP Device-Specific Word I DVS in the IORB 

Bit Bit 
Number (s) Setting Meaning of Bit Setting 

E:; 6, 7 all 3-second poll interval. oJ, 
(con t) 

100 4-second poll interval. 

101 S-second poll interval. 

110 IS-second poll interval. 

III 30-second poll interval. 

8 0 There are no hardware function codes. 

I' There are hardware function codes. 

9 0 Must be zero. 

A 0 Must be zero. 

For write call only (function code 1) 

B 0 No LF (line feed) at end of message. 

1 Issue LF (line feed) at end of message. 

C 0 Issue CR (carriage return) at end of message. 

1 Do not issue CR (carriage return) at end of 
message. 

For disconnect call only (function code B) 

D 0 Must be zero. 

E a Abort (dequeue) all IORBs on the request 
queue. 

1 Process all outstanding requests on the 
request queue. 

F 0 Hang "p phone after disconnect. 

1 Do not hang up phone after disconnect. 
. 

( 

8-S CB03 



Table 8-4. VIP Software Status Word I ST in the IORB 

Bit Meaning When Bit Set to 1 

o N/A 

1 Read error 

2 Data service rate error 

3 N/A 

4 Communications control block (CCB) service 
error 

5 N/A 

6 Long record 

7 Poll failure 

8 NAK limit reached 

9 Excessive checksum/parity errors 

A Nonzero residual range 

B Phone hang-up 

C N/A 

D Uncorrectable page overflow 

E Busy received 

F Fatal error: bus parity or memory error 

Although nonexistent resource, bus parity, and 
uncorrectable memory errors are combined in 
bit F, each occurrence is noted separately in 
the resource control table (RCT). See 
Figure C-l. 

VIP Polling Options 

polling (the line protocol handler's continuous request to 
the VIP terminal on a polled line for data) is subject to two 
kinds of control, a polling interval and a poll duration. 

(\ 

The application, at connect time, must specify the arguments /'\ 
for the poll interval and poll duration, by setting the .appropri- ~.~ 
ate bits in the IORS's device·-specific word I DVS (Table 8-3). 

8-6 CB03 



( 
VIP POLL INTERVAL 

The VIP poll interval specifies the mlnlmum period of time 
between each successive request (poll) by the line protocol 
handler for data from a VIP terminal. The line protocol handler 
will poll the VIP once for each read request, and when the 
request is not satisfied, again after the specified poll period 
elapses. 

For example, with a I-second poll interval, the line proto­
col handler will issue the same read request every second. For a 
zero poll interval, the line protocol handler will poll the VIP 
continuo usl y. 

The application specifies the poll interval according to the 
bit settings of the bits 5, 6, and 7 in the device-specific word 
I DVS of the IORB, as shown in Table 8-3. 

VIP POLL DURATION (TIME-OUT) 

Poll duration, or the time-out interval, is the maximum time 
that the line protocol handler will wait for polled data from the 
VIP, before discontinuing the read attempt and read request. 
possible time-out intervals are immediate (i.e., after only one t poll); 10 minutes; and indefinite (i.e., the VIP is polled con-

, tinuously, with no time~out, until requested data is received). 
The application specifies the poll duration or time-out interval 
with the bits 0 and I in the device-specific word I DVS, accord-
ing to the bit values shown in Table 8-3. -

VIP LINE PROTOCOL HANDLER POLL FUNCTIONS 

Within the controls specified in the poll argument values by 
the application, the line protocol handler provides all necessary 
polling functions, e.g., how terminals share a common line, or 
which terminal is processed next, etc. When the application 
bypasses these line protocol handler poll functions, i.e., by 
specifying immediate time-out after only one poll, the applica­
tion must then provide for proper operation and coordination 
among all terminals on the line. 

Control and Characteristics of VIP Input (Keyboard/Screen) 

VIP INPUT MESSAGE HEADER 

The line protocol handler strips the message header from the 
input data, except for the hardware function codes, and does not 
include the header in the application's buffer. 

8-7 CB03 



VIP HARDWARE FUNCTION CODES 

VIP hardware function codes are listed in the appropriate 
hardware device manuals. 

These codes, provide a special message labeling capability 
to be used by the application. 

The application can include two function codes in the mes­
sage header of each text message to or from a terminal by setting 
to 1 bit 8 of the IORB's device-specific word I_DVS (see 
Table 8-3) at connect time. The line protocol handler then 
inserts the two user-specified hardware function codes at read 
time into the IORB's item I FCS(see Figure 6-1 and Table 6-2). 

VIP INPUT DATA 

The line protocol handler places into the application's buf-
fer between the GTX and ETX control characLe(s, 
received from the VIP terminal. The data is inserted into the 
buffer in 7-bit ASCII, with the most significant bit always zero. 
The LPH strips the ETX and LRC (longitudinal redundancy check 
character, see Appendix A) from the data and does not include 
them in the buffer. 

Control and Characteristics of VIP Output 

This subsection pertains to VIP output and is applicable to 
the keyboard, display screen, or read-only printer (ROP) as 
indicated. 

VIP OUTPUT MESSAGE HEADER 

The VIP line protocol handler supplies the output message 
header, but not the hardware function codes. Those may be sup­
plied by the application as described above under "VIP Hardware 
Function Codes." 

At write time, when the hardware codes are specified, they 
are placed in the I FCS item of the IORB. When they are not 
specified, i.e., the bit 8 of I DVS set to a at connect time, the 
line protocol handler will insert two spaces, instead 'of function 
codes 1 and 2, into the I FCS item (see Figure 6-1 and 
Table 6-2). 

VIP CONTROL BYTE (SEND) 

The VIP control byte is specified when the application sets 
to 0 the bit 4 of the device-specific word I DVS at connect time. 

,<f~ 
: 
',_/, 

) 

The 1 ine protocol handler then places the control byte as the If ~. 
first character of the application's buffer. ~J 

8-8 CB03 



The control byte contrdls the output form feed sequence 
according to its bit settings as shown in Figure 8-1. The line 
protocol handler provides the output ETX control character and 
the LRC (longitudinal redundancy check) character. 

VIP OUTPUT DATA 

o 234567 

I RI11 0 1 vlzlzlzl zl 

R 
RESERVED (NOT EXAMINED) 

v=O 
DO NOT ISSUE FORM FEED SEQUENCE 

V=1 
ISSUE FORM FEED SEQUENCE zzzz 
NUMBER OF LINES TO SKIP BEFORE PRINTING (BINARV) 
(E.G., IF ZZZZ=0100, VIP LPH WILL PERFORM 
4 FF SEQUENCES) 

Figure 8-1. VIP Control Byte (Send) 

The application's output data must be 7-bit ASCII (the 
eighth bit is ignored). Any ASCII control characters, if 
included in the application's data, are not transmitted. 

For keyboard/display screens, the line protocol handler 
sends a CR, LF sequence when the application's buffer contains 
the hexadecimal character X' 05' (NL) •. 

For the read-only printer (RaP) the line protocol handler 
sends a CR, LF sequence (according to the type of RaP) shown 
below, when the application's buffer contains the X'05' character 
(NL) • 

Rap Type Line Sequence 

TN1200, 7717 CR, LF, 36 DELs 

7714, 7716, TN300, TTY 35 CR, LF, 9 DELs 

TTY 33 CR, LF 

8-9 CB03 



VIP KEYBOARD/SCREEN OUTPUT EDITING CONTROL 

The line protocol handler sends LF and CR editing characters 
for VIP keyboard/screen devices according to the values of the B­
and C-bits of the device-specific word I DVS (Table 8-3). The 
application specifies these bit' values at write time to send the 
CR and LF characters, as follows: 

I DVS Bits Editing 
Characters 

B C Sent 

0 0 CR 
0 1 None 
1 0 LF, CR 
1 1 LF 

VIP RECEIVE-ONLY PRINTER EDITING SEQUENCE 

The line protocol handler sends an output editing character 
sequence for the receive-only printer (ROP) according to the values 
of the B- and C-bits of the device-specific word I DVS (Table 
8-3). The application specifies these bit values at write time 
to send the ROP output editing sequence, according to the ROP 
-type, as shown in Table 8-5. 

Table 8-5. VIP Receive-Only Printer Editing Sequence 

I DVS Bits 
ROP Types B C Output Editing Sequence 

TN 1200, 7717 0 0 CR, 36 DELs 

1714, 7716, TN 30 0, TTY 35 0 0 CR, 9 DELs 

TTY 33 0 0 CR 

All 0 1 None 

TN1200, 7717 1 0 LF, CR, 36 DELs 

7714, 7716, TN 30 0, TTY 35 1 0 LF, CR, 9 DELs 

TTY 33 1 0 LF, CR 

TN1200, 7717 l' 1 LF, 36 DELs 

7714, 7716, TN 300, TTY 35 1 1 LF, 9 DELs 

TTY 35 1 1 LF 

8-10 CB03 

,/1' -- '"'' 

'\..j. 



( 

( 

VIP RECEIVE-ONLY PRINTER FORM FEED SEQUENCE 

The VIP line protocol handler sends an output form feed 
sequence according to the ROP type and whether the ROP has the 
hardware form feed option, as shown in Table 8-6. 

Table 8-6. VIP Receive-Only Printer Form Feed Sequence 

ROP Type Output Form Feed Sequence 

Wi thout form feed feature 

TN1200, 7717 LF, 36 DELs (both three times) 

7714, 7716, TN300 LF, 9 DELs (both three times) 

TTY 35 LF, 9 DELs (both three times) 

TTY 33 LF, three times 

With form feed feature 

7717, TN 1200 FF, 240 DELs 

7714, 7716, TN300 FF, 65 DELs 

TTY 35 FF, 65 DELs 

ERROR PROCESSING BY VIP LINE PROTOCOL HANDLER 

Table 8-7 lists the errors reported by the VIP line protocol 
handler for any VIP configuration. It also lists corresponding 
return status error codes (see Table 6-1), corresponding bits in 
the VIP software status word I ST (see Table 8-4), and possible 
recovery actions. 

Table 8-8 lists the MLCP-specific error condition according 
to particular VIP configurations, the corresponding error codes, 
and bits in the I ST. 

8-11 CB03 



Table 8-7. Errors Reported by VIP Line Protocol Handler 

Posted Error I ST 
Error Condition Return Sta tus' BTt b possible Recovery Comments 

Error during open B As Retry nine times 
reported 

"Not available" 7 E None 
message received 

Page overflow not 7 D None, or retry once 
corrected 

Invalid range in IORB 4 None None 

Read time-out 7 3 IO-minute retry 

NAK limit reached 7 8 

J:I:'1C" !"eceived "7 " - --,l u 

Purged due to imme- B None 
diate close 

Station disabled B None 

Fatal error at inter- B None 
rupt level 

Data service rate 0 (transmit) 2 Not applicable Not fatal 
error 7 ( receive) 2, 8 Retry nine times 

Communication control 7 4, 8 
block service rate 
error 

Long record 0 6 None (ACK sent to VIP) Not fatal 

Illegal character 0 (transmit) 7 Replace illegal char- Bad character In 
acter with delete application's buffer 
characters 

Sequence error, or 7 (receive) 7, 8 
Poll failure 

phone hang up B B None 

Nonexistent resource, B None No retry possible 
or 
Bus pari ty error. or 
unrecoverable memory 
error 

Excessive checksum or B 8, 9 Retry nine times 
parity error 

• See Table 6-1-

b see Table 8-4. 

8-12 CB03 



( 

( 

Table 8-8. 

VIP 
Error Condition Configuration a 

No interrupt P, C (except 
from MLCP open) 

P, C (open 
only) 

NP , C 

NP , 

a VIP configuration 

MLCP Error Condition Reported by 
VIP Line Protocol Handler 

Posted Er ror I ST 
Return Statusb BitC Possible Recovery Action 

B 7 Retry five times 

B 7 None 

B 7 None 

B 7 None 

codes are: 

P - polled; NP - not polled; C - control station 

b See Table 6-l. 

C See Table 8-4. 

8-13 

Comments 

Poll failure 

CCP/MLCP failure 

VIP lockup 

VIP inaccessible 

CB03 



PROCESSING NONPOLLED VIP ERRORS 

When the VIP does not send a Q-frame within 15 seconds after 
the data connection is made (i.e., DSR (data set ready) on), the 
line protocol handler posts the connect IORB with a return status 
of 6 (see Table 6-1) and with all I ST bits set to O. 

When the VIP sends a message within 15 seconds after the 
data connection is made (i.e., DSR on), and the message is 
erroneous (missed EOT character, parity error), the line protocol 
handler posts the connect IORB with a return status of B and with 
all I ST bits set to O. 

In either case, the application can reissue the connect 
request without first issuing a disconnect directive. 

When, after a successful connect, the application loses com­
munication with the VIP and there are no outstandina reauests on 
the VIP queue, the application will not be notified-until the VIP 
line protocol handler receives the next read or write request. 

8~14 CB03 



( 

SECTION 9 

POLLED VIP EMULATOR (PVE) LINE PROTOCOL HANDLER 

The PVE line protocol handler allows a Level 6 system to be 
connected to a communications link that operates according to the 
polled VIP protocol. The line can be half or full duplex, may be 
dedicated or switched, and operates at up to 9600 baud. 

The computer that controls the communications link is known 
as the control station (CS), which may be any Honeywell host 
system that supports the VIP protocol. 

GENERAL PVE OPERATION 

The PVE appears to the control station as a VIP terminal, 
and is the tributary station. Each PVE suppor~s up to 32 tribu­
tary stations per line, as designated at system building. 

To the control station, each PVE tributary station is known 
externally by a poll address, and internally to a Level 6 control 
station, by a logical resource number (LRN). There is a one-to­
one relationship between the poll address and the LRN. 

An application program in a Level 6 system communicates with 
the control station by issuing read and write requests to the 
appropriate LRN. Similarly, the control station sends and 
receives as though it is communicating with a polled VIP that has 
the. appropriate poll address. 

Figure 9-1 illustrates a typical PVE configuration. 

9-1 CB03 



CS 

POLLED 
VIP's ~-

CS = CONTROL STATION 

TS = TRIBUTARY STATION 

M = MODEM 

MIU = MULTIPLE INTERFACE UNIT 

MIU 

L6 

S 

VIP 

Figure 9-1. Typical PVE Configuration 

T 

VIP· 

When the PVE receives a select request with the LRN­
associated poll address, it forwards the message to the control 
station to satisfy the application's read request. When the PVE 
receives a poll request for the LRN-associated poll address, it 
forwatds the message to the control station to satisfy the 
application's write request. Thus the application provides the 
equivalent of the screen and keyboard, with read and write 
requests, respectively. 

The PVE line protocol handler supports only the screen and 
keyboard features of the VIP. 

USING THE PVE LINE PROTO~OL HANDLER 

PVE-Specific IORB Values 

The PVE-specific IORB item I CT2, device-specific word 
I DVS, and software status word I-ST are shown in Tables 9-1, 
9-2, and 9-3, respectively. Section 6 describes the general form 
of the IORB. 

9-2 CB03 

\~ 



( 
Table 9-1. Function Codes in I CT2 in IORB 

Function 
Code Definition Use 

0 Wait online Used by the line protocol handler 
to complete the description of 

1 Write the requested I/O function 

2 Read 

A Connect 

B Disconnect 

Table 9-2. PVE Device-Specific Word I DVS in the IORB 

Bit Bit 
Number Setting Meaning of Bit Setting 

0 0 Must be zero. 

1 0 Must be zero. 

For connect call only (function code A) 

2 0 Do not use Auto Call Unit 

1 Use Auto Call Unit 

3 0 Must be zero. 

4 0 

5 0 

6 0 

7 0 

8 0 Does not support VIP function codes. 

1 Supports VIP function codes. 

9 0 Must be zero. 

A 0 Incl ude received DEL characters in 
buffer. 

( 1 Strip received DEL char'acters. 

B 0 Must be zero. 

9-3 CB03 



Table 9-2 (cont). PVE Device-Specific Word I DVS in the IORB 

Bit Bit 
Number Setting Meaning of Bit Setting 

C 0 Must be zero. 

D 0 Must be zero. 

E, F LPH response to application when 
LPH receives data but no read IORB 
available 

00 Send NAK. 

01 Send ACK. VIP 
Status 

10 Return busy status. Codes 

11 Send NAK (same as 00) • 

For disconnect call only (function code B) 

E 0 Abort (dequeue) all IORB's on 
request queue. 

1 Process all outstanding requests on 
request queue. 

F 0 Hang up phone after disconnect. 

I Do not hang up phone after 
disconnect. 

9-4 CB03 

( \. 
",j 



( 

( 

Table 9-3. PVE Software Status Word I ST in the IORB 

Bit Meaning When Bit Set to 1 

o N/A 

1 N/A 

2 Data service rate error 

3 N/A 

4 Communications control block (CCB) service 
error 

5 N/A 

6 Long record 

7 0 = ETX character received 
1 = ETB character received 

8 NAK limit reached 

9 Excessive checksum/parity errors 

A Nonzero residual range 

B Phone hang-up 

C N/A 

D N/A 

E N/A 

F Fatal error: bus parity or memory error 

Although nonexistent resource, bus parity, and 
uncorrectable memory errors are combined in bit 
F, each occurrence is noted separately in the 
resource control table (RCT). See Figure C-l. 

VIP Protocol Message Structure for PVE 

Figure 9-2 shows two VIP protocol message structures for 
PVE. 

9-5 CB03 



TYPE 1: 

MESS~GE SYN HEADER SYN 
- SYN 

~~~ . ::: ~TERMINAL POLL ADDRESS 
ACK ADR TERMINAL SELECTION ADDRESS
NAK STA I DISPLAY ADDRESS
BUSY I ---
NA FC1
PGOF ,!:"Cl_ I

_______________ ~.."..- ..!.T~ _.J
-(TEXT) r.
ETX ~A Y BE ETB CHARACTER NUMBER OF CODES MAY VARY FROM CPU TO CPU.

THE NUMBER OF CODES MUST BE ZERO FOR A POLL
OR SELECT MESSAGE. A CODE OF 268 MUST NOT BE
INCLUDED IN THE LP CALCULATION. ONLY THE
FIRST TWO FUNCTION CODES ARE RECOGNIZED BY
THE TERMINAL.

LP

~ ----ooNGITUDINAL PARITY
CHARACTER; INCLUDES ADR
THROUGH ETX, LESS SYN.

(
SYN
SYN END OF
SYN I---~ MESSAGE
SYN FRAME
EOT

TYPE 2: (QUIESCENT MESSAGE)

SYN SYN
SYN SYN
SYN OR SYN
SYN (OPTIONAL) EOT
EOT

Figure 9-2. VIP Protocol Message Structure for PVE

Control and Characteristics of PVE Input

PVE INPUT MESSAGE HEADER

The PVE line protocol handler strips the message header,
between the SOH and STX control characters, and does not include
it in the application's buffer.

PVE HARDWARE FUNCTION CODES

PVE hardware function codes are listed in the appropriate
hardware device manuals.

These codes provide a special message-labeling capability to
be used by the application.

9-6 CB03

I

The application can include two function code~ in the mes­
sage header of each text message by setting to 1 the bit a of the
lORB's device-specific word I DVS (see Table 9-2) at connect
time. The line protocol handIer then inserts the two user­
specified hardware function codes at read time into the IORB's
item I_FCS (see Figure 6-1 and Table 6-2).

PVE INPUT DATA

The line protocol handler places into the application's buf­
fer all data between the STX and ETX control characters. The
data is inserted into the buffer in 7-bit ASCII, with the most
significant bit always zero. The LPH strips the ETX and LRC
(longitudinal redundancy check character, see Appendix A) from
the data and does not include them in the buffer.

It also strips DEL characters when the application, at con­
nect time, sets to 1 the A-bit of the device-specific word I DVS
(Table 9-2).

By setting the E- and F-bits of I DVS as shown in Table 9-2,
the application can control the response that the line protocol
handler sends when it receives data from the application, but no
read lORB is available.

, Control and Characteristics of PVE Output

PVE OUTPUT MESSAGE HEADER

The PVE line protocol handler normally supplies the output
header, between the SOH and STX control characters. The applica­
cation may specify hardware function codes (1, 2) as described
above under "PVE Hardware Function Codes." At write time, when
specified, the codes are extracted from the I FCS item of the
IORB. When the codes are not specified, (bit-a of I DVS set to 0
at connect time), the line protocol handler will supply two
spaces, instead of the codes, into I_FCS.

PVE TERMINAL ADDRESS (ADR) AND MESSAGE STATUS (STA)

The PVE line protocol handler supplies an ADR (terminal
address) of X'60' (keyboard/screen) and an STA (message status)
of NUL to the application.

PVE OUTPUT DATA

The"application's output data must be 7-bit ASCII. The most
significant bit is used by the line protocol handler during
transmission of odd parity.

(~ Output data must not include the ASCII control characters
SOH, STX, ETB, ETX, EOT, or SYN.

9-7 CB03

The line protocol handler supplies output ETX control char­
acters and longitudinal redundancy check characters (LRCs)
(described in Appendix A)~

PVE LINE PROTOCOL HANDLER TIME-OUT INTERVALS

Table 9-4 lists the time-out intervals used by the line
protocol handler for the connect, read, and write functions. The
line protocol handler will attempt or reattempt the functions
until the indicated time-out period has elapsed.

In addition to the interval in the t~ble, there is also a
gross time-out of one minute, which expires when the control sta­
tion ceases to poll or select any tributary station.

Table 9-5 lists the errors reported by the PVE line protocol
handler. It also lists corresponding return status error codes
(see Table 6-1) and corresponding bits in the software status
word I ST (see Table 9-3).

9-8 CB03

('\

.j

Table 9-5. Errors Reported by PVE Line Protocol Handler

Posted Error I ST
Error Condition Return Status BIt Comments

No interrupt from MLCP 6 7 'Poll failure or
CCP/MLCP failure

NAK limi t reached 7 8 Write failure

Purged due to immediate B None
close

Station disabled B None

Fatal error interrupt B None
level

Data service rate error 0 (send) 2 Not fatal
7 (rece ive) 2, 8

Communication control 7 4, 8
block service rate error

Long record 0 6 Not fatal

Phone hang-up B B

Nonexistent reso urce , or B None
Bus parity error, or
Unrecoverable memory
error

(

9-9 CB03

(-

tf

SECTION 10

BSC 2780/3780 LINE PROTOCOL HANDLER

The BSC (binary synchronous transmission) 2780/3780 line
protocol handler (LPH) supports BSC2780 and BSC 3780 point-to­
point, nontransparent or transparent EBCDIC, or nontransparent·
AStII transmission between a Level 6 system and another host sys­
tem (subject to certain restrictions).

The 3780 protocol is very similar to the standard 2780
protocol and unless specifically stated otherwise, the rest of
this section and the term BSC pertain to both.

\. GENERAL BSC LINE PROTOCOL HANDLER OPERATION

(

When a station (device or computer) at either end of a com­
munication line has a message to send, it requests use of the
1 ine by send ing a ENQ bid message. (See Append ix E for def in i­
tion of ENQ and other control characters.) The ~eceiving station
must respond with an ACK/O sequence before the sending station
can transmit a data message.

BSC Transmit and Receive Operations

A station that has control of the line l i.e., the right to
transmit, is known as the master (primary)' station. The station
that relinquishes control, i.e., will receive, is the slave
(secondary) station.

When the first data message from the master station is suc­
cessfully received, the slave station responds with an ACK/I
sequence. Acknowledgments for subsequent remaining messages
al ternate between ACK/O and ACK/l. The master/slave status for
each respectiv€ station remains in effect until the master sta­
tion gives up control by sending an EOT (end-of-transmission)
character (which is not acknowledged by the slave station).

'Primary and secondary are arguments of the CLM BSC directive
used when the system is being built.

10-1 CB03

When a bidding station does not receive an ACK/O response
within a specified interval (time-out period), it sends another
ENQ message. At the same time, or at nearly the same time, the
other station may be sending an ENQ message, bidding for the
line. Thus both stations may be bidding with neither receiving
an ACK response. This is known as·1ine contention. Line conten­
tion can be avoided by designating one station as the primary and
and the other as secondary when the system is built. Then when
the designated primary station receives an ENQ response to its
bid message, it retransmits the ENQ message to the secondary sta­
tion, which in turn ignores its own bid request and responds to
the primary station with an ACK or NAK.

The BSC line protocol handler allows a recelvlng station to
reply to a data message with an RVI (reverse interrupt) message
if it has an urgent requirement to transmit data.

Figure 10-1 illustrates bids and other interactions between
~ ",,~""""n"'" ~_A _,'""" __ _: __
\..4 &U\.A.1oJ ",","",.L ""' U W'-\.u v\,;;.,;) '-U '-.J. V.I.

BSC Data Transmission Modes

BSC operates in either basic data transmission mode or in
advanced data transmission mode, according to whether a control
byte is included in the data being transmitted. (See "BSC
Control Byte (Receive)" and "BSC Control Byte (Send)" later in
this section.)

BSC BASIC DATA TRANSMISSION MODE

In basic data transmission mod~, there is no control byte
included in the data being transmitted along the communications
line.

BSC ADVANCED DATA TRANSMISSION MODE

In advanced data transmission mode, the application includes
a control byte (that is not part of the data). The control byte
indirectly controls the operation of the line protocol handler
(e.g., sending an ETB or ETX) , or conveys information about a
data transfer (e.g., whether transparent text was received).

10-2 CB03

~~.-- . __ .-

(
PRIMARY STATION A

BIDS

MASTER

RELEASE

ACCEPTS BID

SLAVE I
BIDS

I
I
I
I

•

•

•

. SECONDARY STATION B

ENO (BID)
•

ACKO ACCEPTS BID

DATA
ACK1
DATA • SLAVE
ACKO

EOT (RELEASE)
•

ENO iBID)
ACKO •

DATA
ACK1

•
EOT

BIDS FOR PRIMARY I M~ER
E;NO ENO BIDS

• ••
I I

TIME-OUT -------------------------l
BIDS AGAIN ENO.:

ACKO ACCEPTS BID • _j WOULD HAVE TIMED-OUT HERE

Figure 10-1. Example of BSC Communication

BSC 2780 AND BSC 3780 DIFFERENCES

The 3780 protocol differs from the 2780 protocol in that the
3780 protocol has a set of extensions that provide:

o The ability to receive a conversational reply.

o The ability to receive two records and to transmit a
single record, when the two-buffer option is selected at
connect time.

o The ability to receive and transmit selected BSC control
characters in nontransparent mode.

BSC 2780/3780 FEATURES

The following discussions in this subsection include refer­
ences to BSC-specific fields in the input/output request block
IORB (see Table 6-2) and to control bytes, and precede their
descriptions. See Tables 10-2 and 10-3 later in this section for
descriptions of the device-specific word I DVS and software
status word I ST, respectively. Control bytes are described
under "Contror Byte (Receive)" and "Control Byte (Transmit)."

BSC Two-Buffer Feature

With the two-buffer feature, the use of the second buffer
reduces line turnaround time, i.e., two records can be transmit­
ted with only one acknowledgment. However, there are these
disadvantages:

10-3 CB03

o When a line (parity) error occurs, both records must be
retransmitted.

o One transmission requires two writes be issued, which are
not posted until an acknowledgment is received.

o Four buffers are necessary to operate the line
efficiently.

Figure 10-2 shows record transmissions with and without the
two-buffer feature.

STX----- - ITB BCC SYN SYN STX ETB BCC

ACKO ~ • .----------------

WITH TWO-BUFFER FEATURE

STX---- --ETB"BCC

ACKO •• .----------------

STX----- ETB BCC

ACK1 ~ • .---------------_

WITHOUT TWO-BUFFER FEATURE

Figure 10-2. Bse Two-Buffer Feature in Record Transmission

Before selecting the two-buffer feature, compare the adVan­
tage of better line utilization against the disadvantages of a
more complex program and increased buffer usage, and consider the
following:

1. In Bse 2780 with the two-buffer option, two records can
be received or transmitted (using an ITB (intermediate
text block) sequence).

2. In Bse 3780, with the two-buffer option two records can
be received, using an ITB sequence, and single records
can be transmitted. This implies that an application
using Bse 3780 must be able to receive up to two records
at anyone time, but can only initiate single-record
transm i ssion.

10-4 eB03

(

3. The two-buffer feature cannot be used with synchronous
reads, because the intermediate files being received may
be terminated by an E~X record. If the ETX record is
the first of the two records being read, the second read
(synchronous) would not be posted to the system.

For example:

READ (asynchronous) l
• process (

READ (synchronous) ,

• process

Assumes always two records
per transmission.

The following sequence is better:

READ (asynchronous)
READ (asynchronous)
WAIT (1)

• process

READ (asynchronous)
WAIT (2)

• process

BSC Temporary Text Delay (TTD) Feature

The following describes the sequence of the temporary text
delay (TTD) feature.

1. When a master station receives an ACK, and no output
request block (IORBs) are queued, that station waits two
seconds for one IORB (or two IORBs when there are two
buffers) to be queued.

2. The master station then sends the temporary text delay
(TTD) control character sequence" (STX, ENQ) to the slave
station.

3. When the slave station responds with a NAK, the master
station checks whether the ~pp1ication has queued the
appropriate write requests. If the write requests are
not queued, the master station continues the TTD
sequence until the application issues the necessary
write requests.

10-5 CB03

4. If the EaT or ETX bit (A-bit or D-bit) in the I DVS word
of the IORB is set (Table 10-2), one write request will
effect transmission.

Figure 10-3 is an example of the temporary text display
sequence.

MASTER SLAVE

MESSAGE 1 ..
• ACK/O

MESSAGE 2 ..
• ACKI1

TTD (STX, ENQI NAK

TTD '" .. NAK

MESSAGE 3 ..
• ACK/O

Figure 10-3. BSC Temporary Text Delay (TTD) Sequence Example

BSC Wait Before Acknowledge (WACK) Feature

A BSC slave station will send ACKIO and ACKll responses to
messages satisfactorily received, provided there is at least one
outstanding read request (two with the two-buffer feature), in
addition to the request being processed.

1. When no read request is queued, the slave station posts
the current read, waits two seconds for read requests to
be queued, then sends a WACK response (DLE; DLE,), indi­
cating to the master station that the last message was
received, but the slave station cannot accept more data.

2. The master station waits (time-out), then sends an ENQ
. message.

3. If a read request was queued during the time-out, the
slave station responds with an ACK, and the master sta­
tion can send its next data message.

4. If no read request was queued during the time-out, the
slave station waits another two seconds, and when neces- /,
sary sends another WACK sequence. '",./

10-6 CB03

--~-- ---

/
r

(

Figure 10-4 is an example of the wait before acknowledge
(WACK) sequence.

SLAVE

------------ ACK/O ..
~------------ ACK/1 ..
-.------------WACK

..
_------------ ACK/O

__ ----------- ACK/1

Figure 10-4. BSC Wait Before Acknowledge (WACK)
Sequence Example

BSC Reverse Interrupt (RVl) Feature

When a slave station is processing read requests, and must
unexpectedly transmit an urgent message, that station must issue
a reverse interrupt (RVl) message, which informs the master sta­
tion that the slave station is requesting control of the line.

On receiving an RVI character, the master station should
empty its buff€rs and give up control of the line. However, the
master station does not have to acknowledge the RVl by giving up
control.

The application program can request the BSC line protocol
handler to send an RVl character, by either of the following
methods:

1. Use the control byte. The application issuing read
requests issues a transmit request with bit 5 of the
control byte set to 1 (see Figure 10-10), and with the
urgent message in the application's buffer.

2. Use the device-specific word I DVS of the lORB. The
application issuing read requests issues a transmit
request with the B-bi t of I DVS set to 1 _and wi th the
urgent message in the application's buffer.

10-7 CB03

The application issuing write requests can detect an RVl
character by any of these methods:

1. Test bit 3 of the control byte after a successful
write request is posted. A bit setting of 1 indicates
that the RVl for that lORS was received.

2. Test bit 3 of the lORS's software status word I ST. A
bit setting ofl indicates the RVl was received:

Figure 10-5 is an example of a reverse interrupt (RVl)
sequence.

MASTER SLAVE --
MESSAGE 1 ..

• ACK/O

MESSAGE 2 ACK/1

MESSAGE 3 RVI

MESSAGE 4 Ack/1

EOT ENQ

ACK/O URGENT MESSAGE
(NOW MASTER)

ACK/1 ..

Figure 10-5. SSC Reverse Interrupt (RVI) Sequence Example

SSC End of Transmission ("EOT) Feature

The appliation program, by any of the following methods (1,
2, or 3), can cause the SSC line protocol handler to send an end­
of-transmission (EOT) message:

la. At connect time, specify use of the control byte by
setting to 0 bit 4 of the IORS's device-specific word
I DVS.

b. When bit 4 of the first byte of the application's buffer
(control byte,· spec if ied at wr i te time) is set to 1, the
SSC line protocol handler will send an EOT control char-
acter after the data in the application's buffer is I~ ~
successfully transmitted. ~~

10-8 CS03

~
~

\

2a. When the control byte is not specified at connect time,
set to 1 the A-bit of the IORB's device-specific word
I DVS at write time.

b. The BSe line protocol handler will send an EOT control
character after the data in the application's buffer is
successfully transmitted.

3a. After successful completion of a write request, issue a
disconnect with or without a queue abort, and no physi­
cal disconnect.

b. The master station will send an EOT character and give
up its master status.

c. However, when another IORB is queued for write, that
station will again request its master status.

The application can detect receipt of an EOT control charac­
ter in either of the following ways:

1.

2.

If the control byte was specified at connect time, bit 4
of th~ control byte, of the read request on which the
EOT was received, will be set to 1.

If the control byte was not specified at connect time,
bit 12 of the software status word I ST, of the request
on which the EOT character was received, will be set to
1.

With either method, the line protocol handler does not post
any read requests that were queued before the EOT character was
detected. To remove read requests from the queue, the applica­
tion must issue a disconnect with a queue abort. The line proto­
col handler always posts the IORB with a device unavailable (B)
return status (Table 6-l). The Bse line mayor may not be
available for further use, depending on whether or not an EOT
character was sent abnormally.

Bse Line Protocol Handler Time-Out Interval

On a read, the time-out interval in waiting for a line­
request bid is 10 minutes.

For a read or write request, when no response is received,
the time-out interval is 12 seconds.

Once a station has successfully bid for a line, the time-out
interval for subsequent reads (from the slave station) or writes

(- (from the master station) is 12 seconds.

10-9 eB03

BSC Features Specific to 3780

SSC 3780 CONVERSATIONAL REPLY FEATURE

The conversational reply feature permits a 3780 application,
after transmission of an entire message (whose last record is
denoted by an ETX rather than an ETB), to selectively receive a
message from a host computer without a preliminary line bid
sequence.

The.conversational reply sequence serves as the affirmative
reply to the last message transmission block, and as a break or
interrupt to later tranSmissions. The line protocol handler
indicates to the application receipt of a conversational reply
sequence in bit 5 of the IORB software status word I ST, and/or
in bit 2 of the control byte of the ETX write order.-

In the following example~ a 3780 application arrpmpt~ to
transmit three 2-record messages to a remote host computer. The
transmission sequence is interrupted by the receipt of a conver­
sational reply, which occurs after transmission of the second
message. After the complete conversational reply (containing one
or more records) is received, transmission of the third message
can resume, following completion of a successful line bid
sequence. Figure 10-6 illustrates the example sequence.

The application's use of the conversational reply feature
requires that the application issue the requisite number of read
orders (dependent on one- or two-buffer mode) before the' trans­
mission of a text block that terminates with an ETX sequence. If
the application does not issue the required read(s), the last
text block is not transmitted, and the line protocol handler will
initiate a temporary text delay (TTD) sequence until the neces­
sary read orders are issued. If the application does not trans­
mit an ETX sequence, it need not issue supporting read order(s).

BSC 3780 TWO-BUFFER FEATURE

The discussion under "BSC Two-Buffer Feature" earlier in
this section applies also to BSC 3780 operation.

BSC 3780 TRANSMISSION/RECEIPT OF BSC CONTROL CHARACTERS

In BSC 2780 nontransparent mode, detection of any BSC con­
trol characters within a message would abort the transmission or
reception of that message.

In 3780 nontransparent mode, selected, noncritical BSC con­
trol characters, i.e., STX, SOH, DLE, NAK, and EOT, can be suc-
cessfully transmitted and received. .

10-10 CB03

(

HOST SUPPORTING
SSC 3780 APPLICATION SSC 3780 APPLICATIONS

ENQ
~

ACKO ..
STX ... ETB

II

ACK1 ..
TRANSMISSION OF
FIRST MESSAGE STX ... ETX .,

ACKO
>4

f
STX ... ETB

III)

TRANSMISSION OF
ACK1

•
SECOND MESSAGE

STX ... ETX

STX ... ETB ..
ACId

} "INTERRUPTING"
CONVERSATIONAl,. REPLY ... ,

• • /,,: • TRANSMISSION OF \~ • REMAINDER OF THE
STX ... ETX CONVERSATIONAL

>4 REPLY

ACKn ..
EOT

•
ENQ ..
ACKO ..
STX ... ETB ..
ACK1

• TRANSMISSION OF
THIRD AND STX ... ETX
FINAL MESSAGE' ..

ACKO
•

EOT ..
• •

Figure 10-6. Example of Conversational Reply in. BSC 3780

(Transmission Sequence

10-11 CB03

USING THE BSC 2780/3780 LINE PROTOCOL HANDLER

BSC-Specific IORB Values

The BSC-specific IORS item I CT2, device-specific word
I DVS, and software status word I-ST, are shown and defined' in
Tables 10-1, 10-2, and 10-3, respectively. Section 6 has a
general description of the IORB.

Table 10-1. Function Codes in I CT2 Field in the IORS -
Function

Code Definition Use

0 Wait online Used by ,the line protocol handler
to complete the description of

1 Write the requested I/O function.

.... '1"'\ __ ..:1

It. rl.t:au

A Connect

B Disconnect

Table 10-2. SSC Device-Specific Word I DVS in the IORS

Bit Bit
Number Setting Meaning of Bit Setting

.

0 0 Must be zero.

1 0 Must be zero.

For connect call only (function code A)

2 0 Do not use Auto Call Unit.

1 Use Auto Call Unit.

3 0 Must be zero.

4 0 Use control byte.

1 Do not use control byte.

5 0 Must be zero.

6 0 Must be zero.

7 0 Must be zero.

10-12 CB03

./

(

(~

Table 10-2 (cont). BSC Device-Specific Word I DVS in the IORB

Bit Bit
Numbe r Se tt ing Meaning of Bit Setting

For connect call only (function code A) (cont)

8 o Use single buffer per transfer.

1 For 2780: use two buffers per send/receive.

For 3780: use two buffers per receive.

9 o Use BSC 2780 protocol.

1 Use BSC 3780 protocol.

For write call only (function code 1)

A o Do not send EaT after this transmission.

1 Send EaT after this transmission.

B o Do not send RVI if station in slave status.

1 Send RVI if station in slave status.

C o Send data in nontransparent mode.

1 Send data in EBCDIC transparent mode.

D o Send ITB or ETB characters following the data.

1 Send ETX characters following the data.

Fo r disconnect call only (funct ion code B)

E o Abort (dequeue) all IORBs on request queue.

1 Process outstanding requests on request queue.

F o Disconnect line on completion.

1 Do not disconnect line on completion.

Specifying Use of BSC 2780 and/or 3780 to the System

The inclusion of BSC 2780 and/or 3780 in the system is done
at system building. The application can select and use either
2780 or 3780 according to the setting of bit 9 in the device­
specific word I DVS in the IORB (see Table 10-2).

10-13 CB03

Table lO~3. BSC Software Status Word I ST in the IORB

Bit

o N/A

1 N/A

Meaning When Bit Set to 1

2 Data service rate error

3 Lost line bid; RVI received

4 Communications control block service error

5 Conversational reply received (3780 only)

6 Long record

7 n - T",O "!'iI' ""' ~ 1_.... I:' me _ t.. _ _ 4- _ - - - - - -. :- ..::I
'" ~ "", .. ,"-AI v", .&..1 ... 1.1 ""'.LJu u\,,\..C.L~ .L't;:""'t;;~vt:u

1 = ETX character received

8 N/A

9 N/A

A Nonzero residual range

B Phone hang~up

C EaT character received

D Transparent message received

E NAK limit reached

F Fatal error: bus parity or memory error

Although nonexistent resource, bus. parity, and
uncorrectable memory errors are combined in bit
F, each occurrence is noted separately in the
resource control table (RCT). See Figure C-l.

Formats and Characteristics of BSC Input Data

The formats and characteristics of BSC input data for both
ASCII and EBCDIC are described and illustrated below.

Figure 10~7 shows the format and contents of BSC input data
received from another computer.

10-14 CB03

-_.- ~. -- -- --

(

II
SOM (CONTROL BYTE) DATA EOM BCC

~ ____ ~ ____________ ~~ILI __ ~ ____ -L ____ ~

SOM (START OF MESSAGE)
A ONE- OR TWO-CHARACTER SEQUENCE THAT IS STRIPPED BY
THE BSC LPH. .

CONTROL BYTE
THE CONTROL BYTE, IF SPECIFIED, IS THE FIRST BYTE OF THE
APPLICATION'S DATA.

DATA
INFORMATION STORED IN THE APPLICATION'S BUFFER AND
SPECIFIED AT READ TIME.

EOM (END OF MESSAGE)
A ONE- OR TWO-CHARACTER SEQUENCE THAT IS STRIPPED BY
THE BSC LPH.

BCC
AN LRC CHARACTER OR CRC CHARACTER THAT IS INSERTED BY
THE BSC LPH.

Figure 10-7. BSC Input Data Format and Contents

BSC CONTROL BYTE (RECEIVE)

When bit 4 of the IORB's device-specific word I DVS is set
to 0 at connect time (see Table 10-2), the BSC line protocol
handler uses the first byte of the application's buffer as the
control byte. Figure 10-8 shows the control byte's format and
content.

2 I 3

BITS 0 THROUGH 3
NOT APPLICABLE; NOT EXAMINED

BIT 4=0

DATA S,TORED IN APPLICATION'S BUFFER

BIT4=1
EOT RECEIVED; NO DATA STORED IN APPLICATION'S BUFFER

BIT5
NOT APPLICABLE; NOT EX.AMINED

BIT 6=0
DATA RECEIVED IN NONTRANSPARENT MODE

BIT 6=1
DATA' RECEIVED IN TRANSPARENT MODE

BIT 7=0
ITB OR ETB RECEIVED

BIT 7=1
ETX RECEIVED

Figure 10-8. Control Byte (Receive) for
BSC Line Protocol Handler

10-15 CB03

ASCII INPUT FOR BSC

ASCII input characteristics and format (Figure 10-7) are as
follows:

1. SOM (start-of-message) consists of the STX control char­
acter only.

"

2. The control byte (if specified at connect time) is
stored in the first byte of the applications' buffer,
and indicates the end-of-message (EOM) sequence.
When bit 7 is 0, it indicates detection of an ITB or ETB
control character; when 1, it indicates detection of an
ETX character. Note that bit 7 of both the control byte
and of I_ST are specified.

3. Data must be 7-bit ASCII with odd parity. The BSC line
protocol handler strips the parity bit and resets it to
zero when it store~ it in the application!~ buffer.

4. The EOM sequence, one of the three control chracters
ITB, ETB, or ETX, is indicated by bit 7 of the IORB
software status word I ST after a successful read is
posted. See Table 10-3 for bi t 7 ind icators.

5. The BCC (block check character) is described in
Appendix A.

EBCDIC INPUT FOR BSC

EBCDIC input format and characteristics are as follows:

1. SOM (start-of-message) consists of the STX control char­
acter only.

2. The control byte (if specified at connect time) is
stored in the first byte of the application's buffer,
and indicates the end-of-message (EOM) sequence, as
follows:

Bit 4 = 1 End of transmission (EOT) detected.
Bit 7 .- 0 ITB or ETB character detected.
Bit 7 = 1 ETX character detected.

3. Data must be 8-bit EBCDIC; it will not have any BSC con-
trol characters.

4. The EOM sequence, one of the control eharacters ITB,
ETB, or ETX, is indicated by bit 7 of the IORB software
status word I ST after a successful read is posted. See
Table 10-3 for bi t 7 ind icators. \'-.-j

10-16 CB03

(

(

5. The BCC (block check character) is described in
Appendix A.

TRANSPARENT EBCDIC INPUT FOR BSC

Transparent EBCDIC input format and characteristics are as
follows:

1. SOM (start-of-message) consists of the two-character
sequence DLE, STX.

2. The control byte, if specified at connect time, is
stored in the first byte of the application's buffer,
and indicates the 'EOM (end-of-message) sequence accord­
ing to the bit 7 setting (Figure 10-8).

3. Data may be any EBCDIC character, including BSC control
characters.

4. EOM (end-of-message) sequence may be one of the follow­
ing, indicated by bit settings of the IORB software
status word I ST, after a successful read has been
posted: -

I ST Bits

D 7 Resulting EOM Sequence

1 o DLE, ITB

1 o DLE, ETB

1 1 DLE, ETX

5. The block check character (BCC) is described in
Appendix A.

Formats and Characteristics of BSC Output Data

Formats and characteristics of BSC output data (both ASCII
and EBCDIC) are described and illustrated below.

Figure 10-9 shows the format and content of BSC data trans­
mitted to another computer.

10-17 CB03

~_S_O_M __ ~_(_C_O_N_T_RO __ L_B_Y_T_E) ______ ~DtT~ I EOM BCC

SOM
A ONE- OR TWO-CHARACTER SEQUENCE THAT IS INSERTED IN FRONT
OF THE DATA BY THE BSC LPH.

CONTROL BYTE
THE CONTROL BYTE, IF SPECIFIED, IS STORED IN THE FIRST BYTE
OF THE APPLICATION'S BUFFER.

EOM
A ONE- OR TWO-CHARACTER SEQUENCE THAT IS INSERTED BY THE
BSC LPH.

BCC
AN LRC CHARACTER OR CRC CHARACTER THAT IS INSERTED BY
THE BSC lPH.

DATA
INFORMATION THAT IS TRANSMITTED FROM THE APPLICATION'S
BUFFER BY THE BSC LPH.

Fig ure lO-q. Formi'lt i'lnd CO!1te!1t of ESC

BSC CONTROL BYTE (SEND)

n"+-n"+----t'-"'"

When bit 4 of the IORB's device-specific word I DVS is set
to 0 at connect time (see Table 10-2), the BSCline control
handler uses the first byte of the application's buffer as the
control byte. Figure 10-10 shows the format and content of the
BSC line protocol handler's control byte for sending data.

BITSO,1
NOT APPLICABLE, NOT USED

BIT2=1
CONVERSATIONAL REPLY RECEIVED

BIT 3=1
RVI RECEIVED (RETURN STATUS ONLY)

BIT4=1
SEND THE DATA THAT IS IN YOUR BUFFER AND,
AFTER IT HAS BEEN ACKNOWLEDGED, SEND EOT

BIT5=1
SEND AN RVI RESPONSE ON THE NEXT ACKNOWLEDGMENT
OF A READ

BIT 6=0
SEND NONTRANSPARENT EBCDIC

BIT6=1
SEND TRANSPARENT EBCDIC OR ASCII

BIT 7=0
SEND ITB OR ETB

BIT 7=1
SEND ETX

Figure 10-10. Control Byte (Send) for BSC Line
Protocol Handler

10-18

--~ -- ----~-

CB03

(

(

BSC ASCII OUTPUT

ASCII output characteristics and format are as follows:

1. SOM (start-of-message) consists of only the STX
character.

2. The control byte, when specified, is assumed to be the
first byte of the application's buffer, and indicates
the EOM (end-of-message) sequence, which is either ITB,
ETB, or ETX, designated as follows:

a. Bit 6 must be o.

b. Bit 7 = o. Send ITB or ETB. ITB is sent when the
record is odd numbered (1, 3, 5, etc.) and the two­
buffer feature is used.

Bit 7 = 1. Send ETX.

If the control byte is not specified, the EOM sequence
is defined by I_DVS as described in 4 below.

3. Data must be 7-bit ASCII; it cannot have any BSC control
characters.

4. EOM, which is either ITB, ETB, or ETX, can be indicated
by the control byte (see 2 above) or by the C- and D­
bits of the IORB device-specific word I DVS (Table 10-2)
as follows:

a. C-bit must be zero.

b. D-bit = o. Send ITB or ETB. ITB is sent when the
record is odd-numbered (1, 3, 5, etc.) and the two­
buffer f~ature is used.

D-bit = 1. Send ETX.

5. BCC (block check character) is described in Appendix A.

BSC EBCDIC OUTPUT

EBCDIC output characteristics and format are as follows:

1. SOM (start-of-message) consists of only the STX
character.

2. The control byte, when specified, is assumed to be the
first byte of the application's buffer, and indicates
the EOM (end-of-message) sequence, which is either ITB,
ETB, or ETX, designated as follows:

10-19 CB03

a. Bit 6 must be O.

b. Bit 7 = O. Send ITB or ETB. ITB is sent when the
record is odd-numbered (1, 3, 5, etc.)· and the two­
buffer feature is used.

Bit 7 = 1 •. Send ETX.

If the control byte is not specified, the EOM
sequence is defined by I DVS as described in 4
below.

3. Data may be 8-bit EBCDIC; it cannot have any BSC control
characters.

4. EOM (end-of-message), which is either ITB, ETB, or ETX,
can be ·indicated by the control byte (see 2 above) or by
the C- and D-bits of the IORB device-specifid word I DVS
(Table 10-2) as follows:

a. C-bit must be zero.

b. D-bit = O. Send ITB or ETB. ITB is sent when the
record is odd-numbered (1, 3, 5, etc.) and the two­
buffer feature is used.

D~bit = 1. Send ETX.

5. BCC (block check character) is described in Appendix A.

BSC TRANSPARENT EBCDIC OUTPUT

Transparent EBCDIC output characteristics and format are as
follows:

1. SOM (start-of-message) consists of the two-character
sequence DLE, STX.

2. The control byte, when specified, is assumed to be the
first byte of the application's buffer, and indicates
the EOM (end-of-message) sequence, which is either DLE
ITB; DLE ETB; or DLE ETX, designated as follows:

a.Bit 6 must be O.

b. Bit 7 = O. Send DLE ITB or DLE ETB. DLE ITB is
sent when the record is odd-numbered (1, 3, 5, etc.)
and the two-buffer feature is used.

Bit 7 = 1. Send DLE ETX.

10-20 CB03

/

(

(

3.

4.

If the control byte is not specified, the EOM sequence
is defined by I_DVS a~ described in 4 below.

Data may be any EBCDIC character, including any BSC con­
trol characters.

EOM, which can be either DLE ITB; DLE ETB; or DLE ETX,
can be indicated by the control byte (see 2 above) or by
bit 4 and bit D of the IORB device-specific word I DVS
(Table 10-2) as follows:

a. Bit 4 must be 1.

b. D-bit = O. Send DLE ITB or DLE ETB. DLE ITB is
sent when the record is odd-numbered (1, 3, 5, etc.)
and the tWo-buffer feature is used.

D-bit = 1. Send DLE ETX.

5. BCC (block check character) is described in Appendix A.

10-21 CB03

1"-\
(

/

j

APPENDIX A

COMMUNICATIONS SUBSYSTEM

Communications software, as discussed in this manual, is a
functional package referred to as the communications subsystem,
and which comprises:

o Communications supervisor
o Line protocol handlers (LPHs)
o Multiline communications processor (MLCP)
o Multiline communications processor driver

COMMUNICATIONS SUPERVISOR

The communications supervisor is the physical I/O interface
between a communications application program and the devic~/files
it uses. It provides the following services, similar to those
provided by the Monitor, to an application:

o Validates and queues, on a first-in/first-out basis, an
application's requests for services, then activates the
appropriate line protocol handler.

o Dequeues requests for services, and through system soft­
ware, interacts with the application when the requested
I/O service is completed or an unexpected event occurs.

o Services time-outs for the line protocol handlers.

o Controls modems in detecting phone connects and
disconnects.

o Disconnects phones when requested by the application.

LINE PROTOCOL HANDLERS (LPHs)

The line protocol handlers transfer data between a communi­
cations device and the application that uses it.

A-I eB03

The communications subsystem and its line protocol handlers
do the following:

o When the system is bootstrapped:

Validate specifications for device types by reading
the device's identification sequence

Initialize the device by sending to it the priority
level at which it is to operate

o Validate the application's input/output request block
(IORB) fields

o Convert user-supplied functions into device-specific
instructions, initiating the I/O operation

o Modify channel numbers to even or odd values·, according
to whether the function is input or output

o Set a timer in order to detect a device fault

o Detect and process ATTENTION signals

o Read return status indicators from a devide to ascertain
result of an I/O operation

o Process error recovery, when possible

o Process unsolicited interrupts

o Build the return status word indicating logical result of
the I/O request, and through the Monitor, passing that
value to the application program

o Pass a v~lue indicating the logical conclusion of the I/O
request, through the Monitor, to the application program.
(Table 6-1 lists the return status codes).

o Report the following errors and statuses:

Convert hardware return status into the standard soft­
ware status and insert it into the software status
word I ST of the application's IORB (see Table 6-3) •

Place the residual range value (see Table 6-2) into
the I RSR entry of the IORB.

A-2 CB03

(

MULTILINE COMMUNICATIONS PROCESSOR (MLCP)

The MLCP includes a channel control program (CCP) that is
associated with each line protocol handler (see Figure A-I).

Through the appropriate hardware device-pac, the channel
control program controls transmission of data over communication
lines. Its functions are:

o Process characters by storing them in, then extracting
them from, a buffer

o Insert and delete (or strip) headers and trailers

o Insert and delete control characters preceding or follow­
ing a message to or from a remote terminal or host
computer.

The MLCP Programmer's Reference Manual describes the MLCP
and related programming information.

MULTILINE COMMUNICATIONS PROCESSOR DRIVER

The MLCP driver receives MLCP orders from the line protocol
handler and activates the appropriate channel control program
(see above and Figure A-I) to process the orders. The driver
also:

o Processes a line protocol handler's requests for control
function~ or for data

o Services interrupts from the MLCP and passes them to the
line protocol handler

MODEM SUPPORT

For asynchronous devices, the communications subsystem sup­
ports the direct-connect feature, and provides the following
modem support:

o Bell System Data Sets, Types 103A, l13F, or 202
o Honeywell modem bypass
o Any user-defined (at system building) modem type

For synchronous communications, the communications subsystem
supports the direct-connect feature, and provides the following
modem support:

o Bell System Data Sets, Types 201A, 20lB, 201C, 203, or
208A

o Honeywell modem bypass

A-3 CB03

o User-defined (at system building) modem types

AUTO CALL UNIT

When included in the system (at system building) an Auto
Call Unit (autodial feature) performs the following to initiate a
line connection with a remote device:

1. The system attempts to dial a line, using a list of
telephone numbers supplied at system building, the first
entry on the list being zero. The first number to be
dialed can then be specified with a set dial ($SDL)
macro call or with the set ACU telephone number (SDL)
command. If the first number on the list is not speci­
fied (by the macro call or command), the system skips to
the next number on the list.

2. Dials each number on the list three times at 40-second
inLervdl~ until cne ~lSC is exhausted or a connection
made, whichever comes first.

3. Checks that a connection to a modem is made.

4. Passes control to the application.

The Auto Call Unit supports Data Auxiliary Set Automatic
Calling Units 80lA and 801C.

Two data set options are required to use the Auto Call Unit:

o The option that terminates the call, through the data
set, after the DSS (data set status change) goes on.

o The option that stops the ACR timer when the DSS goes on.

COMMUNICATIONS SUBSYSTEM OPERATION EXAMPLE

The following example, and Figure A-I, broadly indicate the
interaction of the communications subsystem's components in the
processing of a connect, write and then disconnect request. The
operations described apply to either the file system or physical
I/O interface, without reference to a specific device or line
protocol.

A-4 CB03

(
Example:

1. The communications supervisor takes the application's
connect request through the file system or physical I/O
interface, then passes it to the phone monitor within
the multiline communications processor.

2. The phone monitor makes a line connection to the device.

3. The appropriate line protocol handler processes the
logical connection.

4. The communications supervisor passes the application's
subsequent write request to the line protocol handler,
which translates the request into MLCP driver orders.

5. The line protocol handler calls the MLCP driver, which
issues the orders to the MLCP.

6. The channel control program in the MLCP processes the
write order, transmitting the data to the device, during
which the line protocol handler suspends itself.

7. When the MLCP senses completion of the data transfer,
the channel control program returns an interrupt that is
initially processed by the communications supervisor and
the MLCP driver.

8. The MLCP driver reactivates the line protocol handler
(at the interrupt level) to minimally process the
interrrupt.

9. When processing is completed, control passes to the
M LC P d r i v e r •

10. If additional processing is necessary, the line
protocol handler can schedule itself, on a noninterrupt
basis, to do postinterrupt processing of the interrupt.

11. The application's disconnect request is processed the
same as a connect request:

a. As requested by the communications processor, the
channel control program disconnects the physical
connection.

b. The line protocol handler does the necessary logical
disconnect processing.

A-5 CB03

)10
I
0\

()
Il'
o
w

r~

lJ

HIGHER LEVEL LANGUAGES

APPLICATION
FORTRAN
PROGRAM

APPLICATION
COBOL
PROGRAM

Figure A-I.

APPLICATION
FILE SYSTEM
ASSEMBLY
PROGRAM

FILE SYSTEM

FILE
MANAGEMENT

DATA
MANAGEMENT

STORAGE
MANAGEMENT

APPLICATION
PHYSICAL
110 ASSEMBLY
PROGRAM

Simplified Flow - Communications Subsystem

"

PHYSICAL I/O

REQUEST
110
MACRO
CAll

()

>
I

--.J

(')
III
o
w

~

COMMUNICATION SUBSYSTEM

A

LEGEND

OS = DATASET

COMMUNICATION
SUPERVISOR

MB = MODEM BYPASS

Figure A-I (cont) •

MLCP
DRIVER

/~(

MLCP

LINE
TABLES

TTY
CCP

VIP
CCP

PVE
CCP

BSC
CCP

PHONE
MONITOR

Simplified Flow

MIU

HONEYWELL
~HOST(FILE

TRANSMISSION)
INONPOLLEO(IITRIBUTARY(

tNONPOLLEOI

HONEYWELL
HOST
SYSTEM

HONEYWELL
HOST
SYSTEM

HONEYWELL
HOST

Communications Subsystem

~'I

COMMUNICATIONS SUBSYSTEM ERROR AND CORRECTION PROCEDURES

GCOS uses the following pro.cedures including parity check­
ing, block checking, and time-out, to detect ~rrors occurring
over communication lines.

Parity Error Check

The system sends a parity (check) bit with each transmitted
character. The parity bit, plus the number of character bits set
to 1, will always be an odd- or even-numbered total for every
character, according to whether transmission is synchronous or
asynchronous. The standard for synchronous transmission is odd
parity (total is an odd number); for asynchronous transmission it
IS even parity (total is an even number).

Block Error Check

Gees uses two ki nus 0 L UJ.Ol:K. ~.t.t o.t dl~l:K.ln9' {;.n~ lO1l9.1. {;.ua.l.­
nal redundancy check (LRC) and the cyclic redundancy check (CRC).
Their check characters are known as block check characters (BCC) ,
and the checking calculation result is a block checksum.

LONGITUDINAL REDUNDANCY CHECK (LRC)

The LRC is a form of parity check that is applied to the
entire message. The system appends an LRC character, which is an
exclusiv~ OR of the message characters, to every message.

The VIP and PVE line protocol handlers use the LRC method.

CYCLIC REDUNDANCY CHECK (CRC)

The CRC method is block oriented. The system transmits data
without appending a parity bit on every character. The system
computes the CRC character(s) with special 'algorithms applied to
the data to be checked, ihen appends these characters to the
message.

Only the BSC line protocol handler uses the CRC method.

BSC BLOCK CHECK CHARACTER (BCC)

In ASCII transmission, the 8-bit block check character BCC
is the result of an exclusive OR operation on all bits received,
beginning with the first character following the STX, and ending
with the ITB, ETB, or ETX control character. It is based on the
pol ynom ial X8 + 1.

In EBCDIC transmission the block check character (BCC) is 16
bi ts, and is. calculated by the system wi th the checking poly­
nomial 1. + X2 + X'5 + X16 ' •

A-8 CB03

(

(

Time-Out Check

After sending a message, the transmitting device/computer
waits for an acknowledgment from the receiving device. When
there is no acknowledgment after a specific interval, the sender
retransmits the message.

When there is no acknowledgment after a specified number of
transmissions, the sender takes whatever action is programmed
into the system.

Some procedures provide that the receiving device, on
receipt of erroneous data, request retransmission from the
sender, using the ACK/NAK response method. (See Appendix E for
ACK/NAK definitions.) In this procedure, the sending device
waits for an ACK or NAK response (or elapse of the time-out
interval) before continuing the communication.

A-9 CB03

(

APPENDIX B

CHANGING TERMINAL'S FILE CHARACTERISTICS

Before an application is executed, the user can change the
file characteristics of a terminal, e.g., line length or record
size, detabbing, device type (input, output, etc.)~ with the sys­
tem command STTY (set terminal characteristics) or with the $STTY
macro call.

This permits the user to modify those terminal character­
istics established at system building.

k Table B-1 shows examples of possible values for the device-
\ specific word and file-indicator word arguments of the STTY com­

mand and the $STTY macro call (described in the Commands and
System Service Macro Calls manuals, respectively).

The table indicates the following:

Column 1 - Device/file operational mode; for BSC, whether
advanced or basic data transmission mode.

Column 2 - Input/output operations specified by the corre­
sponding argument values; defined at the bottom
of the table.

Column 3 - Argument values for the device-specific word
(I DVS) for the named device, in hexadecimal.
See the appropriate device-specific IORB field
value tables in Sections 7 through 10.

Column 4 - File-indicator word argument values, in
hexadecimal.

NOTE: For BSC, the leading control byte allows EaT, ETB/
ETX, and RVI control characters, and transparent
mode, to be sent.

B-1 CB03

Table 8-1.

Device/File
Operational Mode

Interactive

Interactive

Interactive

Interactive

Forms

Forms

Printer Emulation

Printer Emulation

Data Entry

Data Entry

Interactive

Interactive

Interactive

Interactive

Forms

Forms

Forms

Printer Emulation

Printer Emulation

Receive-only printer

Receive-only printer

Possible Argument Values for STTY Command
and $STTY Macro Call

Input/Output Operations Device-Specific File Indicator
(See aelow) Argument Value Argument Value

For TTY

CR, LF, E, ca, PH, QA 0030 3180

CR, LF, E, ca, QA 0031 3180

CR, LF, E, PH, QA 0830 3180

CR, LF, E, QA 0831 3180

PH, QA, PG OCOC 3180

QA, PG OCOD 3180

CR, E, ca, PH, QA 0020 5180

CR, E, ca, QA 0021 5180

PH, QA, TR OCOB 31BO

QA, TR OC09 3180

For VIP

CR, LF, PO, ca, PH, QA, TM, PL 0110 3180

CR, 'LF, PO, ca, QA, TM, PL 0111 3180

CR, LF, PO, PH, QA, TM, PL 0910 3180

CR, LF, PO, QA, TM, PL 0911 3180

QA, PL 1909 5180

PH, QA, pr; 1908 3180

QA, PL 1909 3180

CR, ca, PH, QA 0000 5180

CR, ca, QA 0001 5180

CR, ca, PH, QA 0000 5180

CR, ca, QA 0001 5180

8-2 C803

\'L j

,{

\~

(

Table B-1 (cant).

Device/File
Operational Mode

CR,

CR,

Advanced CB,

Advanced CB,

Basic PH,

Basic QA,

Basic PH,

Basic QA,

CR - Carriage return

LF - Line feed

possible Argument Values for STTY Command
and $STTY ~acro Call

Input/Output Operations Dev i ce-Speci fie File Indicator
(See Below) Argument Value Arg ument Val ue

For PVE(polled VIP emulator)

CB, QA 0001 3180

CB, PH, QA, FC 0080 3180

For BSC

PH, QA 0000 2980

QA 0001 2980

QA, ETB 0800 2980

ETB 0801 2980

QA, TR, ETB 0808 2980

' TR, ETB 0809 2980

TR - Transparent text

Fe - Hardware function codes present

E - Echo input characters PO - Page overflow recovery
(home cursor)

CB - Control byte

PH - Physical disconnect (hang up)

QA - Queue abort

PG - Page transfer (forms mode)

TM - Time-out on read

PL - I-second poll interval (ignored
if nonpolled line)

ETB - Send ETB/ETX characters

B-3 CB03

\

"

(

(

APPENDIX C

RESOURCE CONTROL TABLE (RCT)

The resource control table (RCT) is the interface between
the line protocol hanoler and its devices. For each line proto­
col handler and device, the system builds an RCT that contains
the characteristics uniquely describing that device.

The RCT contains the physical data that the line protocol
handler needs to interface with the device. The RCT also
includes a work area where every line protocol handler can save
whatever values, pointers, etc., that it needs.

Figure C-I shows the format of an RCT for communications
devices. Table C-l defines the communications-specific items in
the RCT. Table C-2 defines the terminal attributes and status
field (R_STS).

C-I CB03

0 9 A F

CHANNEL LEVEL

R TYP- LINE ADAPTER TYPE

FLAGS (0)

DEVICE STATUS (01 '" R STS TERMINAL ATTRIBUTES
AND STATUS

ADDRESS OF ATTENTION
SUBROUTINE

R MSG MESSAGE COUNT I NAK COUNT

;

NOTE: THE WORD R-FLGS WILL HAVE BIT 6 SET.
INDICATING THAT THE CONNECT/DISCONNECT
FUNCTIONS ARE ALLOWED.

~
BIT MEANING IF SET

0

-
(RESERVED)

-

5

6 CONNECT/DISCONNECT FUNCTIONS SUPPORTED

7 DEVICE RESERVED

8 ATTENTION INTERRUPT HAS OCCURRED

9 DISABLE DEVICE ON ATTENTION INTERRUPT

A DEVICE DISABLED

B LPH-CORRECTED ERROR OCCURRED

C CORRECTED-MEMORY ERROR OCCURRED

0 NONEXISTENT RESOURCE ERROR

E BUS PARITY ERROR

F UNCORRECTED MEMORY ERROR OCCURRED

Figure C-l. Format of Communications Resource
Control Table (RCT)

C-2 CB03

./

Table C-l. Communications-Specific Items in the RCT

Item Description Use

R STTS Hardware status Device hardware status; mapped into
- software status word I ST of the

(IORB) (see Table 6-3) :-

R STS Term inal attributes See Table C-2 below.
- and status

R MSG Bits 0 through 7: Count of messages
- sent to and received from the term i-

nal (maximum 256) • For VIP devices,
count includes certain control mes-
sages exchanged on the line, thus
does not represent the number of
tex t messages.

Bits 8 through F: Count of NAKs
sent to and received from the termi-
nal (max imum 256) •

Table C-2. Terminal Attributes and Status Word R STS of the RCT

Bit Meaning When Bit Set On

0-9 Reserved for system and later use

A Device disabled by the system

B Input possible

C Output possible

D Device connected

E Device physically enabled

F Device logically enabled

(

C-3 CB03

(-

(

APPENDIX D

SAMPLE APPLICATION PROGRAMS

COBOL PROGRAM EXAMPLES

COBOL TTY or VIP Application Example

The COBOL source program listing in Figure D-1 is an example
of an interactive application that involves either VIP or TTY
dev ices.

This program (named CARCOM) processes commands entered from
the operator terminal, and includes input/output operations to
two communications terminals (either TTY or VIP). An input and
output file is assigned to each device. The program uses the
operator terminal for entering commands and for receiving error
messages. Input/output processing messages are displayed on the
line printer.

COMMANDS IN THE COBOL EXAMPLE

The program processes the following interactive commands
received from the operator terminal. The command COMND is
entered from either terminal 1 or terminal 2 (see "File
Assignments" below).

D-l CBD3

Command

OPEN filename

CLOSE filename

ROUTE

GO

COMND
(entered from
terminal 1 or 2)

STOP

Program Action

Opens the file

Closes the file

Routes terminal output to other
terminals as input

Exits command mode, looks for input
from terminals

Exits terminal input mode; returns to
operator terminal in command mode

Stops execution

COBOL EXAiviPLE

The program CARCOM uses the following tile names and corre­
sponding logical file numbers (LFNs):

File Name LFN Device

COMIIN 3 Input terminal 1

COMIOT 4 Output terminal 1

COM2IN 5 Input term ina 1 2

COM20T 6 Output terminal 2

PRINTER 1 Printer

ERROR MESSAGES IN COBOL EXAMPLE

When appropriate, the COBOL example CARCOM displays these
messages, in the formats:

I
OPEN 1 CLOSE
READ
WRITE

ERROR FILE I COMIIN)
COMIOT
COM2IN
COM20T

zz - FILE STATUS

zz = File status code

Program actions resulting from these messages are:

D-2

-- - ~- -- -~

CB03

(\

j

OPEN or CLOSE message:

Returns control to the operator terminal

READ or WRITE message:

Tries the I/O operation four times; then close the
file and return control to the operator terminal

STATUS CODES IN COBOL EXAMPLE

The program CARCOM includes checks that verify operation of
COBOL error returns and information status returns. The check
codes are:

91 - For a read operation, indicates there is no data.
For a write operation, indicates that the device is
busy.

95 - Record length error.

EXECUTION OF COBOL TTY OR VIP PROGRAM EXAMPLE

When the program begins to execute, the operator terminal
displays the message:

TYPE COMMANDS, THEN GO.

At le~st two files on the same device must be open to pro­
ceed to the next level of command input. At this level, the pro­
gram displays the message:

COMMANDS?

The operator may then enter commands to: (1) open files;
(2) close files; (3) route (message switch); (4) activate the
read/write loop; or (5) stop.

NOTE: Activating the read/write loop deactivates command
input from the console and causes the application to
check open terminals for input.

To return to the command level, the operator types COMND
from an active terminal.

A typein from a remote terminal is echoed back to that
terminal and displayed on the second terminal.

D-3 CB03

GCOSb COAOL
SOURCE PROGRAM

t
2
3
4
5
b
7
8
9

10
11
12
13
14
15
fb
17
18
19
?O
?1

TDFNTIFlrATlnN DTVtSTON.
PROGRAM-TO. rARCOM.

* COAOl rOMMUNTCAT~ONS

*

*

*

*
*

*

*

*

FNVIRONMFNT nIVISION.
CONFTGURATTON ~ErTTON.
SOIlRCE-cnMPUTER." HTS-SFRTES-~O LFVFL-b.
neJECT-cnMPUTER. HTS-SFRTE~-hO LFVFL-b.

T NPUT-nUTPIITSFC TI nN.
FILE-cnNTROL.

~ELECl COMI IN
ASSI~N Tn OC-M~O,

ORGANI7ATlnN I~ SEDUFNTIAL WTTH VLR,
ACCESS MnOF T S SFQIJENTT AI.,
FIlE STATU~ TS I~I-STAT.

SHEr.T cnMIOT
ASSIr.N Tn nO-MSD,
nRr.ANI7A'InN IS ~EDUFNTIAL,
AcrE~S I"\nOF TS SF(JIIPITTAl.,
FIlE STATU~ TS OTt-STAT.

ClELHT CnM?IN
hSRiAN 10 ot-MSO,
nRr.AN17ATInN I~ SEDUFNTIAL
"lIcrE~S MnOF TS SF(,JIJEMTTAt,
FILE STATU~ TS]N2-STAT.

qUErT CnM'OT
ASSIr.N TO OF-M~D,
nRr.ANI7AT]ON IS S~DUFNTIAL,
AcrEqs !VInOF TS SFQIIEMTTAl.,
FILE STATU~ TS OTl-STAT.

SEIErT PRINTFII E
ASSI~N Tn OA-pRINIFR,
ORr.ANI7ATInN IS SEDUFNTIAL,
AcrE qs !VInOF T S SFQIIE MTT Al ,
FILE STATUq TS PRl-STAT.

nATA OTVTSTON.

FIl E SFCTION.
FD r0!o11TN

PLOCK rONTAINS 1 RFcnRns,
lAPEL RErO~DS ARF n!VITTTEo.

01 TNI-Rf.r

FD rOMInT
PLnCK CONTAINS 1 RFcnRns,
I ARE! RECORDS ARF "MTTTEn.

01 OUTcnMl-REC.
02 CTL! PTC x.
02 oT1-REr PTC Y(AO'.

FO r0!o12TN
RLnCK rONTAINS t RFCnRns,
LAREI RErORDS ARF "MTTTEn.

01 TN?-REr PIC X(A01.

FD rOM20T
ALOCK CONTAINS I RFCORns.
LAREL RECORDS ARE OMTTTEn.

Figure D-1. COBOL TTY or VIP Application Example

D-4

/

CB03

62 111 nUTCOM2-REr •

(63 02 I':TL2 "Ir X.
64 02 nT?-REr PTe l(~O).

65 * 6b FO pRJNTFTLF
67 ~LnCI(CONTAIt.JS 1 RFcnRns,
68 l AqEL RErOROS ARF nMTTTEn.
6'1 01 "RT-PEr PTC l(120).
70 * 71 IIIORKJNr.-STORAGF SErTTON.
72 01 ('TITLE.
73 02 FILLFR pir XlI VALUE S"ArE~.
74 02 FIt. LFR plr XftC;) VAlUF "CI"IBI"IL COW-II TF.~T".

7~ 01 rCMNDI.
76 02 FILLFR "Ir xx VAllIE SDArE~.

77 02 FILLFR pIr X(27) VAlUF "TYPF FIlE cn""MANOS, THEN r.o".
78 02 FIlLFR pIr xx vnllE S"ArE~.
7'1 01 r.C~Nn2.

AO 02 FII LFR "Ir Xl(VALliE spArE~.

Al 02 F llLFR pIr xun VALUE "rO~MANn?".

A2 01 HEAOt.
A3 02 FIlLFR pIr X(S?) VAl UF ~pAeFS.

~4 02 FII.LFR 1'1(' xnC;)· VAtUF "eI"lSOL enM~ nST".
AS 02 FltLFR PIC X("I') VAt UF ~PAeFs.

AS 02 FIt LFR pIr X(5') VAl UF ~PACFS.

A6 III HOR2.
A7 02 FIlLFR PTe X(6) VAtU~ ~PAeFS.
A8 112 FILLFR pTe X(27) VALliE "**** TNpUT "'sr. FILE: "
Aq 02 HOR2FIL Pyr If(,,) VAllIE. SPACES.
qo /11 HOR3.
ql 02 FILLFH PTe X(6) VAtUF SPACFS.
q2 02 F IL LFR PTe X(2") VALliE "**** nUTPl1T M% FTLF: "
q3 112 HORJ"FIL pir i(,,) VAlliE S"ArE~.

f~.' QII 01 lOAorOMP.
~1, qs 02 FILLFR plr Xl(VALliE S"ArES.

qb 112 FILLFR "Ir X(13) VAl UF "LI"IAn rOMPLETE".
Q7 01 rONI~I.

qa 112 ('""OFtO.
qq 03 GOt H.O pIr X(2) VALliE spArE~.

100 03 FILLFR DIC xn) V~LIIE S"ArE~.
1 0 1 02 FltLFR plr x VAtUF SPACFS.
102 02 FILFI.O "1(' X(6) VALliE SPArES.
1113 01 rOMlt.Jl RFOFFTNFS CONTN.
104 02 FIlLFR "Ir If(Ci).

\ 1 liS 02 FItHOt plr l(U,) •
Illb 01 OSI<-RE('.
107 02 TTFMNUM 1'1(' XXX VAtUF ClPACFS.
108 02 fll LFR plr xx VALlIE SPACES.
111'1 02 OESCF,LO I'll': X(20) VAtUF SPACFS.
110 02 FILLFR "Ir Xl(VALliE SPACES.
1 t 1 02 IHYRFO "II': qQqq VALliE ZFRn.
112 02 FILLFR I'll': xnfll) VALliE SPACEC!.
113 01 TNt-C!TAT PTe xx VAtUF ClPACFS.
114 01 nTl-~HAT PTC xx VALUF Clp.CFS.
1 t 5 III TN?-STAT PTC XX VAtUF ClPACFS.
11 b 01 I'IJ?-!'H AT PTe Xlf VAL UF SPACFS.
117 (H ~RT-STAT PIC xx VAtUF "PACe'S.
118 til RDR-STAT PTC XX VAlUF SPACES.
119 01 JNVF-STAT PTC xx VAlUE: gPACFS.
It-O * 121 17 RKFY-I PTC qqq VALliE ZFRIl.
1?2 17 nO-IT PTC XX VAlUF "Go".
1?3 17 OPNFTL PIC X(4) VALliE "OPFN".
124 17 CLSFTL PIC X(51 VAlliE "('LnSE".

(1?5 17 LOADF PTC l(II) VAtUF "LOAO".

Fig ure D-l (cant) • COBOL TTY or VIP Application Example

D-5 CB03

lit&
In
1'-8
lit9
no
nl
n2
In
"4
"5 n&
B7
n8
n9
llJO
III 1
1112
143
144
145
tllb
147
1118
149
1';0
1"1
1'52
1"3
1"4
PiS
1"&
1'57
1'58
l"q
1~0

1~1

162
163
164
165
lftb
167
11.8
16q
170
171
172
173
174
175
17b
177
178
179
1"0
1"1
1"2
lA3
1"4
1"5
lAb
lA7
1"8
l"q

Figure

77
77
77
17
77
77
17
77
77
77
77
77
17
77
77
77
77
77
77
77
77
77
77
77
17
77
77
77
77
77.
77
17
77
77
77
77
77
77
77
77

* 1'1

1'1

nl

D-l

FNDER PTe X(4) VALUF "EnF".
TNt PTe X(~) VALUF "cnMlIN".
nT' PTC X(6) VALUF "cnMl0T".
TN? PTC X(~) VAlUF "cnM)IN".
OT, PTC X(ft) VAlOF "cnM)OT".
PD~F PIr Xfbl VALliE "CAPDTJ(",.
TNVF PIr xrbl VALliE "TNVFTl".
Wt-In.nRn PTC q VALliE ZFRn.
wHn·FR~ PTe q VALliE ZFRn.
FILcnUNT PIC qq VALliE ZFRn.
PTFFLG PIr. qq VALliE ZFRO.
~OllTF PTC X(") VAl UF "ROUTE".
COMD~M PIt" X(5) VALliE "r.OMN,,1I.
I(EYEQ PIt': x(n) VAl UF "RFLATTVF KEY 11

~DlC'yMM PIt" xq~) VAl UF "INVALTD KFy= ..
nRnE~CMD PIr xx VALltE "n "
IIP"ATCMD PIr Xl(VALliE "" "
tlJ~PTTM PIC xx VALliE "1'1 "
CCr.HAR PIr. x VAIUF "A".
~IOTIFY Pir. qqqq VALII~. q~qq.

~wTTr.H' PTC qq VALUF 1EPO.
~WTTr.H? PTC qq VAtUF 7EPO.
TNVSWTr.H PIt" qq VALliE ZFR".
TR~'SWH'H PIr. qQ VALliE ZFRn.
~IATTN' PTC Q9 VALUF 7E~0.

~TATOT' PTC Q9 VAIUF 7EQO.
STATTN? PTC Q9 VALUF 7E~O.
~T.TnT? PTe Qq. VALUF 7E~O.
FRSU M1TN PIC qQ VALliE ZFRn.
FR~UMlnT PIr. qQ VALliE ZFRn.
FRqUM2TN PIr. qQ V~LIIE 2FRn.
FR!=IUM2nT PIr qt) "liLliE ZFRn.
!=IUM9Tl PIt" clf,,' VALliE ZFRn.
~UM9T2 PI" 9(1I) VALliE ZFRn.·
IHYSIIB "II': SQqQ9 VALUF 7EPO.
NMCKPSLI PIC q VAl UF 7EOO.
MAXNItM PIr qqq9 VALliE 2FRn.
MAXITMNO PIC qQq VAIUF)on.
MAXQTY PIr. qQqQ VALliE lnon.
rl1l(NIIM PIr. qQ9Q VALliE ZFwn.

TNSPFCTI •
n2 T"NrMn PTC
n2 FILLFR PIr
npnSPL.
1'2 FIlLFW PIt"
n2 nFLNAM PIr.
1'2 FILLFR PIr.
1'2 FILLFR PIr
nPFRnSPL.
1'2 FIlLFR PH~

1'2 FIlLFR PIt"
n2 nFLNFR PIt"
02 FHLFR PIr.·
o?,. FIlLFRDIr
I'? KEYEPR 01"
oOFRMSr..

Y(") VALUF qpACFS.
X(7~) VAlUF ~PACFS.

xx VAlU~ SPArES •
. X(b) VALliE SPA~ES.

XX VALliE SPACES.
X(b) VALlIE "nPFNFD".

XX VAlliE SPAr.E~.
X(19) VALU~ ·OPEN FRROP
X(h) VIIlIIE SPAr.E~.

XU») VALlIE SPAt"EC!.
X(8) VALliE "CHAlliS: 11

Xlt VALliE SPArEC!.

1'2 FIILFR PJ,. Xl(VlllIIE SPA"E~.

1'2 FILLFR PIr X(II) VAIUF "RFAn FROUD
n?, ~DFRFII. PTC X(~) VAIUF qpACFS.
1'2 FILLFR PIr. X(b) VALliE SPArf~.

02 FII lFR "II")((8) VALliE 1IQTAI"S= "
1'2 ODFR!HAT PIr XX VALliE S"ArE~.

WRFkMSr..

~ILf: 11

~ILE! "

(cont) •. COBOL TTY or VIP Application Example

D-6 CB03

--
'I qo 02 FILLF"R PIt" Xl(V~L"E SP'\t"E~.
Icn 02 FIlLF~ PIt" X f1 cl) VAl UF" "w"ITE EQ~nR F"Il.f: "
Iq2 Ol WRFRF"II, pTC l((,,) \!AlUF C:PACF_S.
Iql 02 F llLF"R PIt" Xfbl VALliE SPAr'EQ.
Iq4 02 FILLF"R PIt" X(t\l VALliE "~T"TIIS: II

Iqs "2 "'RFR~T6T PIt" xl(V AlIlf SPAt"E~.

Iq6 III t"L"SPL.
I q7 02 FILLFR "It" Xl(VIIL"E SPArE~.

ICJa 112 t"Fl N/Hol PIt" X(bl VALliE: SPAt"Eq.
Iqq 02 FILLFR PIt" Xl(VftL"E SDACE<: •
200 02 FltLFR PIt" xfbl II ~LIIE "t"LnSFD".
201 01 t"LF"HMSr..
202 02 F"IILFH DIr Xl(VALliE spArEq.
203 02 FJLLFR PIt" X rt 0) VAIUF "CIO~E EQRn~ F"HE:- "
204 02 t"Fl.NFH PIt" X(bl VALliE SPAr'Eq.
2115 n2 FIILF"R PIt" Xf6l VALliE SPAr'Eq.
2116 "2 F II LFR plr Xf8l VALliE "<:TAT"5: "
207 02 r.KF"t'FRQ pTe)'X VAl IJF qpIICFS.
2n8 01 RAI'IFTL.
209 112 FIILFR PI" xy V ~ lIlE SOA"E~.

210 112 FILLF~ PIt" Xli") VALUF "II. LFG ilL FTLFNAMF".
211 01 RA"CMD.
212 02 F II LFIoI "It" xv VALliE SOM~Eq.

213 02 FIILFR °It" Xq·q VAtUF " ItLFGIIL cn/.4MA"IO".
214 01 ~'OTfClUM.

215 02 F II LFR pJr Xli . VALliE SPAt"Eq.
216 02 FILLFR PIt" X(bl VAlliE "F II E! " .
217 O? FR P 9T plr l((,,) VlIlIIE 5p ArECI.
218 02 FILLFR Pit" X(b) V liLliE SPAt"ECI.
219 02 FIILFR PIt" X f1 0) VAl UF "S'T A TUq: 9T". .. 2"0 III cqnprop.

'~ _ 2:> 1 Ol FItLFR pIr Xl(VIILIIE SPArE~.

2;>2 02 FltLFH oIr X ft 0) VAl UF "STOP rOROL".
2:>3 01 IC'EY-~Sr..

2:>4 02 FIlLFR PIt" V(Ibl V"LIIE "F II E KFY STATUC; "
2"5 02 RA"-IC'EY PIt" VX VIIL"E spArE<:.
2:>6 02 FILLFR PTC XC!;» VAl UF " TE!I;T FAlLEn".
2n * 2:>8 pRnCFDIIRF I'IIVIqInN.
2:>9 * 2'30 PHFAI'S.
2'31 MOVE Cr.C~AQ TO CTL I.
2~2 MOVE crCHAQ TO CTL?
in ~ISPLAY CTITLE.
2]4 OPFN OIlTPUT PRTNTFTLF.
2]5 MOVE HF:Anl Tn PRT-~H.
2'b WRTTF. PRT-~EC AFTE" ADVA"ICTNr. PAGE.
2]7 PCMDt.
238 tJlC;PLAY r.CMNnl.
2]9 MOVE SPAr.E~ TO CONTN.
240 ACCEPT CONTN.
241 TF CMDF'Ln TS Ef')UAL Tn nPNFTL Gn TO OPE'" IT •
242 TF CMDFLn TS E~UIIL Tn t"LClFTL Gn TO ClO~IT.
243 nlqpLAY. RAnCMO.
244 roo Tn PC M01.
2115 PCMO?
211b nI~PLAV r.CMNI'I2.
247 MOVE SPACES TO cnNTN.
248 lIerE"T enNTN.
249 TF CMDFLn TS EI)UIIL Tn npNFTL Gn TO OPEt.llT.
2C;0 TF CMOFU) TS EI)UIIL Tn nqfTL Gn TO Cl oqIT.
21\1 TF eMOFLr'I TS EnUAL Tn ~OIlTF r,0 Tn SETRnUTE.

(21\2 TF CMOFLr) TS EI)UAL Tn nO-IT r.o Tn "EA01.

Figure D-l (cont) • COBOL TTY or VIP Application Example

D-7 CBD3

2Ci3
2Ci4
2CiS

2C;&
2Ci7
2Ci8
2C;q
2"0
261
2"2
2"3
264
265
2"&
2"7
2"8
2M
270
271
272
273
274
275
27&
ill
278
27q
2AO
2Al
2A2
2A3
2A4
2AS
2A&
2"7
2AS
2"q
2QO
291
292
293
294
295
29('
297
298
29q
3110
31'1
3112
3113
3114
311S
311b
3117
3118
311q
310
311
312
313
314
315

I'1~PlAV AAI)CMO.
r.0 TO PCMD:».

npFNTT •
TF FTLFLnl I~ FQ".l TO pri :c;n TO OPINI.
TF FTLFLOI I" FAIIAl TO oft 'Gn TOOPOTI.'
TF FTLFLnl IS F.Q"Al TO I~2 Gn TOOPI~12.
TF FTLFLOI I~ FQ"AI TO-OT2 G".to OPOTl.
"I~PLAV flA"FTL.
TFFTLCOIINT r.RFATE" THAN 1 GO. TO PCMI'2.
r.O TO pe M01.

nPTNI.
nPFN INPUT enMIIN.
TF INt-STAT = "Oil" OP TNI-~TAT = "Ql)":

MOVE ITn ~TlITTN1:
Move t Tn qwTTrH'~

MOVE INt Tn nFlNAMJ
r.o TO OP""Sr..

MOVE INt Tn OFLNFR.
""OVE INt-STAT TO KFYFR" •.
1;0 Tn nPFRMG.

npnT1.
npF'N OUTPUT rOMtnT.
TF OTI-STAT = "Oil" 0" OTt-qT-T = "QI)":

MOVE '1 Tn ~TATOTI;

MOVE OTI Tn nFlNAMt
·r.o Tn npMSI:.

MovE OTI Tn nFLNFR.
~OVE OTt-STAT TO KFyFRP.
r.0 Tn OPFRMG.

nPTN?
OPFN INPUT eOM?IN.
TF IN2-STAT = "00" OP TN?-SlAT = "9C;"J

MOVE 1 Tn ~TATTN?J

MOVE 1 Tn qWTTrH?;
MOVE IN2 TO OFLNAM,
r.0 TO OPMSr..

MOVE JN2 Tn OFlNFR.
MOVE JN2-STAT TO KFYFRP.
':0 TO OPFRMG.

npnp.
OPFN OUTPUT rOM;?OT.
TF OT2-STAT = "Oil" OP nT?-STAT = "91)",

MOVE 1 TO ~TATnT?:

MOVE OT2 TO nFINAMt
r.o TO ('IPMSr..

MOVE OT2 TO nFlNF'R.
MOVE OT2-STAT'TO KFYFHP.
r.o Tn OPFRMG.

npMst::.
nl!l\ptAV opnSPL.
ADO 1 TO FTU'OIfNT.
TF FTU:o,rNT r.RFATEP THAN 1 Gn TO prMn2.
r.0 TO pe M01.

npFRMG.
OI~P'AY npFRnSPL.
TF FTUO"NT I:RFATf P THAN 1 GO TO prMn2.
r.o Tn peMOt.

rLnSTT •
TF FTLFL" TS EDUAL Tn TNI r.0 Tn rLTNt.
TF FTLFLI' TS EQUAL TO nn 1:0 TO, no".
TF FTLFLn TS EQUAL TO TN' r.0 TO rLTN?
TF FTLFLn TS EQUAL Tn nT' r.o TO CLnT?
nl~p'-AVRAI)CMI).

Figure D-l (cont). COBOL TTY or VIP Application Example

D-8 CB03

316
317
318
31q

3?0
Pt
P2
3?3
P4
3:>5
1?6
3?7
3?8
P9
HO
Ht
H2
3H
3~4

H5
3~6

H7
3'8
3,q
340·
341
3112
3113
3114
345
3116
3117
3118
349
3CiO
3Ci1
3Ci2
1Cil
3Ci4 .
It:;5
3t:;b
3Ci7
3t:;8
3CiQ
3f10
3f,1
3~2

11,1
31,4
3f,S
31,6
3f17
31,8
If,9
370
371
372
373
374
375
37b
377
378
379

Figure

TF FTLCOUNT ~RFATEo THAN I Gn TO prM02.
r.o TO PC~D1.

rUNt.
rLnsF rO~1TN.

TF I~1-STAT = "tn":
~OVE ZFRn TO SWITCHt:
MOVE IFRn TO STATI M1:
~OVE INI TO CFtNAM:
r.0 Tn CLOPMSr..

MOV~ IN1 Tn CFlNFR.
MOVEINI-STAT TO C~EYlQR.
r.0 TO rOPEQMI~.

nOT t •
nosF rO~1nT.
TF OTI-STAT = "on":

MOVE IFRn TO STATOTI:
MOVE OTI Tn rFLNA~:
1;0 Tn rLnpMSr..

MOVE OTI TO CFlNFR.
MOVE OTI-STAT TO CKEYEPR.
r.0 Tn COPEoMr..

rUN'.
rLOSE" COM2TN.
TF IN2-STAT = "00":

MOVE ZFRn TO SWITCH2:
MOVE IFRO TO STATI N2:
MOVE IN2 Tn CFLNAM:'
r.0 TO nOPMSr..

MOVE INZ Tn rFLNFR.
MOVE 1HZ-STAT TO C~EYEoR.
(:0 Tn COPEQMr..

CLnT?
nnSF rOM2nT.
TF OT2-STAT = "on":

MOVE lFRn TO STATOT2:
~OVl OT2 Tn r.FINA~:

r.0 Tn CLOpMSr..
MOVE OT2 Tn CFI NFR.
MOV~ OT2-STAT TO CK[YFoR.
~O Tn C()PEQMr..

CLnpMSr..
"ICIPI AY rLosPL.
~URTQArT I FQOM FIL[OU~T.
TF FTLCUIINT r.RFATt O THAN 1 GO TO pr'Mni?
r.O Tn PCMD1.

rOPEoMt;.
"lqPlAY rLFkMS~.
TF FTLrOtlNT r.R~ATfQ THAN I GO TO PCM"2.
(:0 Tn PCMD1.

~E TwoUTE.
TF STATI~l =.1 A~U STATOTi = GO TO OkS~T.

TF STATIN2 = I A~O STATOTI = Gn TO O~SFT.
"IC!PI AY qAnCMO.
r.0 TO PCMO,.

O"C!E:T.
MOVE 1 Tn QTFFIG.
r.0 Tn PCMIJ'.

QE AD' •
TF f TLCOIINT = 71: 00 Gn Topr~"I.
TF SWITCHI = L~Rn r.O 10 Q~AD'.
MOVE SPArEq TO IMI-RFr~

PEAl) cn~"I~' III plO (,n TO onNFfT.
TF IUI-STj, = "on" G~ TO GnODR1.
TF INt-STAT = "qT":

D-l (cont). COBOL TTY or VIP Application Example

D-9 CB03

31'10
31'11
31'12
31'13

3"'4
31'15
lAb
31'17
31'18
3Aq
30 0
30 1
302
303
3 0 4
3 0 ';)

3 0 b
307
3 0 8
30 0
4no
4nl
402
4n3
404
4n5
4nb

"n7
4n8
4nq
410
411
412
4'3
"",
415
41b
417

"'8
41q
"::»0
"::»1
lin
4::»3
4?4
4?5
4::»6
lin
4::»8
/j;)q

4~0
4~1

4~2

"~3
"~,,
4~5

"~b
"~7

"'8
4~q

"lIO
4111
442
443

1:0 Ttl 0E~I):>.

~O"~ IF'~n T(J SII,.., a 1 1.
MOVE I~I-STAT TO RnEoSTAT.
~O\/I: INI Tn 0D~RF'II •
np:PtAY PDF"RMSr..
AD'" I TO fOS"I\01 P'.
TF f.oSIIM11'" MOT I .. f-~S l"'A'" II r;o Ttl r"LTl'll.

°EAD~.
TF SWITCH2 = Z~Rn r.0 Tn PEaDl~

vOVE SPAr"E~ TO t~2-NF"C.

P~~D cnM~IM ftT E"'O Gn TO onNF"JT.
TF 1~2-STAT = "on" r. n TO Gnunk:>.
TF 1"'2-STAT = "qT",

r.0 T" 0EADI.
MOVE. IF'R'' TO SIl"'0I~.
~DVE I~2-STAT TO WnE.0STAT.
MOVE Pl2 Ttl 0DF'RF'} I •
n 1 ~p, AY OOF'RMSr..
~on 1 TO E05'JM~P.I.

T Fl'o 5 'I M:> l"J '" 0 T I. f c: S T '"' A" " r. 0 Tn r" L TN' •
r.0 Tn OE601.

r.nnool.
MOVF ZF'Rn TO fl::>SIIMl I"'.
WOVE ZFRn TO 511,..,0 11 •
PEoFnRM PfHI"1 TI-IRII r"H It 9TPTI.
MOVE JN1-RF'C Tn TN~PF'cTI.
TF I~'CMD I~ F"yllA' TU C"MnNM r.0 Tn "CMO::».
TF RTEF'Lr. T5 NnT E~UAL Tn 1EQO:

MOVE I~l-"FC Tn nT::»-oEr;
r.0 Tn WRTTF2.

MOVE lNt-RFC Tn tlTl-oEr.
(:0 Tn WRTTFI.

PRTIMI.
MOVE IN! Tn '"'D P2FIl.
MOVE HnR:> TO pOT-RFC.
lAIRTTF PRT-OEr".
MOVE SPArEC: TO pOT-NFC.
MOVE INI-RFC Tn "RT_oEr.

rHKqTPTI.
WNTTF PRT-oEr.
TF POT-STAT = "qT" Gn TO C'"'KOI"ll.

wRTTFI.
WRTTF nUTCnMl- PEr.
TF OTt-STAT = "on" Gn TO ~PTlnlt.

TF OTt-STAT = "9T" Gn TO ~OIT~I.
MOVE OTt-STAT TO wP!,PSTAT.
MOVE OT t Tn WRF"RF II •
nI~pI.AY WRFR M5r..
,.on 1 Tn E0 511MlUT.
TF I:.OSII";10T "OT I E~S TI-IA,'" II 1:0 Tn r"LnT1.
r.o Tn 0I:AO'.

""RTlnK.
MOVE Z~Rn TO E05"Ml0T.
"EofnRM P,HOT! Tl-lid' r"HI<9Tpn!.
r.O Tn DEao'.

PtiTOTt.
~OVE OT t Tn '"'D o 3F II •
~OVE H~~~ TO PPT-RFC.
""RTTF PRT-PEr.
MOVE. SPArE~ To P~T-RfC.
MOVE OT1-RFC Tn "RT.pE.r.

rHf(qTpnl.
WRTTF' PRT-Pfr.
TF P~T-ST~T = "qT" Gn TO C~~OI"O'.

Figure D-l (cont). COBOL TTY or VIP Application Program

D-10 CB03

(4lHI
4l.lS
4l.lb
4l.l7

4l.l8
449
4'50
4<;1
4'52
4<;3
4'54
4'5S
4<;b
4'57
4<;8
l.l<;9
460
4"1
4b2
4"3
4~4

41>5
4"b
4"7
41,8
41>9
470
471
472
473
47/1
475
47b
/177
478
/179
/lAO
/lAI
/I A?
/l A3
/lA'I
/lAS
4Ab
4A7
4 A8
4A9
4QO

r.onDOt>.
MOVE ZFKO TO EOS/fM?PI.
MOVE ZF~n TO S"~()I?

PEoFnRM PIHI M2 T"II<II rHI<'9TPT2.

~OVE I~2-RFC Tn TN~PFCTI.

TF Ir,JCMO 1 c; FQIIAI HI cnMOfltM r.O Tn PCtAD?
TF RTEFLr. TS NnT EnU~LJn 7£00:

MOVE Ir,J2-RFC Tn nT'~OEr;
r.0 Tn IoIRTTFI.

~OVE IN2-~FC Tn nT?-PEr.
r.0 TO WHTT~2.

PRTI"'2.
MOllE 1"12 TO ~DP2FII •
MOVE HOW? TO PPT-RFC.
\OIRTTF PRT-PEr:.
~OVE SPArEC; TO PPT-RFC.
~OVE Ir,J2-RFC TO PRT-oEr.

rHk'9TPT2.
""RTTF PWT-PEr.
TF PPT-STAT = "9T" GO TO CHKQIPI?

IoIIHTF2.
WRTTF nUTCOM?-PEr.
TF OT2-STAT = "00" Gn TO WOT?OI<'.
TF OT2-STAT = "9T" Gn TO WOITf?
MOVE OT2-STAT TO WPEPSTAT.
MOVE OT2 Tn WRFRF!I •
"I~PLAY wR~RMSr..

ftDn f TO EPSlfM?OT.
T F EOSIIM?OT MOT l E ~S T~A" II r.0 Tn rL n T;».
r.0 Tn OE1I1)1.

wWT2nK.
MOllt-. ZFRn TO i:-.PS"I"'?flT.
p[PFnRM PRToT2 P~R" rHI(9TPn2.
r-O Tn PE"D'.

PIHOT2.
MOVE OT? Tn HDP3FIL.
MOllE HnR~ TO POI-RF(.
WRT TF PjH_Q£:.r.
MOVE SPArE~ TO POI-RFC.
MOVt OT?-RFC Tn pI<T-pt-r.

rflk'9 T pn2.
loIiH II=' PRT-PEr.
TF pOT-STAT = "qT" G~ TO CHKOIPO?

"OMETT.
'HqPLAY ~TnprOI:l.

cqnp RIIN.
Ff\JO rOROI

"0 I>TAt;NnSTlrs

Gr.OSb r.OROL
FTlF: MAP
LJN~ lFN IFN

1 I 0' or-MSO CnMfIr,J OlD~

16 Oll OO-Msn cnMIOT otFR
21 0" OF-Msn cnM?Ir,J 0?211

2'" Of> OF-Msn CnM?OT O?'Ir
31 01 OA-PRTNTEP PPIr,JTFII.E on",

fin
fit
fin
8f

t20

Fig ure D-l (cont). COBOL TTY or VIP Application Example

D-ll CB03

COBOL BSC Application Example

The source program listing in Figure D-2 is an example of a
COBOL communications program to test BSC file transmission by:

1. Generating records

2. Transmitting the records over one communication line

3. Reading them back over another communication line for
comparison

The program name is BSCTST. ·When executed, it displays the
following error messages, as appropriate:

Error format 1:

BSC TEST FILE- r INPUT 1 1 OUTPUT I
PROB LEM- r OPEN 1

t CLOSE J READ
WRITE

zz=9I - Device busy

STATUS - zz

zz=OO - Program may read or write

Program action: Issues reads and writes four times; then
the file is closed and the program
terminated.

Error format 2:

SSC - TEST - NO MATCH RECORD nnnn

Program action: Reading application does not receive the
expected record; records out of sequence or
garbled.

File is closed and the program terminated.

D-12 CB03

TDFNTI~IrATln'll [}TIITSTlI".
p~nGoA"-TD. - He;(TST.

* THIe; TS A ~DO~~~~ ~HIr" l~STS ~e;l FTl~ TN~N~~TSe;I"~ -
* IT n()FS sn Dy b~~~N~lT~r. OfruDoe; , e;fN'I','4r. T~~Y (1"1
* A~IO HDI"f.TlIJl': TH~'" ",All(TIIo ~nh t."",PADI~(I"

* ~ n k A ~"H ~ n l T A 'I F (I "r- 5 r W T T T {I 'I 0 ~ F ~ ° TilT 4 t ,. r , Ie:" • '
* TFST e;fJFCH·TC"ITU" FIID r(IAnl rll"~lIrjTCAITI!"S

*

*

*

*

*

•
•

~NVIOO~MF~T nlVI~lnN.'

r I) ~I f T (, II N II 1 T u" c: ~ r T Til" •

C:III1Nr~-c"",PIJT~Q. t1TS-SF""t-C:_",u 1.~~rL-"'.

"H.'~rT-c"",PIJTt D. ~"S-~F .. T" ~-~l' lr'wFl-"',

T~PllT_"UTPIiT ~F(Tln'l.

~I' f,-C"IIoTW"L.

"ATA

F" ..
Co

e:f,1 ~,.., 1-1I1I101lT

~ S c: I r. ,~ T ". II I ,
n k r. A" I 7 to Tin /', I e: e: tn, IF,. T I ~ I t, T p. "I n ,
~ C r ~ e; S I e: C: .. n II ~ ~, T I • I ,
c: I ItS TAT U e: ,~ I I I 1 _ ~, TAT •
e: ~. ~,.. I I - I ',..,11 I
ASe:lr.'~ I" A("

""("A'II7ATI"'; Ie: C:t""Fr,TI'l ... TI" VII>,

~t"'tr.S Ie: e:f"IIF,.TIAl,
Flit STATUe: 'S 1"-e:T~I.

I) TilT S T lJ ~I •

~c(Tln.\.

T-nUT~lIr

AL"e" rO"TAI~IS 1 ... F,n",,,~,

1 lCl!:1 DtrtJDIJe: ~NC e:l""""ADl:.
~UT-Qlr Plr Y(Q~'.

Ftl T_'I.PlJT

DLnCI(rO'IT~J'IS I HCC"~I'IS.

'AClf.1 DErOD[)C: SkI" 'qANl'lj\Dll.
01 TIIo-H~C PTC X(MII) •

WODKTNr.-C:Tn~AGC: ~l:rlTU" •

7 7 T t~ - 5 T j\ T 0 J r 'II' X V j\ I U I=' e: PAC I=' S •
77 "UT-c:I"I orr' 'It)l VALliE SOj\rEC:.
77 a,lAy .. rNT ~TC ~oqQ VAL'iE 1001.
77 "-TNoUT ;.oTr. xU,) VIIL"E "TNoLJT "
77 PI-nUTI-'lq DJr Y(~) VAl UI=' "OIJToUT".
77 w_npcl\j Pir 'It(") VAIUI=' "(JOE~ "
77 IAI-rL"S~ PTC X r.,) VALliE "rL"SF".
77 Io!-DEIID Plr '!I(") VAl UF' "RI='AI) "
77 ""-\OI/(T11=' t'TC)1(." ItAL"1- ""'lIHT~".

III TE'H-RF'C.
112 F'ILLI='I0/ PIr Y(12' V~L"E "T~~T I(F'CI'lRn "
112 TR-CMT PIr ~qqq VAIUF' ?EPO.
()2 F'IlLF'R PIr Y("4) VIIL"E SPArt:C:.
"2 FII.LF'~ PTC XqO) VIILIIE "*.*.*.**.*".

01 F'(jF'-~Er.

Oi> fTU!::P Plr Y(~) VIIL"l "F'OF'".
112 F'ILLF'R Plr Y(771 V lillif-. SOArfC:.

01 F'R-MC:G1.

Fig ure D-2. COBOL BSC Application Example

D-13 CB03

~o

~J

~2

~3

~4

~')

~n

~7

~f\

~9

70
11
72
73
74
7')

76
77
1R
7q
AO
II 1
112

113
114
1I'l
Ab
A 7
AM
AC?
ou
01
02
o~

04
0'l
Qo
Q7
QM
Qq

1 n u
1 n I
1 n r'
1 n 3
I n 4
1 n ')
t nh

t n 7
InR
1'" q
t , 0

l' 1
t , <'
1 , ~

t , 4

1 , 'l

II h

1 1 7
I 18
11 q

Po
PI
P2

1<

1<

1<

02 I'" 11. LFR PTe X(I~) V~L"f ''1'1sr TE:<:T- FIIE- "
02 F_I'" II f °lr Y(~) VALllf SP/lrl:<:.
112 F I I LFI'i pTe X(ln) V~LII~," pOORLFM- ..
02 f-fVpl'" PTe X (':>) 1/ A I U I'" ~ P ~ C F S •

('12 FTILFR Plr lIl(') If AI UI'" " 'qqIIS- "

('12 I'"-~T~T PTC Xli II~Lllt SPl\rF<:.
n I I'"k-M~G?

"2 F" LI'"" Plr Y(?i{l v ~ L ,,~ " R S r T E <: I - ~I U '-1 n T r It , ° t r l! ° l) - "

"2 qAI'l-Ot r ['l I r (') l/l) IIAI 1I1'" 7fPuFS.
FU T_'-ASr:.

('I;> fTU to Pjr 1I(t'l) V~LII~ "osr FU.'- ".

"(> FTI\I~L-C~IT t-'T(q(4) VAl lJF 7EO[)FS.
,,;> ~ T LI r,O P 1 r Y I ? (I) 1/ A I U I'" " 0 r r II P P <: T ... ~ ,~<: M T TTl:. I)" •

P t-< n C I'" D II.., F ,.., I II 1 <: 1 n N •

I-ISI'"~F"tJ'.

.' II III:. l F K" I: ~ TOT ° - r ~: T •
npFrJ-UP.

I"IPF,. P'PIIT T - P'P"T •
T r 1'1- <: I ~ I '\, n 1 ~ n lJ ~ L " no"; M n Ii F" '.' - n p F 1\1 Tn F" - T Y P F :

r.U rn Tr..-f- OK.
npFjI' 1I11TPUT T-nlJTHIT.
Tf- ullT-STAT ~'(iT F"IIAI "un": '~IJlfr. r.-OPf'! TO ~-fV"F:

r.O I n nuT _F~P.

"'A<:TFk.
" n I'l , T f) ,Q _ r ,. T •

~'U II f.. I F" S T - Q f: r Til (J II T -!, Fe.

01:. lin, •
° E 1\ I) T - I ., P"1 /l T I'" ~j r"I ; H'" V F T k - (~' 1 T n F" I " A I - r " T :'

"T ~PI AV FII.I_":;r:: (,n TLJ CI u<:fc -un.
TF l"-<:IAI = "no": I~n Til LI)i'JIPAPr.
Tr pl- ~ r A r = "Q 1 ": G'" T CI Vi PIT r , .,
Vnlft ~-KI'"An Tu r-IVrF.
r.: lJ I I) T ,. - f. Qt<.

I"R T T r: I •

*

*

~II<'TTF nLJT~Fr.
H llllT-STA'T :: "on": r:u In rl)"I.>Ak F •
TF UIIT-~TAT:: "lJT": r:(1 In '''fiTl''l.

""lit ... _~I)JT~ I" r_TyO!.
r: II 1" n I)'T _ F .. Q •

I" (JU'" ~ .. F •

T ~ I <I _ P ~ r T S ~,., \' • l 1" T ~ '" 1 - .. r I: r: II 1" .. A <: I .. ,< •

T~ 11111-.,.F(= t"f-"(I'(: r,(, I'" 1", ",,1',...
.... \, \I ~ 1 0.; r II; T T (, 1\ ~ (I -I. r t •
"1 ~fJl A v I"~-~ <:(,/.
r:1' 1 n c;y n"_I-r:.

T ~,_~ p

"1)1'1' fI-I',O>" 1 1'" r_1'" II f •
"'I,\lt I~'-"'l~r 1" r_"'T·I.
r: I) 1 n n" _ '1 c:: t. •

""1) T _I'" ... 0 •

v () V t /'0 -11 11 I 0 I J TTl, t - ~ T L r •

vIIIII" uill-STAT T" r-~Tf.T.

np-M<:r..
nlc;PI AV FR-~C;(;I.

r:U Tn C;Tnp-pr..

(I ()<:~-Up.

rlnSF T-T"JPUT.

Figure D-2 (cant). COBOL BSC Application Example

D-14 CB03

f·

(

1'3
I'll
1'5
Pb
1'7
I'll
pq
PO
1'1
1'2
I' 3
I'll

TF PI-<;TA! ICI ~OT ~(J"AI -on-: ~IlVf ,,-(I (JC\~ Tn ~-TyPFt
r.O Tn TIII-~~R.

r:n Tn C\Tnp-pr:.
rlnSr:;."

rlnsr: T-nlJTPItT.
TF O'IT-!:)TAT T!:) NnT f"lJAl -nv-; "''''II~ loI-rlnSr: TU ~-TYf>~;

r.O Tn nUT-n~p.
r. (J T n U A C\ 1 r: k •

qnfJ_Pr..
C\1('IfJ flIIN.

Fill" rUROI •
~o DTAr.NnSTlrs

GrOClh rOACJI
FTLF M~1f

LH,F Lr:N IFill

If, 0 0 OJ_uS" T-O"IPUT ul\~r: "(\
21 III AI\-~S" T-IMfJIIT one 7 "'(\

Figure D-2 (cont). COBOL BSC Ap~lication Example

D-15 CB03

FORTRAN Application Example for TTY

The FORTRAN source program (program name FORCL4) listing
shown in Figure D-3 is an example of a FORTRAN application pro­
gram involving a TTY remote device.

The program processes eight message groups beforeterminat­
ing. It first issues four data messages to the remote terminal
and to the operator terminal. It issues the write requests from
alternate data buffers to ascertain the status of the int~rfaces
among the file system, FORTRAN Compiler, and the communications
subsystem. When the four initial message groups are complete,
the program requests input data from the operator terminal.

After the operator enters a message, the operator terminal
displays the message and an acknowledgment message. When the
fourth message is received, the application program terminates.

Every input message, which is preceded by a blank or NUL
character that is not displayed, may have up to 59 ASCII
characters.

The system continually monitors the status register, dis­
playing error condition codes or status messages on the operator
terminal. For example, a condition indicating no data available
(buffer busy) at the remote device, lasting more than 20 seconds,
causes a status return code of 51610 • The program continues the
read attempt since that status is not an error condition. The
read statement is issued only after a status code 0 10 is returned
to indicate that data is available (buffer not busy) •

D-16 CB03

(

FORCLtI GCO~b-1 FORTRbN RFV: 0101 o PAGE: 02

C
C
C
C
C

70
AO

qO

C
C
C
C
C
C
C
C
C

100
110

t 12

(
Figure D-3. FORTRAN Application Example for TTY

D-17 CB03

FOPCLlI

I C
2 C
1 C
II
C;

b
7
/\
q

10
II
12
13
III
t5
Ib
17
18

C
C
C
C
C
C
C
C
C
C
C

lq C
tlO
til
n
23
24
25
26
27
2/\
2Q
30
31
32
33
34
35
36

Ie;
C
C
C
C

37

20
2C;

10.

38· 40
3q
40
41
42
43

50
b.O

Gcn~~-t FORTPAN· PfV: 0101 "
FORTRAN cn~MuNtCATtnN PROGRAM - FOPCLlI

ILLUSTRATES USE OF lFSTIN ANO IFSTOT

WRITES 4 MFSSAGES Tn THF OPERATOR'S TFRMINAL (LFN 4)
ANn SENO TO A RFMnTF nEVTCE (IF. TTY) ON LFN q VIA MLCP
FOLLOWEn RY A RFAO nF 4 MESSAGES FROM THF SAMF RFMOTE
OFVTCE (IE. TTY) ON LFN R. ALL MESSAGES ARF OISPLAYED
ON THF OPFRATOR'S CONSOLf~ AN" RFCETVED MESSAGES APE
AC~NOWLF.OGFO ON THE RFMOTF nEVICE
DEVICF STATUS IS REPORTEO USING,

CALL 7FSTIN(I,J) FnR INPUT, ANO
CALL ZFSlOTfY,J) FOR OUTPUT.

PROGR A M F ORC!. 4
CHARACTfR *4A CW3,CW4
CHARACTER CRtCbO),CR2CbO)

PAGE'. ot

DATA CW1"THIS IS COMM. OUTPUT TO THF TTY - MFSSAGF NUMBER"

J = 0
t.I = 0
I< = Q
CW4 = CW3
(lPENCUNJT=II)
OPENCUNJT=q)
GO TO 20
I(= 1'\

CHECI< COMMUNICATION DEVICE STATUS
USING IFSTIN OR ZFSTOTRnUTINE

N = N + 1
J = 0
IFCK.EQ.A)CALL lFSTINCK,ISTAT)
JFCK.FQ.Q)CALL ZFSTOTCK,JSTAT)
JFCISTAT .EQ. 0) GO TO (70,QO,70,QO,100,120,tOO,1201,N
lFCTSTAT - ~tb)50,40,50

J = J + I
JF(J .LT. 10000) GO TO 30
WRJTE(4,60)N,ISTAT
FORMATctx,'STATUS RTN MESSAGE NO.';12,' S.AJUS TYPE',IlI)
JF(ISTAT .F.Q. 51b) GO TO 25
GO TO 140

Fig ure D-3 (cont). FORTRAN Application Example for TTY

D-18 CBD3

/ "
.J

(

(

Assembly Language Example for TTY or VIP Using Physical I/O

Figure 0-4 shows an assembly language source program
(SENDER), using Physical I/O, that tests TTY or VIP terminals by
sending character strings to the terminals.

The user enters SENDER 07 to test a TTY terminal, or SENDER
OA to test a VIP terminal. The values 07 and OA are the logical
resource numbers (LRNs) of the TTY and VIP, respectively.

The program will halt on the first instruction, and will
continue when the Execute button is pressed.

0-19 CB03

ti He sender
*

11 bm exec_lib
xdef sender

* sender hl t
ldv Sr3,0 Sr3 <- def ault l.rn
ldr Sr7,+Sb7 Sr7 <- par ameter coun t
cmv Sr7,2 test parameter count < 2
bl >+Sa
ldb Sb6,+Sb7 Sb6 <- a(p1 char count)
ldr Sr6,+Sb6 Sr6 <- p1 char count
ldb Sb5,+Sb7 Sb5 <- a (p2 char coun 0_
ldr Sr5,+Sb5 Sr5 <- p2 char count
ldv 5r1,2 Sr1 <- 2 = invalid lrn
cmv Sr5,2 te st char count > 2
bg exit
ldv S r1,0 S r 1 <- 0
lUi Sr1,Sb5.Sr1 Sr1 <- 1st char (ascii>
ldh Sr3,<tab.Sr1 Sr3 <- 1 st char (hex)
blz Sr3,ex i t test for-bad cha r
ldv S r1, 1 Sr1 <- 1
:.t~ ... -. f!' _. ifi ,- ... - "-" ,tt ",. 0' til i (. iii .. r " .. u ~ ... r" f c: IIU

ldh Sr1 ,<t abe Sr1 S r1 <- 2nd char (hex)
blz Sr1,exit test - for 'bad cha r
so l Sr3,4 Sr3 <- Sr3*16
or Sr3,-Sr 1 Sr3 <- hex lrn

sa ldv Sr4;-14 Sr4 <- i orb count
lab Sb4,iorbOO Sb4 <:.. a (1 s t i orb)

Sb sth Sr3,Sb4.Saf+1 Sr3 -> l rn
SRQIO,
nop >S+2 t rac e
bnu Sr1,>exit test for error
lab Sb4,Sb4.Saf*2+6 Sb4 <- a (ne xt io rb)
bi nc Sr4,>-Sb test iorb count • 0

ldv S r1,0 Sr1 <~. _0 .. success
exit ld r Sr2,=Sr1 Sr2 <- error code

STRMRQ,

* iorbOO resv Saf,O
dc x' 01 '
de x' Oa'
resv Saf ,0
dc 0
dc 0
de 0
de 0

iorb20 resv Saf,O
dc x' 41 '
dc x' 41'
dc <lIIsg20
dc 43
dc x'20'
dc 0
dc 0

iorb28 resv Saf,O
dc x ,- 41 '
dc x' 41 '

Fig ure D-4. Assembly Language Example for TTY or VIP
Using Physical I/O

D-20

./"

/ "\

CBD3

(de <msg28
de 43
de 1('20'
de 0
de 0

iorb30 resv Saf,O
de 11 '01 '
de I(, 41 '
de <msg30
de 43
de 1('20'
de 0
de 0

iorb38 re sv Saf,O
de I(, 41 '
de I(, 4 1.' .
de <rnsg38
de 43
de 1('20'
de 0
de 0

iorb40 re sv Saf,O
de I(, 4 1 '
de I(, 41 '
de <rnsg40
de 43
de 1('20'
de 0
de 0

iorb48 resv Saf,O
de 'I(, 01 '

\',1 de I(, 4 1 '
.1.\
~, de <rnsg48

de 43
de I(, 20'
de 0
de 0

iorb50 resv Saf,O
de I(, 41 '
de I(, 41 '
de <msg50
de 43
de 1('20'
de 0
de 0

iorb58 resv Saf,O
de I(, 41 '
de I(, 41 '
de <msg58
de 43
de 1('20'
de 0
de 0

iOl'b60 resv Sa f,O
de JC '01 '
de I(, 41'
de < rnsg60
de 43
de 1('20'
de 0
de 0

(Fig ure D-4 (cant). Assembly Lang uage Example for TTY or VIP
Using Physical I/O

D-21 eB03

iorb68

iorb70

iorb78

resv
de
de
de
de
de
de
de
re sv
de
de
de
de
de
de
de
resv
de
de
de
de
de
de
de

de

Saf,O
x ' 41 '
x ' 41 '
<ms9 68
43
x'20'
o
o
Saf,O
x '01 '
x ' 41 '
<m5970
43
x' 20'
o
o
Saf,O
x ' 41 '
x ' 41 '
<m59 78
43
x'20'
o
o
• I ~

"d I IU

x' 01'
de x'Ob'
resv Saf,O
de 0
de x'03'
Cle 0
de 0

mS920 de
text
de

IIIS928 de
te xt
de

IIIS930 de
text
de

IIIS938 de
text
de

IIIS940 de
text
de

IIIS948 de
text
de

III 5950 de
text
de

IIIS958 de
text
de

IIIsg60 de
text
de

IIsg{)8 de
tex t

x' 42'
'20 21 22 23 24 25 26 27 '
z'202020202120222023202420252026202720'
x '41 '
'28 29 2A 28 2C 20 2E 2F '
z'2020282029202a202b202e202d2D2e202f20'
x ' 41 '
'30 31 32 33 34 35 36 37 '
z ' 202030203120322033203420352036203720'
x ' 4 1 '
'38 39 3A38 3C 3D 3E 3F '
z'2020382039203a203b203e203d2D3e203f20'
x ' 4 1 '
'40 41 42 43 44 45 46 47 '
z'202040204120422043204420452046204720'
x '41 '
'48 49 4A 48 4C 40 4E 4F '
z'2020482049204a204b204e204d204e204f20'
x ' 41 •
'50 51 52 53 54 55 56 57 '
z'20205020512052205320542055205620S720'
x' 41 '
'S8 59 SA 58 S(SO 5E SF '
z'2020582059205a205b205e205d205e205f20'
x ' 41 '
'60 61 62 63 64 65 66 67 '
z'202060206120622063206420652066206720'
x '41 '
'68 69 6A 68 6C 60 6E 6F '

Figure D-4 (cont). Assembly Language Example for TTY or VIP
Using Physical I/O

D-22 CB03

(de:
.S9 7O de:

te xt
de:

.S9 78 de:
text
de:

*
tab de:

de:
de:
de:
de
de
de
de:
de:
de:
de:
de
de
de:
de:

. de
de
de:
de
de:
de
de
de
de:
de
de
de
de
de:
de
de
de

end

(Figure D-4 (cont).

z'2020682069206a20'b206e:206d206e206f20'
x'41'
'70 71 72 73 74 75 76 77 ,
z'202070207120i22073207420752076207720'
x' 41 '
'78 79 7A 78 7C 70 7E 7F

,
z'2020782079207a207b207e:207d207e207f20'

z'80808080' 00 01 02 03
z'80808080' 04 05 06 07
z'80808080' 08 09 OA OB
z'80808080' OC 00 OE Of
z'80808080' 10 11 12 13
z'80808080'. 14 15 16 17
z'80808080' 18 19 1A 18
z'80808080' 1C 10 1E 1F
z'80808080' 20 21 22 23
z'80808080' 24 25 26 27
z'80808080' 28 29 2A 2B
z'~0808080' 2C 20 2 E 2 F
z'OO010230' 30 31 32 33
z'04050607' :54 35 36 37
z'08098080' 38 39 3A 3B
z'80808080' 3C 30 3 E 3F
z 'SOOaOb.Oe' 40 41 42 43
z'OdOeOf80' 44 45 46 47
z'80808080' 48 49 4A 4B
z'80808080' 4C 41) 4 E 4 F
z'80808080' 50 51 52 53
z'80808080' 54 55 56 57
z'80808080' 58 59 5 A 5B
z'80808080' 5C 50 5E 5F
z'800aObOe' 60 61 62 63
z'OdOeOf80' 64 65 66 67
z'80808080' 68 69 6A 6a
z'80808080' 6C 60 6E 6F
z'80808080' 70 71 72 73
z'S0808080' 74 75 76 77
z'80808080' 78 79 7A.7B
z'80808080' . 7C 70 7 E 7 F

sender,sender

Assembly Language Example for TTY or VIP
Using Physical I/O

D-23 CB03

(

APPENDIX E

ASCII AND EBCDIC CONTROL CHARACTERS AND CHARACTER SETS

Tables E-I and E-2 illustrate the ASCII and EBCDIC character
sets, respectively. In addition to the ASCII characters, Table
E-I shows the hexadecimal equivalents; Table E-2 shows the binary
and hexadecimal equivalents of the EBCDIC character set.

Following are lists of the control characters and special
graphic characters that appear in the two tables:

CONTROL CHARACTERS

ACK Ac kno wI edg e IFS Interchange File Separator
BEL Bell IGS interchange Group Separator
BS Backspace IL Idle
BYP Bypass. IRS Interchange Record Separator
CAN Cancel IUS Interchange Uni t Separator
CC Cursor Control LC Lowercase
CR Carriage Return LF Line Feed
CUI Custome.r Use I NAK Negative Acknowledgment
CU2 Customer Use 2 NL New Line
CU3 Customer Use 3 NUL Null
DCI Device Control 1 PF Punch Off
DC2 Device Control 2 PN Punch On
DC3 Device Control 3 RES Restore
DC4 Device Control 4 RLF Reverse 'Line Feed
DEL Delete RS Reader Stop
DLE Data Link Escape SI Shift In
DS Digit Select SM Set Mode
EM End of Medi urn SMM Start of Manual Message
ENQ Enquiry SO Shift Out
EO Eight Ones SOH Start of Heading
EOT End of Transmission SOS Start of Significance
ESC Escape SP Space
ETB End of Transmission Block STX Start of Text
ETX End of Text SUB Substi tute
FF Form Feed SYN Synchronous Idle
FS Field Separator TM Tape Mark
GE Graphic Escape UC Uppercase
GS Group Separator US Unit Separator
HT Horizontal Tab VT Vertical Tab

E-I CB03

-~-~-~.-... _ .. -.-~ .".'.' .-- .. ~.~~~-~ -.~ __ _------

SPECIAL GRAPHIC CHARACTERS

<t Cent Sign
Period, Decimal Point

<:: Less-than Sign
(Left Parenthesis
+ Plus Sign
: Log ical OR
& Ampersand

Exclamation Point
$ Dollar Sign
* Asterisk

Right Parenthesis
Semicolon

-, Log i cal NOT
- Minus Sign
/ Slash
I vertical Line

% Percent
- Underscore
" Circumflex

> Greater-than Sign
? Question Mark
, Grave Accent

Colon
Number Sign
@ At Sign
I Prime, Apostrophe
= Equal Sign
" Quotation Mark
~ Tilde
{ Opening Brace

J1 Hook
Y Fork
} Closing Brace
\ Reverse Slant
ri Cha i r
! LO!1fj VE'rti(,rll Mrlrk

[Opening Bracket
] Clos ing Brac ket

Table E-l. ASCII/Hexadecimal Character Equivalents

HI

H2 0 1 2 a 4 5 6 7

0 NUL DLE SP 0 0 P p

1 SOH DCl ! 1 A Q a q

2 STX DC2 " 2 B r b r

a ETX Dca # a C S c s

4 EOT DC4 $ 4 D T d t

5 ENQ NAK % 5 E U e u

6 ACK SYN & 6 F V f v

7 BEL ETB ,
7 G W g w

8 BS CAN (8 H X h x

9 HT EM) 9 I Y i y

A LF SUB * : J Z j z

B VT. ESC + ; K [k {

C FF FS < L "- I I , ,
D CR GS - = M] m }

E SO RS > N /\ n -
F SI US / ? 0 - 0 DEL

E-2 CB03

(

Table E-2. EBCDIC/Hexadecimal/Binary Character Equivalents

" .~
...

00 01 :::

~ "li!
~ 00 01 10 II 00 01

= ~ 0 I 2 3 4 5 - -
0000 0 NUL DLE DS SP &

0001 I SOH DCI SOS

0010 2 STX DC2 FS SYN

0011 3 ETX TM

0,100 4 PF RES BVP PN

0101 5 HT NL LF RS

0110 6 bC BS ETB UC

0111 7 DEL IL ESC EO.T

1000 8 GEa CAN

1001 9 RLFa EM

1010 A SMM CC SM 4 !

1011 B VT CUl a CUla CU3a S

1100 C FF IFS DC4 < •
1101 D CR IGS ENO NAK ()

1110 E SO IRS ACK +

1111 F SI IUS BEL SUB I . .,

aThis character is not supported in the 2780 character set.

(0

10 II 00 01 10 II

6 7 8 9 A B

I a i ~

b k •
c I t

d m u

e n v

f 0 ~
g P x

h q Y
,a i r l

,a ,
..

% (a

I
-

> -
? ..

E-3

II

00 01

C D

la)a

A J

B K

C L

D M

E N

F 0

G P

H' Q

I R

Sa

'fa

10

E

,a

S

T

U

V-

W

·X

Y

Z

~a

II

F

0

I

2

3

4

5

6

7

8

9

I"

EOa

)
)
Bit Positions 0,1

Bit Positions 2,3

First Hexadecimal Digit

CB03

(

<:

APPENDIX F

DEVICE-SPECIFIC CONTROL CHARACTERS

This appendix lists the nonalphanumeric control characters
for devices supported by the communications subsystem.

NOTE: A slash between two charatters indicates that both
keys are pressed simultaneously, e.g., CTRL/H indi­
cates that the CTRL key and H key are passed at the
same time.

Table F-l. TTY Nonalphanumeric Control Characters

Hexadecimal
Character Value Function Key Strokes

ENQ

BEL

BS

LF

FF

CR

DC2

SP

NOTES: l.

2.

05

07

08

OA

DC

OD

12

Answer back

Ring Bell

Backspace (nondestructive
cursor backward)

Line feed

Form feed (clear screen)

Carriage return

Nondestructive cursor
forward

CTRL/E

CTRL/G

CTRL/H

CTRL/J

CTRL/L

CTRL/M

CTRL/R

20 Space CTRL/P or
space bar

In a terminal with lowercase capability,
uppercase characters require the use of
the shift.

DC2 is an option for VIP 7100/7200 only.

F-l CB03

Table F-2. VIP Nonalphanumerid Control Characters

Hexadecimal
Character Value Function Key Strokes

BS 08 Backspace. CTRL/H

HT 09. Horizontal tab. CTRL/I

LF OA Line feed. CTRL/J or LINE FEED.

FF OC Form feed. CTRL/L

CR OD Carriage return. CTRL/M or RETURN

DCI 11 Reverse line feed. CTRL/Q

DC2 12 Forward space CTRL/R
I __ _ ___ , __ .I- _____ L ! ___

\JlUHUt:::::'l..LU~l...LVt::

cursor forward) •

DC3 13 Defines next two CTRL/S
characters as line
character position.

DC4 14 Page return. CTRL/T

ESC IS First of several [
2-character
sequences used for
VIP control.

FS IC First character of a \
2-character sequence
to define beginning
of a fixed field.

GS 1D Defines start of]
variable field.

SP 20 Space. CTRL/P or space bar

5E Defines start of
blank field.

F-2 CS03

(~

Table F-3. BSC Nonalphanumeric Control Characters

Hexadecimal
Character Value Function Key Strokes

NUL 00 Nontransparent data CTRL/@

SOH 01 Nontransparent data; CTRL/A
last record of file

STX 02 Transparent data CTRL/B

ETX 03 Transparent data; last CTRL/C
record of the file

NOTE: Table applies only to advanced data transmission
mode, and describes control byte for line control.
The control byte is neither sent nor received over
the line.

(

F-3 CB03

/'
I

(

(

APPENDIX G

DUMP ROUTINE (DUMCP) FOR MULTILINE COMMUNICATIONS
PROCESSOR (MLCP)

The Honeywell program DUMCP, which is provided in source and
object format, dumps the contents of memory (all or part) of the
multiline communications processor (MLCP). DUMCP has the follow­
ing functions:

o In the dump, shows formatted lists of line control
tables, communications control blocks, and communications
channel programs.

o Can print the dump on the operator terminal, line
printer, or serial printer.

o Can be used by the programmer for:

Aid in debugging application programs

Documenting problems

Pinpointing hardware, software, or firmware
difficulties

DUMCP cannot run in the batch task group ($B).

DUMCP uses one MLCP channel to transfer dump data from the
MLCP to main memory (in block-mode read). The user must there­
fore specify that MLCP channel and the channel of the output
device that will produce the dump.

LINKING THE BOUND UNIT CONTAINING DUMCP

The bound unit that contains DUMCP can be invoked in either
of two ways:

o It may be loaded and activated as a self-contained unit,
by the operating system.

G-I CBD3

o It may be activated by the application program, at one of
three starting locations, when the application is linked
wi th DUMCP.

Linking DUMCP as a Self-Contained Bound Unit

To execute the bound unit that contains only DUMCP, the user
must load the Linker (with the LINKER command), specifying the
following Linker directives (see Program Execution and Checkout
manual) :

SYS

(Optional) Designates that the bound unit can be a
system task in the system task group.

LINKN DUMCP

Requests Lhe uuje~L uuuml uniL DUiwlCP
t... _
UI:!

, ! _ 1. _ ~
.LJ.I1r..I:!U.

VDEF RDMLCP, X'nnnn'

Designates nnnn as the MLCP channel for block-mode
read.

VDEF DMPOUT, X'nnnn'

MAP

QUIT

NOTES:

Designates nnnn as the channel number of the device
where the dump is to be printed, which must be an
operator terminal, line printer, or serial printer.

Requests a link map.

Terminates execution of the Linker when the bound unit
has been created.

1. More than one bound unit may be linked, each
with its own unique name, depending on the type
of system and on the MLCP channel to be used for
the dump routine.

2. When the purpose of the dump is to diagnose a
channel error, that channel (value nnnn) should
not be designated to be used by the dump
routine.

G-2 CB03

(

(

Example:

In this example, a linked version of DUMCP is placed on the
volume ZlOl07. First the working directory is changed to
one that contains the object module DUMCP.O; then the Linker
is called, according to the Linker directives shown below:

CWD A ZlOl07>SOURCE
LINKER DUMCP -COUT >SPD>LPTOO -SZ 8

The user need not specify a relocation base or start
address. The bound unit can then be executed.

Any error will result in an error message, and/or error
code, issued at execution time to the operator terminal. The
System Messages manual describes DUMCP error messages.

Linking DUMCP With the Application Program

Either of the following methods can be used to specify
values for the dump output device and for the block-mode read
channel that will transfer dump data from the MLCP to main
memory:

1. Add the following assembly language XDEF external label
definition statements to the source module DUMCP.P:

XDEF (DMPOUT,Z'nnnn')

nnnn designates the channel of the output device

XDEF (RDMLCP,Z'nnnn')

nnnn designates the block-mode read channel,

or

2. During linking, specify the following VDEF directives:

VDEF DMPOUT,X'nnnn'

The value nnnn designates the channel of the output
device.

VDEF RDMLCP,X'nnnn'

The value nnnn designates the block-mode read
channel.

When Linker directives are specified to create the bound
unit, enter LINKN DUMCP to request that the object unit DUMCP be
linked.

G-3 CB03

After DUMCP is linked to the application, the dump routine
can be entered in any of three ways (described below) according
to whether the entry point is specified as STRTDO, STRTDI or
STRID2.

In any case, the application must include an XLOC (define
external locations) instruction; i.e., XLOC STRTDO, XLOC STRTDI
XLOC STRTD 2.

STRIDO ENTRY POINT IN USING DUMCP

When entry point STRTDO is used, DUMCP will halt at first
entry. The user must then set certain register (see below)
through the control panel before execution of DUMCP is resumed.
These register values override the channel numbers specified in
the source program or when DUMCP was linked with the application.

NOTE: Register values for dumping the DLCP (dual line com-
_ .. _! __:_-- -----,... --, _.f: ho M,,,401
lUUJ.l.L'-Cll....LV.l.l.,;:, t"'J..v \",...;,~v~J v _ """ __ 23 Central
Processor are shown separately.

Register Value to be Entered

$R4 Channel number of dump output device

$RS Channel number used for block-mode read

$R6 0000; or first memory address of area
to be dumped

$R7 OFFF (13FF for Model 23); or the last
memory address of area to be dumped

$BS Return address. If no value is entered,
default is that the current address is
returned to the system.

The values in the registers control the contents of the
dump, as shown in Table G-I.

The format of the entry to specify entry point STRTDO is:

JMP < STRTDO

The dump routine dumps the MLCP (DLCP) memory to the speci­
. fied device. Register $R2 (Table G-2) indicates results of the
dump. When the dump is completed, control returns to the appli­
cation at the instruction pointed to by register $BS.

G-4· CB03

(

STRTDI ENTRY POINT IN USING DUMCP

When using entry point STRTDl, the user must set certain
registers (see below) before starting to execute the dump. These
register values override the channel numbers specified in the
source program or when DUMCP was linked with the application.

NOTE: Register values for dumping the DLCP of the Model
23 Central Processor are shown separately.

Register Value to be Entered

$R4 Channel number of output device for the dump

$R5 Channel number used for the blo6k-mode read

$R6 0000; or the first memory address of area to
be dumped

$R7 OFFF (13FF for Model 23); or the last
memory address of area to be dumped

The values in the registers control the contents of the
dump, as shown in Table G-l.

See Figure G-l for detailed example of dump formats and
contents.

G-5 CB03

Table G-l. Register Values and DUMCP Dump Contents

Reg ister and Contents Resulting Dump Contents

$R6 0000 Fully formatted dump, comprising line con-
$R7 OFFF trol tables, communications control pro-

l3FF grams, and communications control blocks
(Model 23)

$R6 0000 Line control tables only
$R7 OlFF

$R6 DEaD Communications control blocks only
$R7 OFFF
(Model 23)
$R6 1200
$R7 13FF

~nt:: n ""'_v- Unformatted r1 lImn r'\ F MLCP area within the .."a.\.v v 11".0 '- --""'1:' --
than: addresses (byte addresse s) specified in
0000, or $R6 and $R7
OEOO
1200
(Model 23)

$R7 Less
than:
OFFF
13FF
(Model 23)

The format of the entry specifying entry point STRTD1 is:

LNJ $S5,<STRTD1

The dump routine immediately dumps MLCP (or DLCP) memory to
the specified device. The contents of $R2 (see Table G-2) will
indicate a successful dump or an error condition. When the dump
is completed, control returns to the application program at the
instruction pointed to by register $B5.

G-6 CS03

/

(

Table G-2. Registe~ $R2 at Dump Execution - DUMCP
Linked to Application

Reg ister $R2
Contents Meaning

0 Dump successfully completed; no errors.

1 Invalid MLCP channel numbers.

2 Device other than operator terminal or
serial/line printer specified as the
output device.

STRTD2 ENTRY POINT IN USING DUMCP

STRTD2 should be used when the block-mode read channel
(RDMLCP) and the outpu t-dev i c'e channel numbe r (DMPOUT) val ues,
specified in XDEF statements or in Linker VDEF directives (see
above) are to be used without change. Registers need not be
changed prior to the dump request.

The format of the entry specifying entry point STRTD2 is:

LNJ $B5,<STRTD2

The contents of register $R2 (see Table G-2) will indicate
successful dump or an error condition.

When the dump is completed, control returns to the applica­
tion program at the instruction pointed to by $B5.

DUMCP DUMP FORMATS

Formatted dumps of the MLCP comprise the following areas,
whose formats are shown in Figure G-l below.

o Line control table (LCT) area, byte locations 0000
through OIFF. The LeT has 64 bytes, each shown in eight
groups (four for Model 23) for easier reading.

o Channel control program (CCP), byte locations 0200
through ODFF (llFF for Model 23). The format shows 16
bytes per line for easier reading.

G-7 CB03

o Communication control block (CCB) area, byte locations
OEOO through OFFF (1200 through 13FF for Model 23).
There are four CCBs per channel. CCBs 0 through 3 are
for the receive channel, CCBs 4 through 7 for the send
channel. The dump shows the address, range, control
byte, and status for each CCB. An R following an address
indicates that the address field refers to the right byte
of a word. When there is no R following the address, the
the address refers to the left byte.

NOTE: CCBs are used in the following order:
receive channel, CCB 1 is used first,
last. For the send channel, CCB 5 is
CCB 4 used last.

DUMCP PROGRAMMING

For the
CCB a used
used first,

The following DUMCP programming considerations apply:

1. The application source program contains a macro call,
making it necessary to preprocess the source through
EXEC_LIB when reassembly is required.

2. When possible, use an inactive MLCP channel for the
block-mode read channel, because the channel specified
will be initialized and corresponding channel control
block list reset. .

3. To allow variations of RDMLCP and DMPOUT values, it may
be convenient to line more than one iteration of the
dump, with different names.

4. When a printer whose channel number was designated is
not ready or is disabled, the DUMCP program loops until
the printer's READY button is pressed.

5. DUMCP does not provide trap handling.

6. DUMCP executes at interrupt level 3. Therefore, its
execution preempts all system activities including clock
functions.

G-8 CB03

.. /

.---

(OC086 MCP DUMP REV 3
RAM RUD FROM CHAN. FC90
leT LINO LINt LIN2 LIN3 LlN4 LIN5 LINb LIN7
0000 FC FC 00 00 00 00 00 00
0001 00 00 00 00 00· 00 00 00
0002 00 f& 00 00 00 00 00 00
0003 00 00 00 00 00 00 00 00
0004 00 00 00 00 00 00 00 00
0005 00 02 00 O() no 00 00 00
OOOb 00 53 00 00 00 00 00 00

0007 00 81 00 00 00 00 00 00
0008 00 00 00 00 00 00 00 00
0009 01 00 00 00 00 00 00 00
OOto 00 30 no 00 00 00 00 00
0011 00 00 00 00 o () 00 00 00
0012 00 00 00 00 00 00 00 00
0013 00 Of 00 00 00 00 00 00
0014 00 00" 00 00 00 00 00 00
00115 00 00 00 00 00 00 00 00
001b 00 00 00 00 00 00 00 00
0017 00 00 00 00 00 00 00 00
0018 00 F5 00 00 00 00 00 00
0019 00 58 00 00 00 00 00 00
0020 00 82 00 00 00 00 00 00
0021 00 00 00 00 00 00 00 00
0022 00 00 00 00 00 00 00 00
0023 00 03 00 00 00 00 00 00
0024 00 Ob 00 no 00 00 00 00
00215 00 82 00 00 00 00 00 00
002b 00 Ob 00 00 00 00 00 00

',4 0027 00 Ab 00 00 00 00 00 00
'" 0028 00 00 00 00 00 00 00 00

0029 00 00 00 00 00 00 00 00
0030 00 00 00 00 00 00 00 00
0031 00 t 7 00 00 00 00 00 00
0032 FC Fe 00 00 00 00 00 00
0033 00 00 0·0 00 00 00 00 00
0034 Eb fb 00 00 00 00 00 00
0035 00 00 00 00 00 00 00 00
003b 00 00 00 00 00 00 00 00
0037 02 00 00 00 00 00 Ou 00
0038 82 82 00 00 00 00 00 00
0039 2C 2C 00 00 00 00 00 00
0040 00 00 00 00 00 00 00 00
0041 00 00 00 00 00 00 00 00
0042 30 00 00 00 00 00 00 00
0043 31 00 00 00 00 00 00 00
0044 00 00 00 00 00 .00 00 00
0'045 OE Of 00 00 00 00 00 00
004b 00 00 00 00 00 00 00 00
0047 00 00 00 00 00 00 00 00
0048 00 "0 00 00 00 00 00 00
0049 00 00 00 00 00 00 00 00
0050 33 43 00 00 00 00 00 00
0051 03 44 00 00 00 00 00 00
0052 00 00 00 00 00 00 00 00
0053 82 82 00 00 00 00 00 00
0054 AO 60 00 00 00 00 00 00
0055 03. OA 00 00 00 00 00 00

(005-6 06 Ob 00 00 00 00 00 00
0057 7b 7b 00 00 00 00 00 00

Figure G-l. DUMC}? Dump Example

G-9 CB03

/' '" 05150 51 to 90 00 51 IE 02 EO AS FO bl EO Cl7 EO 58 EO
05bO OCi EO CIS EO 95 EO 95 EO CIS 51 IF 50 Ie Cl2 FF '1 ".-'
0570 07 SO 10 q2 ' FF Ft EB FO 43 03 SO 3A Cl2 FF E1 09
0580 01 A2 52 3D Fl 08 EO FCI 01 AO 52 3D Fl 03 EO F9
05C10 '51 IF '50 IC 92 FF El 10 50 IF 92 82 El 07 92 02
05AO El 03 EO BE 04 EO BD 50 IF 92 10 Fl BCI 01 AO EO
0580 EA EO AF EO Bl EO AD EO AF EO 2A 50 tF 04 50 3A
05eo 92 00 El OF 01 AO 55 03 F2 13 01 AO 55 04 F2 00
0500 EO 09 Ot AO 55 03 93 7F F2 03 02 Ob 50 11 Cl4 40
05Eo 51 11 02 Ob 51 IF 50 IE 92 FF Fl 25 SO Ie '12 FF
05FO El 03 EO BE 50 10 92 FF El 11 ClO FF 51 10 EO 8b
ObOO EO 09 EO AE EO BO EO AC EO AE '10 00 51 10 EO F3
OblO 01 50 3A 92 FF Fl IE AO Cl2 70 El 3b '12 bl El 3b
Ob20 92 7C El 3b 51 IF 50 lC Cl2 00 El DB 50 1'F Cl2 02
Ob,30 El 3A Eo 03 A2 Cl2 80 El 19 92 31 El 19 Cl2 Be E1
Ob40 lCi 51 IF 50 Ie 92 00 El BE 50 IF Cl2 82 El lb EO
Ob50 Bb ClO 05 EO 07 ClO Ob EO 03 '10 04' It 50 10 '14 02
ObbO 51 10 90 00 51 IE 51 to 02 EO 'IE ClO FF 51 lE 90
Ob70 00 51 10 EO 90 00 00 80 81 82 84 84 84 84 84 84
Obeo 84 82 00 80 81 00 00 00 81 83 85 85 00 00 00 00
Ob90 00 00 00 00 00 00 80 00 00 00 00 84 8b 83 00 00
OblO 00 00 00 00 00 82 00 00 00 00 00 00 00 00 00 00 *.. ALL ZEROS **
Obeo 00 00 00 00 00 00 00 00 00 1)0 00 15 0'; 0'1 ,St; lO
ObOO 31 00 00 00 00 00 00 00 00 00 00, 00 00 00 00 00
** ALL ZEROS **
ee8 AREA

eeB ADDRESS RANGE CONTROL STATUS
LINE 0
0000 000000 0000 00 0000 /

0001 0057A7 01F4 OC OOOE
0002 003E71R 0000 80 1000
0003 000000 0000 00 0000
0004 0045E9 0000 8b 1000
0005 0045e3 0000 Cb 1000
OOOb 0045F9 0000 02 1000
0007 OObFF7 0000 80 FOOO
LINE 1
0000 000000 0000 00 0000
0001 003E98R 0000 80 5200
0002 OObDF3R 0001 80 SOAO
0003 000000 0000 00 0000
0004 000000 0000 00 0000
0005 (JOOOOO 0000 00 0000
OOOb 000000 0000 00 0000
0007 000000 0000 00 0000
LINE 2
00'00 000000 0000 00 0000
0001 000000 0000 00 0000
0002 000000 0000 00 0000
0003 000000 0000 00 0000
0004 000000 0000 00 0000
0005 000000 0000 00 0000
GOOb 000000 0000 00 0000
0007 000000 0000 00 0000
LINE 3
0000 000000 0000 00 0000
0001 000000 0000 00 0000
0002 000000 0000 00 0000

Figure G-l (cont). DUMCP Dump Example
"o_~

G-lO CB03

(0058 00 00 00 00 00 00 00 00
0059 00 00 00 00 00 00 00 00
0060 FF 00 00 00 00 00 00 00
00.1 16 16 00 00 00 00 00 00
ct062 06 Ob 00 00 00 00 00 00
0063 Cb C6 00 00 00 00 00 00

CCP
0200 00 00 90 00 '51 08 '50 34 H '50 02 36 SO 14 32 01
0210 EO FE EO 7C EO 17 SO 3D 34 90 Cl 51 14 32 01 06
0220 90 00 51 23 51 24 90 82 51 14 32 01 FO E9 50 37
0230 56 36 EO' OB EO 09 EO 07 EO OC EO 03 EO 56 90 04
0240 54 30 02 EO E7 EO 51 50 lC 92 FF Fl 05 90 10 bO
0250 01 50 3A 92 FF E1 11 50 3B E2 07 90 02 63 01 EO
02bO 15 90 02 62 01 EO OF SO 3B E2 07 90 02 61 01 EO
0270 05 90 02 bO 01 '50]A 92 FF F 1 21 '50 1C 92 FF F1
0280 08 10 92 10 E1 to EO 02 to 61 01 F3 EF EO 18 EO
0290 77 EO 9A EO 71 EO 8A EO 69 EO AD to 63 01 F3 FC
02AO EO 05 bO 01 EO £4 50 IC 92 FF F1 05 90 10 60 01
02BO '50 3B 05 52 ~C El 13 '50 3A 92 FF El 07 90 IF 63
02CO 01 EO 47 90 IF 61 01 EO 41 90 00 51 3B 50 30 94
0200 60 51 30 50 37 92 OB E1 13 '50 3A 92 FF Fl 07 90
02EO 26 61 01 EO 25 90 t7 63 Ot EO IF 50 3A 92 FF El
02FO 07 90 03 1,3 01 EO 13 90 03 61 01 EO 00 EO 97 EO
0300 91 FO 28 EO 95 EO 3C EO 7A 50 23 60 01 50 3A 92
0310 00 E1 05 50 24 60 01 90 FF bO 01 60 01 60 01 50
0320 ~O 93 80 92 80 02 Fl 08 EO 04 50 3A 92 FF E1 OA
0330 50 3D b2 01 62 01 62 01 0& 50 3D bO 01 60 01 60
0340 01 06 FO E7 50 37 93 08 92 08 El 25 50 3A 92 FF
0350 El 17 50 37 56 3E &2 01 90 FF bO 01 60 01 60 01
0360 50 30 94 AO '51 30 EO 9b 50 37 56 3E 60 01 EO E9
0370 50 3A 92 FF El 07 90 10 b2 01 EO 01 90 10 60 01
0380 EO E7 EO 2E 50 3D 34 90 00 51 IE 90 00 51 17 94
0390 82 51 14 32 EO Ie 50 10 94 82 51 10 02 90 00 51
03AO IE EO 03 EO F2 90 80 51 14 32 90 00 51 03 51 04
03BO 01 50 t 7 5& UI EO OF EO CC EO 01 Eo 09 01 AO 52
03CO 3D £1 FB EO 00 5(1]A 92 FF El F3 01 A2 52 3D El
0300 F5 51 IF '50 3A 92 FF El 07 50 IF 93 7F 51 IF 50
03EO tF 93 co F2 b9 50 tF 56 tA EO b3 EO 65 EO 60 EO
03FO 50 EO 58 EO SF EO SF fa 55 01 AO 51 IF 93 CO F2
0400 15 '50 tF 56 lA FO OF fO 49 EO 08 EO 40 EO 49 EO
04tO as EO 43 EO &3 50 IF 04 E3 8A 11 EO DO EO A7 EO
0420 85 Eo Al 01 A2 '51 tF 93 -ttO F2 17 50 IF 93 7F 56
0430 lA EO OF EO &7 EO OB EO 61 EO 71 EO OS EO 61 EO
0440 37 50 IF 04 93 7F n OA 11 EO 09 EO 03 EO 39 EO
0450 CO EO a9 EO 49 EO 49 EO 53 FO 3F 90 FF 51 IE EO
0460 OF '50 3A q2 FF Fl OS SO IF EO AD 50 IF Eo 05 50
0470 3A 92 FF FI AF EO 83 50 Ie 92 FF El 03 EO Fl 50
0480 10 92 FF F1 DO EO E9 '50 10 94 02 '51 10 90 07 11
0490 90 00 51 IE 51 1D 02 EO 83 EO 67 EO 63 EO 38 EO
OUO b5 EO CD EO E3 EO BB EO A7 EO Al 51 IF SO lC 92
0480 FF Fl 09 50 to 92 00 Ft 03 EO EB '50 IF 92 03 E1
04CO 09 50 11 94 80 51 11 EO 07 50 10 94 01 51 10 90
0400 00 51 IE 51 10 EO 20 EO 01 '51 IF 50 IE 92 FF Fl
04EO 03 EO C3 qo 01 11 SO to 9a 02 51 10 02 90 00 51
04FO IE EO 08 EO E3 EO Bl EO AD fO A7 EO A7 EO AB EO
0500 50 EO 50 EO 55 '51 IF SO IE q2 FF Fl 2F 50 lC 92
0510 00 El 09 50 to 92 FF El 03 EO 88 qo 00 51 10 50
0520 IF 92 05 El Of 92 20 El OA 50 10 94 04 51 10 02

(0530 EO CC 50 10 q4 80 '51 10 02 EO C3 SO IF 92 05 E1
0540 09 92 20 E1 05 90 03 EO 03 90 02 11 SO 10 94 02

Figure G-l (cont) • DUMCP Dump Example

G-ll CB03

0003 000000 0000 00 0000
0004 000000 0000 00 0000
0005 000000 0000 00 0000
000& 000000 0000 00 0000
0007 00'0000 0000 00 0000
LINE 4
0000 000000 0000 00 0000
0001 000000 0000 00 0000
0002 000000 0000 00 0000
0003 000000 0000 00 0000
0004 000000 0000 00 0000
0005 000000 0000 00 0000
0006 000000 0000 00 0000
0007 000000 0000 00 0000
LINE ~
0000 000000 0000 00 0000
0001 000000 0000 00 0000
0002 000000 0000 00 0000
0003 000000 0000 00 0060
0004 000000 0000 00 0000
0005 000000 0000 00 0000
0006 000000 0000 00 0000
0007 000000 0000 00 0000

LINE 6
0000 000000 0000 00 0000
0001 000000 0000 00 ·0000
0002 000000 0000 00 0000
0003 000000 0000 00 0000
0004 000000 0000 00 0000
0005 000000 0000 00 0000
0006 OOOOOU 0000 00 0000
00Q7 000000 0000 00 0000
LINE 7
0000 000000 0000 00 0000
0001 000000 0000 00 0000
0002 000000 0000 00 0000
0003 000000 0000 00 0000
0004 000000 0000 00 0000
0005 000000 0000 00 0000
0006 000000 0000 00 0000
0007 000000 0000 00 0000
END OF ~iCP DU~P

Figure G-l (cont). DUMCP Dump Example

G-12 CB03

(

INDEX

ACKNOWLEDGE, WAIT BEFORE
BSC WAIT BEFORE ACKNOWLEDGE

(WACK) FEATURE, 10~6

ADVANCED TRANSMISSION MODE, BSC
ASSEMBLY PROGRAMS MACRO CALLS BSC

2780 ADVANCED MODE, 5-16
ASSEMBLY PROGRAMS MACRO CALLS BSC

3780 ADVANCED MODE, 5-20
BSC 3780 CONVENTIONS - ADVANCED

MODE, 5-20
BSC ADVANCED DATA TRANSMISSION

MODE, 10~2
COBOL MACRO CALL PROCEDURES BSC

2780 IN ADVANCED MODE, 3-11
COBOL MACRO CALL PROCEDURES BSC

3780 IN ADVANCED MODE, 3-11
MACRO CALL PROCEDURES FOR BSC 2780

IN ADVANCED MODE (TBL), 5-18
MACRO CALL PROCEDURES FOR BSC 3780

IN ADVANCED MODE (TBL) , 5-24
PROGRAM LOGIC FOR 2780 BSC IN

ADVANCED MODE (FIG), 5-17
PROGRAM LOGIC FOR BSC 3780 IN

ADVANCED MODE (FIG), 5-22

ASCII
ASCII AND EBCDIC CHARACTERS, F-1
ASCII INPUT FOR BSC, 10-16
BSC ASCII OUTPUT, 10-19

ASCII/HEXADECIMAL CHARACTERS
ASCII/HEXADECIMAL CHARACTER

EQUIVALENTS (TBL) , E-2

ASSEMBLY
ASSEMBLY COMMUNICATIONS WITH

PHYSICAL INPUT/OUTPUT (p I/O), 6-1
ASSEMBLY EXAMPLE TTY OR VIP USING

PHYSICAL I/O (FIG), D-20
ASSEMBLY LANGUAGE COMMUNICATIONS

WITH FILE SYSTEM, 5-1
ASSEMBLY LANGUAGE EXAMPLE FOR TTY

OR VIP PHYSICAL I/O, D-19
ASSEMBLY PROGRAMS BINARY .

SYNCHRONOUS COMMUNICATION
(BSC), 5-11

ASSEMBLY PROGRAMS BSC DATA
TRANSMISSION CONVENTION, 5-11

ASSEMBLY PROGRAMS DEVICE MODES
AND DEVICE TYPES, 5-3

ASSEMBLY PROGRAMS DEVICE DEPENDENT
MACRO CALLS, 5-3

ASSEMBLY PROGRAMS FILE SYSTEM
CONSIDERATIONS, 5-1

ASSEMBLY PROGRAMS MACRO CALLS BSC
2780 ADVANCED MODE, 5-16

ASSEMBLY PROGRAMS MACRO CALLS BSC
2780 BASIC MODE, 5-12

ASSEMBLY PROGRAMS MACRO CALLS BSC
3780 ADVANCED MODE, 5-20

ASSEMBLY (CONT)
ASSEMBLY PROGRAMS MACRO CALLS DATA

ENTRY TERMINALS, 5-4
ASSEMBLY PROGRAMS MACRO CALLS

MULTIPLE TERMINALS, 5-9
ASSEMBLY PROGRAMS MACRO CALLS

OUTPUT ONLY TERMINALS, 5-5
ASSEMBLY PROGRAMS MACRO CALLS

SINGLE TERMINAL, 5-7
$GTFIL MACRO CALL IN ASSEMBLY

APPLICATIONS, 5-1
$OPFIL MACRO CALL IN ASSEMBLY

APPLICATIONS, 5-2
$TIFIL $TOFIL MACRO CALL IN

ASSEMBLY APPLICATIONS, 5-2
$WIFIL $WOFIL MACRO CALL IN

ASSEMBLY APPLICATIONS, 5-2
USING PHYSICAL I/O IN ASSEMBLY

PROGRAMS, 6-2

ASSIGN CLAUSE, COBOL
COBOL ASSIGN CLAUSE, 3-2
COBOL SELECT AND ASSIGN

EXAMPLES, 3 - 3

ASSIGNING
COBOL, ASSIGNING A FILE TO A

DEVICE/TERMINAL, 3-2
FORTRAN, ASSIGNING INTERACTIVE

DEVICES AT EXECUTION, 4-1

ASSOC COMMAND IN COBOL
COBOL ASSOC OR GET COMMANDS, 3-2

ASYNCHRONOUS
ASYNCHRONOUS INPUT/OUTPUT, 2-11
COBOL ASYNCHRONOUS OPERATION (CALL

"ZCASN"), 3-4
COBOL ASYNCHRONOUS OR SYNCHRONOUS

EXECUTrON, 3-4
COBOL WAIT FOR COMPLETION

ASYNCHRONOUS I/O, 3-5

AUTO CALL UNIT
AUTO CALL UNIT, A-4

BASIC TRANSMISSION MODE, BSC
ASSEMBLY PROGRAMS MACRO CALLS BSC

2780 BASIC MODE, 5-12

BCC

i-I

BSC 2780 CONVENTIONS - BASIC
MODE, 5-12

BSC BASIC DATA TRANSMISSION
MODE, 10-2

COBOL MACRO CALL PROCEDURES BSC
2780 IN BASIC MODE, 3-9

MACRO CALLS FOR BSC 2780 IN BASIC
MODE (TBL) , 5-14

PROGRAM LOGIC FOR BSC 2780 IN
BASIC MODE (FIG), 5-13

BSC BLOCK CHECK CHARACTER
(BCC) , A-8

CB03

INDEX

.BLOCK
BLOCK ERROR CHECK, A-8
BSC BLOCK CHECK CHARACTER

(BCC), A-8
COMMUNICATIONS INPUT/OUTPUT REQUEST

BLOCK (IORB) (FIG), 6-5
FILE INFORMATION BLOCK (FIB)FOR

DATA MANAGEMENT (FIG), 2-7
FILE INFORMATION BLOCK (FIB), 2-3
FILE INFORMATION BLOCK (FIB), FOR

STORAGE MANAGEMENT (FIG), 2-9
INPUT OUTPUT REQUEST BLOCK

(IORB), 6-2, 6-4

BOUND UNIT, DUMCP
LINKING BOUND UNIT CONTAINING

DUMCP,. G-1
LINKING DUMCP AS SELF-CONTAINED

BOUND UNIT, G-2

BRK CHARACTER

BSC

TTY DETECTION OF BRK
CHARACTER, 7-10

ASCII INPUT FOR BSC, 10-16
ASSEMBLY PROGRAMS BSC 2780 AND

BSC 3780, 5-11
ASSEMBLY PROGRAMS MACRO CALLS BSC

2780 ADVANCED MODE, 5-16
ASSEMBLY PROGRAMS MACRO CALLS BSC

2780 BASIC MODE, 5-12
ASSEMBLY PROGRAMS MACRO CALLS BSC

3780 ADVANCED MODE, 5-20
BSC 2780 AND BSC 3780 DIFFERENCES,

5-12, 10-3
BSC 2780 CONVENTIONS - BASIC

MODE, 5-12
BSC 2780/3780 FEATURES, 10-3
BSC 2780/3780 LINE PROTOCOL

HANDLER, 10-1
BSC 3780 CONVERSATIONAL REPLY

FEATURE, 10-10
BSC 3780 TRANSMISSION/RECEIPT OF

BSC CONTROL CHARACTERS, 10-10
BSC 3780 TWO BUFFER FEATURE, 10-10
SSC AND PVE HOST-COMMUNICATIONS

SUPPORT, 1-5
BSC ASCII OUTPUT, 10-19
BSC BASIC DATA TRANSMISSION

MODE, 10-2
BSC BLOCK CHECK CHARACTER

(BCC), A-8 .
BSC CONTROL BYTE (RECEIVE), 10-15·
BSC CONTROL BYTE (SEND), 10-18
BSC DATA TRANSMISSION MODE, 10-2
BSC DEVICE-SPECIFIC WORD I DVS IN

IORB (TBL), 10-12 -
BSC EBCDIC OUTPUT, 10-19
BSC END OF TRANSMISSION (EOT)

FEATURE, 10-8
BSC INPUT DATA, 10-14
BSC LINE PROTOCOL HANDLER

OPERATION, 10-1

BSC (CONT)
BSC LINE PROTOCOL HANDLER

TIME-OUT, 10-9
BSC MASTER STATION, 10-1
BSC NONALPHANUMERIC CONTROL

CHARACTERS (TBL), F-3
BSC OUTPUT DATA, 10-17
BSC REVERSE INTERRUPT (RVI)

FEATURE, 10-7
BSC SLAVE STATION, 10-1
BSC SOFTWARE STATUS WORD I ST IN

IORB (TBL), 10-14
BSC TEMPORARY TEXT DELAY (TTD)

FEATURE, 10-5
BSC TRANSPARENT EBCDIC

OUTPUT, 10-20
BSC TWO-BUFFER FEATURE, 10-3
BSC WAIT BEFORE ACKNOWLEDGE (WACK)

FEATURE, 10-6
BSC WITH COBOL, 3-8
COBOL BSC APPLICATION

EXAMPLE, D-12
COBOL BSC DATA CODES, 3-8
COBOL BSC DATA TRANSMISSION, 3-8
COBOL MACRO CALL PROCEDURES BSC

2780 IN ADVANCED MODE, 3-11
COBOL MACRO CALL PROCEDURES BSC

2780 IN BASIC MODE, 3-9
COBOL MACRO CALL PROCEDURES BSC

3780 IN ADVANCED MODE, 3-11
EBCDIC INPUT FOR BSC, 10-16
EXAMPLE OF BSC COMMUNICATION

(FIG), 10-3
EXAMPLE OF CONVERSATIONAL REPLY BSC

3780 TRANSMISSION (FIG), 10-11
LINE CONTENTION - BSC, 10-2
PROGRAM LOGIC FOR 2780 BSC IN

ADVANCED MODE (FIG), 5-17
PROGRAM LOGIC FOR 2780 BSC

(FIG), 3-10
PROGRAM LOGIC FOR BSC 2780 IN BASIC

MODE (FIG), 5-13
PROGRAM LOGIC FOR BSC 3780 IN

ADVANCED MODE (FIG), 5-22
PROGRAM LOGIC FOR BSC 3780

(FIG), 3-12
SPECIFYING BSC 2780 AND/OR 3780 TO

THE SYSTEM, 10-13
TRANSPARENT EBCDIC INPUT FOR

BSC, 10-17
USING BSC 2780/3780 LINE PROTOCOL

HANDLER, 10-12

BUFFERED MODE

i-2

TTY .BUFFERED MODE (VIP 7200 AND
7800), 7-3

TTY CHARACTER MODE AND BUFFERED
MODE TRANSMISSION, 7-2

TTY INPUT IN BUFFERED MODE (VIP
7200 AND 7800), 7-9

TTY OUTPUT IN BUFFERED MODE, 7-11

CB03

/

INDEX

BUFFERING, SYSTEM CHECK
SYSTEM BUFFERING, 2-11

BYTE, CONTROL
BSC CONTROL BYTE (RECEIVE), 10-15
BSC CONTROL BYTE (SEND), 10-18
CONTROL BYTE FOR TTY LINE PROTOCOL

HANDLER (FIG), 7-10
TTY CONTROL BYTE (INPUT), 7-8
TTY CONTROL BYTE (SEND), 7-9
VIP CONTROL BYTE (SEND), 8-8

CARRIAGE
COBOL CARRIAGE CONTROL, 3-3
TTY LINE FEED (LF) AND CARRIAGE

RETURN (CR) INPUT, 7-8

CHANNEL CONTROL PROGRAM (CCP)
CHANNEL CONTROL PROGRAM, A-3

CHARACTER
ASCII/HEXADECIMAL CHARACTER

EQUIVALENTS (TBL), F-2
BSC BLOCK CHECK CHARACTER

(BCC), A-8
BSC NONALPHANUMERIC CONTROL

CHARACTER (TBL), F-3
CONTROL CHARACTER AS DATA

CHARACTER, 7-9
EBCDIC/HEXADECIMAL/BINARY CHARACTER

EQUIVALENTS (TBL), E-3
TTY CHARACTER MODE, 7-2
TTY CHARACTER MODE AND BUFFERED

MODE TRANSMISSION, 7-2
TTY KEYBOARD INPUT CHARACTER

CONTROL, 7-8
TTY NONALPHANUMERIC CONTROL

CHARACTER (TBL), F-l
VIP NONALPHANUMERIC CONTROL

CHARACTER (TBL), F-2

CHARACTERISTICS, TERMINAL
CHANGING TERMINAL'S FILE

CHARACTERISTICS, B-1
DEFINING FILE/TERMINAL

CHARACTERISTICS, 2-12
FORTRAN, CHANGING TERMINAL'S FILE

CHARACTERISTICS, 4-1

CHARACTER/LINE CORRECTION
TTY INPUT CHARACTER/LINE CORRECTION

AND DELETION, 7-8

CHARACTERS
ASCII AND EBCDIC CHARACTERS, F-1
BSC 3780 TRANSMISSION/RECEIPT OF

BSC CONTROL CHARACTERS, 10-10
DEVICE-SPECIFIC CONTROL

CHARACTERS, F-l
TTY DETECTION OF BRK

CHARACTERS, 7-10
TTY DISPLAY OF INPUT

CHARACTERS, 7-9

i-3

BLOCK ERROR CHECK, A-8
BSC BLOCK CHECK CHARACTER

(BCC), A-8
CYCLIC REDUNDANCY CHECK (CRC), A-8
FORTRAN FILE STATUS CHECK

(ZFSTIN AND ZFSTOT), 4-2
LONGITUDINAL REDUNDANCY CHECK

(LRC), A-8
PARITY ERROR CHECK, A-8
TIME-OUT CHECK, A-9

COBOL
BSC WITH COBOL, 3-8
COBOL ASSIGN CLAUSE, 3-2
COBOL, ASSIGNING FILE TO DEVICE/

TERMINAL, 3-2
COBOL ASSOC OR GET COMMANDS, 3-2
COBOL ASYNCHRONOUS OPERATION (CALL

"ZCASN"), 3-4
COBOL ASYNCHRONOUS OR SYNCHRONOUS

EXECUTION, 3-4
COBOL BSC 2780 AND BSC 3780, 3-8
COBOL BSC APPLICATION

EXAMPLE, D-12
COBOL BSC DATA CODES, 3-8
COBOL BSC DATA TRANSMISSION, 3-8
COBOL CARRIAGE CONTROL, 3-3
COBOL CONVENTIONS, 3-8
COBOL FILE SYSTEM

CONSIDERATIONS, 3-1
COBOL INTERNAL FILE NAME

(IFN), 3-2
COBOL MACRO CALL PROCEDURES BSC

2780 IN ADVANCED MODE, 3-11
COBOL MACRO CALL PROCEDURES BSC

2780 IN BASIC MODE, 3-9
COBOL PRINTER EMULATION, 3-4
COBOL PROGRAM EXAMPLES, D-l
COBOL PROGRAM LOGIC FOR MULTIPLE

INTERACTIVE TERMINALS (FIG), 3-6
COBOL SELECT AND ASSIGN

EXAMPLES, 3-3
COBOL SOURCE PROGRAM ENTRIES IN

COMMUNICATIONS, 3-1
COBOL, SPECIFYING FILES IN SOURCE

PROGRAM, 3-1
COBOL SYNCHRONOUS OPERATION (CALL

"ZCSYNC"), 3-4
COBOL TTY OR VIP APPLICATION

EXAMPLE, D-l
COBOL WAIT FOR COMPLETION -

ASYNCHRONOUS I/O, 3-5
COMMUNICATIONS WITH COBOL, 3-1

CODE, FUNCTION
CONNECT FUNCTION (CODE A), 6-11
DISCONNECT FUNCTION (CODE B), 6-11
READ FUNCTION (CODE 2),6-10
WAIT ONLINE FUNCTION (CODE 0), 6-9
WRITE FUNCTION (CODE 1), 6-10

CB03

INDEX

CODES
COMMUNICATIONS FUNCTION CODES, 6-9
FUNCTION CODES IN I CT2 of IORB

(TBL), 7-5, 8-4, 9=3, 10-12
PVE HARDWARE FUNCTION CODES, 9-6
RETURN STATUS ERROR CODES FOR I/O

REQUEST (TBL), 6-3
SOFTWARE (I ST) STATUS CODES

(TBL), 6-8-
VIP HARDWARE FUNCTION CODES, 8-8

COMMAND, STTY
ARGUMENT VALUES FOR STTY COMMAND

AND $STTY MACRO CALL (TBL) , B-2

COMMUNICATIONS-SPECIFIC RCT
COMMUNICATIONS-SPECIFIC ITEMS IN

RCT (TBL) , C-3

CONNECT FUNCTION
CONNECT FUNCTION (CODE A), 6-11

CONTROL
BSC 3780 TRANSMISSION/RECEIPT OF

BSC CONTROL CHARACTERS, 10-10
BSC CONTROL BYTE (RECEIVE), LU-l~
BSC CONTROL BYTE (SEND), 10-18
BSC NONALPHANUMERIC CONTROL

CHARACTER (TBL) , F-3
COMMUNICATIONS RESOURCE CONTROL

TABLE (RCT) (FIG), C-2
CONTROL BYTE FOR TTY LINE PROTOCOL

HANDLER (FIG), 7-10
CONTROL CHARACTER AS DATA

CHARACTER, 7-9
DEVICE-SPECIFIC CONTROL

CHARACTERS, F-1
PVE CONTROL STATION, 9-1
RESOURCE CONTROL TABLE (RCT) ,

6-4, C-1
TTY CONTROL BYTE (INPUT), 7-8
TTY CONTROL BYTE (SEND), 7-9
TTY KEYBOARD INPUT CHARACTER

CONTROL, 7-8
TTY KEYBOARD INPUT LINE

CONTROL, 7-8
TTY NONALPHANUMERIC CONTROL

CHARACTER (TBL), F-1
VIP CONTROL BYTE (SEND), 8-8
VIP NONALPHANUMERIC CONTROL

CHARACTER (TBL) , F-2

CONVERSATIONAL REPLY, BSC
BSC 3780 CONVERSATIONAL REPLY

FEATURE, 10-10

CORRECTION
.. COMMUNICATIONS SUBSYSTEM ERROR AND

CORRECTION PROCEDURES, A-8
TTY INPUT CHARACTER/LINE CORRECTION

AND DELETION, 7-8

CR (CARRIAGE RETURN)
TTY LINE FEED (LF) AND CARRIAGE

RETURN (CR) INPUT, 7-8

CYCLIC
CYCLIC REDUNDANCY CHECK (CRC), A-8

DATA
BSC INPUT DATA, 10-14
BSC OUTPUT DATA, 10-17
COBOL BSC DATA CODES, 3-8
COBOL BSC DATA TRANSMISSION, 3-8
COBOL BSC DATA TRANSMISSION

MODES, 3-8
CONTROL CHARACTER AS DATA

CHARACTER, 7-9
DATA MANAGEMENT MACRO CALLS, 2-2
MACRO CALLS FOR DATA ENTRY

TERMINALS (TBL), 5-4
PHYSICAL I/O DATA STRUCTURES, 6-3
PVE INPUT DATA, 9-7
PVE OUTPUT DATA, 9-7
TTY INPUT DATA, 7-7
TTY OUTPUT DATA, 7-9
VIP INPUT DATA, 8-8
VIP OUTPUT DATA, 8-9

DELAY, TEXT
!:Sse TEIvIPO.RARY TEXT DELAY (TID)

FEATURE, 10-5

DELETION, INPUT CHARACTER
TTY INPUT CHARACTER/LINE CORRECTION

AND DELETION,7-8

DEVICE
ASSEMBLY PROGRAMS DEVICE MODES AND

DEVICE TYPES, 5-3
TTY AND VIP LINE PROTOCOL HANDLER

DEVICE SUPPORT, 1-5

DIFFERENCES, BSC 2780/3780
BSC 2780 AND BSC 3780 DIFFERENCES,

10-3, 5-12

DISCONNECT FUNCTION
DISCONNECT FUNCTION (CODE B), 6-11

DISPLACEMENT DEFINITIONS (FIB)
FIB DISPLACEMENT DEFINITIONS, 2-6

DISPLAY, TTY
TTY DISPLAY OF INPUT

CHARACTERS, 7-9

DLCP
DUMP ROUTINE (DUMCP) FOR MLCP AND

DLCP, G-1

DRIVER, MLcP
MULTILINE COMMUNICATIONS PROCESSOR

(MLCP) AND DRIVER, 1-4, A-3

DUMCP (MLCP DUMP)
DUMCP DUMP FORMATS, G-7
DUMCP PROGRAMMING, G-8
DUMP ROUTINE (DUMCP) FOR MLCP AND

DLCP, G-1

i-4 CB03

(

INDEX

DUMCP (MLCP DUMP) (CONT)
LINKING BOUND UNIT CONTAINING

DUMCP, G-1
LINKING DUMCP WITH APPLICATION

PROGRAM, G-3
REGISTER VALUES AND DUMCP DUMP

CONTENTS (TBL) , G-6
ISTRTDO ENTRY POINT IN USING

DUMCP, G-4
STRTD1 ENTRY POINT IN USING

DUMCP, G-5
STRTD2 ENTRY POINT IN USING

DUMCP, G-7

EBCDIC
ASCII AND EBCDIC CHARACTERS, F-1
BSC EBCDIC OUTPUT, 10-19
BSC TRANSPARENT EBCDIC

OUTPUT, 10-20
EBCDIC INPUT FOR BSC, 10-16
TRANSPARENT EBCDIC INPUT FOR

BSC, 10-17

EBCDIC/HEXADECIMAL/BINARY
EBCDIC/HEXADECIMAL/BINARY CHARACTER

EQUIVALENTS (TBL) , E-3

EDITING
VIP KEYBOARD/SCREEN OUTPUT

EDITING, 8-10
VIP RECEIVE-ONLY PRINTER EDITING,

8-10

EMULATION, PRINTER
COBOL PRINTER EMULATION, 3-4

EMULATOR, POLLED VIP
POLLED VIP EMULATOR (PVE) LINE

PROTOCOL HANDLER, 9-1

END-OF-MESSAGE SEQUENCE
END-OF-MESSAGE (EOM) SEQUENCE TTY

OUTPUT, 7-10

ENQ MESSAGE
ENQ BID MESSAGE, 10-1

EOM SEQUENCE
END-OF-MESSAGE (EOM) SEQUENCE TTY

OUTPUT, 7-10

EOT FEATURE
BSC END OF TRANSMISSION (EOT)

FEATURE, 10-8

ERROR
BLOCK ERROR CHECK, A-8
COMMUNICATIONS SUBSYSTEM ERROR AND

CORRECTION PROCEDURES, A-8

i-5

ERROR (CONT)
ERROR PROCESSING VIP LINE PROTOCOL

HANDLER, 8-11
ERROR REPORTING PVE LINE PROTOCOL

HANDLER, 9-8
MLCP ERROR REPORTED BY VIP LINE

PROTOCOL HANDLER (TBL) , 8-13
NONPOLLED VIP ERRORS, 8-14
PARITY ERROR CHECK, A-8
RETURN STATUS ERROR CODES FOR I/O

REQUEST (TBL) , 6:-3

EXAMPLE
ASSEMBLY LANGUAGE EXAMPLE FOR TTY

OR VIP PHYSICAL I/O, D-19
BSC REVERSE INTERRUPT (RVI) EXAMPLE

(FIG), 10-8
BSC TEMPORARY TEXT DELAY (TTD)

EXAMPLE (FIG), 10-6
BSC WAIT BEFORE ACKNOWLEDGE (WACK)

EXAMPLE (FIG), 10-7
COBOL BSC APPLICATION

EXAMPLE, D-12
COBOL TTY OR VIP APPLICATION

EXAMPLE, D-1
COMMUNICATIONS SUBYSTEM OPERATION

EXAMPLE, A-4
EXAMPLE OF BSC COMMUNICATION

(FIG), 10-3
EXAMPLE OF CONVERSATIONAL REPLY BSC

3780 TRANSMISSION (FIG), 10-11
FORTRAN APPLICATION EXAMPLE FOR

TTY, D-16

EXAMPLES
COBOL PROGRAM EXAMPLES, D-1
COBOL SELECT AND ASSIGN

EXAMPLES, 3-3
COBOL SELECT AND ASSIGN EXAMPLES

(FIG), 3-3
FORTRAN ZFSTIN AND ZFSTOT

EXAMPLES, 4-4

EXECUTION
COBOL ASYNCHRONOUS OR SYNCHRONOUS

EXECUTION, 3-4
FORTRAN EXECUTION WITH

COMMUNICATIONS, 4-1

FEED, LINE AND FORM

FIB

TTY LINE FEED (LF) AND CARRIAGE
RETURN (CR) INPUT, 7-8

VIP RECEIVE-ONLY PRINTER FORM
FEED, 8-11

FIB DISPLACEME~ DEFINITIONS,
2-6

FIB FOR DATA MANAGEMENT (TBL) ,
2-8

FIB FORMAT AND CONTENTS, 2-3

CB03

INDEX

FIB (CONT)
FILE INFORMATION BLOCK (FIB), 2-3
FILE INFORMATION BLOCK (FIB) FOR

STORAGE MANAGEMENT (FIG), 2-9
FILE INFORMATION BLOCK (FIB)

(FIG), 2-4
PROGRAM VIEW ENTRY IN THE FIB, 2-6
PROGRAMMER'S VIEW OF FIB, 2-6

FILE
CHANGING TERMINAL'S FILE

CHARACTERISTICS, B-1
COBOL, ASSIGNING A FILE TO A

DEVICE/TERMINAL, 3-2
COBOL INTERNAL FILE NAME

(IFN), 3-2
FILE ASSIGNMENTS IN COBOL

EXAMPLE, D-2
FILE INFORMATION BLOCK (FIB FOR

DATA MANAGEMENT (FIG), 2-7
FILE INFORMATION BLOCK (FIB), 2-3
FILE INFORMATION BLOCK (FIB) FOR

STORAGE MANAGEMENT (FIG), 2-9
FILE MANAGEMENT MACRO CALLS, 2-1
FILE SYSTEM AND MACRO

ROUTINES, 2-1
FILE SYSTEM IN

COMMUNICATIONS, 2-10
FILE SYSTEM INTERFACE· WITH

APPLICATIONS, 1-4
FORTRAN, CHANGING TERMINAL'S FILE

CHARACTERISTICS, 4-1
FORTRAN, FILE STATUS CHECK (ZFSTIN

AND ZFSTOT), 4-2
GCOS ¢ FILE SYSTEM, 1-2
TEST FILE STATUS, 2-12

FORTRAN
COMMUNICATIONS WITH FORTRAN, 4-1
FORTRAN APPLICATION EXAMPLE FOR

TTY, D-16
FORTRAN, ASSIGNING INTERACTIVE

DEVICES AT EXECUTION, 4-1
FORTRAN CALL STATEMENT FOR ZFSTIN

OR ZFSTOT, 4-2
FORTRAN, CHANING TERMINAL'S FILE

CHARACTERISTICS, 4-1
FORTRAN EXECUTION WITH

COMMUNICATIONS, 4-1
FORTRAN FILE STATUS CHECK (ZFSTIN

AND ZFSTOT), 4-2
FORTRAN INTERACTIVE DEVICES AND

FILES, 4-1
FORTRAN ZFSTIN AND ZFSTOT

EXAMPLES, 4-4

FUNCTION
COMMUNICATIONS FUNCTION CODES, 6-9
CONNECT FUNCTION (CODE A), 6-11
DISCONNECT FUNCTION (CODE B), 6-11
FUNCTION CODES IN I CT2 OF IORB

(TBL), 7-5, 8-4, 9=3, 10-12

FUNCTION (CONT)
PVE HARDWARE FUNCTION CODES, 9-6
READ FUNCTION (CODE 2), 6-10
VIP 7200 AND 7800 FUNCTION AND

CONTROL KEYS, 7-4
VIP HARDWARE FUNCTION CODES, 8-8
WAIT ONLINE FUNCTION (CODE 0), 6-9
WRITE FUNCTION (CODE 1), 6-10

GET
ARGUMENTS FOR GET FILE ($GTFIL)

MACRO CALL (TBL), 5-2
COBOL ASSOC OR GET COMMANDS, 3-2

GTFIL
ARGUMENTS FOR GET FILE ($GTFIL)

MACRO CALL (TBL), 5-2
$GTFIL MACRO CALL IN ASSEMBLY

APPLICATIONS, 5-1

HARDWARE
PVB HARDWARE FUNCTION CODES, 9-6
VIP 7200 AND 7800 HARDWARE

SWITCH, 7-3
VIP HARDWARE FUNC'l'lUN (01)~S, 8-8

HEADER, MESSAGE
PVE INPUT MESSAGE HEADER, 9-6
PVE OUTPUT. MESSAGE HEADER, 9-7
VIP INPUT MESSAGE HEADER, 8-7

. VIP OUTPUT MESSAGE HEADER, 8-8

IFN
COBOL INTERNAL FILE NAME

(IFN) , 3-2

I CT2
- FUNCTION CODES IN I CT2 OF IORB

(TBL), 7-5, 8-4, 9=3, 10-12

I DVS
- BSC DEVICE-SPECIFIC WORD I DVS IN

IORB (TBL) , 10-12
PVE DEVICE-SPECIFIC WORD I DVS IN

IORB (TBL) , 9-3
TTY DEVICE-SPECIFIC WORD I DVS IN

IORB (TBL), 7-5
VIP DEVICE-SPECIFIC WORD I DVS IN

IORB (TBL), 8-4

I ST

i-6

BSC SOFTWARE STATUS WORD I ST IN
IORB (TBL) , 10-14

IORB SOFTWARE STATUS WORD
(I ST), 6-8

PVE-SOFTWARE STATUS WORD I ST IN
IORB (TBL), 9-5

SOFTWARE (I ST) STATUS CODES
(TBL) , 6-8-

VIP SOFTWARE STATUS WORD I ST IN
IORB (TBL), 8-6

CB03

/

(

(

INDEX

INPUT
ASCII INPUT FOR BSC, 10-16
BSC INPUT DATA, 10-14
EBCDIC INPUT FOR BSC, 10-16
INPUT OUTPUT REQUEST BLOCK

(IORB), 6-2
PVE INPUT, 9-6
TRANSPARENT EBCDIC INPUT FOR

BSC, 10-17
TTY DISPLAY OF INPUT

CHARACTERS, 7-9
TTY INPUT DATA, 7-7
TTY INPUT IN BUFFERED MODE (VIP

7200 AND 7800), 7-9
TTY NONTRANSPARENT INPUT, 7-8
TTY TRANSPARENT INPUT, 7-8
VIP INPUT DATA, 8-8
VIP INPUT (KEYBOARD/SCREEN), 8-7

INPUT/OUTPUT
ASYNCHRONOUS INPUT/OUTPUT, 2-11
INPUT/OUTPUT REQUEST BLOCK

(IORB), 6-4
PHYSICAL INPUT/OUTPUT INTERFACE

WITH APPLICATIONS, 1-5
PHYSICAL INPUT/OUTPUT (PHYSICAL
1/0), 1-2

INTERFACE
FILE SYSTEM INTERFACE WITH

APPLICATIONS, 1-4
PHYSICAL INPUT/OUTPUT INTERFACE

WITH APPLICATIONS, 1-5
PHYSICAL I/O COMMUNICATIONS

INTERFACE, 6-1

INTERNAL FILE NAME, COBOL
COBOL INTERNAL FILE NAME

(IFN), 3-2

INTERRUPT, REVERSE
BSC REVERSE INTERRUPT (RVI)

FEATURE, 10-7

INTERVAL
PVE TIME-OUT INTERVALS (TBL), 9-8
VIP TIME-OUT INTERVALS, 8-2
VIP POLL INTERVAL, 8-7

IORB
BSC-SPECIFIC IORB VALUES, 10-12
COMMUNICATIONS INPUT/OUTPUT REQUEST

BLOCK (IORB) (FIG), 6-5
INPUT OUTPUT REQUEST BLOCK

(IORB) , 6-2, 6-4
IORB SOFTWARE STATUS WORD

(I ST), 6-8
PVE=SPECIFIC IORB VALUES, 9-2
TTY-SPECIFIC IORB VALUES, 7-5
VIP-SPECIFIC IORB VALUES, 8-3

KEYBOARD
TTY KEYBOARD INPUT CONTROL, 7-8

KEYBOARDISCREEN
VIP INPUT (KEYBOARD/SCREEN), 8-7
VIP KEYBOARD/SCREEN OUTPUT

EDITING, 8-10

LF (LINE FEED)
TTY LINE FEED (LF) AND CARRIAGE

RETURN (CR) INPUT, 7-8

LINE
BSC 2780/3780 LINE PROTOCOL

HANDLER, 10-1
ERROR PROCESSING VIP LINE PROTOCOL

HANDLER, 8-11
ERROR REPORTING PVE LINE PROTOCOL

HANDLER, 9-8
LINE CONTENTION - BSC, 10-2
LINE PROTOCOL HANDLER (LPH), 1-3
LINE PROTOCOL HANDLERS (LPHS), A-I
POLLED VIP EMULATOR (PVE) LINE

PROTOCOL HANDLER, 9-1
TTY AND VIP LINE PROTOCOL HANDLER

DEVICE SUPPORT, 1-5
TTY KEYBOARD INPUT LINE

CONTROL, 7-8
TTY LINE FEED (LF) AND CARRIAGE

RETURN (CR) INPUT, 7-8
TTY LINE PROTOCOL HANDLER, 7-1
USING BSC 2780/3780 LINE PROTOCOL

HANDLER, 10-12
USING PVE LINE PROTOCOL

HANDLER, 9-2
USING TTY LINE PROTOCOL

HANDLER, 7-5
USING VIP LINE PROTOCOL

HANDLER, 8-3
VIP LINE PROTOCOL HANDLER, 8-1
VIP LINE PROTOCOL HANDLER

POLLING, 8-7

LINKING, DUMPC
LINKING BOUND UNIT CONTAINING

DUMCP, G-l
LINKING DUMCP AS SELF-CONTAINED

BOUND UNIT, G-2
LINKING DUMCP WITH APPLICATION

PROGRAM, G-3

LOGIC, PROGRAM

i-7

COBOL PROGRAM LOGIC FOR MULTIPLE
INTERACTIVE TERMINALS (FIG), 3-6

PROGRAM LOGIC FOR 2780 BSC IN
ADVANCED MODE (FIG), 5-17

PROGRAM LOGIC FOR 2780 BSC
(FIG), 3-10

PROGRAM LOGIC FOR BSC 2780 IN BASIC
MODE (FIG), 5-13

PROGRAM LOGIC FOR BSC 3780 IN
ADVANCED MODE (FIG), 5-22

PROGRAM LOGIC FOR BSC 3780
(FIG), 3-12

PROGRAM LOGIC FOR SINGLE
INTERACTIVE TERMINAL (FIG), 5-8

PROGRAM LOGIC MULTIPLE INTERACTIVE
TERMINALS (FIG), 5-10

CB03

INDEX

LONGITUDINAL CHECK
LONGITUDINAL REDUNDANCY CHECK

(LRC), A-8

LPH

LRC

LINE PROTOCOL HANDLER (LPH), 1-3,
A-1

LONGITUDINAL REDUNDANCY CHECK
(LRC), A-8

MACRO CALL
ARGUMENT VALUES FOR STTY COMMAND

AND $STTY MACRO CALL (TBL), B-2
ARGUMENTS FOR GET FILE ($GTFIL)

MACRO CALL (TBL), 5-2
COBOL MACRO CALL PROCEDURES BSC

2780, 3-9
COBOL MACRO CALL PROCEDURES BSC

3780, 3-11
FILE SYSTEM AND MACRO

ROUTINES, 2-1
$GTFIL MACRO CALL IN ASSEMBLY

",n.,...T Trt'7\.mTI"'\1I.'TC" 1:::._'
n.r s; ..1..J.L'-".t"l...L .LV.L'IIIU, oJ ..&..

$OPFIL MACRO CALL IN ASSEMBLY
APPLICATIONS, 5-2

PROGRAM VIEW FOR $OPFIL MACRO
CALL (TBL), 5-3

REQUEST IO ($RQIO) MACRO CALL,
6-1, 6-2

STORAGE MANAGEMENT MACRO
CALLS, 2-2

$TIFIL $TOFIL MACRO CALL IN
ASSEMBLY APPLICATIONS, 5-2

$WIFIL $WOFIL MACRO CALL IN
ASSEMBLY APPLICATIONS, 5-2

MACRO CALLS
ASSEMBLY PROGRAMS DEVICE-DEPENDENT

MACRO CALLS, 5-3
ASSEMBLY PROGRAMS MACRO CALLS BSC

2780 ADVANCED MODE, 5-16
ASSEMBLY PROGRAMS MACRO CALLS BSC

2780 BASIC MODE, 5-12
ASSEMBLY PROGRAMS MACRO CALLS BSC

3780 ADVANCED MODE, 5-20
ASSEMBLY PROGRAMS MACRO CALLS DATA

ENTRY TERMINALS, 5~4
ASSEMBLY PROGRAMS MACRO CALLS

MULTIPLE TERMINALS 5-9
ASSEMBLY PROGRAMS MACRO CALLS

OUTPUT ONLY TERMINALS, 5-5
ASSEMBLY PROGRAMS MACRO CALLS

SINGLE TERMINAL, 5-7
DATA MANAGEMENT MACRO CALLS, 2-2
FILE MANAGEMENT MACRO CALLS, 2-1
MACRO CALLS IN ASSEMBLY

APPLICATIONS, 5-1
MACRO CALLS PROCEDURES FOR BSC 2780

IN ADVANCED MODE (TBL), 5-18
MACRO CALLS PROCEDURES FOR BSC 3780

IN ADVANCED MODE (TBL), 5-24

MACRO CALLS (CONT)
PHYSICAL I/O MACRO CALLS FOR

COMMUNICATIONS, 6-12

MASTER STATION
BSC MASTER STATION, 10-1

MESSAGE
ENQ BID MESSAGE, 10-1
PVE INPUT MESSAGE HEADER, 9-6
PVE OUTPUT MESSAGE HEADER, 9-7
PVE TERMINAL ADDRESS (ADR) AND

MESSAGE STATUS (STA), 9-7
TTY MESSAGE FORMATS, 7-1
TTY MESSAGE FORMATS (FIG), 7-2
VIP INPUT MESSAGE HEADER, 8-7
VIP OUTPUT MESSAGE HEADER, 8-8
VIP PROTOCOL MESSAGE STRUCTURE FOR

PVE,9-5 .

MLCP
DUMP ROUTINE (DUMCP) FOR MLCP AND

DLCP, G-1
MLCP ERROR REPORTED BY VIP LINE

PROTO(,OL lH\NnT,F.R (TBL) , 8-13
MULTILINE COMMUNICATIONS PROCESSOR

(MLCP) AND DRIVER, 1-4, A-3

MODE
TTY BUFFERED MODE (VIP 7200 AND

7800), 7-3
TTY CHARACTER MODE, 7-2
TTY CHARACTER MODE AND BUFFERED

MODE TRANSMISSION, 7-2
TTY INPUT IN BUFFERED MODE (VIP

7200 AND 7800), 7-9
TTY OUTPUT IN BUFFERED MODE, 7-11

MODEM
MODEM SUPPORT, A-3

MULTILINE
MULTILINE COMMUNICATIONS PROCESSOR

AND DRIVER, 1-4, A-3

NAME, COBOL INTERNAL
COBOL INTERNAL FILE NAME

(IFN), 3-2

NONALPHANUMERIC CONTROL CHARACTERS
NONALPHANUMERIC CONTROL

CHARACTERS (TBL), F-1

NONPOLLED ERRORS
NONPOLLED VIP ERRORS, 8-14

NONTRANSPARENT INPUT
TTY NONTRANSPARENT INPUT, 7-8

$OPFIL MACRO CALL
PROGRAM VIEW FOR $OPFIL MACRO CALL

(TBL),5-3

i-8

$OPFIL MACRO CALL IN ASSEMBLY
APPLICATIONS, 5-2

CB03

(

(

OUTPUT
ASSEMBLY PROGRAMS MACRO CALLS

OUTPUT ONLY TERMINALS, 5-5
BSC ASCII OUTPUT, 10-19
SSC EBCDIC OUTPUT, 10-19
BSC OUTPUT DATA, 10-17
BSC TRANSPARENT EBCDIC

OUTPUT, 10-20
END OF MESSAGE (EOM) SEQUENCE

TTY OUTPUT, 7-10
MACRO CALLS FOR OUTPUT ONLY

TERMINALS (TBL), 5-5
PVE OUTPUT, 9-7
PVE OUTPUT DATA, 9-7
PVE OUTPUT MESSAGE HEADER, 9-7
TTY OUTPUT DATA, 7-9
TTY OUTPUT IN BUFFERED MODE, 7-11
VIP KEYBOARD/SCREEN OUTPUT

EDITING, 8-10
VIP OUTPUT, 8-8

PARITY ERROR CHECK
PARITY ERROR CHECK, A-8

PHYSICAL INPUT/OUTPUT (P I/O)
ASSEMBLY COMMUNICATIONS WITH

PHYSICAL INPUT/OUTPUT (P
I/O), 6-1

PHYSICAL INPUT/OUTPUT INTERFACE
WITH APPLICATIONS, 1-5

PHYSICAL INPUT/OUTPUT (PHYSICAL
I/O), 1-2

IPHYSICAL I/O COMMUNICATIONS
INTERFACE, 6-1

PHYSICAL I/O DATA STRUCTURES, 6-3
PHYSICAL I/O MACRO CALLS FOR

COMMUNICATIONS, 6-12
USING PHYSICAL I/O IN ASSEMBLY

PROGRAMS, 6-2

POINT, ENTRY FOR DUMCP
STRTDO ENTRY POINT IN USING

DUMCP, G-4
STRTDI ENTRY POINT IN USING

DUMCP, G-5
STRTD2 ENTRY POINT IN USING

DUMCP, G-7

POLL
VIP POLL DURATION (TIME-OUT), 8-7
VIP POLL INTERVAL, 8-7

POLLED VIP EMULATOR (PVE)
POLLED VIP EMULATOR (PVE) LINE

PROTOCOL HANDLER, 9-1

POLLING
VIP LINE PROTOCOL HANDLER

POLLING, 8-7
VIP POLLING OPTIONS, 8-6

PRIMARY STATION
PRIMARY STATION AT SYSTEM

BUILD, 10-2

INDEX

PRINTER
COBOL PRINTER EMULATION, 8-4
VIP RECEIVE-ONLY PRINTER EDITING

SEQUENCE, 8-10
VIP RECEIVE-ONLY PRINTER FORM FEED

SEQUENCE, 8-11

PROCEDURES, MACRO CALL
COBOL MACRO CALL PROCEDURES BSC

2780 IN ADVANCED MODE, 3-11
COBOL MACRO CALL PROCEDURES BSC

2780 IN BASIC MODE, 3-9
COBOL MACRO CALL PROCEDURES BSC

3780 IN ADVANCE MODE, 3-11
COMMUNICATIONS SUBSYSTEM ERROR AND

CORRECTION PROCEDURES, A-8
MACRO CALL PROCEDURES FOR BSC 2780

IN ADVANCED MODE (TBL), 5-18
MACRO CALL PROCEDURES FOR BSC 3780

IN ADVANCED MODE (TBL), 5-24

PROGRAM
CHANNEL CONTROL PROGRAM, A-3
PROGRAM VIEW ENTRY IN THE FIB, 2-6
PROGRAM VIEW FOR $OPFIL MACRO

CALL (TBL) , 5-3

PROTOCOL HANDLER
BSC 2780/3780 LINE PROTOCOL

HANDLER, 10-1
LINE PROTOCOL HANDLER (LPH) , 1-3, A-I
POLLED VIP EMULATOR (PVE) LINE

PROTOCOL HANDLER, 9-1
TTY AND VIP LINE PROTOCOL HANDLER

DEVICE SUPPORT, 1-5
TTY LINE PROTOCOL HANDLER, 7-1
USING BSC 2780/3780 LINE PROTOCOL

HANDLER, 10-12
USING PVE LINE PROTOCOL

HANDLER, 9-2
USING TTY LINE PROTOCOL

HANDLER, 7-5
USING VIP LINE PROTOCOL

HANDLER, 8-3
VIP LINE PROTOCOL HANDLER, 8-1

PVE (POLLED VIP EMULATOR)

i-9

BSC AND PVE HOST-COMMUNICATIONS
SUPPORT, 1-5

ERROR REPORTING PVE LINE PROTOCOL
HANDLER, 9-8

POLLED VIP EMULATOR (PVE) LINE
PROTOCOL HANDLER, 9-1

PVE CONTROL STATION, 9-1
PVE DEVICE-SPECIFIC WORD I DVS IN

IORB (TBL) , 9-3
PVE HARDWARE FUNCTION CODES, 9-6
PVE INPUT, 9-6
PVE INPUT DATA, 9-7
PVE INPUT MESSAGE HEADER, 9-6
PVE LINE PROTOCOL HANDLER

TIME-OUT, 9-8

CB03

INDEX

PVE (POLLED VIP EMULATOR) (CONT)
PVE OUTPUT, 9-7
PVE OUTPUT DATA, 9-7
PVE SOFTWARE STATUS WORD I ST IN

IORB (TBL), 9-5
PVE-SPECIFIC IORB VALUES, 9-2
PVE TERMINAL ADDRESS (ADR) AND

MESSAGE STATUS (STA) , 9-7
PVE TIME-OUT INTERVALS (TBL), 9-8
PVE TRIBUTARY STATION, 9-1
PVE CONFIGURATION (FIG), 9-2
USING PVE LINE PROTOCOL

HANDLER, 9-2
VIP PROTOCOL MESSAGE STRUCTURE

FOR PVE, 9-5

RCT
RESOURCE CONTROL TABLE (RCT),

6-4, C-1

READ FUNCTION
READ FUNCTION (CODE 2), 6-10

RECEIVE-ONLY
"vi:? RECEIvL-Ol~LY.
. (TBL) , 8-10

T"Io'n-r'll.TmT:'lT"ll 'C'T"'\TmT1I..1''-''
.r J.\..J..1.~.L .l..I.1.\" .I ... Ua.. """

. VIP RECEIVE-ONLY PRINTER FORM FEED
(TBL), 8-11

REDUNDANCY CHECK
CYCLIC REDUNDANCY CHECK (CRC) , A-8
LONGITUDINAL REDUNDANCY CHECK

(LRC) , A-8

REGISTER
REGISTER $R2 AT DUMP EXECUTION -

DUMCP LINKED TO APPLICATION
(TBL) , G-7

REGISTER VALUES AND DUMCP DUMP
CONTENTS (TBL) , G-6

REPLY, CONVERSATIONAL IN BSC
BSC 3780 CONVERSATIONAL REPLY

FEATURE, 10-10

REQUEST BLOCK
COMMUNICATIONS INPUT/OUTPUT REQUEST

BLOCK (IORB) (FIG), 6-5
INPUT OUTPUT REQUEST BLOCK

(IORB), 6-2, 6-4

REQUEST I/O
REQUEST IO ($RQIO) MACRO CALL,

6-1, 6-2
RETURN STATUS ERROR CODES FOR I/O

REQUEST (TBL), 6-3

RESOURCE CONTROL TABLE (RCT)
RESOURCE CONTROL TABLE (RCT) ,

6-4, C-1

RETURN
RETURN STATUS ERROR CODES FOR I/O

REQUEST (TBL), 6-3
TTY LINE FEED (LF) AND CARRIAGE

RETURN (CR) INPUT, 7-8

REVERSE INTERRUPT
BSC REVERSE INTERRUPT (RVI)

FEATURE, 10-7

R_STS IN RCT .
TERMINAL ATTRIBUTES IN STATUS

WORD R_STS OF RCT (TBL) , C-3

ROUTINE
DUMP ROUTINE (DUMCP) FOR MLCP

AND DLCP, G-l
FILE SYSTEM AND MACRO ROUTINES,

2-1

$RQIO MACRO CALL
REQUEST IO ($RQIO) MACRO CALL,
6-1, 6-2

P..V! (REVERSE INTE~Rnp'l')

BSC REVERSE INTERRUPT (RVI)
FEATURE, 10-7

SELECT
COBOL SELECT AND ASSIGN CLAUSE

EXAMPLES, 3-3

SEND CONTROL BYTE
BSC CONTROL BYTE (SEND), 10-18
TTY CONTROL BYTE (SEND), 7-9
VIP CONTROL BYTE (SEND), 8-8

SEQUENCE
END-OF-MESSAGE (EOM) SEQUENCE

TTY OUTPUT, 7-10
VIP RECEIVE-ONLY PRINTER EDITING

SEQUENCE, 8-10
VIP RECEIVE-ONLY PRINTER FORM FEED

SEQUENCE, 8-11

SLAVE STATION
BSC SLAVE STATION, 10-1

SOFTWARE STATUS WORD (I ST)
BSC SOFTWARE STATUS WORD I ST IN .

i-l0

IORB (TBL) , 10-14
IORB SOFTWARE STATUS WORD

(I ST), 6-8
PVE-SOFTWARE STATUS WORD I ST

IN IORB ·(TBL), 9-5
SOFTWARE (I ST) STATUS CODES

(TBL) , 6-8-
TTY SOFTWARE STATUS WORD I ST IN

IORB (TBL) , 7-7
VIP SOFTWARE STATUS WORD I ST IN

IORB (TBL) , 8-6

CB03

- /

(
SOURCE PROGRAM, COBOL

COBOL SOURCE PROGRAM ENTRIES "IN
COMMUNICATIONS, 3-1

COBOL, SPECIFYING FILES IN SOURCE
PROGRAM, 3-1

STATION
BSC MASTER STATION, 10-1
BSC SLAVE STATION, 10-1
PRIMARY STATION AT SYSTEM

BUILD, 10-2
PVE CONTROL STATION, 9-1
PVE TRIBUTARY STATION, 9-1
SECONDARY STATION AT SYSTEM

BUILD, 10-2

STATUS
FORTRAN FILE STATUS CHECK (ZFSTIN

AND ZFSTOT), 4-2
PVE TERMINAL ADDRESS (ADR) AND

MESSAGE STATUS (STA), 9-7
RETURN STATUS ERROR CODES FOR I/O

REQUEST (TBL), 6-3
SOFTWARE (I ST) STATUS CODES

(TBL), 6-8-
TEST FILE STATUS, 2-12

STORAGE MANAGEMENT
FIB FOR 'STORAGE MANAGEMENT

(TBL) , 2-10
FILE INFORMATION BLOCK (FIB) FOR

STORAGE MANAGEMENT (FIG), 2-9
STORAGE MANAGEMENT MACRO

CALLS, 2-2

STRUCTURES, PHYSICAL I/O
PHYSICAL I/O DATA STRUCTURES, 6-3

STTY COMMAND AND $STTY MACRO CALL
ARGUMENT VALUES FOR STTY COMMAND

AND $STTY MACRO CALL (TBL) , B-2

SUBSYSTEM,COMMUNlCATIONS
COMMUNICATIONS SUBSYSTEM, A-I
COMMUNICATIONS SUBSYSTEM

CONVENTIONS, 6-1
GCOS COMMUNICATIONS SUBSYSTEM

OVERVIEW, 1-2
SIMPLIFIED FLOW - COMMUNICATIONS

SUBYSTEM (FIG), A-6

SUPERVISOR, COMMUNICATIONS
COMMUNICATIONS SUPERVISOR,

1-3, A-1

SUPPORT
BSC AND PVE HOST-COMMUNICATIONS

SUPPORT, 1-5
MODEM SUPPORT, A-3
SOFTWARE SUPPORT FOR VIP, 8-1
TTY AND VIP LINE PROTOCOL HANDLER

DEVICE SUPPORT, 1-5

INDEX

SUPPORT (CONT)
USER-SUPPLIED SOFTWARE FOR VIP

SUPPORT, 8-2

SWITCH
VIP 7200 AND 7800 HARDWARE

SWITCH, 7-3

SYNCHRONOUS
COBOL ASYNCHRONOUS OR SYNCHRONOUS

EXECUTION, 3-4
COBOL SYNCHRONOUS OPERATION (CALL

"ZCSYNC"), 3-4

SYSTEM
ASSEMBLY LANGUAGE COMMUNICATIONS

WITH FILE SYSTEM, 5-1
ASSEMBLY PROGRAMS FILE SYSTEM

CONSIDERATIONS, 5-1
COBOL FILE SYSTEM

CONSIDERATIONS, 3-1
FILE SYSTEM AND MACRO ROUTINES, 2-1
FILE SYSTEM IN COMMUNICATIONS, 2-10
FILE SYSTEM INTERFACE WITH

APPLICATIONS, 1-4
GCOS 6 FILE SYSTEM, 1-2
PRIMARY STATION AT SYSTEM

BUILD, 10-2
SECONDARY STATION AT SYSTEM

BUILD, 10-2
SPECIFYING BSC 2780 AND/OR 3780 TO

THE SYSTEM, 10-13
SYSTEM BUFFERING, 2-11

TERMINAL'S CHARACTERISTICS, CHANGE
CHANGING TERMINAL'S FILE

CHARACTERISTICS, B-1
FORTRAN, CHANGING TERMINAL'S FILE

CHARACTERISTICS, 4-1

TERMINAL
ASSEMBLY PROGRAMS MACRO CALLS

SINGLE TERMINAL, 5-7
MACRO CALLS FOR SINGLE INTERACTIVE

TERMINAL (TBL), 5-7
PROGRAM LOGIC FOR SINGLE

INTERACTIVE TERMINAL (FIG), 5-8
PVE TERMINAL ADDRESS (ADR) AND

MESSAGE STATUS (STA) , 9-7
TERMINAL ATTRIBUTES AND STATUS WORD

R_STS OF RCT (TBL) , C-3

TERMINALS

i-ll

ASSEMBLY PROGRAMS MACRO CALLS DATA
ENTRY TERMINALS, 5-4

ASSEMBLY PROGRAMS MACRO CALLS
MULTIPLE TERMINALS, 5-9

ASSEMBLY PROGRAMS MACRO CALLS
OUTPUT ONLY TERHINALS, 5-5

COBOL PROGRAM LOGIC FOR MULTIPLE
INTERACTIVE TERMINALS (FIG), 3-6

MACRO CALLS FOR DATA ENTRY
TERMINALS (TBL), 5-4

CB03

TERMINALS (CONT)
MACRO CALLS FOR MULTIPLE TERMINALS

(TBL), 5-9
MACRO CALLS FOR OUTPUT ONLY

TERMINALS (TBL), 5-5
PROGRAM LOGIC MULTIPLE INTERACTIVE

TERMINALS (FIG), 5-10

TEST STATUS
TEST FILE STATUS, 2-12

TEXT DELAY
BSC TEMPORARY TEXT DELAY (TTD)

EXAMPLE (FIG), 10-6
BSC TEMPORARY TEXT DELAY (TTD)

FEATURE, 10-5

$TIFIL MACRO CALL
$TIFIL $TOFIL MACRO CALL IN

ASSEMBLY APPLICATIONS, 5-2

TIME-OUT
BSC LINE PROTOCOL HANDLER

TIME-OUT, 10-9
f'VE LIi~E PROTOCOL HAi~DLER

TIME-OUT, 9-8
TIME-OUT CHECK, A-9
TTY LINE PROTOCOL HANDLER

TIME-OUT, 7-4
VIP POLL DURATION (TIME-OUT), 8-7
VIP TIME-OUT INTERVALS, 8-2

$TOFIL MACRO CALL
$TIFIL $TOFIL MACRO CALL IN

ASSEMBLY APPLICATIONS, 5-2

TRANSMIT, BSC
BSC TRANSMIT AND RECEIVE

OPERATIONS, 10-1

TRANSPARENT INPUT AND OUTPUT
BSC TRANSPARENT EBCDIC

OUTPUT, 10-20
TRANSPARENT EBCDIC INPUT FOR

BSC, 10-17
TTY TRANSPARENT INPUT, 7-8

TRIBUTARY STATION, PVE

TTY

PVE TRIBUTARY STATION, 9-1

CONTROL BYTE FOR TTY LINE
PROTOCOL HANDLER (FIG), 7-10

END-OF-MESSAGE (EOM) SEQUENCE TTY
OUTPUT, 7-10

FORTRAN APPLICATION EXAMPLE FOR
TTY, D-16

TTY AND VIP LINE PROTOCOL HANDLER
DEVICE SUPPORT, 1-5

TTY CHARACTER MODE, 7-2
TTY CHARACTER MODE AND BUFFERED

MODE TRANSMISSION, 7-2
TTY CONTROL BYTE, 7~8, 7-9

INDEX

TTY (CONT)
TTY DETECTION OF BRK

CHARACTERS, 7-10
TTY DEVICE-SPECIFIC WORD I DVS IN

lORE (TBL), 7-5
TTY DISPLAY OF INPUT CHARACTERS, 7-9
TTY INPUT CHARACTER/LINE CORRECTION

AND DELETION, 7-8
TTY INPUT DATA, 7-7
TTY INPUT BUFFERED MODE (VIP

7200 AND 7800), 7-9
TTY KEYBOARD INPUT CHARACTER/LINE

CONTROL, 7-8
TTY LINE FEED (LF) AND CARRIAGE

RETURN (CR) INPUT, 7-8
TTY LINE PROTOCOL HANDLER, 7-1
TTY LINE PROTOCOL HANDLER

TIME-OUT, 7-4
TTY MESSAGE FORMATS, 7-1
TTY NONALPHANUMERIC CONTROL

CHARACTER (TBL), F-1
TTY NONTRANSPARENT INPUT, 7-8
TTY OUTPUT DATA, 7-9
TTY OUTPUT IN BUFFERED MODE, 7-11
TTY SOl'''l'WAHl:!: ::iTATUS WORD I _ST IN·

IORB (TBL), 7-7 ,
TTY TRANSPARENT INPUT, 7-8
USING TTY LINE PROTOCOL

HANDLER; 7-5

TWO-BUFFER FEATURE, BSC
BSC 3780 TWO-BUFFER FEATURE, 10-10
BSC TWO-BUFFER FEATURE, 10-3
BSC TWO-BUFFER FEATURE IN RECORD

TRANSMISSION (FIG), 10-4

VIEW, PROGRAM

VIP

i-12

PROGRAM VIEW ENTRY IN THE FIB, 2-6
PROGRAM VIEW FOR $OPFIL MACRO CALL

(TBL), 5-3
PROGRAMMER'S VIEW OF FIB, 2-6

ERROR PROCESSING VIP LINE PROTOCOL
HANDLER, 8-11

MLCP ERROR REPORTED BY VIP LINE
PROTOCOL HANDLER (TBL), 8-13

NONPOLLED VIP ERRORS, 8-14
SOFTWARE SUPPORT FOR VIP, 8-1
TTY AND VIP LINE PROTOCOL HANDLER

DEVICE SUPPORT, 1-5
USER-SUPPLIED SOFTWARE FOR VIP

SUPPORT, 8-2
USING VIP LINE PROTOCOL

HANDLER, 8-3
VIP 7200 AND 7800 FUNCTION AND

CONTROL KEYS, 7-4
VIP 7200 AND 7800 HARDWARE

SWITCH, 7-3
VIP CONTROL BYTE (SEND), 8-8
VIP DEVICE-SPECIFIC WORD I DVS IN

lORE (TBL), 8-4

CB03

(

" ,.

(

VIP (CONT)
VIP HARDWARE FUNCTION CODES, 8-8
VIP INPUT DATA, 8-8
VIP INPUT MESSAGE HEADER, 8-7
VIP INPUT (KEYBOARD/SCREEN), 8-7
VIP KEYBOARD/SCREEN OUTPUT

EDITING, 8-10
VIP LINE PROTOCOL HANDLER, 8-1
VIP LINE PROTOCOL HANDLER

POLLING, 8-7
VIP LINE PROTOCOL HANDLER TIME-OUT

(TBL), 8-3
VIP NONALPHANUMERIC CONTROL

CHARACTER (TBL), F-2
VIP OUTPUT, 8-8
VIP POLL, 8-7
VIP POLLING OPTIONS, 8-6
VIP RECEIVE-ONLY PRINTER EDITING

(TBL), 8-10
VIP RECEIVE-ONLY PRINTER FORM

FEED (TBL), 8-11
VIP SOFTWARE STATUS WORD I ST

IN IORB (TBL), 8-6
VIP TIME-OUT INTERVALS, 8-2
VIP-SPECIFIC IORB VALUES, 8-3

WACK
BSC WAIT BEFORE ACKNOWLEDGE (WACK)

FEATURE, 10-6

WAIT
BSC WAIT BEFORE ACKNOWLEDGE (WACK)

FEATURE, 10-6
COBOL WAIT FOR COMPLETION -

ASYNCHRONOUS I/O, 3-5
WAIT ONLINE FUNCTION (CODE 0), 6-9

$WIFIL MACRO CALL
$WIFIL $\'lOFIL MACRO CALL IN

ASSEMBLY APPLICATIONS, 5-2

$WOFIL MACRO CALL
$WIFIL $WOFIL MACRO CALL IN

ASSEMBLY APPLICATIONS, 5-2

WORDS IN IORB
BSC DEVICE-SPECIFIC WORD I DVS IN

IORB (TBL), 10-12
BSC SOFTWARE STATUS WORD I ST IN

IORB (TBL), 10-14
IORB SOFTWARE STATUS WORD

(I ST), 6-8
PVE-DEVICE-SPECIFIC WORD I DVS .IN

IORB (TBL), '9-3
PVE SOFTWARE STATUS WORD I ST IN

IORB (TBL), 9-5
TTY DEVICE-SPECIFIC WORD I DVS IN

IORB (TBL), 7-5
VIP DEVICE-SPECIFIC WORD I DVS IN

IORB (TBL), 8-4
VIP SOFTWARE STATUS WORD I ST IN

IORB (TBL), 8-6

INDEX

WRITE FUNCTION
WRITE FUNCTION (CODE 1), 6-10

ZCASN CALL IN COBOL
COBOL ASYNCHRONOUS OPERATION (CALL

"ZCASN"), 3-4

ZCSYNC CALL IN COBOL
COBOL SYNCHRONOUS OPERATION (CALL

"ZCSYNC"), 3-4

ZFSTIN CALL IN FORTRAN
FORTRAN CALL STATEMENT FOR ZFSTIN

OR ZFSTOT, 4-2
FORTRAN FILE STATUS CHECK (ZFSTIN

AND ZFSTOT), 4-2

ZFSTOT CALL IN FORTRAN

i-13

FORTRAN CALL STATEMENT FOR ZFSTIN
OR ZFSTOT, 4-2

FORTRAN FILE STATUS CHECK (ZFSTIN
AND ZFSTOT), 4-2

CB03

w
z
::i
(.:1
z
o
~

«
I­
::J
U

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

TITLE SERIES 60 (LEVEL 6)
COMMUNICATIONS PROCESSING

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

ORDER No·1 CB03, REV. 1

DATED I JULY 1978

r\ Your comments will be promptly investigated by appropriate technical personnel and action will be taken 0 1I as required. If you require a written reply. check here and furnish complete mailing address below.

FROM: NAME __ __ DATE ______________ _

TITLE __ ___

COMPANV ______________________________________ ___

AODRE~ __ __

PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms

,
I , ,
, UJ

, z
I :::i

I ~

-- ic~

ATTENTION: PUBLICATIONS, MS 486

Business Reply Mail .
Postage Stamp Not Necessary if Mailed in the United States

Postage Will Be Paid By:

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

F.IRST CLASS
PERMIT NO. 39531
WA! THAM,MA
02154

I
I
I ,
I
I ,

a
...J
a
OJ..

\.

I UJ

I z
I~
I z

--------------------------------~--- ~g

Honeywell

I «
, 9
,~

I
I
I
I
I
J

, c· /

Honeywell
Honeywell Information Systems

In the U.S.A: 200 Smith Street, MS 486, WaHham, Massachusetts 02154
In Canada: 2025 Sheppard Avenue East, Willowdale, Ontario M2J 1 W5

In Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F.

21378, 2.5n8, Printed in U.S.A.

o

o
CB03, Rev. 1

