

SERIES 60 (LEVEL 6)
COMMUNICATIONS PROCESSING

SUBJECT

Descriptions and User Procedures for Communications Processing Software

SPECIAL INSTRUCTIONS

This revision supersedes Revision 0 of the manual dated January 1978. Change

£ bars are omitted because of extensive reorganization in sections and content
€ that are too numerous to identify separately.
SOFTWARE SUPPORTED
This manual supports Release 0110 of the Series 60 (Level 6) GCOS 6 MOD 400
Operating System. See the Manual Directory of the latest GCOS 6 MOD 400
System Concepts manual (Order No. CB20) for information as to later releases
supported by this document. :
ORDER NUMBER
(7 CBO03, Rev. 1 July 1978

Honeywell

PREFACE

This manual describes the operation and use of GCOS communi-
cations software for Honeywell-supported Series 60 (Level 6)
communications devices and protocols. The term GCOS as used in
the manual refers to GCOS 6 software. The term Level 6 refers to
a specific series of Series 60 (Level 6) hardware models on which
GCOS software is executed.

Section 1 is a brief overview of GCOS software in general
and its communications subsystem.

Section 2 summarizes the Monitor and file system macro.calls
and services.

Sections 3 and
CORQOL and FORTRAN

Section 5 describes the use of communications in assembly
language applications, using the GCOS file system interface.

Section 6 describes the use of communications in assembly
language applications, using GCOS physical I/0 for more direct
access to data structures and physical devices. .

Sections 7, 8, 9, and 10 describe the operation and use of
Honeywell line protocol handlers for teleprinter-type (TTY),
visual-information projection (VIP), polled VIP emulator (PVE),
and binary synchronous communication (BSC) device/protocols,
respectively.

Appendix A provides more details about communications sub-
system functions. Appendix B contains tables of possible values
for the STTY command and SSTTY macro call. Appendix C describes
the system's resource control table (RCT), used as an interface
between the software and the devices that use it. Appendix D
contains various examples, intended for illustration only, of
communications application programs for COBOL, FORTRAN, and
assembly language.

N
\\\

© 1978, Honeywell Information Systems Inc. File No.: 1823 i CBo03

Appendix E lists communictions control characters and char-
acter code sets. Appendix F lists the various device control
characters and corresponding device keys. Appendix G describes
how to obtain a dump of the multiline communications processor's
(MLCP) and/or the dual communications processor's (DLCP) memory.

How to Use the Manual

The following are general guidelines to using the manual
according to the reader's interests and responsibilities:

Sections Applicable To:
1 All users
2, 3, 4, 5 Applications programmers/analysts

using higher-level languages

6 Those responsible for system building;
applications programmers/analysts using
assembly language

7, 8, 9, 10 All users, but according to the device
or protocol being used

Appendix G All users.

Remaining appendixes Users of corresponding numbered sections

iii CB03

MANUAL DIRECTORY

The following publications comprise the GCOS 6 manual set.
The Manual Directory in the latest GCOS 6 MOD 400 Systems
Concepts manual (Order No. CB20) lists the current revision
number and addenda (if any) for each manual in the set.

Order
Number Manual Title
CBO1 GCOS 6 Program Preparation
CB02 GCOS 6 Commands
CB03 GCOS 6 Communications Processing
CB04 GCOS 6 Sort/Merge ,
CBO05 GCOS 6 Data File Organizations and Formats
CB06 GCOS 6 Systems Messages
CBO7 GCOS 6 Assembly Language Reference
CB08 GCOS 6 System Service Macro Calls
CB09 GCOS 6 RPG Reference
CB10 GCOS 6 Intermediate COBOL Reference
CB20 GCOS 6 MOD 400 System Concepts
CB21 GCOS 6 MOD 400 Program Execution and Checkout
CB22 GCOS 6 MOD 400 Programmer's Guide
CB23 GCOS 6 MOD 400 System Guilding
CB24 GCOS 6 MOD 400 Operator's Guide
CB25 GCOS 6 MOD 400 FORTRAN Reference
CB26 GCOS 6 MOD 400 Entry-Level COBOL Reference
CB27 GCOS 6 MOD 400 Programmer's Pocket Guide
CB28 GCOS 6 MOD 400 Master Index

CB30 Remote Batch Facility User's Guide

CB31 Data Entry Facility User's Guide

CB32 Data Entry Facility Operator's Quick Reference Guide
CB33 Level 6/Level 6 File Transmission Facility User's Guide

CB34 Level 6/Level 62 File Transmission Facility User's Guide

CB35 Level 6/Level 64 (Native) File Transmission Facility
User's Guide

CB36 Level 6/Level 66 File Transmission Facility User's Guide
CB37 Level 6/Series 200/2000 File Transmission Facility User's

Guide
CB38 Level 6/BSC 2780/3780 File Transmission Facility User's
Guide

iv CB03

Order
Number Manual Title

CB39 Level 6/Level 64 (Emulator) File Transmission Facility
User's Guide

CB40 IBM 2780/3780 Workstation Facility User's Guide

CB41 HASP Workstation Facility User's Guide

CB42 Level 66 Host Resident Facility User's Guide

CB43 Terminal Concentration Facility User's Guide

The following documents provide general hardware
information:

Order
Number Manual Title

AS22 Honeywell Level 6 Minicomputer Handbook

ATO04 Level 6 System and Peripherals Operation Manual
AT97 MLCP Programmer's Reference Manual

FQ41 Writable Control Store User's Guide

v CBO03

Section 1

Section 2

CONTENTS

Communications Overview eccecececececcecoces
GCOS Software Overview .ceceeeceececose
GCOS 6 File System .icecececsccsecs
Physical Input/Output (Physical
I/0) ceeceecccescscccnsonsosnassnsas
GCOS Communications Subsystem
OVerview ..ceeeeececcoscscocccccsns
Communications SupervisSor ..eceee
Line Protocol Handler (LPH)
Multiline Communications Pro-
cessor (MLCP) and MLCP Driver .
Communications Subsystem Interface
With Applications Programs
File System Interfacecceee
Physical Input/Output
Interface cicecececcccccsccns
TTY and VIP Line Protocol Handler
Device SUPPOrt ..veecececccscsnns
BSC and PVE Host-Communications
SUPPOYrt ceeeeccccoccsccosscnsccs

File System Functions and Macro
Routines ...ceceevececceccccseansans
File Management Macro Calls ...¢...
Data Management Macro Calls
Storage Management Macro Calls
File Information Block (FIB) .cecs.

FIB Format and Contentscccee
Program View Entry in the FIB ...
FIB Displacement Definitions
File System Considerations in
Communications ...ceeeecescccccces
Defining File/Terminal
CharacteristicsS .eeececcccccescsnse

vi

NDNONDMDNDDNDDDDNDND
|
AN WWNN -

CB03

N
\x//

Section 3

Section 4

CONTENTS (cont)

Communications Via COBOL ..ciceeeccces
Interactive Devices and Files
File System Considerations
Source Program Entries in

Communications .eiceecececcccences
Specifying Files in the Source
Program ..ecececsccoscsccscccccs
Use of ASSOC or GET CommandsS
Assigning a File to a Device/
Terminal .eeeeececcscscccccscse
SELECT and ASSIGN ExampleS ..cc.s
Carriage Control ...ceeecsccccces
Printer Emulation ..ecceececcccscee
Specifying Asynchronous or
Synchronous Read and Write
Execution ..eeeceeececececnccces
Synchronous Read and Write
Operation (Call "ZCSYNC") ...
Asynchronous Read and Write
Operation (Call "ZCASN")
WAIT for Completion --
Asynchronous Input and Output .
Binary Synchronous Communication
(BSC) With COBOL .cceeeeeoccsces
BSC Data Transmission
ConventionsS .c.eeeeccecccccsce
BSC Data CodeS .eeeecscsccsces
BSC Data Transmission Modes .
BSC 2780 and BSC 3780 ceeeees
Macro Call Procedures for BSC 2780
in Basic Transmission Mode
Macro Call Procedures for BSC 2780
in Advanced Data Transmission
MOdE cieeeececcsocscecccncacsscs
Macro Call Procedures for BSC 3780
in Advanced Data Transmission

MOde o0 e o000 0000000000000 000 000

Communication Via FORTRAN ..cecececoss
Interactive Devices and Files
FORTRAN Program Execution With

Communications ..icececeecceccccececs
Assigning Interactive Devices at
ExecUtion ceeeeieeccscccccnccsns
Changing Terminal's File
Characteristics .ceeeeececcceccns
FORTRAN File Status Check (ZFSTIN
and ZFSTOT) eeceeeccecccscscccccns

vii

Section 4 (cont)

Section 5

CONTENTS (cont)

CALL Statement for ZFSTIN or
ZFSTOT cceeececccssccccscsccsssns

ZFSTIN and ZFSTOT Programming
ExamplesS ceeececececsscscccoccsnse

Assembly Language Communications Using

the File SyStem .ceeeeccccccconacas
File System Considerations
File-Processing Macro Calls in
Assembly Language Applications ..
Get File (SGTFIL) Macro Call
Guidelines .ceicescccscsscncnscs
Open File ($OPFIL) Macro Call
Guidelines ..cceceecscscccocnsns

Test File (STIFIL, $TOFIL) Macro

Call GuidelinesS teeeeveccscocsss
Wait File (SWIFIL, SWOFIL) Macro
Call GuidelinesS ..eeececccccoces
Device Dependent Macro Call
ProceduUresS .ieecesceeccsccoscssasae
Device Modes and Device Types ...
Macro Call Procedures for Data
Entry Terminals ..ceececcecoscss
Macro Call Procedures for Output
Only TerminalsS ceceeeecscccccacs
Macro Calls for a Single Inter-
active Terminal .c..ceeeceecescces

Macro Call Procedures for Multiple

‘Interactive Terminals ..ceceeces
Binary Synchronous Communication

(BSC) ® © 0 06 0060006000000 000000000o0

BSC Data Transmission
Convention ceececesccccccccces
BSC Data CodeS eeececccccccnse
BSC Data Transmission Modes .
BSC 2780 and BSC 3780 cccececccos

Macro Call Procedures for BSC 2780

in Basic Transmission Mode

Macro Call Procedures for BSC 2780

in Advanced Data Transmission

MOde ® 60 0600 0060060000000 000000000

Macro Call Procedures for BSC 3780

in Advanced Data Transmission

Mode ® 060 0 0600000000000 00 00000000

viii

5-1
5-2

5-2

5-11
5-11
5-11
5-11

CBO03

Section 6

Section 7

CONTENTS (cont)

Assembly Language Communications
Using Physical Input/Output
Communications Subsystem

Conventions ...cececccccccscccces
Using Physical I/0 teeeeeccsscncces
Data StructuUres ceeecececececcccsccccs

Resource Control Table (RCT)

Input/Output Request Block

(IORB) ceeescecccacscscccssacccacs
IORB Software Status Word

(I_ST) teeeennerencsanennconnes

Communications Function Codes

Wait Online Function (Code 0) ...

Write Function (Code 1) .ccecevces

Read Function (Code 2) ceeececcease

Connect Function (Code A) ..c¢cc..

Di sconnect Function (Code B)

Requesting Communications

Functions ..ceecececcccceccccese
Physical I/0 Macro Calls for
Communications .ceeececececccccccses

TTY Line Protocol Handler ...ccceeeee
General TTY Line Protocol Handler
Operation ceeeececssccccsssssccnas
TTY Message FormatsS ..ceeccecccces
TTY Character Mode and Buffered
Mode Transmission ..ceceecececeseee
TTY Character Mode ...eceeeccece
TTY Buffered Mode (VIP 7200 and
7800) eeeececsascsoccssscoccss
VIP 7200 and 7800 Hardware
Switch Options With Character
or Buffered Mode .ceececcoccae
VIP 7200 and 7800 Function and
Control KeysS .eceecccscccccns
TTY Line Protocol Handler Time-Out
INtervalsS ceeeesecescccccccccsns
Using the TTY Line Protocol
Handler ..ceecececcccscccccscccsncs
TTY-Specific IORB ValuesS ..ccesee
Control and Characteristics of TTY
Input Data cececececcccocsscccae
TTY Control Byte (Input)
TTY Nontransparent Input
TTY Transparent Input ..cecceces
TTY Line Feed (LF) and Carriage
Return (CR) Input Sequence ..

ix

A OO R
[
= = O O 0

N

K\“../’ g
CONTENTS (cont)

Section 7 (cont) Keyboard Input Character and
Line Control ...ceceeceececnn 7-8
TTY Display of Input
CharactersS .ciceeecececccccccces 7-9
TTY Input in Buffered Mode
(VIP 7200 and 7800 Only) 7-9 w
Control and Characteristics of TTY
Output DAatd@ seeeecccccscccccsscs 7-9
TTY Control Byte (SEND) 7-9
End-o f-Message (EOM) Sequence on
TTY Output .eeeeeecsccccsscsce 7-10
TTY Detection of BRK
Characters .cieececcccsscccceces 7-10
TTY Output in Buffered Mode ... 7-11

Section 8 VIP Line Protocol Handler ...ceeesees 8-1
General VIP Line Protocol Handler
Operation c.eeeecececsecccscsccnccccse 8-1
Software Functional Support for
the VIP tieeeeececcccsoccccnnsnse 8-1
User-Supplied Software Functions
for VIP SUppPOrt cecececceccccsss
VIP Time-Out IntervalsS .ceecececcoss
Using the VIP Line Protocol
Handler .cececececescscccsccccccnsce
VIP-Specific IORB ValuesS ..eesoee
VIP Polling Options ..ceeceececen
VIP Poll Interval ecceeeceecccccas
VIP Poll Duration (Time-Out) ..
VIP Line Protocol Handler Poll
Functions ..cecevecececccccces
Control and Characteristics of VIP
Input " (Keyboard/Screen) .ccee.. . 8-7
VIP Input Message Header 8-7
8-8
8-8

@ 0o
|
NN

0o OO 00 00 0o
|
N0y WwWw

o
|
~

VIP Hardware Function Codes ...
VIP Input Data ..cceccecceccscss
Control and Characteristics of VIP

OULPUE ceeeveccocsocssccsccscns 8
VIP Output Message Header 8-
VIP Control Byte (SEND) .eeeeee 8
VIP Output Data .ececececcsccccs 8
VIP Keyboard/Screen Output

Editing Control ..ceeeececcess 8-10
VIP Read-Only Printer Editing

SeqUENCEe ceveesscncscccscsanse 8-10
VIP Read-Only Printer Form Feed : N

Sequence ..cececcccccscoacnns 8-11 N/

X CBO03

ks s

CONTENTS (cont)

Section 8 (cont) Error Processing by VIP Line
Protocol Handler ® ® © ® & © & o & 0 00 0 0 o 0
Processing Nonpolled VIP Errors ...

Section 9 Polled VIP Emulator (PVE) Line
Protocol Handler .cceeececcccccnces
. General PVE Operation .eceecececescess
Using the PVE Line Protocol

Handler .ceieeescecocscccccccccans

PVE-Specific IORB Values ..cceess
VIP Protocol Message Structure for

PVE (cictececcccccscccncscscnss
Control and Characteristics of PVE

InNput scecececececcococcscsocscs

PVE Input Message Header

PVE Hardware Function Codes ...

PVE Input Data ceccecececocscccscs
Control and Characteristics of PVE

Output e.ceeeeccccssccscocsccssns

PVE Output Message Header

PVE Terminal Address (ADR) and

Message Status (STA) .ceeeeeee

PVE Output Data cecececcocccceces

PVE Line Protocol Handler Time-Out

Intervals ..cceececcrosscronscsss
Error Reporting by PVE Line Protocol

Handler ..eeeeeececcecscsccsssccns

Section 10 BSC 2780/3780 Line Protocol Handler .
General BSC Line Protocol Handler
Operation ceeeeeccecscsscsscsccss
BSC Transmit and Receive
OperationsS ceeeecececcsscccccccss
BSC Data Transmission Modes
BSC Basic Data Transmission
MOAE teeeecececencecccosncnaes
BSC Advanced Data Transmission
MOAE eevecececcencscccsccncocsce
BSC 2780 and BSC 3780 Differences .
BSC 2780/3780 FeatUresS .ceeeeececsces
BSC Two-Buffer Feature .cceeeceeces
BSC Temporary Text Delay (TTD)
FeatuUre ..ceecececececocccscncs
BSC Wait Before Acknowledge (WACK)
FeatuUre .ceceeeeecececccccascns
BSC Reverse Interrupt (RVI)
FeatuUre ..ececeecscescecccccccces

x1i

10-2
10-3
10-3
10-3
10-5

10-6

CB03

Section 10 (cont)

Appendix A

CONTENTS (cont)

BSC End of Transmission (EOT)
Feature ..eceececeecccecccccsnes
BSC Line Protocol Handler Time-
Out Interval c.ccecececccccccscs
BSC Features Specific to 3780 ...
BSC 3780 Conversational Reply
FeatUre .ecceeccccccscccscscccacces
BSC 3780 Two-Buffer Feature ...
BSC 3780 Transmission/Receipt
of BSC Control Characters ...
Using the BSC 2780/3780 Line

Protocol Handler ...ceceecccccsecs

BSC-Specific IORB ValuesS .ceeesee
Specifying Use of BSC 2780 and/or
3780 to the System ..ceeeeeases
Formats and Characteristics of
BSC Input Data ...eceececcccccscs
BSC Control Byte (Receive)
ASCII Input for BSC .eeeeesccee
EBCDIC Input for BSC ..cececeee
Transparent EBCDIC Input for
BSC cceteccceencccsoscccsssnnsns
Formats and Characteristics of
BSC Output Data .cecececcccocccas
BSC Control Byte (SEND) .¢ecese.
BSC ASCII OULPUt eeeveceeecenss
BSC EBCDIC Output .ccececcecesccsse
BSC Transparent EBCDIC Output .

Communications Subsystem ..cccececeeese.
Communications Supervisor ..eececese
Line Protocol Handlers (LPHS) ..c..
Multiline Communications Processor

(MICP) cveeecscocscssssosccosccsssce
Multiline Communications Processor
Driver ..eceecececesscccscscccssacss
Modem SUPPOrt cieeceosccssccccsccscs
Auto Call Unit .seeececccecccccscsssns
Communications Subsystem Operation

Example ®© ® 0 0000000000000 000000000

Communications Subsystem Error and
Correction Procedures ..cececscecee
Parity Error Check .ecoeceececcccecs
Block Error Check ceeeeceoccscecs

Longitudinal Redundancy Check
(LRC) cveeececesccscccscncsans
Cyclic Redundancy Check (CRC) .

xii

| | [
-8 = ww

DR > > >

|
0o 00

%’>
©

CBO03

CONTENTS (cont)

Page

Appendix A (cont) BSC Block Check Character
(BCC) ® 806080 0608600000000 00000000o0 A_8
Time_out CheCk ® ® & 0 © & 0 00 0 0 ° 0 0 0o A-—9

Appendix B Changing Terminal's File

) Characteristics ® & & & 9 06 & 0 5 06 0 8 0 0 6 0o B..l
Appendix C Resource Control Table (RCT) c-1
Appendix D - Sample Application Programs ...c.ecee. D-1
COBOL Program Examples e eov e 0000000 D-l

COBOL TTY or VIP Application
Example .ccceccceccvrccccscnccscne D-1
Commands in the COBOL Example . D-1
File Assignments in COBOL

EXample ceeeecccescsccccacscns D
Error Messages in COBOL
Example (.ccccecccccccccccccns D-2
Status Codes in COBOL Example . D-3
Execution of COBOL TTY or VIP
Program Example ..cceccececesn D-3
D-1

COBOL BSC Application Example ... -12
FORTRAN Application Example for
TTY sceocooccocccscosccsossscscsssscs D-16
Assembly Language Example for TTY
or VIP Using Physical I/0 D-19
Appendix E ASCII and EBCDIC Control Characters
and Character SetS cccececccccccscscs E-1
Control CharactersS ceceecececcececcccsce E-1
Special Graphic Characters ...ee... E-2
Appendix F Device-Specific Control Characters .. F-1
Appendix G Dump Routine (DUMCP) for Multiline
Communications Processor (MLCP) ... G-1
Linking the Bound Unit Containing
DUMCP cccvececscccccccccssccsscnnns G-1
Linking DUMCP as a Self-Contained
Bound Unit ..ececececccccccsscscs G-2
Linking DUMCP With the Applica-
tion Program ..ceceecececcccccss G-3
STRTDO0 Entry Point in Using
DUMCP tceceeccssncccscccsscncscs G-4
STRTD1 Entry Point in Using
DUMCP ¢eceeeccecccsocsnssncsse G-5
STRTD2 Entry Point in Using
DUMCP .ceveicoccoscccscsscccs G-7

xiii CBO03

AN

CONTENTS (cont) . N
Page
Appendix G (cont) DUMCP Dump FormatsS .ecececececsscces G-7
DUMCP Programming eeceececesscssccces G-8
ILLUSTRATIONS
Figure 2-1. File Information Block (FIB) .cccececee 2-4
Figure 2-2. Format of File Information Block (FIB)
for Data Management ...cccececcccccsccs 2-7
Figure 2-3. Format of File Information Block (FIB)
for Storage Management ...ccececccccs 2-9
Figure 3-1. COBOL SELECT and ASSIGN ExamplesS .ceocee 3-3
Figure 3-2. Simplified COBOL Program Logic for
Multiple Interactive Terminals 3-6
FPigure 2-3. Simplificd Precgram Logic fcr 2780 BSC . 2-10
Figure 3-4. Simplified Program Logic for BSC 3780 . 3-12
Figure 5-1.. Simplified Program Logic for Single
Interactive Terminal ...ceeveeeeeesees 5-8
Figure 5-2. Simplified Program Logic for Multiple
: Interactive Terminals .ciceecescescose 5-10
Figure 5-3. Simplified Program Logic for BSC 2780 7N
in Basic Transmission Mode .ceceeeces 5-13 N4
Figure 5-4., - Simplified Program Logic for 2780 BSC
in Advanced Transmission Modec.. 5-17
Figure 5-5. Simplified Program Logic for BSC 3780
in Advanced Transmission Mode .ceeese 5-22
Figure 6-1.. Communications Input/Output Request
BloCk (IORB) ccececesccccecccscccssscssce 6-5
Figure 7-1. TTY Message FormatsS ..ceccececcecceccscsccnse 7-2
Figure 7-2. Control Byte for TTY Line Protocol
Handler ...ceeeecsccsscccsscsscscosses 7-10
Figure 8-1. VIP Control Byte (Send) ceeececcececccsss -8-9
Figure 9-1. Typical PVE Configuration .c.eeeceececcece 9-2
Figure 9-2. VIP Protocol Message Structure for
PVE (ieeeecscoccccoscssosscscssssccccscsnscs 9-6
Figure 10-1. Example of BSC Communication ..ceeeeeee. 10-3
Figure 10-2. BSC Two-Buffer Feature in Record
TransmisSion ceeecececccccscccccccscss 10-4
Figure 10-3. BSC Temporary Text Delay (TTD) Sequence
’ Example ..ccecceccceccccssoscocsccsecs 10-6
Figure 10-4. BSC Wait Before Acknowledge (WACK)
Sequence EXampPle ceeeececscsccccccccs 10-7
Figure 10-5. BSC Reverse Interrupt (RVI) Sequence
EXample ccceeesccecsccsccccsssncssocnse 10-8
Figure 10-6. Example of Conversational Reply in BSC
3780 Transmission Sequence ..eeeescses 10-11 P
Figure 10-7. BSC Input Data Format and Contents 10-15 Q\/

xiv CBO3

bk

ILLUSTRATIONS (cont)

Figure 10-8. Control Byte (Receive) for BSC Line
Protocol Handler ..cccecscecoccsscosns
Figure 10-9. Format and Content of BSC Output
Figure 10-10. Control Byte (Send) for BSC Line
Protocol Handler ...cccceccecccceccccccs
Figure A-1. Simplified Flow - Communications
SubsSysStem ...cceccccctoccncraccnccccs
Figure C-1. Format of Communications Resource

Control Table (RCT) ceeeceecccccccccse

Figure D-1. COBOL TTY or VIP Application Example ..
Figure D-2. COBOL BSC Application Example ..eceecess
Figure D-3. FORTRAN Application Example for TTY ...
Figure D-4. Assembly Language Example for TTY or
VIP Using Physical I/0 ceeecocccccccse
Figure G-1. DUMCP Dump Example .ceccececccccccccccnsne
TABLES
Table 2-1. Contents of File Information Block
(FIB) ccececocscsncaccaanosscscncsscasns
Table 2-2. Contents of FIB for Data Management ...
Table 2-3. Contents of FIB for Storage
Management .cceccesccceccccccccccccase
Table 5-1. Arguments for Get File (SGTFIL) Macro
Call ceeceeocescssssconcscossscscsscncsscs
Table 5-2. Program View Bit Settings for $OPFIL
Macro Call ...ceceeeccsoscccscscnccnse
Table 5-3. Macro Call Procedures for Data Entry
Terminals ceeeeecccccsoscscoccccocsscs
Table 5-4. Macro Call Procedures for Output Only
TerminalsS .ceeeeececscccscscsscccccoccses
Table 5-5. Macro Call Procedures for Single Inter-
active Terminal ..cceeieccscccocccccnnse
Table 5-6. Macro Call Procedures for Multiple
TerminalsS teeeecessssccscssssscccncncs
Table 5-7. Macro Call Procedures for BSC 2780 in
Basic Transmission Mode ..cececcecccs
Table 5-8. Macro Call Procedures for BSC 2780 in
Advanced Transmission Mode .cceeeccess
Table 5-9. Macro Call Procedures for BSC 3780 in
' Advanced Transmission Mode ...ececeee
Table 6-1. Return Status Error Codes for Logical
4 Result of I/0 RequesSt cceeeecccocccsnse
Table 6-2. Contents of Communications Input/Output
Request Block (IORB) .tceeescccsocncscse
Table 6-3. Software (I_ST) Status Codes ..cceceess
Table 6-4, Communications LPH Function Codes

Xv

Table

Table
Table

Table
Table

Table
Table

Table

Table
Table
Table

Table
Table

| Table

Table
Table

Table
Tablé
Table
Table
Table
Table
Table
Table

Table

TABLES (cont)

7-1. TTY Line Protocol Handler Time-Out
Intervals .eceeceecccccscscsccccnssss
7-2. Function Codes in I_CT2 of the IORB ...
7-3. TTY Device-Specific Word I _DVS in the
IORB teceececccccccecssscscscssoncsccncsacscs
7-4. TTY Software Status Word I ST in the
IORB cceeeeecocsccsssssssssccancnssas
8-1. VIP Line Protocol Handler Time-Out
INtervalsS ceeeecececcscscsoscscssccccces
8-2. Function Codes in I CT2 of the IORB ...
8-3. VIP Device-Specific Word I_DVS in the
IORB teececcccccccscssecsscscscscsscsscse
8-4. VIP Software Status Word I ST in the
IORB teeeeecccescsscssssncsccccsannas
-5, VIP Receive-Only Printer Editing
SEqUENCE titvecsccsccccsccssccnssnsas
8-6. VIP Receive-Only Printer Form Feed
) SEqUENCE ceevecscccccosssosscsosccsscscos
8-7. Errors Reported by VIP Line Protocol
Handler ..ceeeceecceccosccccscsccscccncoccs
8-8. MLCP Error Condition Reported by VIP
Line Protocol Handler .cccecccccscses
9-1. Function Codes in I_CT2 in IORB
9-2. PVE Device-Specific Word I DVS in the
IORB s cceecceccccescsccccsccscosccncccss
9-3. PVE Software Status Word I_ST in the
JORB tceceecceccccscccscansocncscscosncsccscssse
9-4. PVE Time-Out IntervalsS ecceceeccccecccscs
9-5. Errors Reported by PVE Line Protocol
Handler .ccecececscccecccscsccscccsscscncs
10-1. Function Codes in I CT2 Field in the
IORB tiveeececcossconssassscscnssnnss
10-2. BSC Device-Specific Word I_DVS in the
IORB st cesecececccscsessccscnsscsosscccscs
10-3. BSC Software Status Word I_ST in the
IORB +vvvcevscnnconsascnscnscsossonns
B-1. Possible Argument Values for STTY
Command and $STTY Macro Call .eceoeee
c-1. Communications-Specific Items in the
O
c-2. Terminal Attributes and Status Word
| R_STS of the RCT +uuevenennnennannnns
E-1. ASCII/Hexadecimal Character
Equivalents ceveeececssccssccsccccscns
E-2. - EBCDIC/Hexadecimal/Binary Character
EquivalentsS .sceeeeccecccscsccsccacnns
F-1. TTY Nonalphanumeric Control

Characters ©ee 0000000000000 00000000000

xvi

pr—s o8

Table F-2.
Table F-3.
Table G-1.

TABLES (cont)

VIP Nonalphanumeric Control

Characters .eceeececccsceccscscsscsscccs
BSC Nonalphanumeric Control

Characters ..ceeeeesccessoosscosssocnnes
Register Values and DUMCP Dump

ContentsS ceeeevecessccsccccccsscccces
Register $R2 at Dump Execution - DUMCP

Linked to Application .ececcecccocccses

xvii

CBO03

ﬁ’/ ™
RN

gy -N

SECTION 1

COMMUNICATIONS OVERVIEW

GCOS SOFTWARE OVERVIEW

The GCOS 6 Operating System includes the Monitor, file sys-
tem, physical input/output (P I/0O), and communications software.

The Monitor controls loading of user programs, supports exe-
cution of user applications tasks, and provides system services
for users to control execution of separate tasks. Monitor func-
tions are obtained through commands, through system macro calls,
and through statements in higher level languages.

The operating system has two levels of interface with remote
and local terminals; they may be accessed indirectly through the
sequential file interface of the file system's file management
facility, or directly through the system's physical I/O facility.

The file system, which is based on a tree-like hierarchical
directory/pathname structure, provides software to create and
maintain that structure, to create and manage files, and to pro-
vide the logical transfer of data between an application and an
external device. These functions are available through commands,
and for an assembly language programmer, through the system ser-
vice macro calls of the file system.

The physical input/output (or physical I/O) driver software
(for peripheral devices), and similar line protocol handler soft-
ware (for communications devices) work at the physical hardware
level. Physical I/0 is used with assembly language programs to
call device drivers and line protocol handlers directly.

Communications software, through the file system, uses sys-
tem service macro calls for communications data operations with
all languages. For assembly language applications, communica-
tions software, through physical I/0, provides the data opera-
tions that are provided by the file system, plus additional con-
trols over terminal functions at the hardware physical level.

1-1 CBO03

The System Concepts manual describes the file system and
file system structure in detail, and is necessary in understand-
ing system terms, directory/pathname structures, and system func-
tions that may be referred to in this manual.

GCOS 6 File System

The file system includes an extensive set of logical input/
output access methods that handle logical input/output for all
supported peripheral devices and terminals. The file system pro-
vides sequential file processing for communications, treating
communications devices as sequential files. A file is the basic,
or lowest level structural unit that can be referred to in the
file system software. Within the file system, a file can be
generally defined as a peripheral device, as a terminal device,
or as an aggregate of data.

Section 2 summarizes the file system macro calls and data
structures that are used in communicaticons prccessing. Scctions
3, 4, and 5 discuss the file system interface in communications
processing in COBOL, FORTRAN, and assembly language,
respectively.

Physical Input/Output (Physical I/0)

Physical I/0 provides all services that are availble through
the file system, plus other services that permit user control
over data structures that affect terminals' hardware and operat-
ing characteristics. With the physical I/0O interface, assembly
language applications can call line protocol handlers directly,
rather than through the indirect interface provided by the file
system.

GCOS COMMUNICATIONS SUBSYSTEM OVERVIEW

GCOS communications software can be considered as a func-
tional group of components known as the communications subsystem,
which when specified at system building, defines the communica-
tions environment of the operating system.

The communications subsystem interacts with the Monitor to
service applications programs, and provides all the communica-
tions software needed with Honeywell-supported communications
devices, so that the user need not write his own. Communications
software is user-driven, responding to connects, reads, or writes
issued by user programs. Through the request I/O ($RQIO) macro
calls, the communications subsystem provides a common physical
I/0 interface with user programs.

1-2 CBO3

.

'\&//

A,

P

The communications subsystem comprises the communications
supervisor, the line protocol handlers (one for each class of
supported communication device), the multiline communications
processor (MLCP) driver, and the MLCP itself.

Appendix A describes the overall functions of the communica-
tions subsystem in more detail. The line protocol handlers for
specific devices and protocols are described in Sections 7
through 10.

Communications Supervisor

The communications supervisor, which resides in the central
processor's main memory, provides the interface at the physical
I/0 level to communications applications programs. It queues
user programs' requests for services, activates the appropriate
line protocol handler, interacts with a user application through

.system software when a transaction is complete, and services

connect/disconnect requests and timeouts for line protocol
handlers.

Line Protocol Handler (LPH)

A communications protocol is a set of conventions for trans-
mitting data over a communications line. A line protocol handler
(usually referred to as an LPH) is the memory-resident reentrant
and interrupt-driven program that transfers data between a commu-
nications device and the application program or system that uses
that device. Each LPH supports a specific class of device, e.qg.,
teleprinter-compatible terminal (TTY), or supports a communica-
tions protocol, e.g., binary synchronous communications (BSC).

"Other functions of an LPH are:

o Handling error recovery (by parity or block control
check)

o Initializing the LPH and the channel control program of
the multiline communications processor

o Processing interrupts, timeouts, and I/0 requests
o Handling affirmative or negative acknowledgments
Defined at system building, an LPH can be any of the following:
TTY
éupports asynchronous terminal devices generically
classified as teleprinter-compatible (TTY), including

certain ASR, KSR, and visual information projection
(VIP) terminals.

1-3 CBO3

VIP
Supports synchronous VIPs and receive-only printers
(ROPs)

PVE
Services the polled VIP emulator (PVE), or keyboard/
screen features of the VIP 7700 operating according to
the polled VIP protocol

BSC

Supports a station (device) operating under binary
synchronous communication (BSC) 2780 or 3780
compatible protocol.

Appendix A has a more detailed description of line protocol
handler functions.

The user may write his own line protocol handler provided it
conforms to the same internal interface requirements used by the
Honeywell-supplied line protocol handlers.

Multiline Communications Processor (MLCP) and MLCP Driver

The multiline communications processor includes a channel
control program (CCP) for each class of supported device. The
MLCP driver, which resides in main memory when defined at system
building, sets up and processes input/output orders from the line
protocol handlers, and services MLCP interrupts. The Series 60
(Level 6) MLCP Programmer's Reference Manual describes the multi-
line communications processor in detail.

Communications Subsystem Interface With Applications Programs

FILE SYSTEM INTERFACE

The file system interface, operating between the application
program and the terminal, provides, through communications soft-
ware, system service file management macro calls that:

Open the file

Read data from the file (or device)
Write to the file (or device)

Test for completion of processing
Wait for completion of processing
Close the file

O 000O0O0

COBOL and FORTRAN run-time routines issue these macro calls
according to the corresponding input/output statements in the
compiled programs (see Sections 3-and 4). File system services
are available also to assembly language programs (see Section 5).

1-4 CBO3

\;&4_., /

ot

Section 2 describes these system services macro calls and
data structures briefly, the System Service Macro Calls manual
describes all GCOS 6 macro calls and related data structures in
detail.

PHYSICAL INPUT/OUTPUT INTERFACE

The physical I/0 interface permits direct user control over
communications processing. The physical I/0 interface can be
used only with assembly language programs, which can call a line
protocol handler directly rather than indirectly through the flle
system interface.

Physical I/0 macro calls used in communication between an
application and line protocol handler are:

o Request I/0 transfer (SRQIO)
o Input/output request block, generate ($IORB)
o Set terminal characteristics ($STTY)

Section 6 discusses physical I/0, the macro calls, and data
structures in more detail.

TTY and VIP Line Protocol Handler Device Support

Asynchronous devices supported by the TTY line protocol
handler are referred to throughout the manual as teleprinter-
compatible or TTY devices.

Synchronous devices supported by the VIP line protocol
handler are referred to throughout the manual as VIP devices.
The VIP designation applies also to receive-only printers (ROPs)
associated with a VIP terminal.

BSC and PVE Host-Communications Support

Binary synchronous communications (BSC) permits communica-

tion between a Level 6 and another computer system that suppoorts
the 2780/3780 protocols.

The polled VIP emulator (PVE) permits a Level 6 computer to
communicate with another Level 6, Level 66, or any other
Honeywell host system.

Sections 9 and 10 have detailed descriptions of the BSC and
PVE line protocol handlers.

1-5 - CBO3

SECTION 2

FILE SYSTEM FUNCTIONS AND MACRO ROUTINES

This section discusses those macro routines and related data
structures that pertain to communications processing and are
often referred to throughout this manual. The System Service
Macro Calls manual describes in detail the format, functional
description, and arguments for each macro routine, and corre-
sponding data structures.

The macro routines summarized and listed in this section
have the following file system functions, which are organized
according to the following major functional groups:

o File/management
o Data management
o Storage management

The file management macro routines provide service functions
at the file level (i.e., reserving files, opening and closing
files, testing the status of I/O activity, etc.). Data manage-
ment macro routines supply service functions at the record level,
such as read, write, delete, and rewrite. Storage management
macro routines furnish service functions such as read and write
at the block (unit of transfer) level. Since terminal files are
are considered to be simple, unblocked sequential files, storage
and data management functions are equivalent.

FILE MANAGEMENT MACRO CALLS

The file management macro calls let the user manipulate his
files within the file system hierarchy (described in the System
Concepts manual). File management macro functions that apply to
communications processing are:

o Get a file (reserve a file for processing) ($SGTFIL)

o Open a file (SOPFIL)

o Close a file (SCLFIL)

2-1 CBO3

AN
) \c\‘// ’
o Remove a file from processing ($RMFIL)

o Associate a logical file number with a pathname (S$SASFIL)
o Dissociate a logical file number from a pathname ($DSFIL)
o Get information about a file (SGIFIL)

o Test the status of an outstanding I/0 activity (terminal)
(STIFIL/STOFIL)

o Wait for the completion of an asynchronous I/0 activity
(terminal) (SWIFIL/SWOFIL)

The file reservation function (get-file) can be done out-
side program execution by the GET command.

DATA MANAGEMENT MACRO CALLS

The data management macro calls allow manipulation of logi-
cal records within a file. The macro calls that apply to com-
munications processing are:

0 Write a record (SWRREC)
o Read a record (SRDREC)

Arguments required by these functions are passed in a file
information block (FIB), described later in this section. The
macro calls to generate and change FIBs and to define FIB offsets
are discussed in the System Service Macro Calls manual.

Before any data management macro calls can be executed, the
terminal file must have been reserved and opened with the LFN
supplied in the FIB (get file ($SGTFIL) and open file ($OPFIL)
macro calls).

STORAGE MANAGEMENT MACRO CALLS

The storage management macro calls provide a primitive
interface for transferring blocks directly between the user buf-
fer and a file. Storage management itself is used by data
management to perform input/output.

The complexities of blocking and deblocking logical records,
and conforming at the same time to the various file organizations
and formats, recommend against using storage management when
dealing with I/0 at the logical record level. To ensure maximum
efficiency in terms of space and access, let the system (i.e.,
data management) handle the records.

2-2 CB03

Ak

However, for unblocked records or large blocks with simple
fixed-length records to be blocked by the user, the storage
management macro calls can be used to perform I/0 transfers
between the user buffer and the file.

Storage management macro functions are:

o Read a block (SRDBLK)
o Write a block (SWRBLK)
o Wait for the completion of an I/0 activity (SWTBLK)

FILE INFORMATION BLOCK (FIB)

Some macro routines, particularly for data and storage
management, use a data structure called the file information
block (FIB), which provides the interface between a user program
and the system for data and storage management. In order for the
file to be accessed, there must be one FIB for each file.

The SFIB macro call is used to build a file information
block, alter its contents, or to provide labels for its entries.

The FIB must be provided to each of the following macro
calls:

SOPFIL: open file

SCLFIL: <close file

STIFIL: test file for input
$STOFIL: test file for output
SRDREC: read record

SWRREC: write record

SRDBLK: read block

SWRBLK: write block

FIB Format and Contents

Figure 2-1 shows the format of the FIB; Table 2-1 shows its
contents.

Figure 2-2 shows the format of the FIB for data management
applications; Table 2-2 shows its contents.

Figure 2-3 shows the format of the FIB for storage
management applications; Table 2-3 shows its contents.

2-3 CB03

qulzlsl4|51617|8|9[10h1h2h3h4h5
0 F_ LFN LOGICAL FILE NUMBER
1 F_PROV PROGRAM VIEW
; F_URP/F_UBP L USER RECORD/BUFFER POINTER
4 F_IRL/F_BFSZ INPUT RECORD LENGTH/BUFFER SIZE
5 F_ORL/F_BKSZ | OUTPUT RECORD LENGTH/BLOCK SIZE
6 F_LIRT/F_BKNO1 | RECORD TYPE RANGE/BLOCK NUMBER
7 F_HIRT/F_BKNO2 | RECORD TYPE RANGE/BLOCK NUMBER
8 F_ORT RESERVED
13 FIKP - INPUT KEY POINTER
1 F_IKF/F_IKL INPUT KEY FORMAT/INPUT KEY LENGTH
12 F_ORA1 (LEFT) OUTPUT RECORD ADDRESS
13 F_ORA2 (RIGHT) OUTPUT RECORD ADDRESS
14 F_RFU e
15 - NLoLnveow
Figure 2-1. File Information Block (FIB)
Table 2-1. Contents of File Information Block (FIB)
Item | Label Bit(s) Contents
0 F LFN 0-15 Logical file number (LFN)
1 F_ PROV | O Access level - set on for storage
management, off for data management.

1-4 Process rules - bit 1 for S$RDREC/
SRDBLK, bit 2 for SWRREC/SWRBLK, bit 3
for SRWREC, bit 4 for $DLREC.

5-9 Key type - bit 5 for primary keys, bit
8 for relative keys, bit 9 for simple
keys (bits 6 and 7 must be 00).

10 Record class - set on for fixed-length
records only, off for fixed- and
variable-length records..

11 Record visibility - set on if deleted
records are to be visible, off if
invisible.

12 Key storage alignment - set on if stor-
age area begins at odd-byte boundary,
off if even-byte boundary.

2-4 CBO3

Table 2-1 (cont). Contents of File Information Block (FIB)

Item | Label Bit(s) Contents
1 F_PROV 13 Record storage area/buffer alignment -
(cont)| (cont) set on if record storage area (or buf-

fer) begins on odd-byte boundary, off
if even-byte boundary.

14 Transcription mode - set on if data
transferred in binary transcription
mode, off if ASCII mode.

15 Synchronous/asynchronous indicator -
set on if SRDBLK/SWRBLK calls executed
asynchronously, off if executed
synchronously.

2 F_URP/ 0-31 Start address of user record area data

3 F_UBP management) or start address of buffer
area (storage management).

4 F_IRL/ 0-15 Input record length (data management)
F BPSZ or transfer size (storage management).

5 F_ ORL/ | 0-15 Output record length (data management)
F_BKSZ or block size (storage management) .

6 F_LIRT/| 0-15 must be 0000 for data management; 1is
F _BKNO1 the left half of the block number

(F_BKNO1l) for storage management.

7 F_HIRT/| 0-15 | Must be FFFF for data management; is
: F BKNO2 right half of the block number for
storage management.

8 |F_ORT 0-15 | Must be 0000.
9 F_IKP 0-31 Start address of user key area.
11 |F_IKF/ 0-7 Input key format (0 for none specified,
F_IKL 1 for primary key, 2 for simple key)

8-15 Input key length.

12 F_ORAl 0-15 Output record address (left half).

13 F_ORA2 0-15 Output record address (right half).

14 F_RFU 0-31 Reserved for future use.

2-5 CB03

Program View Entry in the FIB

The FIB's program view entry (item 1 in the FIB) describes
to the file system how the file is to be accessed, and what the
file looks like from the programmer's point of view. The file
system uses the FIB's contents to ensure that the file is
accessed only as intended.

The bits in the program view entry are read when the file is

opened. After the file is opened, the user can change only bits
11, 12, and 13. Other bits cannot be changed until the file is
closed and then reopened.

Table 2-1 above shows the contents of the program view
entry indicated as item 1 and labeled F_PROV. The System Service
Macro Calls manual describes the program view entry in detail,
with reference to its usage for specific file system services and
macro calls.

FIB Displacement Definitions

Displacement definition macro calls are used to refer to
specific locations in the FIB and in the various macro call argu-
ment structures. These calls define standard displacement tags.

The S$TFIB macro call defines tags for the FIB for the fol-
lowing macro calls:

Open file (SOPFIL)

Close file (SCLFIL)

Test file (STIFIL, STOFIL)
Read record (SRDREC)

Write record ($SWRREC)
Rewrite record (S$SRWREC)
Delete record ($DLREC)
Write block ($SWRBLK)

Wait block (SWTBLK)

2-6 CBO3

Word Label

0 F_FLN LOGICAL FILE NUMBER

1 F_PROV PROGRAM VIEW

2 F_URP USER RECORD POINTER

3

4 F_IRL INPUT RECORD LENGTH

5 F_ORL OUTPUT RECORD LENGTH

6 F_RFUl RESERVED

7 F_IRT INPUT RECORD TYPE

8 F_ORT OUTPUT RECORD TYPE

9 F_IKP INPUT KEY POINTER

10

11 F_IKF/F_IKL INPUT KEY FORMAT INPUT KEY LENGTH
12 F_ORA OUTPUT RECORD ADDRESS

13
14 F_RFU2

15 RESERVED

Figure 2-2. Format of File Information Block

(FIB) for Data Management

CBO3

Table 2-2. Contents of FIB for Data Management
Word Label (Bits) Contents Applicable
Macros |
0 F_LFN 0-15 Logical file number (LFN)
1| F_PROV 0 Access level - OFF to indcate SOPFIL
to access via data management
1-4 Access rules - SOPFIL
Bit 1: ON if $RDREC will be :
issued ,
Bit 2: ON if SWRREC will be
issued :
Bits 3, 4: does not apply -
set to OFF
5-9 Do not apply - set OFF
10 Record length verification - $RDREC
ON when expecting fixed
length record and OFF for
variable length record
11-12 Do not apply - set OFF
13 luser record area alignment - SRDREC
ON if user record record area $WRREC
begins on odd-byte boundary,
off if even-byte boundary.
14-15 Do not apply - set OFF
2,3 F_URP 0-31 Start address of user record SRDREC
area SWRREC
4 F_IRL 0-15 Input user record area size in $RDREC
bytes
5 F_ORL 0-15 Output user record area size - $RDREC
bytes
Actual record size in bytes SRDREC
filled by data management on SWRREC
each macro call
6 F_RFUl 0-15 Reserved - set to O
7 F_IRT 0-15 Do not apply - set to FFFF
9 F_ORT 0-15 Do not apply - set to O

2-8

CBO3

s,

AR,

Table 2-2 (cont).

Contents of FIB for Data Management

Word Label Bit(s) Contents Applicable
- Macros
9,10 F_IKP 0-31 Do not apply - set to 0
11 F_IKF 0-7 Do not apply - set to O
F_IKT 8-15 Do not apply - set to O
12,13 F_ORL 0-31 - Output record address $RDREC
- line sequence number SWRREC
filled by data management
on each macro call
14,15 F RFU2 0-31 Reserved - set to 0
Word Label
0 F_LFN LOGICAL FILE
1 F_PROV PROGRAM VIEW
2 F_UBF USER BUFFER POINTER
3
4 F _BFSZ USER BUFFER SIZE
5 F_BKSZ USER BLOCK SIZE
6 F_BKNO BLOCK NUMBER
7
8 F_RFU3
9
10 RESERVED
11
12
13
14
15
Figure 2-3. Format of File File Information Block (FIB)

For

Storage Management

2-9

CBO3

Table 2-3. Contents of FIB for Storage Management

Word Label Bit(s) Contents Applicable
#m o — — %
0 F_LFN 0-15 Logical File Number (LFN)
1 F_PROV 0 Access level - ON (to indicate $OPFIL
access via storage management)
1-4 Access Rules:
Bit 1: ON IF $RDBLK will be $OPFIL
issued
Bit 2: ON if S$WRBLK will be
issued
Bits 3-4: Does not apply - set
to OFF
5-12 Do not apply - set to OFF
13 User buffer area alignment - SRDBLK
ON if user buffer area begins SWRBLK
on odd-byte boundary, OFF if
even-byte boundary
14-15 Do not apply - set to OFF
2,3 F _UBP 0-31 Start address of user buffer SRDBLK
: area SWRBLK
4 F BFSZ - 0-15 User buffer size in bytes SRDBLK
. $WRBLK
Actual transfer size in bytes SRDBLK
filled by storage management S$WRBLK
on each macro call
5 F_BKSZ 0-15 |Do not apply - set to 256
6,7 F_BKNO 0-31 |Block Number - does not apply
Line sequence number filled SRDBLK
by storage management on SWRBLK
macro call
8-15 Reserved - set to O

FILE SYSTEM CONSIDERATIONS IN COMMUNICATIONS

The file system provides device independent facilities so

that terminals can be reserved,
written just like standard sequential files.

removed, opened, closed, read and
In addition, asyn-

chronous I/0 facilities are provided for efficient processing in

2-10

CBO3

A,

a multiterminal environment. Asynchronous I/0 refers to the
capability of the file system to perform I/O between a terminal
and a system buffer while the application program executes in
parallel. Facilities are available for the application program
to test whether or not the I/O is complete and, alternatively, to
give up control of the central processor until the I/0 is com-
lete. This buffering capability is a device attribute and can

be set at system build time or dynamically via the STTY command.
The' system buffer is actually acquired when the termlnal is
opened and returned when it is closed.

From the application program point of view:

o An application program can be written to be device
independent. The terminals, whether or not buffered,
whenever a logical read or write is issued, control
returns only to the application program when data has
been moved to or from the application area. Buffering
improves performance by providing the same level of
asynchronous I1/0 as for unit record devices like the
card reader or line printer -that is, while the applica-
tion is processing one message the file system may be
reading the next. This kind of application is efficient
in a single terminal environment.

o A more complex level of asynchronous I/0 is necessary
when the application program must interact with multiple
terminals, establish its own polling priorities and run
efficiently with high response time. One example is
the traditional online/batch environment where, when
terminal input is available, the online task has highest
priority with. respect to CP time, memory, etc., with
batch processing operating efficiently while online
processing is dormant. Facilities are available to
schedule I/0 without waiting for its completion, to
continue task execution in parallel with the I/O
transfer, to test to see if the I/0 is complete, and
to wait until I/O is complete.

o For interactive terminals an open causes an asynchronous
physical connect to be performed while the application
continues executuion. The application can then test to
determine if the connect is complete and input is avail-
ble, or if the device is ready for output.

2-11 CBO3

o Before reading, the application task can test the file
status to see if a read can be done without stalling
task execution. File status remains busy until the
system buffer is full (i.e., the anticipatory read is
complete). When the file status is not busy the appli-
cation can issue a read with the assurance of receiving
data immediately. The anticipatory read allows an appli-
cation to control input from more than one terminal, each
of which represents a data entry terminal. By testing
the status of the system buffer before a read
" (FORTRAN ,assembly) or by checking for the 9I status after
a COBOL READ, the application will not be stalled and it
‘can continue to poll other terminals. The user can
establish the order of the tests and thus the polling
priority.

o The application can also wait for input from a list of
terminals. CP time is then made available to lower
priority taskes until input is available from one or

more terminals in the 1list.

o A buffered write operation to a terminal works on behalf -

of the application program in the same logical manner as
the read, that is, the program is allowed to execute in
parallel with the physical transfer to the device. Each
write call is completed by moving data from the applica-
tion area to the file system buffer (with detabbing if
required), initiating the output transfer and returning
control to the application program. If the program
performs a second write while the system buffer is still
in use for the previous transfer, the application is
stalled until the buffer is available and new data moved
into it again. The application can avoid the stalling
the execution by testing the status of the system buffer
before issuing a write (FORTRAN,assembly) or by testing
for the 91 status return after a WRITE in COBOL.

o The application program can also issue a wait for output
to a list of terminals. CP time is then made available
to lower priority tasks until output is complete to one
or more terminals in the list.

DEFINING FILE/TERMINAL CHARACTERISTICS

There are these considerations in defining terminal file
characteristics for the file system. The first deals with a
file's operational characteristics (with respect to the device)
when the system is first build. The DEVICE directive permits
the user to specify among others the default record size of the
file and the use of an intermediate buffer (this option is
specified by the buffered/unbuffered argument). Buffered device

2-12 CBO3

N

operation is advantageous in synchronous operations against a
file, and is mandatory in asynchronous operations against a
file.

The second consideration involves the secondary specializa-
tion of a file's device's operational characteristics. This
specialization can be done at system build by using the STTY
directive, from the user's terminal via an STTY command, and
during program execution with the $STTY macro call. 1In each case
the S$STTY macro call or STTY command permits the following:

o Modification of default record size.

o Specification of the device-specific word which
determines the operational characteristics of the
device (e.g., whether a control byte is used or a
disconnect will force a queue abort).

o Specification of the file indicator word which
determines the operational characteristics of the file
system (e.g., if the file system is to support input
and/or output operations, and whether these operations
are synchronous/asynchronous).

The final consideration deals with specifying selected file
characteristics at open time. Of particular interest is the
program view word of the file information block (FIB), which
defines whether the file system is to support input and/or output
operations against a file,

2-13 CBO3

e W

SECTION 3

COMMUNICATIONS VIA COBOL

The file system interface (see Sections 1 and 2) provides
the logical transfer between the COBOL program and an external
device (terminal or another computer). The COBOL run-time rou-
tines issue file system macro calls according the the correspond-
ing input/output statements in the compiled programs.

INTERACTIVE DEVICES AND FILES

The operating system defines communications devices and
local TTY terminals in COBOL communications processing as
"interactive."

Interactive devices can be considered as logical reposito-
ries of sequential files in COBOL. Data is read or written with
the same COBOL read/write interface as for a file on a noninter-

active device.

FILE SYSTEM CONSIDERATIONS

Aside from the use of various COBOL I/0O statements the user
should be aware of other considerations in using the file system
within a communications environment. These considerations are

detailed in Section 2.

SOURCE PROGRAM ENTRIES IN COMMUNICATIONS

This subsection refers to certain COBOL source program
entries in the context of COBOL communications. The -appropriate
COBOL Reference manual describes COBOL source program language in
detail.

Specifying Files in the Source Program

"~ The user must describe every file with a separate SELECT

statement in the FILE-CONTROL paragraph of the Environment
Division. File organization and access mode must be stated as

sequential.

3-1 CBO3

Each file must have a unique name and, and in the
ASSIGN clause, be identified by a 2-character COBOL internal file
name (IFN) consisting of a combination of the letters A through I
and the digits 0 through 9; one letter must be included. The
logical file number (LFN) is specified in the ASSOC or GET com-
mands. (before execution) to connect the COBOL internal file name
to the external file. This LFN is the same as the COBOL internal
file name with letters A through I replaced by the digits 0
through 9. For example, a COBOL IFN of 0C would correspond to an
LFN of 03 and an IFN of OD to an LFN of 04, as in the commands.

ASSOC 03 >SPD>VIP1
GET 04 >SPD>TTY1

Use of ASSOC or GET Commands

In addition to connecting the internal file name to the
external file, the GET command reserves the interactive file for
prccessing until it is removed via ithe REMOVE command. GET
allows the user to guarantee exclusive use of the file prior to
program execution and maintain use of the file until the corre-

sponding REMOVe command.

ASSOC, on the other hand, merely connects the internal file
name to the external file, without reserving it for use. Each
COBOL OPEN statement will cause the file to be reserved exclu- -/
sively while each COBOL CLOSE statement will remove this
reservation.

In a multi-user environment the use of ASSOC command may
cause an OPEN to fail because some other user has reserved the
file exclusively while the GET command guarantees that OPEN will
not fail as a result of some other user's reservation request.

ASSIGNING A FILE TO A DEVICE/TERMINAL

A device-type name of MSD used in the ASSIGN clause of the
SELECT statement is the way that the user informs COBOL that the
internal file is assigned to a terminal/device file.

For data entry applications (TTY or VIP) the file should be
opened in INPUT mode.

For output-only terminals such as the Receive Only Printer
(ROP) the file should be opened in OUTPUT mode. Bidirectional
devices, such as the BSC 2780 can be opened in INPUT mode or
OUTPUT mode but not for both INPUT and OUTPUT at the same time.

For interactive applications (TTY, VIP or BSC3780), the file

can be opened in I-0 mode allowing both input and output N
operations. NS

3-2 | CBO3

SELECT and ASSIGN Examples

Figure 3-1 shows an example of a FILE-CONTROL paragraph with
SELECT and ASSIGN statements for the input file COMIN and the
output file COMOUT. The internal file name for COMIN is 0C and
for COMOUT is OD. Before the program is executed, the user must
associate these files with the appropriate device(s) with either
an ASSOC or GET command. In this example, the commands could be:

GET 03 >SPD>TTY1
GET 04 >SPD>TTY1

Although these are different files, they can be associated with
the same interactive. device, i.e., TTY1l, by matching the logical
file numbers (03 and 04 for the device pathname >SPD>TTY1l) with
the internal file name 0C and 0C, respectively.

FILE-CONTROL
SELECT COMIN
ASSIGN TO OD-MSD
ORGANIZATION IS SEQUENTIAL WITH VLR

ACCESS MODE IS SEQUENTIAL
FILE STATUS IS IN-STAT.

SELECT COMOUT
ASSIGN TO OD-PRINTER
ORGANIZATION IS SEQUENTIAL WITH VLR

ACCESS MODE IS SEQUENTIAL
FILE STATUS IS OUT-STAT.

Figure 3-1. COBOL SELECT and ASSIGN Examples

Carriage Control

Some devices can be configured such that print carriage con-
trol is visible on output to the application program. If the
device-type name is MSD, then the application program controls
the carriage directly by inserting a program—accessible control
byte as the first character in each output record. This byte is
the first character in each level-0l1 record description entry for
the output file. It is counted as part of the record area and is
directly accessible through statements in the COBOL application
program.

3-3 CBO3

Printer Emulation

The user can pretend the device is a printer and more auto-
matically control the carriage. If the device-type name is
PRINTER in the ASSIGN clause then COBOL will automatically gener-
ate the carriage control byte as a result of an ADVANCING phase
in the WRITE statement. This one byte print control character is
inserted before each data record being written to the file. It
is not counted as part of the record area and is not directly
accessible tot he application program.

Specifying Asynchronous or Synchronous Read and Write Execution

If the device is configured with the asynchronous I/O attri-
bute then READ and WRITE statements may be executed synchronously
or asynchronously, as indicated by the programmer through calls
to the COBOL run-time routines ZCASYN (asynchronous execution) or
ZCSYNC (synchronous execution). If neither call is specified,
reads and writes are executed asynchronously.

A separate call to ZCSYNC or to ZCASYN is not necessary for
each read or write, but when first issued, remains effective
until changed by another call. However, if the same run unit is
to execute several COBOL programs, each program must separately
define its own synchronous or asynchronous condition.

SYNCHRONOUS READ AND WRITE OPERATION (CALL "ZCSYNC")

In synchronous operation, the COBOL routine issues a read or
write order without any file status checks. This causes the
application program to be put in the wait state until the read or

write operation is complete, thus allowing other tasks to be
executed.

The source language for synchronous read and write execution
is:

CALL "ZCSYNC"

Synchronous operation is not very useful in a multiterminal en-
vironment since each read or write to a terminal must be satis-
~ fied before the next terminal can be processed.

ASYNCHRONOUS READ AND WRITE OPERATION (CALL "ZCASN")

In asynchronous operation COBOL READ/WRITE run-time routines
issue a test-file call prior to issuing a read or write order.
For READ orders, a 9I return status is returned to the applica-
tion if no data is available to be read. Likewise, for a WRITE
order, a 9I status is returned to the application if the device
is busy with the previous output. This permits the COBOL program
to support terminal I/O without giving up control of the central
processor until the I/O0 is complete.

3-4 ‘ CBO3

S

‘/3(

&/

WAIT for Completion —-- Asynchronous Input and Output

In a multi-terminal system the user can control asynchronous
read and write operations by calling the COBOL run-time routines
ZCWIN and ZCWOUT.

A call to ZCWIN results in a wait file (SWIFIL) macro call
which waits until input is available from one or more of the
specified terminals.

A call to ZCWOUT results in a wait-file (SWOFIL) macro call
which waits until output is complete to one or more of the
specified terminals.

The System Service Macro Calls manual describes the wait
file macro calls, their format and arguments, in detail. Note
that the macro call arguments are similar to the values for the
data-name description for the CALL statements (see below).

The source language to call ZCWIN or ZCOUT is:

CALL)"ZCWIN" {(USING data-name
"ZCWouT"

Data-name is defined as follows:

01 data-name
02 out-LFN USAGE COMP-1.
02 1list-length USAGE COMP-1.
02 LFN-entry-1 USAGE COMP-1.

02 LFN-entry-n USAGE COMP-1.

The values for out-LFN, list-length, LFN-entry-1l and LFN-entry-n
are identical to those for the wait file (SWIFIL and (SWOFIL)
macro calls, and are passed by the ZCWIN or ZCWOUT routine to the
file system.

When CALL "ZCWIN" is specified, the list of LFNs may refer
only to hose devices for which READ statements have been issued.
When call "ZCWOUT" is specified, the list of LFNs can refer only
to those devices for which WRITE statements have been issued.

When an input/output operaton is completed on any device in
the list of LFNs, the application program resumes execution fol-
lowing the CALL statement. The LFN for the device for which
input/output is complete is stored in the out-LEN data item.

3-5 CBO3

Figure 3-2 provides simplified program logic for processing

OPEN I-0 (FILE 1)

&

OPEN I1-0 (FILE 2)

%

OPEN 1—O (FILE 3)

" CALL “ZCWIN" (FOR FILES 1, 2, 3)

NOT BUSY — FILE N

READ (FILE N)

MORE
INPUT
EXPECTED

CLOSE (FILE 3)

CLOSE (FILE 2)

CLOSE (FILE 1)

EXIT .

Figure 3-2. Simplified COBOL Program Logic for
Multiple Interactive Terminals

3-6

multiple terminals. The call to "ZCWIN" stalls program execution
until input is available from at least one of the terminals.

CBO3

AN

.S

The following is an example of a COBOL program which pro-
cesses two terminals which have been configured to allow asyn-
chronous input and synchronous output operations. The call to
ZCWIN gives up control of the central processor until input is
available from one of the terminals.

FILE-CONTROL.
SELECT COM1

ASSIGN TO 0C-MSD

ORGANIZATION IS SEQUENTIAL WITH VLR
ACCESS MODE IS SEQUENTIAL

FILE STATUS IS Cl1-STAT.

SELECT COM2

ASSIGN TO 0OD-MSD

ORGANIZATION IS SEQUENTIAL WITH VLR
ACCESS MODE IS SEQUENTIAL

FILE STATUS IS C2-STAT.

PROCEDURE DIVISION.

OPEN I-O COM1l.
OPEN I-O COM2.

RD1.

CALL "ZCWIN" USING FLN-LIST.
READ COM1.

IF C1-STATE "9I" GO TO RD2.
IF C1-STATE "00" GO TO WR1l.
GO TO ERROR.

RD2.
READ COM2. \
IF C2-STAT "00" GO TO WR2.
GO TO ERROR.

WR1.
WRITE COMLI.
IF C1-STAT "00" GO TO RDI1.
GO TO ERROR.

WR2.

WRITE COM2.
IF C2-STAT "00" GO TO RDI.
GO TO ERROR.

3-7 CBO3

AN
Before program execution, specify these commands to connect N
the LFNs to the specific terminal files.

GET 3 >SPD>TTY1l (for IFN 0C-MSD)
GET 4 >SPD>TTU2 (for IFN OD-HSD)

Binary Synchronous Communication (BSC) With COBOL

Binary Synchronous Communication (BSC), operating in 2780 or
3780 mode, permits a COBOL program to transmit data over communi-
cations lines from one Level 6 system to another Level 6, to a
Level 66 system, or to a non-Honeywell host system.

BSC DATA TRANSMISSION CONVENTIONS

BSC Data Codes

Data can be in alphanumeric ADCII, alphanumeric EBCDIC, or
binary format. In communication between Level 6 and remote host,
each system must use the same code set (either ASCII or EBCDIC).
When EBCDIC is used, the application programs must know whether
transmission is nontransparent or transparent (i.e., BSC control
characters are interpreted as data).

BSC Data Transmission Modes
There are two BSC transmission modes: basic and advanced.

In basic transmission mode there is no control byte. The
absence of a control byte limits the functionality of the proto-
col (e.g., an application cannot send or receive two message
blocks or cannot initiate a reverse interrupt (RVI) sequence).

In advanced transmission mode there is a control byte which
is the first byte in the program's input or output buffer. The
control byte is used to control the transmission of data and is
used to convey information concerning the receipt of data. With
the control byte, the application has complete control over the
transmission and reception of data to a remote host.

BSC 2780 and BSC 3780
BSC 2780 is a subset of BSC 3780. Technical differences
between the two protocols can be summarized as a set of exten-

sions to the 2780 protocol which are as follows:

o The ability to receive a conversational reply without a
preliminary bid sequence.

o The ability to receive and transmit selected BSC control
characters. (

3-8 CBO3

From a user's point of view the differences between the two
protocols can be summarized below:

o BSC 2780

- ©Specified at system building time by the BSC device
directive.

- Operates in basic or advanced mode.

- The file system supports bidirectional usage of
BSC 2780 communication line. A CLOSE/OPEN sequence
must be initiated prior to the reversal of the com-
munication line.

o BSC 3780

- ©Specified a system building time by the XBSC
directive.

- Operates only in advanced mode.

- The file system supports interactive usage of the
BSC 3780 communication line. To terminate a transmis-
sion the application must initiate an EOT sequence by
setting the appropriate bit within the control byte.
An ETX message transmission sequence can also be
terminated if the other application sends a conversa-
tional reply. The receipt of conversational reply is
indicated by a bit setting within the transmit control
byte. The receipt of a conversational reply forces
the application to issue a read order to receive the
conversational response. The termination of a read
sequence is indicated by the AT END condition.

Macro Call Procedures for BSC 2780 in Basic Transmission Mode

The following conditions apply in the use of binary synchro-
nous communications in basic data transmission mode:

o An application cannot send an RVI (reverse interrupt)
control character through the file system.

o BSC devices in basic transmission mode cannot initiate
double (ITB) message transmission (see Section 10).

o An application can send only the ETB (end of transmission

block) BSC control character, not the ETX (end of text) .
BSC control character.

o An application can send data in either transparent or
nontransparent mode.

3-9 - CBO3

o An applicatibn can send EOT (end of transmission) control
characters by a CLOSE call.

o BSC operation assumes that the detab option is set off.

Figure 3-3 illustrates the necessary logic to support a
BSC 2780 application in basic transmission mode.

OPEN INPUT

L CALL “ZCWIN" j

= .

LAST
RECORD

3-10 : CBO3

Macro Call Procedures for BSC 2780 in Advanced Data

Transmission Mode

In the BSC advanced data transmission mode, the first byte
of the application program's input or output buffer is a control
byte that controls or supplies information about read/write oper-
ations. This byte can indicate, for example, whether data is to
be transferred in transparent or nontransparent mode, or whether
an ETB (end of transmission block) or ETX (end of text) control
character is to be sent or received. Section 8 describes the
control byte formats.

The following conditions apply in using the file system in
2780 binary synchronous communications in advanced data transmis-
sion mode:

It is not necessary to send EOT control characters through
the control byte since the user must close the file in
output mode before attempting to read. Closing the file
forces BSC if not in idle mode, to send an EOT control
character.

Macro Call Procedures for BSC 3780 in Advanced Data
Transmission Mode

The first byte of the application program's input or output
buffer is a control byte. The control byte controls or supplies
information about read/write operations.

The following conventions apply in using 3780 binary syn-
chronous communication in advanced data transmission mode:

o The receipt of an optional conversational reply is indi-
cated by a bit setting in the transmit control byte.
(This can occur if the application has transmitted the
last (ETX) block of a message). The application must
issue a read in order to receive the conversational
response.

o The termination of a transmit sequence is signaled (via
control byte) by the transmission of an EOT control char-
acter following the last block of a message. Once this
has been done a read macro call will be needed to receive
transmissions from the remote system. (It is not neces-
sary to close and reopen the file to turn the line
around) .

o The termination of a receive sequence is indicated by the
AT END condition. A transmission sequence can be reini-
tiated by issuing another write macro call. (It is not
necessary to close and reopen the file to turn the line
around).

3-11 CBO3

o A line turnaround (receipt of an EOT) is indicated at the
AT END condition. At this point the application can use

the line for data transmission by issuing another write
request. It is also possible to receive an EOT control
character which indicates the abortion of the current

transmission sequence by the remote host. Such an occur-

rence is indicated by an AT END condition. If this
occurs the application must close the line.

Figure 3-4 illustrates the necessary logic to support a
BSC 3780 application.

OPEN INPUT

—

CALL "“ZCWIN”

READ

EXIT

Figure 3-4. ©Simplified Program Logic for BSC 3780

CBO3

‘w\-//

A,

Al T,

WRITE
(WITH ETX)

| : CALL “ZCWOUT"”

YES

)
MESSAGE

ERROR

CLOSE

EXIT

WRITE
(WITH ETB)

[CALL “ZCWouT”

YES
ERROR

CLOSE

NO

NO

CONVERSATIONA YES
REPLY

RECEIVED

NO

YES
RVI

NO

ANY
YES DATA

WRITE

ANY
DATA

READ

NO

CLOSE

‘ EXIT ,

WRITE
(WITH EOT)

YES

Figure 3-4 (cont).

YES
ERROR

CLOSE

‘ _C_EXT)

NO

EXIT

Simplified Program Logic for BSC 3780

3-13

CBO3

N

AR

SECTION 4

COMMUNICATION VIA FORTRAN

The file system interface (see Sections 1 and 2) provides
the logical transfer between the FORTRAN program and an external
device (terminal or another computer) in FORTRAN communications.
The FORTRAN run-time routines issue file system macro calls

- according to the corresponding 1nput/output statements in the

compiled programs.

INTERACTIVE DEVICES AND FILES

The operationg system defines communications devices and
local TTY terminals in FORTRAN communications processing as
"interactive." Interactive devices can be considered as logical
repositories of sequential files in FORTRAN. Data is read or
written with the same FORTRAN read/write interface as for a file
on a noninteractive device.

FORTRAN PROGRAM EXECUTION WITH COMMUNICATIONS

Assigning Interactive Devices at Execution

Before the compiled FORTRAN progran can be executed, the
user must specify the actual interactive device for the specified
file, using the system command ASSOC (associate path). The
logical file number (LFN) specified in the command must be the
same as the unit specifier (u) that was included in the control
information list (clist) in the FORTRAN input/output statement
READ, WRITE, or PRINT for that file. See the FORTRAN Reference
manual for descriptions of FORTRAN statements and the unit
specifier. See the Commands manual for descriptions of the ASSOC"
and other system commands.

Changing Terminal's File Characteristics

The user can change the file characteristics of a terminal

e.g., line length (or record size), detabbing, device type
(input, output, etc.,) with the system command STTY (set terminal
characteristics), or with the S$STTY macro call. This permits the

4-1 CBO3

TN

user to modify the characteristics established at system build-
ing, and is issued before program execution.

Appendix B shows possible values for the device-specific
word and file-indicator word arguments of the STTY command and
$STTY macro call.

FORTAN FILE STATUS CHECK (ZFSTIN AND'ZFSTOT)

Before a FORTRAN file can be used in communications, the
FORTRAN statement OPEN must be specified before any other input/
output statement. ’

The FORTRAN subroutines ZFSTIN (for input files) and ZFSTOT
(for output files) enable the application program to check the
status of the input or output communications device (file) before
issuing a READ or WRITE statement.

When the program issues an I/0 request statement (a READ or
WRITE), it stalls until that request is completed.

The FORTRAN subroutines ZFSTIN and ZFSTOT, when called
before an I/0 request is issued, check the availability of the.
communications device (file), and can prevent the problem of pro-
gram inactivation or program execution due to file or device
unavailability. '

The subroutine ZFSTIN checks the status of the input file,
ZFSTOT checks the output file. Their use monitors the status of
the files without loss of program control and prevents the impos-
ition of file system waits.

A CALL statement to either subroutine should be issued
before the application issues any I/0 requests to ascertain (1)
whether the file (device) is available, and (2) any device error
status. '

The subroutine ZFSTIN or ZFSTOT, when called, issues a
request to the file system, which in turn (without waiting for
any pending I/0 request to be completed) returns status informa-
tion about the file's availability. When the file is not busy,
the file system will return status information about the previous
I/0 request.

CALL Statement for ZFSTIN or ZFSTOT

The CALL statement for subroutine ZFSTIN or ZFSTOT is
specified as:

CALL)ZFSTIN{ (lfn,arg) <
‘ ZFSTOT

4-2 CBO3

A,

1fn
The logical file number, in an ASSOC systems command,
that identifies the unit specifier (u) for the file to
be checked.

arg

The symbolic integer variable into which the file sys-
tem will return one of the following statis values:

000,
File is available (READ or WRITE can be issued).
The last request, if a READ or WRITE, was suc-
cessful.

512,,
Request rejected; undefined LFN was used, or the
file system is not available.

51649
File is busy (READ or WRITE in progress). If
ZFSTIN, then a READ is in progress and not yet
complete. If ZFSTOT, the previous WRITE is not
yet complete.

519

File is not open; last request was not success-
ful. Issuance of another READ or WRITE will
result in an error return.

A call to ZFSTIN or ZFSTOT made to a noncommunications file
always results in a 000 (not busy) status return. Such a call
allows a user to debug the application program by first using
noncommunicsatons files, then write the program so that it can
use either communications or noncommunications files.

The FORTRAN subroutine ZFSTIN, when called before issuing a
READ request, checks for the availability of input. It prevents
the loss of program control until data is available in a file
system buffer. When ZFSTIN indicates that the file is not busy
then a READ can be issued to move the data just read from the
file system to the application program area.

The FORTRAN subroutine ZFSTOT, when called before issuing a

WRITE request, checks to see if previous output is complete and
the terminal is free to accept more data. When ZFSTOT indicates
that the file is not busy then a WRITE can be issued to move data

4-3 ' BCO3

from the appllcatlon program area to a f11e system buffer and
schedule it to be written to the terminal.

ZFSTIN and ZFSTOT Programming Examples

The following are examples of (1) coding that causes the
program to stall when input from a terminal is not completed
before a second READ is issued, and (2) a call to subroutine

ZFSTIN to check the file status before the second READ is issued.

Note that in each case the first FORTRAN statement is OPEN.

Example 1:

100

OPEN (UNIT=8)
READ (8,100) IN
READ(8,199)IN
FORMAT (12)

Fxample 2:

50

100
200
900
910

OPEN (UNIT=8)

READ (8,200) IN

CALL ZFSTIN(8, ISTAT)
IF(ISTAT .EQ. 0) GO TO 100
IF(ISTAT .EQ. 512) GO TO 900
IF(ISTAT .EQ. 519) GO TO 900
GO TO 50 -

READ (8,200) IN

FORMAT (15)

WRITE (4,910)

FORMAT (ERROR FOUND)

Appendix D contains an example of a FORTRAN communications

program.

CBO03

o,

SECTION 5

ASSEMBLY LANGUAGE COMMUNICATIONS USING THE FILE SYSTEM

This section discusses the use of file system macro calls in
writing communications programs.

FILE SYSTEM CONSIDERATIONS

Aside from the use of macro calls, the user should be aware
of other considerations in using the file system within a commun-
ications environment. These considerations are detailed in
Section 2.

FILE-PROCESSING MACRO CALLS IN ASSEMBLY LANGUAGE APPLICATIONS

The following describe the use of the get file ($GTFIL),
open file (SOPFIL), test file (STIFIL and STOFIL), and wait file
(SWIFIL and SWOFIL) macro calls in assembly language communica-
tions processing with the file system.

Get File (SGTFIL) Macro Call Guidelines

The get file function reserves a file for processing and
connects a file to a logical file number (LFN). The LFN is used
in other file system calls (SOPFIL, SRDREC, SWRREC, etc.) to
reference the file in question. Normally the get file function
is involved via a GET command outside of program execution.

The arguments for the get file (SGTFIL) macro call in an
assembly language communications program must have the values
shown in Table 5-1. '

5-1 CBO3

Table 5-1. Arguments for Get File (SGTFIL) Macro Call

Argument Argument Value

Pathname pointer Must point to a pathname of a communica-
tions device (e.g., >SPD>TTYO01)

Concurrency control According to how the application uses the
device (normally zero for exclusive use)

Remaining arguments Zero

Open File (SOPFIL) Macro Call Guidelines

The open file function allocates buffer space (if required)
and physically connects the device or terminal.

The open file macro call $OPFIL, when used in communica-
tions, must include the location of the file 1nformation block
(FIB) which in turn must contain a valid program view item.

Table 5-2 indicates bit settings in the program view item
for the S$OPFIL macro call, such settings are dependent on the
actions taken by the communications application program.

Test File (STIFIL, STOFIL) Macro Call Guidelines

Before the application issues a $RDREC or S$RDBLK macro call,
it can issue the test input file ($TIFIL) macro call to check
whether input is available. Note that when the operator terminal
is checked, the STIFIL macro call always returns a not busy
status.

Before the application issues a SWRREC or SWRBLK macro call,
it can issue the test output file ($TOFIL) macro call to check
whether the preceding output operation was completed.

Wait File (SWIFIL, SWOFIL) Macro Call Guidelines

The use of the wait file macro call will permit an applica-
tion to wait for the completion of an outstanding read or write
order. The wait file macro call can be used against a set of
multiple terminals or devices. Test and wait file macro calls
differ in terms of when control is returned to the calling rou-
tine. A test file call will return immediately with a busy or
not busy status. An application can block the execution of
lower level tasks with repeated test file calls to a busy file.
Such problems can be avoided by issuing a wait macro call in
lieu of successive test macro calls.

SWIFIL is used to wait for input from any device/terminal;
SWOFIL to wait for completion of output to any device/terminal.

5-2 CBO03

AT,

Table 5-2. Program View Bit Settings for $OPFIL Macro Call
Bit Set
Number Actions by Assembly Language Application Program | Bit(s)

) To
0 Will use read record (SRDREC) and write record 0
' (SWRREC) macro calls
Will use read block (SRDBLK) and write block 1
(SWRBLK) macro calls
1 Will read data from the device (see note 1) 1
(read -
bit) Will not read data from the device 0
2 Will write data to the device (see note 1) 1
(write
bit) Will not write data to the device 0
3 : 0
through
12
13 As appropriate (see Table 2-1) 0 or 1
14 0
15 Synchronous/asynchronous indicator (see note 2) 0
Notes: 1. Bit value must be consistent with device type being
used.
2. When application uses SRDBLK or $WRBLK macro calls)

execution of the calls indicates asynchronous.

Device Dependent Macro Call Procedures

The following subsections describe the procedures for

issuing device dependent file system macro calls.

Device Modes and Device Types

There are four basic processing modes for communications

devices:

Input only (TTY or VIP data entry
Output only (receive only printer
Bidirectional - either the device
output, but not both applications
Interactive (TTY, VIP or BSC 3780

applications);
application (ROP);

(BSC 3780) ;
applications).

is opened for input or

CB03

Macro Call Procedures for Data Entry Terminals

Table 5-3 shows the procedure for using file system macro
calls in communications application involving data-entry

‘terminals.

Table 5-3. Macro Call Procedures for Data Entry Terminals
Procedure
Step Action by Application Program System Actions

1 Issue $GTFIL macro call (see Bit 2 program view
Table 5-1)

2 Issue &OPFIL macro call (see Issues asynchronous
Table 5-2) with 1 set to 1, connect, returns a
bit 2 set to 0. normal status to the

program. .

3 Issue SWIFIL macro call to Will return when a
wait unil connect is complete | read has been satis-
and input is available. fied.

(With multiple devices, the

SWIFIL macro call can be

issued with a list of LFNs,

effectively giving up con-

trol until input is available

from one or more devices in

the list.)

Otherwise, if application is If connect is not

to do other processing (not complete return a

giving up control), issue busy status. If

$TIFIL macro call. connect is complete,
issue an asynchro-
nous read and return
a busy status until
read is complete.

4 If not busy status is re- With read operation
turned, issue $RDREC or complete, move data
SRDBLK macro call. from system buffer

to application's
buffer, issues
another asynchronous
read, and returns a
normal status to the
program.

5 If an error status is re-
turned, exit from the
procedure.

CBO3

N

AR,

Table 5-3 (cont).

Macro Call Procedures for Data Entry Terminals

Procedure

ing completed, issue S$CLFIL
macro call.

Step Action by Application Program System Actions
6 When read is successful,
return to step 3 to request
more data from the device.
7 When application process- Issues a disconnect.

Macro Call Procedures for Output Only Terminals

Table 5-4 shows the procedure for using macro calls in com-
munications applications involving output only terminals.

Macro Call Procedures for Output Only Terminals

Procedure

Step Action by Application Program System Actions

1 Issue S$GTFIL macro call (see
Table 5-1).

2 Issue $OPFIL macro call (see Issues a asynchronous
Table 5-2) with bit 1 set to connect, returns a nor-
0, bit 2 set to 1. mal status to the

program.
3 Issue SWOFIL macro call to Will return when output

wait until connect is com-
plete and output can be
transmitted. (With multiple
devices, the SWOFIL macro

call can be issued with a list
of LFNs, effectively giving up
control until output can be
sent to one or more of the
devices in the list.

Otherwise, if the application
is to do other processing (not
give up control), issue a

‘$TOFIL macro call.

can be transmitted

If connect is not com-
plete return a busy
status. If connect is
complete return a not
busy status if output
can be transmitted.

CBO3

Table 5-4 (cont). Macro Call Procedures For Output Only Terminals
Procedure , :
Step Action by Application Program System Actions
4 If not busy status is re- Moves data from appli-
turned, issue SWRREC or cation buffer to sys-
SWRBLK macro call. ‘tem buffer. Issues
asynchronous write and
returns a normal sta-
tus to the applica-
tion.
5 If error status is returned,
exit from the procedure.
6 When write is successful, Issues disconnect ac-

return to step 3 to trans-
mit more data to the device.

cording to device
type.

CBO3

/(0 \~

"

AFE B,

Macro Calls For a Single Interactive Terminal

Table 5-5 describes the procedures for using macro calls in
communications applications involving only one interactive termi-
nal which has been configured for synchronous input/output opera-

tion.

Figure 5-1 illustrates the procedure's flow.

Table 5-5.

Macro Call Procedures for Single Interactive Terminal

Procedure
Step

Action by Application Program

System Actions

1

Issue SGTFIL macro call (see
Table 5-1)

Issue SOPFIL macro call (see
Table 5-2) with program view
bit 1 set to 1, program view
bit 2 set to 1.

To read f

rom the terminal followed by a write to the terminal:

3

Issue SRDREC or SRDBLK macro
call. (This effectively
gives up control until the
read is satisfied.)

If error status returned, exit
from the procedure.

Data is read directly

into the application
buffer.

Process the data just read.

Issue SWRREC or $WRBLK. (This
effectively gives up control
until the write is complete.)
If an error status is re-
turned, exit from the proce-
dure.

Data is written
directly from the
application buffer

If additional input is ex-
pected refer to step 3.

When application processing
is complete, issue SCLFIL
macro call.

Issues a disconnect.

CBO3

$GTFIL

-l

—_— $opr=u. (PROGRAM VIEW BITS 1 AND 2 = 11)

$RDREC (SRDBLK)

A

YES
ERROR = exiT
NO
$WRREC ($WRBLK)
YES

EXIT

:

YES ADDITIONAL

INPUT
EXPECTED

$CLFIL

EXIT

Figure 5-1. Simplified Program Logic for Single
Interactive Terminal

5-8 " CB03

E

Macro Call Procedures for Multiple Interactive Terminals

Table 5-6 describes the procedures for using macro calls in
communications applications involving multiple terminals.

Figure 5-2 illustrates the procedure's flow.

Table

5-6. Macro Call Procedures for Multiple Terminals

Procedure .

Step Action by Application Program System Actions
1 Issue $GTFIL macro call to each
terminal (see Table 5-1).
2 Issue $SOPFIL macro call to each| Issues asynchronous

terminal (see Table 5-2 with
program view bit 1 set to 1,
bit 2 set to 1.

connect, returns nor-
mal status to the
program. :

To read fr

om a terminal followed by a write

to a terminal:

3

Issue SWIFIL macro call with a

list of LFNs. (This will ef-
fectively give up control
until input is available from
one or more terminals in the
list.)

Will return when a
read is complete and
data is available.
Returns the LFN of
the first terminal in
the list for which
data is available.

Issue $RDREC or S$SRDBLK macro
call.

Moves data from sys-
tem buffer to appli-
cation's buffer,
issues another asyn-
chronous read, and
returns a normal sta-
tus to the program.

If an error status is re-
turned, process the error.

Process the data just read.

Issue SWRREC or S$SWRBLK macro
can. (This will give up con-
trol unitl output can be sent
to terminal.)

Waits until output can
be sent; moves data
from the application's
buffer to system bu
fer and issues an
asynchronous write.

If additional input is ex-
pected from any terminal see
step 3.

5-9

CBO03

Table 5-6 (cont.) Macro Call Procedures for Multiple Terminals

Procedure

Step

Action by Application Program | System Actions

9

call.

When application processing Issues disconnect.
is complete, issue SCLFIL

$GTFIL & $OPFIL (FILE 1) r

$GTFIL&$OPFIL (FILE2) <

SGTFII & ROPFII (F11 E2)

r————i $SWIFIL (ONFILES 1,2,3)

NOT BUSY — FILE n)

$RDREC (FILE n)

ERROR

FOR $OPFIL, PROGRAM VIEW
BITS 1 AND 2 ARE SET TO 11.

$WRREC

(FILE n)

YES

ADDITIONAL
INPUT
EXPECTED

$CLFIL

EXIT

EXIT

YES
. EXIT

Figure 5-2. Simplified Program Logic for Multiple
Interactive Terminals

5-

10

NS

CBO3

o/

PrrEN

Binary Synchronous Communication (BSC)

Binary synchronous communication (BSC), operating in 2780 or
3780 mode, permits a program to transmit data over communications
lines from one Level 6 to another Level 6, or a Level 66 system,
or to a non-Honeywell host system.

BSC DATA TRANSMISSION CONVENTIONS
BSC Data Codes

Data can be in alphanumeric ASCII, alphanumeric EBCDIC, or
binary format. In communication between Level 6 and a remote
host, each system must use the same code set (either ASCII or
EBCDIC). When EBCDIC is used, the application programs must know
whether transmission is nontransparent or transparent (i.e., BSC
control characters are interpreted as data).

BSC Data Transmission Modes
There are two BSC transmission modes: basic and advanced.

In basic transmission mode there is no control byte. The
absence of a control byte limits the functionality of the proto-
col (e.g., an application cannot send or receive two message
blocks or cannot initiate a reverse interrupt (RVI) sequence).

In advanced transmission mode there is a control byte which
is the first byte in the program's input or output buffer. The
control byte is used to control the transmission of data and to
convey information concerning the receipt of data. With the con-
trol byte the application has almost complete control (subject to
limitations imposed by the protocol) over the transmission and
reception of data to and from a remote host. (The control byte
formats are detailed in Section 10).

BSC 2780 and BSC 3780

BSC 2780 is a subset of BSC 3780. Technical differences
between the two protocols can be summarized as a set of exten-
sions to the 2780 protocol which are as follows:

o The ability to receive a conversational reply without a
preliminary bid sequence.

5-11 CBO3

o The ability to receive and transmit selected BSC control
characters.

From a user's point of view the differences between the two
protocols can be summarized as follows:’

BSC 2780

o Specified at system building time by the BSC device
directive.

o Operatés only in advanced mode.

o The file system supports bidirectional usage of BSC
2780 communications line. A CLOSE/OPEN sequence must
be initiated prior to the reversal of the communica-
tion line. '

RSC 2780

o Specified at system building time by the XBSC
directive.

o Operates only in advanced mode.

o The file system supports interactive usage of the BSC
3780 communications line. To terminate a transmission
the application must initiate an EOT sequence by set-
ting the appropriate bit within the control byte. An
ETX message transmission sequence can also be termi-
nated if the other application sends a conversational
reply. The receipt of conversational reply is indi-
cated by a bit setting within the transmit control
byte. The receipt of a conversational reply forces
the application to issue a file system read order to
receive the conversational response. The termination
of a read sequence is indicated by a EOF return code
(021F) and by the EOT bit being set in the receive
control byte. (Note that the terms EOF (end of file)
and EOT (end of transmission) are synonymous).

Macro Call Procedures for BSC 2780 in Basic Transmission Mode

The following conditions apply in the use of the file system
in binary synchronous communications in basic data transmission
mode:

o An application cannot send an RVI (reverse interupt) con-
trol character through the file system. '

o BSC devices in basic transmission mode can operate only
in single-buffer mode (see Section 10).

5-12 CBO3

N

A EN

o An application can send only the ETB (end of transmission
block) control character, not the ETX (end of text)
character.

o An application can send data in either transparent or
nontransparent mode.

o An application can send EOT (end of transmission) con-

trol characters only after it has issued a $CLFIL macro
call.

o BSC operation assumes that the detab option is set off.

_Table 5-7 shows the procedure for using macro calls in
applications that use BSC in basic data transmission mode.

Figure 5-3 illustrates a simplified program logic for these

procedures.

$GTFIL

PROGRAM VIEW
$OPFIL (BITS 1 AND 2 =01, WRITE)

$GTFIL

PROGRAM VIEW
(BITS 1 AND 2 = 10, READ

5 O O

SWIFIL

NOT BUSY ’ BUSY
$WRREC ($WRBLK)

$RDREC ($RDBLK)
YES

YES
$CLFIL

NO
. EXIT)

YES

LAST
RECORD
YES

$CLFIL

Figure 5-3. Simplified Program Logic for BSC 2780 in
Basic Transmission Mode

5-13 CBO3

Table 5-7. Macro Call Procedures for BSC 2780 in
Basic Transmission Mode
Procedure
- Step Action by Application Program System Actions

1 Before a file is first opened
issue SGTFIL macro call (see
Table 5-1).

To read data from a BSC line:
2 Issue $OPFIL macro call (see Issue asynchronous
: Table 5-2, with program view connect; returns a
bit 1 set to 1, program view status to the program.
bit 2 set to O.

3 Issue SWIFIL macro call to If connect is not
wait until connection is com- complete, S$TIFIL re-
plete and input available. turns a busy status
If application is to do other or, issues an asyn-
procesisng (not give up con- chronous read and
trol) issue S$TIFIL macro returns a busy status
call. until read is

complete.

4 Issue $RDREC or SRDBLK macro Moves data from system
call. . buffer to the applica-
If error status other than tion's buffer,'and
EOF (end of file) 1s re- again issues an asyn-
turned, exit from the pro- chronous read. If
cedure. (An EOF status in- there are no errors,
dicates that EOT (end of returns a normal
transmission) control status.
character was received,
indicating sender completed
its transmission.

5 Test for EOF return status.

If status is normal, do
other processing and return
to step 3 if more data
expected.

6 If application is to send

data, issue S$CLFIL macro call
and continue with step 7.

If application is not to send
or receive data, issue SCLFIL
macro call and continue with
other processing.

CBO3

Vot =N

Table 5-7 (cont). Macro Call Procedures for BSC 2780 in
Basic Transmission Mode
Procedure
Step Action by Application Program System Actions
To write data to a BSC line:
7 Issue S$OPFIL macro call (see
Table 5-2) with program view
bit.1 set to 0, program view
bit 2 set to 1.
8 Issue $STOFIL macro call to
test that connection is com-
plete.
If file was already opened, and
closed without a phone hangup,
the line is still connected;
STOFIL is not required.
9 Issue SWRREC or SWRBLK macro If no writes are pend-
call. ing, moves data from
If an error status is re- application's buffer
turned, exit from the proce- to system buffer,
dure. issues asynchronous
write to the BSC line,
and returns a normal
status.

10 Issue SWOFIL macro call to If the write is not
wait for completion of pre- complete STOFIL re-
viously scheduled output. turns a busy status.
Issue STOFIL to continue '
other processing while write
is in progress.

11 Can now issue another S$WRREC When SCLFIL macro
or SWRBLK macro call, or issue |call is issued, the
a SCLFIL macro call if the system: sends an EOT
preceding write macro call was | (end of transmission)
the last one, or if $SCLFIL character if the BSC
macro call was issued, and is in send or receive
more data is to be read from mode for that line.
the line, return to step 2. Sends nothing if the

BSC line is idle.

CBO03

Macro Call Procedures for BSC 2780 in Advanced Data Transmission
Mode

In the BSC advanced data transmission mode, the first byte
of the application program's input or output buffer is a control
byte that controls or supplies information about read/write op-
erations. This byte can indicate, for example, whether data is
to be transferred in transparent or nontransparent mode, or
whether an ETB (end of transmission block) or ETX (end of text)
control character is to be sent or received. (Section 10 details
the usage of BSC control characters).

The following condition applies in using the file system in

2780 binary synchronous communications in advanced data transmis-
sion mode:

o It is not necessary to send EOT control characters
through the control byte since the user must close the
file in output mode belore aLLemleng to read. Closing
the file forces the BSC, if not in idle mode, to send an
EOT control character.

Table 5-8 shows the procedure for using macro calls in
applications that use BSC lines in 2780 advanced data transmis-
sion mode.

Figure 5-4 illustrates the Program logic for these proce-
dures.

5-16 CB03

s,

$GTFI $GTFIL
L

l PROGRAM VIEW
‘ ™ S$OPFIL (TS 1 AND 2 = 01, WRITE)
®—> $OPFIL PROGRAM VIEW

(BITS 1 AND 2 = 10, READ)

$SWIFIL [_—SWRREC ($WRBLK)

|

NOT BUSY $WOFIL

l
$RDREC $RDBLK)

$CLFIL

EXIT

$CLFIL

‘ EXIT)

YES

$CLFIL
NO

NO

LAST
RECORD

$CLFIL

$CLFIL

Figure 5-4. Simplified Program Logic for 2780 BSC in
Advanced Transmission Mode

5-17 , CBO?2

Table 5-8. Macro Call Procedures for BSC 2780 in
Advanced Transmission Mode
Procedure
Step Action by Application Program System Actions

1 Before the file is first
opened issue SGTFIL macro
call.

To read data from a BSC 2780 line:

2 Issue $OPFIL macro call (see Issues an asynch-
Table 5-2) with program view ronous connect; re-
bit 1 set to 1, program view turns a normal status
‘bit 2 set to 0. to the program.

3 Issue SWIFIL macro call to If connect is not
wait unitl connect is complete complete, returns
and input is available. If a busy status, S$TIFIL
application is to do other issues an asynchronous
processing (not give up read, and returns a
control), issue STIFIL macro busy status unitl the
call. the read is complete.

4 Issue SRDREC or SRDBLK macro Moves the data from
call. 1If error status other the system buffer to
than EOF (end-of-file) 1s the application's
returned, exit from the pro- buffer, and again
cedure. (An EOF status indi- issues an asynchronous
cates that an EOT (end of read. If there are no
transmission) control error, returns a nor-
character was received, de- mal status.
noting that the sender has
completed its transmission.)

5 Test for EOF return status.
If return status is normal, an
application can check for ETB
or ETX control characters, or
for transparent or non-
transparent processing, and
return to step 3.

6 When EOF or EOT status is re-

turned, and more data 1is ex-

pected, return to step 3.

CB0O3

Pes =N

Table

5-8 (cont).

Macro Call Procedures for BSC 2780 in

Advanced Transmission Mode

Procedure
Step

Action by application Program

System Actions

7

If application is to send
data, issue a $SCLFIL macro
call and continue with step
8. If application is not to
send or receive data, issue
SCLFIL macro call and con-
tinue with other processing.

To write data to a BSC 1

ine:

SOPFIL macro call
5-2) with program view
set to 0, program view
to set to 1.

Issue (see
Table
bit 1
bit 2

Issue SWRREC or SWRBLK macro
call. Application can set
control byte to control trans-
mission (send ETB or ETX con-
control characters, or send

in normal or transparent
EBCDIC mode) .

If no writes are
pending, moves the
data from the applica-
tion's buffer, issues
an asynchronous write
to the BSC line, and
returns a normal
status.

10

Issue SWOFIL macro call to
wait for completion of pre-
viously scheduled output.
Issue STOFIL to continue
other processing while write
is in progress.

If the write is not
complete STOFIL re-
turns a busy status.

11

If an error status is re-
turned, close the file and
exit from the procedure.

12

Can now test for RVI-received
bit in the control byte of the
record that was just sent. If
the bit is set on, can either:

a. Close the file and return
to step 2, or

b. Ignore the RVI condition
and continue to write.

5-19

CB0O3

Table 5-8 (cont). Macro Call Procedures for 2780 BSC in
Advanced Transmission Mode

Procedure
Step Action by Application Program System Actions
13 After the write is complete,

the application can:

If there is more data to be
written, issue another
SWRREC or WRBLK by return-
ing to step 9, or

If more data is expected,
issue a $CLFIL macro call
and return to step 2, or

Simply issue a SCLFIL macro
call and exit the procedure.

Macro Call Procedures for BSC 3780 in Advanced Data Transmission
Mode

The first byte of the application program's .input or output
buffer is a control byte. The control byte controls or supplies
information about read/write operations.

The following conventions apply when using the file system
with 3780 binary synchronous communication in advanced data
transmission mode:

o The receipt of an optional conversational reply is indi-
cated by a bit setting in the transmit control byte.
(This can occur if the application has transmitted the
last (ETX) block of a message). The application must
issue a read macro call in order to receive the conver-
sational response.

o The termination of a transmit sequence is signaled (via
control byte) by the transmission of an EOT control
character following the last block if a message. Once
this has been done, a read macro call will be needed to
receive transmissions from the remote system. (It is not
necessary to close and reopen the file to turn the line
around.)

o The termination of a receive sequence is indicated by the
receipt of an EOF return status or an EOT status in the
receive control byte. A transmission sequence can be re-
initiated by issuing another write macro call. (It is
not necessary to close and reopen the file to turn the
line around).

5-20 _ CBO03

Al B

o A line turnaround (receipt of an EOT) is indicated by an
021F EOF return code (and the setting of the EOT bit in
the receive control byte). At this point the application
can use the line for data transmission by issuing another
write request. It is also possible to receive an EOF/EOT
status, which indicates the abnormal termination of
transmit/receive sequence. (This can occur for a variety
of reasons, most notably hardware problems.) Such an
occurrence is also indicated by an 021F return code. The
application can differentiate between these end-of-file
conditions by considering when the EOF status was re-
received. For example, two applications agree that the
last record of a message transmission is demarked by an
ETX control character. If the transmission is terminated
by the receipt of an EOT and the last record of the
transmission was not marked with an ETX control charac-
ter, the application can assume that the transmitter
aborted the transmission sequence. If such a condition
is detected, the application must close the line by issu-
ing a close file macro call (all other file system
requests will be rejected.

Table 5-9 shows the procedure for using macro calls that use
BSC lines in 3780 advanced data transmission mode.

Figure 5-5 illustrates the program logic for these proce-
dures.

5-21 CBO3

$GTFIL

$OPFIL (BITS 1 AND 2 =11, READ AND WRITF)

NO

]
- SWIFIL - <Ez>

NOT BUSY

]
$RDREC ($RDBLK)

ERROR N

$CLFIL

EXIT

Figure 5-5.

YES
A

$CLFIL

] EXIT

Simplified Program Logic for BSC 3780 in
Advanced Transmission Mode

5-22

CBO3

o,

YES WRITE

LAST (ETX)

NO

MESSAGE

$WRREC ($WRBLK)
—WITH EXT

YES

ERROR

$CLFIL

$WOFIL

NOT BUSY

CONVERATIONAL YES
REPLY

RECEIVED

$WRREC ($WRBLK)
—WITH ETB

$CLFIL

NO ‘ EXIT ,
$WOFIL
NOT BUSY

$WRREC ($WRBLK)
—LAST BLOCK WITH EOT

YES
ERROR

$CLFIL

EXIT

Figure 5-5 (cont).

$CLFIL

Simplified Program Logic for 3780 BSC in

Advanced Transmission Mode

5-23

CBO3 .

Table 5-9. Macro .Call Procedures for BSC 3780 in
Advanced Transmission Mode

Procedure
Step Action by Application Program System Action

1 Before the file is first
opened, issue S$GTFIL macro
call (see Table 5-1).

To read data from a BSC line:

2 Issue S$OPFIL macro call (see Issues an asynchronous
Table 5-2) with program view connect; returns a
bit 1 set to 1, program view normal status to the
bit 2 set to 1. program.

3 Issue SWIFIL macro call to If connect is not com-
wait until conncct is com- plcte, STIPIL returns
plete and input is available. a busy status. If
If application is to do other connect is complete,
processing (not give up issues an asynchronous
control), issue $STIFIL macro read, and returns a
call. busy status until the

read is complete.

4 Issue SRDREC or $RDBLK macro Moves the data from
call. 1If error status other the system buffer to
than EOF (end-of-file) is application's buffer,
returned, exit from the pro- and again issues an
cedure. (An EOF status indi- asynchronous read. If
cates that an EOT (end of there are no errors,
transmission) control charac- returns a normal
ter was received, denoting status.
that the sender has completed
its transmission.

5 Test for EOF return status. If
return status is normal, the
application can check for ETB
or ETX control characters, or
for transparent or non-
transparent processing, and
return to step 3.

6 If the application has data to
send continue with step 8.

7 If the applicastion has no

data to send, issue a SCLFIL
macro call and continue with
other processing.

CBO3

Table

5-8 (cont).

Macro Call Procedures for BSC 3780

in

Advanced Transmission Mode

Procedure
Step Action by Application Program System Action
To write data to a BSC line:

8 If the application wishes to
send the last (ETX) block of
message, continue with step
16.

9 Issue SWRREC or S$SWRBLK macro If no writes, moves
call. Application can set the data from the
control byte to control application's buffer
transmission of an ETB con- to the system buffer,
trol character. If an error issues an asynchronous
status is returned close the write to the BSC line,
file and exit from the pro- and returns a normal
cedure. status.

10 If application is to do other If the write is not
processing (not give up con- complete, returns a
trol) issue STOFIL. Else, busy status. Returns
issue SWOFIL macro call to a not busy status when
give up control of the central |the write is complete.
processor until the write is
completed.

11 Can now test the transmit con-
trol byte for the receipt of a
conversational reply. If the
bit is set on, initiate
another read sequence by re-
turning to step 3.

12 Can now test for RVI-received

bit in the control byte of the
record that was just sent. If

the bit is set on, can
either:
a. Close the file and ini-

tiate another read
sequence by returning to
step 3, or

b. Ignore the RVI condition
and continue to write.

5-25

CB03

Table 5-9 (cont). Macro Call Procedures for BSC 3780 in
Advanced Transmission Mode

Procedure ,
Step Action by Application Program System Action

13 If there is any more data to
transmit, continue with
step 8. :

14 If data is expected from the
remote host, initiate another
read sequence by returning
to step 3.

15 Transmission and reception se-
quences are complete. Issue a
SCLFIL macro call and exit
from the procedurc.

16 Issue SWRREC or SWRBLK macro Moves the data from
call. Application can set the application's
control byte to control trans- | buffer to the system
mission of an ETX control buffer, issues an
character. If an error status | asynchronous write to
is returned close the file .and | the BSC line, and re-
exit from the procedure. turns a normal status.

17 If application is to do other If the write is not
processing (not give up con- complete, returns a
trol) issue STOFIL. Else busy status. Returns
issue SWOFIL macro call to a not busy status when
give up control of the the write is
central processor until the completed.
write is completed.

18 Continue ‘with common proces-

sing of transmit sequence
by continuing with step 12.

CB03

S

Nt

AL iy ‘ .

SECTION 6

ASSEMBLY LANGUAGE COMMUNICATIONS USING PHYSICAL INPUT/OUTPUT

The physical input/output (I/0) interface permits more
direct user control over communications processing than does the
file system.

Used only with assembly language programs, the physical I/0
interface enables communications applications to:

(¢]

Call appropriate line protocol handlers (LPH) more
directly through the communications subsystem rather than
through the file system.

Control the data structure, specifically the input/output
request block (IORB), that directly controls device oper-
ations and/or characteristics. (See "Data Structures"
below for description of the IORB.)

COMMUNICATIONS SUBSYSTEM CONVENTIONS

The following conventions apply to use of the communications
subsystem:

(o]

The I/0 request block (IORB) is the standard control
structure used by an LPH of the communications subsystem.

Use the request I/0O (SRQIO) macro call in the application
program to request an I/O0 transfer.

The B4 register contains the address of the IORB supplied
by the application program; the IORB contains the logical
resource number (LRN) of the device to be used.

The I/0-specific words of the IORB (I_CT2 through I_DVS)
are not modified by the line protocol handler.

6-1 CBO3

o The communications subsystem maps the hardware return
status into the software status word I ST of the applica-

tion's IORB before the line protocol handler gives up
control.

Table 6-1 lists the return error status codes that indicate
logical result of an I/0 request.

USING PHYSICAL I/O

Two fields within the IORB specify the operation to be
performed.

1. The function code (Table 6-4), indicated by bits C
through F of I _CT2 in the IORB (see Table 6-2), spe-
cifies the particular operation.

2. The I _DVS item in the IORB, used with the function code,
specializes the input/output order.

For example, in TTY processing, the user can specify a write
request (function code 1), with or without a carriage return at
end-of-message, as indicated by the C- b1t of the I_DVS (see
Table 7-3).

To request execution of an I/0 operation, the application,
with the SRQIO macro call, must transfer control to the physical
I/0 interface. At the time of the request the $B4 register must
contain the address of the IORB being requested. The $RQIO macro
routine executes the I/0 operations, then returns to the request-
ing application.

The IORB may define either synchronous or asynchronous con-
trol. When the IORB specifies synchronous I/0 (W (wait) bit in
I CTl reset), return to the calllng application is delayed by the
Monitor until the I/O operation is complete. On return, the
return status field of the IORB, and the $R1 register, will con-
tain one of the status codes shown in Table 6-1.

When the IORB specifies asynchronous I/O0 (W (wait) bit set
in I _CT1l), control returns immediately without waltlng for I/0
completion, and the instruction at the return point is executed
as soon as the system queues the IORB. To obtain the return
status (in $R1 register), when using asynchronous I/0, the appli-
cation should issue a $SWAIT macro call.

At completion of the I/0 operation, the application should
first check the $R1 register to see that the I/O request was suc-
cessful. Any error will be defined there. Hardware errors will

be indicated in the IORB software status word I_ST (see
Table 6-3).

6-2 CBO3

AR,

ted. With a read request,

of bytes remaining to be received.
I RSR of the IORB is meaningful only when the A-bit in

Residual range, indicated in the IORB, shows how much of the
requested data was transferred.
ual range value is the number- of bytes remaining to be
the residual range value is

the resid-
transmit-
the number
The residual range value in
the I_ST

With a write request,

item (Table 6-3) of the IORB has been set on.

Return Status Error Codes for

Logical Result of I/0O Request

Meaning

Table 6-1.
Code Number
(Hexadecimal)
0
1
2 Invalid LRN
3 Illegal wait
4 Invalid arguments
5 Device not ready
6 Device time-out
7 Hardware error,
(see Table 6-3)
p 8 Device disabled?®
- 9
\ A
B Device unavailable
C
F

No error, operation complete
Request block already busy (T=1)

File mark encountered
Controller unavailable

Inconsistent request®
EOT received (for BSC 3780 only)

check IORB status word

b

a

resource is pending.

® When
on a
tify
with

- by a

This
read

This status is returned on an I/0 request when the
application has disabled the logical resource, and
for a communications resource, when the result of
either a connect or disconnect for this logical

these codes are found in I CT1 (IORB), or in $R1
resume after wait, look at I ST (IORB) to iden-
the specific error.
every read or write IORB that has been aborted
disconnect request with queue abort.

status indicates illogical device requests:
or write before connect, duplicate connect or
disconnect requests; write after disconnect.

The status B is returned

DATA STRUCTURES

Two data structures control the interactions among an appli-

(m cation program,
uses:
resource control table (RCT).

its line protocol handlers,
(1) the input/output request block (IORB), and (2) the

and the devices it

The IORB is the interface between

6-3 CBO3

the application and line protocol handler; the RCT is the inter-
face between the line protocol handler and its devices.

This section describes the input/output request block (IORB)
in general. Later sections describe device-specific fields in
the IORB for the TTY, VIP, PVE, and BSC line protocol handlers.

Resource Control Table (RCT)

The device's resource control table (RCT) contains a channel
number and level entry, whose values were initially defined at
system building. The logical resource number (LRN) supplied by
the application in the IORB serves as an index into a system
logical resource table (LRT), which in turn contains a pointer to
the RCT entry defining the device, as illustrated below.

USER IORB LRY RCT ENTRY

CHANNEL

LRN POINTER

Thus, with the logical resource number, a line protocol
handler can indirectly access the RCT entry that defines the
specific device that the application is to use.

Appendix C describes the resource control table (RCT).

Input/Output Request Block (IORB)

The IORB is the standard means for requesting a physical I/0
service. Generated by the input/output request block macro call
(SIORB), the IORB contains all ‘the ‘information that an applica-
tion requesting an I/0 service must specify to define the opera-

tion to be performed. In addition, the IORB includes the
following:

o Logical resource number (LRN) that identifies the I/0
device being addressed.

o Location and size of the buffer to be used for physical
I/0 transfers.

o Information returned by the line protocol handler to the
application, concerning results of the I/O request.

6-4 v CBO3

aE T

Figure 6-1 shows the format of the IORB. Table 6-2 defines
the separate entries in the IORB. Later sections in the manual
describe the device-specific word (I_DVS) and software status
word I ST for each line protocol handler.

NOTES: 1. The IORB as described here is as ‘it appears for
short address format (SAF) central processors,
namely with one-word items. For long address
format (LAF) processors, the same structure
would have two-word entries for all pointers.

2. The labels (I _CT1l, I_ADR, etc.) used in the IORB
are only for easier presentation. The labels
cannot be used for programming purposes.

3. The asterisk (*) in the formulas in the "Item"
column of Table 6-2 is a multiplication sign.

4. The shaded fields in Fiqure 6-1 are for system
use only. The field I_FCS is used only by the
VIP and PVE line protocol handlers. Fields not
shaded must be initialized by the application
requesting the I/0 operation.

When the IORB is used with a $RQIO macro call, the device
named in the IORB should have been initially reserved. The
logical resource number (LRN) required by the IORB can be
obtained by issuing a get file information ($GIFIL) macro call.
See the description of the request I/0 (SRQIO) macro call in the
System Service Macro Calls manual for details.

_ | 0)1 12)3,4,5,6,7,8,9,A;8,;CyDjE,F

{ :?AF:_SSS}, REQUEST BLOCK POINTER/SEMAPHORE NAME

0
$AF |_CT1
14$AF |_CT2 LRN 0 B P 0 FUNCTION
2+$AF |_ADR BUFFER ADDRESS
2+2°$AF I_RANG RANGE
3+2*$AF |_DVS DEVICE SPECIFIC WORD

o

4+2*$AF |_RSR | RESIDUAL RANGE

o

5+2*$AF |_ST

6+2*$AF |_FCS FUNCTION CODE 1 (VIP AND PVE) FUNCTION CODE 2 (VIP AND PVE)

Figure 6-1. Communications Input/Output Request Block (IORB)

6-5 CBO3

Table 6-2.

Contents of Communications Input/Output
Request Block (IORB)

Item

Label

(Bits)

Contents

~-SAF

I_RRB/
I_SEM

0 through
(SAF) '
0 through
(LAF)

15

31

Depending on the condition of the
S- or R-bits of I_CT1l, this word
contains a request block pointer
(R-bit on), or a semaphore name
(S-bit on). Set by user; used by
system at termination of request.

0 through
0 through

15
31

Reserved for system use; one-word
pointer (SAF); two-word pointer
(LAF) .

SAF

I_CT1

0 through

{ [T
\ .

N

9 (W)

A (U)

B (S)

D (R)

E (D)

Return status. (See Table 6-1).

+ha

—iie

quest using this block is execut-
ing; it is reset when the request
terminates. The system controls

this bit; user should not change

it.

Thic hit 1ec cat+r An)Y whila oo
.0l 21T 12 S¢C8T \Ch, Wallc re

Wait bit - set if the requesting
task is not to be suspended pend-
ing the completion of the request
that uses this block.

User bit - user may or may not use
this bit; system does not change
it.

Release semaphore indicator.
Values: 0=No release, l=Release,
on time-out, of item named in
named in I_.RRB.

Must be zero.

Return request block indicator.
Values: O0=No dispatch, l=Dispatch
of request block named in I RRB,
after timeout of this request.
System executes $RQTSK, using
I_RRB upon task termination.

Delete I/0 request block. Values:
0=No delete, 1l=Return memory to
the pool where IORB is the first
entry of its memory block.

6-6 - CBO03

Table 6-2 (cont).

Contents of Communications Input/Output

Request Block (IORB)

Item Label (Bits) Description

SAF I CT1 F I/0 bit - must be set.

(cont) (cont)

1+$AF I CT2 0 through 7 Logical resource number (LRN);
identifies device to be used.

8 Reserved for later use.

9 (B) Byte index; O=buffer begins in
leftmost byte of word, l=buffer
begins in rightmost byte.

A (P) Reserved for system use.

B Reserved for later use.

C through F Function code. See Table 6-4.

2+SAF I_ADR 0 through 15 | Buffer address; SAF mode, l-word
pointer.

0 through 31 | Buffer address, LAF mode; 2-word
pointer.

242*SAF | I_RNG 0 through 15| Range - number of bytes to be
transferred.

3+2*SAF [I_DVS | O through 15| Device-specific information.

4+2*SAF | I_RSR 0 through 15 | Residual range. Indicates the
number of bytes not transferred.
Filled in by the system on comple-
tion of the order.

5+2*%SAF | I_ST 0 through 15| Status word. Reflects the mapping
of the hardware status into soft-
ware status format. See Table 6-3.

6+2*SAF | I _FCS 0 through 7 Function code 1 (VIP and PVE only),

. 8 through 15| Function code 2 (VIP and PVE only),

CBO3

IORB Software Status Word (I.ST)

The line protocol handler maps into the IORB software status
word I ST (see Table 6-3) the return status of the hardware,
obtained from the device status field R STTS of the resource con-

trol table (RCT). (Appendix C describes the resource control
table.)

The bit settings in the software status word I_ST indicate

to the application the status of the hardware, as shown in
Table 6-3.

The meanings of bit settings in the software status word
I_ST for specific devices are shown in tables in later sections
that describe the line protocol handlers for those devices.

Table 6-3. Software (I_ST) Status Codes

Bit in
-IORB's .
I_ST Meaning When Bit Set On
0 -
1 VIP, PVE read error
2 Data service rate error
3 Lost line bid; RVI received (BSC only)
4 Communication control block service error
5 No stop bit on character input (TTY only); con-
versational reply received (BSC 3780 only)
6 Long record .
7 For BSC: O0=ITB/ETB received; 1=ETX received
For VIP and PVE: ©poll failure
8 For VIP and PVE: NAK limit reached
9 For VIP and PVE: Checksum or parity error limit
reached
A Nonzero residual range
B Phone disconnect
C BSC only: End-of-transmission (EOT) received

6-8 CB03

A

Table 6-3 (cont). Software (I_ST) Status Codes

Bit in
IORB's
I ST Meaning When Bit Set On
D For VIP: page overflow ,
For BSC: transparent message received
E For VIP: busy or not available
For BSC: NAK limit reached
F Nonexistent resource; bus parity error; fatal
uncorrectable memory error

COMMUNICATIONS FUNCTION CODES

All line protocol handlers perform similar functions for the
devices and applications they service. These functions are per-
formed by the line protocol handler's request and interrupt pro-
cessing codes.

An application can request specific functions by providing a
function code in the IORB supplied when it requests I/O service.
The application uses the last four bits of its IORB's I CT2 entry
(see Figure 6-1) to enter the function code for the functions
summarized in Table 6-4.

The connect and disconnect functions may be used with non-
communications devices (processed as no-ops) for program compat-
ibility; i.e., no matter how connected to the Level 6 system, all
TTY devices and noninteractive (e.g., card reader and printer)
devices can be controlled by the same application program. This
is useful for program development and test purposes. :

Table 6-4. Communications LPH Function Codes

Function
Code in
IORB Communications Function
0 Wait online
1 Write
2 Read
A Connect
B Disconnect

Wait Online Function (Code 0)

The wait online function, is used to synchronize task opera-
tion with device availability, and allows a caller to wait until
a device becomes ready for use, or until a specific time interval
has passed before using it.

6-9 CBO3

When an LPH receives a service request from a task using the
wait online function code in the IORB that is supplied (0000 in
the last four bits of I CT2), and the device is not ready, the
driver sets a timer for 5 minutes and suspends. When the LPH is
reactivated, either by a ready interrupt from the device or by a
time-out, it deactivates the timer, checks the device-ready bit
in the hardware status word and places a 0 or 6 value in the
return status field of the IORB depending on the condition of
that bit. See the return status codes for the $SRQIO (request
I/0) macro call; the rightmost hexadecimal character is placed in
the return status field. See Table 6-1.

The wait online function should not be issued to a device
that is currently ready for use unless it is expected to become
temporarily unavailable.

NOTE: For compatibility with higher level languages, using
the wait for operation complete macro call (SWATT)
results in an immediate return of 0.

Write Function (Code 1)

This function allows data to be written to a specific
device. When a line protocol handler (LPH) receives a write
request, it transfers the indicated data from the application's
buffer to the device, according to the specifications supplied in
the device-specific word of the application's IORB.

Read Function (Code 2)

This function allows data to be read from a specific device.
When the LPH receives a read request, it transfers data from the
device to the application's buffer, according to the information
supplied in the device-specific word of the application's IORB.

Connect Function (Code A)

The connect function provides a logical and physical connec-
tion between an application program and a communications device.

As a logical function, the connect function is a request to
use the specified communications device. 1If that resource is
being used, an error return results. In that case the applica-
tion must determine whether that resource is sharable (as estab-
lished by the installation's procedures), and proceed
accordingly.

As a physical function, the connect function establishes a
physical path to the communications device associated with the
specified logical resource number (LRN). This implies, when the
device is to be connected over a switched line, that the system
software should answer the telephone on the line associated w1th
that device. The request times out after five minutes.

6-10 ' CBO3

N S

If the connect function is not completed, the system will
not process any requests for communication devices, and will
return an error status.

The connect function must be requested before any other

functlon, since communications devices are conflgured into the
system in a disconnected state.

Disconnect Function (Code B)

The disconnect function provides both the logical (normal
and abnormal) and physical disconnection between the application
and a communications device.

As a logical function, the disconnect function indicates
that the use of the designated device is to be terminated.

For a logical disconnect, issue a disconnect request (func-
tion code B) with a queue abort (E-bit in I DVS set on), and no
phone hangup (F-bit in I DVS set on). (See Table 7-3.) At this
point, any pending read or write requests are returned to the
application program with a B status (device unavailable). Con-
tinued use of the device requires that the application program
issue a connect.

As a physical function, the disconnect function must specify
the physical disconnection of a line.

Requesting Communications Functions

The following is the sequence for an application to request
a transaction with a communications resource:

l. Set up an IORB with the connect function (code A).

2. Call the physical I/0 interface (request I/O macro call
SRQIO) .

3. When the connection is complete, supply the appropriate
IORBs for those operations that the application will
perform.

4. Perform the functions, e.g., read, write, and/or wait
online required by the application's 1logic.

5. When application processing is complete, supply an IORB

with the disconnect function (code B) and issue the
request I/0 macro call (SRQIO) to execute the function.

6-11 | CBO3

PHYSICAL I/O MACRO CALLS FOR COMMUNICATIONS

The input/output request block ($IORB) and request I/O
(SRQIO) macro calls provide direct communication from a communi-
cations application to the appropriate line protocol handler

(LPH). The System Service Macro Calls manual describes these and
related macro calls in detail.

6-12 CBO3

‘I\‘

/i;f i

SECTION 7

TTY LINE PROTOCOL HANDLER

The TTY line protocol handler supports asynchronous terminal
devices, generically classified as teleprinter-compatible (TTY),
that include certain ASR, KSR, and visual information projection
(VIP) terminals.

A basic TTY terminal consists of either a printer and key-
board or a VIP 7100/7200/7800 display and keyboard. (Paper tape
is not supported.) Each type of TTY terminal has an asynchronous
communications interface that permits operation at up to 9600
baud.

GENERAL TTY LINE PROTOCOL HANDLER OPERATION

TTY Message Formats

Figure 7-1 illustrates TTY message formats. On input, the
application receives only the text portion of the message. On
output messages, the application can control print format with a
control byte that is specified as the first character of the
output buffer (in the IORB device-specific word I_DVS, described
later). At connect, read, or write, the application can, with
the I DVS word, dynamically specify which message format is to be
used.

7-1 CBO3

TEXT CR, ETX, EOT; OR BUFFER FULL INPUT
DYNAMIC
CONTROL, TEXT EOM OUTPUT
BYTE
TEXT EOM OUTPUT
DYNAMIC
CONTROL TEXT OUTPUT
BYTE ,
TEXT OUTPUT

Figure 7-1. TTY Message Formats

TTY Character Mode and Buffered Mode Transmission

TTY CHARACTER MODE

Transmission for all TTY terminals is usually in character
mode (one character at a time), a characteristic of the hardware

that provides that:

o The TTY line protocol handler does all editing of data
before any transmission.

o Multiple input lines are not allowed at the same time.

7-2 CBO3

TTY BUFFERED MODE (VIP 7200 AND 7800)

For VIPs 7200 and 7800 only, the buffered mode, available as
a hardware option, permits: .

o The TTY line protocol handler to process multiple lines
of input at the same time.

o The operator to do local editing of data before it is
transmitted.

o The application to instruct the TTY line protocol handler
not to edit input data.

Buffered mode permits the TTY line protocol handler to pro-
cess a write order while a read order is pending. A "quasi full
duplex" operation gives the line protocol handler the ability to
have the application send to the terminal, sequences that cause
the terminal to send information back to the application's
buffer.

Buffered quasi full duplex operates as follows:

1. When the channel control program (CCP) of the multiline
communications processor (MLCP) is currently processing
a write order to the terminal, a subsequent read or
write operation is not given to the CCP until the cur-

rent write order completes.

2. When the CCP is processing a read order and the next
following order is a write order, that write order is
processed while the read order is active.

3. When the write order (2 above) completes and the read
order has not yet completed, a subsequent read or write
order will not be processed until the read is completed.
When the read order is completed before the write order,
actions in 1 above take effect.

4. When the read order is completed, the line protocol
- handler returns to its original state, i.e., no orders
pending. The line protocol handler can initiate read or
write orders to the CCP.

VIP 7200 AND 7800 HARDWARE SWITCH OPTIONS WITH CHARACTER
OR BUFFERED MODE

The TTY line protocol handler supports the following VIP

7200/7800 hardware switch options for character mode or buffered
mode as follows:

7-3 CBO3

Character Mode

Character/buffered mode switch
on character mode.

Parity switch on even.

Full/half duplex switch on
full.

Buffered Mode

Character/buffered mode switch
on buffered mode.

Parity switch on even.

Full/half duplex switch on
full. Page/line switch as
necessary. End-of-message
(EOM) character internal
switch set to ETX or EOT (not
to CR).

VIP 7200 AND 7800 FUNCTION AND CONTROL KEYS

Function and control keys on
ported only in buffered mode.

When issuing a write request
response by the terminal,

the VIP 7200 and 7800 are sup-

that will cause an automatic

the application must first issue an

asynchronous read request, then issue a write request that con-
tains a control message to the terminal.

TTY Line Protocol Handler Time-Qut Intervals

Table 7-1 lists the TTY line protocol handler's time-out

intervals for the LPH functions.

Table 7-1. TTY Line Protocol Handler Time-Out Intervals
Line Protocol
Handler Function Time-Out Interval
Connect Five minutes
Read Character mode: five minutes after receipt
of the first character of
the message;

Buffered mode: five minutes after the
line protocol handler
receives the request.

Write Thirty seconds

CBO3

USING THE TTY LINE PROTOCOL HANDLER

TTY-Specific IORB Values

The TTY-specific IORB item I CT2, device-specific word

I DVS, and software status word I ST are shown and defined in

Tables 7-2, 7-3, and 7-4, respectlively.

Section 6 describes the

general form of the IORB.

Table 7-2. Function Codes in I CT2 of the IORB
Function |
Code Definition Use
0 Wait online | Used by the line protocol handler
1 Write to complete the description of
2 Read the requested I/0 function
A Connect
B Disconnect
Table 7-3. TTY Device—specific Word I DVS in the IORB
Bit Bit
Number |[Setting Meaning of Bit Setting
0 0 Must be zero.
1 0 Must be zero.
For connect call only (function code A)
2 0 Do not use Auto Call Unit.
1 Use Auto Call Unit.
3 0 Must be zero.
4 0 First byte in buffer on output is a control
byte.
1 First byte in buffer on output is a data byte.
For read call only (function code 2)
5 0 Input data is in nontransparent mode.
1 Input data is in transparent mode.
6 0 Must be zero.

CBO3

Table 7-3 (cont). TTY Device-Specific Word I DVS in the IORB

Bit Bit
Number | Setting Meaning of Bit Setting
For'write call only (function code 1)
7 0 Stop output immediately on detecting a BRK
received from the terminal.
1 Continue outpu£ when BRK detected.
8 0 Must be zero.
9 0 Must be zero.
For read call oply (function code 2)
A] Do not echo keyboard input.
| 1 Echo keyboafd input.
For read and write calls (function codes 2, 1)
B 0 No LF (line feed) at end of message.
1 LF (line feed) at end of message.
C 0 CR (carriage return) at end of message.
No CR (carriage return) at end of message.
For connect call only (function code A)
D 0 Data transfer is in character mode.
1 Data transfer is in buffered (block) mode.
For disconnect call (function code A)
E 0 Abort (dequeue) all IORBs on the request queue.
1 Process oﬁtstanding requests on the request
queue. v
F 0 Hang up phone after disconnect.
1

Do not hang up phone after disconnect.

7-6 CBO3

N

AR

Table 7-4. TTY Software Status Word I ST in the IORB

Bit Meaning When Bit Set to 1

0 N/A

1 N/A

2 Data service rate error

3 N/A

4 Communications control block (CCB) service

error

5 Nd stop bit in character input

6 | Long record |

7 N/A

8 N/A

9 N/A

A Nonzero residual range

B Phone hang-up

C N/A
D N/A

E N/A

F Fatal error: bus parity or memory error
Although nonexistent resource, bus parity, and
uncorrectable memory errors are combined in
bit F, each occurrence is noted separately in
the resource control table (RCT). See

Figure C-1.

Control and Characteristics of TTY Input Data

This subsection describes user control over the character-
istics of TTY input data, and applies to character mode process-—
ing unless otherwise noted.

7-7

CBO3

“‘\~,/ '

TTY CONTROL BYTE (INPUT)

The description of the TTY control byte for output (see "TTY
Control Byte (Send)" below) applies also to the TTY line protocol
handler's control byte for input. :

TTY NONTRANSPARENT INPUT

TTY input is nontransparent when the application sets to 0
bit 5 of the IORB's device-specific word I_DVS (Table 7-3).
Input is accepted until the end-of-range or a CR (carriage
return), ETX (end of text), or EOT (end of transmission) control
character, whichever is first, is reached. The line protocol

handler does not transmit the CR, ETC, or EOT control character
as part of the message. '

TTY TRANSPARENT INPUT

TTY input text is transparent when the application sets to 1
bit 5 of the device-specific word I _DVS at read time (Table 7-3).
All input data, including and control characters, is stored in
the buffer until end-of-range is reached.

TTY LINE FEED (LF) AND CARRIAGE RETURN (CR) INPUT SEQUENCE “

The application can specify at read time a sequence of LF
and CR characters, with the B- and C-bits of the IORB's device-
specific word I_DVS, as indicated in Table 7-3. When the message
is received successfully, the specified character combinations
are retransmitted back to the terminal.

KEYBOARD INPUT CHARACTER AND LINE CONTROL

When an input character with a parity error is received, the
line protocol handler sends a BEL character back to the terminal.
The user must then retype that input character if it is to be
included in the text being sent to the application.

The user can correct or delete erroneous characters or lines
and can declare control characters to be data characters, as
described below.

To correct one or more characters in the current line, i.e.,
before the CR is pressed, press the @ key. This deletes the
character that immediately preceded the @ character, and displays
the @ symbol. Each succeeding @ entry deletes another character,
moving from right to left to the beginning of the line.

To delete the current line, i.e., before the CR is entered,
press and hold the CTRL (control) key and press X. This deletes £
the current line, displays the message *DEL* on the next line, N
and results in a carriage return. The user can then enter a cor-
rect line.

7-8 ’ CBO3

To declare a control character (e.g., @, CTRL X, CR, and)
be accepted as a data character (transparent mode) press the back
slash () key before entering that control character. The system
interprets the back slash as an escape character. In transparent
mode, all input characters are data characters and have no edit-
ing functions.

TTY DISPLAY OF INPUT CHARACTERS

The user can cause an input character to be sent back to the
terminal (displayed on the screen or typed on the console) by
setting to 1 the A-bit of the device-specific word I_DVS (Table
7-3). For full duplex printers, the application need specify

that characters be returned only when they are to be echoed by
the system software.

TTY INPUT IN BUFFERED MODE (VIP 7200 AND 7800 ONLY)

When the application at connect time sets to 1 the D-bit of
the device-specific word I DVS, input is accepted until an ETX or
EOT control character or end-of-range is encountered.

When the application sets bit 5 of I _DVS to 1 at read time,
TTY input in buffered mode is transparent, i.e., there is no
editing. When the bit 5 is set to 0, TTY input in buffered mode
is nontransparent, i.e., control characters are edited.

As in character mode, the application can specify an LF and
CR sequence, as described above under "Line Feed (LF) and Car-
riage Return (CR) Input Sequence."

Control and Characteristics of TTY Output Data

This subsection describes user control of the character-
istics of TTY output data and is appllcable to character-mode
. processing unless otherwise stated.

TTY CONTROL BYTE (SEND)

The TTY line protocol handler's control byte, included as
the first character of the application's buffer, controls the
message's head-of-form sequence. At connect time, the applica-
tion specifies the control byte by setting to 0 bit 4 of the
IORB's device-specific word I DVS (Table 7-3).

Figure 7-2 shows the format and content of the TTY control
byte.

7-9 CB03

lofi]z]sfafs]e]7]

BITS 0 THROUGH 2:
NOT USED

BIT 3:

0 =DO NOT GENERATE A
HEAD-OF-FORM SEQUENCE

1= GENERATE HEAD-OF-FORM
SEQUENCE CONSISTING OF
LF, DL ISSUED THREE TIMES

BITS 4 THROUGH 7:
NOT USED, MUST BE ZERO

Figure 7-2. Control Byte for TTY Line Protocol Handler
END-OF-MESSAGE (EOM) SEQUENCE ON TTY OUTPUT

The EOM sequence is controlled by the B- and C-bits of the
IORB's device-specific word I _DVS (Table 7-3), as specified by

the application at write time, Thc TTY line protocol handler
sends an EOM sequence according to the following B- and C-bit
values:

I_DVS Bits
B C EOM Sequence
0- 0 CR, DEL
0 1 None
1 0 LF, CR, DEL
1 1 LF, DEL

At read time, the application can specify the same B- and C-
bit values in order to send an EOM sequence back to the terminal
when the message is successfully received.

TTY DETECTION OF BRK CHARACTERS

When the application sets to 0 bit 7 of the device-specific
word I _DVS at write time, the line protocol handler will immedi-
ately stop all output when it detects a BRK key character in the

input stream from the terminal. The line protocol handler
ignores the BRK character when bit 7 is set to 1, until the write
order is completed.

7-10 CBO3

TTY OUTPUT IN BUFFERED MODE

Control and characteristics for TTY output in buffered mode
are the same as described above for character mode. However, in
processing in buffered mode (VIP 7200/7800 only) the line
protocol handler processes all physical I/0 requests in the same
sequence as they are received. If there is already an outstand-
ing read request, only a subsequent write request can be ini-

tiated before the read request is satisfied or the time-out for
that read request is elapsed.

7-11 CBO3

N
N4

AN

_/

AR,

SECTION 8

VIP LINE PROTOCOL HANDLER

The viP line protocol handler supports synchronous VIP
(visual information projection) terminals, and the synchronous
receive-only printers (ROP).

The basic VIP comprises a cathode ray tube (CRT) display
screen and keyboard, with a synchronous communications interface,
with operating speeds as follows:

VIP Baud Rate
7760 9600

7700R Up to 9600
7700 Up to 4800

GENERAL VIP LINE PROTOCOL HANDLER OPERATION

Software Functional Support for the VIP

The following VIP line protocol handler software functions
support the basic VIP terminal:

o Poll and select communications procedures

o Nonpoll communications procedures

o Point-to-point and multipoint configuration support
o Switched and private line operation

o Auto-answer for switched network opefation

o0 Modem, direct connect, and modem bypass interconnection
modes

0 Message transfer to and from a CRT (l1920-character
format)

8-1 CBO3

o Fully addressable CRT entry marker control

o Pre-editing (control byte) and post-editing (I_DVS)

o Transfer of hardware function code to and from the
application

o Error recovery procedures

The following functions support added terminal options:
o User-controlled CRT forms mode

o Message transfer to receive-only printer (ROP)

User-Supplied Software Functions for VIP Support

The application program must supply the following functions
to support data exchange between the VIP and the application:

o User-specified device arguments, (polling interval, and
‘at system building, station addresses)

For messages to the VIP terminal, the application should provide:
o Optional; hardware function codes (1, 2)
o Complete message text

o Optional; pre-editing and post-editing characters within
message text

o Mandatory; complete forms definition message text for
forms mode ‘

For messages received from the VIP, the application must provide:
o Interpretation of hardware function codes (1, 2)
0 Message processing

o Interpretation of format codes (LF, CR, HT) in the
message text '

VIP Time-Out Intervals

Table 8-1 lists the time-out intervals used by the line
protocol handler for the connect, read, and for ROP write func-
tions for the listed devices. The line protocol handler will
try and retry the connect, read, and write functions until the
indicated time-out period has elapsed.

8-2 CBO3

N

Table 8-1. VIP Line Protocol Handler Time-Out Intervals
Function Time-Out Interval (Device)
Connect 5 minutes Communications supervisor
Tries connect one | Nonpolled
time, returns B
status
Tries five times Polled
Tries Tributary station
indefinitely
Read None

10 minutes

Indefinite

According to the settings
of bits 0 and 1 in I_DVS
(see Table 8-3)

Write (ROP)

15 seconds
1l second

21 seconds
95 seconds
180 seconds
190 seconds

190 seconds

Screen (nonpolled)

Screen (polled)

TN1200, 7717

TN300, 7714, 7716 (300 baud)
TN300, 7714, 7716 (150 baud)
TN300, 7714, 7716 (110 baud)

TTY33, TTY35

NOTE:

Based on 1920-character display screen.

USING THE VIP LINE PROTOCOL HANDLER

VIP-Specific IORB Values

The VIP-specific input/output request block (IORB) item I CT2,
device specific word I_DVS, and software status word I_ST, are
shown in Tables 8-2, 8-3, and 8-4, respectively. Section 6
describes the general form of the IORB.

CBO3

Table 8-2. Function Codes in I _CT2 of the IORB
Function
Code Definition Use
0 Wait online | Used by the line protocol handler
to complete the description of
1 Write the requested I/0 function.
2 Read
A Connect
B Disconnect
Table 8-3. VIP Device-Specific Word I_DVS in the IORB
Bit Bit
Number (s) |Setting Meaning of Bit Setting
For connect call only (function code A)
0, 1 00 Time-out after 10-minute interval.
' 01 No time-out on read requests (i.e.,
indefinite).
10 Immediate time-out, no time-out interval.
11 Reserved for later use by the system.
2 0 Do not use Auto Call Unit.
1 Use Auto Call Unit.
3 0 Set cursor to home position on page overflow.
1 Do not set cursor to home position on page
overflow.
4 0 Include control byte in first byte of buffer.
1 Do not include control byte in buffer.
5, 6, 7 Logical poll interval (polled lines only):
000 Poll continuously.
001 l-second poll interval.
olc 2-second poll interval.

8-4 ‘CB03

Table 8-3 (cont).

VIP Device-Specific Word I_DVS in the

IORB

Bit Bit
Number (s) | Setting

Meaning of Bit Setting

5, 6, 7 011 3-second poll interval.
(cont)
100 4-second poll interval.
101 5-second poll interval.
110 15-second poll interval.
111 30-second poll interval.
8 0 There are no hardware function codes.
N There are hardware function codes.
9 0 Must be =zero.
A 0 Must be zero.

For write call only (function code 1)

B 0 No LF (line feed) at end of message.
1 Issue LF (line feed) at end of message.
C 0 Issue CR (carriage return) at end of message.
1 Do not issue CR (carriage return) at end of
message.
For disconnect call only (function code B)
D 0 Must be =zero.
E 0 Abort (dequeue) all IORBs on the request
queue.
1 Process all outstanding requests on the
request queue.
F 0 Hang np phone after disconnect.
1 Do not hang up phone after disconnect.

CBO3

Table 8-4. VIP Software Status Word I_ST in the IORB

Bit Meaning When Bit Set to 1

0 N/A
1 Read error

2 Data service rate error

3 N/A

4 Communications control block (CCB) service
error

5 N/A

6 Long record

7 Poll failure

8 NAK limit reached

9 Excessive checksum/parity errors
A | Nonzero residual range

B Phone hang-up

Cc N/A

D Uncorrectable page overflow
E Busy received

F Fatal error: bus parity or memory error

Although nonexistent resource, bus parity, and
uncorrectable memory errors are combined in
bit F, each occurrence is noted separately in
the resource control table (RCT). See

Figure C-1.

VIP Polling Options

Polling (the line protocol handler's continuous request to
the VIP terminal on a polled line for data) is subject to two
kinds of control, a polling interval and a poll duration.

The application, at connect time, must specify the arguments

for the poll interval and poll duration, by setting the appropri-
ate bits in the IORB's device-specific word I_DVS (Table 8-3).

8-6 CBO3

A

VIP POLL INTERVAL

The VIP poll interval specifies the minimum period of time
between each successive request (poll) by the line protocol
handler for data from a VIP terminal. The line protocol handler
will poll the VIP once for each read request, and when the
request is not satisfied, again after the specified poll period
elapses.

For example, with a l-second poll interval, the line proto-
col handler will issue the same read request every second. For a
zero poll interval, the line protocol handler will poll the VIP
continuously.

The application specifies the poll interval according to the
bit settings of the bits 5, 6, and 7 in the device-specific word
I DVS of the IORB, as shown in Table 8-3.

VIP POLL DURATION (TIME-OUT)

Poll duration, or the time-out interval, is the maximum time
that the line protocol handler will wait for polled data from the
VIP, before discontinuing the read attempt and read request.
Possible time-out intervals are immediate (i.e., after only one
poll); 10 minutes; and indefinite (i.e., the VIP is polled con-
tinuously, with no time-out, until requested data is received).
The application specifies the poll duration or time-out interval
with the bits 0 and 1 in the device-specific word I_DVS, accord-
ing to the bit values shown in Table 8-3.

VIP LINE PROTOCOL HANDLER POLL FUNCTIONS

Within the controls specified in the poll argument values by
the application, the line protocol handler provides all necessary
polling functions, e.g., how terminals share a common line, or
which terminal is processed next, etc. When the application
bypasses these line protocol handler poll functions, i.e., by
specifying immediate time-out after only one poll, the applica-
tion must then provide for proper operation and coordination
among all terminals on the line.

Control and Characteristics of VIP Input (Keyboard/Screen)
VIP INPUT MESSAGE HEADER
The line protocol handler strips the message header from the

input data, except for the hardware function codes, and does not
include the header in the application's buffer.

8-7 CB03

VIP HARDWARE FUNCTION CODES ' e

VIP hardware functlon codes are 11sted in the appropriate
hardware device manuals.

These codes, provide a special message labeling capability
to be used by the application.

The application can ‘include two function codes in the mes-
sage header of each text message to or from a terminal by setting
to 1 bit 8 of the IORB's device-specific word I_DVS (see
Table 8-3) at connect time. The line protocol handler then
inserts the two user-specified hardware function codes at read
time into the IORB's item I_FCS (see Figure 6-1 and Table 6-2).

VIP INPUT DATA

The line protocol handler places into the application's buf-
fer 211 data, bectween the STX and ETX control charactiers,
received from the VIP terminal. The data is inserted into the
buffer in 7-bit ASCII, with the most significant bit always zero.
The LPH strips the ETX and LRC (longitudinal redundancy check
character, see Appendix A) from the data and does not include

them in the buffer.

Control and Characteristics of VIP OQutput

This subsection pertains to VIP output and is applicable to
the keyboard, display screen, or read-only printer (ROP) as
indicated.

VIP OUTPUT MESSAGE HEADER

The VIP line protocol handler supplies the output message
header, but not the hardware function codes. Those may be sup-

plied by the application as described above under "VIP Hardware
Function Codes."

At write time, when the hardware codes are specified, they
are placed in the I_FCS item of the IORB. When they are not
specified, i.e., the bit 8 of I DVS set to 0 at connect time, the
line protocol handler will insert two spaces, instead 'of function
codes 1 and 2, into the I _FCS item (see Figure 6-1 and
Table 6-2).

VIP CONTROL BYTE (SEND)
The VIP control byte is specified when the application sets
to 0 the bit 4 of the device-specific word I DVS at connect time.

The line protocol handler then places the control byte as the PN
first character of the application's buffer. ‘

8-8 , CBO3

e,

The control byte controls the output form feed sequence
according to its bit settings as shown in Figure 8-1. The line
protocol handler provides the output ETX control character and
the LRC (longitudinal redundancy check) character.

R
RESERVED (NOT EXAMINED)
Y=0
DO NOT ISSUE FORM FEED SEQUENCE
Y=1
ISSUE FORM FEED SEQUENCE
272272

NUMBER OF LINES TO SKIP BEFORE PRINTING (BINARY)
(E.G., IF 22ZZ=0100, VIP LPH WILL PERFORM
4 FF SEQUENCES)

Figure 8-1. VIP Control Byte (Send)
VIP OUTPUT DATA

The application's output data must be 7-bit ASCII (the
eighth bit is ignored). Any ASCII control characters, if
included in the application's data, are not transmitted.

For keyboard/display screens, the line protocol handler
sends a CR, LF sequence when the application's buffer contains
the hexadecimal character X'05' (NL). .

For the read-only printer (ROP) the line protocol handler

sends a CR, LF sequence (according to the type of ROP) shown
below, when the application's buffer contains the X'05' character

(NL) .

ROP Type Line Sequence

TN1200, 7717 CR, LF, 36 DELs
7714, 7716, TN300, TTY 35 CR, LF, 9 DELs

TTY 33 CR, LF

8-9 CBO3

VIP KEYBOARD/SCREEN OUTPUT EDITING CONTROL

The line protocol handler sends LF and CR editing characters
for VIP keyboard/screen devices according to the values of the B-
and C-bits of the device-specific word I_DVS (Table 8-3). The
application specifies these bit values at write time to send the
CR and LF characters, as follows:

I_DVS Bits Editing
Characters
Sent

|
10

CR
None
LF, CR
LF

== O O
= OO

VIP RECEIVE-ONLY PRINTER EDITING SEQUENCE

The line protocol handler sends an output editing character

sequence for the receive-only printer (ROP) according to the values

of the B- and C-bits of the device-specific word I_DVS (Table
8-3). The application specifies these bit values at write time

to send the ROP output editing sequence, according to the ROP
‘type, as shown in Table 8-5.

Table 8-5. VIP Receive-Only Printer Editing Sequence

I _DVS Bits
ROP Types B C Output Editing Sequence

TN1200, 7717 0 0 CR, 36 DELs
7714, 7716, TN300, TTY 35 0 0 CR, 9 DELs

TTY 33 0 0 CR

All 0 1 None

TN1200, 7717 1 0 LF, CR, 36 DELs
7714, 7716, TN306,'TTY 35 1 0 LF, CR, 9 DELs
TTY 33 1 0 LF, CR

TN1200, 7717 ' 1 1 LF, 36 DELs
7714, 7716, TN300, TTY 35 1 1 LF, 9 DELs
TTY 35 1 1 LF

8-10 ‘ CBO3

AR

VIP RECEIVE-ONLY PRINTER FORM FEED SEQUENCE

The VIP line protocol handler sends an output form feed
sequence according to the ROP type and whether the ROP has the
hardware form feed option, as shown in Table 8-6.

Table 8-6. VIP Receive-Only Printer Form Feed Sequence

ROP Type Output Form Feed Sequence

Without form feed feature

T™N1200, 7717 LF, 36 DELs (both three times)
7714, 7716, TN300 |LF, 9 DELs (both three times)
TTY 35 ’ LF, 9 DELs (both three times)

TTY 33 LF, three times

With form feed feature

7717, TN1200 FF, 240 DELs
7714, 7716, TN300 |FF, 65 DELs

TTY 35 FF, 65 DELs

ERROR PROCESSING BY VIP LINE PROTOCOL HANDLER

Table 8-7 lists the errors reported by the VIP line protocol
handler for any VIP configuration. It also lists corresponding
return status error codes (see Table 6-1), corresponding bits in
the VIP software status word I ST (see Table 8-4), and possible
recovery actions. -

Table 8-8 lists the MLCP-specific error condition according

to particular VIP configurations, the corresponding error codes,
and bits in the I_ST.

8-11 CBO3

Table 8-7.

Errors Reported by VIP Line Protocol Handler

Posted Error I_ST
Error Condition Return Status® Bit® Possible Recovery Comments
Error during open B As ; Retry nine times
reported
"Not available" 7 E None
message received
Page overflow not 7 D None, or retry once
corrected '
Invalid range in IORB 4 None None
Read time-out 7 3 10-minute retry
NAK limit reached 7 8
Runecu rarcaivad el »
Bucy received ; 2
Purged due to imme- B None
diate close
Station disabled B None
Fatal error at inter- B None
rupt level -
Data service rate 0 (transmit) 2 Not applicable Not fatal
error 7 (receive) 2, 8 Retry nine times
Communication control 7 4, 8
block service rate
error
Long record 0 6 None (ACK sent to VIP) |Not fatal
Illegal character 0 (transmit) 7 Replace illegal char- ‘Bad character 1n
acter with delete application's buffer
characters .
Sequence error, or 7 (receive) 7, 8
Poll failure
Phone hang up B B None
Nonexistent resource, B None No retry possible
or
Bus parity error, or
Unrecoverable memory
error
Excessive checksum or | B 8, 9 Retry nine times
parity error

®See Table 6-1.

®See Table 8-4.

CBO3

Table 8-8. MLCP Error Condition Reported by
VIP Line Protocol Handler
VIP Posted Error I_ST

Error Condition| Configuration Return StatusP| BTt® [Possible Recovery Action Comments
No interrupt P, C (except B 7 Retry five times Poll failure
from MLCP open)

P, C (open B 7 None CCP/MLCP failure

only)

NP, C B 7 None VIP lockup

NP, B 7 None VIP inaccessible

®VIP configuration

codes are:

P - polled; NP - not polled; C - control station

®See Table 6-1.

¢ See Table 8-4.

CBO3

PROCESSING NONPOLLED VIP ERRORS

When the VIP does not send a Q-frame within 15 seconds after
the data connection is made (i.e., DSR (data set ready) on), the
line protocol handler posts the connect IORB with a return status
of 6 (see Table 6-1) and with all I_ST bits set to 0.

When the VIP sends a message within 15 seconds after the
data connection is made (i.e., DSR on), and the message is
erroneous (missed EOT character, parity error), the line protocol
handler posts the connect IORB with a return status of B and with
all I_ST bits set to 0.

- In either case, the application can reissue the connect
request without first issuing a disconnect directive.

When, after a successful connect, the application loses com-

munication with the VIP and there are no outstanding requests on
the V1P queue, the application will not be notified until the VIP
line protocol handler receives the next read or write request.

8-14 CBO3

AN

R g,

SECTION 9

POLLED VIP EMULATOR (PVE) LINE PROTOCOL HANDLER

The PVE line protocol handler allows a Level 6 system to be
connected to a communications link that operates according to the
polled VIP protocol. The line can be half or full duplex, may be
dedicated or switched, and operates at up to 2600 baud.

The computer that controls the communications link is known
as the control station (CS), which may be any Honeywell host
system that supports the VIP protocol.

GENERAL PVE OPERATION

The PVE appears to the control station as a VIP terminal,
and is the tributary station. Each PVE supports up to 32 tribu-
tary stations per line, as designated at system building.

To the control station, each PVE tributary station is known
externally by a poll address, and internally to a Level 6 control
station, by a logical resource number (LRN). There is a one-to-
one relationship between the poll address and the LRN.

An application program in a Level 6 system communicates with
the control station by issuing read and write requests to the
appropriate LRN. Similarly, the control station sends and
receives as though it is communicating with a polled VIP that has
the appropriate poll address.

Figure 9-1 illustrates a typical PVE confighration.

9-1 CB03

LINK

CS —@M___ vMIU
POLLED
VIP’s _4 — L6

CS = CONTROL STATION -
TS = TRIBUTARY STATION
M = MODEM A A /43\ ATS

MIU

1

MULTIPLE INTERFACE UNIT
VIP VIP

Figure 9-1. Typical PVE Configuration

When the PVE receives a select request with the LRN-
associated poll address, it forwards the message to the control
station to satisfy the application's read request. When the PVE
receives a poll request for the LRN-associated poll address, it
forwards the message to the control station to satisfy the
application's write request. Thus the application provides the
equivalent of the screen and keyboard, with read and write
requests, respectively.

The PVE line protocol handler supports only the screen and
keyboard features of the VIP.

USING THE PVE LINE PROTOCOL HANDLER

PVE-Specific IORB Values

The PVE-specific IORB item I CT2, device-specific word
I _DVS, and software status word I_ST are shown in Tables 9-1,
9-2, and 9-3, respectively. Section 6 describes the general form
of the IORB.

9-2 CBO3

==

Table 9-1. Function Codes in I CT2 in IORB
Function
Code Definition Use
0 Wait online | Used by the line protocol handler
to complete the description of
1 Write the requested I/0 function
2 Read
A Connect
B Disconnect
Table 9-2. PVE Device-Specific Word I_DVS in the IORB
Bit Bit
Number |Setting Meaning of Bit Setting
0 0 Must be zero.
1 0 Must be zero.
For connect call only (function code A)
2 0 Do not use Auto Call Unit
1 Use Auto Call Unit
3 0 Must be zero.
4 0
5 0
6 0
7 0
8 0 Does not support VIP function codes.
1 Supports VIP function codes.
9 0 Must be zero.
A 0 Include received DEL characters in
buffer.
1 Strip received DEL characters.
B 0 Must be zero.
9-3 CB0O3

PVE Device-Specific Word I_DVS in the IORB

Table 9-2 (cont).
Bit Bit

Number |Setting Meaning of Bit Setting
C 0 Must be zero.
D 0 'Must be zero.

E, F LPH response to application when
LPH receives data but no read IORB
available

00 Send NAK.
01 Send ACK. VIP
Status
10 Return busy status. Codes
11 Send NAK (same as 00).
For disconnect call only (function code B)
E 0 Abort (dequeue) all IORB's on
request queue.
1 Process all outstanding requests on
request queue.
F 0 Hang up phone after disconnect.
1 Do not hang up phone after
disconnect.

CBO3

Table 9-3. PVE Software Status Word I_ST in the IORB

Bit Meaning When Bit Set to 1

0 N/A

1 N/A

2 Data service rate error

3 N/A

4 Communications contr§1 block (CCB) service

error

5 N/A

6 Long record

7 0 = ETX character received

1 = ETB character received

8 NAK limit reached

9 Excessive checksum/parity errors

A Nonzero residual range

B Phone hang-up

C N/A

D N/A

E N/A

F Fatal error: bus parity or memory error
Although nonexistent resource, bus parity, and
uncorrectable memory errors are combined in bit
F, each occurrence is noted separately in the
resource control table (RCT). See Figure C-1.

VIP Protocol Message Structure for PVE

PVE.

Figure 9-2 shows two VIP protocol message structures for

CBO3

TYPE 1:

MESSAGE
HEADER

L

NUL
PRT
ACK
NAK
BUSY
NA
PGOF

NUMBER OF CODES MAY VARY FROM CPU TO CPU.
THE NUMBER OF CODES MUST BE ZERO FOR A POLL
OR SELECT MESSAGE. A CODE OF 26g MUST NOT BE
INCLUDED IN THE LP CALCULATION. ONLY THE
FIRST TWO FUNCTION CODES ARE RECOGNIZED BY
THE TERMINAL.

SYN
SYN
SYN
SYN

SOH 1 TERMINAL POLL ADDRESS

ADR TERMINAL SELECTION ADDRESS
STA _ DISPLAY ADDRESS

FC1

FC2 I

S

(TEXT)
ETX-—-——————{ijYBEETBCHARACTER
LP

LONGITUDINAL PARITY
CHARACTER; INCLUDES ADR
THROUGH ETX, LESS SYN.

(

SYN |
SYN END OF
SYN MESSAGE
SYN FRAME
EOT

TYPE 2: (QUIESCENT MESSAGE)

SYN SYN
SYN SYN
SYN OR SYN
SYN (OPTIONAL) EOT
EOT

Figure 9-2. VIP Protocol Message Structure for PVE

Control and Characteristics of PVE Input

PVE INPUT MESSAGE HEADER

The PVE line protocol handler strips the message header,
between the SOH and STX control characters, and does not include

it in the application's buffer.

PVE HARDWARE FUNCTION CODES

PVE hardware function codes are listed in the appropriate

hardware device manuals.

These codes provide a special message-labeling capability to

be used by the application.

CBO3

PN

The application can include two function codes in the mes-
sage header of each text message by setting to 1 the bit 8 of the
IORB's device-specific word I DVS (see Table 9-2) at connect
time. The line protocol handler then inserts the two user-
specified hardware function codes at read time into the IORB's
item I _FCS (see Figure 6-1 and Table 6-2).

PVE INPUT DATA

The line protocol handler places into the application's buf-
fer all data between the STX and ETX control characters. The
data is inserted into the buffer in 7-bit ASCII, with the most
significant bit always zero. The LPH strips the ETX and LRC
(longitudinal redundancy check character, see Appendix A) from
the data and does not include them in the buffer.

It also strips DEL characters when the application, at con-
nect time, sets to 1 the A-bit of the device-specific word I_DVS
(Table 9-2).

By setting the E- and F-bits of I DVS as shown in Table 9-2,
the application can control the response that the line protocol
handler sends when it receives data from the application, but no
read IORB is available.

Control and Characteristics of PVE QOutput

PVE OUTPUT MESSAGE HEADER

The PVE line protocol handler normally supplies the output
header, between the SOH and STX control characters. The applica-
cation may specify hardware function codes (1, 2) as described
above under "PVE Hardware Function Codes." At write time, when
specified, the codes are extracted from the I_FCS item of the
IORB. When the codes are not specified, (bit 8 of I DVS set to O
at connect time), the line protocol handler will supply two
spaces, instead of the codes, into I FCS.

PVE TERMINAL ADDRESS (ADR) AND MESSAGE STATUS (STA)

The PVE line protocol handler supplies an ADR (terminal
address) of X'60' (keyboard/screen) and an STA (message status)
of NUL to the application.

PVE OUTPUT DATA

The application's output data must be 7-bit ASCII. The most
significant bit is used by the line protocol handler during
transmission of odd parity.

Output data must not include the ASCII control characters
SOH, STX, ETB, ETX, EOT, or SYN.

9-7 CBO3

The line protocol handler supplies output ETX control char-
acters and longitudinal redundancy check characters (LRCs)
(described in Appendix A).

PVE LINE PROTOCOL HANDLER TIME-OUT INTERVALS

Table 9-4 lists the time-out intervals used by the line
protocol handler for the connect, read, and write functions. The
line protocol handler will attempt or reattempt the functions
until the indicated time-out period has elapsed. 1

In addition to the interval in the table, there is also a
gross time-out of one minute, which expires when the control sta-
tion ceases to poll or select any tributary station.

Table 9-4., PVE Time-Out Intervals

Function Time-Out Interval
Connect Five minutes
Read Indefinite
Write Indefinite

ERROR REPORTING BY PVE LINE PROTOCOL HANDLER .

Table 9-5 lists the errors reported by the PVE line protocol
handler. It also lists corresponding return status error codes
(see Table 6-1) and corresponding bits in the software status
word I ST (see Table 9-3).

9-8 CBO3 1

Table 9-5. Errors Reported by PVE Line Protocol Handler

: Posted Error I ST
Error Condition Return Status | Bit Comments
No interrupt from MLCP 6 7 "Poll failure or
CCP/MLCP failure
NAK limit reached 7 8 Write failure
Purged due to immediate B None
close
Station disabled B None
Fatal error interrupt B None
level
Data service rate error 0 (send) 2 Not fatal
7 (receive) 2, 8
Communication control 7 4, 8
block service rate error
Long record 0 6 Not fatal
Phone hang-up B B
Nonexistent resource, or B None

Bus parity error, or
Unrecoverable memory
error

9-9

CBO3

PR N

SECTION 10

BSC 2780/3780 LINE PROTOCOL HANDLER

The BSC (binary synchronous transmission) 2780/3780 line
protocol handler (LPH) supports BSC 2780 and BSC 3780 point-to-
point, nontransparent or transparent EBCDIC, or nontransparent
ASCII transmission between a Level 6 system and another host sys-
tem (subject to certain restrictions).

The 3780 protocol is very similar to the standard 2780
protocol and unless specifically stated otherwise, the rest of
this section and the term BSC pertain to both.

GENERAL BSC LINE PROTOCOL HANDLER OPERATION

When a station (device or computer) at either end of a com-
munication line has a message to send, it requests use of the
line by sending a ENQ bid message. (See Appendix E for defini-
tion of ENQ and other control characters.) The receiving station
must respond with an ACK/0 sequence before the sending station
can transmit a data message.

BSC Transmit and Receive Operations

A station that has control of the line, i.e., the right to
transmit, is known as the master (primary)' station. The station
that relinquishes control, i.e., will receive, is the slave
(secondary) station.

When the first data message from the master station is suc-
cessfully received, the slave station responds with an ACK/1l
sequence. Acknowledgments for subsequent remaining messages
alternate between ACK/0 and ACK/1l. The master/slave status for
each respective station remains in effect until the master sta-
tion gives up control by sending an EOT (end-of-transmission)
character (which is not acknowledged by the slave station).

'"Primary and secondary are arguments of the CLM BSC directive
used when the system is being built.

10-1 CBO3

When a bidding station does not receive an ACK/0 response
within a specified interval (time-out period), it sends another
ENQ message. At the same time, or at nearly the same time, the
other station may be sending an ENQ message, bidding for the
line. Thus both stations may be bidding with neither receiving
an ACK response. This is known as line contention. Line conten-
tion can be avoided by designating one station as the primary and
and the other as secondary when the system is built. Then when
the designated primary station receives an ENQ response to its
bid message, it retransmits the ENQ message to the secondary sta-
tion, which in turn ignores its own bid request and responds to
the primary station with an ACK or NAK.

The BSC line protocol handler allows a receiving station to

reply to a data message with an RVI (reverse interrupt) message
if it has an urgent requirement to transmit data.

Figure 10-1 illustrates bids and other interactions between
a master and slave station.

BSC Data Transmission Modes

BSC operates in either basic data transmission mode or in

advanced data transmission mode, according to whether a control
byte is included in the data being transmitted. (See "BSC

Control Byte (Receive)" and "BSC Control Byte (Send)" later in
this section.)

BSC BASIC DATA TRANSMISSION MODE

In basic data transmission mode, there is no control byte

included in the data being transmitted along the communications
line.

BSC ADVANCED DATA TRANSMISSION MODE

In advanced data transmission mode, the application includes
a control byte (that is not part of the data). The control byte
indirectly controls the operation of the line protocol handler
(e.g., sending an ETB or ETX), or conveys information about a
data transfer (e.g., whether transparent text was received).

10-2 CBO3

AW,

PRIMARY STATION A

BIDS

MASTER

RELEASE

.SECONDARY STATION B

ENQ (BID)
ACKO
DATA
ACK1

-——

DATA

ACKO
EOT (RELEASE)

ENQ iBID)

ACCEPTS BID
[

SLAVE

BIDS FOR PRIMARY

« ENQIBID)
ACCEPTS BID ___ACKO !

DATA
ACK1

MASTER
SLAVE

BIDS ENQ
| : i
i - I

TIME-QUT === === === === === —mm = 1
BIDS AGAIN

ACCEPTS BID
__J WOULD HAVE TIMED-OUT HERE

Figure 10-1. Example of BSC Communication

BSC 2780 AND BSC 3780 DIFFERENCES

The 3780 protocol differs from the 2780 protocol in that the
3780 protocol has a set of extensions that provide:

o The ability to receive a conversational reply.

o The ability to receive two records and to transmit a
single record, when the two-buffer option is selected at
connect time.

o The ability to receive and transmit selected BSC control
characters in nontransparent mode.

BSC 2780/3780 FEATURES

The following discussions in this subsection include refer-
ences to BSC-specific fields in the input/output request block
IORB (see Table 6-2) and to control bytes, and precede their
descriptions. See Tables 10-2 and 10-3 later in this section for
descriptions of the device-specific word I DVS and software
status word I ST, respectively. Control bytes are described
under "Control Byte (Receive)" and "Control Byte (Transmit)."

BSC Two-Buffer Feature

With the two-buffer feature, the use of the second buffer
reduces line turnaround time, i.e., two records can be transmit-
ted with only one acknowledgment. However, there are these
disadvantages:

10-3 CBO3

o When a line (parity) error occurs, both records must be
retransmitted. »

o One transmission requires two writes be issued, which are
not posted until an acknowledgment is received.

o Four buffers are necessary to operate the line
efficiently.

Figure 10-2 shows record transmissions with and without the
two-buffer feature.

STX————— =~ ITB BCCSYN SYN STX ETB BCC
ACKO —=-
WITH TWO-BUFFER FEATURE
= |
STX———=—~ ETB BCC
ACKO =
STX————— ETB BCC
ACK1
WITHOUT TWO-BUFFER FEATURE

Figure 10-2. BSC Two-Buffer Feature in Record Transmission

Before selecting the two-buffer feature, compare the advan-
tage of better line utilization against the disadvantages of a
more complex program and increased buffer usage, and consider the
following:

1. In BSC 2780 with the two-buffer option, two records can
be received or transmitted (using an ITB (intermediate
text block) sequence).

2. In BSC 3780, with the two-buffer option two records can
be received, using an ITB sequence, and single records
can be transmitted. This implies that an application
using BSC 3780 must be able to receive up to two records
at any one time, but can only initiate single-record
transmission.

10-4 - CBO3

3. The two-buffer feature cannot be used with synchronous
reads, because the intermediate files being received may
be terminated by an ETX record. If the ETX record is
the first of the two records being read, the second read
(synchronous) would not be posted to the system.

For example:

—=READ (asynchronous) 1
. process
. ‘ Assumes always two records
READ (synchronous) per transmission.

. process

The following sequence is better:

READ (asynchronous)

—=READ (asynchronous)
WAIT (1)

. process

READ (asynchronous)
WAIT (2)

. process

BSC Temporary Text Delay (TTD) Feature

_ The following describes the sequence of the temporary text
delay (TTD) feature.

1. When a master station receives an ACK, and no output
request block (IORBs) are queued, that station waits two

seconds for one IORB (or two IORBs when there are two
buffers) to be queued.

2. The master station then sends the temporary text delay
(TTD) control character sequence (STX, ENQ) to the slave
station.

3. When the slave station responds with a NAK, the master
station checks whether the application has queued the
appropriate write requests. If the write requests are
not queued, the master station continues the TTD
sequence until the application issues the necessary
write requests.

10-5 CBO3

4. 1If the EOT or ETX bit (A-bit or D-bit) in the I _DVS word
of the IORB is set (Table 10-2), one write request will
effect transmission.

Figure 10-3 is an example of the temporary text display
sequence.

MASTER SLAVE
MESSAGE 1 -
ACK/0
MESSAGE 2 T
- ACK/1
TTD (STX, ENQ) -
- NAK
TTDh s
- NAK
MESSAGE 3 B
- ACK/0

Figure 10-3. BSC Temporary Text Delay (TTD) Sequence Example

BSC Wait Before Acknowledge (WACK) Feature

A BSC slave station will send ACK/0 and ACK/l responses to
messages satisfactorily received, provided there is at least one
outstanding read request (two with the two-buffer feature), in
addition to the request being processed.

1. When no read request is queued, the slave station posts
- the current read, waits two seconds for read requests to
be queued, then sends a WACK response (DLE; DLE,), indi-
cating to the master station that the last message was
received, but the slave station cannot accept more data.

2. The master station waits (time-out), then sends an ENQ
'message.

3. If a read request was queued during the time-out, the
slave station responds with an ACK, and the master sta-
tion can send its next data message.

4. If no read request was queued during the time-out, the

slave station waits another two seconds, and when neces-
sary sends another WACK sequence.

10-6 ' CBO3

LN

PN

Figure 10-4 is an example of the wait before acknowledge
(WACK) sequence.

MASTER . SLAVE
MESSAGE 1 -
ACK/0
MESSAGE 2 -
- ACK/1
MESSAGE 3 -
—~—— WACK
TIMEOUT
ENQ -
- ACK/0
MESSAGE 4 -
- ACK/1

Figure 10-4. BSC Wait Before Acknowledge (WACK)
Sequence Example

BSC Reverse Interrupt (RVI) Feature

When a slave station is processing read requests, and must
unexpectedly transmit an urgent message, that station must issue
a reverse interrupt (RVI) message, which informs the master sta-
tion that the slave station is requesting control of the line.

On receiving an RVI character, the master station should
empty its buffers and give up control of the line. However, the
master station does not have to acknowledge the RVI by giving up
control.

The application program can request the BSC line protocol
handler to send an RVI character, by either of the following
methods:

1. Use the control byte. The application issuing read
requests issues a transmit request with bit 5 of the
control byte set to 1 (see Figure 10-10), and with the
urgent message in the application's buffer.

2. Use the device-specific word I DVS of the IORB. The
application issuing read requests issues a transmit
request with the B-bit of I DVS set to 1 and with the
urgent message in the application's buffer.

10-7 CBO3

The application issuing write requests can detect an RVI
character by any of these methods:

1.

2.

Test bit 3 of the control byte after a successful
write request is posted. A bit setting of 1 indicates
that the RVI for that IORB was received.

Test bit 3 of the IORB's software status word I_ST. A
bit setting of 1 indicates the RVI was received.

Figure 10-5 is an example of a reverse interrupt (RVI)

sequence.

MASTER SLAVE
MESSAGE 1 -

- : ACK/0
MESSAGE 2 -

- ACK/1
MESSAGE 3 -

- RVI
MESSAGE 4 ——

— ACK/1
EOT -

- ENQ
ACK/0 —

- URGENT MESSAGE

(NOW MASTER)

ACK/1 P

Figure 10-5. BSC Reverse Interrupt (RVI) Sequence Example

BSC End of Transmission (EOT) Feature

The appliation program, by any of the following methods (1,
2, or 3), can cause the BSC line protocol handler to send an end-
of-transmission (EOT) message:

la.

At connect time, specify use of the control byte by
setting to 0 bit 4 of the IORB's device-specific word
I DVS.

When bit 4 of the first byte of the application's buffer
(control byte, specified at write time) is set to 1, the
BSC line protocol handler will send an EOT control char-
acter after the data in the application's buffer is
successfully transmitted.

10-8 CBO3

4 - \\

AR

2a. When the control byte is not specified at connect time,
set to 1 the A-bit of the IORB's device-specific word
I _DVS at write time.

b. The BSC line protocol handler will send an EOT control
character after the data in the application's buffer is
successfully transmitted.

3a. After successful completion of a write request, issue a
disconnect with or without a queue abort, and no physi-
cal disconnect.

b. The master station will send an EOT character and give
up its master status.

c. However, when another IORB is queued for write, that
station will again request its master status.

The application can detect receipt of an EOT control charac-
ter in either of the following ways:

1. If the control byte was specified at connect time, bit 4
of the control byte, of the read request on which the
EOT was received, will be set to 1.

2. If the control byte was not specified at connect time,
bit 12 of the software status word I_ST, of the request
on which the EOT character was received, will be set to
10

With either method, the line protocol handler does not post
any read requests that were queued before the EOT character was
detected. To remove read requests from the queue, the applica-
tion must issue a disconnect with a queue abort. The line proto-
col handler always posts the IORB with a device unavailable (B)
return status (Table 6-1). The BSC line may or may not be
available for further use, depending on whether or not an EOT
character was sent abnormally.

BSC Line Protocol Handler Time-Out Interval

On a read, the time-out interval in waiting for a line-
request bid is 10 minutes. :

For a read or write request, when no response is received,
the time-out interval is 12 seconds.

Once a station has successfully bid for a line, the time-out

interval for subsequent reads (from the slave station) or wrltes
(from the master station) is 12 seconds.

10-9 CBO3

BSC Features Specific to 3780

BSC 3780 CONVERSATIONAL REPLY FEATURE

The conversational reply feature permits a 3780 application,
after transmission of an entire message (whose last record is
denoted by an ETX rather than an ETB), to selectively receive a
message from a host computer without a preliminary line bid
sequence.

The conversational reply sequence serves as the affirmative
reply to the last message transmission block, and as a break or
interrupt to later transmissions. The line protocol handler
indicates to the application receipt of a conversational reply
sequence in bit 5 of the IORB software status word I ST, and/or
in bit 2 of the control byte of the ETX write order.

In the following example, a 3780 application attempts to
transmit three 2-record messages to a remote host computer. The
transmission sequence is interrupted by the receipt of a conver-
sational reply, which occurs after transmission of the second
message., After the complete conversational reply (containing one
or more records) is received, transmission of the third message
can resume, following completion of a successful line bid
sequence. Figure 10-6 illustrates the example sequence.

The application's use of the conversational reply feature
requires that the application issue the requisite number of read
orders (dependent on one- or two-buffer mode) before the trans-
mission of a text block that terminates with an ETX sequence. If
the application does not issue the required read(s), the last
text block is not transmitted, and the line protocol handler will
initiate a temporary text delay (TTD) sequence until the neces-
sary read orders are issued. If the application does not trans-
mit an ETX sequence, it need not issue supporting read order(s).

BSC 3780 TWO-BUFFER FEATURE

The discussion under "BSC Two-Buffer Feature" earlier in
this section applies also to BSC 3780 operation.

BSC 3780 TRANSMISSION/RECEIPT OF BSC CONTROL CHARACTERS

In BSC 2780 nontransparent mode, detection of any BSC con-
trol characters within a message would abort the transmission or
reception of that message.

In 3780 nontransparent mode, selected, noncritical BSC con-

trol characters, i.e., STX, SOH, DLE, NAK, and EOT, can be suc-
cessfully transmitted and received.

10-10 CBO3

BSC 3780 APPLICATION

TRANSMISSION OF
FIRST MESSAGE

TRANSMISSION OF
SECOND MESSAGE

TRANSMISSION OF
THIRD AND
FINAL MESSAGE

Figure 10-6.

HOST SUPPORTING

BSC 3780 APPLICATIONS

ENQ

ACKO

STX...ETB

Y

ACK1

STX...ETX

ACKO

STX...ETB

ACK1

STX...ETX

STX...ETB

» “INTERRUPTING"
ACK1

TRANSMISSION OF
REMAINDER OF TH

... ETX CONVERSATIONAL
- STX ! REPLY

ACKn

EOT

ENQ

ACKO

STX...ETB

ACK1

STX...ETX

ACKO

EOT

Example of Conversational Reply in BSC
Transmission Sequence

10-11

CONVERSATIONAL REPLY

E

3780

CBO3

USING THE BSC 2780/3780 LINE PROTOCOL HANDLER

BSC-Specific IORB Values

Tables 10-1, 10-2, and 10-3, respectively.

The BSC-specific IORB item I CT2, device-specific word
I DVS, and software status word I_ST, are shown and defined in

general description of the IORB.

Table 10-1. Function Codes in I CT2 Field in the IORB

Section 6 has a

Function
Code Definition Use
0 Wait online | Used by the line protocol handler
to complete the description of
1 Write the requested I/0 function.
2 Read
A Connect
B Disconnect
Table 10-2. BSC Device-Specific Word I DVS in the IORB
Bit Bit
Number |Setting Meaning of Bit Setting
0 0 Must be zero.
1 0 Must be zero.
For connect call only (function code A)
2 0 Do not use Auto Call Unit.
1 Use Auto Call Unit.
3 0 Must be zero.
4 0 Use control byte.
1 Do not use control byte.
5 0 Musf be zero.
6 0 Must be zero,
7 0 Must be zero.

10-12

CBO3

yo N

Table 10-2 (cont). BSC Device-Specific Word I _DVS in the IORB

Bit Bit
Number |Setting Meaning of Bit Setting
For connect call only (function code A) (cont)
8 0 Use single buffer per transfer.
1 For 2780: use two buffers per send/receive.
For 3780: wuse two buffers per receive.
9 0 Use BSC 2780 protocol.
1 Use BSC 3780 protocol.
For write call only (function code 1)
A 0 Do not send EOT after this transmission.
1 Send EOT after this transmission.
B 0 Do not send RVI if station in slave status.
1 Send RVI if station in slave status.
C 0 Send data in nontransparent mode.
1 Send data in EBCDIC transparent mode.
D 0 Send ITB or ETB characters following the data.
1 Send ETX characters following the data.
For disconnect call only (function code B)
E 0 Abort (dequeue) all IORBs on request queue.
1 Process outstanding requests on request queue.
F 0 Disconnect line on completion.
1 Do not disconnect line on completion.

Specifying Use of BSC 2780 and/or 3780 to the System

The inclusion of BSC 2780 and/or 3780 in the system is done
at system building. The application can select and use either
2780 or 3780 according to the setting of bit 9 in the device-
specific word I_DVS in the IORB (see Table 10-2).

10-13 CBO3

Table 10-3. BSC Software Status Word I_ST in the IORB

Bit Meaning When Bit Set to 1

0 N/A

1 N/A

2 Data service rate error

3 Lost line bid; RVI received

4 Communications control block service error
5 Conversational reply received (3780 only)
6 | Long record

7 0 = IT2 znd/cr ETB characters received

1 = ETX character received

8 N/A

9 N/A

A Nonzero residual range

B Phone hang-up

C EOT character received

D Transparent message received

E NAK limit reached

F Fatal error: bus parity or memory error
Although nonexistent resource, bus.parity, and
uncorrectable memory errors are combined in bit
F, each occurrence is noted separately in the
resource control table (RCT). See Figure C-1.

Formats and Characteristics of BSC Input Data

The formats and characteristics of BSC input data for both

ASCII and EBCDIC are described and illustrated below.

Figure 10-7 shows the format and contents of BSC input data

received from another computer.

10-14

[asliiny,

SOM (CONTROL BYTE) DATA EOM BCC

SOM (START OF MESSAGE)

A ONE- OR TWO-CHARACTER SEQUENCE THAT IS STRIPPED BY
THE BSC LPH.

CONTROL BYTE

THE CONTROL BYTE, IF SPECIFIED, IS THE FIRST BYTE OF THE
APPLICATION'S DATA.

DATA

INFORMATION STORED IN THE APPLICATION'S BUFFER AND
SPECIFIED AT READ TIME.

EOM (END OF MESSAGE)

A ONE- OR TWO-CHARACTER SEQUENCE THAT IS STRIPPED BY
THE BSC LPH.

BCC

AN LRC CHARACTER OR CRC CHARACTER THAT IS INSERTED BY
THE BSC LPH.

Figure 10-7. BSC Input Data Format and Contents
BSC CONTROL BYTE (RECEIVE)

When bit 4 of the IORB's device-specific word I DVS is set
to 0 at connect time (see Table 10-2), the BSC line protocol
handler uses the first byte of the application's buffer as the

control byte. Figure 10-8 shows the control byte's format and
content.

BITS 0 THROUGH 2
NOT APPLICABLE; NOT EXAMINED
BIT 4=0 C ,
DATA STORED IN APPLICATION’S BUFFER
BIT 4=1
EOT RECEIVED; NO DATA STORED IN APPLICATION’S BUFFER

BIT 5
NOT APPLICABLE; NOT EXAMINED

BIT 6=0
DATA RECEIVED IN NONTRANSPARENT MODE

BIT 6=1
DATA RECEIVED IN TRANSPARENT MODE

BIT 7=0
ITB OR ETB RECEIVED

BIT 7=1
ETX RECEIVED

Figure 10-8. Control Byte (Receive) for
BSC Line Protocol Handler

10-15 CBO3

ASCII INPUT FOR BSC

ASCII input characteristics and format (Figure 10-7) are as

follows:

1.

2.

5.

SOM (start-of-message) consists of the STX control char-
acter only.

The control byte (if specified at connect time) is
stored in the first byte of the applications' buffer,
and indicates the end-of-message (EOM) sequence.

When bit 7 is 0, it indicates detection of an ITB or ETB
control character; when 1, it indicates detection of an
ETX character. Note that bit 7 of both the control byte
and of I ST are specified.

Data must be 7-bit ASCII with odd parity. The BSC line
protocol handler strips the parity bit and resets it to
zero when it stores it in the application's buffer.

The EOM sequence, one of the three control chracters
ITB, ETB, or ETX, is indicated by bit 7 of the IORB
software status word I_ST after a successful read is
posted. See Table 10-3 for bit 7 indicators.

The BCC (block check character) is described in
Appendix A.

EBCDIC INPUT FOR BSC

EBCDIC input format and characteristics are as follows:

l.

2.

SOM (start-of-message) consists of the STX control char-
acter only.

The control byte (if specified at connect time) is
stored in the first byte of the application's buffer,
and indicates the end-of-message (EOM) sequence, as
follows:

1 End of transmission (EOT) detected.

Bit 4 =
Bit 7 =0 ITB or ETB character detected.
Bit 7 =1 ETX character detected.

Data must be 8-bit EBCDIC; it will not have any BSC con-
trol characters.

The EOM sequence, one of the control characters ITB,
ETB, or ETX, is indicated by bit 7 of the IORB software
status word I ST after a successful read is posted. See
Table 10-3 for bit 7 indicators.

10-16 CBO3

“

S

i,

5. The BCC (block check character) is described in
Appendix A.

TRANSPARENT EBCDIC INPUT FOR BSC

Transparent EBCDIC input format and characteristics are as
follows:

1. SOM (start-of-message) consists of the two-character
sequence DLE, STX.

2. The control byte, if specified at connect time, is
stored in the first byte of the application's buffer,
and indicates the EOM (end-of-message) sequence accord-
ing to the bit 7 setting (Figure 10-8).

3. Data may be any EBCDIC'character, including BSC control
characters. '

4. EOM (end-of-message) sequence may be one of the follow-
ing, indicated by bit settings of the IORB software
status word I_ST, after a successful read has been

posted:
I_ST Bits
D 7 Resulting EOM Sequenée
1 0 DLE, ITB
1 0 DLE, ETB
1 1 DLE, ETX

5. The block check character (BCC) is described in
Appendix A.

Formats and Characteristics of BSC Output Data

Formats and characteristics of BSC output data (both ASCII
and EBCDIC) are described and illustrated below.

Figure 10-9 shows the format and content of BSC data trans-
mitted to another computer.

10-17 CBO3

SOM (CONTROL BYTE) DATA EOM BCC

SomM

A ONE- OR TWO-CHARACTER SEQUENCE THAT IS INSERTED IN FRONT
OF THE DATA BY THE BSC LPH.

CONTROL BYTE

THE CONTROL BYTE, IF SPECIFIED, IS STORED IN THE FIRST BYTE
OF THE APPLICATION'S BUFFER.

EOM

A ONE- OR TWO-CHARACTER SEQUENCE THAT IS INSERTED BY THE
BSC LPH.

BCC

AN LRC CHARACTER OR CRC CHARACTER THAT IS INSERTED BY
THE BSC LPH.

DATA

INFORMATION THAT IS TRANSMITTED FROM THE APPLICATION'S
BUFFER BY THE BSC LPH.

Figure 10-9. Format and Content of RBRSC Qutput

2 - Sy o

BSC CONTROL BYTE (SEND)

When bit 4 of the IORB's device-specific word I _DVS is set
to 0 at connect time (see Table 10-2), the BSC line control
handler uses the first byte of the application's buffer as the
control byte. Figure 10-10 shows the format and content of the
BSC line protocol handler's control byte for sending data.

BITSO, 1
NOT APPLICABLE, NOT USED
BIT 2=1 .
CONVERSATIONAL REPLY RECEIVED
BIT 3=1
RVI RECEIVED (RETURN STATUS ONLY)
BIT 4=1 : :
SEND THE DATA THAT IS IN YOUR BUFFER AND,
AFTER IT HAS BEEN ACKNOWLEDGED, SEND EOT
BIT 5=1
SEND AN RVI RESPONSE ON THE NEXT ACKNOWLEDGMENT
OF A READ
BIT 6=0
SEND NONTRANSPARENT EBCDIC
BIT 6=1
SEND TRANSPARENT EBCDIC OR ASCII
BIT 7=0
SEND ITBOR ETB
BIT 7=1
SEND ETX

Figure 10-10. Control Byte (Send) for BSC Line
Protocol Handler

10-18 CBO3

BSC ASCII OUTPUT

ASCII output characteristics and format are as follows:

l'

2.

5.

SOM (start-of-message) consists of only the STX
character.

The control byte, when specified, is assumed to be the
first byte of the application's buffer, and indicates
the EOM (end-of-message) sequence, which is either ITB,
ETB, or ETX, designated as follows:

a. Bit 6 must be 0.

b. Bit 7 = 0. Send ITB or ETB. ITB is sent when the
record is odd numbered (1, 3, 5, etc.) and the two-
buffer feature is used.

Bit 7 = 1. Send ETX.

If the control byte is not specified, the EOM sequence
is defined by I_DVS as described in 4 below.

Data must be 7-bit ASCII; it cannot have any BSC control
characters.

EOM, which is either ITB, ETB, or ETX, can be indicated
by the control byte (see 2 above) or by the C- and D-
bits of the IORB device-specific word I DVS (Table 10-2)
as follows:

a. C-bit must be zero.

b. D-bit = 0. Send ITB or ETB. ITB is sent when the
record is odd-numbered (1, 3, 5, etc.) and the two-
buffer feature is used.

D-bit l. Send ETX.

BCC (block check character) is described in Appendix A.

BSC EBCDIC OUTPUT

EBCDIC output characteristics and format are as follows:

l‘

2.

SOM (start-of-message) consists of only the STX
character.

The control byte, when specified, is assumed to be the
first byte of the application's buffer, and indicates
the EOM (end-of-message) sequence, which is either ITB,
ETB, or ETX, designated as follows:

10-19 CBO3

5'

a. Bit 6 must be 0.

b. Bit 7 = 0. Send ITB or ETB. ITB is sent when the
record is odd-numbered (1, 3, 5, etc.) and the two-
buffer feature is used.

Bit 7

1. Send ETX.

If the control byte is not specified, the EOM

sequence is defined by I DVS as described in 4
below.

Data may be 8-bit EBCDIC; it cannot have any BSC control
characters.

EOM (end-of-message), which is either ITB, ETB, or ETX,
can be ‘indicated by the control byte (see 2 above) or by
the C- and D-bits of the IORB device-specifid word I DVS
(rable 10-2) as follows: -

a. C-bit must be zero.

b. D-bit = 0. Send ITB or ETB. 1ITB is sent when the
record is odd-numbered (1, 3, 5, etc.) and the two-
buffer feature is used. '

D-bit = 1. Send ETX.

BCC (block check character) is described in Appendix A.

BSC TRANSPARENT EBCDIC OUTPUT

Transparent EBCDIC output characteristics and format are as

follows:

1.

2.

SOM (start-of-message) consists of the two-character
sequence DLE, STX.

The control byte, when specified, is assumed to be the
first byte of the application's buffer, and indicates
the EOM (end-of-message) sequence, which is either DLE
ITB; DLE ETB; or DLE ETX, designated as follows:

a. Bit 6 must be 0.

b. Bit 7 = 0. Send DLE ITB or DLE ETB. DLE ITB is
sent when the record is odd-numbered (1, 3, 5, etc.)
and the two-buffer feature is used.

Bit 7 = 1. Send DLE ETX. S

10-20 CBO3

If the control byte is not specified, the EOM sequence
is defined by I_DVS as described in 4 below.

Data may be any EBCDIC character, including any BSC con-
trol characters.

EOM, which can be either DLE ITB; DLE ETB; or DLE ETX,
can be indicated by the control byte (see 2 above) or by
bit 4 and bit D of the IORB device-specific word I DVS
(Table 10-2) as follows: -

a.

b.

Bit 4 must be 1.
D-bit = 0. Send DLE ITB or DLE ETB. DLE ITB is

sent when the record is odd-numbered (1, 3, 5, etc.)
and the two-buffer feature is used.

D-bit = 1. Send DLE ETX.

BCC (block check character) is described in Appendix A.

10-21 CBO3

APPENDIX A

COMMUNICATIONS SUBSYSTEM

Communications software, as discussed in this manual, is a

functional package referred to as the communications subsystem,
and which comprises: .

[e]
(o)
o
(¢]

Communications supervisor

Line protocol handlers (LPHs)

Multiline communications processor (MLCP)
Multiline communications processor driver

COMMUNICATIONS SUPERVISOR

The communications supervisor is the physical I/O interface
between a communications application program and the device/files

it uses.

It provides the following services, similar to those

provided by the Monitor, to an application:

o

o

Validates and queues, on a first-in/first-out basis, an
application's requests for services, then activates the
appropriate line protocol handler.

Dequeues requests for services, and through system soft-
ware, interacts with the application when the requested
I/0 service is completed or an unexpected event occurs.

Services time-outs for the line protocol handlers.

Controls modems in detecting phone connects and
disconnects.

Disconnects'phones when requested by the application.

LINE PROTOCOL HANDLERS (LPHS)

The line protocol handlers transfer data between a communi-
cations device and the application that uses it.

A-1 CBO3

The communications subsystem and its line protocol handlers
‘do the following:
o When the system is bootstrapped:
- Validate specifications for device types by reading
the device's identification sequence
- Initialize the device by sending to it the priority
level at which it is to operate
o Validate the application's input/output request block
(IORB) fields :
o Convert user-supplied functions into device-specific
instructions, initiating the I/0 operation
o Modify channel numbers to even or odd values, according
to whether the function is input or output
o Set a timer in order to detect a device fault
o Detect and'process ATTENTION signals
o Read return status indicators from a device to ascertain
result of an I/0 operation
o Process error recovery, when possible
o Process unsolicited interrupts
o Build the return status word indicating logical result of
the I/0 request, and through the Monitor, passing that
value to the application program
o Pass a value indicating the logical conclusion of the I/O
request, through the Monitor, to the application program.
(Table 6-1 lists the return status codes).
o Report the following errors and statuses:
- Convert hardware return status into the standard soft-
ware status and insert it into the software status
word I ST of the application's IORB (see Table 6-3).
- Place the residual range value (see Table 6-2) into
the I_RSR entry of the IORB.
1'/7’
NS

A-2 ' CBO3

-,

MULTILINE COMMUNICATIONS PROCESSOR (MLCP)

The MLCP includes a channel control program (CCP) that is
associated with each line protocol handler (see Figure A-1).

Through the appropriate hardware device-pac, the channel
control program controls transmission of data over communication
lines. 1Its functions are:

o Process characters by storing them in, then extracting
them from, a buffer

o Insert and delete (or strip) headers and trailers

o Insert and delete control characters preceding or follow-
ing a message to or from a remote terminal or host
computer.

The MLCP Programmer's Reference Manual describes the MLCP
and related programming information.

MULTILINE COMMUNICATIONS PROCESSOR DRIVER

The MLCP driver receives MLCP orders from the line protocol
handler and activates the appropriate channel control program

(see above and Figure A-1) to process the orders. The driver
also:

o Processes a line protocol handler's requests for control
functions or for data

o Services interrupts from the MLCP and passes them to the
line protocol handler

MODEM SUPPORT

For asynchronous devices, the communications subsystem sup-
ports the direct-connect feature, and provides the following
modem support:

o Bell System Data Sets, Types 103A, 113F, or 202
o Honeywell modem bypass
o Any user-defined (at system building) modem type

For synchronous communications, the communications subsystem
supports the direct-connect feature, and provides the following

modem support:

o Bell System Data Sets, Types 201A, 201B, 201C, 203, or
208A

o Honeywell modem bypass

A-3 CB0O3

o User-defined (at system building) modem types

AUTO CALL UNIT

When included in the system (at system building) an Auto
Call Unit (autodial feature) performs the following to initiate a
line connection with a remote device:

1. The system attempts to dial a line, using a list of
telephone numbers supplied at system building, the first
entry on the list being zero. The first number to be '
dialed can then be specified with a set dial ($SDL)
macro call or with the set ACU telephone number (SDL) -
command. If the first number on the list is not speci-
fied (by the macro call or command), the system skips to
the next number on the 1list.

2. Dials each number on the list three times at 40-second
intervals until the list is exhausted or a connection
made, whichever comes first.

3. Checks that a connection to a modem is made.

4., Passes control to the application.

The Auto Call Unit supports Data Auxiliary Set Automatic
Calling Units 801A and 801C.

Two data set options are required to use the Auto Call Unit:

o The option that terminates the call, through the data
set, after the DSS (data set status change) goes on.

o The option that stops the ACR timer when the DSS goes on.

COMMUNICATIONS SUBSYSTEM OPERATION EXAMPLE

The following example, and Figure A-1, broadly indicate the
interaction of the communications subsystem's components in the
processing of a connect, write and then disconnect request. The
operations described apply to either the file system or physical
I/0 interface, without reference to a specific device or line
protocol.

A-4 CBO3

N

Example:

l.

10.

11.

The communications supervisor takes the application's
connect request through the file system or physical I/O
interface, then passes it to the phone monitor within
the multiline communications processor.

The phone monitor makes a line connection to the device.

The appropriate line protocol handler processes the
logical connection.

The communications supervisor passes the application's
subsequent write request to the line protocol handler,
which translates the request into MLCP driver orders.

The line protocol handler calls the MLCP driver, which
issues the orders to the MLCP.

The channel control program in the MLCP processes the
write order, transmitting the data to the device, during
which the line protocol handler suspends itself.

When the MLCP senses completion of the data transfer,
the channel control program returns an interrupt that is
initially processed by the communications supervisor and
the MLCP driver.

The MLCP driver reactivates the line protocol handler
(at the interrupt level) to minimally process the
interrrupt. ‘

When processing is completed, control passes to the
MLCP driver.

If additional processing is necessary, the line
protocol handler can schedule itself, on a noninterrupt
basis, to do postinterrupt processing of the interrupt.

The application's disconnect request is processed the
same as a connect request:

a. As requested by the communications processor, the
channel control program disconnects the physical
connection.

b. The line protocol handler does the necessary logical
disconnect processing.

A-5 CBO3

€090

HIGHER LEVEL LANGUAGES

FILE SYSTEM

APPLICATION
FORTRAN FORTRAN
PROGRAM RUN-TIME
PACKAGE
APPLICATION COBOL
COBOL RUN-TIME
PROGRAM PACKAGE

Figure A-

APPLICATION
FILE SYSTEM
ASSEMBLY o
PROGRAM

FILE
MANAGEMENT

DATA
MANAGEMENT

PHYSICAL 1/0

STORAGE
MANAGEMENT

l. Simplified Flow - Communications Subsystem

APPLICATION
PHYSICAL

1/0 ASSEMBLY
PROGRAM

REQUEST
1/0

MACRO
CALL

—— —— — — ——

PHYSICAL
/0

€090

COMMUNICATION SUBSYSTEM

TTY
LPH

MmLCP

LINE
TABLES

A COMMUNICATION
SUPERVISOR

VIP
LPH

MLCP
DRIVER

TTY
ccp

/

VA

\/
(D

\

PVE
LPH

viP
ccp

o
13

/

o

/

<

P

/N

5

HONEYWELL
HOST (FILE
TRANSMISSION)
(NONPOLLED)

BSC
LPH

PVE
cce

VA

[

YAAVAN

:

HONEYWELL
HOST
SYSTEM

BSC
cce

z
@

HONEYWELL
HOST
SYSTEM

/1N

Y

/ N\

o
@

\P |
(1Y

LEVEL 6

PHONE
MONITOR

LEGEND

DS = DATASET
MB = MODEM BYPASS

Figure A-1 (cont).

\

T

HONEYWELL
HOST

Simplified Flow - Communications Subsystem

/o

(POLLED)- G

(TRIBUTARY)

MB G {NONPOLLED)

COMMUNICATIONS SUBSYSTEM ERROR AND CORRECTION PROCEDURES

GCOS uses the following procedures including parity check-
ing, block checking, and time-out, to detect errors occurring
over communication lines.

Parity Error Check

The system sends a parity (check) bit with each transmitted
character. The parity bit, plus the number of character bits set
to 1, will always be an odd- or even-numbered total for every
character, according to whether transmission is synchronous or
asynchronous. The standard for synchronous transmission is odd
parity (total is an odd number); for asynchronous transmission it
is even parity (total is an even number).

Block Error Check

GCOS5 uses two kinds of block error checking, the longitudi-
nal redundancy check (LRC) and the cyclic redundancy check (CRC).
Their check characters are known as block check characters (BCC),
and the checking calculation result is a block checksum.

LONGITUDINAL REDUNDANCY CHECK (LRC)

The LRC is a form of parity check that is applied to the
entire message. The system appends an LRC character, which is an
exclusive OR of the message characters, to every message.

The VIP and PVE line protocol handlers use the LRC method.
CYCLIC REDUNDANCY CHECK (CRC)

The CRC method is block oriented. The system transmits data
without appending a parity bit on every character. The system
computes the CRC character(s) with special algorithms applied to
the data to be checked, then appends these characters to the
message.

Only the BSC line protocol handler uses the CRC method.
BSC BLOCK CHECK CHARACTER (BCC)

In ASCII transmission, the 8-bit block check character BCC
is the result of an exclusive OR operation on all bits received,
beginning with the first character following the STX, and ending
with the ITB, ETB, or ETX control character. It is based on the
polynomial X& + 1. ,

In EBCDIC transmission the block check character (BCC) is 16

bits, and is_calculated by the system with the checking poly-
nomial 1. + X2 + x"® + x% |

A-8 ' CB03

i,

Time-Out Check

After sending a message, the transmitting device/computer
waits for an acknowledgment from the receiving device. When

there is no acknowledgment after a specific interval, the sender
retransmits the message.

When there is no acknowledgment after a specified number of

transmissions, the sender takes whatever action is programmed

into the system. '

Some procedures provide that the receiving device, on
receipt of erroneous data, request retransmission from the
sender, using the ACK/NAK response method. (See Appendix E for
ACK/NAK definitions.) 1In this procedure, the sending device
waits for an ACK or NAK response (or elapse of the time-out
interval) before continuing the communication.

A-9 ' . CBO03

S

AN
NS

o

APPENDIX B

CHANGING TERMINAL'S FILE CHARACTERISTICS

Before an application is executed, the user can change the
file characteristics of a terminal, e.g., line length or record
size, detabbing, device type (input, output, etc.), with the sys-
tem command STTY (set terminal characteristics) or with the $STTY
macro call.

This permits the user to modify those terminal character-
istics established at system building.

Table B-1 shows examples of possible values for the device-

specific word and file-indicator word arguments of the STTY com-
mand and the $STTY macro call (described in the Commands and
System Service Macro Calls manuals, respectively).

The table indicates the following:

Column 1 - Device/file operational mode; for BSC, whether
advanced or basic data transmission mode.

Input/output operations specified by the corre-
sponding argument values; defined at the bottom
of the table.

Column 2

Argument values for the device-specific word
(I DVS) for the named device, in hexadecimal.
See the appropriate device-specific IORB field
value tables in Sections 7 through 10.

Column 3

File-indicator word argument values, in
hexadecimal.

Column 4

NOTE: For BSC, the leading control byte allows EOT, ETB/
ETX, and RVI control characters, and transparent
mode, to be sent.

B-1 CBO3

Table B-1.

Possible Argument Values for STTY Command
and $STTY Macro Call

Device/File Input/Output Operations Device-Specific | File Indicator
Operational Mode (See Below) Argument Value Argument Value
For TTY
Interactive CR, LF, E, CB, PH, QA 0030 3180
Interactive CR, LF, E, CB, QA 0031 3180
Interactive CR, LF, E, PH, QA 0830 3180
Interactive CR, LF, E, QA 0831 3180
Forms PH, QA, PG ococ 3180
_Forms QA, PG 0COD 3180
Printer Emulation CR, E, CB, PH, QA 0020 5180
Printer Emulation CR, E, CB, QA 0021 5180
Data Entry PH, QA, TR 0C08 3180
Data Entry QA, TR 0C09 3180
For VIP
Interactive CR, LF, PO, CB, PH, QA, TM, PL 0110 3180
Interactive CR, LF, PO, CB, QA, TM, PL 0111 3180
Interactive CR, LF, PO, PH, QA, TM, Pﬁ 0910 3180
Interactive CR, LF, PO, QA, TM, PL 0911 .3180
Forms QA, PL 1909 5180
Forms PH, QA, PL 1908 3180
Forms QA, PL 1909 3180
Printer Emulation CR, CB, PH, QA 0000 5180
Printer Emulation CR, CB, QA 0001 SISQ
Receive-only printer| CR, CB, PH, QA 0000 5180
Receive-only printer| CR, CB, QA 0001 5180
B-2 CBO3

Table

B-1 (cont). Possible Argument Values for STTY Command
and $STTY Macro Call

Device/File Input/Output Operations Device-Specific |File Indicator
Operational Mode (See Below) Argument Value Argument Value
For PVE (polled VIP emulator)
CR, CB, QA 0001 3180
CR, CB, PH, QA, FC 0080 3180
For BSC
Advanced CB, PH, QA 0000 2980
Advanced CB, QA 0001 2980
Basic PH, QA, ETB 0800 2980
Basic QA, ETB 0801 2980
Basic PH, QA, TR, ETB 0808 2980
Basic QA,. TR, ETB 0809 2980
CR - Carriage return TR - Transparent text
LF - Line feed FC - Hardware function codes present
E - Echo input characters PO - Page overflow recovery
(home cursor)
CB - Control byte
TM - Time-out on read
PH - Physical disconnect (hang up)
PL - l-second poll interval (ignored
QA - Queue abort if nonpolled line)
PG - Page transfer (forms mode) ETB - Send ETB/ETX characters

CBO3

AN

S

o

APPENDIX C

RESOURCE CONTROL TABLE (RCT)

The resource control table (RCT) is the interface between
the line protocol handler and its devices. For each line proto-
col handler and device, the system builds an RCT that contains
the characteristics uniquely describing that device.

, The RCT contains the physical data that the line protocol
handler needs to interface with the device. The RCT also
includes a work area where every line protocol handler can save
whatever values, pointers, etc., that it needs.

Figure C-1 shows the format of an RCT for communications
devices. Table C-1 defines the communications-specific items in
the RCT. Table C-2 defines the terminal attributes and status

field (R_STS).

C-1 CBO3

R_TYP.
R_FLGS
R_STTS
R_STS
R_ATTN

R_MSG

NOTE: THE WORD R_FLGS WILL HAVE BIT 6 SET.
INDICATING THAT THE CONNECT/DISCONNECT

CHANNEL LEVEL

LINE ADAPTER TYPE

FLAGS (0)

DEVICE STATUS (0)

TERMINAL ATTRIBUTES
AND STATUS

ADDRESS OF ATTENTION
SUBROUTINE

MESSAGE COUNT NAK COUNT

FUNCTIONS ARE ALLOWED.

BIT MEANING IF SET

0

- ~ (RESERVED)

5

6 | CONNECT/DISCONNECT FUNCTIONS SUPPORTED
7 | DEVICE RESERVED

8 | ATTENTION INTERRUPT HAS OCCURRED

9 | DISABLE DEVICE ON ATTENTION INTERRUPT
A | DEVICE DISABLED

B | LPH-CORRECTED ERROR OCCURRED

C | CORRECTED MEMORY ERROR OCCURRED

D | NONEXISTENT RESOURCE ERROR

E | BUS PARITY ERROR

F | UNCORRECTED MEMORY ERROR OCCURRED

Figure C-1. Format of Communications Resource

Control Table (RCT)

CBO3

i,

Table C-1.

Communications-Specific Items in the RCT

Item

Description

Use

R_STTS Hardware status

Device hardware status; mapped into

software status word I_ST of the
(IORB) (see Table 6-3).

R_STS Terminal attributes
and status

See Table C-2 below.

R_MSG

Bits 0 through 7: Count of messages
sent to and received from the termi-
nal (maximum 256). For VIP devices,
count includes certain control mes-
sages exchanged on the line, thus
does not represent the number of
text messages.

Bits 8 through F: Count of NAKs
sent to and received from the termi-
nal (maximum 256).

Table C-2.

Terminal Attributes and Status Word R_STS of the RCT

Bit Meaning When Bit Set On

0-9 |Reserved for system and later use
A Device disabled by the system

B Input possible

C Output possible

D Device connected

E Device physically enabled

F Device logically enabled

C-3 CB03

e Fe,

APPENDIX D

SAMPLE APPLICATION PROGRAMS

COBOL PROGRAM EXAMPLES

COBOL TTY or VIP Application Example

The COBOL source program listing in Figure D-1 is an example
of an interactive application that involves either VIP or TTY
devices.

This program (named CARCOM) processes commands entered from
the operator terminal, and includes input/output operations to
two communications terminals (either TTY or VIP). An input and
output file is assigned to each device. The program uses the
operator terminal for entering commands and for receiving error

messages. Input/output processing messages are displayed on the
line printer.

COMMANDS IN THE COBOL EXAMPLE
The program processes the following interactive commands
received from the operator terminal. The command COMND is

entered from either terminal 1 or terminal 2 (see "File
Assignments" below).

D-1 ‘ CBO3

Command Program Action

OPEN filename - Opens the file

CLOSE filename Closes the file
ROUTE Routes terminal output to other

terminals as input

GO Exits command mode, looks for input
from terminals

COMND Exits terminal input mode; returns to
(entered from operator terminal in command mode
terminal 1 or 2)

STOP Stops execution

rg
[

rar

~ AN AT TI T A nl wn v ™
O LN LUDUL LAAMPLL

The program CARCOM uses the following file names and corre-
sponding logical file numbers (LFNs):

File Name LFN Device
COM1IN 3 Input terminal 1
CoOM10T 4 Output terminal 1
COM2IN 5 Input terminal 2
COM20T 6 Output terminal 2
PRINTER 1 Printer

ERROR MESSAGES IN COBOL EXAMPLE

When appropriate, the COBOL example CARCOM displays these
messages, in the formats: '

OPEN COM1IN
CLOSE ERROR FILE COM10T zz - FILE STATUS
READ COM2IN
WRITE : COM20T

zz = File status code

Program actions resulting from these messages are:

D-2 CBO3

A

OPEN or CLOSE message:

Returns control to the operator terminal
READ or WRITE message:

Tries the I/0 operation four times; then close the
file and return control to the operator terminal

STATUS CODES IN COBOL EXAMPLE

The program CARCOM includes checks that verify operation of

COBOL error returns and information status returns. The check
codes are:

9I - For a read operation, indicates there is no data.
For a write operation, indicates that the device is
busy.

95 - Record length error.

EXECUTION OF COBOL TTY OR VIP PROGRAM EXAMPLE

When the program begins to execute, the operator terminal
displays the message:

TYPE COMMANDS, THEN GO.
At least two files on the same device must be open to pro-

ceed to the next level of command input. At this level, the pro-
gram displays the message:

COMMANDS?
The operator may then enter commands to: (1) open files;
(2) close files; (3) route (message switch); (4) activate the
read/write loop; or (5) stop.
NOTE: Activating the read/write loop deactivates command
input from the console and causes the application to
check open terminals for input.

To return to the command level, the operator types COMND
from an active terminal.

A typein from a remote terminal is echoed back to that
terminal and displayed on the second terminal.

D-3 CB03

GCoS6 COROL
SOURCE - PROGRAM

1 TDENTIFICATINN DTVISTON,

2 PROGRAM=TD, FARCNOM,

3 * COROL. COMMUNTCATTONS

4 FNVIRONMFNT NDIVISION,

S CONFTGURATTON SECTTON,

6 SOURCE=CNMPUTER,. HTS=SFRTES=K0 LFVFL=6.
7 NBJECT=CNMPUTER, HTS~SFRTES=K0 LFVFL=6.
8 % :

9 TNPUT=NUTPUT SFCTINN,

10 FILE=CONTRNL, ’

11 SELECT COM1IN

12 ASSIAN TN 0C=-M%D,

13 ORGAMIZATINON IS SERUFNTIAL WTTH VLR,
14 ACCESS MNDF TS SFQRUENTTAL,
15 FILE STATUS TS IN{=STAT,

16 SELELT CNMIOT

17 ASSIGN TN np=MSD,

18 NRGAMIZATINN IS SENUFNTIAL,
19 ACCESS MNDF TS SFQUEMTTAL,
20 FITE STATUS TS 0T1=STAT,
21 SELECT CNM?IN
e : ASSIGN 10N NDE=MSD,
23 NROGANIZATION IS SENUFNTIAL WTTH VLR,
24 "ACCESS MNDF TS SFQUEMTTYAL,
?S FILE STATUS TS 1NM2=STAT,

26 SELECT CNM2QT

27 ASSIRN TN NF=MSD,

28 NREANIZATION IS SENUFNTIAL,
29 ACCESS MNDF TS SFQUENTTAL,
30 FILE STATUS TS 0T2=STAT,

31 SEIERT PRINTFIIE
32 . ASSIAN TN 0A=PRINIFR,

33 NRGANIZATINN IS SEAUFNTIAL,
T4 ACCESS MNDF TS SFQUEMTTAL,
1S FILE STATUS TS PRT=STAT,

36 %

37 NDATA DTVTISTON,

38 *

39 FILE SFCTION.

40 FD rOM1ITN

ay RLACK CONTAINS 1 RFCNORNS,

42 LAREL. REFORDS ARF NMTTTED,

a3 x

a4 N1 TN1=REr PIF ¥(ROY,

4s X

46 FD romM10Y

a7 RLNCK COMTAINS 1 RFCNRNS,

48 | ARE). RECORDS ARF NMTTTED,

49 x

S0 01 NUTCOM1=REC,

s1 02 CTLY PTC X,

82 02 NT1=REC PTC Y(ROY,
|3 *
sS4 FD COM2TN

55 RLACK CONTAINS 1 RFCPRDS,

Y) LAREL REFCQORDS ARF PMTTTED,

S7 01 TIN?=REC PIc X(R0).

S8 *

59 FD comM20T)

60 RLOCK CONTAINS 1 RFCORDS,

61 LAREL RECORDS ARF OMTTTED,

Figure D-1. COBOL TTY or VIP Application Example

D-4

CBO3

o,

R

01

*
FD

n
*

OUTCOM2=-RES,
n2 €TL2 PIF X,
02 NT2-REC PTC X(RO).

PRINTFTLF

RLOCK CONTAINS 1 RFCNRNS,
L AREL RECORDS ARF NMTTTED,
PRT=REC PTC X(120),

WORKING=STORAGF SECTTON,

n

01

01

0

n

n

01

01

01

01

Figure D-1

CTITLE.

02 FILLFR PIC XY VALUE SPACES.

02 FILLFR PIC X(1S) VALUF "CONBNL CNMM TEST",

CCMND1., A

02 FILLFR PIFf XX VALUE SPACES.

N2 FILLFR PIC X(27) VALUF "TYPF FILE CNOMMANDS, THEN GO",
N2 FILLFR PIf XX VALUE SPACES.

CCMNP?,

02 FIILLFR PIC XY VALUE SPACES,

02 FILLFR PIf X(8) VALUE "rOMMAND?",

HEAD1.

02 FILLFR PIFr XxX(S?) VAL UF SPACFS,

n2 FILLFR PIC X(1S)- VALUF "CNBOL CNMM TEST",

N2 FILLFR PIC X(S%) VALUF SPACFS.

N2 FILLFR PIC x(53) VAIUF SPACFS,

HDRZ2,

N2 FILLFR PTC X(6) VALUF SPACFS,

N2 FILLFR PTC X027) VALUE "xaxx TNPUT MSG FILE: "
02 HDR2FIL PIC ¥ (6) VALUE SPACES.

HD"}.

02 FILLFR PTC X(6) - VALUF SPACFS.,

02 FILLFR PTC X(2R) VALUHE "+xxx NUTPYT MSG FTLF: ",
N2 HORJIFIL prr X(6) VALUE SPAfES.

1 0ADCOMP,

02 FILLFR PIf XX VALIE SPACES.

02 FILLFR - PIF Xx(13) VAILUF "LOAD COMPLETE".

CONIM,

. 02 CMDFLD,

03 GOIFLD PIC X(2) VALUHE SPACES.
N3 FILLFR PIC X(3) VALUE SPACES.
02 FILLFR PIC X VALUF SPACFS.
02 FILFID PIF Xx(6) VALIIE SPACES,
CONINI RFDFFTINFS CONTN.
02 FILLFR PIr X(5).
02 FILFILD1 PIf X(6).
DSK=REC ,
02 TTFMNUM PIC XXX VALUF SPACFS,
02 FILLFR PIC XX VALUE SPACES.
02 DESCFLD PIr X(20) VAILUF SPACFS,
n2 FILLFR PIC XX VALUE SPACES.
02 NATYRFD PIC 9999 VALUE ZFRO,
02 FILLFR PIf X(36) VALUE SPACES.
TN1=STAT PTC XX VALUF SPACFS,
NT1=STAT PTC XX VALUF SPACFS,
IN?=STAT PTC XX VALUF SPACFS,
NT2=-STAT PTC XY VALUF SPACFS,
PRT=STAT PIC XX VALUF SPACES.,
RDR=STAT PTC XX VALUF SPACFS,

INVF=STAT PTC XX VALUE SPACFS,

RKFY=1 PIC 999 VALUE ZFRN,
nO=-IT PTC XX VALUF ®"gn*",
OPNFTL PIC X(4) VALUE “OPFN",
CLSFTL PIC X(5) VALUE "CLNSE",
LOADF PTC X(4) VALUF "LNAD",

(cont). COBOL TTY or VIP Application Example

D-5 CBO3

126 77 FNDER PTYC X(4) VALUF “ENF",
1727 77 TN? PTC X(A) VALUF "COMI]IN",
128 77. 011 PTIC X(6) VALUF "CNM10T",
1?29 77 IN? PTC Y(Ah) VALUF "COMDIN™,
130 77 01?2 PTC Y(6) VALUF "CNMPQOT™,
131 77 RORF PIF X(6) VALUE "CAPDTIN™.
132 77 INVF PIf X(6) VALUE "TNVFTL",
133 77 WHN=NRD PTC 9 VALUE ZFRN,
134 77 WHN=FRR PTIC 9 VALIE ZFRN,
135) 77 FILCNUNT PIC 99 VALIE ZFRO,
136 77 RTFFLG PIf 99 VALIIE ZFRN,
137 77 ROUTF PTC X(S) VAILUF "ROUTE".
138 77 COMDNM PIF X(S) VALUE *"FfOMND®,
139 77 KEYEN PIF X(13) VAIUF "RFLATTVF KEY ",
140 77 RDKYNM PIC Xx€13%) VAIUF "INVALTD KFY= ",
101 77 ORNERCMD PIF XX VALUE "n ", ‘
142 77 UPDATCMD PIf XX VALUE *u ",
143 77 DPISPTTM™ PIC XX VALUNE ®"n ",
144 77 CCCHAR PIC X VAL UF "A",
145§ 77 NOTIFY PIC 9999 VALIIE 9999,
146 77 SWwTITCH!Y PTC 99 VALUF 7ERO.
147 77 SWYITCH? PTC 99 VALUF 7&RO.
148 77 TINVSWICH PIF 99 VALIIE ZFRN,
149 77 TRMSWTCH PIf 99 VALIIE ZFRN,
150 77 STATTINI PTC 99 VALUF 7EROD.
151 77 STATNTH PTC 99 VAIUF 7ERO,
152 77 STATIN? PIC 99 VALUF 7ERO.
1583 77 STATINT? PTIC 99 VALUF 7ERO.
154 77 FRSUMITN PIC 99 VALUE ZFRO,
188 77 FRSUMINT PIC 99 VALHE ZFRN,
156 77 FRSUMR2TIN PIf 99 VALIHE ZFRN,
157 77 FRSUM2OT PIf 9o VALNE ZFRN,
158 77 SUM9TH PIFr 9C4) VAL!IE ZFRN,
159 77 SumMaT? PIF 9Q(4) VALWHE ZFROD, -
140 77 OTYSIB PIf §999G9 VALUF 7ERQ,
161 " 77 NMCKRSLT PIC 9 VAIUF 7ERO.
162 77 MAXNUM PIF 9999 VALIUE ZFRN,
163 77 MAXITMNO PIC 999 VAIUF 200,
164 77 MAYQTY PIC 9999 VALIE 1000,
165 77 CHKNUM PIC 9999 VALIE ZFRrRN,
166 *
167 N1 TNSPFCTI.
148 02 TNCMD PTC Y(S) VAILUF SPACFS,
169 02 FILLFR PIf X(75) VALUF SPACFS,
170 Ny NPNSPL,
171 n2 FILLFR PIF XX VALUE SPACES.
172 02 NFLNAM PIf " X(6) VALIIE SPAFES.
173 N2 FILLFR PIC XX VALIE SPACES.
174 02 FILLFR PIC X(6) VALUE "DPFNFD".
175 0y NPFRNDSPL,
176 N2 FILLFR PIC XX VALUE SPACES.
177 02 FILLFR PIFf Xx(19) VALUF ®"QPEN FRROR FILE: ".
178 N2 NFLNFR PIr X(s) VALUE SPACES,
179 02 FILLFR PIf X(6) VALUE SPACES.
1RO 02 FILLFR ©PIr Xx(8) VALUE "STATUS= ",
181 02 KEYERR PIC XX VALIE SPACES,
182 N1 RDFRMSG,
183 ‘ 02 FIILFR PIC XY VALIIE SPACES.
184 n2 FILLFR PIf Xx(19) VALUF "RFAD FRRQR FILE: ",
18§ 02 RDFRFIIL PTC X(kA) VAIUF SPACFS,
1R6 n2 FILLFR PIC X(6) VALIIE SPAFES.
187 02 FILLFR - PIfF x(8) VALIE “STATHS= ",
1R8) N2 RDFRSTAT PIF xX VALUE SPAFES.,
1R9 N1 WRFRMSG,
Figure D-1 (cont). COBOL TTY or VIP Application Example

D-6 CBO3

‘190

191

192
193
194
195
196
197

198

199
2no
2ni
202
2n3
204
2ns
2né
2n7
2ns
2n9
210
211
212
213
214
218
216
217
218
219
220

.e”1

2?2
2?3
2”4
275
2”6
2?17
278
279
230
231
232
213
234
235
236
237
238
239
240
241
282
243
244
245
246
247
248
249
250
251
252

Figure D-1 (cont).

02 FILLFR °IFf XX

n2 FILLFR PIf X(6)

ne FILLFR PIFf Xx(8)

n2 WRFRSTAT PIF XX
Nt CLNSPL.

02 FILLFR PIC XX

N2 FrFLNAM PIC X(6)

02 FILLFR PIF XY

n2 FILLFR PIf X(6)
01 CLFRMSG.

n2 FIILFR P°PIC XY

N2 CFLNFR PIF Xx(e)

n2 FILLFR PIF X(6)

n2 FIILLFR PIC X(8)

n2 CKFYFRR PTC YX
N1 RADFTL,

ne FIILFR pIr XY

n2 FILLFR PIC X(1A)

01 RANCMD,
02 FIILFK PIf XY

N1 NOTESUM.

VALIE SPACES.
f2 FILLFR PIf Xx(19)

N WRFRF]L PYC Y(A)

VALUF "wPITE ERRNR FILE: ".

VAl UF SPACFS,
VALIIE SPATES,
VALUE "STATHS= ",
VALIIF SPACES,

VAL'IE SPAFES,

VAL!IE SPAFES.

VALIE SPACES.

VALYE "FLNSFD".

VAL'E SPACES.
n2 FJILLFR PIFr xf109)

VAL UF "Cl OSE ERRNR FIlES:. "
VALIE SPATES.
VALIIE SPACES.
VALIIE "STATHS= ",
VAl UF SPACFS,

VALIIE SPAFES.

VALUF "ILLFGAL FTLFNAMF®,

VALIIE SPAFES.
n2 FIILLFR PIFf X(15)

VALUF "TLLFGAL CNMMaND™,

02 FILLFR PIr XX VALVIE SPACES,

02 FILLFR PIF X&)

ne FRROY PIr X(A)

02 FILLFR PIf X(6)

02 FIILFR PIr X(10)

Ny STNPCOR,
n2 FILLFR PIF XX

N2 FILLFR PIfr xfin)

01 KEY=MSH,
02 FILLFR PIC Y(16)
N2 RAD=KEY PIf YX
N2 FILLFR

*

PRNCFDIRF NIVISINN.,

x

PHFANRS,
MOVE CCCHAR TOQ CTL!Y.,
MOVE CCCHAR TO CTL?.
PISPLAY CTITLE,

OPFEN OUTPUT PRINTFTLF,
MOVE HFAD1 TN PRT=REC,

VALUE "FI1E: ".
VALUE SPACES.

VALUE SPACES,

VAL UF "STATUS= 91",

VALUE SPACES.

VAL UF "SToP rORQL".

VALUE "FIVLE KFY STATUS ".

VBLIIE SPACES,
PTC X(1?)

VAL UF " TEST FAILEN®,

WRTTE PRTY=REC AFTER ADVANCING PAGE.

PCMD1.
NISPLAY CCMND1,
MOVE SPACES TO CONTN,
ACCEPT CONTN,
TF CMDFLD TS ERUAL TN
TF CMDFLD TS ENRUAL TN
NISPLAY RANDCMD,
RO TN PCMDY.,

PCMD?.
NISPLAY FCMND?Z,
MOVE SPACES TO CONTN.
ACCEPT CONTN,
TF CMDFLD TS ENUAL TN
TF CMDFLD T8 ENUAL TN
TF CMDFLD TS ENUAL TN
TF CMDFLD TS ENRUAL TN

COBOL TTY

D-7

OPNFTL 6N TO OPENIT,
CLSFTL 6N TO CLOSIT,

NPNFTL GNP TO OPENIT,
CLSFTL GO TQ CLOSIT.
ROUTF GO TN SETRNUTE.
PO=1T GO TN PEADY,

or VIP Application Example

CBO3

253

254

25ss
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
eri
278
279
280
281
282
2R3
284
28RS
2R6
2R7
2R8
2R9
290
291
292
293
294
29s
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315

Figure D-1 (cont). COBOL TTY or VIP Application Example

NISPLAY RANCMD,
GO0 10 PCMD?.
NPFNTT,

TF FTLFLD1 IS FQUAL TO INi &N TO OPIN1,
TF FILFLNPY IS FQUAL TO 0Tt GN TO OPOTI,
TF FTLFLD1 IS FQUAL TO IN2 GN TQ OPIN2,
TF FTLFLDP1 IS FQUAL T0-0T2 GN T0 0POT2,
PISPLAY RANFTL,
TF FTILCOIINT GRFATERP THAN 1 GO TO PCMP2,
GO0 TN PCMD1Y,
NPINT.
NPFN INPUT CNMYIN,
TF IN1=STAT = "00" (R TN1=STAT = "og";
MOVE 1 'TN STATTNI;
MOVE 1 TO SWTTCHYS
MOVE IN1 TN NFLNAM:
G0 TN NPMSK,
MOVE IN1 TN NFLNFR,
MOVE IN1=STAT TO KFYFRR,
G0 TN NPFRMG,
oPNTY,
OPFN QUTPUT rOMINT,
TF OT1=STAT = "0n" QR NT1=QTAT
MOVE ‘1 TN STATNTY;
MOVE OT1 TN NFLNAM:
‘G0 TN OPMSE,
MOVE OT1 TN NFLNFR,
MOVE OT1=STAT TO KFYFRR,
R0 TN OPFRMG,
NPINP.
NPFN INPIT COMPIN,
TF IM2=STAT = "00" QR TNP=STAT
MOVE 1 TN STATIN?;
MOVE 1 TN SWTITCH?;
MOVE IN2 TN NFLNAM:
G0 TH NPMSH.
MOVE IN2 TN NFLNFR,
MOVE IN2=STAT TO KFYFRR,
£0 TO OPFRMG.
npPNT?.
OPFN QUTPUT rQM2NT,
TF OT2=STAT = "(00n" QR NTP=8STAT = "9§";
MOVE | TN STATNT?;
MOVE 072 TN NFI NAM:®
50 TN NPMSE,
MOVE 0T2 TN NFLNFR.
MOVE OT2=STAT T0 KFYFRR,
GO TN OPFRMG,
npmMse,
NISPLAY OPNSPL,
ADD 1 YO FTLFOUNT,
TF FTLCOUNT RRFATER THAN 1 GN TO PCMD2,
G0 TN PCMDY,
NPFRMG,
PISPLAY NPFRASPL,
TF FTLCOUNT RRFATER THAN 1 GO TO PrMN2,
RO TN PCMDY,
cLNSTT,
YF FYLFLD TS EQUAL TN TN1 RO TN CLTNI.
TF FTLFLD IS EQUAL TN NTY RO TO CLNTY,
TF FTLFLN TS ENUAL TN TN? RO TO CLTND.
TF FILFLD TS ENUAL TN NT?2 RO TN £LNT?.
PISPLAY RADCMD,

ras";

'QS.,

D-8

CBO03

TN

316
317
318

319 -

320
321
322
373
324
375
326
327
378
329
330
331
332
3313
334
3135
336
337
338
339

340

341
342
343
344
345
346
347
348
349
350
351
352

353

354
35S
356
357
358
359
360
361
3R2
363
364
365
3h6
367
348
369
370
371
372
373
374
375
376
377
378
379

TF FTLFOUNT GRFATER THAN 1 GN TQ PrMp2,

RO TO PCMDI,
CLINT.
CLNSF CQOM1ITN,

TF IN1=STAT = "gnv:
MOVE ZFRN TO SWITCH1:
MOQVE ZFRN TO STATINg:
MOVE INf TN rFLNAM?
GO0 TN CLNPMSK,
MOVE IN1 TN CFLNFR,
MOVE IN1=STAT TO CKEYERR,
G0 TN COPERMAG,
S rLDTY .,
CLNSF CcoM1INT,
TF OT1=STAY = "¢gn":
MOVE ZFRN T0 STATOT):
MOVE OT1 TN CFLNAM?
GO TN CLNPMSH,
MOVE OT1 TN CFLNFR.
MOVE OT1=STAT YO CKEYEPRR,
GO TN COPERMG,
CLIN?,
CLNSE COM2TN,
TF IN2=STAT =
MOVE ZFRN T0O SWITCHZ:
MOVE ZFRN TO STATINZ:
MOVE IN2 TN CFLNAM::
0 TN CLOPMSG,
MOVE IN2 TN CFLNFR,
MQVE IN2-STAT TO CKEYERR,
GO TN COPERMSA,
cLnY?,
CLNSF romMenTt,
TF OT2=STAT = "(Qnn:
MOVE ZFRN T0Q STATQT?:
MOVE 0T2 TN CFI NAM:
GQ TN renpmsn,
MUGVE 0T2 TN rFI NFR,
MOVE OT2=STAT T0O CKEYFPRR,
RO TN COPERMN,
rLNPMSH,
PISPI AY CLNSPL,
SURTRACT 1 FRQOM FILCNUNMT,
TF FTLFUUNT RRFATERP THAN 1}
RO Th PCMDY,
FOPERMA,
NISPLAY CLFRMSG,
TF FTLCOINT ARFATER THAN |
c0 TN PCMDY, :
SETRNUTE,
TF STAT M) 1 AND STAT(OTZ
TF STATINZ 1 AMD STATOTH
NISPI AY RaANCMD,
G0 TN PCMD>,
NKSET,
MOVE 1 TN RTFFI G,
cO0 TN PCMp2,
READY,
TF FYLFOUNT =
TF SWITCH! =
MOVE SPArES Tu
READ COMIIN
TF IM1=STAT =
TF IN]OSYA' =

Figure D-1 (cont).

"oo":

IN1=RFC,

\CALE

D-9

GN To PFMh2,

GN T PrMh2,

1 GN TO OKSFT,
1 GN TO OKSFT,

7ERQ GN TO Prmnhy,
LZFRD GO 1N READ?,

AT EMD GN TO ONNFIT,
"Qn® GN TQ GNONRY,

COBOL TTY or VIP Application Example

CBO3

3R0
3A1

3R2
383
3Ry
385
3Re
3R7
388
389
399
301
392
393
394
395
396
397
308
309
400
40

4ne
403
4ny
405
406
4n7
4ng
409
410
411
412
413
414
415
416
417
418
419
420
4?1

4?2
4?23
424
425
4?6
427
48
429
430
431

432
433
43y
43s
436
437
438
439
440
4a

442
443

Figure D-1

=0 TN READ?.,
MOQVE ZFRO TQ SHmOIt,
MOVE IN1=STAT T RPERSTAT,
MOVE INg TN ROFRFIL .,
NISPLAY RPPFRMSR,
ADD 1 TO ERS!IMIIN,
TF EOS!IIMY[M NOT 1LESS THAM 4 R0 TN FLTINT,

oEap2,

TF SWITCHZ = ZFRN GO TN RPEADY,
MOVE SPAFES TQ IM2=RFC.
PEAD CNmPIM AT END GN TO ONNFIT,
TF IN2=STAT = "on" GN TO GNUNKR?,
TF IN2=-STAT = "qTn:

RO TN PEADY,
MOVE (FRN TO Shimag2,
MUGVE IN2=STAT T RDPERSTAT,
MOVE IM2 TN ROFRFIL,
NISPlI AY RDFRMSH,
ADD 1 TQ ERSHMPIM,
TF EPSUMPIN MQT | £SS THAM n RO TN FLTIN?,
G0 TN RESDY,

rONNDRY,

MOVE ZFRN TO ERSHMIIN,
MOVE ZFRN TQ Stimagy.
PERFNRM PRTINE THRII FHXQTPTY,
MOVE IN1=RFC TN TNSPF(CTI.
TF INCMD IS FQital TO CAMNPNM RO TN PCMDD,
TF RTEFLA TS NNT ENUAL TN 7ERO?
MOVE INj=kFC TN NTP2=PtC;
GO TN WRTTF?,
MOVE IN{=RFC TN NTi1=REr,
GO TN WRTTF1,

PRTING,

MOVE INY1 TN HPR2FIL.
MOVE HPR? TO PRT=-RFC.
WRTTF PRT=-REF,

MOVE SPAFES TU PRT=RFC,
MOVE IN1=RFC TN PRT=-REr,

CHK9TPT1,

WRTTF PRT=REC,
TF PRI=STAT = "QT" GN TQ CHKOIPTH!,

WRTTF1,

WRTTF NUTCNMI=REFr,

TF OT1=STAT = "0on" GN TO wRTIOK,

TF 0T1=STAT = "QT" GN TO wRITEl.

MOVE OT1=STAT T WRERSTAT,

MOVE OT1 TN WRFRFII .

NISPILAY WRFRMSH,

ADD 1 T ERPSUMYILT,

TF ERSUMIQT NMQOT | ESS THAM 4. R0 TO FLOTY,
fO TN RPEAD>,

WRT10K.

MOVE ZFRN TO ERSHIMIOT,
PERFNRM PRT(OT]1 THi!l FHKQTPNY
RO TN READD,

PRTOTI,

MOVE OT1 TN HDR3IFII,
MOVE HNPRT Y0 PPT=RF(.
WRTTF PRT=PECF,

MOVE SPACES TUO PRT=RFC.
MOVE OT1=RFC TN PRT=PREC,

FHKQTPNY,

WRTTF PRT=REC,
TF PRT=STAT = "QT" GN TQ CHKOIPOI1,

(cont) . COBOL TTY or VIP Application

D-10

Program

CBO03

=

quy cONDR2,
qus MQVE ZFRN TO ERS'MIIN,
que6 MOVE ZFRN TO SIImOID,
447 PERFNRM PRTIN2 THRKI) FHK9TPT.,
qug MOVE IN2=RFC TN TNSPFCTI.
4489 TF INCMD 1S FQUAI TU COMDNM a0 TN PCMDD,
450 TF RTEFLG TS NNT ENUAL TN 7EROD:
4s1 MOVE IN2=RFC TN NTY=PEC;
4se GO TN WRTTFY{,
4s3 MOQVE IN2=-RFC 10 NI2=REF,
454 GO TN WRTTF?,
45s PRTINZ,
456 MOVE IN2 TN HDR2FII .
457 MOVE HDPR? T0 PRT=RF(C.
458 WRTTF PRT=REr,
459 MQVE SPACES 70 PRT=RFC.
460 MOVE IN2=RFC TN PRT=RECr,
461 FHXQTPT2,
462 WRTTF PRT=RECr,
463 TF PRT=STAT = "QT1" GN TO CHKOIPI?,
4k4 WRTTF?, .
46s WRTTF NUTCNMP=REC,
4bh6 TF QT2=STAT = "00% GN TO WRT20K,
u67 TF 0T2=-STAT = "9T*" GN TO wRITF?,
4s8 MOVE OT2=STAYT T0 wWRERSTAT,
469 MOVE O0T2 TN WRFRFII .
470 NISPLAY WRFRMSA,
471 . ADN 1 TO ERSUMPQT,
472 TF ERSIMPQT NQT LESS THAM n R0 TN £LNTD,
473 RO TN READY,
474 WRT2NK,
475 MOVE ZFRN TO ERSIMPOT,
476 PEPFNRM PRTQT2 THRII FHYQTPND,
477 CO TN READY,
478’ PRTOT2,
479 MUVE 0T2 TN HDR3IFIL.
4rQ MOVE HPRT TO PRI=RFC.
4R WRTTF PRT=REF,
4Rp MOVE SPACES TO PRI=RFC.
4Rr3 MOVE OTP=RFC TN PkT=REr,
4ay CHKQTPND,
48s WRTTF PRT=PEC,
TE.¥S TF PRT=STAT = "gT" GN T(O CHKOIP(O?.
4R7 POMETT,
4ng NISPLAY STNAPrQR,
4R9 STNP RIIN,
490 FnD FORO!
MO DTAGRNNST]CS
GCOoSse COoROL
FTYLF MaAP
LINF LFN IFN
11 03 o0fe=M3H CAM1IN 0103 80
16 04 (0D=MSD comMi10T 01FR 81
21 05 OF=MSD CNM2IN 0”224 80
26 06 (OF=MSD cNM20T 0240 81
31 01 OA=PRTINTEP PRINTFILE 027k 120
Figure D-1 (cont). COBOL TTY or VIP Application Example

D-11

CBO3

"COBOL BSC Application Example

The source program listing in Figure D-2 is an example of a
COBOL communications program to test BSC file transmission by:

1. Generating records
2. Transmitting the records over one communication line

3. Reading them back over another communication line for
comparison

The program name is BSCTST. When executed, it displays the
following error messages, as appropriate:

Error format 1:

BSC TEST FILE- [INPUT] PROBLEM- [OPEN] STATUS - zz

~OUTPUT CLOSE
READ
WRITE
zé=9I - Device busy

zz=00 - Program may read or write
Program action: Issues reads and writes four times; then
the file is closed and the program
terminated. :

Error format 2:

BSC - TEST - NO MATCH RECORD nnnn
Program action: Reading application does not receive the
expected record; records out of sequence or
garbled.

File is closed and the program terminated.

D-12 CBO3

P

Grnse
SQURCE

TN N N -

N AANAANNUYVVYVVIYUVVUVYVVUVYVYVU= == 4222 ===
LV EWVLV=C CT~NTSTEWA—-C LTINS E W= C

N ANANA
¥ elie R NI S

uo
n
ap
43
nag
0
ue
a7
a8
49
S0
S1
s2

S4
5SS
S6
57
S8
59

roRrQO!
PRNGRAM

TDFNTIFICATINN DYVTSTON,

PRAGOAM-TD, HKSCTST.
2 THIS TS A POQORRAM aAMH]rfH TFSTS KHS(FYLF TRANSMTSS
a [T POFS SN Ry LFAFRATTING PEFURDS] , SENDTNR THEw

* AND HRIMGTINA THFM KACK TN FNR ((PMPAR SN

ny TESI=RFC,
N2 FILLFR PIf Y(12Y VALNHE “TEST RFCNRD ",
N TR=CMT PIF 099G VAl yF 7EPQ,
ne FILLFR PIr Y(S4) VALME SPACES.
N2 FILLFR PTC X(10) VALUE "aarkhaxthrx™
01 FQF=REr,
NP FYLLEP - PIFf Y(3) VALNIE "FOF",
h2 FILLFR PIf X(TD VALIE SPACFS.
01 FR=MSGT,

|l
o

Figure D-2. COBOL BSC Application Example

D-13

* FORC A MORF NETATIF DFSERTITOYN PRFED T JHE (FoQ A
» [FST SPFECTYRTCATTQON FOR FOBOI FOMMIILTCATTNS
ENV]PONMENT ApVS]Ny,
COMETLIRATY M QEFTT (M,
SHHUKRCEaCNMPTED | HTSeaSFRTERaky LFVFL=h.
ORTIECT=COMPYTEDR | HTS=SFRTES=Al LEVFL=h,
L]
TANPUT=NYTPUT SF(TNwN,
FINE=CONTROL,
*
CEVLEF] Tennryoyy
ASS[ny TN 0],
OARCAMI74T AN [SENUERT AL aT [k v P,
ACFESS | < SENUFLT A,
FHE STATUS Ty ("1 =4TaT,
SELEFT Jafnpny
ASSInN 1IN AQ,
ORCAMIZAT IO S SpPUERTIAL wTIH VB,
A(CESS |9 SENUFLT I AL,
Flte STATyYS 1§ JMeciaA],
*
NATA NTVTISTuN,
~
FILE SF(TINN,
Fn TaNyTPRH]
BLACY FOMTAINS | wF(NKNS,
I ALl Reryepe ApF Q]ANHADU.
ny PLT=0fr oIr vagpy,
*
Fo TaT?i,PyT
RLNCK COMTAIMS | RFCARNS,
| AREl REF(RNS BRF STANDADD,
N1 Tn=RFC PTC xfHy0),
*
WOPKTNR=STARAGF SErT1TOM,
*
77 TH=STAT oIr Yy VAl UF SPACFS.
77 NUT=SjiA] PIC XX VALUE SPACES,
77 MAYSCNT PTC 9099 VAL'IE 1001,
77 W=TNPUT PIC X(6) VALUE "TNPUT ",
77 WeNUTRIIT BIr Y (A) Val UF "ohteyrte,
77 WaNprFy PIr Y(5) val yfF "QPEN "
T7 W=efLNSF PYC XfY%) VALUE “FLNSF",
77 W=READ PIr Y(%) VAl UF "RFAD "
77 WeWRTIF pPTC X(%) VALHE “WRTTE"

CBO3

*

N F1lLLFR PIC x(1A) VALNE "Rgf TEST=- FllE=- ",
ng F=FIIE ©PIrf Y(A) VALIE SPACES,
ng FIILFR PTC x(10) VAL!'IE " PRURLFM= ",
N2 F=TYPF - PTC X(H) VAl UF SPACFS,
ne FILLFR PIf Y (9) VAt UF " STATHS- ",
fp F=STATY FTC XY VAL'IE SPACES,
N1 Fr=MSG?,

ne FIILFR PIF Y(2KY VALIE "RSF TES]= My mATCH, PEFURD=- ",

ng QAD_Dtr n[r O(u) VAIUF 7EDUCS.
Ny FyT=Msr,
N2 FTLLEDP PIF Y (0) VAL'E "RGr Fyl= ",
NP FINAL=CMNT PTC 9f4) VAI UF 7ERQFS,
A2 FTLIEDR PIF Y (20) VAl YyF " DECHRDS] TRANSMTTTEN"

PROACFDHKWF DIVISINN,
HSFKFEP,

MOVE ZFRPES T TOR=CMNT,
NPFN=UP,

APFw IMPHUT T=TMPHT,

T [M=STAT nNNY ENUAL "AQ"; MOYF WanpEjn [N F=TYPE
fO [N TN-FPR,

NPFN ONTPUT T=NyTEHT,

TF UlT=STAT NGT Fllal "gn"e MuVE w=OPFM T p=-TYPF;
N 10 NUT=FwP

MASTFK,
ADN 1 T JReFT,
MUVE IFST=REF Ty ONT=KFC,
PEAGY, '
PEAD. T=[MPHT AT FND; NyF TR=CMNT TN FINAL =0T
NISPLAY Fol=M5f; 6N TU CIySE=uP,
TF [M=QJA] = ®"na"; N Ty (OMPAPH,
TF IMN=STAT = “Q["; LN T wWPITHY,
VOVE w=RrRFAD Ty F=[YHF,
fO 1N Tu=FRK.,
WRTTFY, .
WRTTE NUT~2Fr
TE ONT=STAT = "gn": iy JN FOMPAKRF,
TF U T=8TAT = "uT%e: @ 10N WRT[FY,
Vil weaR [T 1N FaTyOg
fo 1IN NyT=FRR,
FOMPARF
TP [MePrpr TS FPUAL 1N TEpSlenf(: fo 10 ASTFE v,
T (M1 =wFC = PAF=xF(: CO 1N FLONF),
MOVE [RPaPNT T(pwhi=kFlL,
NIQPL AY FiReAS,D
Cie 1N S[AR=pn,

Tau=FPw,
VVE A= MRNT N FeFLE
MOVE [MeQ)JAT TN FaQTAT
fi) 10 Npanms,
NYT=FrO
MOVE a=u!1PuT T b ep TLE,
MUVE ullf=STAT T peSTAT,
NP=MeG,
NISPI AY FR=MS(T,
rO TN STNP-PR,

C! 0SE=-UP.
FLNSF T-TNPYT,

Figure D-2 (cont). COBOL BSC Application Example

D-14

CBO3

7

o ey

1?23 VF IN=STA] IS NOT FQIAl "QN": MOVE w=(Cl (St TN F-TyPFy
124 RO TN TN=ERR,

125 O TN STNP-prn,

176 rLNSF2 .

127 FLNSF T-nyTpPuy,

128 TF OUT=STAT TS NNT EOyaL "Ny"; MNVFE wWar | NSE Ty p=TVYPF;
129 : GO TN NUT=FRP,

110 RO TN MASTFR,

131

132 _RTNPepr,

113 SINP RIUN,

134 FND CuRO!,

NO DTARNNSTICS

GrOSs rFoRot
FILF MA@
LINF LFN IFN

16 09 0T=Msn 1=0t1pPuT VNYF Mo
21 10 AN=MgN T=IMPIIY 0nC? no

Figure D-2 (cont). COBOL BSC Application Example

CBO3

FORTRAN Application Example for TTY

The FORTRAN source program (program name FORCL4) 1listing
shown in Figure D-3 is an example of a FORTRAN application pro-
gram involving a TTY remote device.

The program processes eight message groups before terminat-
ing. It first issues four data messages to the remote terminal
and to the operator terminal. It issues the write requests from
alternate data buffers to ascertain the status of the interfaces
among the file system, FORTRAN Compiler, and the communications
subsystem. When the four initial message groups are complete,
the program requests input data from the operator terminal.

After the operator enters a message, the operator terminal
displays the message and an acknowledgment message. When the
fourth message is received, the application program terminates.

Every input message, which is preceded by a blank or NUL

character that is not displayed, may have up to 59 ASCII
characters.

The system continually monitors the status register, dis-
playing error condition codes or status messages on the operator
terminal. For example, a condition indicating no data available
(buffer busy) at the remote device, lasting more than 20 seconds,
causes a status return code of 516,, . The program continues the
read attempt since that status is not an error condition. The
read statement is issued only after a status code 0,, is returned
to indicate that data is available (buffer not busy).

FORCLY

&
o
[aNeNeNaNa)

49 70
50 A0

53 90

L
-
s EaNesNeNeNeNeNeNa)

66 100
67 110

69 112

76 120

78 121

&1 125

83 C

GCNS6~-1 FORTRAN RFV: 0101 D 1977/04/20 1540:00.3

OTPUT MESSAGES TO REMDTE DEVICE (LFN 9)
4 MESSAGES ISSUED TO DEVICE AND LFN4
FROM ALTERNATING RUFFERS

WRITE(9,R80)CW3,N
FORMAT(1X,A4R,T2)
WRITE(4,B80)CW3,N

G0 TO0 20
WRITE(9,B0)CW4,N
WRITE(4,80)CW4,N

IF(N .EQ. 4) GO TO 15
GO Tn 20

INPUT FROM REMQTE DEVICE (LFN A)
4 MFSSAGFS ALLOWFD

SPACE 1 CHARACTER AND TYPF UP TO S9 CHARACTERS
FOLLOWED BY A CARRIAGE RETURN

TYPE SECOND MESSAGF WHEN DEVICF TYPES
"MFSSAGF X RECD")

READ(R,110)CR1
FORMAT(1X,60A1)
WRTITE(4,110)CRY

CALL ZFSTOT(9,1STAT)
IF(ISTAT .FQ, 0)GO TO 114
GO TO 112

WRITE(9,115)N
FORMAT (11X, '"MESSAGF ',T12,' RECD'")
IF(N .NE, R)GD TO 20

GO TO 130

READ(R,110)CR2
WRTTE(4,110n)CR2

CALL ZFSTNT(9,ISTAT)
IF(TISTAT .EQ, 0)GO TO 125
GO TO 121

WRITE(9,115)N

IF(N .NE. BR)GO TO 20

84 C CLOSE UNITS AND -EXTT

as C
86 130

89 140

CALL ZFSTOT(9,ISTAT)
IFC(ISTAT .FG, 0) GO TO 140
GO TO 130

CLOSE(UNTT=8)

CLOSE (UNTT=9)

sTOP

END

0 DIAGNOSTICS

Figure D-3.

D-17

PAGE:

FORTRAN Application Example for TTY

02

CB03

" FORCLU

ODNFTNE NN -

OO OOOOMNMOO

27 1S

LY
0
co0o

32 20

34 30

38 40

40 S0

41 60

GCNSh=1 FORTRAN REV: 0101 n 1977704720 1540200,3 PAGE: 01

FORTRAN COMMUNTCATION PRNOGRAM = FORCLUY
ILLUSTRATES USE 0OF ZFSTIN AMD ZFSTOT

WRITES 4 MFSSAGES T0O THE OPERATQOR'S TFRMINAL (LFN 4)
AND SEND TN A RFMNTF DEVICE (IF, TTY) ON LFN 9 VIA MLCP
FOLLOWED RY A RFAD OF 4 MESSAGES FRNM THF SAMF RFMOTE
DFVICFE (IF, TTY) ON LFN B, ALL MESSAGES ARF DISPLAYED
NN THF OPFRATNR'S CONSOLF, AND RFCETVED MESSAGES ARE
ACKNOWLEDGED ON THE RFMQTF DPEVICE
DEVICF STATUS IS REPORTED USING,

CALL ZFSTIN(I,J) FDOR INPUT, AND

CALL ZFSTOT(T1,J) FOR OUTPUT,

PRNGRAM FORCIL Y

CHARACTER x4B CW3,Cw4

CHARACTER CR1(60),CR2(60)

DATA CW3/'THIS IS COMM, OUTPUT TO THF TTY ~ MFSSAGF NUMBER'/

J
N
K =
CwWd = Cw3
OPEN(UNIT=R)
OPEN(UNIT=9)
GO TO 20

K = R

[L)
0900

CHECK COMMUNICATION DEVICE STATUS
USING ZFSTIN OR ZFSTOT -ROUTINE

N = N + 1

J =0

IF(K.,EQ.B)CALL ZFSTIN(K,ISTAT)

JTF(K.FQ.9)CALL ZFSTOT(K,ISTAT)

IF(ISTAT .EQ, 0) GO TO (70,90,70,90,100,120,100, 120)'
IF(ISTAT = §16)50,40,50

J=J +1

IF(J LT, 10000) GO TO 30

WRITE(4,60)N,ISTAT .
FORMAT(1X, 'STATUS RTN MESSAGE NO,',1I2,' STATUS TYPE',I4)
IFCISTAT ,EQ, S16) GO TO 25

GO 70 140

Figure D-3 (cont). FORTRAN Application Example for TTY

D-18 CBO03

prs =28

Assembly Language Example for TTY or VIP Using Physical I/0

Figure D-4 shows an assembly language source program
(SENDER) , using Physical I/0, that tests TTY or VIP terminals by

sending character strings to the terminals.

The user enters SENDER 07 to test a TTY terminal, or SENDER
OA to test a VIP terminal. The values 07 and OA are the logical
resource numbers (LRNs) of the TTY and VIP, respectively.

The program will halt on the first instruction, and will
continue when the Execute button is pressed.

D-19 CBO3

title

‘Libm
xdef

*

sender hit
ldv
tdr
cmy
bl
Ldb
tdr
Ldb
Ldr
ldv
cmy
bg
tdv
tLh
Ldh
blz
Ldv
h
Ldh
blz
sol
or
Sa Ldv
Lab
$b sth
$RQIO,
nop
bnez
lab
binc
ldv
exit ldr
$STRMRQ,

*

iorb00 resv
dc
dc
resv
dc
dec
dc
dc

iorb20 resv
de
dec
de
dc
dec
dc
dc

iorb28 resv
dc
dc

Figure D-4.

sender

exec_Llib
sender

$r3,0
$r7,+%b7
$r?7,2

>+%a
$b6,+8b7
$r6,+8b6
$bS,+%b7
irSpOSbS
$r1,2

$r5,2

exit

Sr‘l,o .
$r1,3b5.8r1
$r3,<tab.sSr1
$Sr3sexit
$rl1,1
37,3053 7 1%
$r1,<tab.sr1
$risexit
$r3,4
$Sr3,=38r1
$rbo=-14
$b4,iorb00
$r3,8b4.8af#

>$+2
$ri1,>exit

$b4,8bb.Safr2+6

$r&,>-%b
$r1,0
$r2,=%r1

$af,0
x*'01°
x'0a’
$af,0

D-20

$r3 <- default Lrn

$r7 <- parameter count
test parameter count < 2

$bé <= al(p1 char count)

$r6 <- p1 char count

$bS <- a(p2 char count)

$rS <- p2 char count

$r1 <= 2 = invalid lrn

test char count > 2

$r1 <- 0

$r1 <= 1st char (ascii)

$r3 <- 1st char (hex)
test for bad char
$r1 <- 1

- _a . - Y 4 RN
POV N cnNU Lirar \vadc vy

$r1 <- 2nd char (hex)
test for-bad char

$r3 <= $r3x16

$r3 <- hex Ulrn

$r4 <- iorb count

$b4 <- a(1st iorb)
$r3 => Lrn :

trace

test for error

$b4 <~ a(next iorb)
test iorb count = o
$r1 <=0 = success

$r2 <- error code

Assembly Language Example for TTY or VIP
Using Physical I/0

CBO3

e

iorb30

iorb38

iorb40

iorbé48

iorb50

iorb58

iorb60

Figure D-4 (cont).

dc
dec
de
dc
dc
resv
dc
dec
dc
dc
dc
dc
dc
resv
dec
dec
dc¢

dc
dc
dc
dc
resv
dc
de¢
dc
dc
dc
dc
dc
resv
dc
dc

dc¢
dc
dc
dc
dc
resv
dc
dc
dc
dc
dc
dc
dc
resv
dc
dc
dc
dc
dc.
dc
dc
resv
dc
dc
dc
de¢
dc

- de

dc

Assembly Language Example
Using Physical I/0

D-21

for TTY or VIP

CBO3

iorb68

iorb?70

iorb?78

-
(<)
-
cr
b}
~)

msg20
msgl8
msg30
msg38
msg40
msgé48
msgS0
msg58
msgb0

msg6b8

Figure D-4 (cont).

resv
dc
de
dc
de
dc
de¢
dc
resv
de
dc
de
dc
dc
dc
dc
resv
dc
dc
dc
dc
dc
dc
de
ifesSv
de
dc
resv
dc
de
ac
dc
dc
text
dc
dc
text
dc
dc
text
dc
dc
text
dc
dc
text
dc
dc
text
dc
dc
text
dc
dc
text
dc
dc
text
dc
dc
text

saf,0
‘|‘1|
x'41"
<msg68

x*20'

$af,0
x*'01"*
x'41°?
<msg?70

x'20°*
$af,0
x'41"
x"1l
<msg78

x'20°'

OCOX OWNxX X 9#wOO
- @ = eg
o -~ 0 O -
W N O =N

x'42°

120 21 22 23 24 25 26 27 !
2'202020202120222023202420252026202720"
x'41"

128 29 2A 28 2C 2D 2E 2F !
2'2020282029202a202b202¢c202d202e202120"
x'41°

*30 31 32 33 34 35 36 37 !
2'202030203120322033203420352036203720°
x'41°"

*38 39 3A 3B 3C 30 3& 3F
2'2020382039203a203b203¢203d203e203fF20"
x*41"*

Y40 41 42 43 44 LS 46 47
2'202040204120422043204420452066204720°
x'461"

Y48 49 LA 4B 4C 4D 4LE 4F
2'2020482049204a2204b204c204d204e204120°"
x'41°*

'S0 S1 52 53 54 S5 S6 57
zf202050205120522053205420552056205720'
x'61¢ :

'58 59 SA SB SC.SD SE SF !
2'2020582059205a205b205¢205d205e205¢20°
x'41"

'60 61 62 63 64 65 66 67 *
2'2020602061206220632064620652066206720°"
x*41) :
'68 69 6A 6B 6C 6D 6E 6F

Assembly Language Example for TTY or

Using Physical I/O

D-22

VIP

CBO3

ABeon

msg?70

msg?78

tab

Figure D-4

dc
dc
text

dc
text
dc

dc
dc
dec
dc
dc
de
dc
dc
dc
dc
dc

dc
dc
dc
~de
dc

dc
dc
dc
dc
dec
dc
dc
dc
dc
dc
dc
dc
dc
dc

end

(cont) .

2'2020682069206a206b206c206d206e206120°

x'41?

*70 71 72 73 74 75 76 77

2'202070207120722073207420752076207720*

x*41

'*78 79 7A 78 7C 7D 7E 7F

2'2020782079207a207b207c207d207e207£F20"

2'80808080"
2'80808080"
2'80808080°*
2'80808080"°
2'80808080"
2'30808080°*
2'80808080°"
z2'80808080"
2'30808080°*
2'80808080°"
2'80808080"
2'80808080"
2'00010230"
2'04050607°
2'08098080"
2'30808080"
2'800a0b0c*
2'0d0e0f80"°
2'30808080"*
2'80808080°
2'80808080"
2'380808080°
2'80808080"
2'80808080"°
2°'800a0b0c*
2'0d0e0f80"
2'80808080"
2'80808080°"
280808080
2'80808080"
2'80808080"
2'80808080"

sender,sender

00
04
08
oc
10
14
18
1C
20
24
28
2¢
30

34

38
3C

02
06
0A
0€E
12
16
1A
1€
22
26
2A
2E
32
36
3A
3E
42
46
4A
4E
52
56
SA
SE
62
66
6A
6E
72
76

7A.

7€

03
07
o8
OF
13
17
18
1F
23
27
28
2F
33
37
38
3F
43
47
48
4LF
53
57
58
SF
63
67
63
6F
73
77
78
7F

Assembly Language Example for TTY or VIP
Using Physical I/0

CBO3

sets,

APPENDIX E

ASCII AND EBCDIC CONTROL CHARACTERS AND CHARACTER SETS

Tables E-1 and E-2 illustrate the ASCII and EBCDIC character

respectively.

In addition to the ASCII characters,

Table

E-1 shows the hexadecimal equivalents; Table E-2 shows the binary
and hexadecimal equivalents of the EBCDIC character set.

Following are lists of the control characters and special
graphic characters that appear in the two tables:

CONTROL CHARACTERS

ACK
BEL
BS

BYP

CAN
cc
CR
cul
cu2
cu3
DC1
DC2
DC3
DC4
DEL
DLE
DS
EM
ENQ
EO
EOT
ESC
ETB
ETX
FF
FS
GE
GS
HT

Acknowledge
Bell '
Backspace
Bypass.

Cancel

Cursor Control
Carriage Return
Customer Use 1
Customer Use 2
Customer Use 3

Device Control 1
Device Control 2
Device Control 3
Device Control 4
Delete

Data Link Escape
Digit Select

End of Medium
Enquiry

Eight Ones

End of Transmission
Escape

End of Transmission Block
End of Text

Form Feed

Field Separator
Graphic Escape
Group Separator
Horizontal Tab

IFS
IGS
IL
IRS
IUS
LC
LF
NAK
NL
NUL
PF
PN
RES
RLF
RS
SI
SM
SMM
SO
SOH
S0Ss
SPp
STX
SUB
SYN
™
uc
us
VT

Interchange File Separator
Interchange Group Separator
Idle _
Interchange Record Separator
Interchange Unit Separator
Lowercase

Line Feed .

Negative Acknowledgment
New Line

Null

Punch Off

Punch On

Restore

Reverse ‘Line Feed

Reader Stop '

Shift In

Set Mode

Start of Manual Message
Shift Out v

Start of Heading

Start of Significance
Space

Start of Text

Substitute

Synchronous Idle

Tape Mark

Uppercase

Unit Separator

Vertical Tab

CBO3

SPECIAL GRAPHIC CHARACTERS

¢ Cent Sign > Greater-than Sign
. Period, Decimal Point ? Question Mark
< Less-than Sign \ Grave Accent
(Left Parenthesis : Colon
+ Plus Sign # Number Sign
i Logical OR @ At Sign
& Ampersand ' Prime, Apostrophe
! Exclamation Point = Equal Sign
$ Dollar Sign " Quotation Mark
* Asterisk ~ Tilde
) Right Parenthesis { opening Brace
; Semicolon J’ Hook
- Logical NOT Y Fork
- Minus Sign } Closing Brace
/ Slash N Reverse Slant
| Vertical Line d Chair
, Cocmma | Lona Vertical Mark
% Percent [Opening Bracket
— Underscore] Closing Bracket
Circumflex
Table E-1. ASCII/Hexadecimal Character Equivalents
H1
H2 0 1 2 3 4 5 . 6 7
0 NUL | DLE [SP | 0) P ' P
1 SOH | DC1 |! 1 A Q a q
2 STX [DC2 |” 2 B r b r
3 ETX |DC3 |# | 3 c | s c s
4 EOT | DC4 4 D T d t
5 | ENQ|NAK|% |5 | E | U | e | u
6 | ACK|sYN|& |6 | F | v | ¢ v
7 BEL | ETB |’ 7 G w g w
8 BS CAN | (8 H X h X
9 HT EM |) 9 I Y i y
A LF | SUB |* J z j z
B | VI. |ESC |+ | ; K | I k|
C FF | Fs |, < L Nl }
D |CR |GSs |- | = | M |1 m| }
E SO RS > N AN n ~
F SI Us / ? (0] - 0 DEL
E-2

CB03

Table E-2.

EBCDIC/Hexadecimal/Binary Character Equivalents

]}Bit Positions 0,1

11 J}Bit Positions 2,3

l}First Hexadecimal Digit

)
~ 2
g
w3
< 3
g £ -
: = 01 0 11
z 2
= £ [oo ol 10 1 00 - | o1 10 1 00 o1 10 1 00 o1 10
2 4 o 1 2 3 4 6 7 8 9 A B c D E F
0000 |0 |NUL |DLE |Ds s | & - @£ vl oo
0001 [! |SOH |DCl |[SOS / a i ~A A J 1
0010 |2 IsTx |DC2 |FS | sYN b k s B K S 2
o011 |3 |ETX |T™ ¢ 1 1 C L T 3
0100 | 4 |PF RES | BYP [PN d m u D M %] 4
0101 {5 |HT |[NL |[LF |Rs e n v E N v 5
0110 |6 |LC BS ETB | UC f o W F [) w 6
orir |7 |pEL 1L ESC | EOT g p x G I3 X 7
1000 | 8 [GE* [caN , h q y H- | Q Y 8
1001 |9 |RLF® |EM @ i r z 1 R z | 9
1000 |A |[sMmM |[cc |sm ¢ ' . ’ P
1011 | B | VT CcuI* | cu2? | cus?| . $, #
oo | ¢ [FF |IFs pca | < * % @ 5 d?
o1 {p [crR |i1Gs | ENQ | NAK | ¢) - '
1110 [E [so IRS | ACK + > = v
i | F o [si ws |BEL [sus | ' B ? O EO?
UThis character is not supported in the 2780 character set.

E-3

CBO3

APPENDIX F

DEVICE-SPECIFIC CONTROL CHARACTERS

This appendix lists the nonalphanumeric control characters
for devices supported by the communications subsystem.

NOTE: A slash between two characters indicates that both
keys are pressed simultaneously, e.g., CTRL/H indi-
cates that the CTRL key and H key are passed at the
same time.

Table F-1. TTY Nonalphanumeric Control Characters
Hexadecimal
Character Value Function Key Strokes

ENQ 05 Answer back CTRL/E

BEL 07 Ring Bell CTRL/G

BS 08 Backspace (nondestructive CTRL/H

cursor backward)

LF 0A Line feed CTRL/J

FF ocC Form feed (clear screen) CTRL/L

CR 0D Carriage return CTRL/M

DC2 12 Nondestructive cursor CTRL/R

forward

Sp 20 Space CTRL/P or

space bar

NOTES: 1. 1In a terminal with lowercase capability,

uppercase characters require the use of
the shift.
2. DC2 is an option for VIP 7100/7200 only.

F-1

CB03

Table F-2. VIP Nonalphanumeric Control Characters
Hexadecimal
Character Value Function Key Strokes
BS 08 Backspace. CTRL/H
HT 09. Horizontal tab. CTRL/I
LF oA Line feed. CTRL/J or LINE FEED.
FF 0C Form feed. CTRL/L
CR 0D Carriage return. CTRL/M or RETURN
DC1 11 Reverse line feed. CTRL/Q
DC2 12 Forward space CTRL/R
{(nondestructive
cursor forward).
DC3 13 Defines next two CTRL/S
characters as line
character position.
DC4 14 Page return. CTRL/T
ESC 1B First of several [
2-character
sequences used for
VIP control.
Fs 1C First character of a | \
2-character sequence
to define beginning
of a fixed field.
GS 1D Defines start of]
variable field.
sp 20 Space. CTRL/P or space bar
5E Defines start of
blank field.

CBO03

Table F-3. BSC Nonalphanumeric Control Characters
Hexadecimal
Character Value Function Key Strokes
NUL 00 Nontransparent data CTRL/@
SOH 01 Nontransparent data; CTRL/A
last record of file
STX 02 Transparent data CTRL/B
ETX 03 Transparent data; last CTRL/C
record of the file
NOTE: Table applies only to advanced data transmission

mode, and describes control byte for line control.
The control byte is neither sent nor received over

the line.

CBO3

APPENDIX G

DUMP ROUTINE (DUMCP) FOR MULTILINE COMMUNICATIONS
PROCESSOR (MLCP)

The Honeywell program DUMCP, which is provided in source and
object format, dumps the contents of memory (all or part) of the
multiline communlcatlons processor (MLCP). DUMCP has the follow-
ing functions:

o In the dump, shows formatted lists of line control
tables, communications control blocks, and communications
channel programs.

o Can print the dump on the operator terminal, line
printer, or serial printer.

o Can be used by the programmer for:
- Aid in debugging application programs
- Documenting problems

- Pinpointing hardware, software, or firmware
‘difficulties

DUMCP cannot run in the batch task group ($B).

DUMCP uses one MLCP channel to transfer dump data from the
MLCP to main memory (in block-mode read). The user must there-

fore specify that MLCP channel and the channel of the output
device that will produce the dump.

LINKING THE BOUND UNIT CONTAINING DUMCP

The bound unit that contains DUMCP can be invoked in either
of two ways: ‘

o It may be loaded and activated as a self-contained unit,
by the operating system.

G-1 CBO3

o It may be activated by the application program, at one of
three starting locations, when the application is linked
with DUMCP.

Linking DUMCP as a Self-Contained Bound Unit

To execute‘the bound unit that contains only DUMCP, the user
must load the Linker (with the LINKER command), specifying the
following Linker directives (see Program Execution and Checkout

manual) s

SYS

(Optional) Designates that the bound unit can be a
system task in the system task group.

LINKN DUMCP

Reguests that tile objeci bound unit DUMCF be linked.

VDEF RDMLCP, X'nnnn'

Designates nnnn as the MLCP channel for block-mode

read.

VDEF DMPOUT, X'nnnn'

Designates nnnn as the channel number of the device
where the dump is to be printed, which must be an
operator terminal, line printer, or serial printer.

MAP

Requests a link map.

QUIT

Terminates execution of the Linker when the bound unit
has been created.

NOTES: 1.

More than one bound unit may be linked, each
with its own unique name, depending on the type
of system and on the MLCP channel to be used for
the dump routine.

When the purpose of the dump is to diagnose a
channel error, that channel (value nnnn) should "
not be designated to be used by the dump
routine.

G-2 o CBO03

Example:

In this example, a linked version of DUMCP is placed on the
volume Z10107. First the working directory is changed to
one that contains the object module DUMCP.O; then the Linker
is called, according to the Linker directives shown below:

CWD "Z10107>SOURCE
LINKER DUMCP -COUT >SPD>LPT00 -SZ 8

The user need not specify a relocation base or start
address. The bound unit can then be executed.

Any error will result in an error message, and/or error
code, issued at execution time to the operator terminal. The
System Messages manual describes DUMCP error messages.

Linking DUMCP With the Application Program

Either of the following methods can be used to specify
values for the dump output device and for the block-mode read
channel that will transfer dump data from the MLCP to main
memory : '

1. Add the following assembly language XDEF external label
definition statements to the source module DUMCP.P:

XDEF (DMPOUT,Z'nnnn')
nnnn designates the channel of the output device
XDEF (RDMLCP,Z'nnnn')
nnnn designates the block-mode read channel,
or
2. During linking, specify the following VDEF directives:

VDEF DMPOUT,X'nnnn'

The value nnnn designates the channel of the output
device.

VDEF RDMLCP,X'nnnn'

The value nnnn designates the block-mode read
channel.

When Linker directives are specified to create the bound

unit, enter LINKN DUMCP to request that the object unit DUMCP be
linked.

G-3 CBO3

After DUMCP is linked to the application, the dump routine e
can be entered in any of three ways (described below) according
to whether the entry point is specified as STRTDO, STRTD1l or
STRTD2.

In any case, the application must include an XLCC (define
external locations) instruction; i.e., XLOC STRTDO, XLOC STRTDl
XLOC STRTD2. '

STRTDO ENTRY POINT IN USING DUMCP

When entry point STRTDO is used, DUMCP will halt at first
entry. The user must then set certain register (see below)
through the control panel before execution of DUMCP is resumed.
These register values override the channel numbers specified in
the source program or when DUMCP was linked with the application.

NOTE: Register values for dumping the DLCP (dual line com-

munications proccsser) of the Mcdel 23 Central
Processor are shown separately.
Register Value to be Entered
SR4 Channel number of dump output device
SR5 Channel number used for block-mode read
SR6 0000; or first memory address of area
to be dumped :
SR7 OFFF (13FF for Model 23); or the last
memory address of area to be dumped
$B5S Return address. 1If no value is entered,
default is that the current address is
returned to the system.

The values in the registers control the contents of the
dump, as shown in Table G-1.

The format of the entry to specify entry point STRTDO is:

JMP < STRTDO

The dump routine dumps the MLCP (DLCP) memory to the speci-
- fied device. Register $R2 (Table G-2) indicates results of the
dump. When the dump is completed, control returns to the appli-
cation at the instruction pointed to by register $BS5.

N

G-4- CBO3

STRTD1 ENTRY POINT IN USING DUMCP

When using entry point STRTD1l, the user must set certain
registers (see below) before starting to execute the dump. These
register values override the channel numbers specified in the
source program or when DUMCP was linked with the application.

NOTE: Register values for dumping the DLCP of the Model
23 Central Processor are shown separately.

Register Value to be Entered
SR4 Channel number of output device for the dump
$R5 Channel number used for the block-mode read
$R6 0000; or the first memory address of area to
be dumped
SR7 OFFF (13FF for Model 23); or the last

memory address of area to be dumped

The values in the registers control the contents of the
dump, as shown in Table G-1.

See Figure G-1 for detailed example of dump formats and
contents. '

G-5 ‘ CBO3

Register Values and DUMCP Dump Contents

Register and Contents

Resulting Dump Contents

$R6 0000 Fully formatted dump, comprising line con- .
$R7 OFFF trol tables, communications control pro-
13FF grams, and communications control blocks
(Model 23) '
$R6 0000 Line control tables only
SR7 OlFF
$R6 O0EO00 Communications control blocks only
$R7 OFFF
(Model 23)
SR6 1200
SR7 13FF
$RE Other Unfcrmatted dump of MLCD area within the
than: addresses (byte addresses) specified in
0000, or $R6 and $R7
OEOO
1200
(Model 23)
SR7 Less
than:
OFFF
13FF
(Model 23)

The dump routine

the specified device.

indicate a successful
is completed,

control

The format of the entry specifying entry point STRTD1 is:

LNJ $B5,<STRTD1

immediately dumps MLCP (or DLCP) memory to
The contents of $R2 (see Table G-2) will

dump or an error condition. When the dump
returns to the application program at the

instruction pointed to by register $BS.

CBO3

Table G-2. Register $R2 at Dump Execution - DUMCP
Linked to Application

Register S$R2
Contents Meaning
0 Dump successfully completed; no errors.
1 Invalid MLCP channel numbers.
2 Device other than operator terminal or
serial/line printer specified as the
output device.

STRTD2 ENTRY POINT IN USING DUMCP

STRTD2 should be used when the block-mode read channel
(RDMLCP) and the output-device channel number (DMPOUT) values,
specified in XDEF statements or in Linker VDEF directives (see
above) are to be used without change. Registers need not be

changed prior to the dump request.
The format of the entry specifying entry point STRTD2 is:
LNJ $B5,<STRTD2

The contents of register SR2 (see Table G-2) will indicate
successful dump or an error condition.

When the dump is completed, control returns to the applica-
tion program at the instruction pointed to by $B5.

DUMCP DUMP FORMATS

Formatted dumps of the MLCP comprise the following areas,
whose formats are shown in Figure G-1 below.

o Line control table (LCT) area, byte locations 0000
through 01FF. The LCT has 64 bytes, each shown in eight

groups (four for Model 23) for easier reading.
o Channel control program (CCP), byte locations 0200

through ODFF (11FF for Model 23). The format shows 16
bytes per line for easier reading.

G-7 CBO03

Communication control block (CCB) area, byte locations
OEO0 through OFFF (1200 through 13FF for Model 23).

There are four CCBs per channel. CCBs 0 through 3 are
for the receive channel, CCBs 4 through 7 for the send
channel. The dump shows the address, range, control
byte, and status for each CCB. An R following an address
indicates that the address field refers to the right byte
of a word. When there is no R following the address, the
the address refers to the left byte.

NOTE: CCBs are used in the following order: For the
receive channel, CCB 1 is used first, CCB 0 used
last. For the send channel, CCB 5 is used first,
CCB 4 used last.

DUMCP PROGRAMMING

The following DUMCP programming considerations apply:

l.

The application source program contains a macro call,
making it necessary to preprocess the source through
EXEC_LIB when reassembly is required.

When possible, use an inactive MLCP channel for the
block-mode read channel, because the channel specified
will be initialized and corresponding channel control
block list reset. ’

To allow variations of RDMLCP and DMPOUT values, it may
be convenient to line more than one iteration of the
dump, with different names.

When a printer whose channel number was designated is
not ready or is disabled, the DUMCP program loops until
the printer's READY button is pressed.

DUMCP does not provide trap handling.

DUMCP executes at interrupt level 3. Therefore, its

execution preempts all system activities including clock
functions. .

G-8 CBO3

6CO86

LeY
0000
0001
0002
0003
0004
000S
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
003S
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
005S
00S6
0057

FC
00
00
00
00
00
00

00
00
01
00
00
00

FC
00
te6
00
00
0?2
53
81
00
00
30
00
00
0E
00
00
00
00
FS
SE&
82
00
Do
03
06
82
06
86
00
00
00
17
FC
00
E6
00
00
00
82
2c
00
00

Figure G-1.

FCao
LINt

MCP DUMP REV 3
RAM READ FROM CHAN,

LINO LIN2

00
00
o
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
0o
00
00
00
00
00
0o

LIN3
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

DUMCP Dump Example

G-9

LING

00
00
00
00
00
no
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

LINS

00
00
00
00
00
00
00

00
00
00
00
00
09

LING

00
00
00
00
00
00
00

LINT

00
00
00
00
00
00

00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

CBO3

0550 S1 10 90 00
0560 09 EO0 95 EO
0570 07 S0 1D 92
0580 01 A2 52 3D
0590 51 1F S0 1IC
05A0 E1 03 Eo0 BE
0580 EA EO0 AF EO
05C0 92 00 E1 OF
0500 EO 09 01 AQ
0SE0 S1 11 02 06
05F0 Ei1 03 EO0 BE
0600 EO 09 EO AE
0610 01 50 3A 92
0620 92 7C E1 36
0630 E1 3A EO D3
0640 19 51 1F S0
0650 B6 90 05 EO
0660 S1 10 90 00
0670 00 S1 10 EO
0680 B84 82 00 80
0690 00 00 00 00
06A0 00 00 00 00
#x ALL ZEROS #%
06CO 00 00 00 00
0600 31 00 00 00
*% ALL ZEROS *#
CCB AREA
ccs ADDRESS RANGE
LINE 0
0000 000000 0000
0001 005747 01Fu
0002 003E71R 0000
0003 000000 0000
0004 0045E9 0000
0005 0045C3 0000
0006 0045F9 0000
0007 006FF7 0000
LINE 1
0000 000000 0000
0001 003E98R 0000
0002 006DF3R 0001
0003 000000 0000
0004 000000 0000
0005 000000 0000
0006 000000 0000
0007 000000 0000
LINE 2
0000 000000 0000
0001 000000 0000
0002 000000 0000
0003 000000 0000
0004 000000 0000
0005 000000 0000
0006 000000 0000
0007 000000 0000
LINE 3
0000 000000 0000
0001 000000 0000
0002 000000 0000

CONTROL

STATUS

0000
000E
1000
0000
1000
1000
1000
Fo000

0000
5200
SO0AQ
0000
0000
0000
0000
0000

0000
0000
0000
0000
0000
0000
0000
0000

0000
0000
0000

Figure G-1 (cont). DUMCP Dump Example

G-10

CBO03

0058 00 00 00 00 00 00 00 00

00S9 00 00 00 00 00 00 00 00
0060 FF 00 00 00 00 00 00 00
0061 16 16 00 00 00 oo 00 00
Q082 06 06 00 00 00 00 00 00
0063 ceé Cé 00 00 00 00 00 00
cce

0200 00 00 90 00 Si1 08 SO 34 34 S0 02 36 S0 14 32 01
0210 E0O FE EO 7C EO 17 SO 3D 34 90 C1 S1 14 32 01 06
0220 90 00 S1 23 S1 24 90 82 Si1 14 32 01 FOo E9 S0 37
0230 56 38 EO 0B EO 09 EO 07 EO OC EO 03 EO S6 90 04
0240 S4 30 02 EO E7 EO 51 50 1C 92 FF F1 05 90 10 60
0250 01 S0 3A 92 FF Ef 11 SO0 3B E2 07 90 02 63 01 EO
0260 15 90 02 62 01 EO OF SO0 38 E2 07 90 02 61 01 EO
0270 05 90 02 60 01 SO0 3A 92 FF Fi{ 21 50 1C 92 FF Fi
0280 08 10 92 10 E1 1D EO 02 10 61 01 F3 EF EO 18 EO
0290 77 E0O 9A EO 71 EO B8A EO 69 EO AD 10 63 01 F3 FC
02A0 EO0 0S5 60 01 EO E4 SO 1C 92 FF F1 05 90 10 60 O1
02B0 Su 3B 05 52 3C E1 13 S0 3A 92 FF E1 07 90 1IF 63
02Co0 01 EO 47 90 1F 61 01 EO 41 90 00 S1 3B SO0 30 94
0200 80 S1 30 S0 37 92 0B E1 13 S0 3A 92 FF F1 07 90
02E0 26 61 01 EO0O 25 90 17 63 01 EO0 1F S0 3A 92 FF EI
02F0 07 90 03 63 01 EO 13 90 03 61 01 EO OD EO 97 EO
0300 91 FO0 2B EO 95 EO0O 3C EO 7A S0 23 60 01 S0 3A 92
0310 00 E1 05 S0 24 60 01 90 FF 60 01 60 01 60 01 50
0320 30 93 B0 92 80 02 F1 D8 EO D4 SO 3A 92 FF Ei OA
0330 S0 3D 62 01 62 01 62 01 06 S0 3D 60 01 60 01 60
0340 01 06 FO E7 SO 37 93 08 92 08 E1 25 S0 3A 92 FF
0350 E1 17 SO 37 S6 3E 62 01 90 FF 60 01 60 01 60 Of
0360 S0 30 94 B0 S1 30 EO 96 S50 37 S6 3E 60 01 EO E9
0370 S0 3A 92 FF E1 07 90 10 62 01 EO D1 90 10 60 O1
0380 EO0 E7 EO 2E SO 3D 34 90 00 S1 1E 90 00 S1 17 94
0390 82 S1 14 32 EO0O 18 SO 10 94 82 Si1 10 02 90 00 Si
03A0 1E E0 03 EO F2 90 80 S1 14 32 90 00 S1 03 Si1 04
03B0 01 S0 17 56 18 EO OF EO CC EO D1 EO 09 01 A0 S2
03Co 3D €1 FB EO OD SO 3A 92 FF Ef F3 01 A2 S2 3D Ei
03D0 FS S1 1F S0 3A 92 FF ELf 07 SO IF 93 7F Si 1IF S0
03E0 1F 93 Co F2 69 S0 1F Se6 1A EO 63 EO 65 EO 6D EO
03F0 SD EO SB EO SF EO SF FO S5 01 A0 51 1F 93 (Co0 FQ
0400 15 S0 1F S6 1A F0 OF EO 49 EO 0B EO 4D EO 49 EO
0410 05 EO 43 EO 63 S0 1F 04 E3 B8A 11 EO DD EO A7 EO
0420 85 E0 81 01 A2 S1 1F 93 40 F2 17 50 1F 93 7JF Se
0430 1A EO OF EO0O 67 EO O0B EO 61 EO 71 EO 05 EO 61 EO
0440 37 S0 1F 04 93 7F €3 DA 11 EO D9 EO D3 EO 39 EO
0450 CD EOC 49 EO 49 EO 49 EO S3 FEO 3F 90 FF S1 1E EO
0460 OF S0 3A 92 FF Ft 05 S0 11F EO AD S50 1F EO DS So
0470 3A 92 FF F1 AF EO 83 S0 1C 92 FF Et 03 EO Fi SO
0480 1D 92 FF F1 DD EO E9 S0 10 94 02 Si1 10 90 07 11
0490 90 00 S1 1E S1 1D 02 EO B3 EO 67 EO . 63 EO 38 EO
O4A0 65 EO CD EO E3 EO BB EO A7 EO A1 S1 1F SO0 11C 92
04B0 FF Fi1 09 SO 1D 92 00 Fi1 03 EO EB SO0 11F 92 03 E1
04CO0 09 SO0 11 94 80 St 11 EO 07 SO 10 94 01 S1 10 90
0400 00 St 1E S1 1D EO 20 EO D1 Si1 1F S0 1E 92 FF F1i
04E0 03 EO C3 90 01 11 SO 10 94 02 Si1 10 02 90 00 Si
04F0 1€ EO0O 0B EO E3 EO B1 EO AD FEO A7 EO A7 EO AB EO
0500 SD EO SD €0 SS St 1F SO 1E 92 FF F1 2F S0 1C 92
0510 00 EiX 09 S0 11D 92 FF E1 03 EO 8B 90 00 Si1 1D SO
0520 tF 92 0S5 E1 OE 92 20D E1 OA S0 10 94 04 S1 10 02
0530 EO0 CC S0 10 94 B0 S1 10 02 EO C3 SO 1{F 92 0S5 EI
0540 09 92 2D E1 0S 90 03 EO 03 90 02 11 50 10 94 02

Figure G-1 (cont). DUMCP Dump Example

G-11 CBO03

0003
0004
0005
0006
0007
LINE
0000
0001
0002
0003
0004
0005
0006
0007
LINE
0000
0001
0002
0003
0004
0005
0006
0007

LINE
0000
0001
0002
0003
0004
0005
0006
0007
LINE
0000
0001
0002
0003
0004
0005
0006
0007

END OF MCP DUMP

000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000
000000
000000

6
000000
000000
000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000
000000
000000

0000
0000
0000
0000
0000

0000
0000
0000
0000
0000
0000
0000
0000

0000
0000
0000
0000
0000
0000
0000
0000

0000

0000

0000
0000
0000
0000
0000
0000

0000
0000
0000
0000
0000
0000
0000
0000

0000
0000
0000
0000
0000

0000
0000
0000
0000
0000
0000
0000
0000

0000
0000
0000
0000
0000
0000
0000
0000

0000
.0000
0000
0000
0000
0000
0000
0000

0000
0000
0000
0000
0000
0000
0000
0000

Figure G-1 (cont).

G-12

DUMCP Dump Example

CBO3

INDEX

ACKNOWLEDGE, WAIT BEFORE
BSC WAIT BEFORE ACKNOWLEDGE
(WACK) FEATURE, 10-6

ADVANCED TRANSMISSION MODE, BSC

ASSEMBLY PROGRAMS MACRO CALLS BSC
2780 ADVANCED MODE, 5-16

ASSEMBLY PROGRAMS MACRO CALLS BSC
3780 ADVANCED MODE, 5-20

BSC 3780 CONVENTIONS - ADVANCED
MODE, 5-20

BSC ADVANCED DATA TRANSMISSION
MODE, 10-2

COBOL MACRO CALL PROCEDURES BSC
2780 IN ADVANCED MODE, 3-11

COBOL MACRO CALL PROCEDURES BSC
3780 IN ADVANCED MODE, 3-11

MACRO CALL PROCEDURES FOR BSC 2780
IN ADVANCED MODE (TBL), 5-18

MACRO CALL PROCEDURES FOR BSC 3780
IN ADVANCED MODE (TBL), 5-24

PROGRAM LOGIC FOR 2780 BSC IN
ADVANCED MODE (FIG), 5-17

PROGRAM LOGIC FOR BSC 3780 IN
ADVANCED MODE (FIG), 5-22

ASCIT
ASCII AND EBCDIC CHARACTERS, F-1
ASCII INPUT FOR BSC, 10-16
BSC ASCII OUTPUT, 10-19

ASCII/HEXADECIMAL CHARACTERS
ASCII/HEXADECIMAL CHARACTER
EQUIVALENTS (TBL), E-2

ASSEMBLY

ASSEMBLY COMMUNICATIONS WITH
PHYSICAL INPUT/OUTPUT (P I/O), 6-1

ASSEMBLY EXAMPLE TTY OR VIP USING
PHYSICAL I/O (FIG), D-20

ASSEMBLY LANGUAGE COMMUNICATIONS
WITH FILE SYSTEM, 5-1

ASSEMBLY LANGUAGE EXAMPLE FOR TTY
OR VIP PHYSICAL I/O, D-19

ASSEMBLY PROGRAMS BINARY
SYNCHRONOUS COMMUNICATION
(BsC), 5-11

ASSEMBLY PROGRAMS BSC DATA
TRANSMISSION CONVENTION, 5-11

ASSEMBLY PROGRAMS DEVICE MODES
AND DEVICE TYPES, 5-3

ASSEMBLY PROGRAMS DEVICE DEPENDENT
MACRO CALLS, 5-3

ASSEMBLY PROGRAMS FILE SYSTEM
CONSIDERATIONS, 5-1

ASSEMBLY PROGRAMS MACRO CALLS BSC
2780 ADVANCED MODE, 5-16

ASSEMBLY PROGRAMS MACRO CALLS BSC
2780 BASIC MODE, 5-12

ASSEMBLY PROGRAMS MACRO CALLS BSC
3780 ADVANCED MODE, 5-20

ASSEMBLY (CONT)

ASSEMBLY PROGRAMS MACRO CALLS DATA
ENTRY TERMINALS, 5-4

ASSEMBLY PROGRAMS MACRO CALLS
MULTIPLE TERMINALS, 5-9

ASSEMBLY PROGRAMS MACRO CALLS
OUTPUT ONLY TERMINALS, 5-5

ASSEMBLY PROGRAMS MACRO CALLS
SINGLE TERMINAL, 5-7

SGTFIL MACRO CALL IN ASSEMBLY
APPLICATIONS, 5-1

$OPFIL MACRO CALL IN ASSEMBLY
APPLICATIONS, 5-2

STIFIL $TOFIL MACRO CALL IN
ASSEMBLY APPLICATIONS, 5-2
SWIFIL $WOFIL MACRO CALL IN
ASSEMBLY APPLICATIONS, 5-2

USING PHYSICAL I/O IN ASSEMBLY
PROGRAMS, 6-2

ASSIGN CLAUSE, COBOL
COBOL ASSIGN CLAUSE, 3-2
COBOL SELECT AND ASSIGN
EXAMPLES, 3-3

ASSIGNING
COBOL, ASSIGNING A FILE TO A
DEVICE/TERMINAL, 3-2
FORTRAN, ASSIGNING INTERACTIVE
DEVICES AT EXECUTION, 4-1

ASSOC COMMAND IN COBOL

COBOL ASSOC OR GET COMMANDS, 3-2
ASYNCHRONOUS
ASYNCHRONOUS INPUT/OUTPUT, 2-11

COBOL ASYNCHRONOUS OPERATION (CALL
"ZCASN"), 3-4

COBOL ASYNCHRONOUS OR SYNCHRONOUS
EXECUTION, 3-4

COBOL WAIT FOR COMPLETION —
ASYNCHRONOUS I1/0, 3-5

AUTO CALL UNIT
AUTO CALL UNIT, A-4

BASIC TRANSMISSION MODE, BSC
ASSEMBLY PROGRAMS MACRO CALLS BSC
2780 BASIC MODE, 5-12
BSC 2780 CONVENTIONS - BASIC

MODE, 5-12
BSC BASIC DATA TRANSMISSION
MODE, 10-2

COBOL MACRO CALL PROCEDURES BSC
2780 IN BASIC MODE, 3-9

MACRO CALLS FOR BSC 2780 IN BASIC
MODE (TBL), 5-14

PROGRAM LOGIC FOR BSC 2780 IN
BASIC MODE (FIG), 5-13

BCC

BSC BLOCK CHECK CHARACTER
(BCC), A-8

CBO3

INDEX

.BLOCK

BLOCK ERROR CHECK, A-8

BSC BLOCK CHECK CHARACTER
(BCC), A-8

COMMUNICATIONS INPUT/OUTPUT REQUEST
BLOCK (IORB) (FIG), 6-5

FILE INFORMATION BLOCK (FIB)FOR
DATA MANAGEMENT (FIG), 2-7

FILE INFORMATION BLOCK (FIB), 2-3

FILE INFORMATION BLOCK (FIB), FOR
STORAGE MANAGEMENT (FIG), 2-9

INPUT OUTPUT REQUEST BLOCK
(IORB) ’ 6"'2, 6—4

BOUND UNIT, DUMCP
LINKING BOUND UNIT CONTAINING

DUMCP,. G-1
LINKING DUMCP AS SELF-CONTAINED
BOUND UNIT, G-2

BRK CHARACTER
TTY DETECTION OF BRK
CHARACTER, 7-10

BRSC

ASCII INPUT FOR BSC, 10-16

ASSEMBLY PROGRAMS BSC 2780 AND
BSC 3780, 5-11

ASSEMBLY PROGRAMS MACRO CALLS BSC
2780 ADVANCED MODE, 5-16

ASSEMBLY PROGRAMS MACRO CALLS BSC
2780 BASIC MODE, 5-12

ASSEMBLY PROGRAMS MACRO CALLS BSC
3780 ADVANCED MODE, 5-20

BSC 2780 AND BSC 3780 DIFFERENCES,
5-12, 10-3

BSC 2780 CONVENTIONS - BASIC
MODE, 5-12)

BSC 2780/3780 FEATURES, 10-3

BSC 2780/3780 LINE PROTOCOL
HANDLER, 10-1

BSC 3780 CONVERSATIONAL REPLY
FEATURE, 10-10

BSC 3780 TRANSMISSION/RECEIPT OF
BSC CONTROL CHARACTERS, 10-10

BSC 3780 TWO BUFFER FEATURE, 10-10
BSC AND PVE HOST-COMMUNICATIONS

SUPPORT, 1-5
BSC ASCII OUTPUT, 10-19
BSC BASIC DATA TRANSMISSION
MODE, 10-2
BSC BLOCK CHECK CHARACTER
(BCC), A-8
BSC CONTROL BYTE (RECEIVE), 10-15:
BSC CONTROL BYTE (SEND), 10-18
BSC DATA TRANSMISSION MODE, 10-2
BSC DEVICE-SPECIFIC WORD I_DVS IN
IORB (TBL), 10-12 .
BSC EBCDIC ouTpUT, 10-19
BSC END OF TRANSMISSION (EOT)
FEATURE, 10-8
BSC INPUT DATA, 10-14
BSC LINE PROTOCOL HANDLER
OPERATION, 10-1

BSC (CONT)

BSC LINE PROTOCOL HANDLER 7N
TIME-OUT, 10-9 , ‘

BSC MASTER STATION, 10-1

BSC NONALPHANUMERIC CONTROL
CHARACTERS (TBL), F-3

BSC OUTPUT DATA, 10-17

BSC REVERSE INTERRUPT (RVI)
FEATURE, 10-7

BSC SLAVE STATION, 10-1

BSC SOFTWARE STATUS WORD I_ST IN
IORB (TBL), 10-14

BSC TEMPORARY TEXT DELAY (TTD)
FEATURE, 10-5

BSC TRANSPARENT EBCDIC

OUTPUT, 10-20

BSC TWO-BUFFER FEATURE, 10-3

BSC WAIT BEFORE ACKNOWLEDGE (WACK)
FEATURE, 10-6

BSC WITH COBOL, 3-8

COBOL BSC APPLICATION

EXAMPLE, D-12

COBOL BSC DATA CODES, 3-8

COBOL BSC DATA TRANSMISSION, 3-8

COBOL MACRO CALL PROCEDURES BSC
2780 IN ADVANCED MODE, 3-11

COBOL MACRO CALL PROCEDURES BSC
2780 IN BASIC MODE, 3-9

COBOL MACRO CALL PROCEDURES BSC
3780 IN ADVANCED MODE, 3-11

EBCDIC INPUT FOR BSC, 10-16

EXAMPLE OF BSC COMMUNICATION
(FIG), 10-3
EXAMPLE OF CONVERSATIONAL REPLY BSC
3780 TRANSMISSION (FIG), 10-11
LINE CONTENTION - BSC, 10-2
PROGRAM LOGIC FOR 2780 BSC IN
ADVANCED MODE (FIG), 5=-17
PROGRAM LOGIC FOR 2780 BSC
(FIG), 3-10
PROGRAM LOGIC FOR BSC 2780 IN BASIC
MODE (FIG), 5-13
PROGRAM LOGIC FOR BSC 3780 IN
ADVANCED MODE (FIG), 5-22
PROGRAM LOGIC FOR BSC 3780
(FIG), 3-12
SPECIFYING BSC 2780 AND/OR 3780 TO
THE SYSTEM, 10-13
TRANSPARENT EBCDIC INPUT FOR
BSC, 10-17 :
USING BSC 2780/3780 LINE

PROTOCOL
HANDLER, 10-12 ’ :

BUFFERED MODE

TTY BUFFERED MODE (VIP 7200 AND
7800), 7-3

TTY CHARACTER MODE AND BUFFERED
MODE TRANSMISSION, 7-2

TTY INPUT IN BUFFERED MODE (VIP
7200 AND 7800), 7-9

TTY OUTPUT IN BUFFERED MODE, 7-11

\ ,
S

CBO03

INDEX

BUFFERING, SYSTEM
SYSTEM BUFFERING, 2-11

BYTE, CONTROL
BSC CONTROL BYTE (RECEIVE), 10-15
BSC CONTROL BYTE (SEND), 10-18
CONTROL BYTE FOR TTY LINE PROTOCOL

HANDLER (FIG), 7-10

TTY CONTROL BYTE (INPUT), 7-8
TTY CONTROL BYTE (SEND), 7-9
VIP CONTROL BYTE (SEND), 8-8

CARRIAGE
COBOL CARRIAGE CONTROL, 3-3
TTY LINE FEED (LF) AND CARRIAGE
RETURN (CR) INPUT, 7-8

CHANNEL CONTROL PROGRAM (CCP)
CHANNEL CONTROL PROGRAM, A-3

CHARACTER

ASCII/HEXADECIMAL CHARACTER
EQUIVALENTS (TBL), F-2

BSC BLOCK CHECK CHARACTER
(BCC), A-8

BSC NONALPHANUMERIC CONTROL
CHARACTER (TBL), F-3

CONTROL CHARACTER AS DATA
CHARACTER, 7-9

EBCDIC/HEXADECIMAL/BINARY CHARACTER
EQUIVALENTS (TBL), E-3

TTY CHARACTER MODE, 7-2

TTY CHARACTER MODE AND BUFFERED
MODE TRANSMISSION, 7-2

TTY KEYBOARD INPUT CHARACTER
CONTROL, 7-8

TTY NONALPHANUMERIC CONTROL
CHARACTER (TBL), F-1

VIP NONALPHANUMERIC CONTROL
CHARACTER (TBL), F-2

CHARACTERISTICS, TERMINAL
CHANGING TERMINAL'S FILE
CHARACTERISTICS, B-1
DEFINING FILE/TERMINAL
CHARACTERISTICS, 2-12
FORTRAN, CHANGING TERMINAL'S FILE
CHARACTERISTICS, 4-1

CHARACTER/LINE CORRECTION
TTY INPUT CHARACTER/LINE CORRECTION
AND DELETION, 7-8

CHARACTERS
ASCII AND EBCDIC CHARACTERS, F-1
BSC 3780 TRANSMISSION/RECEIPT OF
BSC CONTROL CHARACTERS, 10-10
DEVICE-SPECIFIC CONTROL
CHARACTERS, F-1
TTY DETECTION OF BRK
CHARACTERS, 7-10
TTY DISPLAY OF INPUT
CHARACTERS, 7-9

CHECK

BLOCK ERROR CHECK, A-8

BSC BLOCK CHECK CHARACTER
(BCC), A-8

CYCLIC REDUNDANCY CHECK (CRC), A-8

FORTRAN FILE STATUS CHECK
(ZFSTIN AND ZFSTOT), 4-2

LONGITUDINAL REDUNDANCY CHECK
(LRC) , A-8 .

PARITY ERROR CHECK, A-8

TIME-OUT CHECK, A-9

COBOL

BSC WITH COBOL, 3-8

COBOL ASSIGN CLAUSE, 3-2

COBOL, ASSIGNING FILE TO DEVICE/
TERMINAL, 3-2

COBOL ASSOC OR GET COMMANDS, 3-2

COBOL ASYNCHRONOUS OPERATION (CALL
"ZCASN"), 3-4

COBOL ASYNCHRONOUS OR SYNCHRONOUS
EXECUTION, 3-4

COBOL BSC 2780 AND BSC 3780, 3-8

COBOL BSC APPLICATION
EXAMPLE, D-12

COBOL BSC DATA CODES, 3-8

COBOL BSC DATA TRANSMISSION, 3-8

COBOL CARRIAGE CONTROL, 3-3

COBOL CONVENTIONS, 3-8

"COBOL FILE SYSTEM
CONSIDERATIONS, 3-1

COBOL INTERNAL FILE NAME
(IFN), 3-2

COBOL MACRO CALIL PROCEDURES BSC
2780 IN ADVANCED MODE, 3-11

COBOL MACRO CALL PROCEDURES BSC
2780 IN BASIC MODE, 3-9

COBOL PRINTER EMULATION, 3-4

COBOL PROGRAM EXAMPLES, D-1

COBOL PROGRAM LOGIC FOR MULTIPLE
INTERACTIVE TERMINALS (FIG), 3-6

COBOL SELECT AND ASSIGN
EXAMPLES, 3-3

COBOL SOURCE PROGRAM ENTRIES IN
COMMUNICATIONS, 3-1

COBOL, SPECIFYING FILES IN SOURCE
PROGRAM, 3-1 ,

COBOL SYNCHRONOUS OPERATION (CALL
"ZCSYNC"), 3-4

COBOL TTY OR VIP APPLICATION
EXAMPLE, D-1

COBOL WAIT FOR COMPLETION —
ASYNCHRONOUS I/O, 3-5

COMMUNICATIONS WITH COBOL, 3-1

CODE, FUNCTION
CONNECT FUNCTION (CODE A), 6-11
DISCONNECT FUNCTION (CODE B), 6-11
READ FUNCTION (CODE 2), 6-10
WAIT ONLINE FUNCTION (CODE 0), 6-9
WRITE FUNCTION (CODE 1), 6-10

i-3 . CBO3

INDEX

CODES
COMMUNICATIONS FUNCTION CODES,
FUNCTION CODES IN I_CT2 of IORB

(TBL), 7-5, 8-4, 9-3, 10-12
PVE HARDWARE FUNCTION CODES, 9-6
RETURN STATUS ERROR CODES FOR I/0O

REQUEST (TBL), 6-3
SOFTWARE (I ST) STATUS CODES

(TBL), 6-8
VIP HARDWARE FUNCTION CODES,

6-9

8-8
COMMAND, STTY

ARGUMENT VALUES FOR STTY COMMAND
AND $STTY MACRO CALL (TBL), B-2

COMMUNICATIONS-SPECIFIC RCT
COMMUNICATIONS~SPECIFIC ITEMS IN
RCT (TBL), C-3

CONNECT FUNCTION
CONNECT FUNCTION (CODE A), 6-11
CONTROL

BSC 3780 TRANSMISSION/RECEIPT OF
BSC CONTROL CHARACTERS, 10-10
BSC CONTROL BYTE (RECEIVE), LU-1b5
BSC CONTROL BYTE (SEND), 10-18

BSC NONALPHANUMERIC CONTROL
CHARACTER (TBL), F-3

COMMUNICATIONS RESOURCE CONTROL
TABLE (RCT) (FIG), C-2

CONTROL BYTE FOR TTY LINE PROTOCOL
HANDLER (FIG), 7-10

CONTROL CHARACTER AS DATA
CHARACTER, 7-9

DEVICE-SPECIFIC CONTROL
CHARACTERS, F-1

PVE CONTROL STATION, 9-1

RESOURCE CONTROL TABLE (RCT),
6-4, C-1 .

TTY CONTROL BYTE (INPUT), 7-8

TTY CONTROL BYTE (SEND), 7-9
TTY KEYBOARD INPUT CHARACTER
CONTROL, 7-8

TTY KEYBOARD INPUT LINE
CONTROL, 7-8

TTY NONALPHANUMERIC CONTROL
CHARACTER (TBL), F-1

VIP CONTROL BYTE (SEND), 8-8

VIP NONALPHANUMERIC CONTROL
CHARACTER (TBL), F-2

CONVERSATIONAL REPLY, BSC
BSC 3780 CONVERSATIONAL REPLY
FEATURE, 10-10

CORRECTION
. COMMUNICATIONS SUBSYSTEM ERROR AND
CORRECTION PROCEDURES, A-8
TTY INPUT CHARACTER/LINE CORRECTION
AND DELETION, 7-8

CR (CARRIAGE RETURN)
TTY LINE FEED (LF) AND CARRIAGE
RETURN (CR) INPUT, 7-8

CYCLIC
CYCLIC REDUNDANCY CHECK (CRC), A-8

DATA
BSC INPUT DATA, 10-14
BSC OUTPUT DATA, 10-17
COBOL BSC DATA CODES, 3-8
COBOL BSC DATA TRANSMISSION, 3-8
COBOL BSC DATA TRANSMISSION

MODES, 3-8
CONTROL CHARACTER AS DATA
CHARACTER, 7-9
DATA MANAGEMENT MACRO CALLS, 2-2
MACRO CALLS FOR DATA ENTRY
TERMINALS (TBL), 5-4
PHYSICAL I/O DATA STRUCTURES, 6-3

PVE INPUT DATA, 9-7
PVE OUTPUT DATA, 9-7
TTY INPUT DATA, 7-7
TTY OUTPUT DATA, 7-9
VIP INPUT DATA, 8-8
VIP OUTPUT DATA, 8-9
DELAY, TEXT
BSC TEMPORARY TEXT DELAY (TTD)
FEATURE, 10-5
DELETION, INPUT CHARACTER

TTY INPUT CHARACTER/LINE CORRECTION
AND DELETION, 7-8

DEVICE
ASSEMBLY PROGRAMS DEVICE MODES AND
DEVICE TYPES, 5-3
TTY AND VIP LINE PROTOCOL HANDLER
DEVICE SUPPORT, 1-5

DIFFERENCES, BSC 2780/3780
BSC 2780 AND BSC 3780 DIFFERENCES,
10-3, 5-12

DISCONNECT FUNCTION

DISCONNECT FUNCTION (CODE B), 6-11
DISPLACEMENT DEFINITIONS (FIB)
FIB DISPLACEMENT DEFINITIONS, 2-6
DISPLAY, TTY
TTY DISPLAY OF INPUT
CHARACTERS, 7-9
DLCP
DUMP ROUTINE (DUMCP) FOR MLCP AND
DLCP, G-1

DRIVER, MLCP
MULTILINE COMMUNICATIONS PROCESSOR
(MLCP) AND DRIVER, 1-4, A-3

DUMCP (MLCP DUMP)
DUMCP DUMP FORMATS, G-7
DUMCP PROGRAMMING, G-8
DUMP ROUTINE (DUMCP) FOR MLCP AND
DLCP, G-1

CBO3

INDEX

DUMCP (MLCP DUMP) (CONT)

LINKING BOUND UNIT CONTAINING
DUMCP, G-1

LINKING DUMCP WITH APPLICATION
PROGRAM, G-3

REGISTER VALUES AND DUMCP DUMP
CONTENTS (TBL), G-6

ISTRTDO ENTRY POINT IN USING

DUMCP, G-4
STRTD1 ENTRY POINT IN USING
DUMCP, G-5
STRTD2 ENTRY POINT IN USING
DUMCP, G-7

EBCDIC

ASCII AND EBCDIC CHARACTERS, F-1
BSC EBCDIC OUTPUT, 10-19
BSC TRANSPARENT EBCDIC

ouTPUT, 10-20 .
EBCDIC INPUT FOR BSC, 10-16
TRANSPARENT EBCDIC INPUT FOR
BSC, 10-17

EBCDIC/HEXADECIMAL/BINARY
EBCDIC/HEXADECIMAL/BINARY CHARACTER
EQUIVALENTS (TBL), E-3

EDITING
VIP KEYBOARD/SCREEN OUTPUT
EDITING, 8-10
VIP RECEIVE-ONLY PRINTER EDITING,
8-10

EMULATION, PRINTER
: COBOL PRINTER EMULATION, 3-4
EMULATOR, POLLED VIP
POLLED VIP EMULATOR (PVE) LINE
PROTOCOL HANDLER, 9-1

END-OF-MESSAGE SEQUENCE
END-OF-MESSAGE (EOM) SEQUENCE TTY
ouTPUT, 7-10

ENQ MESSAGE
ENQ BID MESSAGE, 10-1
EOM SEQUENCE
END-OF-MESSAGE (EOM) SEQUENCE TTY
ouTPUT, 7-10

EOT FEATURE
BSC END OF TRANSMISSION (EOT)
FEATURE, 10-8

ERROR
BLOCK ERROR CHECK, A-8
COMMUNICATIONS SUBSYSTEM ERROR AND
CORRECTION PROCEDURES, A-8

ERROR (CONT)
ERROR PROCESSING VIP LINE PROTOCOL

HANDLER, 8-11
ERROR REPORTING PVE LINE PROTOCOL
HANDLER, 9-8

MLCP ERROR REPORTED BY VIP LINE
PROTOCOL HANDLER (TBL), 8-13

NONPOLLED VIP ERRORS, 8-14

PARITY ERROR CHECK, A-8

RETURN STATUS ERROR CODES FOR I/O
REQUEST (TBL), 6-3

EXAMPLE

ASSEMBLY LANGUAGE EXAMPLE FOR TTY
OR VIP PHYSICAL I/O, D-19

BSC REVERSE INTERRUPT (RVI) EXAMPLE
(FIG), 10-8

BSC TEMPORARY TEXT DELAY (TTD)
EXAMPLE (FIG), 10-6

BSC WAIT BEFORE ACKNOWLEDGE (WACK)
EXAMPLE (FIG), 10-7

COBOL BSC APPLICATION
EXAMPLE, D-12

COBOL TTY OR VIP APPLICATION
EXAMPLE, D-1

COMMUNICATIONS SUBYSTEM OPERATION
EXAMPLE, A-4

EXAMPLE OF BSC COMMUNICATION
(FIG), 10-3

EXAMPLE OF CONVERSATIONAL REPLY BSC
3780 TRANSMISSION (FIG), 10-11

FORTRAN APPLICATION EXAMPLE FOR
TTY, D-16 '

EXAMPLES :
COBOL PROGRAM EXAMPLES, D-1
COBOL SELECT AND ASSIGN
EXAMPLES, 3-3
COBOL SELECT AND ASSIGN EXAMPLES
(FIG), 3-3
FORTRAN ZFSTIN AND ZFSTOT
EXAMPLES, 4-4

EXECUTION
COBOL ASYNCHRONOUS OR SYNCHRONOUS
EXECUTION, 3-4 ‘
FORTRAN EXECUTION WITH
COMMUNICATIONS, 4-1

FEED, LINE AND FORM
TTY LINE FEED (LF) AND CARRIAGE
RETURN (CR) INPUT, 7-8
VIP RECEIVE-ONLY PRINTER FORM

FEED, 8-11
FIB
FIB DISPLACEMENT DEFINITIONS,
2-6
FIB FOR DATA MANAGEMENT (TBL),
2-8

FIB FORMAT AND CONTENTS, 2-3

CBO3

FIB (CONT)
FILE INFORMATION BLOCK (FIB), 2-3
FILE INFORMATION BLOCK (FIB) FOR
STORAGE MANAGEMENT (FIG), 2-9
FILE INFORMATION BLOCK (FIB)
(FIG), 2-4

PROGRAM VIEW ENTRY IN THE FIB, 2-6

PROGRAMMER'S VIEW OF FIB, 2-6

FILE

CHANGING TERMINAL'S FILE
CHARACTERISTICS, B-1

COBOL, ASSIGNING A FILE TO A
DEVICE/TERMINAL, 3-2

COBOL INTERNAL FILE NAME
(IFN), 3-2

FILE ASSIGNMENTS IN COBOL
EXAMPLE, D-2

FILE INFORMATION BLOCK (FIB FOR
DATA MANAGEMENT (FIG), 2-7

FILE INFORMATION BLOCK (FIB), 2-3

FILE INFORMATION BLOCK (FIB) FOR
STORAGE MANAGEMENT (FIG), 2-9

FILE MANAGEMENT MACRO CALLS, 2-1

FILE SYSTEM AND MACRO :
ROUTINES, 2-1

FILE SYSTEM IN

COMMUNICATIONS, 2-10

FILE SYSTEM INTERFACE WITH
APPLICATIONS, 1l-4

FORTRAN, CHANGING TERMINAL'S FILE
CHARACTERISTICS, 4-1

FORTRAN, FILE STATUS CHECK (ZFSTIN
AND ZFSTOT), 4-2

GCOS ¢ FILE SYSTEM, 1-2

TEST FILE STATUS, 2-12

FORTRAN _
COMMUNICATIONS WITH FORTRAN, 4-1
FORTRAN APPLICATION EXAMPLE FOR

TTY, D-16

FORTRAN, ASSIGNING INTERACTIVE
DEVICES AT EXECUTION, 4-1
FORTRAN CALL STATEMENT FOR ZFSTIN
OR ZFSTOT, 4-2

FORTRAN, CHANING TERMINAL'S FILE
CHARACTERISTICS, 4-1

FORTRAN EXECUTION WITH
COMMUNICATIONS, 4-1

FORTRAN FILE STATUS CHECK (ZFSTIN
AND ZFSTOT), 4-2

FORTRAN INTERACTIVE DEVICES AND
FILES, 4-1

FORTRAN ZFSTIN AND ZFSTOT
EXAMPLES, 4-4

FUNCTION
COMMUNICATIONS FUNCTION CODES, 6-9
CONNECT FUNCTION (CODE A), 6-11
DISCONNECT FUNCTION (CODE B), 6-11
FUNCTION CODES IN I_CT2 OF IORB
(TBL), 7-5, 8-4, 9-3, 10-12

INDEX

FUNCTION (CONT)
PVE HARDWARE FUNCTION CODES, 9-6
READ FUNCTION (CODE 2), 6-10
VIP 7200 AND 7800 FUNCTION AND

CONTROL KEYS, 7-4

VIP HARDWARE FUNCTION CODES, 8-8
WAIT ONLINE FUNCTION (CODE 0), 6-9
WRITE FUNCTION (CODE 1), 6-10

GET
ARGUMENTS FOR GET FILE ($GTFIL)
MACRO CALL (TBL), 5-2
COBOL ASSOC OR GET COMMANDS, 3-2

GTFIL
ARGUMENTS FOR GET FILE (S$SGTFIL)
MACRO CALL (TBL), 5-2
$GTFIL MACRO CALL IN ASSEMBLY
APPLICATIONS, 5-1

HARDWARE
PVE HARDWARE FUNCTION CODES, 9-6
VIP 7200 AND 7800 HARDWARE
SWITCH, 7-3 L
VIP HARDWARE FUNCLl'LON COLES, B=b

HEADER, MESSAGE
PVE INPUT MESSAGE HEADER, 9-6
PVE OUTPUT MESSAGE HEADER, 9-7
VIP INPUT MESSAGE HEADER, 8-7
VIP OUTPUT MESSAGE HEADER, 8-8

IFN
COBOL INTERNAL FILE NAME
(IFN), 3-2

I CT2-
FUNCTION CODES IN I CT2 OF IORB
(TBL) , 7-5, 8-4, 9-3, 10-12

I DVS
~ BSC DEVICE-SPECIFIC WORD I _DVS IN
IORB (TBL), 10-12
PVE DEVICE-SPECIFIC WORD I_DVS IN
IORB (TBL), 9-3
TTY DEVICE-SPECIFIC WORD I_DVS IN
IORB (TBL), 7-5
VIP DEVICE-SPECIFIC WORD I_DVS IN
IORB (TBL), 8-4

I ST

BSC SOFTWARE STATUS WORD I_ST IN
IORB (TBL), 10-14

IORB SOFTWARE STATUS WORD
(r_sT), 6-8

PVE SOFTWARE STATUS WORD I ST IN
IORB (TBL), 9-5

SOFTWARE (I_ST) STATUS CODES
(TBL), 6-8

VIP SOFTWARE STATUS WORD I ST IN
IORB (TBL), 8-6

CBO3

o

INDEX

INPUT

ASCII INPUT FOR BSC, 10-16

BSC INPUT DATA, 10-14

EBCDIC INPUT FOR BSC, 10-16

INPUT OUTPUT REQUEST BLOCK
(IORB), 6-2

PVE INPUT, 9-6

TRANSPARENT EBCDIC INPUT FOR
BSC, 10-17

TTY DISPLAY OF INPUT
CHARACTERS, 7-9

TTY INPUT DATA, 7-7

TTY INPUT IN BUFFERED MODE (VIP
7200 AND 7800), 7-9

TTY NONTRANSPARENT INPUT, 7-8

TTY TRANSPARENT INPUT, 7-8

VIP INPUT DATA, 8-8

VIP INPUT (KEYBOARD/SCREEN), 8-7

INPUT/OUTPUT

ASYNCHRONOUS INPUT/OUTPUT, 2-11

INPUT/OUTPUT REQUEST BLOCK
(IORB), 6-4

PHYSICAL INPUT/OUTPUT INTERFACE
WITH APPLICATIONS, 1-5

PHYSICAL INPUT/OUTPUT (PHYSICAL
1/0), 1-2

INTERFACE
FILE SYSTEM INTERFACE WITH
APPLICATIONS, 1-4
PHYSICAL INPUT/OUTPUT INTERFACE
WITH APPLICATIONS, 1-5
PHYSICAL I/O COMMUNICATIONS
INTERFACE, 6-1

INTERNAL FILE NAME, COBOL
COBOL INTERNAL FILE NAME
(IFN), 3-2

INTERRUPT, REVERSE
BSC REVERSE INTERRUPT (RVTI)
FEATURE, 10-7

INTERVAL
PVE TIME-OUT INTERVALS (TBL), 9-8
VIP TIME-OUT INTERVALS, 8-2
VIP POLL- INTERVAL, 8-7

IORB

BSC-SPECIFIC IORB VALUES, 10-12

COMMUNICATIONS INPUT/OUTPUT REQUEST
BLOCK (IORB) (FIG), 6-5

INPUT OUTPUT REQUEST BLOCK
(IORB) , 6-2, 6-4

IORB SOFTWARE STATUS WORD
(I_ST), 6-8

PVE-SPECIFIC IORB VALUES, 9-2

TTY-SPECIFIC IORB VALUES, 7-5

VIP-SPECIFIC IORB VALUES, 8-3

KEYBOARD
TTY KEYBOARD INPUT CONTROL, 7-8

KEYBOARD/SCREEN
" VIP INPUT (KEYBOARD/SCREEN), 8-7
VIP KEYBOARD/SCREEN OUTPUT
EDITING, 8-10

LF (LINE FEED)
TTY LINE FEED (LF) AND CARRIAGE
RETURN (CR) INPUT, 7-8

LINE

BSC 2780/3780 LINE PROTOCOL
HANDLER, 10-1

ERROR PROCESSING VIP LINE PROTOCOL
HANDLER, 8-11

ERROR REPORTING PVE LINE PROTOCOL
HANDLER, 9-8

LINE CONTENTION - BSC, 10-2

LINE PROTOCOL HANDLER (LPH), 1-3
LINE PROTOCOL HANDLERS (LPHS), A-1
POLLED VIP EMULATOR (PVE) LINE
PROTOCOL HANDLER, 9-1

TTY AND VIP LINE PROTOCOL HANDLER
DEVICE SUPPORT, 1-5

TTY KEYBOARD INPUT LINE

CONTROL, 7-8

TTY LINE FEED (LF) AND CARRIAGE
RETURN (CR) INPUT, 7-8

TTY LINE PROTOCOL HANDLER, 7-1

USING BSC 2780/3780 LINE PROTOCOL
HANDLER, 10-12

USING PVE LINE PROTOCOL
HANDLER, 9-2

USING TTY LINE PROTOCOL
HANDLER, 7-5

USING VIP LINE PROTOCOL

HANDLER, 8-3

VIP LINE PROTOCOL HANDLER, 8-1

VIP LINE PROTOCOL HANDLER
POLLING, 8-7

LINKING, DUMPC
LINKING BOUND UNIT CONTAINING
DUMCP, G-1
LINKING DUMCP AS SELF-CONTAINED
BOUND UNIT, G-2
LINKING DUMCP WITH APPLICATION
PROGRAM, G-3

LOGIC, PROGRAM
COBOL PROGRAM LOGIC FOR MULTIPLE
INTERACTIVE TERMINALS (FIG), 3-6
PROGRAM LOGIC FOR 2780 BSC IN
ADVANCED MODE (FIG), 5-17
PROGRAM LOGIC FOR 2780 BSC
(FIG), 3-10
PROGRAM LOGIC FOR BSC 2780 IN BASIC
MODE (FIG), 5-13
PROGRAM LOGIC FOR BSC 3780 IN
ADVANCED MODE (FIG), 5-22
PROGRAM LOGIC FOR BSC 3780
- (FIG), 3-12
PROGRAM LOGIC FOR SINGLE
INTERACTIVE TERMINAL (FIG), 5-8
PROGRAM LOGIC MULTIPLE INTERACTIVE
TERMINALS (FIG), 5-10

CBO3

INDEX

LONGITUDINAL CHECK
LONGITUDINAL REDUNDANCY CHECK
(LRC), A-8

LPH '
LINE PROTOCOL HANDLER (LPH),
A-1

1-3,

LRC
LONGITUDINAL REDUNDANCY CHECK
(LRC), A-8

MACRO' CALL

‘ARGUMENT VALUES FOR STTY COMMAND
AND $STTY MACRO CALL (TBL), B-2

ARGUMENTS FOR GET FILE ($GTFIL)
MACRO CALL (TBL), 5-2

COBOL MACRO CALL PROCEDURES BSC
2780, 3-9

COBOL MACRO CALL PROCEDURES BSC
3780, 3-11

FILE SYSTEM AND MACRO
ROUTINES, 2-1

$GTFIL MACRO CALL IN ASSEMBLY

ATTT TANMTANC I:_'I
AL L el av/ivne r ~

$OPFIL MACRO CALL IN ASSEMBLY
APPLICATIONS, 5-2

PROGRAM VIEW FOR $OPFIL MACRO
CALL (TBL), 5-3

REQUEST IO ($RQIO) MACRO CALL,
6-1, 6-2

STORAGE MANAGEMENT MACRO
CALLS, 2-2 .

$TIFIL $TOFIL MACRO CALL IN
ASSEMBLY APPLICATIONS, 5-2
$WIFIL $WOFIL MACRO CALL IN
ASSEMBLY APPLICATIONS, 5-2

MACRC CALLS

ASSEMBLY PROGRAMS DEVICE-DEPENDENT
MACRO CALLS, 5-3

ASSEMBLY PROGRAMS MACRO CALLS BSC
2780 ADVANCED MODE, 5-16

ASSEMBLY PROGRAMS MACRO CALLS BSC
2780 BASIC MODE, 5-12

ASSEMBLY PROGRAMS MACRO CALLS BSC
3780 ADVANCED MODE, 5-20

ASSEMBLY PROGRAMS MACRO CALLS DATA
ENTRY TERMINALS, 5-4

ASSEMBLY PROGRAMS MACRO CALLS
MULTIPLE TERMINALS 5-9

ASSEMBLY PROGRAMS MACRO CALLS
OUTPUT ONLY TERMINALS, 5-5

ASSEMBLY PROGRAMS MACRO CALLS
SINGLE TERMINAL, 5-7

DATA MANAGEMENT MACRO CALLS, 2-2

FILE MANAGEMENT MACRO CALLS, 2-1

MACRO CALLS IN ASSEMBLY
APPLICATIONS, 5-1

MACRO CALLS PROCEDURES FOR BSC 2780
IN ADVANCED MODE (TBL), 5-18
MACRO CALLS PROCEDURES FOR BSC 3780
IN ADVANCED MODE (TBL), 5-24

MACRO CALLS (CONT)
PHYSICAL I/O MACRO CALLS FOR
COMMUNICATIONS, 6-12

MASTER STATION
BSC MASTER STATION, 10-1

MESSAGE

ENQ BID MESSAGE, 10-1

PVE INPUT MESSAGE HEADER, 9-6
PVE OUTPUT MESSAGE HEADER, 9-7
PVE TERMINAL ADDRESS (ADR) AND
MESSAGE STATUS (STA), 9-7

TTY MESSAGE FORMATS, 7-1

TTY MESSAGE FORMATS (FIG), 7-2

VIP INPUT MESSAGE HEADER, 8-7

VIP OUTPUT MESSAGE HEADER, 8-8

VIP PROTOCOL MESSAGE STRUCTURE FOR
PVE, 9-5

MLCP
DUMP ROUTINE (DUMCP) FOR MLCP AND
DLCP, G-1
MLCP ERROR REPORTED BY VIP LINE
PROTQCOT. HANDT,ER (TBL). 8-13
MULTILINE COMMUNICATIONS PROCESSOR
(MLCP) AND DRIVER, 1-4, A-3

MODE

TTY BUFFERED MODE (VIP 7200 AND
7800), 7-3

TTY CHARACTER MODE, 7-2

TTY CHARACTER MODE AND BUFFERED
MODE TRANSMISSION, 7-2

TTY INPUT IN BUFFERED MODE (VIP
7200 AND 7800), 7-9

TTY OUTPUT IN BUFFERED MODE, 7-11

MODEM .
MODEM SUPPORT, A-3

MULTILINE
MULTILINE COMMUNICATIONS PROCESSOR
AND DRIVER, 1-4, A-3

NAME, COBOL INTERNAL
.COBOL INTERNAL FILE NAME
(IFN), 3-2

NONALPHANUMERIC CONTROL CHARACTERS
NONALPHANUMERIC CONTROL
CHARACTERS (TBL), F-1

NONPOLLED ERRORS
NONPOLLED VIP ERRORS, 8-14
NONTRANSPARENT INPUT
TTY NONTRANSPARENT INPUT, 7-8

SOPFIL MACRO CALL
PROGRAM VIEW FOR $OPFIL MACRO CALL
(TBL) , 5-3
SOPFIL MACRO CALL IN ASSEMBLY
APPLICATIONS, 5-2

CBO3

OUTPUT

ASSEMBLY PROGRAMS MACRO CALLS
OUTPUT ONLY TERMINALS, 5-5

BSC ASCII OUTPUT, 10-19

BSC EBCDIC OUTPUT, 10-19

BSC OUTPUT DATA, 10-17.

BSC TRANSPARENT EBCDIC
ouTPUT, 10-20

END OF MESSAGE (EOM) SEQUENCE
TTY OUTPUT, 7-10

MACRO CALLS FOR OUTPUT ONLY
TERMINALS (TBL), 5-5

PVE OUTPUT, 9-7

PVE OUTPUT DATA, 9-7

PVE OUTPUT MESSAGE HEADER,
TTY OUTPUT DATA, 7-9

TTY OUTPUT IN BUFFERED MODE,

VIP KEYBOARD/SCREEN OUTPUT
EDITING, 8-10

VIP OUTPUT, 8-8

9-7
7-11

PARITY ERROR CHECK
PARITY ERROR CHECK, A-8
PHYSICAL INPUT/OUTPUT (P I/O)
ASSEMBLY COMMUNICATIONS WITH
PHYSICAL INPUT/OUTPUT (P
I/0), 6-1
PHYSICAL INPUT/OUTPUT INTERFACE
WITH APPLICATIONS, 1-5
PHYSICAL INPUT/OUTPUT (PHYSICAL

1/0), 1-2
\ PHYSICAL I/0 COMMUNICATIONS
INTERFACE, 6-1
PHYSICAL I/O DATA STRUCTURES, 6-3
PHYSICAL I/O MACRO CALLS FOR
COMMUNICATIONS, 6-12
USING PHYSICAL 1I/0 IN ASSEMBLY
PROGRAMS, 6-2
POINT, ENTRY FOR DUMCP
STRTDO ENTRY POINT IN USING
DUMCP, G-4
STRTD1 ENTRY POINT IN USING
DUMCP, G-5
STRTD2 ENTRY POINT IN USING
DUMCP, G-7
POLL
VIP POLL DURATION (TIME-OUT), 8-7

VIP POLL INTERVAL, 8-7

POLLED VIP EMULATOR (PVE)
POLLED VIP EMULATOR (PVE) LINE
PROTOCOL HANDLER, 9-1

POLLING
VIP LINE PROTOCOL HANDLER
POLLING, 8-7
VIP POLLING OPTIONS, 8-6
PRIMARY STATION
PRIMARY STATION AT SYSTEM
BUILD, 10-2

INDEX

PRINTER

COBOL PRINTER EMULATION, 8-4

VIP RECEIVE-ONLY PRINTER EDITING
SEQUENCE, 8-10

VIP RECEIVE-ONLY PRINTER FORM FEED
SEQUENCE, 8-11

PROCEDURES, MACRO CALL

MACRO CALL PROCEDURES BSC

IN ADVANCED MODE, 3-11

MACRO CALL PROCEDURES BSC

IN BASIC MODE, 3-9

COBOL MACRO CALL PROCEDURES BSC
3780 IN ADVANCE MODE, 3-11

COMMUNICATIONS SUBSYSTEM ERROR AND
CORRECTION PROCEDURES, A-8

MACRO CALL PROCEDURES FOR BSC 2780
IN ADVANCED MODE (TBL), 5-18

MACRO CALL PROCEDURES FOR BSC 3780
IN ADVANCED MODE (TBL), 5-24

COBOL
2780
COBOL
2780

PROGRAM

CHANNEL CONTROL PROGRAM, A-3
PROGRAM VIEW ENTRY IN THE FIB, 2-6
PROGRAM VIEW FOR $OPFIL MACRO

CALL (TBL), 5-3

PROTOCOL HANDLER

BSC 2780/3780 LINE PROTOCOL
HANDLER, 10-1
LINE PROTOCOL HANDLER (LPH), 1-3, A-1
POLLED VIP EMULATOR (PVE) LINE
PROTOCOL HANDLER, 9-1
TTY AND VIP LINE PROTOCOL HANDLER
DEVICE SUPPORT, 1-5

TTY LINE PROTOCOL HANDLER, 7-1
USING BSC 2780/3780 LINE PROTOCOL
HANDLER, 10-12
USING PVE LINE PROTOCOL

HANDLER, 9-2
USING TTY LINE PROTOCOL

HANDLER, 7-5

USING VIP LINE PROTOCOL

HANDLER, 8-3

VIP LINE PROTOCOL HANDLER, 8-1

PVE (POLLED VIP EMULATOR)

BSC AND PVE HOST- COMMUNICATIONS
SUPPORT, 1-5

ERROR REPORTING PVE LINE PROTOCOL
HANDLER, 9-8

POLLED VIP EMULATOR (PVE) LINE
PROTOCOL HANDLER, 9-1

PVE CONTROL STATION, 9-1

PVE DEVICE-SPECIFIC WORD I DVS IN
IORB (TBL), 9-3

PVE HARDWARE FUNCTION CODES, 9-6

PVE INPUT, 9-6

PVE INPUT DATA, 9-7

PVE INPUT MESSAGE HEADER,

PVE LINE PROTOCOL HANDLER
TIME-OUT, 9-8

9-6

CBO03

INDEX

PVE (POLLED VIP EMULATOR)
PVE OUTPUT, 9-7
PVE OUTPUT DATA, 9-7
PVE SOFTWARE STATUS WORD I_ST IN
IORB (TBL), 9-5
PVE-SPECIFIC IORB VALUES, 9-2
PVE TERMINAL ADDRESS (ADR) AND
MESSAGE STATUS (STA), 9-7
PVE TIME-OUT INTERVALS (TBL), 9-8
PVE TRIBUTARY STATION, 9-1
PVE CONFIGURATION (FIG), 9-2
USING PVE LINE PROTOCOL
HANDLER, 9-2
VIP PROTOCOL MESSAGE STRUCTURE
FOR PVE, 9-5

(CONT)

RCT ‘
RESOURCE CONTROL TABLE (RCT),
6-4, C-1

READ FUNCTION
READ FUNCTION (CODE 2), 6-10

RECEIVE- ONLY

-(TBL), 8- 10
" VIP RECEIVE-ONLY PRINTER FORM FEED
(TBL), 8-11

REDUNDANCY CHECK
CYCLIC REDUNDANCY CHECK (CRC), A-8
LONGITUDINAL REDUNDANCY CHECK
(LRC), A-8

REGISTER
REGISTER $R2 AT DUMP EXECUTION -
DUMCP LINKED TO APPLICATION
(TBL) , G-7
REGISTER VALUES AND DUMCP DUMP
CONTENTS (TBL), G-6

REPLY, CONVERSATIONAL IN BSC
BSC 3780 CONVERSATIONAL REPLY
FEATURE, 10-10

REQUEST BLOCK
COMMUNICATIONS INPUT/OUTPUT REQUEST
BLOCK (IORB) (FIG), 6-5
INPUT OUTPUT REQUEST BLOCK
(IORB), 6-2, 6-4

REQUEST I,/0
REQUEST IO ($RQIO) MACRO CALL,
6-1, 6-2
RETURN STATUS ERROR CODES FOR I/O
REQUEST (TBL), 6-3

RESOURCE CONTROL TABLE (RCT)
RESOURCE CONTROL TABLE (RCT),
6-4, C-1

RETURN
RETURN STATUS ERROR CODES FOR I/0O
REQUEST (TBL), 6-3
TTY LINE FEED (LF) AND CARRIAGE
RETURN (CR) INPUT, 7-8

REVERSE INTERRUPT
BSC REVERSE INTERRUPT (RVI)
FEATURE, 10-7

R_STS IN RCT v
TERMINAL ATTRIBUTES 1IN STATUS
WORD R_STS OF RCT (TBL), C-3

ROUTINE
DUMP ROUTINE (DUMCP) FOR MLCP
AND DLCP, G-1
FILE SYSTEM AND MACRO ROUTINES,
2-1

$RQIO MACRO CALL
REQUEST IO (SRQIO) MACRO CALL,

6-1, 6-2

BVI (REVERSE INTERRITPT)
BSC REVERSE INTERRUPT (RVI)
FEATURE, 10-7

SELECT
COBOL SELECT AND ASSIGN CLAUSE
EXAMPLES, 3-3

SEND CONTROL BYTE
BSC CONTROL BYTE (SEND), 10-18
TTY CONTROL BYTE (SEND), 7-9
VIP CONTROL BYTE (SEND), 8-8

SEQUENCE
END-OF-MESSAGE (EOM) SEQUENCE
TTY OUTPUT, 7-10
VIP RECEIVE-ONLY PRINTER EDITING
SEQUENCE, 8-10
VIP RECEIVE-ONLY PRINTER FORM FEED
SEQUENCE, 8-11

SLAVE STATION
BSC SLAVE STATION, 10-1

SOFTWARE STATUS WORD (I_ST)

BSC SOFTWARE STATUS WORD I_ST IN -
IORB (TBL), 10-14

IORB SOFTWARE STATUS WORD
(1_sT), 6-8

PVE SOFTWARE STATUS WORD I ST
IN IORB (TBL), 9-5 -

SOFTWARE (I_ST) STATUS CODES
(TBL), 6-8

TTY SOFTWARE STATUS WORD I_ST IN
IORB (TBL), 7-7

VIP SOFTWARE STATUS WORD I_ST IN
IORB (TBL), 8-6

i-10 | CBO3

SOURCE PROGRAM, COBOL
COBOL SOURCE PROGRAM ENTRIES 'IN
COMMUNICATIONS, 3-1
COBOL, SPECIFYING FILES IN SOURCE
PROGRAM, 3-1

STATION
BSC MASTER STATION, 10-1
BSC SLAVE STATION, 10-1
PRIMARY STATION AT SYSTEM
BUILD, 10-2
PVE CONTROL STATION, 9-1
PVE TRIBUTARY STATION, 9-1
SECONDARY STATION AT SYSTEM
BUILD, 10-2

STATUS

FORTRAN FILE STATUS CHECK (ZFSTIN
AND ZFSTOT), 4-2

PVE TERMINAL ADDRESS (ADR) AND
MESSAGE STATUS (STA), 9-7

RETURN STATUS ERROR CODES FOR I/O
REQUEST (TBL), 6-3

SOFTWARE (I ST) STATUS CODES
(TBL), 6-8

TEST FILE STATUS, 2-12

STORAGE MANAGEMENT
FIB FOR STORAGE MANAGEMENT
(TBL), 2-10
FILE INFORMATION BLOCK (FIB) FOR
STORAGE MANAGEMENT (FIG), 2-9
STORAGE MANAGEMENT MACRO
CALLS, 2-2

STRUCTURES, PHYSICAL I/O
PHYSICAL I/O DATA STRUCTURES, 6-3

STTY COMMAND AND $STTY MACRO CALL
ARGUMENT VALUES FOR STTY COMMAND
AND $STTY MACRO CALL (TBL), B-2

SUBSYSTEM, . COMMUNICATIONS
COMMUNICATIONS SUBSYSTEM, A-1
COMMUNICATIONS SUBSYSTEM

CONVENTIONS, 6-1
GCOS COMMUNICATIONS SUBSYSTEM
OVERVIEW, 1-2

SIMPLIFIED FLOW - COMMUNICATIONS
SUBYSTEM (FIG), A-6

SUPERVISOR, COMMUNICATIONS
COMMUNICATIONS SUPERVISOR,
1-3, A-1

SUPPORT
BSC AND PVE HOST-COMMUNICATIONS
SUPPORT, 1-5
MODEM SUPPORT, A-3
SOFTWARE SUPPORT FOR VIP, 8-1
TTY AND VIP LINE PROTOCOL HANDLER
DEVICE SUPPORT, 1-5

INDEX

SUPPORT (CONT)
USER-SUPPLIED SOFTWARE FOR VIP
SUPPORT, 8-2

SWITCH
VIP 7200 AND 7800 HARDWARE
SWITCH, 7-3

SYNCHRONOUS
COBOL ASYNCHRONOUS OR SYNCHRONOUS
EXECUTION, 3-4
COBOL SYNCHRONOUS OPERATION (CALL
"ZCSYNC") , 3-4

SYSTEM

ASSEMBLY LANGUAGE COMMUNICATIONS
WITH FILE SYSTEM, 5-1

ASSEMBLY PROGRAMS FILE SYSTEM
CONSIDERATIONS, 5-1

COBOL FILE SYSTEM
CONSIDERATIONS, 3-1

FILE SYSTEM AND MACRO ROUTINES, 2-1
FILE SYSTEM IN COMMUNICATIONS, 2-10
FILE SYSTEM INTERFACE WITH

- APPLICATIONS, 1-4

GCOS 6 FILE SYSTEM, 1-2

PRIMARY STATION AT SYSTEM
BUILD, 10-2

SECONDARY STATION AT SYSTEM
BUILD, 10-2

SPECIFYING BSC 2780 AND/OR 3780 TO
THE SYSTEM, 10-13

SYSTEM BUFFERING, 2-11

TERMINAL'S CHARACTERISTICS, CHANGE
CHANGING TERMINAL'S FILE
CHARACTERISTICS, B-1
FORTRAN, CHANGING TERMINAL'S FILE
CHARACTERISTICS, 4-1

TERMINAL

ASSEMBLY PROGRAMS MACRO CALLS
SINGLE TERMINAL, 5-7

MACRO CALLS FOR SINGLE INTERACTIVE
TERMINAL (TBL), 5-7

PROGRAM LOGIC FOR SINGLE
INTERACTIVE TERMINAL (FIG), 5-8

PVE TERMINAL ADDRESS (ADR) AND
MESSAGE STATUS (STA), 9-7

TERMINAL ATTRIBUTES AND STATUS WORD
R _STS OF RCT (TBL), C-3

TERMINALS

ASSEMBLY PROGRAMS MACRO CALLS DATA
ENTRY TERMINALS, 5-4

ASSEMBLY PROGRAMS MACRO CALLS
MULTIPLE TERMINALS, 5-9

ASSEMBLY PROGRAMS MACRO CALLS
OUTPUT ONLY TERMINALS, 5-5

COBOL PROGRAM LOGIC FOR MULTIPLE
INTERACTIVE TERMINALS (FIG), 3-6

MACRO CALLS FOR DATA ENTRY
TERMINALS (TBL), 5-4 :

i-11 CBO3

TERMINALS (CONT)
MACRO CALLS FOR MULTIPLE TERMINALS
(TBL), 5-9
MACRO CALLS FOR OUTPUT ONLY
TERMINALS (TBL), 5-5
PROGRAM LOGIC MULTIPLE INTERACTIVE

TERMINALS (FIG), 5-10
TEST STATUS
TEST FILE STATUS, 2-12

TEXT DELAY
BSC TEMPORARY TEXT DELAY (TTD)
EXAMPLE (FIG), 10-6
BSC TEMPORARY TEXT DELAY (TTD)
FEATURE, 10-5

$TIFIL MACRO CALL
$TIFIL $TOFIL MACRO CALL IN
ASSEMBLY APPLICATIONS, 5-2

TIME-OUT

BSC LINE PROTOCOL HANDLER
TIME-OUT, 10-9

PVE LINE PROTOCOL HANDLER .
TIME-OUT, 9-8

TIME-OUT CHECK, A-9

TTY LINE PROTOCOL HANDLER
TIME-OUT, 7-4

VIP POLL DURATION (TIME-OUT), 8-7

VIP TIME-OUT INTERVALS, 8-2

$TOFIL MACRO CALL
S$STIFIL $TOFIL MACRO CALL IN
ASSEMBLY APPLICATIONS, 5-2

TRANSMIT, BSC
BSC TRANSMIT AND RECEIVE
OPERATIONS, 10-1

TRANSPARENT INPUT AND OUTPUT
BSC TRANSPARENT EBCDIC
ouTPUT, 10-20
TRANSPARENT EBCDIC INPUT FOR
BSC, 10-17

TTY TRANSPARENT INPUT, 7-8
TRIBUTARY STATION, PVE
PVE TRIBUTARY STATION, 9-1

TTY

CONTROL BYTE FOR TTY LINE
PROTOCOL HANDLER (FIG), 7-10

END-OF-MESSAGE (EOM) SEQUENCE TTY
ouTpPUT, 7-10

FORTRAN APPLICATION EXAMPLE FOR
TTY, D-16

TTY AND VIP LINE PROTOCOL HANDLER
DEVICE SUPPORT, 1-5

TTY CHARACTER MODE, 7-2

TTY CHARACTER MODE AND BUFFERED
MODE TRANSMISSION, 7-2

TTY CONTROL BYTE, 7-8, 7-9

INDEX

TTY (CONT)

TTY DETECTION OF BRK
CHARACTERS, 7-10

TTY DEVICE-SPECIFIC WORD I DVS IN
IORB (TBL), 7-5 -

TTY DISPLAY OF INPUT CHARACTERS, 7-9
TTY INPUT CHARACTER/LINE CORRECTION
AND DELETION, 7-8

TTY INPUT DATA, 7-7

TTY INPUT BUFFERED MODE (VIP
7200 AND 7800), 7-9

TTY KEYBOARD INPUT CHARACTER/LINE
CONTROL, 7-8

TTY LINE FEED (LF) AND CARRIAGE
RETURN (CR) INPUT, 7-8

TTY LINE PROTOCOL HANDLER,
TTY LINE PROTOCOL HANDLER
TIME-OUT, 7-4

TTY MESSAGE FORMATS, 7-1
TTY NONALPHANUMERIC CONTROL
CHARACTER (TBL), F-1

TTY NONTRANSPARENT INPUT, 7-8

TTY OUTPUT DATA, 7-9

TTY OUTPUT IN BUFFERED MODE, 7-11
TTY SOFIWARE STATUS WORD I ST IN
IORB (TBL), 7-7 .

TTY TRANSPARENT INPUT,

USING TTY LINE PROTOCOL
HANDLER,; 7-5

7-1

7-8

TWO-BUFFER FEATURE, BSC
BSC 3780 TWO-BUFFER FEATURE, 10-10
BSC TWO-BUFFER FEATURE, 10-3
BSC TWO-BUFFER FEATURE IN RECORD
TRANSMISSION (FIG), 10-4

VIEW, PROGRAM
PROGRAM VIEW ENTRY IN THE FIB, 2-6
PROGRAM VIEW FOR $OPFIL MACRO CALL

(TBL), 5-3

PROGRAMMER'S VIEW OF FIB, 2-6
VIP

ERROR PROCESSING VIP LINE PROTOCOL
HANDLER, 8-11

MLCP ERROR REPORTED BY VIP LINE
PROTOCOIL HANDLER (TBL), 8-13

NONPOLLED VIP ERRORS, 8-14
SOFTWARE SUPPORT FOR VIP, 8-1

TTY AND VIP LINE PROTOCOL HANDLER
DEVICE SUPPORT, 1-5

USER-SUPPLIED SOFTWARE FOR VIP
SUPPORT, 8-2

USING VIP LINE PROTOCOL

HANDLER, 8-3

VIP 7200 AND 7800 FUNCTION AND
CONTROL KEYS, 7-4

VIP 7200 AND 7800 HARDWARE
SWITCH, 7-3

VIP CONTROL BYTE (SEND), 8-8

VIP DEVICE~-SPECIFIC WORD I DVS IN
IORB (TBL), 8-4

CBO3

VIP (CONT)

VIP HARDWARE FUNCTION CODES, 8-8

VIP INPUT DATA, 8-8

VIP INPUT MESSAGE HEADER, 8-7

VIP INPUT (KEYBOARD/SCREEN), 8-7

VIP KEYBOARD/SCREEN OUTPUT
EDITING, 8-10

VIP LINE PROTOCOL HANDLER, 8-1

VIP LINE PROTOCOL HANDLER
POLLING, 8-7

VIP LINE PROTOCOL HANDLER TIME-OUT
(TBL), 8-3

VIP NONALPHANUMERIC CONTROL
CHARACTER (TBL), F-2

VIP OUTPUT, 8-8

VIP POLL, 8-7

VIP POLLING OPTIONS, 8-6

VIP RECEIVE-ONLY PRINTER EDITING
(TBL), 8-10

VIP RECEIVE-ONLY PRINTER FORM
FEED (TBL), 8-11

VIP SOFTWARE STATUS WORD I_ST
IN IORB (TBL), 8-6

VIP TIME-OUT INTERVALS, 8-2

VIP-SPECIFIC IORB VALUES, 8-3

WACK
BSC WAIT BEFORE ACKNOWLEDGE (WACK)
FEATURE, 10-6

WAIT
BSC WAIT BEFORE ACKNOWLEDGE (WACK)
FEATURE, 10-6
COBOL WAIT FOR COMPLETION -
ASYNCHRONOUS I/O, 3-5
WAIT ONLINE FUNCTION (CODE 0), 6-9

SWIFIL MACRO CALL
SWIFIL S$SWOFIL MACRO CALL IN
ASSEMBLY APPLICATIONS, 5-2

SWOFIL MACRO CALL
SWIFIL S$SWOFIL MACRO CALL IN
ASSEMBLY APPLICATIONS, 5-2

WORDS IN IORB

BSC DEVICE-SPECIFIC WORD I DVS IN
IORB (TBL), 10-12 -

BSC SOFTWARE STATUS WORD I ST IN
IORB (TBL), 10-14 -

IORB SOFTWARE STATUS WORD
(I sT), 6-8

PVE DEVICE-SPECIFIC WORD I DVS IN
IORB (TBL), 9-3 -

PVE SOFTWARE STATUS WORD I ST IN
IORB (TBL), 9-5 -

TTY DEVICE-SPECIFIC WORD I DVS IN
IORB (TBL), 7-5

VIP DEVICE-SPECIFIC WORD I_DVS IN
IORB (TBL), 8-4 :

VIP SOFTWARE STATUS WORD I ST IN
IORB (TBL), 8-6

INDEX

WRITE FUNCTION

WRITE FUNCTION (CODE 1), 6-10
ZCASN CALL IN COBOL
COBOL ASYNCHRONOUS OPERATION (CALL

"ZCASN"), 3-4

ZCSYNC CALL IN COBOL
COBOL SYNCHRONOUS OPERATION
"ZCSYNC"), 3-4

(CALL

ZFSTIN CALL IN FORTRAN
FORTRAN CALL STATEMENT FOR ZFSTIN
OR ZFSTOT, 4-2
FORTRAN FILE STATUS CHECK (ZFSTIN
AND ZFSTOT), 4-2

ZFSTOT CALL IN FORTRAN
FORTRAN CALL STATEMENT FOR ZFSTIN
OR ZFSTOT, 4-2
FORTRAN FILE STATUS CHECK (ZFSTIN
AND ZFSTOT), 4-2

CBO3

HONEYWELL INFORMATION SYSTEMS

Technical Publications Remarks Form

TITLE SERIES 60 (LEVEL 6) ORDERNO. | (B3, REV. 1

COMMUNICATIONS PROCESSING

DATED | jyLY 1978

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be promptly investigated by appropriate technical personnel and action will be taken D
as required. If you require a written reply, check here and furnish complete mailing address below.

FROM: NAME ‘ ‘ DATE

TITLE
COMPANY

ADDRESS

e = CUT ALONG LINE ——— —

PLEASE FOLD AND TAPE —)
NOTE: U.S. Postal Service will not deliver stapled forms

FIRST CLASS
PERMIT NO. 39531
WAI THAM MA
02154

Business Reply Mail ,
Postage Stamp Not Necessary if Mailed in the United States

Postage Will Be Paid By:
HONEYWELL INFORMATION SYSTEMS

200 SMITH STREET
WALTHAM, MA 02154

ATTENTION: PUBLICATIONS, MS 486

Honeywell

e e e ——_———————— e CUTALONG LINE—— —— — — —

N\

N

FOLD ALONG LINE

FOLD ALONG LINE

N

Honeywell

Honeywell Information Systems
In the U.S.A.: 200 Smith Street, MS 486, Waltham, Massachusetts 02154
In Canada: 2025 Sheppard Avenue East, Willowdale, Ontario M2J 1W5
In Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F.

21378, 2.5778, Printed in U.S.A.

CBO3, Rev. 1

