

SERIES 60 (LEVEL 6)
GCOS 6 COMMANDS
ADDENDUM A

SUBJECT
Index to the Manual

SPECIAL INSTRUCTIONS

Insert the attached pages (see Collating Instructions) into Revision 1 of the
manual dated June 1978.

Note:

Insert this title page behind the manual cover to indicate update of the
manual with Addendum A.

SOFTWARE SUPPORTED

This update supports Release 0110 of the Series 60 (Level 6) GCOS 6 MOD 400
Operating System. See the Manual Directory of the latest GCOS 6 MOD 400

System Concepts manual (Order No. CB20) for information as to later releases
supported by this manual.

ORDER NUMBER

CBO02A, Rev. 1 July 1978

21357
3778

Srinted in US4 Honeywell

COLLATING INSTRUCTIONS

To update the manual, remove old pages and insert new pages as follows:

Remove Insert

— i-1 through i-8,
at end of manual

7/78
© 1978, Honeywell Information Systems Inc. File No.: 1S13 CB02A

SERIES 60 (LEVEL 6)
GCOS 6 COMMANDS

SUBJECT
Detailed Description of Series 60 (Level 6) GCOS 6 Command Language

SOFTWARE SUPPORTED

This publication supports Release 0110 of the Series 60 (Level 6) GCOS 6
MOD 400 Operating System; see the Manual Directory of the latest GCOS 6
MOD 400 System Concepts manual (Order No. CB20) for information as to
later releases supported by this manual.

ORDER NUMBER
CBO02, Rev. 1 June 1978

Honeywell

Preface

This manual describes the GCOS 6 command language. Unless stated
otherwise, the term GCOS refers to the GCOS 6 software; the term Level 6
refers to the Series 60 (Level 6) hardware on which the software executes.

Section 1 of the manual provides an introduction to the command language.
It summarizes the commands according to function, describes the command
line format, explains the development of File System pathnames, and covers
the use of the Break key in interrupting command execution.

Section 2 describes the format and function of each command. For ease of
reference, the commands are presented in alphabetical order.

Appendix A contains detailed information that pertains to a limited number
of commands. It describes the use of additional command line arguments,
discusses terminal characteristics at login, and defines the pathname colon
convention.

Appendix B describes the directives used with the Intersystem Link (ISL)
command.

Appendix C describes the directives used with the File Change command.

Appendix D defines the standard GCOS 6 character set and its hexadecimal
equivalents.

© 1978, Honeywell Information Systems Inc. File No.: 1813 CB02

The followin,

MANUAL DIRECTORY
g publications comprise the GCOS 6 manual set. The Manual Directory in the

latest GCOS 6 MOD 400 Systems Concepts manual (Order No. CB20) lists the current revision
number and addenda (if any) for each manual in the set.

Order
No.

CBo01
CB02
CBO03
CB04
CBO05
CBO06
CB07
CB08
CB09
CB10
CB20
CB21
CB22
CB23
CB24
CB25
CB26
CB27
CB28
CB30
CB31
CB32
CB33
CB34
CB35
CB36
CB37
CB38
CB39
CB40
CB41
CB42
CB43

Manual Title

GCOS 6 Program Preparation

GCOS 6 Commands

GCOS 6 Communications Processing

GCOS 6 Sort/Merge

GCOS 6 Data File Organizations and Formats

GCOS 6 System Messages

GCOS 6 Assembly Language Reference

GCOS 6 System Service Macro Calls

GCOS 6 RPG Reference

GCOS 6 Intermediate COBOL Reference

GCOS 6 MOD 400 System Concepts

GCOS 6 MOD 400 Program Execution and Checkout

GCOS 6 MOD 400 Programmer’s Guide

GCOS 6 MOD 400 System Building

GCOS 6 MOD 400 Operator’s Guide

GCOS 6 MOD 400 FORTRAN Reference

GCOS 6 MOD 400 Entry-Level COBOL Reference

GCOS 6 MOD 400 Programmer’s Pocket Guide

GCOS 6 MOD 400 Master Index

Remote Batch Facility User’s Guide

Data Entry Facility User’s Guide

Data Entry Facility Operator’s Quick Reference Guide

Level 6/Level 6 File Transmission Facility User’s Guide

Level 6/Level 62 File Transmission Facility User’s Guide

Level 6/Level 64 (Native) File Transmission Facility User’s Guide
Level 6/Level 66 File Transmission Facility User’s Guide

Level 6/Series 200/2000 File Transmission Facility User’s Guide
Level 6/BSC 2780/3780 File Transmission Facility User’s Guide
Level 6/Level 64 (Emulator) File Transmission Facility User’s Guide
IBM 2780/3780 Workstation Facility User’s Guide

HASP Workstation Facility User’s Guide

Level 66 Host Resident Facility User’s Guide

Terminal Concentration Facility User’s Guide

In addition, the following documents provide general hardware information:

Order
No.

AS22
ATO4
AT97
FQ41

MANUAL DIRECTORY

Manual Title

Honeywell Level 6 Minicomputer Handbook

Level 6 System and Peripherals Operation Manual
MLCP Programmer’s Reference Manual

Writable Control Store User’s Guide

iii

CBO02

«

Sectionl. GCOS 6 Command
Concepts

Functional Summary of Commands
Command LineFormat
Argument o ..
Positional Argument
Keyword Argument
Control Argument
Spacesin Command Lines
Parameters
FileSystem Pathnames
DefinitionofaFile
Definition of a Directory
Directory or File Name Construction
Pathname Construction
Absolute Pathname
Relative Pathname and Working
Directory
Device Pathnames
Device Files (Other Than Disk and
Tapecoviiie i
TapeFiles
Disk DeviceFiles
Device Pathname Examples
Special Utility Program Pathname
Conventionsc......
Star Name Convention
Equal Name Convention
User Program Activation
Activating a User Program
Extending the CommandSet
Standard/OFiles
Command-inFile
User-inFile
User-outFile
Error-outFile
FileConcurrencyoonnnn..
Concurrency of Standard /O Files
Concurrency of Utility and Program
PreparationFiles
Conditions for Command Processor
Termination
Keyboard Input Line Control
Correcting the CurrentLine
Deleting the CurrentLine
Declaring a Control Character a Data
Character
Task Interruption (Break)
Break FunctionUsage
Break Procedures
Unwind and Program Interrupt
Command Considerations..........
ExamplesofBreak Usage

Contents

Section2. GCOS 6 Commands
Abort Group (ABORT_GROUP Command) . 2-1

Assembler (ASSEM Command) 2-2
Associate Path (ASSOC Command) 2-4
Bye(BYECommand) 2-5
Change Working Directory (CWD

Command).......................... 2-6
COBOL(COBOLCommand) 2-8
COBOLI(COBOLCommand) 2-10
Compare (CPACommand) 2-12
Copy (CPCommand) 2-15
Copy Data Exchange (IBM) (CPDE

Command).......................... 2-20
Create Directory (CD Command) 2-21
CreateFile (CFCommand) 2-23
Create Group (CG Command) 2-26
Create Mailbox 2-28
Create Task (CT Command) 2-29
Create Volume (CV Command) 2-31
Create Volume Data Exchange (IBM)

(CVDE Command) 2-35
Deferred Print (DP Command) 2-36
Delete Access Control List 2-38
Delete Common Access Control List 2-39
Delete Group (DG Command) 2-40
Delete Task (DT Command) 2-41
Dissociate Path (DISSOC Command) 2-41
Dump Edit (DPEDIT Command) 2-42
Editor(EDCommand) 2-44
Enter Batch Request (EBR Command) 2-45
Enter Group Request (EGR Command) 2-46
Enter Task Request (ETR Command) 2-48
Execution Command (EC Command) 2-50
Export PAM File (EX_PAM Command). 2-54
File Change (FC Command) 2-55
File Dump (FD Command) 2-56
FileOut (FOCommand) 2-58
FORTRAN (FORTRAN Command) 2-59
GetFile(GETCommand) 2-62
Import PAM File IM_PAM Command) 2-68
Invoke RBT Task Group (RBT Command) ... 2-69
ISL Configurator (ISLCON Command) 2-69
Linker (LINKER Command) 2-70
List Access Control List 2-71
List Common Access Control List 2-72
List Creation Date (LCD Command) 2-74
List Data Exchange (IBM)

(LSDE Command) 2-75
List Names (LS Command) 2-717
List Search Rules (LSR Command) 2-79
List Working Directory (LWD

Command).......................... 2-80
Login(LCommand) 2-81

Macro Preprocessor (MACROP Command) .. 2-84

Merge Files MERGE Command) 2-85
Message (MSG Command) 2-85
Modify External Switches (MSW
Command)..................coo. 2-86
Modify File (MF Command) 2-87
New Process (NEW_PROC Command) 2-88
Patch(PATCHCommand) 2-88
Print PRCommand) 2-89
Ready Off RDFCommand) 2-91
Ready On(RDN Command) 2-91
Release RLCommand) 2-92
Remove File (REMOVE Command) 2-93
Rename File RENAME Command) 2-94
ResetMap(RSCommand) 2-95
Restore (RESTORE Command) 2-96
RPG(RPGCommand) 2-97
Save(SAVECommand) 2-99
Set Access Control List (SET_ACLor SA) ... 2-100
Set Autodial Telephone Number (SDL
Command)..............ccooivin... 2-105
Set Common Access Control List (SCA
SET CACL) ..., 2-106
Set Terminal Characteristics (STTY
Command).............ccovvuvinn... 2-108
Sort File (SORTCommand) 2-109
Spawn Group (SGCommand) 2-110
Spawn Task (ST Command) 2-112
Status Group (STG Command) 2-114
Time (TIME Command) 2-115
Tape Positioning (TPOS Command) 2-116
Transmit File (TRAN Command) 2-117
Transmit File TRANB Command) 2-119
Transmit File (TRANH Command) 2-121
Walk Subtree (WSCommand) 2-123
Appendix A. Additional Command
Considerations ‘
Additional Command Line Arguments
ARG) .. oot e A-1
ArgumentPassing A-1
Input Command Line Parameter
Substitution A-1
EC File Execution Command A-2
Group Activation Request Commands . A-3
Terminal Characteristicsat Login A4
Noncommunications Terminal A4
Communications Terminal A-5
Pathname Colon Convention A-5
AppendixB. Intersystem Link (ISL)
Directives
ISL Loader File Creation B-1
ISL Configurator B-1
ISLCON ..o B-1
Sample Intersystem Link B-2
ISL Configuration Directives B-4
ISLDirectivecoviiiinenn... B-4
DUMPDirectiveccovvvenn... B-4
LCHAN, RCHAN Directives B-5
LCP,RCPDirectivesc..... B-6
LMEM, RMEM Directives B-6
QUITDirectivecovivvnn.n. B-8

AppendixC. File Change Directives

File ChangeCommand C-1
File Change Directives.................... C-1
READ Directive C-2
PRINT Directive C-2
CHANGE Directive C-2
WRITE Directive C-3
QUITDirectiveccvvuveui... C-3
Sample File Change Commands C-4

AppendixD. ASCIIand EBCDIC
Character Set

Figures

2-1 Typical Directory/File Structure 2-7
2-2 Default Block and Logical Record

Size Calculation.............. 2-67
2-3 Block and Logical Record Size

Validity Checking 2-67
B-1 Sample Intersystem Link B-2
B-2 ISL Hardware Configuration B-3

Tables

1-1 Functional Summary of

GCOS6Commands........... 1-1
1-2 System Programs Supporting the

UW (Unwind) Command 1-17
D-1 ASCII/Hexadecimal

Equivalents D-2
D-2 EBCDIC/Hexadecimal/Binary

Equivalents D-3

CB02

C

The GCOS 6 command processor enables users to define and control application tasks. The
processor reads commands from a sequential input file (which may be an interactive terminal
or a prestored command file) and causes each requested function to be executed in a serial

manner.

Functions performed by the commands include file maintenance, interjob control, intrajob

Section 1
GCOS 6 Command Concepts

control, file assignment, asynchronous task operation, and operator communication.

Batch applications are always controlled by the command processor. Concurrent online
applications, while not required to use the command processor, will in most cases find its use to

be advantageous.

FUNCTIONAL SUMMARY OF COMMANDS

The GCOS 6 command repertoire is divided into the following functional groups:

e Execution control
¢ Resource control

Program preparation
Utilities
e Interactive operations

File and directory control

Table 1-1 lists the commands according to function.

TABLE 1-1. FUNCTIONAL SUMMARY OF GCOS 6 COMMANDS

Command Command Name Function

EXECUTION CONTROL COMMANDS: These commands cause the creation, execution,
suspension, and deletion of tasks and task groups from the system.

Abort group ABORT_GROUP Suspends, terminates, and deletes the task group.

Associate path ASSOC Associates a pathname with a logical file number (LFN).

Create group CG Allocates and initializes all data structures that define a task
group.

Create task CT Creates within the task group the definition of a task.

Delete group DG Marks the task group as eligible to be deleted when it be-
comes dormant.

Delete task DT Deletes the indicated task.

Dissociate path DISSOC Removes the association between the indicated LFN and
the associated pathname.

Enter group EGR Activates the lead task for execution or, if the lead task is

request active, queues the request.

Enter task request ETR

Execution EC
command

Modify external MSW
switches

GCOS 6 COMMAND CONCEPTS

Activates the task for execution or, if the task is active,
queues the request.

Invokes the command processor to read commands from a
.EC file.

Modifies external switches associated with a task group.

1-1

CB02

TABLE 1-1. (CONT.) FUNCTIONAL SUMMARY OF GCOS 6 COMMANDS

Command Command Name Function

New process NEW__PROC Suspends all tasks of this task group and restarts the lead .
task with the original arguments.

RBT task group RBT Invokes the remote batch terminal task group and associates

invocation it with a logical stream.

Spawn group SG Creates, requests the execution of, and then deletes a task
group.

Spawn task ST Creates, requests the execution of, and then deletes a task

within the issuing task group.
Status group STG Supplies the status of the issuing task group.

RESOURCE CONTROL COMMANDS: These commands cause the reservation and removal
of files (e.g., tape or disk files or volumes, disk directories, printers, card readers, and terminal

devices).
Get file GET Reserves a file.
Remove file REMOVE Cancels the reservation of a file.

FILE AND DIRECTORY CONTROL COMMANDS: These commands manipulate and pro-
vide access to files and directories within the file system.

Change working CWD Changes the working directory of the task group to the indi-

directory cated path.

Create directory CD Creates a directory referenced by the indicated pathname.

Create file CF Creates the indicated disk file.

Create mailbox CMBX Creates a mailbox to contain message queues.

Delete ACL DA Removes entries from the access control list (ACL) of a file or
directory.

Delete CACL DCA Removes entries from the common access control list of a file
or directory.

File out FO Changes a user-out file to a specified file or resets it to its
default value.

List ACL LA Lists entries of the access control list for a file or directory.

List CACL LCA Lists entries of the common access control list (CACL) for a
specified directory.

List names LS Lists entries and (optionally) their attributes within a spec-
ified directory.

List search rules LSR Lists currently defines search rules for the task group.

List working LWD Prints the absolute pathname of the working directory.

directory

Modify file MF Modifies the attributes of the indicated file.

Release file RL Deletes a file from the File System and releases space allo-
cated to it.

Rename file RENAME Renames a directory entry with a name unique within that
directory.

Set ACL SA Adds new entries or changes access mode of existing entries

’ in a given access control list (ACL).

Set CACL ' SCA Adds new entries or changes access mode of existing entries
in a given common access control list (CACL).

Set terminal STTY Changes the file characteristics of a terminal.

characteristics

Walk Subtree WS Executes a command line in a given directory and in all
subordinate directories. Prints pathname of every directory

referenced on error__out.

GCOS 6 COMMAND CONCEPTS 1-2 CB02

8

TABLE 1-1. (CONT.)

FUNCTIONAL SUMMARY OF GCOS 6 COMMANDS

Command

Command Name Function

PROGRAM PREPARATION COMMANDS: These commands allow the user to create and
modify source programs, and to create a bound unit from one or more resulting object files.

Assembler

COBOL
(entry-level)

COBOL
(intermediate)

Editor
FORTRAN
Linker

Macro
Preprocessor

Report Generator

ASSEM
COBOL

COBOLI

ED

FORTRAN

LINKER
MACROP

RPG

Assembles the specified assembly language program.

Compiles the specified entry-level COBOL source program.
Compiles the specified intermediate COBOL source program.

Allows the user to create or modify any text file.
Compiles the specified FORTRAN source program.
Processes one or more object files to create a bound unit.

Expands assembly language macro calls and %#INCLUDE
statements into assembly language source statements.

Compiles the specified Report Generator program.

UTILITY COMMANDS: These commands allow the user to perform various functions on
records, files, volumes, and directories (including creating volumes, copying, comparing,
dumping, and sorting).

Compare

Copy

Copy Data
Exchange

Create volume

Create Volume
for Data
Exchange

DPRINT
Edit system dump®

Export PAM file®

File change®
File dump
Import PAM file®

ISL configurator®

List creation date

List Data
Exchange

Merge
Patch
Print

Reset map®

Restore

CPA

CP
CPDE

(Y

CVDE

DP
DPEDIT

EX_PAM

FC
FD
IM_PAM

ISL

LCD
LSDE

MERGE
PATCH
PR
RS

RESTORE

GCOS 6 COMMAND CONCEPTS

Compares the contents of one file or volume with another file
or volume.

Copies a file or volume and its file system attributes.

Copies IBM files to Honeywell files or vice versa. I

Creates or modifies a volume to the GCOS 6 file system
standard.

Sets up an unformatted diskette to be acceptable on IBM
equipment.

Queues a request for deferred printing.

Transfers to the user-out file the contents of a previously
written memory dump file, or contents of current memory.

Copies one or more sequential files to a BES1 or BES2
partitioned file.

Changes the contents of a disk sector or control interval.
Prints selected logical records within a specified file.

Transfers one or more BES1 or BES2 partitioned file
members to the file system.

Generates a loader to load Intersystem Link (ISL) address
maps and masks.

Lists the creation dates of a file or files in a directory.

Lists by file name the contents of an IBM diskette. l

Merges the records of one or more sequential files.
Modifies an object or image text file.
Prints an indicated file.

Reconstructs the volume bit map and lists the number of
unused sectors available for allocation on a disk volume.

Restores files previously saved by the SAVE command. l

1-3 CB02

TABLE 1-1. (CONT.) FUNCTIONAL SUMMARY OF GCOS 6 COMMANDS

Command Command Name Function
Save SAVE Saves specified disk directories or files.
Set Autodial SDL Specifies a telephone number to be used by the Autodial
telephone number? facility when dialing a terminal to place a line in operation.
Sort SORT Sorts the records on a sequential file.
Tape Position TPOS Manipulates the position of a magnetic tape.
File Transmission TRAN Transmits files between a Level 6 system and a Level 66
system.
TRANB Transmits files between a Level 6 system and a
non-Honeywell system capable of using the IBM 2780
protocol.
TRANH Transmits files between a Level 6 system and a Level 6, 62,

64 or Series 200/2000 system.

INTERACTIVE COMMANDS: These commands allow the user to establish and terminate

access to the system, request the execution of a batch task group, send messages to the system
operator, and display the current time.

Enter batch EBR Places a request for the command processor executing in the
request batch task group.

Login LOGIN Allows a user to gain access to the system.

Message® MSG Allows a user to send messages to the system operator.
Ready message off RDF Suppresses printing of the ready message.

Ready message on RDN Restores printing of the ready message.

Terminate group BYE Terminates the user’s session and releases any resources
request reserved for him.

Time TIME Displays the current time.

2 This command is made available for use only with the Mod 400 Operating System.

The remainder of this section describes certain aspects of the GCOS 6 operating system, an
understanding of which is necessary to effectively use the GCOS 6 commands. The manual
System Concepts describes the system in greater detail and should be referred to for a more
complete understanding of system terms, structures, and components.

COMMAND LINE FORMAT

Commands are read and interpreted by the command processor, which executes as the lead
task in the batch task group, or can execute as the lead task in an online task group. Each
command causes a task to be spawned within this task group to perform the requested function
(e.g., create a task within an existing group, enter a group request, dump a file). When the
execution of a command terminates, control is returned to the command processor, which can
then accept another command.

A command line to the processor is a string of up to 127 ASCII characters in the form:

command-name [argl . . . argn] [;command-name [argl . . . argn]] . ..

where command-name is the path name of the bound unit that performs the command’s
function. Each subsequent arg entry is an argument whose functions are described in follow-
ing sections. The user can enter multiple commands in the same line by separating the
individual commands with a semicolon.

A single command line (127 characters) can be entered on more than one physical line. To
specify that command input is to be continued on a subsequent line, the user must enter an
ampersand (&) as the last character in the input line. The first character of a continued

GCOS 6 COMMAND CONCEPTS 1-4

command line may not be a blank. There is no limit on the number of physical lines that can be
used to enter one command line; the total number of characters in the command line, however,
cannot exceed 127. A physical line consisting solely of an ampersand (&) signals the processor
that a current command line is to be ignored.

ARGUMENT

An argument of a command is an individual item of data passed to the task of the named
command. Some commands require no arguments; others accept one or more as indicated in
the syntax of each command description. Optional arguments are enclosed in brackets; e.g.,
[path]. There are positional and keyword arguments (see below).

Other types of arguments are the additional arguments that follow the -ARG keyword,
available in some commands, and those following path in the EC command. They represent
data that is to be used in the task group being activated and are discussed in Appendix A.

POSITIONAL ARGUMENT

A positional argument is an argument whose position in the line indicates to which variable
the item of data is applied. It can occur in a command line immediately after the command
name or as the last argument following the control arguments, as in the LIST names com-
mand.

KEYWORD ARGUMENT

A keyword argument is a fixed-form character string preceded by a hyphen, thus -ECL. It
can be alone, as in -WAIT, or it can be followed by a value, as in -FROM xx.

CONTROL ARGUMENT

A control argument is an additional argument or keyword argument whose value specifies a
command option; e.g., the pathname of an alternate input or output file. In the command
syntax descriptions in this manual, control arguments are denoted by the term “ctl__arg”;
the argument descriptions define the specific keywords for that command. Unless otherwise
noted, a control argument is optional, as indicated by enclosing brackets; i.e., [ctl_arg]. A
required control argument is so described in the syntax definition, without enclosing brackets.

Except when the last argument of a command line is a positional argument, keywords of
control arguments can be entered in any order in the line, following the initial positional
arguments.

SPACES IN COMMAND LINES

Arguments in command lines are separated from each other by spaces. Unless otherwise
indicated, a space in a command line syntax represents one or more space characters, or one or
more horizontal tab characters, or a combination of these. Spaces can be embedded within an
argument by enclosing the argument in single () or double (*) quote characters. If the
enclosing character is also required within the argument, it is represented by two successive
characters, thus: “NAME="“SMITH”” AREA 203".

PARAMETERS

Arguments are the user-selected items of data passed to a task. In the activated task, which
is written in a generalized manner to handle any set of data passed to it, this data is known as
parameters. If the activated task expects positional parameters, the order of the parameters
passed to it must be in the same order as the task’s positional parameters.

FILE SYSTEM PATHNAMES

The GCOS 6 File System is a tree-structured hierarchy through which each volume of
storage is identified to the system. The basic element of this structure is the file. A special file,
called a directory, contains information about other files.

GCOS 6 COMMAND CONCEPTS 1-5

CB02

DEFINITION OF A FILE

A file is any unit of storage outside the central processor which can supply data to or receive
data from a task. A file can be a peripheral device such as a printer, card reader, or terminal, or
it can be a collection of data stored within a directory structure on a magnetic (tape or disk)
storage device. A source unit, object unit, listing, or bound unit is stored as a source unit file,
object unit file, list file, or bound unit file, respectively.

DEFINITION OF A DIRECTORY

A directory is a file that contains information about other “subordinate” storage system
entries, which in turn may represent other directories or data files. An entry named in a
directory is subordinate to that directory and is “contained” within it. The information in the
containing directory describes physical and logical attributes of the subordinate files.

The directory at the base of a tree structure is the root directory. Its name is the same as the
name (volume id) of the volume where it resides.

When first created, a volume has only a root directory, within which names and attributes
of subordinate directories can be created later.

All references to directories and files begin either explicitly or implicitly with a root
directory name.

DIRECTORY OR FILE NAME CONSTRUCTION

A directory or file name can consist of the following ASCII characters:
e Uppercase letters (A through Z)

Decimal digits (0 through 9)

Underscore character (_)

Period (.)

Dollar sign ($)

Any name must begin with a letter or the dollar sign ($). The underscore is used to join two
or more words that the system is to interpret as one name; e.g., DATE_TIME. The period
separates a name from its alphabetic or numeric suffix characters. For example, in the name of
a COBOL source file called coBproG.C, COBPROG is any user specified name, and C is the
required suffix, indicating to the system that this is a COBOL source file.

The length of a root directory name or volume identifier can be from one to six (nonblank)
characters. A directory (other than the root) or a file name can have from one to twelve
(nonblank) characters. A specified file name must provide for any possible suffix that might be
appended by the system so that the overall length of the name does not exceed twelve
characters.

PATHNAME CONSTRUCTION

A pathname is a string comprising one or more directory names and possibly one file name.
All subordinate names of directories or files within a directory must be unique. The pathname
describes the access path to the entity to be acted on. A pathname begins with a root directory
name, followed by zero, one, or more directory names (and possibly a file name), in the order of
their hierarchy.

The progressive relationship among pathname elements in the hierarchy is indicated by the
following symbols:

e Circumflex (") — denotes a root directory only; must precede the root directory name,
with no intervening space (e.g., VOLO011).

¢ Greater-than symbol (>) — indicates movement in the hierarchy away from the root.
Connects two directory names or a directory name and a file name. Can also be the first
character in a pathname, in which case it is immediately subordinate to the root directory
of the system volume. Each successive symbol in the string indicates a change of one
directory level; the name immediately following the symbol is at the next subordinate

GCOS 6 COMMAND CONCEPTS 1-6 CB02

level from the name immediately preceding it. Reading a pathname from left to right
shows the access through the tree structure, away from the root, to the last element in the
pathname. For example, if the root directory VOLO11 contains the directory name DIR1,
then the pathname for DIR1 is ©~ VOL011>DIR1. However, if directory DIR1 in turn
contains the file FILEA, then the pathname for FILEA is”~ VOL011>DIR1>FILEA. The
> symbol is never followed by a space; nor is it preceded by a space except as the first
character in a pathname.

e Less-than symbol (<) — Indicates movement in the hierarchy toward the root and a
change of one level in that direction. Additional < symbols show successive level changes.

The last element in a pathname is the name of the entity that is to be acted on, and may

denote either a directory name or a file name, according to the action to be performed.

Total length of any pathname, including all hierarchical symbols cannot exceed 58 charac-
ters, except that a working directory pathname cannot exceed 44 characters.

ABSOLUTE PATHNAME

An absolute pathname begins with a directory name preceded by a circumflex (') or a
greater-than symbol (>). With a circumflex, the pathname is a full pathname; with a greater-
than symbol, the first element of the pathname is immediately subordinate to the root
directory of the system volume.

RELATIVE PATHNAME AND WORKING DIRECTORY

A relative pathname is one that does not begin with a circumflex or greater-than symbol. For
a relative pathname that does not begin with a less-than symbol, the first (or only) name in the
pathname identifies a directory or file immediately subordinate to a directory known as the
working directory. The working directory is the user’s current position in the file system
hierarchy.

The simplest form of a relative pathname has only one element, which is the name of the
desired entry in the working directory.

The following are examples of relative pathnames and the full pathnames they represent
when the working directory pathname is

>UDD>PROJ1>USERA
and the system was initialized from the volume SYSO01.

DEVICE PATHNAMES

Reference to any device is through the Symbolic Peripheral Device (SPD) directory, which is
subordinate to the system root.

DEVICE FILES (OTHER THAN DISK AND TAPE)

The general form of a device file pathname is:
>SPD>dev__name
where dev__name is the symbolic name defined for the card reader, punch, printer, or terminal
device during system building.

Device files are always reserved for exclusive use (i.e., the reserving task group has read
and write access but other users are not allowed to share the file).

TAPE FILES

The general form of a tape file (device) pathname is:
>SPD>dev__name[>volid[>filename]]
where dev__name is the symbolic name defined for the tape device during system building,
volid is the name of the tape volume, and filename is the name of the file on the volume.

Tape devices are always reserved for exclusive use (i.e., the reserving task group has read
and write access but other users are not allowed to share the file).

GCOS 6 COMMAND CONCEPTS 1-7

CBo02

RELATIVE PATHNAME FULL PATHNAME

DELTA ASYS01>UDD>>PROJ1:>USERA>DELTA
OLD>DELTA ASYS01>UDD>PROJ1:>USERA>OLD>DELTA
<USERB>ALPHA ASYS01>UDD>>PROJ1>USERB>ALPHA
<<PROJ2>USERA>DELTA ASYS01>UDD>PROJ2>USERA>DELTA
< ASYS01>>UDD>»PROJ1
SYS01
uDD
PROJ1 PROJ2
USERA USERB USERA
DELTA ALPHA DELTA
oLD
DELTA

DISK DEVICE FILES

The general form of a disk device-level access pathname is:
>SPD>dev__name[>volid]
where dev_name is the symbolic name defined for the disk device during system building and
volid is the name of the disk volume.

during a volume copy or a volume dump).

This pathname format is used only when access to the entire volume is required (such as

If the volid is not supplied, reservation of the disk is exclusive (i.e., the reserving task group
has read and write access but other users are not allowed to share the file). This pathname
form is used when creating a new volume.

If the volid is specified, reservation is read/share (i.e., the reserving task group has read
access only; other users may read and write). This pathname format is used when dumping
selected portions of a volume without regard to the hierarchical file system tree structure.

GCOS 6 COMMAND CONCEPTS 1-8 CB02

=N

DEVICE PATHNAME EXAMPLES

Several examples of device pathnames are shown below.

Device Pathname

Line printer >SPD>LPT01

Exclusive tape volume >SPD>MT902>VOL3

File on an exclusive tape volume >SPD>MT902>VOL3>FILEA
Exclusive diskette >SPD>DSKO02

Nonexclusive cartridge >SPD>RCD01>V23X

disk volume

SPECIAL UTILITY PROGRAM PATHNAME CONVENTIONS

Two special pathname conventions, star name and equal name, can be used with certain
utility programs to reduce significantly the number of commands required to perform a series
of operations. The star name convention can be used with the COPY, COMPARE, LIST
NAMES, RELEASE, and LIST CREATION DATE commands. The equal name convention can
be used with the COPY and COMPARE commands. Refer to Section 2 for a full description of
these commands.

STAR NAME CONVENTION

The star name convention can be used with the COPY, COMPARE, LIST NAMES, RE-
LEASE, and LIST CREATION DATE commands to perform an operation on a group of files
without having to enter separate commands for each file in the group. A star name functions in
the same way as an entry name. The star name convention matches a star name with entry
names in a single directory to identify a group of entries with common components. For
example, if a directory contains the names of three files, PROG1.C, PROG1.0, and PROG1.L,
all three files could be listed by the single command:

LS PROG1*
instead of the three commands:
LS PROG1.C
LS PROG1.0
LS PROG1.L
The following rules apply to star names:
1. The star name convention applies only to the final entry name of a pathname.

2. The star name entry can be composed of up to 12 ASCII characters, none of which can be
the less-than (<), greater-than (>), or circumflex () character.

3. Each star name must be made up of nonnull components, separated by periods. Thus, a
star name cannot begin with a period, end with a period, or contain two or more
consecutive periods.

4. When a question mark (?) character is used in a star name, the ? is treated as a special
character. The ? matches any character that appears in the corresponding component
and letter position of the entry name.

5. Each asterisk (*) character used in a star name matches any number of characters
(including none) appearing in the corresponding component and letter positions of the
entry name.

6. Only one asterisk can appear in each star name component, except that a double
asterisk (double star) can appear if used as defined in rule 7.

7. A double asterisk can be used to match any number of whole components (including
none) in the corresponding position of the entry name. Only one double asterisk is
allowed in a star name.

8. The asterisk can be considered to represent any number of characters; the question
mark can be considered to represent one character.

GCOS 6 COMMAND CONCEPTS 1-9

CBO02

Two sets of examples of use follow. The first set shows the use of star names as entry name
arguments. The second shows the use of star names in determining the pathname.

The following examples illustrate the use of the star name convention as the entry name
argument of a command. The examples are based on the following generalized pathname:

>UDD >directory }star_name\

- -l —~ ~~
component;.component,.component,
Example 1:
LS Kk
Lists all entries in the working directory.
Example 2:
LS **WORK

Lists all 3-component entry names, whose last component is WORK, in the working
directory.

Example 3:
LS WOR?.**

Lists all entries in the working directory that have a 4-character first component whose
first three characters are WOR.

Example 4:
LS «*WOR?.**
Lists all entries in the working directory that have a 4-character second component
whose first three characters are WOR.

The following examples show the use of the star name convention in determining the actual
pathname of a command. The examples are based on the following assumptions (D means
directory, S means source file):

e The directory volid has the following entries:
Entry Name Type
VOLID D
FILE1 S
FILE2 S
DIR1 D
FILE3 S
DIR2 D
FILE4 S
e Directory DIR1 has the following entries:
Entry Name Type

FILEA S
FILEB S
DIRA D
FILEC S

e Directory DIR2 has the following entries:

Entry Name Type

FILEX S

DIRX D

DIRY D

FILEY S

FILEZ S

Example 1:

LS -PN " volid >**

Lists all entries (all is the default since no argument other than path is included) in all
directories within the directory volid. This form of the LS command lists only the contents of

GCOS 6 COMMAND CONCEPTS 1-10 CB02

directories; it does not enumerate the files. The pathname "~ volid >** informs the command of

which directory to list. The pathname of the directory to be listed does not end with a specific

entry name, but with a star name. Therefore, all directory entries within volid that conform to
— that star name will be listed. The listing will consist of:

(DIRECTORY: DIR1
: (list of DIR1)

DIREC’i‘ORY: DIR2
: (list of DIR2)

Example 2:
LS -PN “volid>** -FILE
Lists only the files within the directories within the directory volid. The listing will consist of:

DIRECTORY: DIR1
FILEA
FILEB
FILEC
DIRECTORY: DIR2
FILEX
FILEY
FILEZ

Example 3:
LS -PN volid>*2
Lists only the directory DIR2. The listing will consist of:
DIRECTORY: DIR2

(list of DIR2)

EQUAL NAME CONVENTION

The equal name convention can be used with the COPY and COMPARE commands to
construct the output pathname entry name when the input pathname entry name has been
resolved. Use of the equal name convention allows the user to employ the star convention in
the input pathname and the equal name in the output pathname to copy or compare several
files.

The names of the output files are constructed through the equal name convention, using
either a standard input pathname entry name or an input pathname entry name that is built
with the star convention.

The following rules apply to equal names:

1. Anequal name is an entry name; it is composed of up to 12 ASCII characters (including
spaces), none of which can be the less-than (<) or greater-than (>) character.

2. An equal name is composed of one or more nonnull components. Thus, an equal name
cannot begin with a period, end with a period, or contain two or more consecutive
periods.

3. When a percent character (%) appears in an equal name component, it is treated as a
special character. The % character represents the character in the corresponding com-
ponent and letter position of the entry name. An error occurs if the corresponding
character does not exist.

4. Each equal-sign character (=) that appears in an equal name component is treated as a
special character. The equal sign represents the corresponding component of the entry

e name identified by the star name. An error occurs if an equal sign appears in a
(component that contains a percent character. Only one equal sign can appear in each

GCOS 6 COMMAND CONCEPTS 1-11

CB02

equal name component, except that a double equal sign can appear if used as defined in
rule 5.

5. An equal name component that consists of only a double equal sign (==) is treated as a
special component. The double equal sign component represents all components of the
entry names that are identified by the star name and that have no other corresponding
components in the equal name. Since the double equal sign represents (corresponds to)
components of the entry name identified by the star name, the equal name will have the
same number of components as the entry name. Only one double equal sign can appear
in an equal name.

The following examples show typical uses of the equal name convention. The examples
assume two directories, DIR1 and DIR2. DIR1 is to be copied to DIR2. DIR2 is initially empty.
DIR1 contains three files:

FILEA xyz
FILEB.xyz
TESTC.xyz
Example 1:
CP "DIR1>** "DIR2>==
Copies three files from DIR1 to DIR2. DIR2 contains:
FILEA.xyz
FILEB.xyz
TESTC.xyz
Example 2:
CP "DIR1>*xyz DIR2>=.abc
Copies all three files, changing the second component to abc. DIR2 contains:
FILEA.abc
FILEB.abc
TESTC.abc
Example 3:
CP "DIR1>*xyz DIR2>TEST%.=.x
Copies all files. changing the first and second components and adding a third. DIR2 contains:
TESTA .xyz.x
TESTB.xyz.x
TESTC.xyz.x
The following examples have the same assumptions as examples 1 through 3, except that
DIR1 is assumed to contain the following files:
AB.CD
X.ABC.O
WXYZ.A
Example 4: R
CP DIR1>** DIR2>=.=
DIR2 contains WXYZ.A
Example 5:
CP "DIR1>*B** "DIR2>=.=K.X
DIR2 contains A.B.K.X
Example 6:
CP "DIR1>**C** "“DIR2>K.X%Z*W
DIR2 contains K.XBZ.0.W

GCOS 6 COMMAND CONCEPTS 1-12

CB02

(

USER PROGRAM ACTIVATION

This subsection discusses two interrelated topics: the means by which the user activates his
programs and the means by which he extends the system-supplied command set.

ACTIVATING A USER PROGRAM

The most direct way to activate a user program is to enter the program’s bound unit
pathname as the first (or only) argument in an input line (command line) to the command
processor.

When the command processor reads the input line, it places the arguments of the line into a
parameter block, in the order in which they appear in the line. Thus, the first entry in the
parameter block is the pathname argument.

The command processor then spawns a task to load and execute the bound unit specified by
the first argument in the line. When the program begins execution, register $B7 contains the
address of the parameter block.

When entering the command line to activate the program, the user should be aware of the
following conventions:

o Arguments: Only assembly language programs can handle arguments following the

bound unit pathname argument.

o Absolute and Relative Pathnames: The first (or only) argument in the command line can
be an absolute or relative pathname.

An absolute pathname can always be used. A relative pathname can be used if the bound

unit is in one of three directories searched by the loader. These directories are:

— The working directory of the task group.

— The system directory specified by the -LIB1 argument of the CHANGE SYSTEM
DIRECTORY operator command. -LIB1 indicates the first system directory to be
searched.

— The system directory specified by the -LIB2 argument of the CHANGE SYSTEM
DIRECTORY operator command. -LIB2 indicates the second system directory to be
searched.

e Entry Points: The bound unit can have a suffix in the form ?entry, where entry is a
symbolic start address within the root segment. If no suffix is given, the default start
address (established when the bound unit was linked) is used.

Example 1:

"VOL01>TESTA>ROTAL1
This command line uses an absolute pathname to cause the bound unit ROTA1 to be loaded
and executed at its default start address.
Example 2:
ROTA1
This command line uses a relative pathname to load and execute the bound unit ROTA1 at its
default start address. The working directory is VOLO1>TESTA.
Example 3:
"VOL01>TESTB>CODA1?ENTRY3 1 2 3

This command line loads and executes the bound unit CODA1 at the symbolic start address
ENTRY3. The arguments 1, 2, and 3 are placed in the parameter block after the pathname
argument. CODA1 must be an assembly language program which has been written to obtain
arguments (e.g., 1, 2, and 3) from the parameter block whose address is in $B7.

Example 4:
CODA1?ENTRY1

This command line causes the bound unit CODA1 (relative pathname) to be loaded and
executed at the symbolic start address ENTRY1. The working directory is~ VOL01>TESTB.

GCOS 6 COMMAND CONCEPTS 1-13

CB02

EXTENDING THE COMMAND SET

The user can extend the set of commands provided with the operating system by adding
commands that meet his particular requirements.

Each new command is the name of the load module used in the execution of the command.

Normally, the user places the load module into one of the system search directories (i.e.,

those directories defined by the -LIB1 and -LIB2 arguments of the CHANGE SYSTEM
DIRECTORY command).

The procedure for activating a user program, as described above, is also the means by which
the user extends the command set.
Example 1:
"VOL02>PROD>PAYPRT 118 315 7722
This user command prints payroll data for selected departments. The arguments specify that
data for departments 118, 315, and 7722 is to be printed
Example 2:
INVENT>TT1001
INVENT>TT100A

These user commands list the number of 12-volt batteries (TT1001) and manual choke as-
semblies (TT100A) currently on hand in the users warehouse. The system directory has been
defined by the -LIB1 argument of the CHANGE SYSTEM DIRECTORY command to be
ZSYS51.

STANDARD 1/O FILES

The following four files are always associated with the command processor:

e Command-in file

e User-in file

o User-out file

e Error-out file

The functions and characteristics of these files are described in the following paragraphs.

COMMAND-IN FILE

The command-in file for the command processor is the file from which command lines are
read. Specifically, it is the device or file named by the in__path argument when a request is
entered against a task group in which the command processor is executing as the lead task.
The command-in file can, at times, be assigned temporarily to another device or file, as during
the execution of the EC command. At the termination of execution of such a command, the
command-in file reverts to the original device or file.

USER-IN FILE

The user-in file is the file from which a command function, during its execution, reads its
own input. When a task group request has been processed, and as long as no alternate user-in
file is specified as an argument in a subsequent command, the user-in file remains the same as
the command-in file. At the termination of a command that names an alternate user-in file, the
user-in file reverts to its initial assignment.

USER-OUT FILE

The user-out file is the file to which a task group normally writes its output. Certain system
components (for example, compilers) also write to list files (path.L) or to the output file defined
in the -COUT argument of their command. The user-out file is initially established by the

GCOS 6 COMMAND CONCEPTS 1-14 CBO02

-OUT argument of the EBR, EGR, and SG commands. (Thus, originally it is the same device as
the error-out file device.) The user-out file can be reassigned to another device by use of the
FILE OUT command or the New User Out ($NUOUT) macro call. This reassignment remains in
effect for the task group until another reassignment occurs.

ERROR-OUT FILE

The error-out file is the file to which the command processor, and any commands invoked by
it, write information related to error conditions they detect. The error-out file is the same as
the initial user-out file; it cannot be reassigned by a command or command argument.

FILE CONCURRENCY

The following paragraphs describe the concurrency used for standard I/O files, utility files,
and program preparation files. See the GET command for a description of concurrency control.

CONCURRENCY OF STANDARD 1/O FILES

Standard 1/O files are reserved when a task group is spawned or requested. All nondisk
standard I/O files are reserved for exclusive use. References to these files from within a task
group will succeed; attempts to reserve the files from other task groups will fail. Although the
operator terminal must be reserved with shared concurrency to allow read and write access by
multiple groups, it can be used as a standard 1/O file without any concurrency conflicts.

Disk standard 1/0 input files are reserved to allow multiple readers with no writers; disk
standard 1I/0 output files are reserved for exclusive use.

CONCURRENCY OF UTILITY AND PROGRAM PREPARATION FILES

Files reserved by specifying the out__path value in the -COUT argument are reserved with
exclusive concurrency. Thus, multiple tasks from the same task group can write to the same
output file. The output file, however, is not sharable with tasks of other task groups. For this
reason, the operator terminal cannot be referenced through the -COUT argument.

CONDITIONS FOR COMMAND PROCESSOR TERMINATION

The command processor will terminate itself as the lead task of a group if any of the
following occur:

¢ &Q is entered to the command-in file.
o End of file is encountered in the command-in file.

¢ An /O error is encountered during a read from the command-in file from a noninteractive
device. If the device is interactive, the system will retry the read.

o It cannot acquire user pool memory for data input from command-in buffer.

¢ If cannot acquire user pool memory to execute an ampersand overlay function — &P, &N,
etc.

e An error is encountered in attempt to load an ampersand-related overlay.
e An error is encountered using any ampersand directive.

KEYBOARD INPUT LINE CONTROL

The terminal user has the ability to correct or delete erroneous input lines and to declare
control characters to be data characters.

1-15

CORRECTING THE CURRENT LINE

To correct a character in the current line, the user presses the @ key.

Pressing the @ key deletes the previously typed character and displays an @ symbol. Each
succeeding @ entry deletes another character, moving from right to left to the beginning of the
line. For each deletion, the @ symbol is printed.

Examples:
RENAMR@E
Results in the line:
RENAME

RWNAME@@@@@ENAME
Results in the line:
RENAME

DELETING THE CURRENT LINE

To delete the current line, the user presses and holds the CTRL (Control) key and presses X.
Entering CTRL X deletes the current line and displays the *DEL* message on the next line;
these actions are followed by a carriage return. '
Example:
GOT " BPPKS CTRL X
Results in the line:
DEL
followed by a carriage return. The user can now enter the correct line.

DECLARING A CONTROL CHARACTER A DATA CHARACTER

To declare that a control character (e.g., @, CTRL X, CR, and \) is to be accepted as a data
character, the user presses the back slash (\) key before entering the character.

The back slash is interpreted by the system as an escape character.

Example:
EGR AX TEST__A -ARG >SPD>CRD00 -CT M\ @R2

The last argument required by the previously specified lead task is M@R2. If the back slash
had not been entered, the character M would have been deleted.

TASK INTERRUPTION (BREAK)

The terminal user can interrupt or “break” a running task in order to reenter commands,
temporarily halt the task, or terminate the task. The break can be activated by pressing the
BRK (Break) or INTERRUPT key, as appropriate. (See the Operator’s Guide for the procedures
necessary to interrupt a task from the operator terminal.)

BREAK FUNCTION USAGE

Typically, a break from the interactive command-in terminal can be used to interrupt:

¢ Any program running in a task group whose lead task is the command processor.

¢ Any program invoked through a $CMDLIN (process command line) macro call issued by

the lead task.

The break cannot be used with a program that is designated as the lead task in a CREATE
GROUP or SPAWN GROUP command. The break can be used only under the following
conditions:

e When entering from an interactive command-in terminal.

o When used to interrupt a program invoked from the lead task and by a command to the

command processor.

GCOS 6 COMMAND CONCEPTS 1-16 CBO02

BREAK PROCEDURES

A break is effective only with an active, running task. If the command processor is inactive,
waiting for imput, pressing the Break key will have no effect.

To effect a break (task interrupt) in a running task:
Press the Break key
The system then:

1.
2.

a.
b.
c.
d.
Enter a response according to one or more of the following shown in a, b, ¢, or d below.

a.

(1)

(2)
(3)

Truncates (possibly) the current output line
Suspends temporarily the active task

Puts the lead task into “break mode”

Issues the break prompter message **BREAK**

Enter any command. When the entered command is other than SR, BYE,
NEW__PROC, UW, or PI (described later in this subsection), the lead task again
enters break mode and issues another ** BREAK** prompter message, requesting
another response. This may be followed by another command, or by one of the
response commands described later in this subsection.

Enter one of the following break mode responses to the **BREAK** message.

SR (Start) — Resumes execution of the suspended task; i.e., acts as though the
break had not been made.
BYE (Bye) — Aborts and deletes the current task group request.
NEW__PROC (New Process) — Aborts the current task group request and re-
starts the task group using the same arguments as specified in the original group
request.
Any of these commands terminates the current break (i.e.; there will be no
other * BREAK** message after the command is executed).
Enter UW (Unwind). If the current task is a Honeywell-supplied system program
shown in Table 1-2, it terminates itself and returns all its resources.
The break responses indicated in 3a and 3b above are also usable with these
programs. Note that the programs must be running in a task group whose lead task
is the command processor.
If the terminated task was invoked following a break, the lead task reenters
breakmode, issues another ** BREAK** prompter message, and awaits a response.
If the terminated task did not follow a break, processing continues as though the
task terminated normally.
A UW command issued to any system program other than one listed in Table 1-2
results in a 0343 or 0344 error return, followed by another ** BREAK** prompter
message.
Enter PI (Program Interrupt). Linker and Editor output is suppressed and a return
is made to the directive input level.

TABLE 1-2. SYSTEM PROGRAMS SUPPORTING THE UW (UNWIND) COMMAND

Command Name Function

Command Name Function

ASSEM
COBOL

CP
CPA
(A%
DP
ED
FC
FD

Assembler LCD List Creation Date
COBOL Compiler LINKER Linker?

Copy LS List Names
Compare MACROP Macro Preprocessor
Create Volume MERGE Merge

Dump Edit PR Print

Editor? SORT Sort

File Change STG Status Group

File Dump

2Both Editor and Linker also support the PI (Program Interrupt) command.

GCOS 6 COMMAND CONCEPTS 1-17

CB02

The PI command is meaningful only to the Editor and Linker when running in a
task group whose lead task is the command processor. The commands described in
3a, 3b, and 3c above are also usable with these programs.

PI suppresses output resulting from the Linker MAP directive or from the Editor
P-type directives.

UNWIND AND PROGRAM INTERRUPT COMMAND CONSIDERATIONS

The unwind (UW) and program interrupt (PI) commands are effective in user application
programs only when the task to be interrupted has previously been enabled for the necessary
trap. The user program must include the $TRPHD and $ENTRP macro calls for the simulated
trap.

EXAMPLES OF BREAK USAGE

Example 1:

The Editor is executing a print directive and, during output, the user presses the Break
key, thereby stopping further output. After the * BREAK** message appears, the user
responds with PI, which returns the program to directive input level. A response of UW,
instead of PI, would have terminated the Editor.

Example 2:
An LS (list names) command is executing with output going to the user terminal. The
user wants to change the output path to the line printer. One possible method is:
1. Press the Break key.
2. System responds to ** BREAK** Lead task enters break mode
3. Enter FO >SPD>LPT01 File out command
specifying a line printer
4. FO execution terminates; the system issues another ** BREAK** message.
5. Enter SR (start) command. Resume execution of the LS command.
Another possible method is:
1. Press the Break key.

2. System responds with **BREAK** Lead task enters break mode.
3. Enter the UW command The current LS task terminates itself.
4. Enter FO >SPD>LPTO01 File out command specifying a line
) printer
5. Enter LS Start the list names (LS)

program from the beginning.
Example 3:
This example shows successive nested break functions. Though representing a continu-
ous procedure, the example is shown in numbered sequences for clarity.

1. The first sequence includes a command to the command processor to invoke the
Editor, then to read and print the file PATH1. The Break key is pressed to
interrupt the output, which was found to be from the wrong file.

2. Following issuance of the ** BREAK** message, the user enters LS (list names) to
obtain a display of PATH2 file names. He presses the Break key again to interrupt
that LS command in order to change the pathname from PATH2 to PATHS.

3. A new LS command is entered to list the files for PATH3; however, the preceding
LS command (for PATH?2) is not terminated, but remains suspended. The required
file is found at the beginning of the listing, the rest of the PATHS3 list is not needed,
so the user presses the Break key to interrupt listing of PATHS.

GCOS 6 COMMAND CONCEPTS 1-18 CB02

The following command sequences are keyed to preceding numbered descriptions.

1. Enter RDN

Enter ED

Enter R PATHI1

Enter 1,&P

Editor issuing print lines
Press the Break key

System issues **BREAK**

2. Enter LS -PN PATH2
System printing the list
Press the Break key

System issues ** BREAK**

3. Enter LS -PN PATHS3
System issuing the list

Press the Break key

System issues **BREAK**

-FILE

The system will print RDY: as each com-
mand completes execution.

Activates the Editor
Read the file PATH1
Print the file PATH1

Causes a break in printing

Command processor is in break mode

List the PATH2 directory

User determines list is for wrong directory

Causes a break in the LS command for
PATH?2

Command processor is in break mode
List files in PATH3 directory

User finds desired file, no more output
needed

Causes break in LS command for PATH3
Command processor is in break mode

Subsequent actions are described as separate alternatives in Example 4 below.

Example 4:

This example consisting of five discrete actions, continues from Example 3, and in
particular shows the use of the UW command to terminate successively activated tasks
(i.e., unwind stacked tasks). Each part of the example is a separate procedure, indepen-
dent from the others, and shows an alternative method of continuing with Example 3.

1. Start again at command level.

Enter NEW_PROC

Aborts all prior tasks; the command pro-
cessor is ready for input.

2. Return to the Editor directive input level.

Enter UW
System issues **BREAK**

Enter UW
System issues ** BREAK**

Enter PI

Enter next Editor directive

LS command for PATHS3 terminates itself.

Since the LS for PATH3 followed a break,
the command processor reenters command
mode.

LS command for PATH2 terminates itself.

Since the LS for PATH2 followed a break,
the command processor reenters command
mode.

Editor is ready for the next Editor input
directive.

3. Return to command level by terminating in turn each previously activated task.

Enter UW

System issues ** BREAK**
Enter UW

System issues **BREAK**
Enter UW

System issues RDY:

Enter next command

GCOS 6 COMMAND CONCEPTS

1-19

LS command for PATH3 terminates itself.
Command processor enters break mode.
LS command for PATH2 terminates itself.
Command processor enters break mode.
The Editor terminates itself.

Prompter message at command level.

CBO?

4. Complete the printout of PATHI file.

Enter UW

System issues ** BREAK**
Enter UW

System issues ** BREAK**
Enter SR

Editor issues print lines.

5. Delete current task group request

Enter BYE

GCOS 6 COMMAND CONCEPTS

1-20

LS command for PATH3 terminates itself.
Command processor enters break mode.
LS command for PATH2 terminates itself.
Command processor enters break mode.

Restarts printing out of PATH1 from point
of interrupt.

Deletes all task group request structures ex-
cept the lead task. Another task group re-
quest is required to activate the lead task.

CB02

Section 2
GCOS 6 Commands

This section describes the commands by which a user exercises control over the GCOS 6
operating system. For the purpose of this section, a user is defined as any person who
communicates with the operating system through a peripheral device that is the input file to
the command processor (e.g., a card reader, a sequential disk file, or an MDC- or MLCP-
connected terminal). This device is known as a user terminal.

In general, the commands listed in this section form a common set that can be used to direct
processing under either Mod 400 or Mod 600 operating system software. In certain cases, a
command (or command argument) is intended for use in a specific environment. Those com-
mands (or command arguments) that do not form part of the common set are accompanied by a
notation indicating the specific environment in which they are intended to be used.

This section contains complete descriptions of the formats, arguments, control arguments,
and functions of the commands. In cases in which the command formats contain arguments,
one or more illustrative examples of command use are given.

The command descriptions are arranged in alphabetic order to facilitate references to
specific commands. A summary list of the commands, grouped by functional categories, is
given in Section 1.

The following symbology is used in this section:

e Square brackets [] indicate an optional entry.

¢ Braces { } enclose information from which a choice must be made.

o The character A indicates a space.

ABORT GROUP
Command Name: ABORT_GROUP

Suspend, terminate, and delete the indicated online task group.

FORMAT:
ABORT_GROUP [id]

ARGUMENT DESCRIPTION:
[id]

The group identification of a task group previously created by a CG command specifying
the same id. If this argument is omitted, the issuing task group is aborted.

FUNCTION DESCRIPTION:

The ABORT GROUP command causes the suspension and termination of an existing online
task group, whether active or dormant. It removes the data structures which define and control
the execution of the task group, and returns all memory used by the group to the appropriate
memory pool. Any files open during the execution of the task group are closed. Any requests
pending against the group are cancelled. The action of the ABORT GROUP command is thus
similar to the DELETE GROUP command, except that the latter must wait until the task
group becomes dormant, while the former takes effect as soon as all outstanding imput or
output orders are complete.

This command can be issued only from an online task group.
Example: '
ABORT_GROUP AX
A task group identified as AX is terminated.

GCOS 6 COMMANDS 2-1

CB02

ASSEMBLER

ASSEMBLER

Command Name: ASSEM

Assemble the source program unit represented by the indicated file name, applying the
specified options.

FORMAT:
ASSEM path [ctl_arg]

ARGUMENT DESCRIPTION:

path
Pathname of the source unit file to be assembled. Omit the suffix.

ctl__arg
None or any number of the following control arguments may be entered, in any order:

-COUT out__path
Listing will be written to the file out__path; a suffix (.L) is not appended to the file name.
If this argument is omitted, the listing will be written to the file path.L in the working
directory.
Note:
Path is the simple pathname, excluding the suffix appended by the Assembler.
-LAF
-SAF
-SLIC
Addressing mode in which source unit will be assembled. -LAF designates long-address

form; -SAF designates short-address form; -SLIC designates that the source unit will be
able to execute in either SAF or LAF.

Default: The mode configuration in which the Assembler is executing (must be SAF or
LAF).

-LIST__ERRS
l-LE J

Specifies that only those source lines containing assembly errors, together with their
error codes, are to be listed.

Default: If omitted, and -NL is not specified, the complete source program is listed,
including error codes, if any.

-CROSS_REF
-XREF

Produces a cross-reference listing, even if -NL or -LE is specified. The listing is appended
to the source listing. If there is no source listing the cross-reference listing will still be
produced.

{-NO_LISTl

NIT
=iV

Suppresses source listing.
Default: Source listing produced.

-NO_OBJ
-NO

Suppresses object text unit output.
Default: Object text unit is generated as the file path.O in the working directory.

GCOS 6 COMMANDS 2-2 CRO02

ASSEMBLER

Note:
Path is the simple pathname, excluding the suffix appended by the Assembler.
-SIZE nn
-SZ nn
nn designates the maximum number of 1024-word memory blocks that may be used
for the Assembler’s symbol table. nn must be numeric and be from 01 through 99. |

Default: 1024 words (one block).

FUNCTION DESCRIPTION:
The ASSEMBLER command is used to invoke the GCOS 6 assembler component.

The path argument can assume any of the acceptable forms of a pathname; a simple name
indicates that a source program unit residing in the working directory is to be assembled.
Wherever it exists, it must be suffixed with .A, indicating that it is an assembly language
source unit. The path argument must be given without the .A suffix; the Assembler
appends the suffix prior to searching the directory for the source unit.

If the -COUT control argument is not specified, the source listing (if requested) and/or
cross-reference listing (if requested) are written to a file created by the Assembler in the
working directory, having a file name of the form path.L. The path portion is the last or
only element in the path argument. The file can be subsequently listed on a line printer
by using the PRINT utility command. If a different file is specified by using the -COUT
argument, out__path is the name of the file containing the listing. The Assembler does
not append a .L suffix to out__path.

The object text unit generated by the assembler is written to a file created by the
assembler, whose name is of the form path.O and which is contained in the working
directory.

If files of the form path.L and path.O already exist, they are overlaid by the output
generated by the current assembly.

A full description of the operation and use of the Assembler is contained in the Assembly
Language manual.

Example:
ASSEM MYPROG -SIZE 5 -COUT =>SPD>LPT01 -XREF

An assembly language source program, MYPROG.A, residing in the current working directory
is to be assembled. The source listing and errors are to be written to the printer LPTO01, and the
object text unit is to be written to the file MYPROG.O in the working directory. If MYPROG.O
already exists as a result of a previous assembly, it is overlaid with the new object text unit.
Five 1024-word blocks of memory are to be used for symbol resolution during the assembly. A
cross-reference listing is appended to the source listing on printer LPTO1.

GCOS 6 COMMANDS 2-3 CB02

ASSOCIATE PATH

ASSOCIATE PATH
Command Name: ASSOC

Associate the specified pathname and logical file number.

FORMAT:
ASSOC Ifn path

ARGUMENT DESCRIPTION:
Ifn

The logical file number by which a task is to refer to a file.
path
The pathname of the file to which the task is to refer.

FUNCTION DESCRIPTION:

The ASSOCIATE PATH command permits a task group to refer to files by the use of a
standard interface known as a logical file number (LFN). The LFN serves as a “bridge” across
which an input or output statement in a user program can gain access to an external file

without the need to know its full pathname. This command corresponds to the Monitor macro
call $ASFIL.

Conventions by which user files are identified and referred to in source programs are depen-
dent upon the language processor by which the source program is compiled or assembled. Each
processor relates an internal file identification by one means or another to a number (the LFN)
which can be used in an ASSOC command to equate the internal file identification to an
external pathname.

The task group within which an ASSOC command is to be issued must have been created
specifying (or defaulting to) an LFN argument value large enough to include the highest LFN
which is expected to be given in any ASSOC command issued during the life of the task group.
This requires a knowledge of what programs are to be executed within the group and the
numerical LFN values which these programs have generated.

The path argument can specify a simple, relative or absolute pathname. If a simple name is
specified, the file is assumed to reside in the user’s working directory. The pathname is then
expanded to include the user’s working directory. If, for example, the user’s working directory
is "SYS01>USERA and the path argument is OLD>DELA, the expanded pathname,
"SYS01>USERA>OLD>DELA, is saved. No check is made at the time the ASSOC command
is issued as to whether a file exists or note.

An incomplete pathname (e.g., OLD>) can also be associated with the LFN. With the above
user’s working directory, the pathname is expanded to ~SYS01>USERA>OLD. The path-
name will be completed when a CREATE FILE or GET command is issued using the colon (:)
option in the path argument. See Appendix A for information on the pathname colon option.

Example:
ASSOC 12 MYFILE
A file defined in a user program has been assigned a logical file number 12 by the language
processor that compiled the program (e.g., the COBOL Compiler). A file, MYFILE, exists in the
issuing task group’s working directory. The ASSOC command relates the LFN (12), by which

the program’§ input and output statements refer to the user file, to the external file whose
pathname is VOL01>USERA>MYFILE.

GCOS 6 COMMANDS 2-4 "~ CB02

P

ASSOCIATE PATH /BYE (TERMINATE CURRENT GROUP REQUEST)

Note:
In COBOL, the symbolic name by which the file is identified and referred to in the

program (e.g., INPUT__DATA) bears no relationship to the name by which it is
referred to by the File System.

BYE (TERMINATE CURRENT GROUP REQUEST)

Command Name: BYE

Terminate the execution of the current request in the issuing task group.

FORMAT:
BYE

ARGUMENT DESCRIPTION:

No arguments are required or permitted with this command.

FUNCTION DESCRIPTION:

The BYE command causes the cessation of execution of the issuing task group. It removes all
group requests defining and controlling data structures except those associated with the lead
task, and returns all associated memory to the task group’s memory pool. Any files that are
open and in use by this task group are closed. ‘

If the user has gained access to the system through the login procedure, typing BYE causes the
message LOGOUT to be displayed at the user’s terminal.

If the group was spawned or if there are no pending group requests and the group is marked for
deletion, the group structures are deleted. If there is another queued group request it is
executed.

GCOS 6 COMMANDS 2-5

CB02

CHANGE WORKING DIRECTORY

CHANGE WORKING DIRECTORY

Command Name: CWD
Change the working directory to the specified path.

FORMAT
CWD path

ARGUMENT DESCRIPTION:
path

The pathname of the new working directory. It may be a relative name or a full pathname,
but cannot exceed 44 characters.

FUNCTION DESCRIPTION:

The CHANGE WORKING DIRECTORY command enables the user to move his point of
reference to some other directory level within his own project’s directory or to some specified
point within an entirely different directory. Moving the reference point in a directory enables a
task to refer, using simple names, to entities in the directory at levels other than the level
established when the task was activated initially, or to entities which exist in some other
directory.

If a relative pathname is given as an argument, the effect is to change the reference point
within the current directory hierarchy. That is, if a user issued the command CWD MANU-
ALS, there is assumed to exist a directory pathname within the hierarchy being used by this
task. After the CWD command is executed, files that exist within the MANUALS subdirectory
can be referred to by the task using simple file names.

It is also possible to traverse the hierarchy in the opposite direction, that is, in a direction
toward the root. This is done by specifying as the argument the character < (less than sign)
preceding the pathname. Thus it is possible to revert to the original directory level after
having issued the CWD command described above by issuing a second command, CWD <.
Each occurrence of the < sign moves the point of reference one level up (toward the root).

If an absolute pathname (one that begins with the > or ~ sign) is given as an argument, the
effect is to move the point of reference directly to the specified point in the named directory. This
directory may or may not be the same as the one being used by the issuing task.

The system issues a mount message when a disk volume containing the new working directory
is not mounted. The task is suspended until the volume is mounted or the operator cancels the
mount request.

Example:
Assume the directory structure shown in Figure 2-1. A task group whose user id is
SMITH.AUTHORS is active and is at the directory level >UDD>AUTHORS>SMITH, estab-
lished when the task group was activated.

A sequence of CWD commands such as that shown below is issued. A description of the

racnulting antion ig oivan annacita nanh snmm
resusuing aluidn 1s given opposite eacn \,O.uu.xxand.

Command Resulting Action

CWD BOOKS The point of reference is moved to the BOOKS subdirectory
level (one level below the default SMITH level). Files named
A, B, and Q can now be referred to by their simple names.
The system supplies >UDD>AUTHORS>SMITH>BOOKS
from the working directory in the construction of full
pathnames for the three files.

GCOS 6 COMMANDS 2-6

CB02

CHANGE WORKING DIRECTORY

ubD

AUTHORS

SMITH JONES

oo

BOOKS G o]

NOTE: RECTANGLES DENOTE DIRECTORIES; CIRCLES DENOTE DATA FILES.

CWD <

CWD >UDD>
AUTHORS>JONES
or CWD <JONES

GCOS 6 COMMANDS

Figure 2-1. Typical Directory/File Structure

The point of reference is moved up one level, back to the
original SMITH level. The files named A and B in the
SMITH directory (not the same files as A and B at the
BOOKS subdirectory) can now be referred to by simple
names.

The absolute form of the pathname moves the point of refer-
ence directly to the JONES directory level. The second form
achieves the same result by moving up one level to AU-
THORS and then down one level to JONES.

2-7

CB02

COBOL

cosoL
Command Name: COBOL N

Compile the entry-level COBOL source program unit represented by the indicated file name,
applying the specified compiler options.

FORMAT:
COBOL path [ctl_arg]

ARGUMENT DESCRIPTION:
path

Pathname of the source unit file to be compiled. Omit the suffix. The name must be the same
as that specified in the PROGRAM ID clause of the COBOL source program.

[ctl _arg]

Control arguments; none or any number of the following control arguments may be entered,
in any order:

-COUT out__path

Listing will be written to the file out__path; a suffix is not appended to the file name. If
this argument is omitted, the listing will be written to the file path.L in the working
directory. If a file other than the printer is requested, the file must already exist.
Note: ‘
Path is the simple pathname, excluding the suffix appended by the COBOL com-
piler.
-DB

Compile debugging lines as comments, ignoring the WITH DEBUGGING MODE clause.

-NO_OBJ
-NO

Suppress object unit output.

Default: Object unit output produced as the file path.O in the working directory.

Note:

Path is the simple pathname, excluding the suffix appended by the COBOL Com-
piler.

-SIZE nn

-SZ nn

Requests nn additional 1024-word blocks of memory for complier tables. nn must be from
04 to 64. The additional memory specified in this argument is used instead of the original
table size, and permits the COBOL Compiler to improve performance when compiling
large programs. If you request more memory than is available, the compiler uses the
available amount of memory. If specified, at least 3072 words must be available; other-
wise, the compiler will use the default memory size (3000 words). If this argument is not
specified, the compiler has approximately 3,000 words of memory for table space.

Note:

The following control arguments are listing options. Only one listing option may be
specified at a time. Further, if no listing option is chosen, and -NL is not specified, the
complete source program (along with any error codes) islisted. Thisis the default for all
listing options shown here.

GCOS 6 COMMANDS 2-8 CB02

’ﬁ!.\

COBOL

-LD

List data map, source text, errors and file map.
-LIST_ERRORS
-LE

Specifies that only the error list is to be printed.
-LIST__OBJ
-LO

List source text, data map, errors, file map and object code. This argument may not be
used at the same time that -NO[OBJ] is being used.

-NO__LIST
-NL
Suppress all listings.

FUNCTION DESCRIPTION:

The COBOL command is used to invoke the GCOS 6 entry-level COBOL Compiler component.
The entry-level COBOL Compiler and the object programs it generates are in short address
form (SAF); neither is reentrant; and neither uses Commercial Instruction Processor (CIP)
instructions.

The path argument can assume any of the acceptable forms of a pathname; a simple name
indicates that a source program unit residing in the working directory is to be compiled.
Wherever it exists, it must be suffixed with a .C suffix, indicating that it is a COBOL language
source unit. The path argument must be given without the .C suffix; the compiler appends the
suffix prior to searching the directory for the source unit.

If the -COUT control argument is not specified, the requested listings are written to a file
created by the compiler in the working directory, having a file name of the form path.L. The
path portion is the last or only element specified in the path argument. This file can be
subsequently listed on a line printer by using the PRINT utility command. If a different file is
specified by using the -COUT argument, the listings are written to a user-created file whose
pathname is out path.

The object text unit generated by the compiler is written to a compiler-created file whose name
is of the form path.O, and is contained in the working directory.
If files of the form path.L and path.O already exist in the current working directory, they are
overlaid by the output generated by the current compilation.
Note: *

The COBOL Compiler always issues a typeout, of the number of errors found, to the
error-out file.

Example:
COBOL CBPROG -NO_OBJ -LD -COUT >SPD>LPTO1

A COBOL source program, CBPROG.C, is to be compiled. The source text file is located in the
working directory. Listings are to include source statements, error diagnostics and a data map,
and are to be written to the line printer LPTO1. No object text unit is to be generated.

GCOS 6 COMMANDS 2-9 CB02

COBOLI

coBoOLI
Command Name: COBOLI

Compile the intermediate-level COBOL source program unit represented by the indicated file
name, applying the specified compiler options.

FORMAT:
COBOLI path [ctl __arg]

ARGUMENT DESCRIPTION:

path
Pathname of the source unit file to be compiled. Omit the suffix. The name must be the same
as that specified in the PROGRAM ID clause of the COBOL source program.
[ctl__arg]
Control arguments; none or any number of the following control arguments may be entered,
in any order:
-COUT out__path
Listing will be written to the file out__path; a suffix is not appended to the file name. If
this argument is omitted, the listing will be written to the file path.L in the working
directory. If a file other than the printer is requested, the file must already exist.
Note:
Pathis the simple pathname, excluding the suffix appended by the COBOLI compiler.
-DB
Compile debugging lines as comments, ignoring the WITH DEBUGGING MODE clause.
-NO__OBJ ‘
-NO
Suppress object unit output.
Default: Object unit output produced as the file path.O in the working directory.
Note:
Path is the simple pathname, excluding the suffix appended by the COBOLI Com-
piler.
-SIZE nn
-SZ nn
Requests nn additional 1024-word blocks of memory for compiler tables. nn must be from
15 to 64. The additional memory specified in this argument is used instead of the original
table size, and permits the COBOLI Compiler to improve performance when compiling
large programs. If you request more memory than is available, the compiler uses the
available amount of memory. If specified, at least 15000 words must be available;
otherwise, the compiler will use the default memory size (14000 words). If this argument
is not specified, the compiler has approximately 14000 words of memory for table space.

Note:

The following control arguments are listing options. Only one listing option may be
specified at a time. Further, if no listing option is chosen, and -NL is not specified,
the complete source program (along with any error codes) is listed. This is the
default for all listing options shown here.
-LD
List data map, source text, errors and file map.

-LIST_ERRORS

GCOS 6 COMMANDS 2-10

CB02

COBOLI

-LE

Specifies that only the error list is to be printed.
-LIST__OBJ
-L.O

List source text, data map, errors, file map and object code.
-NO__LIST
-NL

Suppress all listings.
-XREF

Specifies that a cross reference listing is to be produced. A listing option other than -NL
must be specified.

FUNCTION DESCRIPTION:

The COBOLI command is used to invoke the GCOS 6 intermediate-level COBOL Compiler.
The compiler has the following characteristics:

¢ Runs in a long address form (LAF) or short address form (SAF) environment (SAF/LAF
independent code (SLIC) format).
¢ Does not require the Commercial Processor hardware of the Commercial Simulator.

e Is not reentrant.

The object programs generated by the compiler have the following characteristics:
e Run in a LAF or SAF environment (SLIC format).

¢ Require either the Commercial Processor hardware or the Commercial Simulator.
e Are reentrant.

The path argument can assume any of the acceptable forms of a pathname; a simple name
indicates that a source program unit residing in the working directory is to be compiled.
Wherever it exists, it must be suffixed with a .C suffix, indicating that it is a COBOL language
source unit. The path argument must be given without the .C suffix; the compiler appends the
suffix prior to searching the directory for the source unit.

If the -COUT control argument is not specified, the requested listings are written to a file
created by the compiler in the working directory, having a file name of the form path.L. The
path portion is the last or only element specified in the path argument. This file can be
subsequently listed on a line printer by using the PRINT utility command. If a different file is
specified by using the -COUT argument, the listings are written to a user-created file whose
pathname is out path. ‘

The object text unit generated by the compiler is written to a compiler-created file whose name
is of the form path.O, and is contained in the working directory.
If files of the form path.L and path.O already exist in the current working directory, they are
overlaid by the output generated by the current compilation.
Note: *
The COBOLI Compiler always issues a typeout, of the number of errors found,
to the error output file.
Example:
COBOLI CBPROG -NO_OBJ -LD -COUT >SPD>LPT01

A COBOL source program, CBPROG.C, is to be compiled. The source text file is located in the
working directory. Listings are to include source statements; error diagnostics and a data map,
and are to be written to the line printer LPT01. No object text unit is to be generated.

GCOS 6 COMMANDS 2-11 CB02

COMPARE

COMPARE

Command Name: CPA
Compare the contents of one file or volume with that of another file or volume.

FORMAT:
CPA path new [ctl_arg]

ARGUMENT DESCRIPTION:
path

Indicates the name of the file or volume to be compared. Can be any valid form of pathname;
can use the star name convention (see Section 1)

new
Indicates the name of the file or volume against which that specified by the path argument
is to be compared. Can be any valid form of pathname; can use the equal name convention
(see Section 1).

[ctl_arg]

One or more control arguments chosen from the following list.

-VOLUME
-VOL

Indicates that an entire volume is to be compared, a track at a time, with another entire
volume. If this argument is specified, the path and new arguments must be of the
form >SPD>dev__name [>vol _id]. If vol__id is present, the volume name is verified.
Inclusion of the -VOL argument means that the volid, bad track index, and the first
sector of the volume directory are compared, but differences are not noted. When he
specifies -VOL, the user knows that these sectors are different.

Omission of the -VOL argument means that the volid, bad track index, and the first
sector of the volume directory are compared, and differences are noted. Omission of the
-VOL argument also results in slower comparing of the volumes; comparing is done a
sector at a time.

-CI

Indicates that a compare by control interval is to be performed. This argument can be

specified under any of the following conditions:

1. The path argument represents a Series 60-compatible file and the new argument
represents either a file of the same organization or a magnetic tape.

2. The path argument represents a magnetic tape containing control intervals from a
type “1” COPY (refer to the COPY command description), and the new argument
represents a Series 60-compatible file of the type copied to the tape.

3. Both path and new parameters represent magnetic tape files.

{ -LIMIT nn

-LI nn]
Specifies that only nn records or control intervals are to be compared (if end of file is not
encountered first).

-FROM nn

[-FM nn

Specifies that the first nn-1 records or control intervals of the file are to be bypassed
before beginning the compare.

GCOS 6 COMMANDS 2-12

CB02

o,

COMPARE

-PR nn

Specifies that only the first nn miscompared records are to be printed. The compare
operation terminates when the end of the file or volume is encountered.

[-PRINT nn]

In addition to the actual data printed in hexadecimal on miscompares, the address and
record length of the two records is printed. For fixed relative files and all volumes, the
address is the relative record number within the file. For other file organizations, the

format is xxxxyy, where xxxx is the CI number and yy is the record number within the
CIL

-VERBATIM
-VBT

This argument is available for use only when processing under Mod 400 operating
system software.

If a card input file is present, it will be read in binary transcription mode. The end-of-file
indicator is an 11-9-8-5 punch in column 1, followed by one or more spaces and one blank
card.

FUNCTION DESCRIPTION:

The COMPARE command compares two files or volumes, record by record or control interval
by control interval, and, if specified by the -PR control argument, writes the contents of any
miscompared records on the user output file. If the two files or volumes are identical (do not
miscompare), no response is returned to the terminal and nothing is printed. If a user is at an
interactive terminal and his user output file is the terminal, he can direct the written output to
another device, such as a line printer, by issuing an appropriate FILE OUT command prior to
issuing the COMPARE command. At the termination of the CPA command, a message is
issued to the user output file, giving the number of miscompared records or control intervals, if
the number is nonzero.

If a volume compare is to be performed, the path and new parameters must represent the
pathnames of peripheral devices. The dev__name portion of the pathname is the symbolic
name (e.g., DSKO01) given to the device in question at system building. The vol__id portion of
the arguments represents the identification of the volumes to be compared.

When an entire volume is to be compared, any of the following configurations can be used:
Volume to be Compared Volume to be Compared Against

Disk Disk
Disk Tape
Tape Disk
Tape Tape

The compare is executed physically; the logical organization of the volume is not considered.
Comparing is done track by track.

A file compare can be performed logically or physically. A compare by control interval is a
physical compare; a compare that is done by other than control interval is a logical compare.

A logical compare allows the comparing of any file organization, provided the file characteris-
tics are otherwise compatible. For example, a file containing variable length records cannot be
compared to a file containing fixed length records.

A physical compare (compare by control interval) is done in physical sequence. Control
intervals are compared one at a time; logically deleted records are not considered.

If a multireel tape file has been produced (see the COPY command) and the tapes are to be
compared against a disk volume, the -VOL argument cannot be specified. The compare must be

done as a file compare. In the file compare, the pathname of the tape volumes must be of the
form >SPD>dev__name>vol__id>fllename, where dev_name and vol__id are as previously

GCOS 6 COMMANDS 2-13 CB02

COMPARE

described and filename is the name assigned by the user to the tape file when it was produced.
For example:

CPA ‘>SPD>MT900>VOL00>FILEAB SPD>RCD00>ZSYS51
Since no -VOL argument is present, the volume is processed as though it were a file. The HDRs
on each tape volume contain a file sequence number. Therefore, the input reels must be
mounted in the order in which they were created. When the end of an input reel is encoun-

tered, the system will request another input volume. As soon as that volume is mounted,
processing will continue.

Note that the disk volume could also be compared against the tape volumes. The same
considerations apply.

Example 1:
CPA FILEA FILEB
Compare two files in the working directory.
The full pathnames of FILEA and FILEB are constructed using elements of the working
directory. The files are compared record by record and a summary message is issued.
Example 2:
FO >SPD>LPTO01
CPA FILEA >UDD>BOOKS>JONES>FILEA -PR 20

FILEA in the working directory is compared to FILEA in the directory
>UDD>BOOKS>JONES. The first 20 miscompared records are written to the line printer
LPTO1 along with the total number of unequal records.

GCOS 6 COMMANDS 2-14 CB02

o,

COoPY

copPYy

Command Name: CP

Copy a file or volume.

FORMAT:
CP path [new] [ctl__arg]

ARGUMENT DESCRIPTION:

path
Specifies the name of the file or volume to be copied. Can be any valid form of pathname; can
use the star name convention (see Section 1).

[new]
Specifies the new pathname of the file or volume being copied. Can be any valid form of
pathname; can use the equal name convention (see Section 1).

[ctl__arg]
- One or more control arguments chosen from the following list.

-VOLUME
-VOL

Indicates that an entire volume is to be copied a track at a time. If this argument is
specified, the path argument must be of the form >SPD>dev__name>vol__id. The new
argument must be of the form >SPD>dev__name[>vol__id] where, for dlsk volumes,
vol__id cannot be included.

Inclusion of the -VOL argument means that the volid, bad track index, and the first
sector of the volume directory are preserved on the output disk volume.

Omission of the -VOL argument means that the input volume is to be copied completely

to the output disk volume. (In other words, the volid, bad track index, and first sector of

the volume directory are copied from the input volume to the output volume.) Omission of
the -VOL argument also results in slower copying of the volume; copying is done a sector
at a time.

-CI

Indicates that a copy by control interval is to be performed. This argument can be

specified under any of the following conditions:

1. The input is a Series 60-compatible file and the output is a file of the same type or a
magnetic tape.

2. The input is a magnetic tape created by a copy under condition 1 above, and the
output is a Series 60-compatible file of the same organization as that which was
copied to the tape.

3. Both the path and new arguments represent magnetic tape devices. In this case the
copy will be to end of volume.

Note:

In order to copy a keyed (relative, etc.) file to another keyed file without losing
deleted or null records, the -CI option should be used; otherwise only active records
are copied.

-VERBATIM
-VBT

This argument applies only to card input or output files and specifies that cards are to be
read or punched in verbatim mode. The end-of-file indicator is an 11-9-8-5 punch in
column 1 followed by one or more spaces, and one blank card.

GCOS 6 COMMANDS 2-15

CB02

COPY

FUNCTION DESCRIPTION:

The COPY command permits the creation of backup copies of files or volumes, either on
magnetic tape or on a disk device. It can also be used to create copies of files in the same
directory or in other directories.

The path and new arguments may express or imply the same directory portion of the file’s
pathname. If they do, the file name portions of both must be different. If the path and new
arguments represent different directories, the file name portions of both may be the same, but
the same requirement exists regarding the uniqueness of the file name in the directory
represented by the new argument.

If a volume copy is to be performed, the path and new arguments must represent the
pathnames of peripheral devices. The dev_name portion of the pathname is the symbolic
name (e.g., DSKO01) given to the device at system building. The vol__id portion of the path
- argument is the volume identification of the volume being copied. However, the vol__id cannot
be included in the disk volume new argument. If the new argument names a magnetic tape
device and the pathname includes the vol__id portion, the volume label is read and verified.
The copied data then follows the volume label; i.e., the volume label is preserved. If the vol__id
portion is omitted, copying begins at the current position on the tape (normally beginning of
tape). In this case, the tape volume label, if any, is not preserved. A subsequent COMPARE of
this unlabelled volume must be done without including a vol_ld in the pathname.

The file created by the COPY command is created just large enough to hold the data, and no
larger.

When an entire volume is to be copied, any of the following configurations can be used:

Input Volume Output Volume
Disk Disk
Disk Tape
Tape Disk
Tape Tape

If the output is a disk volume, that volume must have been formatted. If the output is a tape
volume, a single file output volume is created. The copy is executed physically (input record
equals output record); the logical organization of the input volume is not considered. Copying
is done track by track.

A file copy can be performed logically or physically. A copy by control interval is a physical
copy;-a copy done other than by control interval is a logical copy.

A logical copy rebuilds the output file, omitting deleted records and, for indexed sequential
files, also regenerates the index. A logical copy allows the copying of any file organization to
any other file organization, provided the file characteristics are otherwise compatible. For
example, a file containing variable length records cannot be copied to a file containing fixed
length records. However, a file can be copied to tape and then copied from the tape to a disk.
For example, an indexed sequential file can be copied (unloaded) to tape and the resulting
sequential tape file can be copied to another indexed sequential file.

wQios ’T‘L,\ Fngt anmtbea 1
A phySl al ¢ Py ’\Cﬁp} by contro!l interval) is done in yuyau,al sequence. 1ne Irst controi

interval on the input volume becomes the first control interval on the output volume. The copy
function reads and writes one control interval at a time; logically deleted records are not
recognized as such and thus are copied.

When magnetic tape volume copies are performed, the tape volumes are assumed to have the
following format:

GCOS 6 COMMANDS 2-16 CB02

VOL1

3

data

ES

(Volume label)
(File mark, beginning of data)

(File mark, end of data)

HDR and EOF labels are not maintained by the tape volume copy.

COPY

When magnetic tape file copies are performed, the tape volumes are assumed to conform to the

following format:

Empty tape:
VOL1

HDRx

£

ES3

Tape with data files:
VOL1

HDRx
data

EOFx

£

5

Note that a second file written to the above tapé results in the following:

VOL1
HDRx

data

GCOS 6 COMMANDS

(File mark)
(File mark)J End of volume

(File mark, delimit data)

(File mark, end of data)

(File mark) end of recorded

(File mark) information

CBO02

COPY

EOFx

HDR1

data

EOFx

*

&

The double file marks indicate the end of recorded information. The file copy will load the next
file into the tape by beginning its copying on the second of the two file marks.
If a disk volume is to be copied to magnetic tape and the copy will require several output tape
volumes, the -VOL argument cannot be specified. The copy must be done as a file copy. In the
file copy théd pathname of the output volume must be of the form >SPD>dev__name>vol__
id>filename, where dev_name and vol__id are as previously described and filename is the
name chosen by the user to be assigned to the output tape file. For example:

CP >SPD>RCD00>ZSYS51 SPD>MT900>VOL0O0>FILEAB
Since no -VOL argument is present, the volume is processed as though it were a file. When a
tape reel if full, the system requests that another volume be mounted. As soon as the volume is
mounted, processing continues. In effect, a multireel file has been created.

Whan the tape volumes are to be copied back to disk, the same procedures are followed. The

-VOL argument cannot be used; the input pathname must contain a filename. For example:
CP >SPD>MT900>VOL00>FILEAB SPD>RCD00

The output disk volume will receive its volid, bad track index, and first sector of the volume

directory from the tape; none of the output disk will be preserved.

The file HDRs on each volume contain a file sequence number. Therefore, the input reels
must be mounted in the same order in which they were created. When the end of an input reel
is encounted, the system will request another input volume. An soon as that volume is
mounted, processing will continue.
Example 1:
CP FILEA FILEB

Copy a file within the working directory. The full pathnames of FILEA and FILEB are
constructed using elements of the working directory. The result of this copy is the existence of
two identical files under different names.

Example 2:
CP FILEA >UDD>BOOKS>JONES>FILEA

Copy a file from the working directory to another directory on the system volume. FILEA in
the working directory is copied to the directory >UDD>BO0OKS>JONES, retaining the same
name, FILEA, assuming that the file name does not already exist in that directory.

Example 3:
CP SUB__DIR1>FILEA VOL003>UDD>BOOKS>JONES>FILEB
Copy a file from a subdirectory in the working directory to a directory on another volume.

GCOS 6 COMMANDS 2-18 CB02

COoPY

FILEA, one directory level below the working directory, is copied to the directory
>UDD>BOOKS>JONES on a volume whose volume id is VOL0O03. It is assigned the name
FILEB in the new directory.

Example 4:
CP >SPD>DSK03>VO0OL001 >SPD>DSK05 -VOL

Copy the contents of one mass storage volume to another (like) mass storage volume. The
contents of the volume VOLO001, mounted on the device represented by symbolic device name
DSKO03, are copied to the volume mounted on the device represented by symbolic device name
DSKO05.

GCOS 6 COMMANDS 2-19

CBo02

COPY DATA EXCHANGE (IBM)

COPY DATA EXCHANGE (IBM)
Command Name: CPDE

Copy and translate an IBM file (diskette) to a HONEYWELL file or vice versa onto or from an
IBM diskette; or copy one IBM volume (diskette) to another IBM volume (diskette).

FORMAT:
CPDE pathl path2 [ctl_arg]

ARGUMENT DESCRIPTION:

pathl Specifies the input path name of the file or volume (diskette) to be translated. The
star name convention (see Section 1) can be used with this argument.
path2

Specifies the output path name of the file or volume (diskette) to be produced. The equal
names convention can be applied to this argument.

Note:
An IBM file (data set) must be accessed through a path of the form
>SPD>DSKxx>Volid>data__set__name.
[ctl__arg]
One of the two control arguments listed below may be selected.
-VOL
Specifies that the copy is to be IBM volume (diskette) to IBM volume (diskette).
Note:
Only volume copies of diskette to diskette (IBM) are accommodated by the -VOL
argument.
-TYPE x

Specifies that a file copy is to be performed, as well as the type of file copy that has been
selected. The two options are:

x= 1 (IBM file to HONEYWELL file)
x= 2 (HONEYWELL file to IBM file)
Note:

The -TYPE argument is ignored if the -VOL argument is specified (i.e., for IBM to
IBM volume copies).

FUNCTION DESCRIPTION:

The purpose of the CPDE utility is to transport IBM EBCDIC files to HONEYWELL files
before processing under Level 6. The reverse process allows a complementary capacity for
transporting Honeywell files to IBM files. The translation involves EBCDIC (IBM) to ASCII
(HONEYWELL) or vice versa, and has no facility for moving packed decimal data.

GCOS 6 COMMANDS 220 ‘ CB02

CREATE DIRECTORY

CREATE DIRECTORY

Command Name: CD

Create a new directory identified by the specified pathname.
FORMAT:

CD path

ARGUMENT DESCRIPTION:

path
The pathname of the new directory to be created.

FUNCTION DESCRIPTION:

The CREATE DIRECTORY command can be used under any circumstances in which the
creation of a new subdirectory within an existing directory is required. On a newly created
volume, whose directory consists of only the root entry (volid) the command can be used to
introduce the UDD directory level, as well as any number of project- and user-level entries (see
example 4, below). On a volume which already contains user directories, this command can be
used to introduce new user-level entries within a project-level directory, or new project-level
entries within the UDD-level directory.

The form of the path entry of this command is the factor which determines the level of the
directory being created. If it is a simple name, the name is concatenated with the entries
constituting the working directory, resulting in a new directory one level below that of the
working directory. A pathname consisting of more than one element results in the creation of
the directory named by the last pathname element, and requires that all preceding directories
named already exist (see examples 3 and 4, below).
Example 1:
CD SMITH1 v
Create a directory within the working directory. If the current working directory is
>UDD>BOOKS>SMITH, the resulting directory is >UDD>BOOKS>SMITH>SMITH1.
Example 2:
CD <JONES
Create a new user-level directory at the same level as the working directory, and one subdi-
directory is >UDD>BOOKS>SMITH, the resulting new directory is >UDD>BOOKS>JONES.

Example 3:
CD <JONES
CD <JONES>JONES1
Create a new user-level directory at the same level as the worklng directory, and one subdi-
rectory. If the working directory is >UDD>BOOKS>SMITH, the resulting directory is
>UDD>BOOKS>JONES>JONES1. Note that two steps are required, since two directory
levels are being created.
Example 4:
CD "USER03>UDD
Create a new user directory of user directories on another volume which has only a volume-id,
USERO03. Additional project/user directories can be created on the new volume by issuing pairs
of commands of the form
CD ~USER03>UDD>project
CD "USER03>UDD>project>person
for each new directory desired. Or, if a command
CWD “USER03>UDD

GCOS 6 COMMANDS 2-21

CB02

CREATE DIRECTORY

is issued first, the additional project/user directories can be created using pairs of commands of
the form

CD project
CD project>person

GCOS 6 COMMANDS 2-22

CBO02

N
"

CREATE FILE

CREATE FILE

Command Name: CF
Create the specified disk file.

FORMAT:
CF path [ctl_arg]

ARGUMENT DESCRIPTION:

path
Specifies the pathname of the file to be created. See Appendix A for the colon (:) pathname
options.

[ctl__arg]
One or more control arguments chosen from the following list.

-LFN Ifn
- The logical file number by which a task is to refer to this file. It is a decimal value from 0
through 255. If present, the file is reserved after creation; if not present, the file is not
reserved. ‘

-F_REL
Creates a BES compatible fixed relative file without deletable records.

-N_REL
Creates a BES compatible fixed relative file with deletable records.

-SEQ
Creates a Series 60-compatible sequential file, with fixed or variable length spanned
records, that is processed sequentially.

-REL
Creates a Series 60-compatible relative file, with fixed or variable length records, that
can be processed sequentially or directly by relative keys.

-INDEX
-IX
Creates a Series 60-compatible indexed sequential record file, with fixed or variable
length records, which can be processed sequentially or directly by symbolic keys.
-CL_SIZE n
-CSZ n
The number of bytes in a control interval for -SEQ, -REL and -INDEX type files. The
value of n must be a multiple of 256 bytes. If not specified, the default is 512 bytes.
-REC_SIZE n
-RSZ n

The number of bytes per record for -F__REL, and -N__BEL type files. For -SEQ, -REL,
and -INDEX type files it specifies the maximum record size in bytes. If not specified, the
default is 256 bytes.

{-SIZE n]

-SZ n
. The initial size of the file in units of control intervals for -SEQ, -REL, and -INDEX type
! files, or in units of records for -F__REL and -N__REL type files. Default is no initial
allocation.

-INC_SIZE n
-ISZ n

The number of units by which the file size is to be incremented whenever it must be

GCOS 6 COMMANDS 2-23 CB02
s

CREATE FILE

expanded to accommodate more data. If not specified, the value of n is the same as that
specified for -SIZE. If -SIZE is not specified, n is set to 40 physical sectors.

I-MAX__SIZE n}
-MSZ n
The maximum size which this file can attain, in units of control intervals for -SEQ, -REL,
and -INDEX type files, or in units of records for -F_REL and -N_REL type files. It must
be set equal to the initial size, as specified by the -SIZE control argument, if a BES1-
readable file is being created. If this argument is not specified, the file can expand to the
physical limit of the volume.

[-KEY_OFFSET n]
-KO n
The byte offset of the first byte of the key field within the record. The first byte of a record
is byte 1. This argument is required for -INDEX type files.
[-KEY._SIZE nl
-KSZ n
The number of bytes constituting the key field. This argument is required for -INDEX
type files.
-FILL__PC n}
[-FPC n
The ratio of data bytes to total bytes to be put into each control interval when creating an
-INDEX type file, expressed as a percentage. If not specified, the default value is 100.

-LOF nnn
For -INDEX type files nnn specifies the frequency of local overflow control intervals to be
allocated when the indexed file is loaded; e.g., if nnn is 10, one local overflow control
interval will be allocated after each tenth data control interval is allocated. Default is no
local overflow.

-KEY_TYPE x
-KT x

Key component data type for -INDEX type files. Specifies the key component data type.
The value of x is C for character data and D for decimal data. Default is C.

FUNCTION DESCRIPTION:

The CREATE FILE command reserves space in the file system for the specified file in
accordance with the control arguments supplied in the command. It establishes a pathname
whose form is dependent upon the form of the path argument and the elements of the working
directory.

If a simple name is specified as the path argument, it is appended to the elements of the
working directory to form the full pathname of the file. If a relative name is given, any
directories expressed or implied by that relative name must exist, as must any directories
expressed if the path argument is an absolute pathname.

The CF command, in effect, creates an “empty” file, which can be subsequently loaded by
output statements or macro calls in user programs.

The initial shareability and permission attributes of the created file are such that the file may
be referred to from both online and batch tasks, and may be read from and written to by any

task. These attributes can be modified through the use of the MODIFY FILE command if
different attributes (e.g., write protection) are desired.

The control arguments -F__REL, -N__REL, -SEQ, -REL, and -INDEX are mutually exclusive.
If none is specified a -SEQ type file is created.

Example 1:
CF FILEO1 -SEQ -CL_SIZE 1024 -SIZE 100

GCOS 6 COMMANDS 2-24 CB02

N

CREATE FILE

Create a file at the current level in the working directory. If the working directory is
>UDD>BOOKS>JONES, the full pathname of the created file s
>UDD>BOOKS>JONES>FILEOL. It is a sequential flle whose control interval size is 1024
bytes and whose initial size is 100 control intervals. It can be incremented in steps of 100
control intervals up to the physical limit of the volume (default values for -ISZ and -MSZ
control arguments).

Example 2:
CF SUB_DIR1>MYFILE -IX -SIZE 50 -KO 9 -KSZ 6 -MSZ 200

Create afile in an existing directory one level below the current level in the working directory.
Given the same working directory as in the previous example, the full pathname of the created
file is >UDD>BOOKS>JONES>SUB__DIR1>MYFILE. It is an indexed file whose initial
size is 50 control intervals of 512 bytes, and whose increment size and maximum size are 50
and 200 control intervals, respectively. The first byte of the record key is the ninth byte of the
record (the first byte of a record is byte 1), and the key is six bytes long.

The values provided with the -SIZE and/or the -INC__SIZE arguments cannot cause the
extent to exceed 8191 physical sectors. The actual limits, in terms of actual supplied value,
depend upon the type of device and the -CI_SIZE.

GCOS 6 COMMANDS 2-25

CB02

CREATE GROUP

CREATE GROUP
Command Name: CG

Perform the initialization functions necessary to the initiation of an online task group.

FORMAT:
CG id base_lvl [ctl_arg]

ARGUMENT DESCRIPTION:

id
The group identification of the new task group. It is a 2-character name that cannot have the
$ as its first character.

base__1vl
A base priority level, relative to the system level, at which all tasks in this task group will
execute. A base level of 0, if specified, is the next higher level above the last system priority
level. The sum of the highest system physical level plus 1, and the base level of the group,
and the relative level of a task within that group must not exceed 62,

[ctl__arg]
One or more control arguments chosen from the following list.
[-EFN root
-EFN root? entry

The name of a bound unit root segment to be loaded as the lead task if it is not already
loaded and linked as sharable. The root segment name can be suffixed with?entry, where
entry is a symbolic start address within the root segment. If ?entry is not given, the start
address established when the bound unit was linked is assumed.

-ECL
The root segment of the command processor is to be loaded as the lead task.

-LRN n
Specifies the highest logical resource number (LRN) that will be referred to by any task
in the task group. The maximum value is 252. The default value is the highest LRN used
by the system.

-LFN n

Specifies the highest logical file number (LFN) used by any task in the task group. The
maximum value is 255. The default value is 15. Refer to the ASSOCIATE PATH or GET
FILE command.
-POOL id
The name of the memory pool from which all dynamic memory required by this task
group is to be taken. id is a 2-character ASCII pool identifier; if specified, id must have
been defined at system building. If this argument is not specified, the issuing task group’s
memory pool is used. The -POOL id argument is intended for use under the Mod 400
executive only.

Note:

-EFN or -ECL, but not both, can be specified. If neither is specified, -ECL is assumed.

FUNCTION DESCRIPTION:

The CREATE GROUP command causes the initialization and allocation of all data structures
used by the system to define and control the execution of the task group. It causes the loading
of the root segment of the lead task of the task group. It does not cause the system to activate
any task within the task group.

GCOS 6 COMMANDS 2-26 CBO02

CREATE GROUP

This command can be issued only from an online task group.
Example:
CG AX 5 -EFN MAIN_PG?ENTRY1 -LRN 8 -POOL A2
A task group identified as AX is created. The lead task of the group is the program MAIN__PG,
whose execution is to be started at the symbolic address ENTRY1. No task in the group will
execute at a relative priority level lower than 5, nor refer to a logical resource number higher
than 8. Memory will be obtained from a pool identified as A2 at system building.

GCOS 6 COMMANDS 2-27 CBo02

CREATE MAILBOX

CREATE MAILBOX
Command Name: CMBX

Create a mailbox to contain the message queues used in communicating between task groups.

FORMAT:
CMBX name [ctl__arg]

ARGUMENT DESCRIPTION:

name
Name of mailbox (up to 12 characters). Can be an absolute or simple pathname.
Note:
To use a simple pathname the user must have previously created a mailbox root
directory named MDD.
[ctl__arg]
The following control arguments must be specified.

-MEM pool-id
Indicates that message queuing is to be performed in memory; queuing is done in the
memory pool identified by pool id.

-OW
Specified that mailbox is to have one-way capability.

FUNCTION DESCRIPTION:

The CMBX Command creates a directory corresponding to the mailbox name and a file
($MBX) within that directory defining the mailbox attributes. When a task group sends a
message to another task group, it sends to a named mailbox; when a task group receives a
message from another task group, it receives from a named mailbox. Under Mod 400 the only
queuing supported is memory queuing. It is advisable for the user to dedicate a memory pool
for messages. :

Before the user issues a CMBX command, he should have created a mailbox root directory to
contain the simple names of the mailboxes. (If the mailbox root directory is not named MDD,
then simple pathnames cannot be used in the CMBX command.)

The user should set access on the mailboxes such that the task group sending a message has
list access on the directory defining the mailbox and the task group receiving the message has
read access on the $MBX file for the mailbox.

Refer to the System Service Macro Calls manual for details on the intergroup message facility
macro calls.

Example:
CD >MDD
CREATE_MBX >SMITH -MEM -SIZE 100

Create the mailbox root directory named MDD. Create a mailbox whose directory name is

>MDD>SMITH and whose file name is >MDD>SMITH>$MBX. Queuing is to occur in
I memory; the queue size is 100 bytes.

GCOS 6 COMMANDS 2-28 CB02

—_-—"°,

CREATE TASK

CREATE TASK

Command Name: CT

Perform the initialization functions necessary to the initiation of a task within the issuing task
group.

FORMAT:
CT Irn rel _lvl ctl_arg

ARGUMENT DESCRIPTION:

Irn
The logical resource number (LRN) by which the issuing task group can refer to the created
task. It cannot exceed the value specified by the -LRN control argument in the CREATE
GROUP command which created the group of which this task is a member.

rel__1vl
The priority level, relative to the task group’s base priority level, at which the created task
is to execute.

ctl__arg
One or more control arguments chosen from the following list.

-EFN root
-EFN root?entry

The name of the bound unit root segment to be loaded for execution. The root segment
name can be suffixed with ?entry, where entry is a symbolic start address within the root
segment. If no suffix is given, the default start address, established when the bound unit
was linked, is assumed.

-SHARE Irn [ssa]
-SHR Irn [ssa]

This argument is available for use only when processing under Mod 400 operating
system software.

The same bound unit in the same task group is used as for the task identified by lrn. (This
task must have been previously defined by a CREATE TASK command specifying this
Irn.) ssa is the symbolic start address within the root segment of the task lrn. If none is
given, the root segment’s default start address, established when the shared bound unit
was linked, is assumed.

Note:

In any invocation of the CT command, -EFN or -SHARE, but not both, must be
specified.

FUNCTION DESCRIPTION:

The CREATE TASK command causes the allocation and initialization of the data structures
which define and control the execution of a task. It causes the loading of the root segment
specified by the -EFN control argument. If does not activate the task (the ENTER TASK
REQUEST command is required to perform activation).

One or more CT commands can be issued to create one or more tasks within the task group.
These tasks can be requested for execution concurrently or serially by entering the appropriate
control argument in the ETR command which is used to activate each task. Refer to the
description of the ETR command.

GCOS 6 COMMANDS 2-29

CB02

CREATE TASK

Example:

CT 10 2 -EFN PROGI10

CT 11 38 -EFN PROG11

CT 12 2 -SHARE 10 ENTRY2

Three tasks are made known to the issuing task group. Their logical resource numbers (LRNs)
are 10, 11, and 12. Task 10 is to execute at priority level 02 relative to the base priority level
established when the task group was created. Task 11 is to execute at relative level 03, and
task 12 is to execute at the same relative level as task 10. If the task group’s base level was
resolved to 20, then the three tasks execute at physical priority levels of 22, 23, and 22,
respectively. Task 12 is to share the same bound unit as task 10; however, execution of task 12
begins at a different point in the bound unit, specified by the label ENTRYZ2, (task 10’s entry
point is the default entry point established when PROG10 was linked). Subsequent ENTER
TASK REQUEST commands cause the execution of the above tasks to begin (refer to the
description of the ETR command).

GCOS 6 COMMANDS 2-30 CB02

N

CREATE VOLUME

CREATE VOLUME

Command Name: CV

Create or modify a volume.

FORMAT:
CV path ctl__arg

ARGUMENT DESCRIPTION:

path
The pathname of the device upon which the volume to be created is mounted. The form of the
pathname is
>SPD>dev_name[>vol__id]

If vol__id is present, the volume name is verified.

ctl_arg
Only one control argument from the following, except that either the -DBLOC or -SIZE
argument, or both, may be specified only with the -FORMAT argument.

FORMAT vol__id [t] [nn]

-FT vol__id [t] [nn] ,
Assign vol__id as the volume id and the d sk volume major directory name. For a disk
volume, preformat the volume by initializing all sectors to zero, checking for bad sectors,
and creating the olume id, the volume major directory, the bit map and the defective
sector index.

For a storage module volume, give it logical sector size nn, where nn may be 8, 16, 32, or
64. Default is 8 for all storage module device types except 2363, for which it is 16.

The t character defines the format of a magnetic tape volume where possible values are 1,
2, 3, or H (default is 3) which specify the following formats:

1 — American National Standard Institute level 1

2 — American National Standard Institute level 2

3 — American National Standard Institute level 3

H Honeywell derivative of American National Standard Institute level 3.
If used when formatting a disk volume, the optional t character is ignored.

-DLOC aaaa
-DL aaaa

This argument is available for use only when processing under Mod 400 operating
system software.

Causes the disk volume directory to start at sector aaaa. The value aaaa can be decimal,
or a hexadecimal number X'hhhh’ in which ‘hhhh’ represents four hexadecimal digits.
This argument can be used only when -FORMAT is specifled and may be used when -SIZE
is specified.

[-SIZE ssss}

-SZ ssss

This argument is available for use only when processing under Mod 400 operating
system software.

Causes the disk volume directory length to be established as ssss physical sectors. The
value ssss can be decimal, or a hexadecimal number X‘hhh’ in which ‘hhh’ represents

three hexadecimal digits. This argument can be used only when -FORMAT is specified
and may be used when -DLOC is specified.

GCOS 6 COMMANDS 2-31

CB02

CREATE VOLUME

-BOOT [X‘hhhh’]
-BT [X‘hhhh’] !

This argument is available for use only when processing under Mod 400 operating
system software.

Create bootstrap records and write them to volume-relative sectors 0 through 6. The
existing volume id and major directory name are not modified. The X‘hhhh’ field defines
certain bootstrap options as described in the function description. If used, this value
becomes permanent and cannot be overridden at startup.

-ISL [X*hhhh’]
Create Intersystem Link (ISL) bootstrap records and write them to volume-relative
sectors 0 through 6. The existing volume id and major dlrectory name are not
modified. The X*hhhh’ field defines certain bootstrap options as described in the function
description.

-MDUMP nn
-MD nn

This argument is available for use only when processing under Mod 400 operating
system software.

Create a memory dump bootstrap record and write it to volume-relative sector 0. The
existing volume id and major directory name are not modified, nn specifies the number of
4096-word modules to be dumped.

Create a file named DUMPFILE on the volume, large enough to contain a dump of nn 4K
modules of memory. Put a MDUMP record on sector 0 of the volume that will dump nn
4K modules of memory into DUMPFILE, to be printed subsequently by DPEDIT. The default
value of nn is 6.

[—RENAME y]
-RN y
Change the volume id and major directory name to that specified by y. y is a one- to
six-character ASCII string. A tape volume cannot be renamed.

FUNCTION DESCRIPTION:

The CREATE VOLUME command initializes a tape or disk volume in one of several ways. A
previously unused disk volume can be assigned a volume identification through the use of the
-FORMAT control argument. This argument, in addition to initializing all tracks on the
volume and verifying their integrity, writes a volume label record containing the volume
identifier specified by the vol__id field in this argument. It also establishes this identifier as
the volume major (root) directory name. Thus, if vol__id is given the value USERO01, the
volume label contains this value as the volume identifier, and the root directory pathname for
this volume is ~ USEROL.

A volume which has already been assigned a volume identifier as described above can be
supplied with a bootstrap routine in one of two forms. The -BOOT control argument causes a
standard system bootstrap routine to be written on the volume, the ISL argument causes a
standard ISL bootstrap routine to be written. The X‘hhhh’ field of these two arguments is used
to define the channel of the disk device containing the directive files and routines used during
system initialization, and to define certain bootstrap-and initialization options. The field

consists of four hexadecimal digits whose bit configuration is broken down as follows:

h, h, hs hy
—— ——t— —— —
XXXX XXXX XXXX XXXX
|) ﬁ J
CHN RFU OPT

GCOS 6 COMMANDS 2-32 CB02

CREATE VOLUME

CHN
Ten bits (bits 0 through 9) which specify the channel number of the initialization device
(e.g., 0400, 1280). The fourth digit of the channel number is always zero, and the values that
can be assumed by the third digit are 0, 4, 8, and C (hexadecimal).

RFU
These bits (bits 10 through 12) are reserved for future use and must be zero.

OPT
These bits (bits 13 through 15) establish the bootstrap/initialization options as follows:

If bit 13 = 1: Halt at the conclusion of the system bootstrap routine, and before entering
the operating system initialization code.

If bit 14 = 1: Use the Honeywell-supplied directive file on the device specified by CHN.
If bit 15 = 1: Bootstrap from the fixed cartridge disk device specified by CHN.

The -MDUMP control argument causes a special record, which is the memory dump routine,
to be written on the volume. A file, DUMPFILE, is allocated with a sufficient number of
sectors to contain the number of memory words specified by the xx field of the -MDUMP
argument.

A volume already having a volume identifier can be given a new identifier through the use
of the -RENAME control argument. This causes the volume identifier field of the
volume header record, and the root directory name, to be changed to the identifier specified
by the y field of this argument.

The CV command must specify the pathname of the peripheral device (cartridge disk,
diskette, storage module, or tape) upon which the volume to be initialized is mounted. The
dev__name portion of the path argument is the symbolic name of this device as defined at
system building. The vol__id field of the path argument, if used, indicates that the volume
already has a volume identifier, and that this identifier is to be checked for agreement with
a specified identifier. If the two identifiers do not agree, an error message is used and the
command is terminated. The vol__id field of the path argument does not assign an identifier
or root directory name to the volume; this can only be done by using the -FORMAT control
argument.

The system recognizes unique vol__ids. If disk volumes of the same vol__id are used, it is
necessary to rename one of the volumes before the system accepts it. Simply follow the
procedure for an unformatted volume, and invoke CV -RENAME rather than -FORMAT.
Mount the volume only at the appropriate remount message and processing (i.e., the volume
rename) will continue. If the CV is attempted and another volume is the same vol__id is
mounted, a dismount message will be issued after the vol__id is written on the volume. If
the -MDUMP option is requested, the create volume will issue a Create File macro call
which will attempt to place the new file on the duplicate named volume, not on the one just
created.

Only one of the parameters -BOOT, -MDUMP, -FORMAT and -RENAME may be specified |
at a time.

To format an unformatted diskette, wait until a “mount” message is encountered after CV
has been loaded and begun execution. At this point, mount the unformatted pack and
processing will continue.

To format an unformatted removable cartridge disk or storage module, keep the disk in the
“off” condition until the “Mount” message is received after CV has been loaded and exe-
cuted. At this point, cycle-up the disk and processing will continue.

To format an unformatted fixed cartridge disk, proceed in the same way as for the removable
disk except when the fixed disk is on the same channel as the executing removable system
pack. For the latter case, at the mount message simply cycle down and up the cartridge unit
and processing will continue.

GCOS 6 COMMANDS 2-33 CB02

CREATE VOLUME

To set up a volume label on a magnetic tape, use the following command form:
CV>SPD>sympd [>vol_idl1] -FT vol_id2 x

where “x” is a hexadecimal character which may be 1, 2, 3 or H and which is used as the last
character of the tape header record. The default for this is 3. If the optional character is used
when a disk is formatted, it is ignored.

Ignore the error message 020107(26 cccc 0100 000) encountered when using unformatted
volumes.

Example 1:
CV >SPD>DKS03 -FT USRDTA

A volume mounted on the device identified at system building as DSKO03 is to be formatted and
assigned the identifier and root directory name USRDTA. If this volume is to contain only user
data (i.e., it is not to be used for system initiation or dumping of memory), no further
initialization is required. That is, no bootstrap records need be created for this volume. Other
directories can be established under the root directory USRDTA by subsequent use of the
CREATE DIRECTORY command.

Example 2:
CV >SPD>DSK02 -FT DMPVOL
CV >SPD>DSK02>DMPVOL -MD 04

A volume mounted on the device identified as DSKO02 is to be formatted and assigned the
identifier and root directory name DMPVOL. This volume is to be used for dumping memory,
and is therefore (by the second CV command) given a memory dump bootstrap record. Dumps
are to contain four 4096-word modules of memory. The second command also specifies that the
previously assigned volume identifier is to be verified prior to creation of the memory dump
bootstrap record.

Use of the optional volume id as part of the pathname insures that the proper volume is
mounted, thus avoiding concurrency errors.

Finally, this utility automatically reserves the innermost cylinder on every disk pack (except
diskette) for T&V usage.

GCOS 6 COMMANDS 2-34 CB02

CREATE VOLUME DATA EXCHANGE (IBM)

CREATE VOLUME DATA EXCHANGE (IBM)
Command Name: CVDE

Create a volume (diskette) for data exchange which will be acceptable on IBM equipment.

FORMAT:
CVDE path [ctl_arg]

ARGUMENT DESCRIPTION:

path

The path name of the device upon which the volume (diskette) to be created is mounted. The
form of the path name is

>SPD>sympd [>vol-id]

[ctl__arg]
The only control argument accompanying the CVDE command is as follows:

-FT vol__id
Specifies the volume id being assigned to the volume (diskette) being created.

FUNCTION DESCRIPTION:

The purpose of the CVDE command is to set an unformatted volume (diskette) to a 3740-like
format to make it acceptable on IBM equipment.

GCOS 6 COMMANDS 2-35 CB02

DEFERRED PRINT

DEFERRED PRINT
Command Name: DP

Queue a request for deferred printing for the indicated file.

FORMAT:
DP path [ctl__arg]

ARGUMENT DESCRIPTION:
path
The pathname of the file whose contents are to be printed

[clt_arg]
One or more control arguments chosen from the following list:

-LIMIT nn
-LI nn

Specifies the number of records to be printed if end of file is not encountered before the
value of nn is satisfied. If not specifiied, all records in the file are printed.

-COPIES n
-CPn

Specifies the number of copies to be printed, i.e., the number of times the file is to be
printed for this invocation. Default is 1.

-SPACE n]
-SP n

This argument indicatyes that the file is not a true print file with print control characters
in its records. Each record is printed on one or more print lines. The value of n specifies
the line spacing between records, and can be either 1 or 2. 1 specifies single spacing (no
blank line). 2 specifies double spacing (one blank line). The default value for n is 1. If this
parameter is not specified, the first record byte is treated as a printer control character,
i.e.; the file is assumed to be a print file. Sge the control byte description for the printer
driver in the System Service Macro Calls manual.

-FORTRAN}

-FTN
The print file was created by a FORTRAN object program and has print control charac-
ters of the FORTRAN type.

-FROM nn

-FM nn
Indicates that the first nn records of the file are to be skipped before printing begins. If
not specified, printing starts at beginning of file.

-LINE LEN nn

-LL nn
Specifies the number of characters to be printed per line. If a longer line is read from the
file, it is folded at the indicated print position. If not specified, the value of nn is 68.

-RELEASE

-RL

Specifies that, at the completion of printing, the file is to be released.

) -DESTINATION string
-DS string '

GCOS 6 COMMANDS 2-36 CB02

DEFERRED PRINT

sheet. For spaces to be included in the destination field, the supplied character string
must be enclosed in quotes. This field can be up to 13 characters long. If the -DS
argument is omitted, the person id is printed.

-HEADING string

-HE string
Use the value of the specified “string” for the heading field of the printing heading sheet.
For spaces to be included in the heading field, the supplied character string must be
enclosed in quotes. This field can be up 26 characters long. If the -HE argument is
omitted, the account id is printed.

(' - Use the value of the specified “string” for the destination field of the printing heading

FUNCTION DESCRIPTION:

DPRINT verifies the path name and control arguments and then enters a request for a
deferred file print to $P. After the print request has been submitted, the user is allowed to log
off without losing the print.

=N

GCOS 6 COMMANDS 2-37

CB02

DELETE ACCESS CONTROL LIST

DELETE ACCESS CONTROL LIST
DA
DELETE__ACL

Delete entries from the ACL of a file or directory.
FORMAT:
DA
DELETE__ACL

Command Name[

l[path user__id] [ctl__arg]

ARGUMENT DESCRIPTION:

path
Specifies the pathname of a file or directory. If this argument is omitted or if -WD is entered,
the working directory is specified. If it is omitted, user__id cannot be specified.

user__id
Specifies an access control name that must be of the form person account mode. All ACL
entries with matching names are deleted. (For a description of the matching strategy, refer
| to the SET__ACL command.) If path is specified, user__id should also be specified. If user__id
is omitted, the system__id of operator. system.* is used.

[ctl__arg]
One or more control arguments from the following list.

A }

-ALL
Causes all ACL entries to be deleted. This argument overrides user__id, if both are
specified.

-BF }
-BRIEF
Suppresses the message “USER NAME NOT ON ACL”
FUNCTION DESCRIPTION:

This command removes entries from the access control list (ACL) of a file or directory. The user
must have modify access to the containing directory in order to delete entries.

If the command is invoked with no arguments, it deletes the entry for the user’s person.
account.* on the ACL of the working directory.

GCOS 6 COMMANDS 2-38 CB02

DELETE COMMON ACCESS CONTROL LIST

DELETE COMMON ACCESS CONTROL LIST

DELETE_CACLI
Delete entries from the CACL of a directory.

Command Name:lDCA

FORMAT:

{DCA

DELETE_CACL][path user__id] [ct]__arg]

ARGUMENT DESCRIPTION:

path
Specifies the pathname of a directory. If this argument is omitted or if -WD is entered, the
working directory is specified. If it is omitted, user__id cannot be specified.

user__id
Specifies an access control name that must be of the form person.account.mode. All CACL
entries with matching names are deleted. (For a description of the matching strategy, refer
to the SET__ACL command.) If path is specified, user__id should also be specified. If user__id
is omitted, the system__id of operator. system.* is used.

[ctl_arg]
One or more control arguments from the following list.

A

Causes all CACL entries to be deleted. This argument overrides user__id, if both are
specified.

[-DIR]
-DIRECTORY

Causes directory CACL entries to be deleted
-FILE
Causes file CACL entries to be deleted

-BF
-BRIEF
Suppresses the message “USER NAME NOT ON CACL”

FUNCTION DESCRIPTION:

This command removes entries from the common access control list (CACL) of a directory. The
user must have modify access to the containing directory in order to delete entries.

If the command is invoked with no arguments, it deletes the entry for the user’s person.
account.* on the file CACL of the working directory. If -DIR and -FILE are both specified, both
directory and file CACL entries are deleted. If neither is specified, only file CACL entries are
deleted.

GCOS 6 COMMANDS 2-39 CB02

DELETE GROUP

DELETE GROUP

Command Name: DG
Mark the online task group as eligible for deletion when it becomes dormant.

FORMAT:
DG id

ARGUMENT DESCRIPTION:

id
The group identification of a task group previously created by a CG command specifying the
same id. The default is to delete the issuing task group.

FUNCTION DESCRIPTION:

The DELETE GROUP command removes all data structures constructed by the CG command
issued previously with this id. No more ENTER GROUP REQUEST commands can be issued
for this task group after the DG command has been executed. The DG command takes effect
immediately if the task group is dormant when the command is issued. If it is active (i.e., if its
code is being executed and/or there are still requests in this task group’s request queue), the
DG command takes effect when execution terminates and there are no more requests in the
queue.

When a task group is deleted, the memory occupied by the data structures defining the group,
and any memory associated with the execution of the group, is returned to the approprlate
memory pool and is available for use by other task groups.

This command can be issued only from an online task group.

GCOS 6 COMMANDS 2-40

CB02

DELETE TASK /DISSOCIATE PATH

DELETE TASK

Command Name: DT
Mark the online task as eligible for deletion of its definition from the ta