
Honeywell PROGRAM PREPARATION
AND CHECKOUT

SERIES 60 (lEVEL 6) GCOS 6/MDT

SUBJECT:
Detailed Description of Program Preparation and Checkout for Series 60 (Level 6) GCOS Multi­
Dimensional Tasking (GCOS 6/MDT)

SOFTWARE SUPPORTED:

DATE:

This publication supports Release 0 I 0 1 of Series 60 (Level 6) GCOS Multi-Dimensional Tasking (GCOS
6/MDT) software. When a later release of the system occurs, see the Subject Directory of the latest
Series 60 (Level 6) GCOS 6/MDT Overview and User's Guide (Order No. AXIl), to ascertain whether this
revision of this manual supports that release.

March 1977

ORDER NUMBER:
AX08, Rev. 0

PREFACE

This manual describes program preparation and checkout for Series 60
(Level 6) GeOS Multi-Dimensional Tasking (GeOS 6/MDT). Unless stated
otherwise herein, the term MDT is used to refer to the GeOS 6/MDT
software; the term Level 6 indicates the specific models of Series 60
(Level 6) on which the described software executes.

© 1977, Honeywell Information Systems Inc. File No.: 1 S23

AX08

GCOS 6/MDT Subject Directory

This subject directory lists topics in alphabetical order. Each topic is
accompanied by the order number of each manual in which the topic is
described. Following the Subject Directory is a list, by order number, of all
GCOS 6/MDT manuals.

Subject Order No.
Address Expressions .. AX 12
Addressing Techniques .. AX 12
ASCII

Character Set ... AX07
AX09
AXI2
AXI3

Collating Sequence .. AX 15
AXI6

Hexadecimal Conversion AX 12
Assembly Language

Assembling. .. AX08
Error Messages .. AX07

AXIO
Instructions .. AX 12
Source Code Error Flags .. AX 12
Source Listing .. AX II

AXl2
User Guide .. AX II

Batch
Pool .. AXIl
Task Group .. AXil

Binary Synchronous Communications (BSC) AX 10
Clock Manager .. AXIO
COBOL

Communications AXIl
AXI3

Compilation .. AX07
AX08

Diagnostic Messages .. AX 13
Error Messages .. AX07

AXIO
Source Language AX 13
User Guide .. AXil

Communications
Assembly Language Drivers AX 10
COBOL ... AXI3
COBOL Sample Programs. .. AX 11
Concepts .. AX 11
Configuration Directives .. AX07
Data Formats .. AX09
FORTRAN ... AXl4
User Guide .. AX II

Compare Utility ... AX07
Compatibility, BESI/2 AXIl
Configuration .. AX07
Console Messages AX07

AXI0
Control Panel .. AS22

AT04

iii AX08

Copy Utility AX07
Create Volume Utility AX07
Cross-Reference Program AX08
Data Files

Access Rights . AXIO
AXIl

Concept .. . AX09
File Size Calculations AX09
Formats .. . AX09
Organizations .. . AX09

AXIl
Data Structures

Data File ' AX09
Monitor and I/O AXIO

Debugging Programs AX08
Directories

Main Description AXIl
Summary AX07

AX08
AX09

Drivers AXIO
Dump Edit (DPEDIT) Utility AX07

AX08
Dumping Programs AX08
EBCDIC Character Set AX07

AX09
AXIO

ECL/OCL Commands AX07
Editor

Directives . AX08
Execution AX07

AX08
Error, Status, and Informational Messages

Assem bly Error Flags AXl2
COBOL Diagnostic AXl3
FORTRAN Diagnostic AXl4
RPG Compiler AXl6
Systeln AX07

AXIO
Examples of Sample Programs AX08

AXIl
AXl2
AXl4

Execution Contror Language (ECL) AX07
Export PAM File Utility AX07
Extensions (Operating System) AX07
File, Data (see Data Files)
File Dump Utility AX07
File System Input/Output Macros AXIO
File Transmission Utility AX07
FORTRAN

Communications AXl4
Compilation AX07

AX08
Diagnostic Messages AXl4
Error Messages AX07

AXIO

iv AX08

Functions. AX14
Source Language AX14
User Guide .. . AXIl

Glossary .. . AXIl
Import PAM File Utility AX07
Input/Output Service Functions AXIO
Interrupt Priority Level Concepts AXIl
Interrupt Save Area (ISA) AXIl
Keys, Record .. . AX09
Linker

Directives . AX08
Execution AX07

AX08
Logical File Number Concepts (LFN) AXIl
Logical Resource Number (LRN) Concepts AXIl
Macro Calls, System and Input/Output AXIO
Macro Preprocessor

Execution AX07
AX08

Language Statement Description AXI2
Listing AXI2

MDUMP Utility .. . AX08
Memory Allocation by Task AXIO
Memory Dumps, Interpreting and Using AX08
Memory Layout .. . AXIl
Memory Management Assembly Instructions AXI2
Memory Pool

Batch .. . AXIl
Concepts AXIl
Configuration .. . AX07
Online AXIl
Size Calculation AX07

Monitor and I/O Services Macro Calls AXIO
Multiline Communications Processor Dump Routine (DUMCP) AX08
Operator Control Language (OCL) AX07
Operator Interface (Terminal Dialog) AX07
Overlays

Concepts AXIl
Creating .. . AX08
System AX07

Patch Utility AX07
AX08

Patching Programs AX08
Pathnames (see Directories)
Physical Input/Output AXIO
Prin t Utility AX07
Priority Level Concepts AXIl
Queue Assembly Instructions AXl2
Real-Time Clock .. . AXIO
Registers, Hard ware AXl2
Root, Creation AX08
RPG

Compilation AX07
AX08

Error Messages AX07
AXIO

Source Language AXl6

v AX08

Sample Programs

Scientific Instruction Processor

Semaphore
Concepts
Macro Calls .

Software Overview
Sort

Execution

Language Statements
User Guide .. .

Stack Assembly Instructions
Startup, System .. .
Status, Error, and Informational Messages

System
Configuration Directives
Extensions .. .
Files (command, error output, user input, user output)
Memory Layout
Startup
Task Group

Task Manager Functionality
Task

Concepts
Control and Services .
Status .. .

Trap Handler .. .
Utilities

Compare Utility
Copy Utility
Create Volume Utility
Dump Edit (DPEDIT) Utility

Export PAM File Utility
File Dump Utility
File Transmission Utility
Import PAM File Utility
MDUMP Utility
Patch Utility

Print Utility
Sort Utility .. .

VIP .

AX08
AXil
AXI4
AXIO
AXI2

AXil
AXIO
AXil

AX07
AXIS
AXIS
AXil
AXI2
AX07
AX07
AXIO

AX07
AX07
AX07
AXil
AX07
AXil
AXIO

AXil
AXIO
AXil
AXIO

AX07
AX07
AX07
AX07
AX08
AX07
AX07
AX07
AX07
AX08
AX07
AX08
AX07
AX07

Configuration .. AX07
Terminal Operation AXIO

vi AX08

The following publications constitute the GCOS 6/MDT manual set. The
Subject Directory in the latest Series 60 (Level 6) GCOS 6/MDT Software
Overview and User's Guide lists the current revision number and addenda (if
any) for each manual in the set.

Order No.

AX07
AX08

AX09

AXIO
AXIl
AXl2

AXl3
AXl4
AXIS
AXl6

Manual Title

Series 60 (Level 6) GCOS 6/MDT System Control
Series 60 (Level 6) GCOS 6/MDT Program Preparation and
Checkout
Series 60 (Level 6) eGOS 6/MDT Data File Organization and
Format
Series 60 (Level 6) eGOS 6/MDT Monitor and I/O Service Calls
Series 60 (Level 6) GCOS 6/MDT Overview and User's Guide
Series 60 (Level 6) GCOS 6/MDT Assembly Language Reference
Manual
Series 60 (Level 6) GCOS 6/MDT COBOL Reference Manual
Series 60 (Level 6) eGOS 6/MDT FORTRAN Reference Manual
Series 60 (Level 6) eGOS 6/MDT Sort Manual
Series 60 (Level 6) GCOS 6/MDT RPG Reference Manual

In addition to the GCOS 6/MDT manual set, the following documents
provide GCOS 6/MDT users with a general hardware reference:

Order No.

AS22
AT04
AU22

Document Title

Honeywell Level 6 Minicomputer Handbook
Level 6 System and Peripherals Operation Manual
eCOS/BES Programmer's Reference Card

The following manual provides detailed information regarding pro­
gramming for the Multiline Communications Processor:

AT97 Series 60 (Level 6) MLCP Programmer's Reference Manual

vii AX08

CONTENTS
Page

Section 1. Overview................... 1-1
Symbols Used in This Manual 1-3
How to Use This Manual 1-3
File System Pathnames 1-4

Files 1-4
Directories 1-4
Naming Conventions 1-4
Pathname Construction 1-4

Absolute Pathnames 1-5
Relative Pathnames and the
Current Working Directory 1-5

Suffix Conventions 1-6

Section 2. Editor 2-1
Conventions Used in Editor Directive

Formats 2-1
Methods of Specifying Addresses 2-3

Designating a Line Number as an
Address 2-3

Designating the Position of a Line
Relative to the "Current" Line
as an Address 2-4

Designating Contents of Line as an
Address 2-4

Compound Addresses 2-6
Referencing a Series of Lines 2-6

Loading the Editor 2-8
Creating a Source Unit 2-8
Changing an Existing Source Unit 2-9
Input Mode Description and Directives .. 2-9

Append Directive 2-10
Change Directive 2-11
Insert Directive 2-13

Edit Mode Description and Directives ... 2-15
Delete Directive 2-16
Print Directive 2-1 7
Quit Directive 2-19
Read Directive 2-20
Substitute Directive 2-22
Write Directive 2-23

Advanced Usage of the Editor 2-25
Execute Directive 2-25
Global Directive 2-26
Print with Line Number Directive 2-27
Exclude Directive 2-28
Print Line Number Directive 2-30
Auxiliary Buffers 2-31

Change Buffer Directive 2-31
Copy Directive 2-31
Move Directive 2-32
Buffer Status Directive 2-33
Changing Origin of Text During

Input Mode 2-35
Programming Considerations 2-36

viii

Page
Section 3. Language Processors 3-1

Loading and Executing the Macro
Preprocessor . 3-1

Cross-Reference Program 3-2
Loading and Executing the Cross-

Reference Program 3-2
Sample Cross-Reference Listing 3-2

Loading and Executing the Assembler ... 3-5
Loading and Executing the FORTRAN
Compiler 3-6

Loading and Executing the COBOL
Compiler 3-7

Loading and Executing the RPG
Compiler 3-8

Section 4. Linker 4-1
Functions of the Linker 4-1

Creating a Bound Unit 4-1
Resolving External References 4-2
Creating a Symbol Table 4-2
Producing a Link Map 4-2

Functional Groups of Linker Directives .. 4-2
Specifying Object Unites) to be

Linked 4-2
Specifying Location(s) of Object

Unites) to be Linked 4-3
Creating a Root and Optional

Overlay(s) 4-3
Producing Link Map(s) 4-3
Defining External Symbol(s) 4-4
Protecting or Purging Symbol(s) 4-4
Designating that the Last Linker
has been Entered 4-4

Loading the Linker 4-4
Entering Linker Directives 4-5
Procedure for Creating Only a Root 4-6
Procedure for Creating a Root and One

or More Overlays 4-6
Obtaining Summary Information of a

Linker Session 4-7
Linker Directive Descriptions 4-8

BASE Directive 4-8
Call-Cancel Directive (CC) 4-10
EDEF Directive 4-11
FLOVL Y Directive 4-12
IN Directive 4-13
1ST Directive 4-14
LDEF Directive 4-14
LIBD~ective 4-16
LINK Directive 4-1 7
LINKN Directive 4-18
MAP and MAPU Directives 4-19
OVL Y Directive 4-21
Protect Directive 4-22
PURGE Directive 4-23
QUIT Directive 4-24

AX08

Page
SHARE Directive 4-25
START Directive 4-25
SYS Directive 4-25
VDEF Directive 4-26

Example Illustrating Usage of the Linker . 4-26
Programming Considerations 4-27

Section 5. Debugging Programs 5-1
Debug 5-1

Debug File Requirements 5-1
Loading the Debug Task Group 5-1
Debug Directives 5-2

Planning Considerations 5-4
Setting Breakpoints 5-4
Determining/Setting the Active

Level 5-5
Deactivating Real-Time Clock ... 5-5
Maintaining a Trace History 5-5

Activate Level Directive 5-5
All Registers Directive 5-6
Assign Directive 5-6
Clear All Directive 5-6
Change Memory Directive 5-7
Clear Directive 5-7
Define Directive 5-8
Display Memory Directive 5-8
Dump Memory Directive 5-9
Define Trace Directive 5-9
Execute Directive 5-10
GO Directive 5-11
Print Header Line Directive 5-11
List All Breakpoints Directive 5-11
List Breakpoint Directive 5-12
Line Length Directive 5-12
Print All Directive 5-13
Print Directive 5-13
Print Trace Directive 5-13
Reset File Directive 5-13
Set Breakpoint Directive 5-14
Specify File Directive 5-15
Set Level Directive 5-15
Set Temporary Level Directive 5-16
Print Hexadecimal Value Directive .. 5-16

Examples Illustrating Usage of Debug
Directives 5-17

Debugging Programs Without Using
Debug 5-18

Section 6. MDUMP and Dump Edit Utility
Programs 6-1

MDUMP Utility Programs 6-1
Preparing for MDUMP 6-1
Procedure for Using MDUMP 6-1
MDUMP Halts 6-2

Dump Edit Utility Program 6-2
Operating Procedure for Dump Edit ... 6-3

ix

Page
DPEDIT Command 6-3
Interpreting Dump Edit Dumps 6-4

Dump Edit Line Format 6-4
Logical Dump Format 6-4
Physical Dump Format 6-8

Section 7. Patch 7-1
Loading Patch 7-1
Submitting Patch Directives 7-1
Patching Techniques 7-2

Naming the Patch 7-2
Applying the Patch 7-2

Patch Directives 7-2
Eliminate Patch Directive 7-2
Hexadecimal Patch Directive 7-3
List Patches Directive 7-4
Quit Directive 7-5

Section 8. Multiline Communication
Processor Dump Routine
(DUMCP) 8-1

Linking DUMCP as a Self-Contained
Bound Unit 8-1

Linking DUMCP with a User Program ... 8-2
STRTDI Entry Point 8-2
STRTD2 Entry Point 8-3

Format of Dumps Produced by
DUMCP 8-3

Programming Considerations 8-7

Appendix A. Interpreting and Using
Memory Dumps A-I

Significant Locations on Memory
Dumps A-I

Locations Relative to the System
Control Block or Group Control
Block A-2

Locations Relative to the Task
Control Block (TCB) Pointer for the
Desired Priority Level. A-3

Interpreting the Contents of Locations
on Memory Dumps. A-3

Determining Where a Trap Occurred ... A-6
Finding the Location in Memory of

Your Code A-7
Determining Where Execution of Your

Task Terminated A-7

AX08

ILLUSTRATIONS

Figure

1-1.
3-1.

3-2.
4-1.

4-2.
6-1.

6-2.
6-3.
8-1.

A-I.

Page

Program Preparation Procedure 1-2
Source Listing of Source Unit to

be Cross-Referenced 3-3
Sample Cross-Reference Listing 3-4
Schematic of Previous Example

Illustrating Usage of BASE
Directives 4-9

Link Map Formats 4-20
Format of Logical Dumps

Produced by Dump Edit 6-5
Sample Logical Memory Dump 6-6
Sample Physical Dump 6-9
Sample Dump Produced by

DUMCP 8-3
Data Structure Map A-2

TABLES

Table

1-1.
5-1.

5-2.

6-1.
6-2.

6-3.

8-1.

A-I.

A-2.

Page

Designating File Names 1-7
Symbols Used in Debug Directive

Lines 5-3
Summary of Debug Directives, by

Function 5-4
MDUMP.Halts 6-2
Supplemental Information That

May Occur in Logical Dumps
Produced by Dump Edit 6-5

Supplemental Information That
May Occur in Physical Dumps
Produced by Dump Edit 6-8

Contents of Register R2 if DUMCP
is Linked with a User Program 8-3

Significant Locations on Memory
Dump A-I

Summary of Executive Monitor
Calls A-4

x AX08

SECTION I

OVERVIEW

Program preparation and checkout is a series of procedures that permit you to create a source unit,
convert it into an executable format, detect and correct errors, and apply patches. These procedures are
performed using the Honeywell-supplied tasks described in the subsequent sections of this manual.

Program preparation and checkout can be performed on a Honeywell-supplied preconfigured system,
or on a more specialized system that you configure. If you are using the preconfigured system, before
performing program preparation and checkout you must perform the initial system startup procedure. If
you are configuring your own system, you must first perform both the initial system startup procedure
and a specialized system startup procedure. The initial and specialized startup procedures are described in
the "System Startup and Configuration" section of the System Control manual. The equipment required
for program preparation is described in the "Equipment Requirements" section of the Overview and
User's Guide.

Program preparation and checkout is described below; Figure 1-1 illustrates program preparation.
Source units can be created via punched cards or the Editor. A source unit comprises source

statements written in assembly language, FORTRAN, COBOL, or RPG. If desired, source units can be
altered by the Editor. Source units are converted to object units by a language processor (e.g., the
Assembler, FORTRAN Compiler, COBOL Compiler, or RPG Compiler). If assembly l~Tlgllage source
statements contain one or more macro calls,the source text must be processed bytlie Macro'
Preprocess'oYo~efOre ~ i tcanbec process.ed b. y the Assembler . The . MacroPr~l'.r?cesso~r~lll~\lHaQ1i!l!ac:ri'iii
call with a sequence of statements.knQWllJiS a macro routine. Macro Preproce-ss-or output is called ali' J
exP'tpded s()llfce unit. ~ The Cross-Reference Piogram--can~-be Tun~to·obtain~<111sr6ran·"s~ymool1c~naffies in .
an assembly language sburce unit, and to determine whether any of the symbols are undefined, multiply
defined, or defined and not used. If necessary, corrections can be made by using the Editor. Separately
assembled and/or compiled object units must be linked by the Linker to form a bound unit. A bound
unit comprises a root, or a root and one or more overlays. A root is the portion of a bound unit that is
loaded into memory when the Loader is requested to load a bound unit. 1 The root remains in memory as
long as there are tasks executing on its behalf, unless the LDBU configuration directive was specified; if
LDBU was specified, the root remains in memory until the system is reinitialized. An overlay is load into
memory whenever it is required.

You can control execution of a program and make desired changes while the program is executing by
using Debug. Breakpoints can be set to determine which code is executing, and specified registers and
memory locations can be displayed and, if desired, changed. If there is not enough memory for Debug,
you can perform debugging by using Patch to append monitor points. Patch permits you to add patches
to and/or delete patches from object units and bound units.

There are three methods of obtaining memory dumps. While a program is executing, you can obtain a
memory dump by using either Debug or the Dump Edit utility program; dumps produced by Dump Edit
are in edited format and are much easier to interpret. If an executing program encounters a problem and
it aborts or a halt occurs, to obtain a memory dump you may use just Dump Edit or you may first dump
memory to a disk file by using the MDUMP utility program and then print the memory dump by using
Dump Edit. To dump the contents of all or part of the Multiline Communications Processor memory,
you can use the DUMCP dump routine.

1 The root is loaded when an -EFN argument is specified in an EeL create group or spawn group command, or an LDBU configuration
directive is specified (see the System Control manual).

OVERVIEW 1·1 AX08

,

CROSS­
REFERENCE
PROGRAM

OVERVIEW

MACRO
PREPROCESSOR

EDITOR

ASSEMBLER

LINKER

FORTRAN
COMPILER

Figure 1-1. Program Preparation Procedure

1-2

COBOL
COMPILER

RPG
COMPILER

AX08

NOTES: 1. If you are going to perform program preparation and checkout while simultaneously
executing other tasks in the foreground, you must be familiar with the Overview and
User's Guide.

2. Throughout this manual there are references to the ECL create group, enter group
request, spawn group, and enter batch request commands; these commands are described
in the "Execution Control Language" section of the System Control manual.

SYMBOLS USED IN THIS MANUAL

D
EJ

(

D
CJ

UPPERCASE
CHARACTERS
lowercase
characters
brackets []
braces t ~
ellipses ...

Processing; indicates any kind of processing function.

Online storage of information; e.g., diskette or cartridge disk.

Input from card reader.

Document; e.g., printer output.

Manual input; i.e., operator's terminal or another terminal.

Mandatory; indicates that the designated flow of information, type of
processing, input, or output is required.

Reserved words or symbols, must be entered or used exactly as shown.

Symbolic name or value; you must supply the exact value.
Optional information.

An enclosed entry must be selected.
There may be multiple entries of the immediately preceding type of
information.

HOW TO USE THIS MANUAL

The remainder of this section summarizes how to access files via pathnames, and describes in detail
the suffixes that are appended to file names. It is important that you understand these concepts before
proceeding with the manual.

Section 2 describes how to load the Editor, and includes detailed descriptions of directives that
control execution of the Editor.

Section 3 describes how to load the Macro Preprocessor, Cross-Reference Program, Assembler,
FORTRAN Compiler, COBOL Compiler, and RPG Compiler. The Cross-Reference Program is described
in detail in this section. The Macro Preprocessor and Assembler are described in the Assembly Language
Reference Manual; the FORTRAN, COBOL, and RPG Compilers, and their respective languages are
described in the FORTRAN Reference Manual, COBOL Reference Manual, and RPG Reference Manual,
respectively.

OVERVIEW 1-3 AX08

Section 4 describes how to load the Linker, Linker functions, and directives that control execution of
the Linker.

Section 5 describes how to debug programs using Debug and other methods.
Section 6 describes how to load and use the MDUMP and Dump Edit utility programs.
Section 7 describes how to load Patch, and includes detailed descriptions of Patch directives.
Section 8 describes, in detail, DUMCP, the Multiline Communications Processor dump routine.
Appendix A describes, in detail, how to interpret memory dumps. This appendix includes procedures

for determining where a trap occurred, finding the location in memory of your code, and determining
where execution of your code terminated.

FILE SYSTEM PATHNAMES

The file system is represented by a tree-structured hierarchy. The basic elements of this structure are
known as files. Some of the files are of a special type and are known as directories; the remainder of the
files comprise aggregates of data.

Files
A file is defined as any unit of storage, external to the central processor, which is capable of supplying

data to, and/or receiving data from a task. A file can be simply a peripheral device such as a printer, card
reader, or terminal device; or it can be an aggregate of data stored within a directory structure on a
magnetic storage device. A source unit, object unit, listing, or bound unit is stored as a source unit file,
object unit file, list file, or bound unit file, respectively.

Directories
A directory is a file that contains information about other files, such as the physical and logical

attributes of the files and the attributes of the peripheral devices upon which they reside. The files whose
attributes are described in the directory are said to be immediately contained in, or subordinate to the
directory. They may themselves be directories, or they may be data files. At the base of each tree
structure is a directory known as the root directory, or simply the root. The root directory name is the
same as the disk volume identifier or the tape volume label of the volume on which it resides.

Naming Conventions
Each directory or file name in the file system can consist of ASCII characters from the following sets:

o Uppercase alphabetic (A through Z)
o Numeric (0 through 9)
o Underscore ()
o Period (.)
o Dollar sign ($)

The first character of any name must be either an alphabetic or the dollar sign ($). The underscore
character can be used to join two or more words which are to be interpreted as a single name (e.g.,
DA TE_ TIME). The use of the period character followed by one or more alphabetic or numeric
characters is normally interpreted as a suffix appended to a file name.

The name of a root directory or a volume identifier can consist of at least one and no more than six
characters. The names of other directories, and those of files, can comprise from 1 to 12 characters. The
length of a file name must be such that any potential system-supplied suffix does not result in a name of
more than 12 characters.

Pathname Construction
The access path to any file system entity (directory or file) begins with a root directory name and

proceeds through zero or more subdirectory levels to the desired entity. The series of directory names
(and a single file name if a file is the target entity) is known as the entity's pathname.

In constructing a pathname, certain symbols are used to indicate the hierarchical relationship between
the pathname's elements. These symbols and their meanings are shown below.

o The circumflex (A)-Used exclusively to identify the name of the root directory. It precedes the
root directory name, thus: AVOLOl.

OVERVIEW 1-4 AX08

o The greater than (>)-Used to connect two or more directory names or a directory name and a file
name. Each occurrence of the symbol denotes a change in the directory level; the name to the
right of the symbol is immediately subordinate to the name on the left. Reading a pathname from
left to right thus indicates movement through the tree structure in a direction away from the root
If the root directory 1\ VOLO I contains a directory name DIRI, then the pathname of DIRl is

/\ VOLOl> DIRI

If the directory named DIR 1 in turn contains a file named FILEA, then the pathname of FILEA is

1\ VOLOl>DIRl>FILEA

o The less than «)-Used in certain cases to indicate movement through the tree structure in a
direction toward the root. This symbol can precede only the first element of a relative pathname,
and represents a change of one level in a direction toward the root. Consecutive symbols can be
used to indicate changes of more than one level; each occurrence represents a one-level change.

The last element in a pathname is the name of the entity upon which subsequent action is to be taken.
This element can be either a directory name or a file name, depending on the function to be performed.

Absolute Pathnames
An absolute pathname is one which begins with a directory name preceded by a circumflex (1\) or a

greater-than symbol (». When it begins with a circumflex, it is called a full pathname.

Relative Pathnames and the Current Working Directory
A relative pathname is a pathname that does not begin with the circumflex or greater-than symbol.

The first (or only) element of this form of pathname identifies a directory or file which is immediately
subordinate to a directory known as the current working directory. A simple name is a special case of the
relative pathname. It consists of only one element, the name of the desired entity in the current working
directory.

The following examples and diagram show some relative pathnames and the full pathnames they
represent when the current working directory pathname is

Relative
Pathname

DELTA
OLD> DELTA
<USERB> ALPHA
< <PROJ2 USERA DELTA

OVERVIEW

SYSOI>UDD>PROJl>PSERA

Full
Pathname

!\SYSOI>UDD>PROJI>USERA>DELTA
I\SYSOI>UDD>PROJl>USERA>OLD>DELTA
!\SYSO I >UDD>PROJ I > USERB> ALPHA
!\SYSOI>UDD> PROJ2>USERA>DELTA

L..-._O_LD_--,H DELTA

1-5 AX08

SUFFIX CONVENTIONS

During program "preparation, it is convenient to identify output file(s) with the name of the input file.
When you create a source unit, you must append the appropriate suffix identification character to the

name of the file that will contain the source unit. The suffix designates the type of text that constitutes
the source unit; Le., .A, assembly language; .C, COBOL; .F, FORTRAN; .R, RPG; .P, Macro Preprocessor
input.

When you specify a file name in a command to load a program preparation task (except for the
Cross-Reference Program) or in a directive to a task (except for the Editor), do not include a suffix in the
file name. Suffixes are appended to the specified base name by the Macro Preprocessor, Assembler,
FORTRAN Compiler, COBOL Compiler, RPG Compiler, and Linker, as described below.

NOTE: In the following descriptions there are references to specific ECL commands. In each case,
the referenced ECL command is the command that loads the task being described. The ECL
LINKER command is described in Section 4. The other referenced ECL commands are
described in Section 3.

The Editor requires that when you specify in Editor directives the file names of Editor input and
output files, you specify the complete file name, including the suffix that denotes the contents of the
file; i.e., .A, assembly language; .C, COBOL; .F, FORTRAN; .R, RPG; .P, Macro Preprocessor input, and
.IN.A, Macro Preprocessor "include" file. The Editor does not append a suffix to its input or output file
names.

The Cross-Reference Program requires that when you specify in the ECL XREF command the name
of its input file, you do include a suffix: .A indicates that Assembler input is going to be
cross-referenced, and .P indicates that Macro Preprocessor input is going to be cross-referenced. If a list
file is designated (Le., the -COUT argument is specified in the ECL XREF command), the
Cross-Reference Program does not append a suffix to the specified name; otherwise, the Cross-Reference
Program forms the name of its list file by appending .L to the specified base name.

The Macro Preprocessor requires that the name of its input file contain a .P suffix. When you specify
in the ECL MACROP command the name of the input file, omit the .P suffix. If there is an "include"
file, that file name must contain an .IN.A suffix. The Macro Preprocessor forms the name of its output
file by appending .A to the specified base name.

The Assembler requires that the name of its input file contain a .A suffix. When you specify in the
ECL ASSEM command the name of the input file, omit the .A suffix. The Assembler forms the name of
its object unit file by appending .0 to the specified base name. If a list file is designated (i.e., the -COUT
argument is specified in the ECL ASSEM command), the Assembler does not append a suffix to the
specified name; otherwise, the Assembler forms the name of its list file by appending .L to the specified
base name.

The FORTRAN Compiler requires that the name of its input file contain a .F suffix. When you
specify in the ECL FORTRAN command the name of the input file, omit the .F suffix. The compiler
forms the name of its object unit or assembly output file by appending .0 or .A, respectively, to the
specified base name. If a list file is designated (Le., the -COUT argument is specified in the ECL
FORTRAN command), the compiler does not append a suffix to the specified name; otherwise, the
compiler forms the name of its list file by appending .L to the specified base name.

The COBOL Compiler requires that the name of its input file contain a .C suffix. When you specify in
the ECL COBOL command the name of the input file, omit the .C suffix. The compiler forms the narne
of its object unit output file by appending .0 to the specified base name. If a list file is designated (i.e.,
the -COUT argument is specified in the ECL COBOL command), the compiler does not append a suffix
to the specified name; otherwise, the, compiler forms the name of its list file by appending .L to the
specified base name.

The RPG Compiler requires that the name of its input file contain a .R suffix. When you specify in
the ECL RPG command the name of the input file, omit the .R suffix. The compiler forms the name of
its object unit output file by appending .0 to the specified base name. If a list file is designated (Le., the
-COUT argument is specified in the ECL RPG command), the compiler does not append a suffix to the
specified name; otherwise, the compiler forms the name of its list file by appending .L to the specified
base name.

OVERVIEW 1-6 AX08

The Linker requires that each of its input file names contain a .0 suffix. When you specify a file name
in a link directive, omit the .0 suffix. If you specify in the ECL LINKER command the name of the file
that will contain the bound unit, omit the suffix; the Linker will not append a suffix to the bound unit
name. If a list file is designated (Le., the -COUT argument is specified in the ECL LINKER command),
the Linker does not append a suffix to the specified name; otherwise, the Linker forms the name of its
list file (Linker maps) by appending .M to the specified or default base name.

It is important to note that only the Macro Preprocessor, Assembler, FORTRAN Compiler, COBOL
Compiler, RPG Compiler, and Linker append suffixes to specified file names.

Table 1-1 summarizes how file names are designated.

Program Preparation
Task

Editor

Cross-Reference
Program

Macro Preprocessor

Assembler

FORTRAN Compiler

COBOL Compiler

RPG Compiler

Linker

TABLE 1-1. DESIGNATING FILE NAMES

Input File(s)

Specify file name that
includes one of the
following suffixes, if
needed: .A, .F, .C, .R,
.P, or .IN.A.
Specify file name that
includes one of the
following suffixes:
.A or.P

Omit suffiX. Macro
Preprocessor appends
. P to specified file
name. If there
is an "include" file,
the Macro Preprocessor
appends .IN.A to
the specified file name.

Omit suffix. Assembler
appends .A to specified
me name.

Omit suffix. FORTRAN
Compiler appends .F to
specified file name.

Omit suffiX. COBOL
Compiler appends .C
to specified fue name.

Omit suffiX. RPG
Compiler appends .R
to specified me
name.
Omit suffiX. Linker
appends .0 to each
specified me name.

Output File(s)

Specify file name that includes one of the following
suffixes, if needed: .A,.F,.C,.R,.P, or .IN.A.

Omit suffix. Cross-Reference Program appends .L to speci­
fied input file name to form the name of the list file if the
-COUT argument was not specified in the EeL XREF
command.
The Cross-Reference Program does not append a suffix to
the name designated in the -COUT argument.

Omit suffix. Macro Preprocessor appends .A to specified
input file name(s) .

Omit suffix. Assembler appends .0 to specified input file
name to form the name of the object unit file, and .L to
specified input file name to form the name of the list file if
the -COUT argument was not specified in the ECL ASSEM
command.a

FORTRAN Compiler appends .0 to specified object unit
me name, .A to specified file name of assembly language
file, and .L to specified input file name to form the name of
the list file if the -COUT argument was not specified in the
ECL FORTRAN command.a

Omit suffix. COBOL Compiler appends .0 to specified
object unit file name and .L to specified input file name to
form the name of the list file if the -COUT argument was
not specified in the ECL COBOL command.a

Omit suffix. RPG Compiler appends .0 to specified object
unit file name and .L to specified input file name to form
the name of the list file if the -COUT argument was not
specified in the ECL RPG command. a

Omit suffixes. The Linker appends .M to specified bound
unit fue name to form the name of the list file if the -COUT
argument was not specified in the ECL LINKER command.
The Linker does not append a suffix to the name
designated in the -COUT argument.

aThe language processor does not append a suffix to the name designated in the -COUT argument.

OVERVIEW 1-7 AX08

SECTION 2

EDITOR

The Editor creates and/or alters character text that constitutes files; the files usually are source unit
files. The statements in a source unit file can be written in FORTRAN, COBOL, RPG, or assembly
language. Throughout this section it is assumed that source unit files are being edited.

Editing is controlled by directives entered to the Editor through the device specified in the in_path
argument of the ECL "enter batch request" or "enter group request" command. This device can be
reassigned in the command that loads the Editor.

All editing is done in a temporary work area called the current buffer. When the Editor is invoked, the
Editor creates a current buffer. To save Editor output, you must write the source unit contents of the
current buffer to a file.

During a single execution of the Editor, the Editor can operate in input and/or edit mode. During
input mode, you can create a source unit and/or add one or more specified lines to an existing source
unit. During edit mode, you can locate and change single characters, words, or a string of characters, read
the contents of a file into the current buffer so that the line(s) can be edited, write lines from the current
buffer to a file, and terminate execution of the Editor.

NOTE: During a single execution of the Editor, you can create and/or change any number of files.
You must delete the contents of the current buffer before you begin to edit another file,
unless you want that file to comprise the same information that was in the previous file(s).

Editor directives are described in detail in "Input Mode Description and Directives," "Edit Mode
Description and Directives," and "Advanced Usage of the Editor" later in this section. Directives
described in the input and edit mode subsections operate within the current buffer.

"Advanced Usage of the Editor" describes advanced Editor directives that you may want to use after
you are familiar with the Editor. These directives permit you to execute a task other than the Editor
without exiting from the Editor, obtain a printout of the line number(s) or line number(s) and contents
of specified line(s) in the current buffer, designate that the Editor search specified lines only if they do
or do not contain a specified character string, and perform the following functions using additional
buffers (called auxiliary buffers): move lines from the current buffer to an auxiliary buffer (the lines in
the current buffer are deleted), copy lines in the current buffer to an auxiliary buffer (the lines in the
current buffer are not deleted), request the status of auxiliary buffers, designate an auxiliary buffer as
the current buffer, and designate (during input mode) that subsequent text be accepted from a specified
auxiliary buffer. Auxiliary buffers are most commonly used for moving or copying information from one
location to another within a file.

NOTE: At any time during execution of the Editor you can request a typeout that will indicate
whether input or edit mode is in effect. Each time !? is entered, the following typeout is
issued:

{INPUT}MODE
EDIT

CONVENTIONS USED IN EDITOR DIRECTIVE FORMATS

Most Editor directives consist of only a directive name, a directive name preceded by one or two
addresses, or a directive name preceded by one or two addresses and followed by text and termination

EDITOR 2-1 AX08

escape characters (!F) that designate the end of the directive. These formats are illustrated below. Note
that if a directive includes text, the text may be specified beginning immediately after the directive name
(see format 5) or beginning on the next line (see format 6).

FORMAT 1:

dirname

FORMAT 2:

adrt dirname

FORMAT 3:

{}adr2 dirname

FORMAT 4:

adrt t} adr2 dirname

FORMAT·S:

. [adf, I [{:} adf2] dirname[text I ! F

FORMAT 6:

[adrt] [t} adr2] dirname

[tex t]

!F

NOTES: 1. Spaces are not permitted, except in the following circumstances:
a. Spaces are permitted in expressions constituting addresses.
b. A space is permitted after the execute, read, and write directive names (these

directives are described later in this section).
2. One or two addresses may be specified without a directive name; if no directive nam~ is

specified, the]ast (or only) addressed line will be printed (see "Print Directive" later in
this section).

When a single address is specified, the Editor references the specified line in the current buffer. When two
addresses are specified within a single directive, the Editor references a specified series of lines in the
current buffer; the Jines that are referenced depends on whether the addresses are separated by a comma
or a semico]on (see HReferencing a Series of Lines" later in this section). If an Editor directive format
designates that either a single address or a pair of addresses may be entered, you can enter that directive
and omit one or both addresses; their default value(s) will be used. Address default values are described
later in this section under each directive's parameter descriptions.

Mu1tip]e Editor directives can be entered on a single line; it is not necessary to separate each directive
with a delimiter, but one or more spaces can be specified, as illustrated below:

EDITOR 2-2 AX08

Directives not separated by delimiters:

dimamedimame
'~~ tA--1 _________ Second directive

L-_ ------------First directive

Directives separated by delimiters:

dimame dirname adr 1 dirname

T t~Third directive
L----------Second directive

~-----------First directive

A comment can be included at the end of a directive line (i.e., at the end of the last or only directive);
the comment must be preceded by a quotation mark ("), as illustrated below:

adrl dirname dimame"comment

To include a comment after an input mode directive, specify the comment after the terminator !F;
otherwise, the comment is included as text.

[adr, 1ft} adr2] dirname [textl !F"comment

--- ~t -~Directive comment
.... ---------------Directive

If a terminal is the directive input device, press RETURN at the end of each line.

Methods of Specifying Addresses
Each address can be specified by one of the following methods or by a combination of these

methods:

o Number of line
o Position of line relative to the "current" line
o Contents of the line

Designating a Line Number as an Address
Each line in the current buffer can be referenced by a decimal number that indicates the current

position of the line within the buffer. I The first line in the buffer is line I; subsequent lines are
numbered sequentially in ascending order. Multiple decimal numbers separated by plus or minus signs
can be specified to represent a line number.

Example:

10
5+5

Each of the above expressions request line number 10. The last line can be referenced by its line
number or by the character $.

Editor directives may cause lines to be added to or deleted from the current buffer. Each time this
occurs, all succeeding lines are renumbered. For example, if line 15 is deleted, line 16 becomes 15, and
each subsequent line number is decremented by 1.

If an address designates aline that is not in the current buffer, an error message is issued.

1 To determine the line number of a specified line in the current buffer, enter the print line number directive; to determine the line number
and contents of specified line(s) in the buffer, enter the print with line number directive. (These directives are described under "Advanced
U sage of the Editor," later in this section.)

EDITOR AX08

Designating the Position of a Line Relative to the "Current" Line as an Address

Most Editor directives affect either the current line or a line a designated number of positions from
the current line. If the last Editor directive entered was an input directive (i.e., input mode was in effect),
the current line is the last line added or read by the Editor (regardless of whether the condition specified
in the directive was met); if the last Editor directive entered was an edit directive (edit mode was in
effect), the current line is the last line of text edited. The current line can be referenced by specifying a
period (.).

NOTE: If you do not know which line is the current line, you can obtain a typeout of the line
number of the current line by specifying the print line number directive, which is described
under "Advanced Usage of the Editor" later in this section.

You can reference lines relative to the current line by specifying an address that consists of a period
followed by one or more signed decimal numbers. For example, the address .+ 1 specifies the line
immediately foHowing the current line, the address .-1 specifies the line immediately preceding the
current line, and .+5+5-3 specifies the seventh line after the current line.

When specifying an increment to the current line number, you can omit the plus (+) sign; e.g., .5 is
interpreted as .+5. When specifying a decrement to the current line number, you can omit the period;
e.g., -3 is interpreted as .-3, and .5+5-3 is interpreted as .+7.

Designating Contents of Line as an Address
You can designate that the Editor reference the first line that contains a specified character or a

specified sequence of characters by designating those characters in an expression as an address. An
expression comprises one or more ASCII characters delimited by slashes (e.g., / ASCII characters/).

The Editor will search the lines in the current buffer until it finds the first occurrence of the specified
expression; unless specified otherwise,2 the expression can be in any position within the line. The Editor
searches from the line immediately following the current line (i.e., .+ I) through the last line in the
buffer; if a line containing the specified expression has not been found, the Editor then searches line I to
the current line.

Example:

/BBB/dirname

In the above directive format, the address is the expression BBB. The specified directive name will
cause the Editor to search as many lines as necessary for the first occurrence of BBB. The contents of
the source unit being searched are listed below. (The numbers within parentheses represent line
numbers.)

(l)AAA
(2) BBB
(3) CCC (current line)
(4) BBB

The specified directive will cause the Editor to reference line number 4, since this is the first line after
the current line that contains the expression BBB.

2 If a circumflex is designated as the first character of the expression, the expression must be the flIst expression on the line; if $ is designated
as the last character of the expression, the expression must be the last expression on the line. Usage of these special characters is described
below.

EDITOR 2-4 AX08

When the following ASCII characters are included in expressions, they have special meanings:

Character Description

*

$

Requests the first expression that contains any number (or none) of the immediately
preceding character(s).
When designated as the first character of an expression, requests the first line that begins
with the specified expression (excluding the characterl\).
When specified as the last character of an expression, requests the first line that ends with
the specified expression (excluding the character $).
Can be any character on any line; specify one period per character (e.g., .. means any two
characters on any line).

NOTES: 1. The special meanings of the above characters, / (which delimits an expression), and !?
(which causes a typeout of the mode currently in effect) can be removed by preceding
the special character with !C. For example, !C!? causes !? to be interpreted as text rather
than as a request for a typeout of the mode that is in effect.

2. The characters . and $ can be specified as line numbers or as special characters in
expressions; the Editor can interpret their meaning from the way they are used.

Examples:
Following are some examples of expressions specified as addresses in Editor directives. Following each
expression is a description of the line/character(s) in the current buffer for which the Editor will
search. In each case, the Editor searches the lines sequentially, starting with the line immediately
following the current line.

Expression

/A/
Description

Locates the first line that contains the expression A in any position in that line.
Locates the first line that contains the expression ABC in any position on that line.
Locates the first line that contains the expression AC or A followed by any number
of B's and a C.

/ABC/
/AB*C/

/IN .. TO/
/IN.*TO/

/I\ABC/

/ABC$/
/ABC!C$/

jI\ABC. *DEF$/

/. */

Locates a line that contains IN and TO separated by any two characters.
Locates a line that contains IN and TO, in that order, with any or no characters
between those two words.

Locates a line that begins with the expression ABC.
Locates a line that ends with the expression ABC.
Locates a line that contains the expression ABC$. ABC$ can be in any character
positions, since the character $ was preceded by !C.
Locates a line that begins with ABC and ends with DEF; there may be any number
of characters between ABC and DEF.
Locates any line.

The Editor remembers the last expression designated as an address. That expression can be reinvoked
in a subsequent Editor directive by specifying a null regular expression (e.g., / I).

Example:
/ ABC/dirname-Expression ABC is specified as an address.
2dirname-Second line in buffer is specified as address.
/ /dirname -Specifies ABC as an address, since ABC was the last expression designated as an address.

An address can be specified as an expression followed by one or more signed decimal integers.

Example:
Each of the following three expressions requests the second line after the line that contains ABC.

/ABC/2
/ABC/+2
/ABC/+5-3

EDITOR 2-5 AX08

Compound Addresses
An address can be formed by combining the methods described above. If a compound address

contains a line number, the line number must be the first element of the address.
The first element of the compound address determines the starting location from which the Editor

will search for the designated expression. If the first element is a line number, the Editor searches for the
expression starting with the line that immediately follows the specified line number. (Ordinarily, the
Editor searches starting with the line that immediately follows the current line.)

Example I:

I O/ABC/

This address causes the Editor to search the lines in the current buffer, starting with line II, for the
characters ABC.

Example 2:

.-8/ABC/

This address causes the Editor to search the lines in the current buffer, starting with eight lines before
the current line, for the characters ABC.

Example 3:

/ABC//DEF/

This address causes the Editor to search for the first line containing DEF that occurs after a line
containing ABC.

Each expression in a compound address can be followed by a signed decimal integer.

Example:

/ABC/-IO/DEFj5

This address causes the Editor to search for the first occurrence of the character string DEF that is
within 10 lines before the first line that contains ABC. After DEF is found, the current line is the
fifth line after the line containing the match for DEF.

Referencing a Series of Lines
An Editor directive that permits two addresses to be specified causes the Editor to reference a series

of lines in the buffer. The addresses can be separated by a comma or a semicolon. If the second address is
relative to the current line (plus or minus), both the addresses and the plus or minus sign determine
which lines will be referenced by the Editor; otherwise, only the addresses are relevant.

If the addresses are separated by a comma, the Editor references the line at the first address through
the line at the second address, inclusive. The current line remains unchanged until after the directive is
executed; the current line then becomes the line specified by the second address.

If the addresses are separated by a semicolon, the line referenced by the first address becomes the
current line and then the value of the second address is calculated.

Example I:

1,5dimame

These addresses specify lines I through 5, inclusive. After the directive is executed, line 5 becomes the
current line.

EDITOR 2-6 AX08

Example 2:

1,$dirname

These addresses specify line 1 through the last line in the buffer, inclusive. After the directive is
executed, the last line becomes the current line.

Example 3:

.1,lABel

These addresses specify the line immediately following the current line through the first line that
contains ABC. The first line that contains ABC then becomes the current line.

Example 4:

.1,.2dirname

The contents of a sample source unit are listed below. The numbers within parentheses represent line
numbers.

(1) ABC
(2) DEF (current line)
(3) GHI
(4) ABC
(5) XYZ
(6) ABC

The above addresses specify the line immediately following the current line through the second line
after the current line. The Editor will reference lines 3 and 4. Line 4 will then become the current line.

Example 5:

.1 ;.2dirname

These addresses are the same as those in Example 4, but in this example they are separated by a
semicolon. If the contents of the sample source unit are the san1e as in Example 4, this directive
causes the Editor to reference lines 3, 4, and 5. The first address specifies the line immediately after
the current line; i.e., line 3. Line 3 then becomes the current line. The second address specifies that
the Editor reference through the second line after the (new) current line; i.e., lines 4 and 5.

The same series of lines can be requested by specifying their addresses in more than one way, using
different delimiters.

Example 6:

I ABC/,/ ABC/+ 3dirname
I ABCI ;.+3dirname

The contents of a sample source unit are listed below. The numbers within parentheses represent line
numbers.

(1) ABC
(2) DDD (current line)
(3) EEE
(4) FFF
(5) GGG
(6) HHH

EDITOR 2·7 AX08

ED

The first series of addresses specifies that the Editor reference the first line that contains ABC (i.e.,
line I) through the third line after that line (Le., lines 2, 3, and 4). Line 4 will then become the
current line.
The second series of addresses specifies that the Editor reference the first line that contains ABC (i.e.,
line I), make that line the current line, and then reference three lines from the "new" current line
(i.e., lines 2, 3, and 4). Line 4 will then become the current line.

LOADING THE EDITOR

To load the Editor, enter the ECL ED command, which is described below.
After the Editor is loaded, there is a typeout to the error output file of the revision number, in the

format: ED nnnn

FORMAT:

ED[ctl arg]

ARGUMENT DESCRIPTIONS:

ctl arg
Control arguments; none or any number of the following control arguments may be entered, in
any order:

-IN path
Pathname of the device through which Editor directives will be entered; can be the operator's
terminal or another terminal, card reader, or disk. Error messages are written to the error
output file. Editor error messages are described in the "Error Messages" section of the System
Control manual.
Default: Device specified in the in path argument of the ECL "enter batch request" or "enter
group request" command. -

{
-LINE _LEN n}
-LLn

Maximum number of characters that can be on each directive line or data line. Must be from 20
through 255. Additional characters are truncated. Default: 80 characters.

CREATING A SOURCE UNIT

To create a source unit, take the steps listed below. Input mode directives are described under "Input
Mode Description and Directives" later in this section. Each of the directives referenced below is
described under "Edit Mode Description and Directives" later in this section.

I. Change the working directory to a user volume by specifying the change working directory
command (see the "Execution Control Language" section in the System Control manual).

2. Load the Editor, if it is not already loaded. (See "Loading the Editor" earlier in this section.)
3. If there already are lines in the current buffer, delete unwanted lines by specifying the delete

directive.
4. Enter the appropriate input directive and text to be input.
5. Make changes, if necessary, by entering the appropriate input and/or edit directive(s).
6. Write the contents of the current buffer to a file by using the write directive.
7. (Optional) Exit from the Editor by entering the quit directive.

EDITOR 2-8 AX08

CHANGING AN EXISTING SOURCE UNIT

To change an existing source unit, take the steps listed below. Input mode directives are described
under "Input Mode Description and Directives" later in this section. Each of the directives referenced
below is described under "Edit Mode Description and Directives" later in this section.

1. Change the working directory to a user volume by specifying the change working directory
command (see the "Execution Control Language" section in the System Control manual).

2. Load the Editor, if it is not already loaded. (See "Loading the Editor" earlier in this section.)
3. If there already are lines in the current buffer, delete unwanted lines by specifying the delete

directive.
4. Use the read directive to read into the current buffer the source unit to be edited.
5. Enter the appropriate edit and/or input directive(s).
6. Write the contents of the current buffer to the file from which the lines were read or to a different

file by using the write directive.
7. (Optional) Exit from the Editor by entering the quit directive.

INPUT MODE DESCRIPTION AND DIRECTIVES

During input mode, you can create a source unit or add lines to an existing source unit by entering
through the directive input device one or more input directives.

Input directives have the following capabilities:

o Add lines after a specified address (append directive)
o Delete specified lines and insert other specified lines (change directive)
o Add lines before a specified address (insert directive)

You can create a source unit by using the append or insert directive. You can add lines to an existing
source unit by using any or all of the above directives.

Each input directive must have one of the following formats:

FORMAT 1:

[adr, I [t} adr2]dirname

[text]

!F3 ["comment]

FORMAT 2:

[adr, I [{:} adr2] dirname[text] !F3 ["comment]

If directives are being entered through the operator's terminal or another terminal, the directive name
may be immediately followed by a carriage return, which in turn is followed by the text (Le., the lines to
be included in the source unit), or the first line of text can be on the same line as the directive name, and
additional lines (if any) can be on the subsequent lines. The text can be any number of lines of ASCII
characters. The maximum number of characters per line is determined by the value specified in the

3When entering directives from a card reader, the punch for an exclamation point is 12-8-7.

EDITOR 2-9 AX08

A

-LINE LEN n argument of the ECL ED command. The last line of text must be followed by the escape
seque]~e !F4 to terminate input mode; otherwise, the next Editor directive is interpreted as additional
text. The escape sequence !F can be entered at the end of the last line of text or in the first character
position of the next line. The next directive can begin in the next character position or on the next line.

NOTE: The characters !F can be included as text by preceding them with !C; in this case, !F does not
designate the end of the text.

Input directives are described in detail on the following pages. In the examples, numbers in
parentheses are references to line numbers.

Append Directive
The append directive puts one or more specified lines into the current buffer after a specified address.

If multiple lines are specified, they are put into the buffer in the order in which they were entered. The
append directive can be used to create a source unit or to add lines to an existing source unit.

After the append directive is executed, the current line is the last line appended. The appended line(s)
are given line numbers and subsequent lines, if any, are renumbered.

FORMAT 1:

fadr] A
text

!F

FORMAT 2:

[adr] Atext!F

PARAMETER DESCRIPTION:
adr

Identifies the address of the line immediately after which the specified line(s) will be inserted.
Default: Current line. If the buffer is empty, the current line is line number O.
NOTE: If you are creating a new source unit, there is no need to specify an address.

Example 1 :
Creating a new source unit
111 this example, the buffer is empty.

A
W\VW
XXX
yyy
ZZZ
!F

4When entering directives from a card reader, the punch for an exclamation point is 12-8-7.

EDITOR 2-10 AX08

Ale

This append directive puts lines WWW, XXX, YYY, and ZZZ into the current buffer. Since the buffer
is empty, it is not necessary to specify an address. The lines will be inserted, in the order in which
they were entered, starting at line 1. The lines put into the buffer constitute a new source unit which
can then be edited and/or written to a file.

Example 2:
Adding lines to an existing source unit

/TTT/A
UUU
!F
3A
WWW
XXX
!F

These append directives put line UUU into the buffer immediately after the first line that contains
TTT, and lines WWW and XXX into the buffer immediately after the third line.
The contents of the buffer are:

(1) TTT
(2) VVV

After the first append directive is executed, the buffer will contain:

(1) TTT
(2) UUU (current line)
(3) VVV

After the second append directive is executed, the buffer will contain:

(1) TTT
(2) UUU
(3) VVV
(4)WWW
(5) XXX (current line)

Change Directive
The change directive deletes a single line or a series of lines in the current buffer and then inserts the

text, if any, specified between the directive name and the insert terminator !F.
After the change directive is executed, the current line is the last line of inserted text; if no text was

inserted, the current line is the line immediately preceding the first line deleted. The inserted line(s), if
any, are given line numbers and subsequent lines, if any, are renumbered.

FORMAT 1:

EDITOR

[adr, I [t} adr2] C

[text]

!F

2-11 AX08

c

FORMAT 2:

[adr,] [t} adr2] C[text] ! F

PARAMETER DESCRIPTIONS:
adr!

Address of the first or only line to be deleted and optionally replaced.
Default: Current line

adr2

Address of the last line to be deleted and optionally replaced.
Default: Only the line identified by adr! is deleted or changed.

NOTES: 1. If both adr! and adr2 are omitted, only the current line is deleted and optionally
replaced.

2. If no text is included (i.e., C is immediately followed by !F), the addressed line(s) are
deleted and not replaced. If no addresses or text are specified, the current line is deleted
and not replaced.

In the following examples, the contents of the current buffer are:

(l)AAA
(2) BBB
(3) cce (current line)
(4) DDD
(5) EEE

Example I:

2C
XXX
YYY
!F

This change directive deletes the second line and replaces it with lines XXX and YYY. Subsequent
lines are renumbered.
After the change directive is executed, the buffer will contain:

(l)AAA
(2) XXX
(3) YYY (current line)
(4) eee
(5) DDD
(6) EEE

Example 2:

/BBB/,.1 C
XXX
YYY
ZZZ!F

EDITOR 2-12 AX08

C / I

This change directive deletes the first line that contains BBB (line 2) through the line immediately
after the current line (line 4) and replaces them with lines XXX, YYY, and ZZZ, respectively.
After the change directive is executed, the buffer will contain:

(l)AAA
(2) XXX
(3) YYY
(4) ZZZ (current line)
(5) EEE

Example 3:

,5C
XXX
!F

or
.,$C
XXX
!F

Each of the above change directives deletes the current line through line 5 and replaces them with a
single line containing XXX.
After the change directive is executed, the buffer will contain:

(l)AAA
(2) BBB
(3) XXX (current line)

Insert Directive
The insert directive inserts one or more specified lines into the current buffer before a specified

address. If multiple lines are specified, they are inserted in the order in which they were entered. The
insert directive can be used to create a source unit or to add lines to an existing source unit.

After the insert directive is executed, the current line is the last line inserted. The inserted line(s) are
given line numbers, and subsequent lines, if any, are renumben~d.

FORMAT 1:

[adr] I
text

!F

FORMAT 2:

[adr] Itext!F

PARAMETER DESCRIPTION:

adr
Address of the line immediately before which the specified line(s) will be inserted.
Default: Current line

NOTE: If you are creating a new source unit, there is no need to specify an address.

EDITOR 2-13 AX08

I

Example I:
In this example, the current buffer is empty.

I
AAA
BBB
CCC
ODD
!F

This insert directive creates in the current buffer a new source unit comprising lines AAA, BBB, CCC,
and DDD, respectively. The lines can then be edited and/or written to a file.

In Examples 2, 3, and 4, the contents of the current buffer are:

(1)AAA
(2) BBB
(3) CCC
(4) DDD (current line)

Example 2:

-21
XXX
!F

This insert directive designates that a line containing XXX be inserted two lines before the current
line.
After the insert directive is executed, the current buffer will contain:

(1)AAA
(2) XXX (current line)
(3) BBB
(4) CCC
(5) DDD

Example 3:

/AAA/I
H!C!FH
KKK
!F

This insert directive designates that lines H!FH and KKK be inserted into the current buffer
immediately before the first line that contains AAA. Note that when !F is part of the text, it is
preceded by !C; when !F delimits the last line of text, it is not preceded by !C.
After the insert directive is executed, the buffer will contain:

(1) H!FH
(2) KKK (current line)
(3) AAA
(4) BBB
(5) CCC
(6) DDD

EDITOR 2-14 AX08

Example 4:

I
XXX
!F

I

This insert directive designates that a line containing XXX be inserted immediately before the current
line.
After the insert directive is executed, the current buffer will contain:

(l)AAA
(2) BBB
(3) CCC
(4) XXX (current line)
(5) DDD

EDIT MODE DESCRIPTION AND DIRECTIVES

During edit mode you can create a source unit or edit an existing source unit.
Edit mode directives have the following capabilities:

o Substitute a designated string of characters in specified line(s) with another specified string of
characters (substitute directive)

o Read contents of source unit from specified file into the current buffer (read directive)
o Delete specified line(s) from the current buffer (delete directive)
o Print on the user output file specified line(s) in the current buffer (print directive)
o Write specified line(s) from the current buffer to specified file (write directive)
o Terminate execution of the Editor (quit directive)

NOTES: 1. To edit an existing source unit, the read directive must be previously specified.
2. Until you are familiar with the Editor, it is recommended that you enter print directives

frequently so you can determine the status of the lines being edited.
3. To save the results of an edited or newly created source unit, you must specify the write

directive before you terminate execution of the Editor.

Most edit mode directives have one of the following formats:

FORMAT 1:

dirname["comment]

FORMAT 2:

adrl dirname["comment]

FORMAT 3:

{:} adr2 dirname["comment]

FORMAT 4:

adr 1 {:} adr 2 dirname ["comment]

Edit mode directives are described alphabetically on the following pages. In the examples, numbers in
parentheses are references to line numbers and do not appear in memory or in text.

EDITOR AX08

D

Delete Directive
The delete directive deletes a single line or consecutive lines from the current buffer.
After the delete directive is executed, each subsequent line in the buffer is renumbered, and the

current line is the line that immediately follows the last line deleted.

FORMAT:

[adfJ 1 [0 adf2] D

PARAMETER DESCRIPTIONS:
adrl

Address of the first or only line to be deleted.
Default: Current line

adr2
Address of the last line to be deleted.
Default: Only the line identified by adrl is deleted.

NOTE: If both adrl and adr2 are omitted, only the current line is deleted.

In the following examples, the contents of the current buffer are:

(l)AAA
(2) BBB (current line)
(3) CCC
(4) DDD
(5) EEE

Example I:

1,3D

This delete directive deletes lines 1 throuth 3. After this delete directive is executed, the current
buffer will contain:

(l) DDD (current line)
(2) EEE

Example 2:

/CCC/D

In this delete directive, adrl is CCC and adr2 is not specified, so the only line that will be deleted is
the first line that contains CCC.
After this delete directive is executed, the current buffer will contain:

(l)AAA
(2) BBB
(3) DDD (current line)
(4) EEE

EDITOR 2-16 AX08

Example 3:

,3D

This delete directive deletes the current line (the default for adr.) through line 3.
After this delete directive is executed, the current buffer will contain:

(l)AAA
(2) DDD (current line)
(3) EEE

Example 4:

D

DIP

This delete directive does not include any addresses, so only the current line, line number 2, is
deleted.
After this directive is executed, the current buffer will contain:

(l)AAA
(2) CCC (current line)
(3) DDD
(4) EEE

Prin t Directive
The print directive causes a printout of a single line or consecutive lines in the current buffer. You can

specify the address(es) of the lines(s) to be printed, or you can request a printout of the first line that
contains a specified expression. The printout is issued to the user output file; i.e., the file designated in
the -OUT out path parameter of the ECL "enter batch request" or "enter group request" command,
unless that file was reassigned in the Editor execute directive (the execute directive is described under
"Advanced Usage of the Editor" later in this section). If the typeout occurs on the operator's terminal or
another terminal, each line of text is preceded by the group identification characters.

After the print directive is executed, the current line is the last (or only) line printed.

FORMAT 1:
Format including directive name P:

adr.
Address of the first or only line to be printed.
Default: Current line.

adr2
Address of the last line to be printed.
Default: Only the line identified by adrl is printed.

NOTE: If both adrl and adr2 are omitted and P is specified, only the current line is printed.

FORMAT 2:
Format excluding directive name P:

EDITOR 2-17 AX08

p

adrt
If adr2 is not specified, adrt designates the address of the only line to be printed.

adr2
Address of only line to be printed.

NOTE: If both adrt and adr2 are specified, only adr2 is printed.

In the following examples, the contents of the current buffer are:

(1) AAABBB
(2) CCCDDD (current line)
(3) EEEFFF
(4)GGGHHH

Example 1:

1,$P

This print directive causes a typeout of each line in the current buffer.

AAABBB
CCCDDD
EEEFFF
GGGHHH

After this directive is executed, the current line is line number 4.

Example 2:

P

This print directive causes a typeout of only the current line.

CCCDDD

After this directive is executed, the current line still is line number 2.

Example 3:

4P

This print directive causes a typeout of line number 4.

GGGHHH

After this directive is executed, the current line is line number 4.

Example 4:

,4P

EDITOR 2-18 AX08

This print directive causes a typeout of the current line (line number 2) through line number 4:

CCCDDD
EEEFFF
GGGHHH

After this directive is executed, the current line is line number 4.

Example 5:

/AAA/

This print directive causes a typeout of the first line that contains AAA.

AAABBB

After this directive is executed, the current line is line number 1.

Example 6:

3D/AAA/

P/Q

This example illustrates a directive line that contains both a delete directive and a print directive in
which only an expression is designated.
This directive line deletes line number 3 and causes a typeout of the first line that contains AAA.
After the directives are executed, the current buffer will contain:

(1) AAABBB
(2) CCCDDD
(3)GGGHHH

There will be a typeout of line number 1, and that line will be the current line.

Quit Directive
The quit directive is used to exit from the Editor. Quit must be specified at the end of the editing

session. This directive must be the last or only directive on a line. If the directive input device is the
operator's terminal or another terminal, the quit directive must be immediately followed by a carriage
return.

NOTE: If a buffer has a pathname associated with it via a read or write directive and the contents of
the buffer have been modified but not written to a file before the quit directive is entered, a
warning message is issued and quit is not executed. After the message, any Editor directive(s),
including write, may be entered. If write is not specified and quit is reentered, the quit
directive is executed and changes specified in previous Editor directives are not saved.

FORMAT:

Q

Example:

A
Append directive puts specified lines into current buffer.

EDITOR 2·19 AX08

Q/R

AAABBB
CCCDDD
EEEFFF

Lines that will be put into current buffer.

!F
Designates the end of the insertion.

2D
Deletes the second line of text (e.g., CCCDDD).

W FIRST
Writes all lines in buffer to file named FIRST.

Q
Passes control from the Editor to the task that is loaded next.

Read Directive
The read directive reads a source unit from a specified ASCII variable sequential file into the current

buffer.
The read directive must be the only or last directive on a line.
After the read directive is executed, the current line is the last line read from the file.

FORMAT:

[adr] R[path]

PARAMETER DESCRIPTIONS:
adr

Address of a line in the current buffer; the contents of the specified file will be inserted after this
line.
Default: Last line in the buffer; if the buffer is empty, the file is inserted starting at the first line
in the buffer.

path
Pathname of the ASCII file to be read into the current buffer. (Methods of specifying pathnames
are described in Section 1.) The pathname may be preceded by any number of blank spaces.
Default: Pathname specified in the latest read or write directive. To determine which pathname
was specified last, specify the buffer status directive, which is described under "Advanced Usage of
the Editor" later in this section. If the path parameter is not specified and a pathname was not
previously specified, an error message is issued.

Example I:

RSTART

This read directive reads into the current buffer the contents of a source unit file whose simple
pathname is START. Since an address is not specified, the lines are read into the buffer after the last
line that currently is in the buffer.
The contents of START are:

(l)AAA
(2) BBB
(3) CCC

EDITOR 2-20 AX08

If the buffer is empty, after the read directive is executed the current buffer will contain:

(1)AAA
(2) BBB
(3) CCC (current line)

If the buffer already contains,

(1) XXX
(2) YYY
(3) ZZZ

after the read directive is executed, the current buffer will contain:

(1) XXX
(2) YYY
(3) ZZZ
(4) AAA
(5) BBB
(6) CCC (current line)

Example 2:

jCCCjR NEW

R

This read directive designates that the contents of the source unit file whose simple pathname is NEW
be read into the current buffer after the first line in the current buffer that contains CCC.
The contents of the current buffer are:

(1) AAA
(2) BBB (current line)
(3) CCC
(4) CCC

The contents of NEW are:

(1) XXX
(2) ZZZ

After the read directive is executed, the current buffer will contain:

(l)AAA
(2) BBB
(3) CCC
(4) XXX
(5) ZZZ (current line)
(6) CCC

Example 3:
This example illustrates the read directive used in conjunction with append and write directives.

A Causes subsequent lines to be put into the current buffer.
AAA
DDD
CCC

EDITOR 2-21 AX08

R/ S

!F
Designates the end of the insert.

WNOW

R

Writes the contents of the current buffer to the file whose simple pathname is NOW.

Reads into the current buffer, after the last line in the buffer, the contents of NOW; NOW is the
pathname specified in the last write directive.

After the read directive is executed, the current buffer will contain:

AAA
BBB
CCC
AAA
BBB
CCC (current line)

Substitute Directive
The substitute directive replaces each occurrence of a specified string of characters in a single line or

in a sequence of lines with another specified string of characters.
After this directive is executed, the current line is the last line referenced by the Editor.

FORMAT:

[adr. I [{} adrJ S/regexp/string/

PARAMETER DESCRIPTIONS:
adrl

Address of the first line to be searched for the specified string of characters.
Default: Current line

adr2
Address of the last line to be searched for the specified string of characters.
Default: Only the line identified by adrl

NOTE: If both adrl and adr2 are omitted, only the current line is searched.

/
Delimiter; can be any character that is not in regexp or string. However, the same delimiter must
be used in each of the three locations where a delimiter is required.

regexp
String of characters for which the Editor is searching; each occurrence of this character string
within the specified addresses will be replaced with the character(s) specified in the parameter
"string. "

NOTE: If string contains the character "&" in any position, each occurrence of regexp that will be
replaced will be replaced with regexp included in string, in place of "&." For example, if
regexp is "in" and string is "&to," each occurrence of "in" becomes "into." To ignore the
special meaning of "&," precede it with !C.

EDITOR 2-22 AX08

string
String of characters that will replace each occurrence of regexp.

In the following examples, the contents of the current buffer are:

(1) AAACCC
(2) BBBAAA (current line)
(3) CCCBBB
(4)DDDAAA

Example 1:

2,4S/ AAA/XXX/

S/W

This substitute directive searches lines 2 through 4 and replaces each occurrence of AAA with XXX.
After this directive is executed, the current buffer will contain:

(1) AAACCC
(2) BBBXXX
(3) CCCBBB
(4) DDDXXX (current line)

Example 2:

,4S-CCC-UUU-

This substitute directive searches the current line through line number 4 and replaces each occurrence
of CCC with UUU.
After this directive is executed, the current buffer will contain:

(1) AAACCC
(2) BBBAAA
(3) UUUBBB
(4) DDDAAA (current line)

Example 3:

- 1 ,iDDD/S/ /&JJJ/

This substitute directive searches one line before the current line (line 1) through the first line that
contains ODD (line 4) and replaces each occurrence of DOD with DODJJJ.
After this directive is executed, the current buffer will contain:

(1) AAACCC
(2) BBBAAA
(3) CCCBBB
(4) DODJJJAAA (current line)

Write Directive
The write directive causes a single source unit line or a series of source unit lines in the current buffer

to be written to a specified file. If the file does not already exist, a new file is created with the specified
file name. If the named file does exist and currently contains other data, the source unitline(s) written
to the file via the write directive replace the existing source U'.lit contents.

EDITOR 2-23 AX08

w

To save the results of previously specified Editor directives, you must specify the write directive
before you terminate execution of the Editor (Le., write must be specified before quit).

The write directive must be the last directive on a line.
After the write directive is executed, the specified line(s) remain in the current buffer; a copy of them

is written to the specified file.

FORMAT:

[adrl] [t} adr2] W[path]

PARAMETER DESCRIPTIONS:
adr!

Address of the first line to be written to a specified file.
Default: First line in the current buffer

adr2
Address of the last line to be written to a specified file.
Default: Last line in the current buffer

NOTE: If both adr! and adr2 are omitted, all lines in the current buffer are written to the specified
file.

path
Pathname of the file to which the specified line(s) will be written (Methods of specifying
pathnames are described in Section 1.) The pathname may be preceded by any number of spaces.
Default: Pathname specified in the latest read or write directive. If a pathname was not previously
specified, an error message is issued.

Example 1:

WIDENT

This write directive writes all lines in the current buffer to a file whose simple pathname is IDENT.

Example 2:

1,3W

This write directive writes lines 1 through 3 to the file specified in the last read or write directive.
This example illustrates usage of the above directive in a sample Editor session. In this example, there
is a file named EXIST that contains the following lines:

(l)AAA
(2) BBB
(3) CCC
(4) DDD

R EXIST
Reads into the current buffer the contents of the source unit file named EXIST. The current
buffer will contain:

EDITOR

(l)AAA
(2) BBB
(3) CCC
(4) DDD (current line)

2-24 AX08

W/E

I ,$S/ AAA/XXX/
Searches each line in the current buffer and changes each occurrence of AAA to XXX. The buffer
will contain:

1,3W

(1) XXX
(2) BBB
(3) CCC
(4) DDD (current line)

Writes lines I through 3 to the file specified in the last read or write directive; i.e., EXIST. EXIST
will contain:

Q

(1) XXX
(2) BBB
(3) CCC (current line)

Terminates execution of the Editor.

ADY ANCED USAGE OF THE EDITOR

The directives described on the previous pages permit you to create a source unit and perform basic
editing. Described below are more advanced Editor directives, usage of auxiliary buffers, and how to
change the origin of text during input mode.

The advanced Editor directives have the following capabilities:

o Permit execution of a task other than the Editor without exiting from the Editor (execute
directive)

o Print the line number of a specified line in the current buffer (print line number directive)
o Print the line number and contents of specified line(s) in the current buffer (print with line

n urn ber directive)
o Cause another specified directive to act on only those lines that contain a specified character string

(global directive)
o Cause another specified directive to act on only those lines that do not contain a specified

character string (exclude directive)

These directives are described, alphabetically, below.

Execu te Directive
The execute directive permits you to perform a task other than editing without exiting from the

Editor; i.e., you can enter any ECL command and then continue to use the Editor. For example, the
execute directive can be used to designate a printer as the Editor output file. Otherwise, if you want a
printout of Editor output, the printout is issued to the operator's terminal, which is the original user
output file. If the user output file is a line printer and a quit directive is entered to exit from the Editor,
the user output file remains set to the printer.

The execute directive must be the last directive on a line.
The current line is not affected by execute directives.

FORMAT:

E command

EDITOR 2-25 AX08

E/G

PARAMETER DESCRIPTION:
command

Any ECL command (see the "Execution Control Language" section of the System Control
manual).

Example:

E FO >SPD>LPTOO

This execute directive includes an ECL file out (FO) command, which sets the user output file to the
line printer whose pathname is >SPD> LPTOO.

Global Directive
The global directive can be used in conjunction with delete, print, print line number, and print with

line number directives so that the specified directive acts on only those lines that contain a specified
character string.

After the global directive is executed, the current line is the last line searched by the Editor.

FORMAT:

[adr, 1 [t} adr~ Gx/regexp/

PARAMETER DESCRIPTIONS:
adrl

Address of the first line to be searched.
Default: First line in the current buffer.

adr2

x

/

Address of the Jast line to be searched.
Defau1t: Last line in the current buffer.

NOTE: If both adrl and adr2 are omitted, all lines in the current buffer are searched.

Directive name with which the global is being used; must be one of the following:
D

P

L

=

Deletes allline(s) in the specified range containing regexp.

Prints the contents of line(s) containing regexp.

Prints the line number(s) and contents of line(s) containing regexp (see "Print With Line
Number Directive" later in this section).

Prints the line number(s) of line(s) containing regexp (see "Print Line Number Directive" later
in this section).

Delimiter; can be any character that does not occur in regexp. The same delimiter must be used
before and after regexp.

EDITOR 2·26 AX08

GIL

regexp
String of characters for which the Editor will search; only lines that contain regexp will be acted
upon by the directive name specified in the parameter x.

In the following examples, the contents of the current buffer are:

(1) JJJKKK
(2) LLLMMM
(3) NNNPPP
(4) RRRJJJ

Example I:

1,3GLjJJJj

This global print with line number directive causes the Editor to search lines 1 through 3 and print the
line number and contents of each line that contains JJJ.

Typeout:

1 JJJKKK

Current line: 3

Example 2:

GD*JJJ*

This global delete directive deletes each line that contains JJJ; since no addresses are specified, all
lines in the buffer are searched.
After this directive is executed, the current buffer will contain:

(1) LLLMMM
(2) NNNPPP (current line)

Print With Line Number Directive
The print with line number directive causes a typeout of the line number and contents of a single line

or consecutive lines in the current buffer. The typeout is issued to the user output file; i.e., the file
designated in the -OUT out path parameter of the EeL "enter batch request" or "enter group request"
command, unless that file was reassigned in the Editor execute directive. If the typeout occurs on the
operator's terminal or another terminal, each line of text is preceded by the group identification
characters.

After this directive is executed, the current line is the last line whose line number and contents were
typed.

FORMAT:

[adr! 1 [U adr~ L

PARAMETER DESCRIPTIONS:
adr t

Address of the first line whose line number and contents are to be typed.

EDITOR 2·27 AX08

L!V

Default: Current line.

adr2
Address of the last line whose line number and contents are to be typed.
Default: Address specified for adrl .

NOTE: If both adr! and adr2 are omitted, there is a typeout of the line number and contents of the
current line.

In the following examples, the contents of the current buffer are:

(1) AAA
(2) BBB (current line)
(3) CCC
(4) DDD

Example 1:

1,$L

This print with line number directive causes a typeout of the line number and contents of each line in
the current buffer.

Typeout:

I AAA
2 BBB
3 CCC
4DDD

Curren t line: 4

Example 2:

L

This print with line number directive causes a typeout of the line number and contents of only the
current line.

Typeout:

2 BBB

Current line: 2

Exclude Directive
The exclude directive (V) can be used in conjunction with delete, print, print line number, and print

with line number directives so that the specified directive acts on only those lines that do not contain a
specified character string.

After the exclude directive is executed, the current line is the last line searched by the Editor; i.e., the
line specified in adr2 (see below).

FORMAT:

[adr, J [t} adr2] Vx/regexp/

EDITOR 2-28 AX08

PARAMETER DESCRIPTIONS:
adr!

Address of the first line to be searched.
Default: First line in the current buffer.

adr2

x

/

Address of the last line to be searched.
Default: Last line in the current buffer.

NOTE: If both adr! and adr2 are omitted, all lines in the buffer are searched.

Directive name with which the exclude directive is being used; must be one of the following:

D
VD deletes line(s) that do not contain regexp.

P
VP prints the contents of line(s) that do not contain regexp.

L
VL prints the line number(s) and contents of line(s) that do not contain regexp.

=
V= prints the line number(s) of line(s) that do not contain regexp.

v

Delimiter; can be any character that does not occur in regexp. The same delimiter must be used
before and after regexp.

regexp
String of characters for which the Editor will search; only lines that do not contain regexp will be
acted upon by the Editor during execution of the directive name specified in parameter x.

In the following examples, the contents of the current buffer are:

(1) J J JKKK (current line)
(2) LLLMMM
(3) NNNPPP
(4) RRRJJJ

Example 1:

1,3VL/JJJ/

This exclude print with line number directive causes the Editor to search lines 1 through 3 and to
print the line number and contents of each line that does not contain JJJ.

Typeout:

2 LLLMMM
3 NNNPPP

Current line: 3

Example 2:
VD*JJJ*

EDITOR 2-29 AX08

v j=

This exclude delete directive deletes each line that does not contain JJJ; since no addresses are
specified, each line in the current buffer is searched.
After this directive is executed, the current buffer will contain:

(I) JJJKKK
(2) RRRJJJ (current line)

Print Line Number Directive
The print line number directive causes a typeout of the line number of a specified line in the current

buffer.
The typeout is issued to the user output file; i.e., the file designated in the -OUT out path parameter

of "enter batch request" or "enter group request" command, unless that file was reassigned in the
execute directive.

After this directive is executed, the current line is the line whose line number was typed.

FORMAT:

[adr] =

PARAMETER DESCRIPTION:
adr

Address of the line whose line number is to be typed.
Default: Current line.

In the following examples the contents of the current buffer are:

(I) AAABBB (current line)
(2) CCCDDD
(3) CCCEEE

Example I:

ICCCI=

This print line number directive causes a typeout of the line number of the first line that contains
CCC.

Typeout:

2

Current line: 2

Example 2:

=
This print line number directive causes a typeout of the line number of the current line.

Typeout:

Curren t line:

EDITOR 2-30 AX08

B/K

Auxiliary Buffers
In the previous pages of this section, it was assumed that there is only a single buffer, the current

buffer. The current buffer must be used, but one or more additional buffers, called auxiliary buffers, also
can be used. There are five auxiliary buffers available for use.

The most common usage of auxiliary buffers is for moving or copying text from one part of a file to
another.

To make available an auxiliary buffer and to put lines into it, specify the move or copy directive,
which are described below.

Lines cannot be written directly from an auxiliary buffer to a file; the auxiliary buffer must be
designated in the change buffer directive as the current buffer, or the lines nlust be read back to the
current buffer via the escape sequence !B, which is described under "Changing Origin of Text During
Input Mode," later in this section. Lines can be written from the current buffer to a file via the write
directive (see "Write Directive" earlier in this section).

You can determine the status of each buffer currently in use by specifying the buffer status directive.

Change Buffer Directive
The change buffer directive designates that a specified auxiliary buffer is the current buffer. The

previously designated current buffer becomes an auxiliary buffer.
The change buffer directive must be the last directive on the directive line.
After this directive is executed, lines can be written from the new current buffer to a file.

FORMAT:

Bx

PARAMETER DESCRIPTION:
x

Buffer name. The name must be 1 to 16 ASCII characters. If the nanle comprises more than a
single character, the name must be enclosed within parentheses; otherwise, the parentheses are
optional.

Example:

B3

This directive designates that auxiliary buffer 3 is the current buffer. If desired, lines can now be
written from this buffer to a file.

Copy Directive
The copy directive writes into a specified auxiliary buffer a single line or consecutive lines that are in

the current buffer. The lines in the current buffer are not deleted; i.e., the lines are in both the current
and the auxiliary buffers.

After the copy directive is executed, the current line in the current buffer is the line immediately
after the last line moved to the auxiliary buffer. There is no current line in the auxiliary buffer until that
auxiliary buffer is changed to the current buffer via a change buffer directive.

FORMAT:

[adr11 [t} adrJ Kx

EDITOR 2-31 AX08

KIM

PARAMETER DESCRIPTIONS:

adrl
Address of the first line to be written into the specified auxiliary buffer.
Default: Current line.

adr2
Address of the last line to be written into the specified auxiliary buffer.
Default: adrl'

NOTE: If both adr! and adr2 are omitted, only the current line is written into the specified
auxiliary buffer.

x
Name of the auxiliary buffer into which the specified line(s) will be written. The name must be 1
through 16 ASCII characters. If the name comprises more than a single character, the name must
be enclosed within parentheses; otherwise, the parentheses are optional.

Example:

1,3K(52)

This copy directive copies into auxiliary buffer 52 lines 1 through 3 in the current buffer.
The contents of the current buffer are:

(1) FIRST (current line)
(2) SECOND
(3) THIRD
(4) FOURTH

After the copy directive is executed, the contents of the current buffer are unchanged, but the
current line is line number 4. Auxiliary buffer 52 will contain:

(1) FIRST
(2) SECOND
(3) THIRD

There will be no current line in the auxiliary buffer.

Move Directive
The move directive moves a single line or consecutive lines from the current buffer to a specified

auxiliary buffer; the lines no longer exist in the current buffer. If the auxiliary buffer already contains
lines, those lines art; overlaid.

After the move directive is executed, the current line in the current buffer is the line after the last line
moved to the auxiliary buffer. There is no current line in the auxiliary buffer.

FORMAT:

[adr, I [t} adr,] Mx

EDITOR 2-32 AX08

PARAMETER DESCRIPTIONS:
adrl

Address of the first line to be moved from current buffer to auxiliary buffer.
Default: Current line.

adr2
Address of the last line to be moved from current buffer to auxiliary buffer.
Default: adrl'

MIX

NOTE: If both adr1 and adr2 are omitted, only the current line is moved from the current buffer to
the auxiliary buffer.

x
Name of the auxiliary buffer to which the specified line(s) will be moved. The name must be I
through 16 ASCII characters. If the name comprises more than a single character, the name must
be enclosed within parentheses; otherwise, the parentheses are optional.

Example:

1,3M5

This move directive moves lines 1 through 3 from the current buffer to the auxiliary buffer named 5.
In this example, the contents of the current buffer are:

(1) FIRST (current line)
(2) SECOND
(3) THIRD
(4) FOURTH

After the move directive is executed, the current buffer will contain:

(I) FOURTH (current line)

Auxiliary buffer 5 will contain:

(I) FIRST
(2) SECOND
(3) THIRD

Buffer Status Directive
The buffer status directive (X) causes a typeout of the status of each buffer currently in use. The

current line is not changed.

FORMAT:

X

The following information is designated:

o Name of each buffer. The original current buffer always is named O.
o Number of lines in each buffer.
o Indicator as to which buffer is the current buffer; the name of the current buffer is preceded by

->.

EDITOR 2·33 AX08

x

If a buffer has been read into and/or written from, the typeout includes the pathname specified in the
last read or write.

If the contents of the current buffer have been modified (i.e., in the typeout, MOD is designated
before its name), all of the following conditions must exist:

o Lines from an existing file have been read into the current buffer via a read directive.
o The contents of the buffer were modified via one or more Editor directives.
o The contents of the buffer have not been written to a file.

Each typeout has the following format:

nun1 ber of Jines
[number of Jines

Example:

-> [MOD]
[MOD]

(buffer-name)
(buffer-name)

[pathname]
[pathname]]

This example illustrates usage of the buffer status directive. The file USE, which is in the working
directory, comprises the following lines:

(1) AAA (current line)
(2) BBB
(3) CCC
(4) DDD

RUSE
Reads the contents of USE into the current buffer, which is named O.

1,$S*BBB*XXX*
Searches the first line through the last line in the current buffer and changes each occurrence of
BBB to XXX. After this directive is executed, the current buffer will contain:

(l)AAA
(2) XXX
(3) CCC
(4) DDD

3,4M2

X

Moves lines 3 and 4 of the current buffer into auxiliary buffer 2. After this directive is executed,
the current buffer will contain:

(l)AAA
(2) XXX

Auxiliary buffer 2 will contain:

(1) CCC
(2) DDD

Requests the status of each buffer currently in use. The following typeout will be issued:

2 -> MOD (0) USE
2 (2)

EDITOR 2-34 AX08

!B

Changing Origin of Text During Input Mode
The escape sequence !B causes the Editor to accept subsequent text from a specified auxiliary buffer;

!B is applicable only during input mode.
When the Editor encounters !B, the entire escape sequence is removed from the input stream and

replaced with the literal contents of the specified buffer. If another !B escape sequence is encountered
while accepting text from the specified buffer, the newly encountered escape sequence also will be
replaced with the contents of the named buffer.

The last escape sequence !B must be terminated by !F.

FORMAT:

!Bx[!Bx] ... !F

PARAMETER DESCRIPTION:
x

Name of the buffer that contains subsequent Editor text. The buffer name must be 1 through 16
ASCII characters. If the buffer name comprises more than a single character, the name must be
enclosed within parentheses; otherwise, the parentheses are optional.

Example:
In this example, the contents of the current buffer and the auxiliary buffer named TEST are:

Current buffer:

(l)A
(2) B
(3) C
(4) D
(5) E

Auxiliary buffer:

(l)X
(2) Y
(3) Z

/D/I
!B(TEST)!F

This insert directive designates that the contents of the auxiliary buffer named TEST be inserted into
the current buffer before the line that contains D.

After the insert directive is executed, the current buffer will contain:

(l)A
(2) B
(3) C
(4) X
(5) Y
(6) Z
(7) D
(8) E

EDITOR 2-35 AX08

!B

The auxiliary buffer named TEST will contain:

(l)X
(2) Y
(3) Z

PROGRAMMING CONSIDERATIONS

1. Two hexadecimal characters can be interpreted as one ASCII byte by preceding the characters by
!H. For example, !HOO produces one 8-bit zero.

2. A tab feature exists within program preparation. Tabbing causes imbedded tab characters to be
replaced with the appropriate number of spaces so that printed output on a printer, operator's
terminal, or other terminal has "tab stops" at character position 11 and at every subsequent 10
character positions. Tab characters can be entered into source lines by pressing CTRL I on the
terminal device while entering insert and/or substitute directive(s). CTRL I is a nonprinting tab
character that has a hexadecimal value of 09. Tabbing is not apparent until a printout occurs.

3. The Editor uses a minimum of two temporary work files in the working directory. These files are
created by the Editor when the Editor is invoked; they exist only during the current execution of
the Editor. A minimum of 20 diskette or 10 cartridge sectors must be available in the working
directory for temporary work files. Additional temporary files are created for each auxiliary buffer
used; the number of temporary files is limited by the space available in the working directory.

4. A quit directive must be entered so that the Editor will close and release temporary work files
created in the working directory.

5. If you specify a buffer name comprising more than a single character and omit the parentheses,
only the first character is considered the buffer name; subsequent characters are treated as
directives.

EDITOR 2-36 AX08

SECTION 3

LANGUAGE PROCESSORS

This section describes how to load each language processor. A detailed description of the
Cross-Reference Program and an illustration of a cross-reference listing also are included in this section.

LOADING AND EXECUTING THE MACRO PREPROCESSOR

To load and execute the Macro Preprocessor, enter the ECL MACROP command, which is described
below.

After the Macro Preprocessor is loaded, there is a typeout to the error output file of the revision
number, in the following format:

MACROPnnnn
Macro Preprocessor output is generated as the file path.A in the working directory.

NOTE: Path is the simple pathname, excluding the suffix appended by the Macro Preprocessor.

FORMAT:

MACROP path [cd arg]

ARGUMENT DESCRIPTIONS:
path

Pathname of the unexpanded source unit file to be processed by the Macro Preprocessor. Omit the
suffix.

ctl_ arg
Control arguments; none or any number of the following control arguments may be entered, in
any order:

{~NCLUDE_CONTROLS} -IC
Instructs the Macro Preprocessor to incorporate as comment statements in the expanded source
output all macro control statements and inline macro definitions.
Default: Exclusion of such comments from the expanded source output.

{
-MACRO_CALLS!)
-MC

Instructs the Macro Preprocessor to incorporate all macro call statements as comment
statements in the expanded source output.
Default: Exclusion of such comments from the expanded source output.

{
-SIZE nn}
-SZ nn

nn designates the maximum number of 1024-word blocks of memory that the Macro Pre­
processor may use for work space. nn must be from 01 through 64.
Default: Seven-eighths of available memory in the task group's memory pool or available
memory in the task group's memory pool minus 400 10 words, whichever is smaller.

NOTE: The Macro Preprocessor always issues a typeout, of the number of errors found, to the error
output file.

LANGUAGE PROCESSORS 3-1 AX08

XREF

CROSS-REFERENCE PROGRAM

The Cross-Reference Program produces an alphabetical list of all symbolic names (i.e., labels and
identifiers) in an assembly language source unit. Next to each label is the number of the line in which the
label is defined and the number of each line that contains a reference to that label. Beside each identifier
is an asterisk and the number of each line that contains a reference to that identifier. Labels are flagged if
they are undefined, multiply defined, or defined but not referenced within a source unit. At the end of
the cross-reference listing there is summary information indicating the total number of labels, references,
records, and flags.

The Cross-Reference Program permits you to locate improperly defined labels before you attempt to
assemble the source units in which they are located. Corrections can be made by using the Editor.

Loading and Executing the Cross-Reference Program
To load and execute the Cross-Reference Program, enter the ECL XREF command, which is

described below.
After the Cross-Reference Program is loaded, there is a typeout to the error output file of the revision

number, in the following format:

XREF nnnn

FORMAT:

ARGUMENT DESCRIPTIONS:

path {:~}

Pathname of the source unit file to be cross-referenced. The last two characters must be a suffix;
.A indicates that Assembler input is going to be cross-referenced, and .P indicates that Macro
Preprocessor input is going to be cross-referenced.

ctl_arg
Control arguments; none or any number of the following control arguments may be entered, in
any order:

-COUT out _path
Listing will be written to the file out_path; a suffix is not appended to the file name.
Default: path.L in the working directory.

NOTE: Path is the simple pathname, excluding the suffix appended by the Macro
Preprocessor.

{
-SIZE nn}
-SZ nn

nn designates the maximum number of I024-word blocks of memory that the Cross-Reference
Program may use. If insufficient memory is requested, a warning message is issued, and the
symbols and references already in memory are sorted and listed.
Default: 1 K words of memory .

Sample Cross-Reference Listing
Figure 3-1 illustrates the source listing of a sample source unit. Figure 3-2 illustrates the

cross-reference listing of that source unit.

LANGUAGE PROCESSORS 3-2 AX08

1
? *
'3 *
a
'5 *
b *
7 *
A *
q SAMPLE

to
11 NF)(T
12
t '3
1a
te;
tl, lOOP
17
t~
tq
20
2t
'2'2
?'3
'21J
2r:t
?b SUP~f-5

?7
2~ ~nRF

'2Q
~o

'3'
32
33
'3a nONf.
~5 TAHl
3~ TARLF.
17 TARLF
3P
'3Q
40
at *
42

TITLE

c (1 "" v F R T H t It V A L I lET" Q ~ T n A SCI J n E C T MAL (C; R V T F c:;)
S TAR T p.; G ~ T R ? - L F F T ~ V T F: wIT H LEA n PJ G Z f Q (\ S
SUPPQF~~F". HF.'" lFRn ~(3"AlC; O. USF.q ~C; LOCATTnNS.
UW $~·1 ,OR 1 Ft111AI. S 7f.P(,
LOV ~P7, 1111 Q7 F.fHIAI.S ASCI T 7fPn
5TI-I ~"n, ~H2.+"P1 STORE lfRC' TN RVTF (IF RFSl.IL T
(MV 'Rl~~ TNOFv EQUAL Tn 51
RI\I£
LOV
l.A~

U~kl

fL
nlv
Arv
51H
t4fl
f r-.'v
f'r.
"DV
STI-I
LDv
Lnv
L L I~
(t-'v

R~d:

5TH
C"'V
P"'f.
Jt-.p

RfSV
r.C
or:
Dr
oc
Df

~R 1 , ()
;~3,Tl\:J,lF

~P7,=(QI..

=~Rf:o.

~""7,+'!ii~~

~f:\i7, 'I)'
,"C7,I:R,.+'fQ1
~kf., >SI!j.lRI= S
fF(t-o,Q

>If'l0~

"~"" , f) •
~j;;lh,j·~??

,. i:' t , 0
~Pt-,' ,
~P7,,,,,~?q;i-<'

~~'7,'("

>l)n~,'F

~P6"H~2.+~R1
~p 1 , ~
>!\';PF(f

'~Ci
o
n
=7'?71i"
=l'O~f~1

=l'O("l~/J'

=7'0(\OA'

SA~PlF,S~W.PLE

'" ()
Rf~F.:T Qt
~ ~ F rl11 A L TnT A q L F "F r n t.l S T A "I T S
MOVE" Pn Tn R7
CLF.AR R6

rnl\IVFRT Tn ASCTT

RPAI"(.H IF ~.jn QFwa Pif'\F R
IS nq s IIf\! y T ~ rq (: t T?
1\Jr)

VF~

S T r) R F. t I ",. t T ~ T "I ~ T H ("\ Y G I T
PF.SET ~1

Rf, F:(~lIAL~ ASCTt ~PL\CF

PTC\(LIP ONF RVTf
lF~()?
t-Jp

vFS - SUPPRF.~~
TENS nyr.1T1
~! n - r. 0 I\J T T "11,1 F

Figure 3-1. Source Listing of Source Unit to be Cross Referenced

LANGUAGE PROCESSORS 3-3

XREF

AX08

XREF

TITLE SAMPLE,'761215 I LISTING EXAMPLEa
$B2 **** 11 20 25 28 31
$B3 **** 15 18
$B5 **** 34
$Rl **** 9 11 12 14 20 26 28 31 32
$R6 **** 16 17 21 22 24 25 27 31
$R7 **** 10 11 16 18 19 20 28 29
DONE 34 30
LOOP 16 23
MORE 28 33

N NEXT 11
U NEXTI **** 13

SAMPLE 9 4 42
SUPRES 26 21

N TABL 35
N TABLE 36
11 TABLE 37 15

II III IV

9 LABELS
41 REFERENCES
42 RECORDS
1 U FLAGS
1 M FLAGS
3 N FLAGS

Legend:

- Optional error flag:
M - Designated label occurs more than once in the label field in

the source unit; i.e., the label is multiply defined.
U - Designated label is not defined; **** is also included in the

definition field.
N - Designated label is defined but not referenced.

II - Identifiers (e.g., registers) and an alphabetical list of all labels
in the assembly language source unit. Identifiers do not have to
be defined and are never flagged.

III - Number of the line in which the symbolic name is defined in the
source unit. Asterisks (****) indicate that the symbolic name was
not defined in this source unit.

IV - Number of each line that contains a reference to the symbolic name.
number U FLAGS - Number of undefined symbols.
number M FLAGS - Number of flags for multiply-defined symbols.
number N FLAGS - Number of symbols defined but not used.

aThe contents of the assembly program TITLE statement become the heading
for the cross-reference listing.

Figure 3-2. Sample Cross-Reference listing.

LANGUAGE PROCESSORS 34 AX08

ASSEM

WADING AND EXECUTING THE ASSEMBLER

To load and execute the Assem bIer, enter the ECL ASSEM command, which is described below.
After the Assembler is loaded, there is a typeout to the error output file of the revision number, in

the following format:

FORMAT:
ASSEM path [ctl_ arg]

ARGUMENT DESCRIPTIONS:
path

ASSEM nnnn

Pathname of the source unit file to be assembled. Omit the suffix.
ctl_arg

Control arguments; none or any number of the following control arguments may be entered, in
any order:
-COUT out path

Listing will be written to the file out path; a suffix is not appended to the file name. If this
argument is omitted, the listing will be written to the file path.L in the working directory.

NOTE: Path is the simple pathname, excluding the suffix appended by the Assembler.

{
-LAF}
-SAF

Addressing mode in which source unit will be assembled. -LAF designates long-address form;
-SAF designates short-address form.

Default: Source unit is assembled in the same addressing mode that the Assembler is executing
in.

{
-LIST _ ERRS}
-LE

Specifies that only those source lines containing assembly errors, together with their error
codes, are to be listed.
Default: If omitted, and -NL is not specified, the complete source program is listed, followed
by a listing of the error lines and codes.

{
-NO_LIST}
-NL

Suppresses source listing.
Default: Source listing produced.

{
-NO_OBJ}
-NO

Suppresses object text unit output.
Default: Object text unit is generated as the file path.O in the working directory.

NOTE: Path is the simple pathname, excluding the suffix appended by the Assembler.

{
-SIZE nn}
-SZ nn

nn designates the maximum number of 1024-word memory blocks that may be used for the
Assembler's symbol table. nn must be numeric and be from 0 I through 64.
Default: Available memory in the task group's memory pool minus 300 10 words.

LANGUAGE PROCESSORS 3-5 AX08

ASSEM / FORTRAN

NOTE: The Assembler always issues a typeout, of the number of errors found, to the error output
file.

LOADING AND EXECUTING THE FORTRAN COMPILER

To load and execute the FORTRAN Compiler, enter the ECL FORTRAN command, which is
described below.

After the FORTRAN Compiler is loaded, there is a typeout to the error output file of the revision
number, in the following format:

FORMAT:
FORTRAN path [ctl_arg]

ARGUMENT DESCRIPTIONS:
path

FORTRAN nnnn

Pathna1ne of the source unit file to be compiled. Omit the suffix.
ctl_arg

Control arguments; none or any number of the following control arguments may be entered, in
any order:
-AS

Output IS In assembly language; the assembly language file can be used as input to the
Assembler.

-COUT out_path .
Listing will be written to the file out path; a suffix is not appended to the file name. If this
argument is omitted, the listing will be written to the file path.L in the working directory.

NOTE: Path is the simple pathname, excluding the suffix appended by the FORTRAN
Compiler.

-HS
The source unit comprises Hollerith code, or the source unit was created using a
Series 200/2000 Model 716 Central Processor.

{:t~T _ERRS}
Specifies that only those source lines containing compilation errors, together with their error
codes, are to be listed.
Default: If omitted, and -NL is not specified, the complete source program is listed, followed
by a listing of the error lines and codes.

{
-LIST _ OBJ}
-LO

List object output. Object text listings will be interspersed with source text listings.

{
-NO_LIST}
-NL

Suppress all listings.
Default: Listing of the source unit and error diagnostics.

LANGUAGE PROCESSORS 3·6 AX08

FORTRAN / COBOL

f-NO_OBJ}
).-NO

-SI

Suppress object unit output.
Default: Object unit output produced as the file path.O in the working directory.

NOTE: Path is the simple pathname, excluding the suffix appended by the FORTRAN
Compiler.

Short integer and logical variables; each integer and logical variable is one word.
Default: Two words.

{
-SIZE nn}
-SZ nn

nn designates the maximum number of 1024-word blocks of memory that the compiler can use
for tables. nn must be from 02 through 20. If the requested amount of memory is not available,
the compiler will use the available amount of memory.
Default: Available memory in the task group's memory pool, up to approximately 1700
words. There must be at least 1 K words available.

-UC
Suppress generation of embedded links to any subroutines referenced by a CALL statement.

-UZ
Suppress generation of embedded links to system subroutines (Le., all subroutines beginning
with the letters ZF).

-WRKn
Object-time workspace for FORTRAN main programs. n must be a 1- to 4-digit decimal
number from 1 to 9999.
Default: 325 words.

NOTES: 1. Either LO or NL may be specified, but not both. If neither is specified, the compiler
produces a listing of the source text and diagnostics.

2. The FORTRAN Compiler always issues a typeout, of the number of errors found, to the
error output file.

LOADING AND EXECUTING THE COBOL COMPILER

To load and execute the COBOL Compiler, enter the ECL COBOL command, which is described
below.

After the COBOL Compiler is loaded, there is a typeout to the error output file of the revision
number, in the following format:

FORMAT:
COBOL path [ctl_arg]

ARGUMENT DESCRIPTIONS:
path

GCOS6 COBOL VERSION nnnn

Pathname of the source unit file to be compiled. Omit the suffix. The name must be the same as
that specified in the PROGRAM ID clause of the COBOL source program.

LANGUAGE PROCESSORS 3·7 AX08

COBOL/ RPG

ctl_ arg
Control arguments; none or any number of the following control arguments may be entered, in
any order:
-COUT out path

Listing will be written to the file out _path; a suffix is not appended to the file name. If this
argument is omitted, the listing will be written to the file path.L in the working directory.

NOTE: Path is the simple pathname, excluding the suffix appended by the COBOL Compiler.

-DB
Compile debugging lines as comments, ignoring the WITH DEBUGGING MODE clause.

-LD
List data map, source text, and errors.

{-LIST~ERRS} -LE
Specifies that only those source lines containing compilation errors, together with their error
codes, are to be listed.
Default: If omitted, and -NL is not specified, the complete source program is listed, followed
by a listing of the error lines and codes.

{
-NO_LIST}
-NL

Suppress all listings.

{
-NO _OBJ}
-NO

Suppress object unit output.
Default: Object unit output produced as the file path.O in the working directory.

NOTE: Path is the simple pathname, excluding the suffix appended by the COBOL Compiler.

{
-SIZE nn}
-SZ nn

Requests nn additional 1024-word blocks of memory for compiler tables. nn must be from 04
to 53. The additional memory specified in this argument is used instead of the original table
size, and permits the COBOL Compiler to improve performance when compiling large
programs. If you request more memory than is available, the compiler uses the available
amount of memory. At least 3,000 words must be available; otherwise, the compiler cannot be
loaded and executed. If this argument is not specified, the compiler has approximately 3,000
words of memory for table space.

NOTES: 1. Only one of the following listing arguments can be used: LE, LD, LO, or NL. If no
listing argument is specified, the compiler produces a listing of the source text and
errors.

2. The COBOL Compiler always issues a typeout, of the number of errors found, to the
error output file.

LOADING AND EXECUTING THE RPG COMPILER

To load and execute the RPG Compiler, enter the ECL RPGcommand, which is described below.
After the RPG Compiler is loaded, there is a typeout to the error output file of the revision number,

in the following format:

RPG nnnn

LANGUAGE PROCESSORS 3-8 AX08

FORMAT:

RPG path [ctl_arg]

ARGUMENT DESCRIPTIONS:
path

Pathname of the source unit file to be compiled. Omit the suffix.

ctl_arg

RPG

Control arguments; none or any number of the following control arguments may be entered, in
any order:
-COUT out_path

Listing will be written to the file out path; a suffix is not appended to the file name. If this
argument is omitted, the listing will be written to the file path.L in the the working directory.

NOTE: Path is the simple pathname, excluding the suffix appended by the RPG Compiler.

{
-LIST _ OBJ}
-LO

List object text, data map, source text, and diagnostics.

{
-NO_LIST\
-NL J

Suppress all listings.

{
-NO_OBJ}
-NO

Suppress object unit output.

Default: Object unit output produced as the file path.O in the working directory.

NOTE: Path is the simple pathname, excluding the suffix appended by the RPG Compiler.

{
-SIZE nn}
-SZ nn

nn designates the maximum number of 1024-word blocks of additional memory that the RPG
Compiler may use for tables. nn must be from 04 to 28.
Default: 03

NOTES: I. Either LO or NL may be specified, but not both. If neither is specified, the compiler
produces a listing of the source text and diagnostics.

2. The RPG Compiler always issues a typeout, of the number of errors found, to the error
output file.

LANGUAGE PROCESSORS 3-9 AX08

SECTION 4

LINKER

The Linker combines separately assembled and/or compiled object units and produces a bound unit.
If only one object unit is to constitute a bound unit, that object unit still must be linked (converted) by
the Linker.

Object units may contain external references to symbols. 1 While linking object units, the Linker
resolves external references to symbols by referring to and updating a Linker-created symbol table. A
link map of defined and/or undefined symbols can be produced. If desired, you can designate that the
Linker link object units and produce only a link map; no bound unit is created.

To load the Linker into memory, enter the EeL LINKER command (see "Loading the Linker" later
in this section).

Linking is controlled by directives entered to the Linker through the directive input device. The
directive input device is the device specified in the in path argument of the EeL "enter batch request"
or "enter group request" command. This device can bereassigned in the command that loads the Linker.

Each object unit to be processed during a single execution of the Linker must be a variable sequential
file. The input files may reside in the same directory or in different directories. Unless specified
otherwise, all of the object units are in the working directory (see "Specifying Location(s) of Object
Unites) to be Linked" later in this section).

During a single execution of the Linker, you can create a single bound unit; a bound unit comprises
only a root, or a root and one or more overlays. The root and each overlay may be up to 64K words
(l28K bytes). The root and each overlay is called a load unit; a load unit is loaded into memory by the
Loader. When you request in an EeL create group or spawn group command, or an LDBU configuration
directive that a bound unit be loaded, the root is the portion of the bound unit that is loaded by the
Loader. The root remains in memory as long as there are tasks executing on its behalf, unless LDBU was
specified; if LDBU was specified, the root remains in memory until the system is reinitialized. An overlay
is loaded into memory whenever it is required.

Each bound unit has an attribute table associated with it; an attribute table contains information
about the bound unit's characteristics and symbol definitions. The attribute table is loaded into memory
immediately preceding the root.

FUNCTIONS OF THE LINKER

Creating a Bound Unit
If the name argument is specified in the EeL LINKER command (i.e., the command that loads the

Linker), the Linker produces a bound unit file whose pathname is specified in the name argument.
The bound unit comprises only a root unless an OVLY or FLOVLY directive is entered. Each time an

OVL Y or FLOVLY directive is entered, the Linker initiates creation of a non floatable or floatable
overlay, respectively. A non floatable overlay is loaded by the Loader into the same memory location
(relative to the root) each time it is requested. A floatable overlay is linked at relative 0 (see "BASE
Directive" later in this section), and can be loaded by the Loader into any available nlemory location. A
floatable overlay must have the following characteristics:

1. External location definitions in the overlay are not referenced by the root or any other overlay.
2. The overlay does not contain references with offsets to symbols defined in the root or any other

overlay.
3. The overlay does not contain external references that are not resolved by the Linker.
4. The overlay must be linked after all desired nonfloatable overlays have been linked.

1 An external reference is a reference to a symbol defined in another object unit as an external symbol.

LINKER 4·1 AX 08

Resolving External References
The Linker resolves the addresses or values of external symbol references it finds in object units being

linked. The references can be between object units comprising the root, between object units comprising
an overlay, between overlays, or between the root and an overlay. A symbol can be defined in one bound
unit and referenced in another bound unit.

Creating a Symbol Table
A symbol table is a data structure created by the Linker for resolving external references. When the

Linker encounters external references to symbols or definitions of symbols, it creates an entry in the
symbol table. When that entry is defined, the Linker updates the symbol's entry in the symbol table and
all references to the symbol. A symbol can be defined within an object unit, or by an LDEF or VDEF
directive. (LDEF and VDEF are explained later in this section under "Linker Directive Descriptions.") A
list of defined and/or undefined symbols can be obtained by producing a link map.

Producing a Link Map
A link map is a listing of information in the symbol table. A symbol can be defined in an object unit

as a value or location, in the LDEF directive as a location, or in the VDEF directive as a value. If a
symbol is defined as a location, the map contains the symbol name and its relative address. If a symbol is
defined as a value, the map contains the symbol name and its value. The map also lists the name of each
undefined symbol and the relative address of the latest reference to it.

A link map can be produced at any time during the linking process by specifying the MAP or MAPU
directive. It is written to the file name.M in the working directory, unless the -COUT argument was
specified in the ECL LINKER command. (-COUT permits you to assign the list file to disk, a printer, the
operator's terminal, or another terminal.) If maps are assigned to disk, a disk file with variable length
records is created; the first character of each record is a print control character.

FUNCTIONAL GROUPS OF LINKER DIRECTIVES

The general functions of Linker directives are listed and described below. For more detailed
information, see "Linker Directive Descriptions" later in this section.

o Specify object unites) to be linked
o Specify location(s) of object unites) to be linked
o Create root and optional overlay(s)
o Produce link map(s)
o Define external symbols
o Protect or purge symbols
o Designate that the last Linker directive has been entered

Specifying Object Unit(s) to be Linked

Directives:
LINK
LINKN

LINK and LINKN designate that one or more specified object units be linked. Object units specified
in LINK directives are not linked immediately; their names are put into a link request list, and they are
linked each time a directive other than LINK or START is encountered. Specified object units in the
primary directory are linked before specified object units in the secondary directory; within each
directory, the object units are linked in the order in which they were requested.

LINKN causes the Linker to link object units already named in the link request list, and then to link
object units specified in the LINKN directive, in the order in which they were requested.

The order in which object units are linked may be important if overlays exist.

NOTE: The Linker appends the suffix .0 to each specified object unit name; when the Linker
searches for an object unit name, it searches for the name including the suffix.

LINKER 4-2 AXOB

Specifying Location(s) of Object Unit(s) to be Linked

Directives:
IN
LIB

Object units to be linked must be in the primary and/or secondary directory. The primary directory is
the first directory searched by the Linker; the secondary directory, if there is one, is the second (last)
directory searched. When the Linker is loaded into memory, the primary directory is the working
directory, and there is no secondary directory.

IN permits you to designate a different directory as the primary directory.
LIB designates a directory as the secondary directory.
IN and LIB may be specified any number of times.

Creating a Root and Optional Overlay(s)

Directives:
BASE
START
1ST
SHARE
SYS
LINK
LINKN
OVLY
FLOVLY
CC
QUIT

The BASE directive defines, for subsequent object units to be linked, the relative load address within
the bound unit.

START specifies the relative address at which the root or overlay will begin executing when it is
loaded into memory by the Loader.

1ST identifies the beginning of initialization code in the root.
SHARE designates that the bound unit is shareable.
SYS designates that the bound unit can be loaded into the system area as part of the system.
LINK and LINKN specify which object units will be linked. The order in which specified object units

are linked, and when they are linked, is determined by which link directive is specified.
OVLY names and assigns a number to the next (or only) nonfloatable overlay that follows, and

designates the end of the preceding root or overlay.
FLOVLY names and assigns a number to the next (or only) floatable overlay that follows, and

designates the end of the preceding root or overlay.
Call-cancel (CC) permits a COBOL program that used CALL and CANCEL statements to call overlays

by their names.
QUIT designates that the last Linker directive has been entered. Execution of the Linker terminates

after the bound unit has been created.

Producing Link Map(s)

Directives:
MAP
MAPU

A .link map is .written to the list file by specifying the MAP or MAPU directive. MAP creates a map
that hsts both defIned and undefined symbols, whereas MAPU lists undefined symbols only.

LINKER 4-3 AX08

LINKER

Defining External Symbol(s)

Directives:
LDEF
VDEF
EDEF

A symbol can be defined as a relative location or value by specifying the LDEF or VDEF directive,
respectively. The symbol's definition is then put into the symbol table by the Linker.

The EDEF directive permits definitions in the Linker symbol table to be made part of the bound unit
so they are available to the Loader at execution time.

Protecting or Purging Symbol(s)

Directives:
PROT
PURGE

The above directives protect or remove symbols and object unit names from the symbol table.
The protect (PROT) directive prevents certain symbols and/or object unit names from being removed

from the symbol table. Symbols are protected if they identify a specified address or an address within a
specified range; object unit names are protected if they are equated to a specified address or an address
within a specified range.

The PURGE directive removes from the symbol table unprotected symbols that define a specified
address or an address within a specified range, and/or object unit names equated to a specified address or
an address within a specified range.

Designating That the Last Linker Directive Has Been Entered

Directive:
QUIT

QUIT must be the last Linker directive entered.
If a bound unit is being created, execution of the Linker terminates after the bound unit has been

created.
If no bound unit is being created, QUIT terminates execution of the Linker.

LOADING THE LINKER

To load the Linker, enter the ECL LINKER command, which is described below.
After the Linker is loaded, there is a typeout to the error output file of the revision number in the

following format:

FORMAT:

LINKER [name] [ctl_ arg]

ARGUMENT DESCRIPTIONS:
name

LiNKER nnnn

Pathname of the relative disk bound unit file. The pathname can be simple, relative, or absolute. If
the specified file already exists, the existing information in the file is deleted and replaced with the
new bound unit.
Default: No bound unit is created. If this argument is omitted, only a list file is created.

LINKER 4-4 AX08

LINKER

ctl_arg
Control arguments; none or any number of the following control arguments may be entered, in
any order:
-IN path

Pathname of the device through which Linker directives will be read; can be disk, card reader,
'operator's terminal, or another terminal.
Error messages are written to the error output file. Linker error messages are described in the
"Error Messages" section of the System Control manual.
Default: Device specified in the in path argument of the ECL "enter batch request" or "enter
group request" command.

-COUT out _path
Listing will be written to the file out path. The list file can be a disk, the operator's terminal,
another terminal, or a printer.

Default: name.M in the working directory.

{
-LAF}
-SAF

Addressing mode; -LAF designates long address form (two-word addresses), and -SAF
designates short address form (one-word addresses).
Default: Bound unit executed in SAF (short address form) mode.

{
-SIZE nn}
-SZ nn

nn designates the maximum number of 1024-word blocks of memory available for the Linker
symbol table. nn must be a minimum of 01.
Default: Available memory in the task group's memory pool.

Example:
LINKER MYPROG -IN >SPD>CONSOLE -COUT >SPD> LPTOO -SIZE 06

This LINKER command loads the Linker and designates the following:

o Bound unit will be a relative file named MYPROG in the working directory.
o Linker directives will be entered through the terminal called CONSOLE.
o Link maps, if any, will go to a line printer (configured as LPTOO), rather than to a variable

sequential file named MYPROG.M in the working directory.
o The symbol table will be a maximum of 6K words of memory.

NOTE: CONSOLE and LPTOO must have been previously defined in the DEVICE configuration
directive, which is described in the "System Startup and Configuration" section of the
System Control manual.

ENTERING LINKER DIRECTIVES

Linker directives are entered through the directive input device, except for the following directives
which may be embedded in assembly language CTRL statements: LINK, LINKN, SHARE, EDEF, and
SYS.

Linker directives comprise only a directive name or a directive name followed by one or more
parameters. Each directive name may be preceded by 0, I, or more blank spaces. If one or more
parameters are to be specified in a Linker directive, the directive name must be immediately followed by
one or more blank spaces.

Multiple directives can be entered on a line by specifying a semicolon (;) after each directive, except
for the last directive on the line.

LINKER 4·5 AX08

The last (or only) directive on a line can be followed by a comment; to include a comment, specify a
slash (/) after the last (or only) parameter and then enter the comment.

If the directive input device is the operator's terminal or another terminal, press RETURN at the end
of each line (i.e., at the end of the comment, or at the end of the last directive if there is no comment).

If an error occurs when entering a directive, an error message is written to the error output file.
Linker error messages are described in the "Error Messages" section of the System Control manual.
Determine what caused the error, and then reenter the directive correctly. If multiple directives are
entered on a line and an error occurs, the error does not affect the execution of previously designated
directives. The directive that caused the error and subsequent directives on that line are not executed.

PROCEDURE FOR CREATING ONLY A ROOT

To link object units and create only a root, load the Linker and then enter the following directives:

{
LINK }2
LINKN
QUIT

All other directives are optional.

Links object units.

Designates that the last Linker directive has been
entered. After the bound unit has been created,
execution of the Linker terminates.

PROCEDURE FOR CREATING A ROOT AND ONE OR MORE OVERLAYS

When creating a root and overlays, the following rules must be followed:

o The root must be created before its overlays.
o A root and all of its overlays must be created during the same execution of the Linker.
o Nonfloatable overlays must be created before floatable overlays.
o Overlays may contain references to symbols defined in the root or other overlays.
o A root or overlay can be up to 64K words of memory.

To link object units and create a root and one or more overlays, load the Linker and then enter the
following required directives:

{
LINK }3
LINKN

{
OVLY }
FLOVLY

jLINK }
lLINKN

Links object units that will constitute the root.

Designates end of the root, and names and numbers
the overlay that immediately follows.
Links object units that will constitute an overlay.

NOTE: An OVL Y or FLOVLY directive a.nd at least one link directive must be specified for each
overlay associated with the root.

QUIT

All other directives are optional.

Designates that the last Linker directive has been
entered. After the bound unit has been created,
execution of the Linker terminates.

NOTE: It is advisable to specify a MAP directive before each FLOVL Y directive. The base address of
a floatable overlay is relative 0, so all unprotected symbols that define locations will be
purged from the symbol table.

2,3 Multiple LINK and/or LINKN directives may be entered.

LINKER 4·6 AX08

OBTAINING SUMMARY INFORMATION OF A LINKER SESSION

The Linker designates on the list file summary information regarding the bound unit created during
the current execution of the Linker.

The list file includes the name and revision number of each object unit linked, the Assembler or
compiler el ~'lr c(;unt, and the sections described below:

ROOT Name of the root.
HIGHEST OVL Y Number of the last overlay;4 if there are no overlays

HIGHEST OVL Y is followed by a blank.
/NUM OF SYMS Number of symbols specified in EDEF directives.

{SAF}
LAF Type of addressing form used in the bound unit; SAF

is short-address form, and LAF is long-address form.

{
ROOT}
OVLY
BASE
ST

sfri

Name of the root or overlay.
Base address of the root or overlay.
Start address of the root or overlay.

Specifies characteristics of the bound unit. An X appears in the appropriate column if the
condition is met; otherwise, the column contains a period (.).
s

Shareable bound unit.
f

Floatable overlay(s) included.
r

One or both of the following conditions exists:
There are undefined or forward references between the root and overlays or between overlays.
There are resolved forward, external, references.

IMA addresses are present.

LINK DONE
Designates that execution of the Linker has been successful.

The format for this information is illustrated below:

ROOT rootname

HIGHEST OVL Y number/NUM OF SYMS number

{SAF}
LAF

********.***
{

ROOT} . OVL Y duname BASE address ST address _ {~} {~} {~} {~} s

LINK DONE

4 The Linker assigns numbers to overlays. The first overlay is 00; subsequent overlays are numbered sequentially in ascending order.

sThis line is repeated for each overlay.

LINKER 4-7 AX08

BASE

LINKER DIRECTIVE DESCRIPTIONS

Linker directives are described below, alphabetically. Some examples are provided to illustrate
directive usage.

BASE Directive
The BASE directive defines, for subsequent object units to be linked, the relative link address within

the bound unit. At load time, all addresses are relative to the beginning of available memory (relative 0)
in the memory pool of the task group. When a task group is created, you specify the memory pool into
which its bound units are to be loaded.

Unless BASE directives specify otherwise, the root will be linked, by default, at relative 0, and
subsequent object units are linked at successive relative addresses. A BASE directive can be used at any
point during linking to change the relative locations of the root, overlays, or individual object units. A
floatable overlay always begins at relative 0; therefore, in a floatable overlay, BASE can be specified only
after the first (or only) LINK or LINKN directive. A BASE parameter can specify a previously used or
defined location, or an address relative to the beginning of the available memory.

If unprotected symbols define locations that are equal to or greater than the location designated in
the BASE directive, those symbols are removed from the symbol table.

FORMAT:

BASE

$
%
X'address'
=0 bject -unit -name
xdefH~} X'offset']

PARAMETER DESCRIPTIONS:
$

%

Next location after the highest address of the linked root or previously linked nonfloatable
overlay.

Highest address+ I ever used in the linked root or any previously linked non floatable overlay.
address

Hexadecimal address comprising one to four integers enclosed in apostrophes and preceded by X.
The specified address is relative to the beginning of available memory (relative 0) in the memory
pool at load time.

=object-unit-name
Specified object unit's base address; the subsequent root, overlay, or object unit will be linked at
the same relative address as the specified object unit.

xdef[{~} X'Offset~
Address of any previously defined external symbol. If an offset is specified, it must be a hexadeci­
mal integer with an absolute value less than 7FFF (32768'decimal).

Default:

LINKER

Root-O
Nonfloatable overlay-Next location after the highest address of the preceding root or

nonfloatable overlay
Floatable overlay-O

4-8 AX08

BASE

Example:

This example illustrates usage of BASE directives in a bound unit that comprises a root and overlays.
The root will be loaded into memory wherever there is room. However, in this example, assume that
the bound unit being created is going to be executed as part of task group A I , and memory pool AA
is to be used by this task group. Figure 4-1 illustrates memory pool AA's location in memory relative
to the system pool and another pool, and the locations within that memory pool that each object unit
specified in the following directives will be loaded.

ADDRESS

RELATIVE 0 FOR ROOT

RELATIVE 0 OF ROOT

o

HIGH MEMORY

ADDITIONAL TASK
GROUP INFORMATION --------
ROOT AND OVERLAY AREA

TASK GROUP CONTROL
STRUCTURES

ADDITIONAL TASK
GROUP INFORMATION --------
ROOT AND OVERLAY AREA

TASK GROUP CONTROL
STRUCTURES

SYSTEM POOL

t----------
OPERATING SYSTEM

LOW MEMORY

RELATIVE LOCATION IN MEMORY
OF MEMORY POOL AA

MEMORY POOL
AB (TASK
GROUP A2
WILL USE
THIS AREA)

LOCATION 1105

MEMORY POOL
AA(TASK
GROUP A1
WILL USE
THIS AREA)

{

OBJC.O

OBJ5.0

RELATIVE 0 OF
ROOT

ADDITIONAL TASK
GROUP INFORMATION

OBJE.O } OVERLAY FLOAT

OBJD.O l
F""···""""'· '·m·:'~"'!:~~:r~:':~~'''''~ ~ OVERLAY ZEBRA

':}});:;;:}:::;,I J
OBJA.O

OBJ6.0

OBJ2.0

OBJ1.0

TASK GROUP CONTROL
STRUCTURES

OVERLAY FOX

ROOT

CONTENTS OF MEMORY POOL AA

Figure 4-1. Schematic of Previous Example Illustrating Usage of BASE Directives

LINKER TEXT -COUT >SPD>LPTOO
START TEXTEN

1ST INIT
LINK OBJ I ,OBJ2
MAP

LINKER

Designates address at which execution will begin
when the root is loaded.
Defines INIT as the beginning of initialization code.
Request that OBJ 1.0 and OBJ2.0 be linked.
Causes OBJ1.0 and OBJ2.0 to be linked, and
produces a link map.

4·9 AX08

BASE / CC

OVLY ABLE

BASE =OBJ2

LINK OBJ5
MAP
LINK OBJ6
OVLY FOX

BASE $

LINK OBJA
LINK OBJB
MAP
OVLY ZEBRA

BASE X'1105'

LINK OBJC

LINK OBJD
MAP
FLOVLY FLOAT

LINK OBJE
MAP
QUIT

Call-Cancel Directive (CC)

Designates end of the root, and that a nonfloatable
overlay named ABLE immediately follows. The
Linker assigns the number 00 to this overlay.
Subsequent object unit(s) constituting overlay ABLE
will be linked starting at the base address of the
object unit OBJ2.0; this address can be determined
from the map. Unprotected symbols that define
locations equal to or greater than the address of OBJ2
are removed from the symbol table.

Requests that OBJ5.0 be linked.

Requests that OBJ6.0 be linked.
Designates the end of the above overlay, and specifies
that a nonfloatable overlay named FOX immediately
follows. The Linker assigns the number 01 to this
overlay.
Subsequent object unit(s) constituting the overlay
named FOX will be linked starting at one location
higher than the ending address of OBJ6.0. This is the
default BASE address, so BASE $ need not be
specified.
Requests that OBJA.O be linked.
Requests that OBJB.O be linked.

Designates end of above overlay 01 and names
subsequent nonfloatable overlay. The Linker assigns
the n urn ber 02 to this overlay.
Designates that subsequent object units constituting
overlay ZEBRA will be linked starting at relative
location 1105.
Object unit OBJC.O will be linked starting at relative
location 1105.
Requests that OBJD.O be linked.

Designates end of above overlay, and that a floatable
overlay named FLOAT immediately follows. The
Linker assigns the number 03 to this overlay. This
overlay will be linked starting at the default base
address of O.
Requests that OBJE.O be linked.

The call-cancel directive (CC) must be used when linking COBOL programs that contain
CALL/CANCEL statements that reference overlays. The Linker will place each overlay name and its
associated Linker-generated overlay number into the bound unit attribute table so that the COBOL
program can call/cancel overlays by name.

To support the CALL/CANCEL facility, the object unit ZCCEC is required. ZCCEC will be
automatically linked into the root by COBOL; it requires no link directive.

LINKER 4-10 AX08

CC / EDEF

The CC directive must be specified before the first LINK or LINKN directive in the root.

FORMAT:

CC

ED EF Directive
The EDEF directive causes the definition of the specified symbol to be placed in the attribute table

attached to the bound unit being created. The bound unit attribute table is part of the bound unit.
Secondary entry points of bound units, whose code is to execute under control of a task, must be

defined in an EDEF directive. This includes secondary entry points of overlays and the root entry point
when it will be explicitly used in an ECL create group command. The start address of the root and each
overlay is placed by the Linker in the bound unit attribute table and does not need an EDEF definition.

If a bound unit is memory resident, global symbols (entry points and references) can be EDEFed so
that they can be referenced by any bound unit loaded by the system. At system configuration time,
when the resident bound units are loaded using the LDBU system configuration directive, these symbols
are placed in the system symbol table. When the Loader loads other bound units that contain unresolved
references, it tries to resolve them with the list of symbols defined for resident bound units.

If the bound unit is transient (shareable or not shareable), the symbols in the attribute table of the
bound unit are meaningful only as definitions of secondary entry points. Although shared bound units
can be in the address space of more than one task group, the bound unit attribute table is available to the
Loader only when the bound unit is being loaded. Unresolved references in any bound unit will be
resolved only to symbols defined in attribute tables of resident bound units.

An EDEF directive can only specify a symbol that has been defined using XDEF, LDEF, or VDEF.
When EDEF is specified, the symbol's definition must already be in the symbol table.

The EDEF directive can be em bedded in assembly language CTRL statements.

FORMAT:

{
EDEF} EF symbol

PARAMETER DESCRIPTION:
symbol

Any external definition comprising one to six characters. The symbol must have been defined. If
the symbol was multiply defined, the first definition is used.

Example:
This example illustrates usage of EDEF directives in bound units.

LINKER MYPROG

LINK A
LINKN B
MAP
EDEF B
LDEF SYM,X'1234'

OVLY FIRST

LINKER

Loads the Linker. The bound unit named MYPROG
will be created on the working directory.

Assigns relative location 1234 to external symbol
named SYM.
Designates end of root, and names nonfloatable
overlay that immediately follows.

4-11 AX08

EDEF/FLOVLY

LINK X,Y
EDEF SYM
QUIT

LINKER PROG2 -COUT >SPD>
LPTOO -SIZE 02

BASE X'2222'

LINKN W
MAP

QUIT

Designates that the last Linker directive has been
entered. Execution of the Linker terminates after the
bound unit has been created.
Loads the Linker; the bound unit to be created is
named PROG2. The list file is the printer. The
symbol table is a maximum of 2K words of memory.
Subsequent object units will be loaded into memory
starting at the relative address 2222.
Requests that object unit W.O be linked.
Produces a link map; in this map, it is determined
that object unit W.O contains an unresolved reference
to the symbol SYM, which was defined in the root of
the bound unit MYPROG.

If MYPROG is loaded into memory via an LDBU configuration directive, when the Loader loads
PROG2 the Loader will resolve the unresolved reference in PROG2 to the symbol SYM, which was
defined in the root of MYPROG.

FLOVL Y Directive
The FLOVLY directive assigns the specified name and a number to the floatable overlay that

immediately follows, and designates the end of the preceding root or overlay. The characteristics of
floatable overlays are described earlier in this section under "Creating a Bound Unit."

FLOVL Y must be specified as the first directive of each floatable overlay. Floatable overlays must be
linked after all desired non floatable overlays have been linked.

The Linker assigns a two-digit number to each overlay. Overlays are numbered sequentially, in
ascending order; the first overlay is 00.

FORMAT:

FLOVLYname

PARAMETER DESCRIPTION:
name

Name of the floatable overlay that immediately follows. The overlay name must comprise one to
six alphanumeric characters; the first character must be alphabetic.

Example:

LINKER BU

LINK A
LINK B
MAP

LINKER

Loads the Linker and designates BU as the bound
unit name.

Produces a link map. The link map should be
referenced to determine if there are any unprotected
symbols that define locations. These symbols, if any,
will be removed from the symbol table since the
floatable overlay that immediately follows does not
contain a base address, and the default base address is
O.

4-12 AX08

FLOVLY GR

LINK X
LINK Y
MAP
FLOVLY BR

LINK R6
MAP
QUIT

IN Directive

FLOVLY / IN

Designates the end of the root (which comprises
object units A.O and B.O), and specifies that the next
overlay is a floatable overlay named GR. The Linker
assigns the number 00 to this overlay.

Designates the end of floatable overlay G R, and
designates that the floatable overlay that immediately
follows is named BR. The Linker assigns the number
o I to this overlay.

The IN directive designates a different directory as the primary directory.6 This directive permits the
linking of object units that are in directories other than the current primary directory or secondary
directory (if any). If the IN directive is not specified, the working directory is the primary directory.
(The secondary directory is designated in the LIB directive.)

The IN directive must be specified before the first LINK or LINKN directive that requests the linking
of an object unit that is in the specified directory.

The specified directory remains the primary directory until another IN directive is entered. If the
primary directory is changed via an IN directive and at a later time you want the task group's working
directory to be the primary directory, you must enter the IN directive and specify in that directive the
working directory's pathname.

FORMAT:

IN path

PARAMETER DESCRIPTION:
path

Pathname of the directory being designated as the primary directory. The pathname may comprise
a maximum of 64 characters. A simple, relative, or absolute pathname may be specified (Methods
of designating pathnames are described in Section 1.)

Example I:

IN ADIR>PRIM

This directive designates that ;\DIR> PRIM is the primary directory.

Example 2:

This example illustrates usage of the IN directive in conjunction with directives that request the
linking of object units. The primary directory is the working directory, wh().!;'~e pathname is WORK>
CURR; object units X.O,Y.O, and Z.O are in the working directory.

6The primary directory is the first directory that the Linker searches for the specified object unit(s) to be linked.

LINKER 4-13 AX08

IN / 1ST / LDEF

LINKER OUTPUT

LINK X

IN 1\ NEW>PRIM

LINK A

LINK C

IN WORK>CURR

LINKN Y

MAP
QUIT

1ST Directive

Loads the Linker; a bound unit named OUTPUT will
be created.
Requests the linking of object unit X.O; X.O is in the
working directory.
Designates that 1\ NEW> PRIM now is the primary
directory.
Requests the linking of object unit A.O, which is in
the primary directory. DIR>PRIM>A.O is the path­
name of A.O, as appended by the Linker.
Requests the linking of object unit C.O, which is in
the primary directory. DIR>PRIM>C.O is the path­
name of C.O, as expanded by the Linker.
Designates that the primary directory now is the
working directory.
Requests the linking of object unit Y.O, which is in
the working directory. WORK>CURR> Y.O is the
pathname of Y.O, as expanded by the Linker.

The 1ST directive identifies the beginning of initialization code in the root. Initialization code is code
that you want to execute only once immediately after the root is loaded. After initialization code is
executed, the space is made available for overlays.

The external symbol must be specified in an EDEF directive.

FORMAT:

{1ST} IT external symbol

PARAMETER DESCRIPTION:
external symbol

Symbol defined within the root as an external location.

LD EF Directive
LDEF assigns a relative location to an external symbol. A symbol should be defined only once, either

as a location or as a value. When a symbol is defined, its definition is put into the Linker symbol table so
that it can be used to resolve references to the symbol during linking. When a symbol defined as a
location is no longer referenced, its symbol table entry can be cleared by specifying the PURGE
directive. PURGE has no effect if a protect (PROT) directive was previously specified.

FORMAT:

{LDEF} LF symbol,

LINKER

$
%
X'address'
=0 bject-uni t -name
xdef[{~} X'offset']

4·14 AX08

PARAMETER DESCRIPTIONS:
$

LDEF

Next location after the highest address of the linked root or previously linked nonfloatable
overlay.

%
Highest address+ 1 ever used in the linked root or any previously linked non floatable overlay.

address
Hexadecimal address comprising one to four integers enclosed in apostrophes and preceded by X.
The specified address is relative to the beginning of available memory (relative 0) in the memory
pool.

=object-unit-name
Specified object unit's base address.

xdefH~} X'Offset']

Address of any previously defined external symbol. If an offset is specified, it must be a
hexadecimal integer with an absolute value less than 7FFF (32768 decimal).

Example:

This example illustrates usage of each format of the LDEF directive.

LINKER BOUND

LINK A
LINK B,C
MAP
LDEF SYM,X'1234'
OVLY FIRST

LINK R
MAP
LDEF QUIZ,=C

OVLY SECOND
LINKN D
LINK F
MAP
LDEF NEW,SYM

OVLY NEXT
BASE X'1300'
LINK W,X
MAP
LDEF ANY,$

OVLY THIRD
LINK Z
LINK Q
MAP

LINKER

Loads the Linker and designates BOUND as the
bound unit name.

SYM assigned relative location 1234
Designates end of root and names first non floatable
overlay

QUIZ assigned base location of the previously linked
object unit named C.O .

NEW assigned same location as the symbol SYM,
which was defined in the root; i.e., NEW is assigned
relative location 1234.

ANY assigned next location after highest address of
the previqusly linked nonfloatable overlay.

4-15 AX08

LDEF / LIB

LDEF FIND,%

QUIT

LIB Directive

FIND assigned next location after highest address of
the root or any previously linked non floatable
overlay. (A previous nonfloatable overlay was named
SECOND; if it ended at location 1566 and this is the
highest address ever reached during the linking of
object units constituting this bound unit, FIND
would be assigned location 1567.)

The LIB directive designates a directory as the secondary directory. This directory permits the linking
of object units that are in a directory other than the primary directory. If the Linker cannot find in the
primary directory an object unit specified in the LINK or LINKN directive, the Linker then searches the
secondary directory.

If LIB is not specified, there is no secondary directory; the Linker searches only the primary
directory.

The LIB directive must be specified before the first LINK or LINKN directive that requests the
linking of an object unit that is not in the primary directory.

The specified secondary directory remains in effect until the LIB directive is respecified with a
different directory name.

FORMAT:

LIB path

PARAMETER DESCRIPTION:
path

Pathname of the directory being designated as the secondary directory. A simple, relative, or
absolute pathname may be specified. (Methods of specifying pathnames are described in
Section 1.)

Example 1:

LIB DIR>SECND
This directive designates that DIR > SECND is the relative pathname of the secondary directory.

Example 2:

This example illustrates usage of a secondary directory, which contains object units W.O, Y.O, and
Z.O.

LIB DIR>SECND

LINK B

LINK A

LINK W

LINKER

Designates that DIR>SECND is the relative pathname
of the secondary directory.
Requests the linking of object unit B.O; B.O resides
in the primary directory.
Requests the linking of object unit A.O; A.O resides
in the primary directory.
Requests the linking of object unit W.O; W.O resides
in the secondary directory. DIR>SECND>W.O is the
full pathname ofW.O, as expanded by the Linker.

4-16 AX08

LIB / LINK

All specified object units in the primary directory are linked first; then all specified object units in the
secondary directory are linked. To cause object units to be linked in a specific order, the LINKN
directive must be used.

LINK Directive
The LINK directive specifies that the Linker link one or more specified object units. Each specified

object unit name is put into the link request list. The object units are linked each time a directive other
than LINK or START is encountered. When this occurs, the Linker searches the primary directory and
links the specified object units in the order in which they were requested. If all of the object units are
not found and there is a secondary directory, the Linker searches the secondary directory and links
specified object units, in the order in which they were requested. If there is a copy of an object unit in
both the primary and secondary directory, the copy in the primary directory is linked.

The order in which object units are linked is important for the following reasons: (1) it determines
which object units will be in memory simultaneously and which object units will overlay other object
units and (2) within the root and each overlay, the first start address encountered by the Linker (either
in an END statement or a START directive) is used as the start address for that root or overlay.

During each execution of the Linker, at least one LINK or LINKN directive must be entered. Multiple
LINK directives can be specified within a single root or overlay. If LINK and/or LINKN directives
request that the same object unit be linked more than once within a single bound unit, only the first
request is honored.

LINK directives can be embedded in assembly language CTRL statements; the specified object unites)
are added to the link request list immediately following the object unit in which they were embedded.
See "LINKN Directive" for the order in which object units are linked if there are embedded LINK
directives and/or LINKN directives.

FORMAT:

LINK obj-unit 1 [,obj-unit2]

PARAMETER DESCRIPTION:
object-unitn

Name of an object unit to be linked. An object unit name must be one to six alphanumeric
characters and not include a suffix; the first character must be a letter or a dollar sign ($). The
Linker will search for the specified object unit name, with a .0 suffix.

Example I:

LINK FIRST

This directive causes the Linker to link the object unit named FIRST.O . The primary directory is
searched first; if FIRST.O is not found, the secondary directory, if any, is searched.

Example 2:

LIB SECOND> FILE
LINK R
LINK T

The above LIB directive designates that SECOND> FILE is the pathname of the secondary directory.
In this example, object unit R.O is in the secondary directory, and object unit T.O is in the primary
directory. .
The above LINK directives will link T.O before R.O, since T.O is in the primary directory.

Example 3:

LINK A,B,C,D

LINKER 4-17 AX08

LINK / LINKN

This directive causes the Linker to link the object units named A.O, B.O, C.O, and D.O. If the
primary directory contains B.O, and the secondary directory contains A.O, C.O, and D.O, the object
units are linked in the following order:

B.O
A.O
C.O
D.O

LINKN Directive
The LINKN directive causes object units to be linked in the following order:

1. Object units previously specified in LINK directives, and any object units requested in embedded
LINK directives. The object units are linked in the order in which they are found by the Linker.

2. First (or only) object unit specified in the LINKN directive.
3. Object units specified in LINK and/or LINKN directives that are embedded in the object unit

linked as a result of step 2 above.
4. Additional object units, if any, specified in the LINKN directive; the object units are linked in the

order in which they were specified in LINKN, regardless of whether they are in the primary or
secondary directory. If an object unit contains an embedded directive to link another object unit,
the object unit designated in the embedded directive is linked after the object unit that contains
the embedded directive.

If directives designate that an object unit be linked more than once within a single bound unit, only the
first request is honored.

During each execution of the Linker, at least one LINKN or LINK directive must be specified.
Multiple LINKN directives can be specified within a single root or overlay.
LINKN directives can be embedded in assembly language CTRL statements; the specified object

unit(s) are added to the link request list immediately following the object unit in which they were
embedded.

FORMAT:

{L
LNINKN} obj-unitl [,obj-unit2] ...

PARAMETER DESCRIPTION:
obj-unitn

Name of an object unit to be linked. An object unit name must be one to six alphanumeric
characters and not include a suffix; the first character must be a letter or dollar sign ($). The
Linker appends the suffix .0 to each object unit name, and searches for the specified object unit
name, including the suffix.

Example 1:

LINKN X,W

This directive designates that the Linker link the object unit named X.O and then link the object unit
named W.O.

Example 2:

This example illustrates the order in which object units are linked if LINKN directives are used in
conjunction with LINK directives, and there are embedded LINKN directives.

LINKER 4·18 AX08

LINK A

LINK B

LINKN D,G

LINKN j MAPjMAPU

Requests the linking of object unit A.O; this name is
put into the link request list.
Requests the linking of object unit B.O; this name is
put into the link request list. In this example, B.O
contains an embedded LINK directive to link object
unit C.O.
Requests the linking of object units D.O and G.O

In this example, all of the specified object units are in the primary directory, and D.O contains an
embedded LINK directive to link object unit E.O.

When the LINKN directive is executed, the Linker will link the object units in the following order:

A.O (requested in first LINK directive)
B.O (requested in second LINK directive)
C.O (requested in a LINK directive embedded in object unit B.O)
D.O (first object unit requested in LINKN)
E.O (requested in an embedded directive in object unit D.O)
G.O (second object unit requested in LINKN)

MAP and MAPU Directives
MAP and MAPU directives cause a link map of defined symbols that were not purged and/or undefined

symbols to be written to a disk file for deferred printing (Le., it is written to the disk file name.M in the
working directory, unless the -COUT argument was specified in the ECL LINKER command) or to be
printed directly on the operator's terminal, another terminal, or a printer.

If MAP is specified, each defined and undefined symbol generated by the linking of object units is
listed in the map and preceded by the name of the object unit in which it is located. A map also includes
the names of object units that were linked because of embedded Linker directives, and the symbols
contained in those object units.

If MAPU is specified, the map contains each undefined symbol and the object unit in which it is
located.

MAP and MAPU directives can be interspersed among other Linker directives. When these directives
are encountered, all object units named in the link request list are linked before a map is produced. Maps
are useful for determining whether all required object units have been linked, and whether all symbols
referenced in those object units have been defined.

FORMAT:

{~~}
{~~PU}

Default: No map produced.
A full link map (a map generated by the MAP directive) comprises the following sections:

START

LOW

HIGH

LINKER

Address at which execution of the root or overlay
will begin; specified in the START directive or in a
linked object unit.
Lowest memory address at which the current root or
overlay was based.
Next location after the highest address of the current
root or overlay.

4-19 AXOB

MAP/MAPU

$COMM

CURRENT

EXT DEFS

UNDEF

Address assigned to unlabeled COMMON for the
bound unit.
Next location after the current address of the root or
overlay (when the map was created).
All external symbols currently defined in the symbol
table.' .
If an object unit contains no references to undefined
symbols, the object unit name is listed and no symbol
names are specified.
If object units contain references to undefined
symbols, the map indicates, for the root and each
overlay, the first object unit8 in which each symbol
was referenced and the relative address of the last
reference to each symbol; i.e., if an undefined symbol
is referenced in the root and an overlay or in two or
more overlays, the symbol will appear more than
once in the map. The last reference need not be in the
same object unit.
If there are external references in both P-relative and
immediate memory address forms to an undefined
symbol, the symbol is listed twice under UNDEF.

Figure 4-2 illustrates the formats of maps generated by the MAP and MAPU directives. In a
single-word (SAF) system, each address or value is specified in four hexadecimal digits; in a double-word
(LAF) system, each address or value is specified in eight hexadecimal digits.

* * bound unit name LINK MAP
* * START address
* * LOW address
* * HIGH address
* * CURRENT address

* * EXT DEFS
P ZHCOMMa

P ZHRELa

* * ROOT

0000 [0000]

0000 [0000]

base address of root
[pJ* object unit name base address of object unit

[pJ[~J symbol nameb addressc or value

P * object unit name

[p][~J SY~bOl name
b

base address of object unit

addressc or value

Figure 4-2. Link Map Formats

OMITTED IF MAPU SPECIFIED

'Unprotected symbols defined in the root or a previously linked overlay will appear in the map unless the symbols
are purged via a PURGE or BASE directive. Symbols erroneously defined as both a value and a location will appear
twice under EXT DEFS.

8The first reference may occur in the root or a previously linked overlay.

LINKER 4-20 AX08

* * [p}
[pJrc]

OVLY
object unit name

symbol b name

base address of overlay
base address of object unit

addressc or value

MAP/MAPU /OVLY

OMITTED I; MAPU SPECIFIlD

[pJ* object unit name

[pJ~] symbol b name

* * UNDEF
* b' , d P 0 Ject unlt name

[symbo 1 name b

P * b' 't d o Ject Unl name
[SymbO 1 name b

P - Protected symbol

base address of object unit

addressc or value

base address of object unit
address of most recent referencee]

base address of object unit
address of most recent referencee]

M - Multiply defined symbol
C - Symbol defines labeled or unlabeled common

aZHCOMM and ZHREL are reserved symbol names; they appear on every
map as protected symbols. ZHCOMM is located at unrelocatable
zero. ZHREL is located at relocatable zero.

bThe map contains the names of all external symbols currently
defined in the symbol table. If there are external references in
both P-relative and immediate memory address forms to an undefined
symbol, the symbol is listed twice under UNDEF.

cTo find a location definition, add the relocation factor at load
time to the address shown on the map.

dAll object units linked are listed under UNDEF, even if they con­
tain no unresolved references.

eWithin the root or a single overlay, the latest reference to an
undefined symbol need not be in the object unit that contained the
first reference to the symbol. For each undefined symbol, the fol­
lowing information is given under UNDEF: name of the first object
unit that contains a reference to the designated symbol, and the
relative address of the most recent reference.

Figure 4-2 (cont.) Link Map Formats

OVL Y Directive
The OVL Y directive assigns the specified name and a number to the nonfloatable overlay that

immediately follows, and designates the end of the preceding root or overlay.
OVL Y must be specified as the first directive of each nonfloatable overlay.
The Linker assigns a two-digit number to each overlay. Overlays are numbered sequentially, in

ascending order; the first overlay is 00.

FORMAT:

OVLY name

LINKER 4-21 AX08

OLVY /PROT

PARAMETER DESCRIPTION:
name

Name of the nonfloatable overlay that immediately follows; the overlay name must comprise one
to six alphanumeric characters; the first character must be alphabetic.

Example:

LINKER BU

LINK A
LINK B
MAP
OVLY A2

LINK X
LINK Y
MAP
QUIT

Protect Directive

Loads the Linker and designates BU as the bound
unit name.

Designates the end of the root (which comprises
object units A.O and B.O) and specifies that the next
overlay is a non floatable overlay named A2. The
Linker assigns the number 00 to this overlay.

The protect directive prevents certain symbols and/or object unit names from being removed from the
symbol table. Symbols that identify addresses from the first operand through the second operand are
protected, and object unit names equated to addresses within that range are protected. If a second
operand is not specified, the symbol at the address of the first operand and any other symbols or object
unit names equated to that address are protected. Once a symbol or object unit name is protected, it
cannot later be purged.

FORMAT:

PROT %
} X'address' ~ $ I

{PT)=object-unit-name
~xdef

PARAMETER DESCRIPTIONS:
$

[\
$ IJ
%

, X'address'
:~~~ect-unit-name

Next location after the highest address of the linked root or previously linked non floatable
overlay.

%
Highest address+ I ever used in the linked root or any previously linked non floatable overlay.

address
Hexadecimal address comprising one to four integers enclosed in apostrophes and preceded by X.
The specified address is relative to the beginning of available memory (relative 0) in the memory
pool.

=object-uni t-name
Specified object unit's base address.

LINKER 4-22 AX 08

PROT/PURGE

xdef
Address of any previously defined external symbol.

Example 1:

PROT X'1234',X'4565'

This directive protects symbols and object unit names that identify addresses from 1234 through
4565.

Example 2:

PT =FIRST

This directive protects symbols that identify the base address of the object unit FIRST, and all
symbols equated to that address. The base address of FIRST is determined by producing a link
map (see "MAP and MAPU Directives").

Example 3:

PROT SYM,X'5555'

This directive protects symbols that identify addresses from the address of the previously defined
external symbol named SYM through 5555; object unit names equated to those addresses also are
protected.

PURGE Directive
The PURGE directive causes the Linker to remove from the symbol table unprotected symbols that

define addresses from the first operand through the second operand, and/or object unit names equated to
addresses within that range. If a second operand is not specified, the symbol at the address of the first
operand and any other symbols or object unit names equated to that address are purged.

An object unit currently being linked may contain definitions used for previously linked object units
that won't be used for subsequent object units to be linked. By removing from the symbol table symbols
that are no longer required, there is more room for symbols that will be required by subsequently-linked
object units.

NOTES: 1. Undefined symbols cannot be purged.
2. Symbols and object unit names that are protected by a protect directive cannot be

purged.
3. Only symbol addresses (not values) can be purged.

FORMAT:

PURGE % %
{PE } X'a~dress' . ' X'a~dress'. '.

1
$ ~[~$ ~]
=obJect-unlt-name() =obJect-unIt-name(I
xdef J \xdef }

PARAMETER DESCRIPTIONS:
$

Next location after the highest address of the linked root or previously linked nonfloatable
overlay.

LINKER 4-23 AXOB

PURGE / QUIT

%
Highest address+ 1 ever used in the linked root or any previously linked non floatable overlay.

address
Hexadecimal address comprising one to four integers enclosed in apostrophes and preceded by X.
The specified address is relative to the beginning of available memory (relative 0) in the memory
pool.

=object-unit-name
Specified object unit's base address.

xdef
Address of any previously defined external symbol.

Example 1:

PURGE X'1234',X'4565'

This directive purges symbols that identify addresses from 1234 through 4565, and object unit
names equated to addresses within that range.

Example 2:

PE =FIRST

This directive purges symbols that identify the base address of the load unit FIRST, and any other
symbol names equated to that address. The base address of FIRST is determined by producing a
link map (see "MAP and MAPU Directives").

Example 3:

PURGE SYM,X'5555'

This directive purges symbols that identify addresses from the address of the previously defined
external symbol SYM through 5555; object unit names equated to addresses within that range also
are purged.

QUIT Directive
The QUIT directive designates that the last Linker directive has been entered. Specify QUIT after the

last (or only) overlay, or at the end of the root if there are no overlays.
If a bound unit is being created, execution of the Linker terminates after the bound unit has been

created.
If no bound unit is being created, QUIT terminates execution of the Linker.

FORMAT:

{g¥IT}

LINKER 4-24 AX08

SHARE / START / SYS

SHARE Directive
The SHARE directive designates that the bound unit is shareable; i.e., it will be loaded into the

system pool and if another task requests that the bound unit be loaded, instead of another copy of the
bound unit being loaded, the existing copy in memory is used. The bound unit must have reentrant code,
but the system does not check to see that it does.

SHARE must be specified in the definition of the root before the first overlay is defined.
SHARE directives can be embedded in assembly language CTRL statements.

FORMAT:

{~~RE}

START Directive
The START directive designates the relative location within a root or overlay at which execution of

the root or overlay will begin once it is loaded into memory by the Loader.
If a linked object unit contains a start address (an Assembler or compiler END statement was

specified) and the START directive is specified, the first start address encountered (in either a START
directive or an END statement) is used by the Linker for that root or overlay.

FORMAT:

{ SST TART} symbol

PARAMETER DESCRIPTION:
symbol

Name of the external symbol whose address designates the relative address at which the root or
overlay will begin executing.
Default: Start address specified in the first linked object unit that has a start address. If the
symbol is never defined or a start address is not found, the start address is relocatable O.

SYS Directive
The SYS directive designates that the bound unit bein created can be used as a system task in the

system task group. To use the bound unit in a system task group, it must be loaded during system
configuration using the LDBU configuration directive, which is described in the "Systeln Startup and
Configuration" section of the System Control manual. If SYS is not specified, the CLM Loader will not
load the bound unit. The SYS directive can be embedded in assembly language CTRL statements.

FORMAT:

SYS

Example:

SYS

If source units are written to create a function not provided by the MDT operating system and the
SYS directive is specified during linking, the bound unit created can be loaded during system
configuration and the capability it provides can be used.

LINKER 4·25 AX08

VDEF

VDEF Directive
The VDEF directive assigns a value to an external symbol. A symbol should be defmed only once, as a

value or as a location. When a symbol is defined, its definition is put into the Linker symbol table so
that it can be used during linking to resolve external references.

FORMAT:

{V
VDFEF} symbol,X'value'

PARAMETER DESCRIPTION:'
value

Value of the designated symbol~ must be a one-word hexadecimal integer enclosed in apostrophes
and preceded by X.

Example:

VDEF XMP,X'12'

This directive assigns the value 12 to the symbol XMP.

EXAMPLE ILLUSTRATING USAGE OF THE LINKER

LINKER TEST -COUT >SPD>LPTOO

START LOC
1ST INITST
LINK OBJI
LIB /\DSK03
LINK OBJ2
OVLY ABLE

LINKN OBJ3
LINKN OBJ4
PROT =OBJ3

MAP
OVLY BAKER

LINKN OBJS
LINKN OBJ6
PROT =OBJS
MAP
OVLY DOG

LINKER

The bound unit will be a relative file named TEST
created in the working directory. Link maps will be
prin ted on the printer configured as LPTOO.

Defines the beginning of initialization code.
Requests that OBJ 1.0 be linked.
Names secondary directory.
Requests that OBJ2.0 be linked.
Causes OBJl.O and OBJ2.0 to be linked, designates
the end of the root, and specifies that a nonfloatable
overlay named ABLE immediately follows. The
Linker assigns the number 00 to this overlay.

Protects the symbol OBJ3. This symbol is protected
because a subsequent overlay may be loaded starting
at the base address of OBJ3.0 .
Requests a link map.
Designates the beginning of the nonfloatable overlay
named BAKER. The Linker assigns the number 01 to
this overlay.

Protects the symbol OBJS.

Designates the beginning of the non floatable overlay
named DOG. The Linker assigns the number 02 to
this overlay.

4-26 AX08

BASE =OBJ5

LINK OBJ7
MAP
OVLY FOX

BASE =OBJ3

IN /\DSK01>MYFILE

LIB /\ DSK02> MYLIB

LINK OBJA
LINK OBJB
MAP
OVLY X-RAY

BASE =OBJ5

LINK OBJC
MAP
FLOVLY FLOAT

LINK OBJE
MAP
QUIT

PROGRAMMING CONSIDERATIONS

The overlay named DOG will be loaded starting at the
address where overlay BAKER began.

Designates the beginning of the nonfloatable overlay
named FOX. The Linker assigns the number 03 to
this overlay.
FOX will be loaded at starting address of overlay
ABLE.
Designates that the primary directory now is the
directory named /\DSK01>MYFILE.
Designates that the new secondary directory is named
/\DSK02> MYLIB; if necessary, this directory will be
searched after the primary directory.

A nonfloatable overlay named X-RAY immediately
follows. The Linker assigns the number 04 to this
overlay.
X-RA Y will be loaded starting at the beginning
address of BAKER.

Designates that a floatable overlay named FLOAT
immediately follows. The Linker assigns the number
05 to this overlay.

1. While processing object units, the Linker creates a work file LNKWRK.W in the working
directory. This file is a variable sequential file. It is initially allocated with 50 control intervals
of 256 bytes each, but it can be expanded to the amount of space available in the working
directory.

2. If the relative output file is preallocated, it must have the same name as that specified in the
name argument of the ECL LINKER command, it must be a fixed, relative file, and it must have
a record size of 256 bytes.

3. If multiple object units contain labeled and unlabeled common, the object units will be linked
with common blocks appeapng in the following order:
a. Labeled or unlabeled common (defined in first object unit linked)
b. First object unit (including external references and definitions)
c. Labeled common (defined in second object unit linked)
d. Second object unit (including external references and definitions)
e. Object unit n

4. A root or any overlay may reference any symbol defined in any other root or overlay including
"common" symbol definitions. A common area cannot, however, be initialized in any overlay
other than the one in which it initially occurs (is made known to the Linker).

5. Relocation can occur during one or both of the following procedures:

LINKER

a. Assembly; by specifying an ORG statement, subsequent object text within the object unit
is relocated. (See the Assembly Language Reference Manual.)

b. Linking; by specifying the BASE directive, subsequent object units to be linked within the
root or overlay have a specified relative load address. (See "BASE Directive" earlier in this
section.)

4-27 AX08

Example:

Described below are three methods of relocating a unit so that it is executed at relative location
100 within the memory assigned to the bound unit. This unit will constitute a root.

Method I:

Assembly

ORG X'OIOO'
before the first line
of executable code.

Linking

Don't specify
BASE directive.

Method II: Don't specify ORG. Specify
_____ (Default is..Q.L __ ~ASE X'IOO' __
Method III: ORG X'IO' BASE X'FO'

6. When relocating object units or non floatable overlays during the assembly or linking procedure, it
is your responsibility to ensure that code is not inadvertently overwritten.

7. If more than six characters are specified for an object unit name or symbol name, or more than
eight characters are designated for a bound unit name, subsequent characters are truncated.

8. Forward external references with offsets are not permitted. If the Linker encounters them, an
error message is issued and execution of the Linker terminates.

9. COlnmon definitions may appear more than once in object units being linked. Only the first
occurrence of either a labeled or unlabeled common definition block is used to reserve the
defined an10unt of memory. Therefore, the largest definition of labeled or unlabeled common
should be linked first. Common blocks are allocated space by the Linker by assigning the
current location counter (address) to the symbol name, and then incrementing the current
location counter by the size of memory specified for the common block.

10. A BASE directive in the root or an overlay cannot specify an address less than the beginning of
that root or overlay; i.e., it cannot be less than the first word of the first object unit linked in
that root or overlay.

11. If BASE $ or BASE % is specified in the root, it is equivalent to BASE O.
12. The start address of the root or an overlay must be in the first 32K-l words.

LINKER 4·28 AX08

SECTION 5

DEBUGGING PROGRAMS

While a program is executing, it can be debugged by using Debug. If there is not enough room in
memory for Debug, you can debug a program by temporarily leaving space in the program or by using
Patch to append monitor points. (See "Debugging Programs Without Using Debug" later in this section.)

DEBUG

Debug provides patching and testing facilities for application programs running under the operating
system. Debug runs as its own task group.

Program testing and error correction is performed as an interactive dialogue between the operator and
Debug. Execution of Debug is controlled by directives entered to Debug. Addresses used with Debug are
system-wide absolute memory addresses; therefore, Debug directives are effective across task and task
group boundaries. Debug directives are entered through the device designated during loading of Debug as
the directive input device. The directive input device usually is a terminal.

The following functions can be performed using Debug:

o Define, store, and execute (either immediately or after a delay, depending on the directive) a
sequence of directives either entered through the input device, or referenced when a breakpoint
directive or trace trap (BRK generic instruction) is encountered in the load unit being tested.·

o Set, clear, or print breakpoints in task code to monitor task status. (Breakpoints are described in
detail later in this section.)

o Display, change, and dump either memory or registers; information may be printed on a line
printer, the operator's terminal, or another terminal.

o Evaluate expressions.

Debug File Requirements
If predefined or delayed execution Debug directives are to be used, they are stored in a preallocated,

relative disk file DEBUG.WORK (these directives are identified and described in Table 5-2, "Summary of
Debug Directives, by Function," later in this section). The file DEBUG.WORK must be in the volume
major directory of the disk device referenced in the specify file (SF) directive. (The SF directive is
described later in this section.)

Loading the Debug Task Group
During initialization, you must specify in a MEMPOOL configuration directive a memory pool large

enough for Debug. (MEMPOOL is described in "System Startup and Initialization" in the System
Control manual.) The identification of the pool to be used by Debug must be $0. The pool must
comprise a minimum of 3500 words.

1 Breakpoints and trace traps either cause a specified Debug directive line to be executed or interrupt execution of the task so that its status
can be determined. '

DEBUGGING PROGRAMS 5-1 AX08

Example:

MEMPOOL ,$D,3500

This MEMPOOL directive creates a nonexclusive memory pool comprising 3500 words that can be
specified when the Debug task group is loaded into memory.

To load Debug, enter through the operator's terminal either the spawn group (SG) command or both
the create group request and the enter group requ-est commands (see the "Execution Control Language"
section of the System Control manual for descriptions of these commands).

NOTE: To load Debug, you must enter command(s) through the operator's terminal. However, you
can designate in the spawn group command or enter group request command that Debug
directives will be entered through another specified terminal.

The identification for the Debug task group must be $D. To achieve control over the task code being
tested, Debug must be given a priority that is higher than that assigned to the task code, but lower than
that given to the directive input device and optional printer used by the operator for dialog. DEBUGDB
is the name of the bound unit that contains Debug.

The following examples illustrate both of the methods of loading Debug. Example 1 illustrates a
spawn group command. Example 2 illustrates a create group request and an enter group request. The
following description applies to both examples:

The Debug task group's identification is $D, your identification is GALE.TECH, and the priority level
of Debug is 12. Directives to Debug will be entered through the operator's terminal, which is
identified by its pathname > SPD> CONSOLE. The bound unit DEBUGDB will be loaded, if
necessary, and executed by the task group's lead task.

Example 1:
Loading Debug by a spawn group command:

SG $D GALE.TECH 12 >SPD> CONSOLE -EFN DEBUGDB

Example 2:
Loading Debug by create group request and enter group request commands:

CG $D 12 -EFN DEBUGDB
EGR $D GALE.TECH >SPD>CONSOLE

NOTE: The operator's terminal is controlled by a system software component called the operator
interface manager (OIM) that provides a standard means by which all tasks can
communicate with an operator. OIM keeps track of the messages output to the operator's
terminal by providing the task group identification in the prefix to each message. If you
are entering Debug directives through the operator's terminal, it is recommended that you
designate Debug as the OIM default task group; otherwise, each Debug directive must be
preceded by 6. $D 6.. To designate Debug as the OIM default task group, enter the
following command at any time prior to entering the first Debug directive:

~C~:$D:

Debug Directives
Debug directives consist of only a directive name or a directive name and one or more parameters.

Within a directive, parameters are separated from each other by one or more spaces. All parameter values
are entered using hexadecimal notation.

Multiple Debug directives can be entered on a single line. Each directive, except the last, must be
followed by a semicolon (;).

Press RETURN at the end of each line (i.e., immediately after the last or only directive).
Symbols used in Debug directive lines are described in Table 5-1.

DEBUGGING PROGRAMS 5-2 AX08

Symbol Type

Arithmetic Operators
plus sign (+)
minus sign (-)
K

Address Operators
period (.)

ampersand (&)

brackets [] a

Reserved Symbols
$Bn
$Rn

$P
$1
$S

$SL
G through Z

Notational Symbols
braces {} a
ellipses ...
delta (1).)

Debug Language
parentheses ()

exp
rexp

*

TABLE 5-1. SYMBOLS USED IN DEBUG DIRECTIVE LINES

Performs addition.
Performs subtraction.

Meaning

Multiplies a hexadecimal integer by 1024 decimal (400 in hexadecimal) when K is the last
character of an integer expression.

Represents the last start address used in a previous memory reference directive
(DH,CH,DP).
Represents the address of the next location beyond the last one used by a previous
memory reference directive (DH,CH,DP).
Signifies the contents of the location defined by the expression within the brackets.
Three levels of nesting may be used.

Contents of base register n of the active level. The values 1 through 7 can be used for n.
Contents of the data register n of the active level. The values 1 through 7 can be used for
n.
Contents of the program counter of the active level.
Contents of the indicator register of the active level.
Contents of the system status register (level number and privilege bit only) of the active
level.
Represents the value of the level number of the active level.
Twenty single-character symbols having initial values of zero. Values may be assigned
using the AS directive.

Indicate optional parameters.
Indicates the ability to repeat parameters within braces.
Indicates one or more spaces.

Indicate directive or header information to be stored for later use. Unmatched right
parenthesis results in an error. A right parenthesis that is paired with the first left
parenthesis terminates the directive definition.
Indicates a valid expression formed using expression elements.
Consists of eXPl /exP2, where eXPl is a hexadecimal number that is a value or a location;
exp2 is an optional hexadecimal repeat factor whose value must be between I and
32,767. If exp2 is omitted, the value of eXPl is assumed.
Separation character between directives on the same line.
Signifies "all" in certain print, clear, an d list directives.

aIn this section, brackets and braces have special meanings, as described above. In each other section, they are interpreted differently (see
"Symbols Used in This Manual," in the "Overview" section).

Table 5-2 summarizes Debug directives by function. These directives are described in detail
alphabetically on the following pages. In each directive's format, it is assumed that Debug was previously
designated as the OIM default task group, so 1). $D1). is not specified before each directive name.

NOTES: 1. Pay careful attention to the format of each directive, because the usage of delimiters, if
any, between a directive name and the first (or only) parameter varies according to
which directive is being specified.

2. If a directive has a parameter in which you may specify the logical resource number Om)
of the device on which information will be printed, Debug uses the specified device
without first determining whether the device has been reserved for exclusive use by
another task; i.e., Debug bypasses the MDT file system.

DEBUGGING PROGRAMS 5-3 AX08

TABLE 5-2. SUMMARY OF DEBUG DIRECTIVES, BY FUNCTION

Directive
Function Name Meaning

Directive line definition Dn Define directive line n
and handling En Execute directive line n

p* Print all predefined directive lines
Pn Print directive line n

Breakpoint control C* Clear all breakpoints
Cn Clear breakpoint n
GO Proceed form breakpoint
L* Ust all breakpoints
Ln Ust breakpoint n and associated directive line
Sn Set breakpoint n

Trace trap control DT Define trace directive line
PT Print trace directive line

Active level control SL Set active level
TL Set temporarily active level

Memory and AR Print contents of all active level registers
register control CH Change memory

DH Display memory in hexadecimal
DP Dump memory in hexadecimal and ASCII

Symbol control AS Assign a hexadecimal value to symbol
VH Print value of expression in hexadecimal

General execution AL Activate level(s)
Hn Print header line
LL Specify line length of operator's terminal or another terminal currently in use
RF Reset me location
SF Specify file location

NOTES: 1. The memory and register control directives (AR, CH, DH, and DP) apply to registers on the active level.
To determine which level is the active level and/or to set the active level to a specified value, see
"Determining/Setting the Active Level" below.

2. The following directives are predefined or delayed execution directives and are stored in the file
DEBUG.WORK: Sn, Hn, Dn, DT

Planning Considerations

Setting Breakpoints
Breakpoints can be set to trap at selected task code locations. At breakpoints, memory and register

values can be displayed and changed. In this way, a task can be executed, the values of its variables
checked as execution proceeds, code modified, and if necessary, variable values changed in order to test
the sequence of code up to the next breakpoint.

Following are guidelines for setting breakpoints:

1. Breakpoints can be set in a task group (or in an overlay in a task group) only when the task
group/overlay currently is memory resident and all bound units for the task group have been
loaded into memory by the Loader.

2. Breakpoints may not be set in code that will be executed at the inhibit level.
3. If sharable code contains breakpoints, each task that uses the code encounters the breakpoint,

regardless of which task group the task is in.

Breakpoints are set by specifying the set breakpoint directive (Sn); the detailed description of Sn
includes additional rules for specifying breakpoints.

DEBUGGING PROGRAMS 54 AX08

AL

Determining/Setting the Active Level
The active level is the priority level currently in effect. Some directives are effective only on the active

level. You must initially establish a level as the active level by specifying the set level directive.
Thereafter, the active level assumes the value that will most probably be needed, based on the Debug
action in progress; i.e., breakpoint, trace trap, or temporary reference to a different level.

If you want to do something on another priority level, you can change the active level by respecifying
the set level directive (SL) or temporarily designate another level as the active level by specifying the set
temporary level directive (TL); in. the latter case, the level is considered the temporarily active level.
After the desired actions are performed on the temporarily active level, the active level reverts to the
level specified in the previous set level directive.

Following are guidelines for determining which level is the active level, and methods of setting the
active and temporarily active level.

1. The set level directive (SL) sets (or changes) the active level. The specified level becomes the
default level accessible by the operator's terminal or another terminal that is the directive input
device.

2. The set temporary level directive (TL) designates a level as the temporarily active level; this
permits you to display or alter registers of a level different from the default terminal level without
actually changing the terminal level.

3. Whenever input from the operator's terminal or another terminal is processed, the active level is set
to the level of that device. After the input is processed, the level reverts to what was specified in
the last SL directive.

Deactivating Real-Time Clock
Some applications require that the real-time clock (RTC) be activated at load time. While the clock is

turned on, the CPU is difficult to use in single instruction mode because the RTC is continually
generating an interrupt at clock level 4. In the early stages of application debugging, it may be useful to
turn off the clock to facilitate "stepping" through a code sequence without interference. This is easily
done using the capability of executing a single instruction from the DO register, as described in the
following procedure.

To turn off the clock, use the capability of executing one instruction from the instruction register
(whose selection code is DO) to execute an RTCF instruction while in single instruction mode. Perform
the following steps:

1. Press Stop,and record value in EO
2. SelectDO; change to 0005
3. Press Execu te (this turns off clock)
4. Select DO; change to 0000
5. Select EO; change to recorded EO halt address
6. Press geady and E-xecute

Maintaining a Trace History
When using Debug with disk-stored directive lines that execute upon encountering a trap or a

breakpoint, a trace history may be maintained on a line printer.

Activate Level Directive
The activate level directive (AL) activates a priority level corresponding to each specified expression

FORMAT:

ALi}.exp f i}.expi}. ... ~

PARAMETER DESCRIPTION:
exp

Priority level to be activated.

DEBUGGING PROGRAMS 5-5 AX 08

AL / AR / AS / C *

Example:

AL A A+2

This example activates priority levels 10 and 12 (decimal)

All Registers Directive
The all registers directive (AR) causes the printing of all registers for the active level.

FORMAT:

AR {/lrn}

PARAMETER DESCRIPTION:
/lrn

Logical resource number of the device on which the printout will occur.
Default: Operator's terminal

Example:

AR/3

This example causes the contents of all the registers for the active level to be printed on the device
referred to as logical resource number 3.

Assign Directive
The assign directive (AS) assigns a specified hexadecimal value to a specified symbol; this directive is

used to alter registers of the active level, and reserved symbols.

FORMAT:

AS6sym.1exp{.1sym.1 exp ... }

PARAMETER DESCRIPTIONS:
sym

Register or reserved symbols G through Z.

exp
Hexadecimal value that will be assigned to the specified register or symbol.

Example:

AS $RI -2 X 1408 $B7 X+IS

This example causes -2 to be assigned to data register 1, 1408 to be assigned to the reserved symbol X,
and 141 D to be assigned to base register 7.

Clear All Directive
The clear all directive (C*) clears all defined breakpoints.

FORMAT:

C*

DEBUGGING PROGRAMS 5-6 AX08

