HONEYWELL BULL- SPECIFICAT
BILLERICA 6016

ON NUMBER DISTRIBUTION SHEETS REV
90 CODE

I
5904 1/xx

CUSTO
SPECIAL PRODUCTS

M _AND TITLE:
ENGINEERING PRODUCT SPECIFICATION

PREPARED BY
R Lemay 16-BIT CUSTOM PROCESSOR

APPROVED BY

REVISION
1
2
3

This
1.

AUTHORITY DATE SIGNATURE SHEETS AFFECTED
Ultimate _ 03MARS82 R. Lemay all
Ultimate 17MAY84 R. Lemay all

Honeywell Bull 04JAN88 R. Lemay see note

revision is being issued:

to reflect a change in the documentation structure. Prior to
this revision, thé specification data contained in this
document and the Technical Description were combined.

%o a?nounce "THE TRANSFER LANGUAGE COMPILER" (see Section
our).

to expose enhancements introduced in the redesign of the
product (see Appendix A).

HONEYWELL BULL CONFIDENTIAL AND PROPRIETARY

16-BIT CUSTOM PROCESSOR SPECIFICATION (60165904)

" PAGE i-1

TABLE OF CONTENTS

SECTION 1 INTRODUCTION

1.
1.
1.
1.
1.

1
2
3
4
5

SECTION

2.
2.

~

Z2.
2.
2.
2.

1
2
3
4
5
6

SECTION

3.
3.
3.

1
2
3

SECTION

4.

1

Purpose
Scope
Disclaimer
References
Acronyms

2 THE FIRMWARE DICTIONARY

Naming.Conventions

Addressing and Sequencing

Glossary

External Control and Synchronization
Declarations

Micro—operations

3 ' FLOWCHARTING CONVENTIONS

The Symbology
Addresses
Flow

3.3.1 Two—way Choice
3.3.2 Splatters

4 TRANSFER LANGUAGE
Source File Format

4.1.1 Line Length

4 White Space

.1.2
4.1.3 Valid/Invalid Characters
4.1.4 Comments

PAGE i-1

TABLE OF CONTENTS

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

16-BIT CUSTOM PROCESSOR SPECIFICATION (60165904) PAGE i-2

4.2

PAGE i-2

Lexography -
4.2.1 Case . -
4.2.2 Source File Length -
4.2.3 Statement Terminator -
4.2.4 Literal Text Block o -
4.2.5 Literal Text Block Restrictions -
4.2.6 Literal Text Block "Compilation" -
4.2.7 Reserved Words -
Organization of Source File -

4.3.1 Statement Types
4.3.2 Commentary .)
4.3.3 Pre—-processor Directives

4.3.3.1 Include '<gathname>'
4.3.3.2 Skip <count>

4.3.4 Local Definitions

4.3.4.1 <identifier> EQU <predefined identifier>
4.3.4.2 <identifier> CONST <integer constant>
4.3.4.3 <label> EXTERN

4.3.4.4 <label> PUBLIC

4.3.5 Block Definitions
4.3.5.1 Block Definition
4.3.5.2 End
4.3.5.3 Preserves
4.3.5.4 Saves

4.3.6 Procedure

Bl e e e e T I e Ll Y Y Yt Y Y e Y R N Y S Y Y G O O A Y Y Y Y
|
HHRERFWOWVWVWEEEEO O] J AOGIOGWUT LT LTI W bbb B WW WWW W WD N

4.3.6.1 Operation Clause

3. Assignment Operation Clause
4.

4

Control Operation Clause .
Next Address Sgec1f1er Operation Clause
Default Next Address

Procedure Labels

.
-
.

WWwWww
fo Yo YoaYe 1o
AU WD

S

Expressions

4.4.1 Identifier

4.4.2 Integer Constant
4.4.3 Evaluation Range
4.4.4 Operators

4.4.4.]1 Parenthesis -
4.4.4.2 Unary Minus -
4.4.4.3 Unary Tilde -
4.4_4.4 Unary ++ and —— -
4.4.4.5 Unary Bracket Set -
4.4.4.6 Unary ADDR(-
4.4.4.7 Unary Select -
4.4.4.8 Binary Operators + and - -
4.4.4.9 Rotate Blnarg.Operators -
4.4.4.10 Underscore Binary Operator -10
4.4.4.11 Boolean_Blnarg Operators -10
4.4.4.12 Equal Binary Operator -10
4.4.4.13 Comma Binary Operator -11

TABLE OF CONTENTS

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

16-BIT CUSTOM PROCESSOR SPECIFICATION (60165904) PAGE i-3

4.5 Control Clauses 4-11
4.5.1 Stalls 4-11
4.5.2 Reads 4-11
4.5.3 Writes 4-11
4.5.4 Ldsynd 4-11
4.5.5 Procedure Fetch 4-12
4.5.6 Nofault 4-12

4.6 Next-Address-Specifier Clauses 4-12
4.6.1 Goto 4-12
4.6.2 Splatter 4-12
4.6.3 Call 4-12
4.6.4 Return, 4-13
4.6.5 Conditional 4-13
5 THE FIRMWARE DEVELOPMENT FACILITY

SECTION
5.1
5.2
5.3

PAGE i-3

FDF Interface
The Help Screen
The Command Set

5.3.1
5.3.2
5.3.3
5.3.4
5.3.5

Missing-Stall Catcher

Silo Commands

Run Controls

Register Dis la{s
Epilogue Controls
Firmware Array Commands

wm U1U|U1L'HU1 [SAREN RS}
O OJOWud W W N

TABLE OF CONTENTS

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

16-BIT CUSTOM PROCESSOR SPECIFICATION (601656904) PAGE 1-1

INTRODUCTION

The "sixteen-bit" custom rocessor is a nine megahertz, twenty-
four-bit wide, microprogrammable MEGABUS connected firmware engine
driven by a ninety-six-bit wide control store word and having a blank

identity.
1.1 PURPOSE

This sgecification imparts information which is necessary for an
who wish © microprogram the custom processor. Those who attemp

personalization, of "thé custom grocessgr need be capable of writin

and _ testing_ microcode. For testin microcode, ,(Custom and Specia

Products offers a Firmware Development Facility which greatly
simplifies the task (see section 5).

1.2 SCOPE

This document is intended for the prospective microprogrammer. It
describes the operation_ of _the sixteen-bit custom proceSsor at the
level of an_ experienced coder. Others such as test technicians,
might also find the information _useful but should refer to the
"TECHNICAL DESCRIPTION OF THE 16-BIT CUSTOM PROCESSOR" for a detailed
description of hardware and firmware operations.

In addition to this section, this document contains four other
sections.

Section, 2 contains the firmware dictionary which constitutes the
formal specification.

Section 3 contains flowcharting conventions.

Section_ 4 contains a specification for the Transfer Lan uage
Compiler. The Transfer Language allows firmware to be coded at the
reglister-transfer level rather than the "micro-operation" level.

.Section, 5 contains _a description ,of the Firmware Development
Facility which is available to minimize firmware checkout time.

PAGE 1-1 INTRODUCTION

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

16-BIT CUSTOM PROCESSOR SPECIFICATION (601656904) PAGE 1-2

1.3 DISCLAIMER
The firmware dictionarz of Section 2 serves as the specification
e

for the custom processor. T firmware dictionary shall govern in any
disagreement between it and other descriptive documents.

1.4 REFERENCES

In order to code firmware to execute on the CUP1l6, the following
additional documents may prove useful:

CUP1l6 logic block diagrams

for'the mother bdard 60156205

for the daughter board 60156210
Other related documents are:

16-Bit Custom Processor Technical Description 60165905

CUP16 Test procedUresS.cuueeeeeeeneeoccneesennns 71220271

RTL6 assembly language manualcceeeeen. LDA-021

ACRONYMS
See also Table 2-2

ACRONYM DEFINITION
C&SP Custom and Special Products
CuUP CUstom_Processor .
LBD Logic Block Diagram (Schematic)
FDF Firmware Development Facility
PROM Programmable Read-Only Memory
RAM Random Access Memory
SCRAM Stop Code RAM
PAGE 1-2 INTRODUCTION

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

16-BIT CUSTOM PROCESSOR SPECIFICATION (60165904) PAGE 2-1

CUSTOM PROCESSOR DICTIONARY

MODEL CUP-DICT-1984-05-17;
PARAMETERS ;
ROMDEF MAIN,96,16384,006F2000000000000000E000#,$SMCS ;\ -

L BB L AB | BS L AR
0 3 7 11 15

;AD; OP| SR ;SD; *% | RW RTM PS LDB;
16 19 23 27 31

[| D1, R D12 I
32 35 39 43 47

Z B L B ** | BR, , MK
48 51 55 59 63

L 1D, CMe S T
64 67 71 75 79

C K |BI R T TR T T L N T T T
80 83 87 91 95

where ** = F/W Parity checks
FIGURE 2-1

FIRMWARE FIELD BIT ALLOCATION

2.1 NAMING CONVENTIONS

Field, Micro, & Step names consist of alphanumeric
characters, hyphens, colons, &__apostrophes. They must start with
an alghabetlc character. Generally, the HYPHEN separates words, the
APOSTROPHE separates clauses, & the COLON means "equals" or

"receives". ("CLAUSE" here refers to descriptions of simultaneous
&/or independent actions.)

A double colon_is sometimes used to distinguish "partitioned"

%¥§8§§?rs. A terminal apostrophe signifies logica inversion

PAGE 2-1 CUSTOM PROCESSOR DICTIONARY

HONEYWELIL BULIL CONFIDENTIAL & PROPRIETARY

.

-

16-BIT CUSTOM PROCESSOR SPECIFICATION (60165904) PAGE 2-2

TABLE 2-1
PROM CHIP ALLOCATION

ELSE BANK | Part no. RLSZ.O]RLsz.l IF BANK |Part no.|RLS2.0|RLS2.1
bits 00-07|-setOlrv| L12D bits J0-07|-setl3rv| L10D

08-15] -set02rv| D11D 08-15f{-setl4rv| DO9D

16-23| -setQ3rv| F1l1D 16-23| -setl5rv| FO09D

24-31| -set0O4rv| J12D 24-31| -setl6rv| JO07D

32-39| -set05rv| LO7D 32-39|—-setl7rv| LO9D

40-47| -set06rv| JO09D 40-47]| —setl8rv]| J10D

48-55| -setQ7rv| L04D 48-55| —-setl9rv| LO6D

56-63| —set08rv| J04D 56-63| -set20rv| J06D

64-71| -set09rv|{ M12M 64-71| —set2lrvy M10M

72-79| -setlOrv|{ K12M 72-79|-set22rv| K10M

80-87| —-setllrv| MO7M 80-87| —-set23rv| MOS5S5M

88—-95| -setl2rv| NO7M 88-95| —set24rv| NO5S5M
"-set" is a one letter and three _digit PROM set number

distinguishing for 1instance, a dis cache from a 1750A
processor, an o
"rv" is the firmware revision number of the PROM set.

2.2 ADDRESSING AND SEQUENCING

Firmware steps 1in the CUP are identified by a "Control Store
Address" (CSA) & optionally a mnemonic label. In this discussion,
wherever reference is made to a CSA, it should be understood that the
associated_ _label may be substituted, but any restrictions on CSA
value still apply. "CSA's are 1l4-bit gquantities’ Values from 2000#
through 3FFF$ are _called the "If Dbank", 0000# through 1FFF# are
called the "Else bank".

Two CSA's are called "TWINS" if they differ by exactly 2000#.

A "SPLATTER BLOCK" _is a_group _of 16 If-bank CSA's which differ
only in their LSD (e.g., 2340,2341,2342,...,234F). An Else-bank CSa
is "said to "correspond” to an If-bank CSA 1f its twin is a member of
%gzz sage splatter block. Thus 0342 corresponds to 2349 or 2340 or

7 e C.

A_ "SPLATTER VECTOR" is a 4-bit value used, in whole or in part,

to select a CSA within a splatter block. This selection is

erformed b substituting the vector, through a specified mask, into
he LSD of the splatter block address.

. Firmware se%uencing in the CuP is never implicit nor
arithmetically defined =-- every step specifies its successor or
choice of successors.

(1) The succession may be unconditional. For example:
GO-TO(CSA) where CSA = any address in either bank
(2) The succession may involve a choice between an If-bank CSA
égSAI) & a corresponding Else-bank CSA (CSAE), dependlgg on
e eir

value of one o 64 "Test Conditions" "or
complements —--- for example:

IF-ACK(CSAI,CSAE)
branches to CSAI if "ACK" is true, else to CSAE.

PAGE 2-2 CUSTOM PROCESSOR DICTIONARY

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

16-BIT CUSTOM PROCESSOR SPECIFICATION (60165904) PAGE 2-3

(3) The succession may involve a choice among 2, 4, 8, or 16
members of a splatter block, depending on the number of
one-bits _in the mask. The choice within the (sub)block is
determined by the value of a specified splatter vector.

For example:
BR-PO(F,CSAI)

performs l6-way splatter to a member of the block
containing CSAI.

OR

BR-RAMAD(RAC,7,CSAI)
erforms 8-way splatter (0,1,2,...,7), controlled by the 3
SB of RAC.

OR

BR-RAMAD(RAC,E,CSAI)
erforms 8-way splatter (0,2,4,...,E), controlled by the 3
SB of RAC.

(4) Cases 2 & 3 may be combined. For example:
IF-FLAGTS BR-FLAGS(F,CSAE)
branches to CSAE _if FLAGTS5 is false, otherwise uses flag
c

T0,T1,T2,T3 to select an entry in the splatter blo
corresponding to CSAE.

S
k
(5) The succession may involve an unconditional subroutine exit.
for exampile:
~RETURN
exits to the CSA currently on "top" of the two-level return
stack. (At any time, any If-bank CSA may be "PUSH"ed onto
the stack.)
(6) The _succession may involve the election (by the subroutine)
of alternate exits. For example:
RETURN' (D)
exits to the CSA formed by the top stack entry <AND> FFFD#
(7) The_ succession may involve a choice, based on a test
condition, between® a subroutine exit_ (either normal or
alternate) and a continuation. For example:
IF-FLAGT6 RETURN(CSAE)

exits to the CSA at the top of the return stack only if
FLAGT6 1s true, else it continues to CSAE.

2.3 GLOSSARY

. . Symbols & abbreviations wused 1in descriptive comments are
given in Table 2-2. :

PAGE 2-3 CUSTOM PROCESSOR DICTIONARY

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

-

16-BIT CUSTOM PROCESSOR SPECIFICATION (60165904) PAGE 2-4

TABLE 2-2
DICTIONARY SYMBOLS AND ABBREVIATIONS (PART 1)

BIT #'S

MEANING

—
—

ADRS

ADRX

ALUF
ALUR
ALUS
ALUY
APLONG

APWRAP

08-31

08-31

08-31

08-31

AND
Bit position(s) or expression grouping e.g.
(3-?,9—11 enotes 3?4,5,6,9,?0, g_l? .
Data concatenation or separator of items in
a sequence of items_
Missing items in implied sequence
Receives) . o
Receives, shifted left one bit position
Receives, shifted right one bit position
Logical groduct éof multi-bit operands)
Greater than or Equal to,
Inclusive OR (of multi-bit operands)
Less_Than
Not Equal to Lo
Complement (of multi-bit operand)
EXclusive OR (of multi-bit operands)
Address register A, loaded from Z-bus; used
to supply address for most non-proceéural
data references
Address register B, loaded from Z-bus; used
to supply address for some non—proceéural
reads & most writes
Address_register P (actually a group of
several régisters), loaded from the Z-bus
and used to suﬁgly address for procedural
reads. If APLONG 1s false, ADRP_assumes a
512-byte frame size and can be loaded in
sections (see APLONG):
ADRPH (bits_ 08-22) 1s the frame number
which is changed infrequently. | | i
ADRPL (bits 23-31), the byte position in
the current frame, which is loaded by
every successful branch.) .
Two versions of ADRP are maintained:
One, "PCTR", available to F/W via the
D-bus, represents the current offset of
code Belng executed.
The other supplies ADRS, _.and thus the
address from which procedure is being
refetched. .
Selects Address_register ADRA, ADRB, ADRP,
or ADRX for delivery to the MEGABUS, the
local memory and/or the D-bus. Selection
-is latched when the request is initiated
and held until request 'is ACK'd or NAK'd.
Reglster retaining "the value of the_ MEGABUS
address bus durlp% the most recently
accepted unsolicited MEGABUS cycle.
Arithmetic/Logic Unit
ALU Function-generator, caBable of: Add,
Subtract, Inclusive-QR, AND, NAND,
Exclusive-OR, Exclusive—-NOR
ALU % ggand R, chosen from: SP(A), D-BUS,
or
ALU operand S, chosen from: SP(A), SP(B),
Q, or ZERO ,
ALU output Y (available as_ Z-bus source)
e%uals either ALUF_or SP(A)]
| If false, ADRP is load and carry is
partitioned 15/9 bits and procedure
related page faults are not allowed
Selects 512 or 8192 page size

PAGE 2-4

CUSTOM PROCESSOR DICTIONARY

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

16-BIT CUSTOM PROCESSOR SPECIFICATION (60165903) PAGE 2-5

TABLE 2-2
DICTIONARY SYMBOLS AND ABBREVIATIONS (PART 2)

TERM BIT #'S MEANING
—
ARAM 08-31 Address-register RAM, containing physical
translations of 16 register values
BUFFER-BOUND see "FRAME-BOUND")
CACHE A memory which remembers data associated

with recent references. The cache is
connected to the Custom Processor via a
"private" interface. This private inter-
face may instead connect a Local Memory.
CARRY C?ﬁgzlfrom MSB of ALU, as captured by
ALU ALUS ALUF CARRY

SIGN SEGN SIGN AgD R-S SIR

-+

+ 1

+ + - 0 0 0

+ - + 1 0 1

+ - - 0 0 1

- + + 1 1 0

- + - 0 1 0

- - + 1 1

- = - 1 0 0 .

CMDPAR In addition to address and data parity, a

parity bit on_the command leads
gccog ggles all MEGABUS transfers.
ee . :
CNFG An eight-bit_register which controls CUP
behavior. All_éight bits can be tested:
CMDPAR controls Command Parity on_ MEGABUS
CSTEAL controls CUP priority on MEGABUS
APLONG controls ADRP partitioning *
APWRAP controls assumed page sizé
FCODEl1 allows CUP to reinitjate gLTs
CNFGA,B,C determine_three bits o

"Who are you'" reply
Cs 00-95 Control Store (F/W) output
csa 88—%% Control Store Address

CSAE - Control Store Address in Else—-bank
(0000-1FFF) .

CSAl 00-13 Control Store Address in If-bank
(2000-3FFF) .

CSTEAL A mechanism which allows the CUP to behave

as a low_priority MEGABUS requestor even
vsvhenC géled into a high priority slot.
ee .

CYCLE 0-3 Auxiliary counter for selecting block
Wlthlng Custom Decoder PROM (May not be
changed & used in same FW steg)

D—-BUS 08-31 Data bus input to ALU &/or OUTR. Numerous

sources, including _concatenation of

differently sourcéd bytes
DOUBLE-ZERO =1 iff ALUF(08-31)=0 & IND(3)=1, as

captured by IND(.
FCODE1l A mechanism” which responds to special

MEGABUS cycle (function code_01l) which
(re)initiates the QLT regardless of the
current Custom Processor state. See CNFG.
FIRMWARE 00-95 The CUP executes 96-bit instructions.
These instructions can be stored in
either a non-writable medium (PROMs) or a
writable medium (RAMs). 4K, 8K or 16K of
PROMs may be installed. When RAMs are
employed, the array is always 16K words.

PAGE 2-5 CUSTOM PROCESSOR DICTIONARY

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

Y

16-BIT CUSTOM PROCESSOR SPECIFICATION (60165904) PAGE 2-6

TABLE 2-2
DICTIONARY SYMBOLS AND ABBREVIATIONS (PART 3)

TERM BIT #'S L MEANING
FLAGP 0-7 Eight F/W controlled, F/W testable flags,
not cleared between instructions. Current
assignments include:
O=Passed CUP & MCA QLTS
l1=Passed CUP QLT (1f FLAGPO = O&
§=Force bus errors (if FLAGPO = 0)
4=
5=DSASTR inhibit
6=0n-line mode
7=Trace mode
FLAGT 0-7 Eight F/W cgntrolled(F/W testable flags,
cleared (micro "INT") at each $RNI. In
addition to_general utility, uses are:
0=Local splatter .
%= . . & shift end-effects
3= " "
g=
g=SCRAM input, invert SCRAM output
FRAME-BOUND =1 iff Z-bus(08-22) <NE> D-bus(08-22) as
captured bg IND(6
FWPROM 00-95 A non-writable firmware array (and also a
micro calling for firmware execution to
emanate from PRQMs) .
FWA 00-13 Firmware Write Address register
» FWR 00-95 Firmware Write (data) Register
FWRAM 00-95 A writable_ firmware array (and also a

HEX-DECODER

IFF
IND

INRA

INRB

INRX

LSB
LSD

16-31

16-31

16-31

16-31

micro calling for firmware execution to
emanate from” RAMs)) .

Bit mask formed by setting to 1 the bit |
whose position number is 16 + the numeric
ga%ne of RAMAD, & setting to 0 all other

its

If and only if

Indicator register._ Samples, on command,
values of 8 variables for subsequent
testing and/or other use.

0=Overflow indicator

=Carry indicator

=Sign” indicator

Zero_indicator _,

Double—-zero indicator

0dd indicator _,

=Frame-bound indicator

7=Sto¥—code indicator

Buffer for re¢e1v1ng non-procedural data
requested using ADRA, & for first half of
doubleword data |

Buffer for re¢e1v1ng non-grocedural data
requested using ADRB, & for second half of
doubleword data | . i) L)

Buffer for receiving inquiry identification
word durlng unsolicited MEGABUS cycles
("interrupts"” .

Least Significant Bit(s)

Least Significant Digit(s)

AU W

PAGE 2-6

CUSTOM PROCESSOR DICTIONARY

HONEYWELL

BULL CONFIDENTIAL & PROPRIETARY

16-BIT CUSTOM PROCESSOR

SPECIFICATION (60165904) ~ PAGE 2-7

DICTIONARY

TABLE 2-2
SYMBOLS AND ABBREVIATIONS (PART 4)

TERM

BIT #'S

MEANING

LOCAL
MEMORY

MCA

MSB
MSD
NN
NNNN
ODD
OPREG

OUTR

OVERFLOW

P6SYNC
P—-BUS

PCTR
PROM

Q

0-7
16-31

23-31

08-31

A dual—gorted memory arrag which may be
connected to the Custom Processor via a
"private" interface. This same "private
interface may_instead connect a cache.

Micro-Code Anal¥zer (or serial_ number):
when "IF-MCA" test says serial-number_ unit
is connected, then N-th byte of serial
number is obtained by emitting N to
Z—bus$2473l% in one step & exécuting
"Z:0PT" in the next step. When "OPT:Z"
strobe is issued, Z-bus bits which equal
"one" invoke corresponding actions on the
serial-number unit glf présent):

Z-BUS(08-15) FU | .
Z—-BUS(16 Traffic-light on
Z-BUS (17 Traffic-1ight off
z-BUS(18-31) = RFU

Most Signitficant Bit(s)

Most Significant Digit(s)

2-hex-digit (8 bit) literal_ constant

4-hex—-digit (16 _bi literal constant

Z-bus odd (bit 31=1), as captured by IND(5)

OP-code register loaded by micro LD-OP from
P-bus(0-7), to address custom decoder PROM

Output register, loaded from D-bus(16-31),
drives data to_MEGABUS and to Local
interface in all write transactions

Arithmetic condition, captured by IND(Q%;
where like-signed operands give opposite-
signed sum, of unequal-signéd operands
give difference with sign opposite to
minuend's

ALUR ALUS ALUF . OVERFLOW
SiGN S}GN SEGN AED R-S S-R

]

P+ ++
F++ 10+
P+ 1+ 1+

HOOOOK
OOOHHFOOO
OOHOOKHOO

An indicator signifying that a MEGABUS cycle
has occurred since’ FLAGP6 was last set
(intended for testlng)

Bus supplying next byte of procedure from
refetch” buifer to RAA, RAB, RAC, splatter
ogic, Ogreg, and/or D-bus.

Counter which tracks byte offset of

procedure within current frame (see "ADRP")

A non-alterable medium in which (for
instance) a flrmware,arrgz is stored.
"Quotient" register in RALU

PAGE 2-7

CUSTOM PROCESSOR DICTIONARY

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

N

-

16-BIT CUSTOM PROCESSOR SPECIFICATION (60165904) - PAGE 2-8

TABLE 2-2
DICTIONARY SYMBOLS AND ABBREVIATIONS (PART 5)

TERM

BIT #'S MEANING

RAA
RAB
RAC
RAD

RALU
RAMAD

RPSYNC

SCRAM

SD

SEMA4
SHIFTER
SHRG
SP(A)
SP(B)
STOP-CODE

SYNDROME

TIMER
UAR

UNLOCK
Z-BUS
ZERO

0-3 Register loaded_ from P-bus(4-7) for use by
R D. Typically retains 2nd nibble of each
instructlon.
0-3 Register loaded_ from beus§0—3)~for use by

R D. Typically retains 3rd nibble of each
instruction,

0-3 Register loaded_ from P-bus(4-7) for use by
RZMAD. Typically retains 4th nibble of each
instruction.) :
0-3 Counter loaded_from shifter(28-31) for use
y RAMAD, & also _as iteration control.
Incremented by "INC-RAD" & by "IF...-RAD:F"
08-31 Register-file {(see "SP") & ALU, constructed
of 6 AMD#2901 chips
0-3 ARAM address MUX (= RAA, RAB, RAC, or RAD)
also available to hex-decoder and/or to
splatter logic |
An indicator’signifying that a MEGABUS cycle
has occurred since an interrupt from the
MEGABUS was received (intended for testing)
Stop-Code RAM, 256 x 1, capable of
recognizing stop-codes in byte strin
operations;_ Addressed by D-bus(16-23),
outgut.avallable to be capturec bz IND(7)
Shift Distance (rotate left/right any
multiple of four bit positions)™ |
An indicator which detects if a write-unlock
has occurred since my most recent read-unlk
08-31 Z-bus rotated by SD
to feed D-bus,” &§/or SHRG, &/or RAD
08-31 SHifter ReGister. On command, captures
"shifter" output for later use.
ALUF(08), _as cagtured by IND{Z oo
08-31 Scratchgad (RALU register file) containing
16 work locations, 0-15 (or O-F).
08-31 First addressed SP entry, available as
' input to ALUF g&/or directly to_ ALUY
08-31 Second addressed SP entry, available as
input to ALUF &/or as_receiver from ALUF
Any of up to 7 byte values defined to
control termination of a byte string
instruction
08-31 Snapshot of status at latest DSASTR (or
use of micro_ "LD-SYND"). Bits represent:
- 08=Master Clear 22=Data parity,left
09=Powering_ up 23=Data Barlty,rlght
0-13=CUP channel # 24=Proc UAR
) . 25=Proc RED,
Addr. parity bit 26=Proc parity
Timout - 7 o
7-20=0 29=FW parity,left
21=Data red 30=FW parity,midl
31=FW parity,rght
08-31 A loadable and readable counter which
firmware steBs)
Unavailable Resource, sensed by either
MEGABUS timeout (address unrecognized), or
rocedure crossing frame boundary
n indicator which detects if an unlock_has
occurred_since my most recent NAK'd cgcle
08-31 Bus supglled by ALUY &/or INRA or INRB,
feeds shifter,” address registers, ARAM
=1 iff ALUF(Oé—31)=O, as captureé by IND(3)

[
o

Ty ey
U

gounts

PAGE 2-8

CUSTOM PROCESSOR DICTIONARY

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

16-BIT CUSTOM PROCESSOR SPECIFICATION (60165904) PAGE 2-9

2.4 EXTERNAL REFERENCE CONTROL AND SYNCHRONIZATION

The initiation, monitoring, and consummation of external
references _either via the MEGABUS or via the Local interface (to the
cache or Local Memory%; requires reasonable care in the use of
resources which_ may still "be committed to a previous activity. The
CUP has_ been designed to provide this care automatically whenever
practical. However, there remain two kinds of situation in which the
mlgro§od§r must assume responsibility for defining the required
interlock:

1- the degree of interference to be protected against is _a
function of the sequence of firmware steps executed.
(Automated protection for the worst-case sequence would
have had to sacrifice performance.)

2- the activity involved is infrequent, and was not deemed to
wagrang. the extra expense of making the interlock
automatic.

When an interlock is needed, it is _provided by an action
referred to, as a "STALL": the CUP 1nternal clock pauses hear the end
of _a specified step until a specified condition is satisfied. (If the
condition was already satisfied, _the clock does not pause, and the
stall has no effect.) The CUP hardware provides four kinds of stall
conditions to be satisfied:

1- STALL:EMPTY (automated only) _-- the clock stalls when the
step about_ to be entered will consume, examine, test, or
otherwise depend on the next byte in_ the procedure stream,
and the procedure prefetch buffer is empty. The stall is
released as soon _as the automatic prefetch mechanism
supplies the needed byte of procedure.

2- STALL:ACK ., -- the <clock stalls wuntil/unless the most
recentl initiated request has been either accepted or
rejected. Such a stall 'is appropriate when the coder wishes

to’ test for possible _rejection, to reload an address or
"data, register committed to the previous transaction, or to
examine One of the other address registers.

3- STALL:INRA_ -- the clock stalls until/unless input data
register INRA has received whatever data it is due to get
as” a result of the most recent request. (Note that no stall
occurs unless the most recent request was a_read-request
with_ at 1least part of the data destined for INRA.% Such a
stall 1is apgroprlate when ~a double-word read as been
initiated an the coder wishes to consume the first of the
two words 6 _and/or test for the possibility that, because of
an unavoidable boundary cr0551ng. in ~_the memory, the
double-word request cannot be satisfied as such, so that
the second word must be read separately.

4- STALL:BUSY -- _the clock stalls wuntil/unless the CUP's
external (Local or MEGABUS% interfaces are quiescent (i.e.
the most recent activity has been concluded). Such a staii
is apgroprlate before "using the _last (or only) word

e

returnec in response to "a read request, or_ before
initiating a request ("PREFETCH" or "WR—NON—MEM(TEST—P)"i
which doés not "automatically provide the required stal
action.

PAGE 2-9 CUSTOM PROCESSOR DICTIONARY

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

“

16-BIT CUSTOM PROCESSOR SPECIFICATION (60165904) PAGE 2-10

_Stalls, when required, must occur subsequent to the last
previous request _initiation and prior to the steg which threatens to
use the committed resource. Exception: when the threat involves only
register reloading (which occurs at the end of the firmware step),
thé stall can be concurrent with the threatened action.

Table 2-3 summarizes the circumstances requiring inclusion of

"STALL" micro's,_ as ,a, 6 function o the current (most recently
initiated) external activity, and the "threatened" action.

TABLE 2-3
DICTIONARY SYMBOLS AND ABBREVIATIONS

CURRENT REQUEST IN WR-. .. RD-MEM- RD-MEM- roc. un-
PROGRESS WORD DBLW etch known
THREATENED using ahead
ACTION ADR- A B A B A B P
WRITE-NON-MEM(TEST-P) B B B B B B B B
PREFETCH B B
Z: INRB - - - B B B - B
Z:Y-INRB - - - B B B - B
Z:INRA - - AB - AB AB - AB
Z:Y-INRA - = AB - AB AB - AB
D:ADRS ADRS:A - KB - KB - KA KB KB
D:ADRS ADRS:B KB - KA = KA = KB KB
D:ADRS ADRS:P KB KB KA KB KA KA = KB
D:ADRS ADRS:ADRX KB KB KA KB KA KA KB KB
IF-ACK KB KB KA KB Ka KA ? ?
IF-NOT-ACK KB KB KA KB KA KA ? ?
IF-DBLPL : ?? ? ? A A ? ?
IF-NOT-DBLPL ? 2 ? ? A A ? ?
ADRA:Z ‘ CB - CA = ca - - CB
ADRB:Z - CB - CB - CA - CB
OUTR:D ' CB CB - - - - - CB

KEY:
- no _explicit stall needed

A prior STALL-INRA

B prior STALL:BUSY or ADRPL:Z

AB prior STALL:INRA, STALL:BUSY, or ADRPL:Z

KA prior STALL:ACK, STALL:INRA, STALL:BUSY, or ADRPL:Z

KB prior STALL:ACK, STALL:BUSY, or ADRPL:2Z

CA prior or concurrent STALL:ACK, STALL:INRA, STALL:BUSY, or ADRPL:Z
CB prior or concurrent STALL:ACK, STALL:BUSY, or ADRPL:Z

? situation should not arise

PAGE 2-10 CUSTOM PROCESSOR DICTIONARY

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

16-BIT -CUS

TOM PROCESSOR SPECIFICATION (60165904) PAGE 2-11

2.5 DECLARATIONS

PARITY ODD,24,00/24,25/7,127/1 \ Parity on 1lst 3rd of F/W word\;
PARITY ODD,56183;%5ﬁ§5%7§8{353143 \ Parity on 2nd 3rd of F/W word\
PARITY EVEN,72 64/3,68/1 71/1 73719 \ Parity on 3rd 3rd of F/W word\
,96/8,116/11,1%27/1, 16874 ;
ARGDEF AA (00/4) RALU A-select\
A/A% B/B# C/C# D/D# E/E# FéF#;
ARGDEF AB (04/4) E RALU B-select\
A/A#4" B/B# C{C# D/D# E/E# FﬁF#', o
ARGDEF AD 16/3,114/1) \ RALU alsposltlon \A/A#% C/C# E/E#;
ARGDEF AF 11/5) \ RALU function EZéO,
ARGDEF AS 08/3,114/1) \ RALU source(S) \A/A# C/C# E/E#;
ARGDEF BI 82/1 \ Branch condition Invert \Z2/0;
ARGDEF BR 57/3 \ BRanch splatter type \Z/0;
ARGDEF CK 80/2 \ Clock speed \Z/0;
ARGDEF CKM 143§ & \ Clock speed, manual\
{ HF/1 HL/2 | VL/3;
ARGDEF CY (172/1) \ Restrict cycle usage \Z/0;
ARGDEF D1 D-bus source, bytes 0 & 1}
(31/1,31/1,31/1,31 l,31/1,31/1,31/1,31/4,133/) z2/0;
ARGDEF D2 (138/8 D-bus source, byte 2 2/0;
ARGDEF DB (29/2 \ D—-bus source . 2/0;
ARGDEF DL \ 24-bit literal (17, 51gn—extended)\
§31{l,31/1,31/1,31/l,31/1,31/1 31/1,31/4,133/13) 2/0;
ARGDEF DS 132/ i \ Restrict §CRAM-10ad source \Z/0;
ARGDEF DX 29/6,133/13) \ D-bus source, extended \Z2/0;
PARITY EVEN,35,28/1,133/1 \ D-bus controil: invert for "PUSH";
PARITY EVEN,36,28/1,134/1;
PARITY EVEN,37,28/1,135/1;
PARITY EVEN,38,28/1,136/1;
PARITY EVEN,39,28/1,137/1;
PARITY EVEN,40,28/1,138/1;
PARITY EVEN,41,28/1,139/1;
PARITY EVEN,42,28/1,140/1;
PARITY EVEN,43,28/1,141/1;
PARITY EVEN,44,142/17
PARITY EVEN,45,143/1;
PARITY EVEN,46,144/1;
PARITY EVEN,47,145£1; o
ARGDEF FL (50/6 \ FLags & indicators, etc. \Z/0;
ARGDEF FIM (146/2,50/6 \ SBe01al MEGABUS control\
LOCK/DA# UNLOCK/DB# NQO-CACHE/CO#;
ARGDEF LDA (65/2,114/1) \ address-reg load \Z/0;
ARGDEF LDO (64/1 ll4§1'114§2) \ output-data load \Z/0;
ARGDEF MCA l46/é) O-CACHE/3 \ force reguest to MEGABUS;
ARGDEF MGF (146,/1,67/1,170/2,71/1) MEGABUS ma%or function \Z/0;
ARGDEF MGS (68/2) - \ addr-mux selec \Z/0;
ARGDEF MGSO (168/1 \ addr-mux select \Z/0;
ARGDEF MGS1 (169/1 \ addr-mux select \Z/0;
ARGDEF MK (08/4& \ Mask for splatters\
A/A# B/B# C/C# D/D# E/E# F/F¥;
ARGDEF MLA (116/2,119/2 \\ Interlock ADRA load \F/F#;
ARGDEF MLB (120/2,123/2 \ Interlock ADRB load \F/F#;
ARGDEF MLO (64/1) Interlock OUTR load \F/F#;
ARGDEF MLP (71/1,117/2,120/1,122/1)\ Interlock ADRP load \F/lF#;
ARGDEF MNM (67/1,170/2,50/4,119/4) é MEGABUS non-memory control\Z/0;
ARGDEF MOP 71/1,54é2£ MEGABUS non—memor¥ options\
CMND/4 REP Y%S RUPT /4 TEST-A/1_ TEST-B/2 TEST-P/0;
ARGDEF MPP (67/2,169/2,71/1,126/1)\ Empty-stall for proc-peeks\X/2F#;
ARGDEF MRP (67/1) \ Interlock requests \E/F#;
ARGDEF MRQ (67/1,170/2,71/1,119/4) \ Interloc¢k requests \F/F#;
ARGDEF MSA (11 /5,126/1 \ Inteslock ADRA select \F/F#;
ARGDEF MSB (121/1,124/3 \ Interlock ADRB select \F/F#;
ARGDEF MSP (116/2,122/3,126/1) \ Interlock ADRP select \F/F#;
PAGE 2-11 CUSTOM PROCESSOR DICTIONARY

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

16-BIT CUSTOM PROCESSOR SPECIFICATION (6016590&)

PAGE 2-12

PARITY EVEN,67,116/11;\
1167117 118 119 120 121 122 123 124 125 126
- Load ADRA X X X X
- Load ADRB X X X X
- Load ADRP X X X X
- Sel ADRA X X X X
- Sel ADRB X X X X
- Sel ADRP X X X X X X
- Request X X X X
PARITY ODD,69,168/2 \ Control PEEK=13# if PTAKE=0, ;
PARITY EVEN,70,170/2 \ =154 if PTAKE=1 ;
PARITY EVEN,73,146/2 \ Control use of Local_interface;
BRCHFLD NAB ,ABS,113/1,83/9, 96/4 \. Next address SElatter—branch);
BRCHFLD NAE ,ABS,113/1,83/9,100/4 \ Next address (Else);
BRCHFLD NAG ,ABS, 82/1,83/9, 96/4 \ Next address (Go—-to);
BRCHFLD NAI ,ABS,112/1 83{9 104 /4 \.Next address (If);
PARITY EVEN,60,100/1,10471,108/1\ Build real splatter mask;
PARITY EVEN,61,101/1,105/1,109/1;
PARITY EVEN 8 SUL /T HO.
4 4 4 / .
PARITY EVEN,92,96/{,i00/1 \ Build LSD of NA;
PARITY EVEN,93,97/1,101/1;
PARITY EVEN, 94,98/1,102/1;
gﬁé%%% EXEN’93933/1'103/1; \ Load OPREG \2/0;
ARGDEF OPT 114/1 \ Non-funct. memo for OPT:Z \Z/0;
ARGDEF OPTA(150/4 \ argument for OPT:Z \W/0;
ARGDEF PE 127/1 \ Force F/W parity errors \Z2/0;
ARGDEF PS 28/1% \ Push to stack \Z2/0;
BRCHFLD PSA ,ABS,28/1,133/13 \ Address pushed to stack;
ARGDEF PSM (128/4) \ Non-funct. memo for ma \Z/0;
ARGDEF RM 26/2& \ ARAM address source select
RA/ RB/1 RC/2 . RD/3;
ARGDEF RW 25/1) \ ARAM write control \Z/0;
ARGDEF SD 21/3,114/2) \ Shift distance\
R4/4 R8/8 R12{12 R16/16 R20/20
14,/20 1L.8/16 L12/12 L16{8 L20/4;
ARGDEF SR 20/1% \ Shift-out hold \Z/0;
ARGDEF TC 112/2,74/6) \ Test Condition _ \Z/0;
ARGDEF TCX (74/6) - \ Pseudo-Test Condition \Z/0;
ARGDE§ ZB 48é2 b d 95 \ Z-bus source \Z/0;
maginar its eyon : -
J 96—39 &A KSD con%rol
100-103 NA LSD & mask control
104-111 Mask_ control
%%2—%%% 5f/Else checking (=1/0)
116-126 external request control/checking
127 Force firmware ﬁarlty errors
128-131 Ignore push mask info
132 Réstrict Dbus source for SCRAM load
133-145 Dbus literal control

2.6 MICRO-OPERATIONS
MICRO ADRA:Z
MICRO ADRB:1Z
MICRO ADRPH:Z

MICRO A

PAGE 2-

(LDA/4 ,MLA/F) ;
(LDA/6 ,MLB/F) ;

\ Load ADRA <= Z-bus\
\\ Load ADRB <= Z-bus\

\ Load ADRP(08-22% (= Z-bus\
(LDO/8,LDA/2,MLP/F) \ & OUTR <= D-bus;
DRPL: Z \ Load ADRP(23-31) <= Z-bus\,
(LDO/0,LDA/2,MLP/F) \ (can't load OUTR at same time);
12 CUSTOM PROCESSOR DICTIONARY

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

16-BIT CUSTOM PROCESSOR SPECIFICATION (6016590i)

PAGE 2-13

MICRO ADRS:A \ ADRS <= ADRA\
(MGS/2,MGS1/1,MSA/F);

MICRO ADRS:B \ ADRS <= ADRB\
(MGS/3,MSB/F) ;

MICRO ADRS:P \ ADRS <= ADRP\
&MGS/I,MSP/BF#);

MICRO ADRS:ADR \ ADRS <= ADRX\
(MGS/0,MGS1/1);

MICRO BR—PO(MK,NABi \ Splatter on P-bus(0-3)\
BR/ ,MPPéX);

MICRO BR-RAMAD %%,%K,NA)\ Splatter on RAA, RAB, RAC, or RAD\

MICRO
MICRO
MICRO
MICRO

BR-FLAGS %g,gﬁé) \ Splatter
BR-OPERA g&/ﬁ,ﬁAB) \ Splatter
BR-ARITH (MK, N B) \ Splatter

\ I-SGN,I-
BR—DECOD(éM ,NAB) \ Splatfer

R/6,CY/1)\

on FLAGT(0-3)\

on Z-bus(31),RAD(1-3)\

on é
ZRO,CARRY(08),

31 SRO)\;
on custom decgé %\

e of Pbus(0-7),\
& Cycle counter\;

MICRO C6CKM) \ Manual clock gear shift override;

MICRO CO(CK/0) ;

MICRO C1l(CK/1l) ;

MICRO C2(CK/2) ;

MICRO C3(CK/2)

MICRO C4(CK/3)

MICRO C5(CK/3) ;

MICRO C6(CK/3) ;

MICRO C7(CK/3) ;

MICRO D:ADRS \ D-bus <= ADRA, -B, or -P\
(DX/70004#,D861%;

MICRO D:RAA- (DX/63000#)\ -bus <= 00, RAA, RAB, RAC, & RAD\

MICRO D:HEX(RM%DX/GZOOI#)\ D-bus <= 00, Hex-decoder\

MICRO D:INRX (DX/62200#)\'D—bus <= 00, Inguiry identification\

MICRO D:LIT(DL& \ D-bus <= 17-bit literal \
B/0) \ sign-extended to 24 ;

MICRO D:PCTR (DX/62010%) D-bus <= 000,9-bit program counter\

MICRO D:PROC D-bus <= 0000, Next procedure byte\
(DX/20020#,MPP/X) ;

MICRO D:REG(RM) D-bus <= Selected ARAM loc\
(DX/60008#,D861 RW/0) ;

MICRO D:REGO . D-bus <= ARAM loc zero\
(DX/70008#,D861,RW/0);)

MICRO D:SHRG (DX,/788804) —bus <= Saved shifter output\

MICRO D:SYND -bus <= Syndrome from latest DSASTR\

- (DX/70002#)\ or LD-SYND micro usage;

MICRO D:TIMER D-bus <= Timer (08-31) \

- (DX/60000%#, L604#);

MICRO D:ZSH(SD) -bus <= Z-bus(rotated by SD)\
(DX/744404,DS/1);

MICRO D::00SP ﬁ -bus <= 00,SHRG(16-23),P-bus(0-7)\
(DX/62820#,MPP/X) ;

MICRO D::008S D-bus <= 00,SHRG(16-31)\
éDX/62880#);

MICRO D::00S8Z(D% \ D-bus <= 00,SHRG(16-23), \
éD /62840#,D86 \ Z-bus|[rotated bg SD% 24-31&;

MICRO D::00ZS(¢ D% -bus <= 00,Z-bus|[rotated g S 516—2 Y, \
(DX/62480#,DS/1) \ HRG(24-31);

PAGE 2-13 CUSTOM PROCESSOR DICTIONARY

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

16-BIT CUSTOM PROCESSOR SPECIFICATION (60165904)

PAGE 2-14

ICRO D::00Z2Z(S D s <= 00,Z-bus[rotated by SD](16-31
MIC (D%/62440# 5361% [¥y SDI(N
MICRO D: :FFSP us <= FF,SHRG(16-23),P-bus(0-7)\

(DX/728204#,MPP/X);
MICRO D::FFSS Dx/72880#)\ D-bus <= FF,SHRG(16-31)\
MICRO D::FFSZ (§ D) \ D-bus <= SHRG(16-23)
(D /72840#,D8/1) \ Bus[rotated 65 sn]§24-31)
MICRO D::FF2S(SD) \ us <= FF Z-bus [rotate D §16—§3) \
DX/724804#, D861% \, RG 4—31i’
MICRO D::FFZZ(& (= FF,Z-bus[rotated by SD] (16-31)\
iD /724404%, DSél%
MICRO D::KKP(D1) \ us <= NNNN,P-bus(0-7)\
B/1,D2/20%#, MPP/X),
MICRO D: :KKS(D 2z L D2/80#)D = NNNN,SHRG(24-31)\
MICRO D::KKZ(Di 61 \ D D-bus <= NNNN, Z-bus[rotated by SD](24-31)\
B/ D2/40%#, DSél),
MICRO D::SSK(D2) \'D-bus’<= SHRG(08-23),NN\
(DB/2,D1/88¢);
MICRO D::SSP D-bus <= SHRG(08-23),P-bus(0-7)\
éDX/68820#, PP/X);
MICRO D::SSZ D~bus <= SHRG(08-23)
X/68840#, DSél Z-bus rotateé by SD](24-31);
MICRO D::SZZ(S)] s <=_SHRG(08-15),
B X/68440#%, DSél% z-bus [rotated bg SD& 16— 31%
MICRO D::ZSS(S % \ us <= Z-bus[rotated 808 15),\
ﬁ X/64880# DSél 6 %
MICRO D::ZZK(S % ~bus <= Z-bus[rotated by SD] (08-23), NN\
B/ ,D1/44#, DSél)
MICRO D::ZZP(S % \ D-bus <= Z bus[rotated bg SD] 08-23), \
DX/64420%, DS/l MPP/X) -bus(0- 7%
MICRO D::22S(% Blbus’ <2 g~ bus[rotate bg SD] 08— é) \
(DX/64480#,DS/1) HRG(24-31);
MICRO ENPROM (FL/06#) \ With a delay of one flrmware steﬁ
- § execute firmware out of the \
MICRO ENBRAM (FL/07#) \'Wlth Z delay of one firmware step, \
- _ § execute firmware out of the RAM \
arra
MICRO FLAGPO:O(FL/3O#) \ Perm %iag 40 <= O\
MICRO FLAGpozl(FL/38#)' \ Perm flag #0 <= 1\
MICRO FLAGPl:O(FL/Bl#)' \ Perm flag #1 <= O\
MICRO FLAGPl:l(FL/39#)' \ Perm flag #1 <= 1\
MICRO FLAGPZ:O(FL/Bz#)' \ Perm flag #2 <= 0\
MICRO FLAszzl(FL/3A#)’ \ Perm flag #2 <= 1\
MICRO FLAGPB:O(FL/33#)' \ Perm flag #3 <= 0\
MICRO FLAGP3:1(FL/3B#)' \ Perm flag #3 <= 1\
MICRO FLAGP4:0(FL/34#)’ \ Perm flag #4 <= 0\
MICRO FLAGP4:1(FL/3C#)' \ Perm flag #4 <= 1\
MICRO FLAGPS:O(FL/BS#)' \ Perm flag #5 <= O\
MICRO FLAGPS:l(FL/3D#)' \ Perm flag #5 <= 1\
MICRO FLAGPG:O(FL/BG#)' \ Perm flag #6 <= 0O\
MICRO FLAGP6:1(FL/3E# "\ Perm flag #6 <= 1\
MICRO FLAGP7:O(FL/37#;' \ Perm flag #7 <= 0O\
MICRO FLAGP7:1 "\ Perm flag #7 <= 1\
(FL/3F#);
PAGE 2-14 CUSTOM PROCESSOR DICTIONARY

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

16-BIT CUSTOM PROCESSOR SPECIFICATION (6016590;) PAGE 2-15

MICRO FLAGTO:0 \ Temp flag #0 <= O\
(FL/20#%#);
MICRO FLAGTO:I(FL/ZS#); \ Temp flag #0 <= 1\
MICRO FLAGTl:O(FL/Zl#); \ Temp flag #1 <= 0O\
MICRO FLAGTl:l(FL/29#); \ Temp flag #1 <= 1\
MICRO FLAGTZ:O(FL/Zz#); \ Temp flag #2 <= 0\
MICRO FLAGTZ:I(FL/2A#); \ Temp flag #2 <= 1\
MICRO FLAGT3:O(FL/23#); \ Temp flag #3 <= 0\
MICRO FLAGT3:1(FL/2B#); \ Temp flag #3 <= 1\
MICRO FLAGT4:O(FL/24#); \ Temp flag #4 <= 0\
MICRO FLAGT4:1(FL/2C#); \ Temp flag #4 <= 1\
MICRO FLAGTS;O(FL/zs#); \ Temp flag #5 <= 0\
MICRO FLAGTS:l(FL/2D#); \ Temp flag #5 <= 1\
MICRO FLAGTG:O(FL/26#); \ Temp flag #6 <= 0O\
MICRO PLAGTG:l(FL/zE#); \ Temp flag #6 <= 1\
MICRO FLAGT?:O(FL/27#); \ Temp flag #7 <= 0O\
MICRO FLAGT7:1 \ Temp flag #7 <= 1\
(FL/2F#);
MICRO F:ADD1 (AF/0); \ ALUF = ALUR + ALUS + 1\
MICRO F:ADDC (AF/1); \ ALUF = ALUR + ALUS + Carry\
MICRO F:APDC' (AF/2) ; \ ALUF = ALUR + ALUS + (l-Carry) \
MICRO F:ADD (AF/3) ; \ ALUF = ALUR + ALUS\ '
MICRO F:S-R (AF/45; \ ALUF = ALUS - ALUR\
MICRO F:S-R*C'(AF/S); \ ALUF = ALUS - ALUR - (1-Carry) \
MICRO F:S-R-C (AF/6) ; \ ALUF = ALUS - ALUR - Carry\
MICRO F:S-R-1 (AF/7) \ ALUF = ALUS - ALUR - 1\
MICRO F:R-S (AF/é); \ ALUF = ALUR - ALUS\
MICRO F:R-S- '(AF/9); \ ALUF = ALUR - ALUS - (1-Carry)\
MICRO F:R-S-C (AF/A#) ; \ ALUF = ALUR - ALUS - Carry\
MICRO F:R-S-1 (AF/B) ; \\ ALUF = ALUR - ALUS - 1\
MICRO F:0R (AF/F4) ; \ ALUF = ALUR <IOR> ALUS\
MICRO F:SR (AF/10#) ; \ ALUF = ALUR <AND> ALUS\
MICRO F:SR' (AF/17%); \ ALUF = ALUS <AND> <NOT> ALUR\
MICRO F:XOR (AF/1B#); \ ALUF = ALUR <XOR> ALUS\
MICRO F:XNOR \ ALUF = ALUR <XOR> <NOT> ALUS\
(AF/1F#);
PAGE 2-15 CUSTOM PROCESSOR DICTIONARY

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

16-BIT CUSTOM PROCESSOR SPECIFICATION (60165904)

MICRO
MICRO
MICRO
MICRO
MICRO
MICRO

MICRO

MICRO

MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO

F'B:0(AB) \ SP(B), ALUF, ALUY <= 0\
XAS/4,AF/10#,AD/6 H
F'B:DEC({ B% \ SP(B), ALUF, ALUY <= SP(B) - 1\
AA /6,AF/7,AD/6);
F'B: INC(Bg \ SP(B), ALUF, ALUY <= SP(B) + 1\
(AS/6,AF/0,AD/6) ;
F'Q:0 \ Q, ALUF, ALUY <= 0\
(AS/4, AF/lO#,AD/Oﬂ;
F'Q:DEC \ Q, ALUF, ALUY <= Q - 1\
(AS/4,AF/7,A D/é),
F'Q:INC \ Q, ALUF, ALUY <= Q + 1\
(AS/4,AF/0,AD/0);
FRAMIT \ erforms actions associated with loading \
(FL/01) \ the flrmware RAM as a function of \
\ CYCLE(4,2,1):
CYCLE = l,l,l loads FWR(80-95)
CYCLE = 1,1,0 loads FWR(64-79
CYCLE = 1,0,1 loads FWR(48-63
CYCLE = 1,0,0 loads FWR(32-47
CYCLE = 0,1,1 loads FWR(16-31
CYCLE = 0,1,0 loads FWR(00-15
CYCLE = 0,0,1 loads FWA
CYCLE = 0,0,0 writes (FWR) at FWA;
\ Unconditional NA\

GO-TO(NAG%
R/0)
IF-ACK(NAL, NAE% \\ Branch
(3¢as BI/O
IF-NOT-ACK (NAIL, NAE
(TC/nak B1/
IF-APLO Gé AT NAE) Branch
(T 9Dk, (BI/0 MCS/1)
IF-NOT-APLONG Ae)
(TC/9D 31/1 MGS/1) ;
IF-AP:5 2& A1, NAE) Branc
(T 90# (BI/0 /MGS/2)
IF-NOT-AP: 12 AE)
(187 1/1 MGS/2);
IF-BREA NAI DLAR % Branc
1/0
IF-NOT-B NAI, NAE
é / 4,BI/1y;
IF-CACHE(NAT, NAE% Q
1,/0

IF-NOT- C CHé NAT, NAE;

¥, BI/
IF-CNFG Cé N

NAE 'Branch
D#, BI/O MGS/O),
IF-NOT- NFG C AE
TC/9D

(BI/l MGS/0) ;
TF-CNFG Bé/é%# BI/O\Mggigc
IF- NOT—é)i

e 9p 1/1, 124és /0
IF-CNFG- A%QAI NAB§ Brén%ﬁ

9 (MGS/0) i
IF-NOT-C NEG-A NAI,
9F BI/l A% S/0)
IF-CMDP Ré

AéﬁN%I/o\Mg§§3Cﬁ
IF-NOT- éMDéA)i
IF- CYCLéB

NAE
BI/l MGS/2);
IF-NOT- CYCL
IF- CYCLé4é§

Branch

CY/l),
1,CY/1

g Béa%ch
60 ,CY/1);

1,CY/1);

B%go \\ Branch
IF-NOT-

BI
AE
B
I,
1/

PAGE 2-16

iff MEGABUS cycle was acknowledged\

\ Requires prior "STALL:ACK";
\ 1in new designs,
\ Requires prior "STALL:ACK";
iff ADRP is configured \
\ non-partitioned”\;

1ff %e size is configured \
\ equal to 512 bytes \;

iff Interrupt, \
\ Tick, or race-mode,

iff Cache_or Local Memory present \

\ and on-line;

iff Configuration bit C \

iff Configuration bit B \

iff Configuration bit A \

iff Command Parity enabled \

iff CYCLE(O)

[

iff CYCLE(1)

CUSTOM PROCESSOR DICTIONARY

HONEYWELL BULL CONF

IDENTIAL & PROPRIETARY

PAGE 2-16

use IF-NAK \

16-BIT CUSTOM PROCESSOR SPECIFICATION (60165904) - PAGE 2-17

MICRO IF- CYCLE2¥NA NAE% \ Branch iff CYCLE(2) = 1 \
MICRO IF-NOT- c§c ézéﬁé? go CY/I)’
é ﬁ 2§,8171 CY/1);
MICRO IF-CYCL 1} Al NAE% Branch iff CYCLE(3) = 1 \
§ é9é#,a éo CY/
MICRO IF-NOT-CYCL %§N%%,l £
MICRO IF- CYCLé FéNAI'NAé éranch iff CYCLE(0-3) = F \
(T é94&,31/o CY/1);
MICRO IF-NOT-CYCL 4;(3%/1 éY/l
MICRO IF- CSTEﬁLééAI ﬁAE Branch iff cycle steal mode \
- é é E# BI/O MGS/l) \ 1is configured \;
MICRO IF-NOT-CST AL§ NAT
= ,BI/l M S/1

Brancﬁ iff Double-pull succeeded \

~

MICRO IF-DBLPL(NA NAL NAE)" X
C/A3%,B1/0
MICRO IF-NOT-DBLD §NAI NAE
(TC/A3% ,BI/1);
MICRO IF-FALS gNAI NAE%I/S Branch never \
MICRO IF-NOT-FALS NAi,NAE;
ﬁ é BI/l),
MICRO IF-FCOD lé AI,NA

=&t:

i

E) \ Branch iff Func code 01 is allowed to \
(1 69F& BI/O jues/1y \start the QLT \;
MICRO IF-NOT-FCO EléN

MICRO IF- FLAG&O é# B% Branc iff Temp flag 0 \
MICRO IF-NOT- FiAG 0 NAI gA%)
MICRO IF- FLAG%I QAI NAE \ Branch iff Temp flag 1 \
4B§# B%
MICRO IF-NOT-FLAGT1 NAI, AE)
MICRO IF-FLAGYS (NAT" Ngé/li'B h iff Temp flag 2 \
ranch i em a
£§c Ak, B1/0 P a9
MICRO IF-NOT- Z AZ 2 N%%;lA)
MICRO IF-FLAGT3 AI NAE Branch iff Temp flag 3
£$ 48 % \ p g 3\
MICRO IF-NOT-FLAG Ng% lA)
MICRO IF- FLAG%4§§AI NAE% \ Branch iff Temp flag 4 \
£A 4BC# B 6 %
MICRO IF-NOT- Z Z NAI A
MICRO IF-FLAGTS AI NAE
ﬁi BD# B}é %
MICRO IF-NOT-F NAI A
MICRO IF- FLAG&G éAI NAE \ Branch iff Temp flag 6 \
C BE# B%é % ;
MICRO IF-NOT-F AG NAI A)
MICRO IF- FLAG&?& AJ, NAE \'Branch iff Temp flag 7 \

ﬁ BF# B%é %
MICRO IF-NOT-FLAG NAI,NA
(TC/BF BI/l),

"Branch iff Temp flag 5 \

PAGE 2-17 CUSTOM PROCESSOR DICTIONARY

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

16-BIT CUSTOM PROCESSOR SPECIFICATION

(60165904) PAGE 2-18

MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
'MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO

IF-FLAGPO&NAI NAE} \ Branch iff
a8 %
IF-NOT-F AG O AE)
éTC BI/l
IF-FLAG lé AIé } \ Branch
#,B %

IF-NOT-FLAGP1l (NAI,NALE)
CﬁAg /B),'

IF-FLAG 2% AI,NA \ Branch
C/AA# 0%;

IF-NOT-FLAGP2 (N AE)

_ éTCéAA /

IF-FLAG 3& Al N \ Branch

IF-NOT- FﬁAGé NB Y Aé)

IF- FLAG54&§AI NAE% \ Branch

IF-NOT-F CG 4 1A)

IF- FLAGéS&CAI NAE% \ Branch

IF-NOT- F£AG 5 N%%,)

IF- FLAGéG*éAI NAE% \ Branch

IF-NOT- F%AG 6

IF- FLAGé?& A%FQAE%

IF-NOT- F£AG NAI éA%

IFP-1- BU§

IF-NOT-

IF-I- CR§ NéI

IF-NOT-I- CR8

iff

1 ,
iff

iff

7
}
/1)
10

B" >~
HHDEHHDOE

~

l-—'Z\ HZ\

iff

iff

iff

Branch iff

NAI NAE

i

Branch iff

i

7

)i

iff

iff

tU
=
Q
=}
0
oz

iff

4

k=]

-

2
PO

AN
NN ~. NN,
-

NAI,
ﬁ #,BI/1
IF-I-0D NAI NAE%I

/
IF-NOT-T-05 SNAI NA
%TC/B 4,BI/1
IF-1-OVF (NAL, NAE)
TC/88% ,BI/
IF-NOT-I-OVEF(NAI,NA
C/8 #,BI/1
IF-RINT(NAI, NAE)
iTC/9B BI/
IF-NOT-R NTéNAI NA

é B#,Bl/
IF-I-SC Nél NAE

IF-NOT-I- SCé
(TC/8

iff

w
H
s
=}
Q
oy

I~

Branch iff

Mo A~mo ~

~ e N -
~.

=
~

I~

Branch iff

4=
~

I~

)

0

g'Branch iff
il

1
A
#, BI/l

PAGE 2-18

\ after CUP's most recen

o
e

Perm flag
Perm flag 1 \
Perm flag 2 \
Perm flag 3 \
Perm flag 4 \
Perm flag 5 \
Perm flag 6 \

Perm flag 7 \

NAE same as "IF-I-FB"
BI/E N

Carry indicator \

Frama—bound indicator.\

Sign or Double-zero indicator \
Sign or Zero indicator \

0dd indicator \

Overflow indicator \

t occurred \
MEGABUS cycle;

Resume Interru

Stop-code indicator \

CUSTOM PROCESSOR DICTIONARY

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

16-BIT CUSTOM PROCESSOR SPECIFICATION (60165904) PAGE 2-19

MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO
MICRO

IF-I- SGNfNAI NAE%I/B Branch iff Sign indicator \
IF-NOT- scﬁ gAglN?§§'
IF-I- zaé gél NAE%I/B'Branch iff Zero indicator \
IF-NOT-1I- ZROé§A£I§%?§'
IF-I- Z'é NAI NAE% \'Branch iff Double-zero indicator \
TC/8C#, I/O;,

oot L RUALR
IF—NAK(&AI,NAE' \'Branch iff MEGABUS cycle was refused \

ATC B6#,BI/0) \ Requires prior "STALL:ACK";
IF-NOT-NAK(AI,NAEi \ Better to use IF-ACK \

&TC ,BI/1) \ Requlres prior "STALL ACK";
IF-OPT(NAI, NAE \ Branch iff event signalled by \

A04, g
BI/1) \ Option boar

IF-NOT- OéT(%%,g%;&)
IF- 92PG§ NAI, NAEg > Branch iff either FLAGP2 OR PAGE-X \

gTC B4# 1 0; \ indicators are set;
IF-NOT-P2PG NAIi %?
IF- PGSY§C*§AI NA 'Branch iff FLAGP6 res¥nchronlzer flop \

2%, B \ is set (for test use only);

IF- NOT-PéSY c NAI gA
IF-PAGE X%gAI AE% Branch iff ADRP incremented through \

0 \ a page boundary);
IF—NOT—PAGE 'X NAI ﬁ %) pag y)i

VfTC B3
IF-PWR D& Al NAE% Bransh iff AC input power source OK \

IF-NOT-PWRVAD (HAS QA% For will-writing);

C B7 BI/

IF-RAD: AE%I \ Branch iff RAD = F, then RAD <= RAD + 1 \
IF~-NOT-R é NAI NAE)

IS é BI/1);
IF-RPSY C% Al AE% \ Branch iff RUPT resynchronlzer flop \

é 0 \ 1s set (for test use only);

IF-NOT-RPSY CéNAI, AE)

g Cé ,BI/1);
IF-RUPT'CL (NAI,NAE \ Branch iff Interrupt, \

é C/A 5#,BI1/0) \ then clear In errupt
IF-NOT-RUPT' CLR NAI,NAE)

gTC/ ,BI/1);
IF-RUPT NAI,NAE) \ Branch iff Interrupt\

IS #I éO),
IF-NOT- RTg; NAIé??lg
IF-SEMA4 (NAI NAE \'Branch iff a write-unlock bus cycle has \
TC/§9#, I/O; \ occurred since my last read-unlock
IF-NOQOT-S MA4 ?A%i§%?
IF- TIMEé NAI NAE {'Branch iff TIMER expired the clear \
iTCé 5%, I/Og \ indicator;
IF-NOT-TIME ?A%i§§?
IF- UNLOéK& AT, NAE \'Branch iff unlock bus cycle has occurred \
§ C/9§#,B ﬁO% \ since my last cycle that was NAK'4d;
IF-NOT-UNLOCK(NAI, NAE)
(TC/99%,BI/1);

PAGE 2-19 CUSTOM PROCESSOR DICTIONARY

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

16-BIT CUSTOM PROCESSOR SPECIFICATION (60165904) PAGE 2-20

MICRO IF-YELO(NAI, NAE% \ Branch iff Memory Yellow, then clear
TC/Al I/0 \ Yellow. Requires prior "STALL:BUSY";
MICRO IF-NOT-YELO(NAI,NAE
&TC l#,BI/l i
MICRO IF-Z08(A%,NAE% BI/B)Branch iff Z bus (08)\
MICRO IF—NOT—268(AI,N E} ’
&TC 87#,BI/1);
MICRO IF-Z16(A%,N%g BI/B)Branch iff Z-bus(16) \
MICRO IF-NOT-ZiG(AI,ﬁAEl ’
ﬁT 2% ,BI/1);
MICRO IF-Z24(NAI Ngg BI/B)Branch iff Z-bus(24) \
MICRO IF—NOT—Z§4(AI,ﬁAEl '
(T 3%#,BI/1);
MICRO INC-CYCLE \ Increment Cycle counter in mid-step \
(FL/03#,CY/0)
MICRO INC-RAD \ RAD <= RAD+1 \
(FL/13#%);
MICRO IND-AR \ Arithmetic indicators saved: \
(FL/15%) \ INDO <= ALU overflow
IND1 <= ALU carry. o
IND2 <= ALU sign blt (ALUFO08 3
IND3 <= ALU zefro—ness (all 2 blts%
IND4 <= ALU zero—ness & previous I3 value
IND5 <= Z-bus bit 31;
MICRO IND-BB' SC(FL/lG#) \ same as "IND-FB'SC";
MICRO IND-FB'SC \ Frame—-bound & Sto code 1nd1cators saved:\
(FL/16#) \ IND6 <= D-bus(08- <{NE> Z-bus(08-22)
IND7 <= SCRAM outpu <XOR> FLAG 6,
MICRO INT > RAA <= P-bus(4-7) in mld—steg,
(FL/10#,MPP/X) \ clear Temp flags & RAD;
MICRO LD-CNF \ Load Configuration Register \
- (MGF/13 MGS/0) \ CMDPAR (= BUSZ(28) \
\ FCODE1l <= BUSZ (30} \;
\' ACTREN <= BUSZ(31 }
MICRO LD CYCLE& L/02# CY/\)CYCLE (= A-address field of SP \
MICRO LD-OP 0p/1) \ éPREG <= P-bus(0-7) in mid-step \
MICRO LD-RA B'C ‘ AB,RAC <= P-bus(0-7) in mid-step \
(FL/114#,MPP
MICRO LD-RAB'C B RAC <= P-bus(0-7) in mid- steg
éFL/l?# MPP X&\ save arithmetic lndlca ors,
MICRO LD-RAD(S L/12#) D (= Z- bus(rotated by SD)
MICRO LD-SCRAM ‘ (D- bus 16-23)) <= FLAGTG \
(FL/14#%,CKM/3, DSé & LEGAL when D-bus <= Z-bus;
MICRO LD-SYND ROME <- Status sample \
(TCX/31%#);
MICRO MCA:Z \ Strobe MCA functions selected \
(TCX/054) \ by Z-bus bits;
MICRO NO-FAULT \ Suppress errors from \
(TCX/35%) \ Z:INRA, 2: INRB D: PROC;
MICRO OUTR:D \\ Load OUTR <= D-bus \
(LDO/8) ;
MICRO PARITY_E%E%El) \ Force errors in all thirds of F/W word \
PAGE 2-20 CUSTOM PROCESSOR DICTIONARY

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

16-BIT CUSTOM PROCESSOR SPECIFICATION (60165904) PAGE 2-21

MICRO PREFETCHSMCA,MCA) é Start new grocedure fetch \
MGF/18#,MGS/1,MSA/F ,MSB/F) ;

MICRO PTAKE(MCA,MCAi g Consume procedure byteMg
(MGF/1F#,MGS/1,MGS0/1,MGS1/1,MSA/F ,MSB/F) ;

MICRO PUSH(PSA,PSMi \ Push "RETURN CSA" onto stack \
(PS/1,DB/0);

MICRO RD—MEM-DBLW(FLM,MCAg \ Wait for quiet interface \

(MRQ/9F# ,MGF/19%#) \ Read 2 memory words to INRA&B \
\ Needs "ADRS:A" or "ADRS:B";
MICRO RD-MEM-WORD(FLM,MCA) \ Wait for quiet interface \
(MRQ/8F#,MGF/18#) \ Read 1 memory word to INRA/B \
\ Argument "LOCK" or "UNLOCK" optional \
\ neéds "ADRS:A" or "ADRS:B";
MICRO RD—-NON-MEM \ Wait for quiet interface \
(MRQ/8F#,FLM/D8#) \ Read 1 non-memory word to INRA/B\
\ Needs "ADRS:A"_ or "ADRS:B" to
\ specify channel, function-code;

MICRO REG:Z(RM)
(RW/1);

MICRO RETURN(NA%&

\ ARAM(RM) <= Z-bus\

\

7,MK/F) ;

(éAB) /)\
\

Pop subroutine stack\
MICRO RETURN'(%gé/7) Pop subroutine stack (Alternate return)\
MICRO R-I-P (MRP/0) Request In Progress warning: .

Don't try to change ADRS sélection

nor ADR- nor OUTR (if in use) till STALL;

MICRO R:A'S:Q(Aﬁg/o \ ALUR <= SP(A), ALUS <= Q \

MICRO R:A‘S:B(%ﬁé§g§’ \ ALUR <= SP(A), ALUS <= SP(B) \

MICRO R:0'S: AS/4)’ \\ ALUR <= 000000, ALUS <= Q \

MICRO R:O’S:B(ﬁgg/ﬁ)' \\ ALUR <= 000000, ALUS <= SP(B) \

MICRO R:0'S:A(A /8)' \ ALUR <= 000000, ALUS <= SP(A) \

MICRO R:D'S:A((Aé/A)' \ ALUR <= D-bus, ALUS <= SP(A) \

MICRO R:D'S: (AS/C)' \ ALUR <= D-bus, ALUS <= Q \

MICRO R:D' ! \ ALUR <= D-bus, ALUS <= 000000 \
(AS/E) ; - o

MICRO SHRG:Z(SD% \ SHRG <= Z-bus(rotated by SD) \
(SR/1);

MICRO STALL:ACKMGF/I) \ Stall until/unless Ack'd or Nak'd \

MICRO STALL:BUéﬁGF/3)' \ Stall until/unless Interface quiet \

MICRO STALL:INNA "\ Stall until/unless INRA full \
(MGF/2) ;

MICRO SYSCLR \ Generate a system-wide clear \

(MGF/13,MGS/1;, _
MICRO TIMER:Z (FL/05# \ Timer <= Z-bus(08-31);
PAGE 2-21 CUSTOM PROCESSOR DICTIONARY

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

16-BIT CUSTOM PROCESSOR SPECIFICATION (60165904) PAGE 2-22

MICRO WR LM-CN

Wait for_ quiet interface \
MRQ/CF# FLM/9C)

Via the local interface, \
write QUTR into Local Memor Conf Reg \
Needs "ADRS:A" or "ADRS: {
Wait for quiet 1nterface \
Write half of OUTR to memory \
Needs "ADRS:A" or "ADRS:B"
Wait for gulet interface \
Write OUTR to memory
Argument "LOCK" or "UNLOCK" optional \
neeéds "ADRS:A" or "ADRS:B";
Wait for quiet interface \’
Send OUTR to channel addressed by ADRS \
Argument = RUPT or

REPLY or

TEST-A or

TEST—B or

TEST-P \

\ Needs "ADRS:A" or "ADRS:B" \
\ (or "ADRS:P" with TEST- argument);

MICRO Y:F'Q:F (aD/0) \ ALUY <= ALUF, Q <= ALUF \
MICRO Y:F " \ALUY <= ALUF \

MICRO WR-MEM-BYTE
(MRQ/AF#

MICRO WR-MEM-WORD éLM
(MRQ/BF
+MLO/0)

MICRO WR- NON—MEM&%

S S S S S

op
Séry
; F

’

MICRO Y:A'B: F(AA ; \ ALUY <= SP(A), SP() <= ALUF \
MICRO Y:F'B: F(AB ‘ \ ALUY <= ALUF, SP(B) <= ALUF \
MICRO Y:F'BQ: Fégg(éﬁ) \ ALUY <= ALUF, SP(B),Q <=SR= FLAGT1,ALUF,Q \
MICRO Y:F'B: FS&A% \ ALUY <= ALUF, SP(B) <=SR= FLAGT1,ALUF \
MICRO Y:F'BQ: FéSL(A%) \ ALUY <= ALUF, SP(B),Q <=SL= ALUF,Q,FLAGT1 \
MICRO Y:F' B.FSﬁA%/%) \ ALUY <= ALUF, SP(B) <=SL= ALUF,Q(08) \
MICRO Z:INRA (2B/2) \ Z-bus <= Unspec'd(08-15),INRA(16-31) \
MICRO Z:INRB (ZB/3)’ \ Z-bus <= Unspec'd(08-15),INRB(16-31) \
MICRO Z:MCA ! \ Z-bus <= Microcode Analyzer or \

(ZB/1) \ serial number
MICRO Z:0PT \ Z-bus <= Option board or "FDF or \

(ZB/1) \ serial number;
MICRO Z:Y (2B/0) \ Z-bus <= ALUY(08-31) \
MICRO Z:Y-INRA(ZB/z)! \ Z-bus <= ALUY(08-15),INRA(16-31) \
MICRO Z:Y-INRB ' \ Z-bus <= ALUY(08-15),INRB(16-31) \

(ZB/3);
PAGE 2-22 CUSTOM PROCESSOR DICTIONARY

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

eeeeeeeeeeeee
eeeeeeeee

ooooo

............

16-BIT CUSTOM PROCESSOR SPECIFICATION (60165904) PAGE 3-1

FLOW CHARTING CONVENTIONS

Firmware flowcharts are meant to record a design and to instruct
others who may require the knowledge so that they maX.elther advance
the art or to maintain the product. The conventions listed below are
mainly aimed at consistency, so as tomgrov;de a means of communicating
technlcal matters with a minimum of ambiguity.

3.1 THE SYMBOLOGY

A rectangle _ represents a firmware step. A firmware step is
sometimes called a firmware "box". The micros (to be%,coded into the
firmware box are written in the rectangle. Sometimes the actual
micros are not recorded but a higher levél syntax is used instead.
Section 4 1is a specification of the higher level lanqguage for the
16-bit Custom Processor.

. An _example of a firmware step in flowchart form is shown in
Figure 3-1.

WR-1 iA)
Fl <- F1 + Q

FIGURE 3-1
A FIRST EXAMPLE

3.2 ADDRESSES

The addresses of the. firmware_ steps being documented are
annotated in a convenient place but always outside of the rectangle.
Because firmware _ 1is best debugged by flowchart, it is wise to record
the absolute address of each firmware step. It is usually handy_to
show the symbolic addresses as well partlcularlg if” symbolic
addresses are not used 1ndlscrlm1nateiy (denote_ the beginning of
routines _and other major branch destinations only). An éxampleé-is
shown in Figure 3-2.

SFRET
0837 <WR-1B§A)
F1 <- F1+Q
080C STALL
OUTR <— H
FIGURE 3-2

SIMPLE ADDRESS ANNOTATION

PAGE 3-1 FLOWCHARTING CONVENTIONS

HONEYWELL BULL CONFIDENTIAT AND PROPRIETARY

16-BIT CUSTOM PROCESSOR SPECIFICATION (60165904) PAGE 3-2

3.3 FLOW

Firmware steps gerform tests in order to _control microprogram
flow. The simplest test mechanism which the hardware provides allows
a two—-way choice and the most complex allows a 257-way choice.

3.3.1 TWO-WAY CHOICE

The test condition is written inside the bottom of the rectangle
and the two choices are drawn as rectangles below, one at the léft
and one at the right. The test condition is distinquished from other
micro because it “is written with a question mark suffix. The right
rectangle contains_ those micros to be executed if the test conditlon
is TRUE and the left rectangle contains those micros to be executed
if the test_ condition is false. In the example shown in Figure 3-3
the zero_ _indicator 1is tested; if the zero indicator is ON;, F4 will
receive F1 plus seven whereas if the zero indicator is OFF, a stall
is performed and OUTR receives the content of the H register.

SFRET
0837 WR-lBiA)
Fl <- F1 + Q
127
080C STALL F4 (- F1 + 7 280C
OUTR <- H

FIGURE 3-3
SIMPLE SEQUENCE CONTROL
Permitted alternatives to the representation shown in Figure 3-3

are shown 1in Figures 3-4 and 3-5. Although there_is no fulctional
difference, such "alternatives_are useful whére complex flow is being

documented; e.g., when multiple columns of firmware are drawn on oné
page.
SFRET
837 WR-1B(A)
F1 - F1 + Q
1727
280C F4 <- F1 + 7 STALL 80C
OUTR <- H

FIGURE 3-4
SIMPLE SEQUENCE CONTROL - ALTERNATIVES

PAGE 3-2 FLOWCHARTING CONVENTIONS

HONEYWELL BULL CONFIDENTIAL AND PROPRIETARY

- 16-BIT CUSTOM PROCESSOR SPECIFICATION (60165904) PAGE 3-3

“12°

/ N\

I12°? "1z
LABEL LABEL

FIGURE 3-5
SIMPLE SEQUENCE CONTROL- OTHER ALTERNATIVES

3.3.2 SPLATTERS

A splatter is a mechanism for determining the value of multiple
elements, For instance, a splatter on a four-bit counter has sixteen
destinations. The s laéte: is usually allowed to be conditional and
the multiple elements bein examined can usually be masked. Figure
3-6 shows a conditional splatter on two FLAGS if the ZERO indicator
is false. The test condition (if any) is written inside the bottom of
the rectangle. A splatter 1is v1suall¥ signified by a hash mark
crossing_. the flowpath_ line by the splatter name and parenthesized
mask _value written adjacent to” the hash mark, and by connecting the
top line of the rectangles representing the multiple destinations.
The leftmost splatter desStination is annotated with the base address
of the splatter and the other destinations need only be annotated
with the varying gortlon of the destination address., If, as
frequentlz _hagpens, he splatter destinations can not all_be drawn
nearby, it is helpful to repeat the splatter name and mask value.

17
/N FLAGS(6)
200 2200 -—=2 -—-4 -—-6
FIGURE 3-6

A CONDITIONAL FOUR-WAY SPLATTER

PAGE 3-3 FLOWCHARTING CONVENTIONS

HONEYWELL BULL CONFIDENTIAL AND PROPRIETARY

16-BIT CUSTOM PROCESSOR SPECIFICATION (601656904) PAGE 4-1

THE TRANSFER LANGUAGE
AND
THE TRANSFER LANGUAGE COMPILER

. This section describes the Transfer_ Language which allows
microcode, to be written _at a "higher level" than that permitted_by
the dictionary of section 2. This séction also specifies the compiler
which ‘"converts" the high level source statements into the micros of
section 2; i.e., the compiler does not directly generate object code.

4.1. SOURCE FILE FORMAT
4.1.1 LINE LENGTH

The source file shall be free-form text consisting_of lines of
ASCII £ characters no _longer than 82 characters (including_ 1line
gel;glter). The compiler "may, but need not, enforce the line=length

imit.
4.1.2 WHITE SPACE

The 1line - delimiter, space, horizontal tab character and formfeed
character shall be consi ered "white-space" and are syntaqt;call¥
equivalent. White-space is only necessary where the juxtaposition o
two tokens (keywords, identiflers, operators, etc.) would cause the
compiler to misinterpret thetwo tokens as 'a single token of some
other type. Example: :

GOTOX cannot be interpreted as GOTO X because without the white-
space between GOTO and X, the compiler must consider GOTOX as a
single token.

4.1.3 VALID/INVALID CHARACTERS

.The following characters (expressed in 'C' notation) are never
valid ANYWHERE in a source file:
» "\0""through "\010'

0
'\016' through '\037'
'\177' through '\377'

The following character is valid only inside a literal block:
!\\l
The following _characters are valid only inside of a comment or

other tyge of delimited +text (such as the INCLUDE statement's
<{pathname>):

|%l |.|

-~

l?l 1 1 |{! U}l

PAGE 4-1 TRANSFER LANGUAGE AND COMPILER

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

16-BIT CUSTOM PROCESSOR SPECIFICATION (601656904) PAGE 4-2

4.1.4 COMMENTS
A comment consists of any text not including semicolon or any of
the characters mentioned in sections_1.3 and 1.4a beginning with the

delimiter {*' and_ ending with the delimiter */. A comment, therefore
may span multiple lines.

Comments may not be nested.
A comment is treated syntactically as white-space.
4.2 LEXOGRAPHY

4.2.1 CASE

Upper-case and lower-case letters_in reserved words, identifiers
and constants are equivalent and will be converted to upper-case in
any output file.

4.2.2 SOURCE FILE LENGTH

A source file consists of 2zero or more comments and/or
statements.) '
4.2.3 STATEMENT TERMINATOR

A statement _is terminated by the semicolon character, ';', which

may not be used for any, other purpose. Especially, the ée, colon

character _may not be used inside a comment, due to problems with the
RTL assembler.

4.2.4 LITERAL TEXT BLOCK

Any text beginning with the double-quote character, '"', up to
the next double=gquote character is considered literal text and must
conform exactly to _the rules describing the syntax of RTL assembly
language. This rule does not apply inside of a comment.

4.2.5 LITERAL TEXT BLOCK RESTRICTIONS

. Literal text may be imbedded _in a statement, or form a block
which could be outside of any other block.

4.2.6 LITERAL TEXT BLOCK "COMPILATION"

Literal text 1s copied_as-is (except that the delimiting quotes
are removed) _to the _compiler's TL assembly langua%e,output file.
Therefore a _literal block is opaque to the compiler. This means that
any ,labeis defined within the "literal bloc are _ unknown to the
compiler and that the _compiler will be unable to detect duplicate
usage_ of any firmware address assigned within the literal block. The
compiler wil also be wunable to detect _a conflict between any
micro-ops used within the literal block and any micro-ops which the
compiler generates in the process mf applying a production rule.

4.2.7 RESERVED WORDS

The 1list of reserved words is shown in Table 4-1. These reserved
worgi ﬁre a part of the language and may not be used for identifiers
or ock names.

PAGE 4-2 TRANSFER LANGUAGE AND COMPILER

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

B R D AT 3L 5 Bt e

16-BIT CUSTOM PROCESSOR SPECIFICATION (601656904) PAGE 4-3

TABLE 4-1
RESERVED WORDS
ACK BEGIN CALL END FALSE
ADDR BUSY CASE EQU
CLK - ELSE
CMND ENDSW
CONST
GOTO HEX IF LDSYND
HOF INCLUDE
NOFAULT PREFETCH RD2B SAVES
PREFETCHN RD2BN SELECT
PRESERVES RD4B SKIP
PTAKE RD4BN STALL
PTAKEN RDIO SWITCH
PUSH RDLK
RDULK
REPLY
RETURN
RUPT
TEST WT2B
TRUE WT2BN
WTB
WTLK
WTULK

4.3. SOURCE FILE ORGANIZATION
4.3.1 STATEMENT TYPES

The source file «consists of four types of statements, any of
which may be optionally omitted:

o) Pre-processor directives
o Definitions

o Block-defining statements
o Procedure

4.3.2 COMMENTARY

.. Commentar and literal text may apgear anywhere within the source
fll%l s%bjec only to the 1lexographic restrictions indicated in
section twoO. - :

4.3.3 PRE-PROCESSOR DIRECTIVES

. Pre-processor directives must each be contained on a single line
in the "source file and must begin in column 1 of the line. The
pre-processor understands two directive; INCLUDE and SKIP.

4.3.3.1 INCLUDE '<pathname>';
.. Open the file specified by <pathname> and insert the text of that
file "in place. of " the pre—-processor directive as if it were part of

the source file. Note: INCLUDEd files may not contain the INCLUDE
directive.

4.3.3.2 SKIP <count>;
Where <(count?> is defined to be an integer or the keyword HOF.

This statement is copied directly to the Output file, causing {count>
lines (or head-of-form) to be skipped when assembled under RTL.

PAGE 4-3 TRANSFER LANGUAGE AND COMPILER

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

16-BIT CUSTOM PROCESSOR SPECIFICATION (601656904) PAGE 4-4

4.3.4 LOCAL DEFINITIONS

UBngur definition statements are provided; EQU, CONST, EXTERN and
P .

If a_definition statement is within a block (see 4.3.5), it is a
"local" definition. Local definitions take effect at Ehe_ lace
within the block where the definition appears and persist until_the
end of _the block, A definition_ which is not containeéd within a block
is a "global" definition. Global definitions take effect at the place
in_ the source file where the definition appears and persist until the
end of the source file is encountered. (Actually, the situation is
more complex —-- "end of the source file" means_ the end of the
top-level source file, not the_ end of some included file which
happened to contain a global definition.)

An <identifier> which is_defined in_ a global 6 definition
statement may not be _re-defined elsewhere. A local definition_ can
however, override a global definition within the scope of the block
in which it appears.

4.3.4.1 <identifier> EQU <predefined identifier>;

This definition causes the _compiler to treat <identifier> as a
synonym _for the specified pre-defined identifier (e.g.: ADRA) or a
reserved word (e.g.: BEGIN).

4.3.4.2 <identifier> CONST <integer constant>;

This definition causes the compiler to treat <identifier) as a
synonym for some integer constant, allowing symbolic names for "magic
numbers".

4.3.4.3 <label> EXTERN;

This definition _specifies that the <(label> is defined in some
other source module. It compiles to the RTL statement "XLOC".

4.3.4.4 <label> PUBLIC;

This definition serves two__purposes. First, it compiles to _the
RTL "XDEF" statement, (which allows the label to be referenced b
"EXTERN" statements_ in other source files. Additionally, the <label
is made _globally known within a structured file. (Normally, labels
within blocks, in a structured source file —-— see section 3.5 =-"are
onl known £ within the scope of the block in which thez.appear. The
PUBLIC_ definition _statement overrides the scope limitation normally
imposed.) ~The <label> must be some label defined within the block.
There may be any number of PUBLIC statements within a block.

4.3.5 BLOCK DEFINITIONS

Block-defining statements impose scope rules on definitions and
labels and indicate whether or not the contents of hardware registers
are destroyed by :the code contained within or called from the block.
There are ~ four block—deflnlng statements: BEGIN, END, PRESERVES and
SAVES. The BEGIN statement efines +the start of a block; the END
statement marks its end. The PRESERVES statement asks the compiler to
verify that the specified register(s) are never the target of an
assighment or increment operation and to issue a_warning méssage if
they~ are. The SAVES statement asserts (the compiler need not veérif
the” assertion) that _the code within this block restores the origina
contents of specified register(s). This statement allows the compiler
to verify register _preservation for subroutines which save and
restore Yregisters which the subroutine uses as working variables and
therefore cannot declare as preserved.

PAGE 4-4 TRANSFER LANGUAGE AND COMPILER

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

16-BIT CUSTOM PROCESSOR SPECIFICATION (601656904) PAGE 4-5

If any block-defining statement appears within a source file, the
file _is said to be "struCturedq". TIf no block-defining statements are
specified, the file 1is said to be "unstructured”". No procedure
statements may appear outside the scope of a block in_a structured
file. Blocks “are not ‘"nested"; they correspond more closely to 'C'
functions than to Pascal procedures., If a block does not contain a
PRESERVES or a SAVES statement, it will be assumed that no registers

are preserved.
4.3.5.1 BEGIN
The BEGIN statement has the form:
[<block name>] BEGIN;
where <block name?> 1is _an identifier which the programmer has
chosen to name the block. It is optional. If it is used, it must be
unique in the source file.
4.3.5.2 END
The END statement has the form:
[<block name>] END;
where the <block name> must, if specified, match the <block
name> of the most recently-defined unmatched BEGIN. The compiler
shall verify that all BEGINs have corresponding ENDs.
4.3.5.3 PRESERVES
The PRESERVES statement has the form:
PRESERVES <register_name> [, <register name>]... ;

where <register__name> may be any of the hardware register names
or any user—defined Synonym thereof.

4.3.5.4 SAVES
The SAVES statement has the form:
SAVES <register_name> [, <register_name>]... ;

where <(register_ _name> may be any of the hardware register names
or any user—deiined Synonym thereof.

4.3.6 PROCEDURE

All = statements other .than pre-processor directives,
block-defining statements and definitions are considered procedure.

4.3.6.1 OPERATION CLAUSE
Procedure statements consist @of one or more operation clauses.
Operation _ clauses are separated by commas,_since the comma operator
is defined (see section 4.4.6.14) as the simultaneity operator.
Operation clauses may appear within a statement in any order.
An operation clause may be any of the following:
{assignment>

{control> L.
{next address specifier>

PAGE 4-5 TRANSFER LANGUAGE AND COMPILER

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

S 0 5 4 ks

16-BIT CUSTOM PROCESSOR SPECIFICATION (601656964) PACE 4-6

4.3.6.2 ASSIGNMENT OPERATION CLAUSE
An <assignment> clause's syntax is:
{ <identifier> | (<identifier list>) } = <expression>
An <identifier list> is defined as:
<identifier> [, <identifier>]...
4.3.6.3 CONTROL OPERATION CLAUSE

A <control> clause includes such things as loading syndrome,
gu rnglng error detection and bus operationsS. See paragraph 4.5 for
etails.

4.3.6.4 NEXT ADDRESS SPECIFIER OPERATION CLAUSE
A <next address specifier> clause may be:

{goto>
{splatter>
{conditional>
{call>
{return>

See paragraph 4.6 for details.

The syntax of the next address specifier is:
(<integer constant>) or
(.A)

For those_ address specifiers which are integer constants, the
compiler shall report multiple use of the same firmware address as an
error.

A procedure statement must_be prefixed by an address specifier.
If a, 6 procedure statement_. is labeled, the ~address specifier must
immediately follow the label.

4.3.6.5 DEFAULT NEXT ADDRESS

If a_ procedure statement does not contain a <next address
specifier> "clause, the compiler shall assume a <goto> clause which
specifies _as _its target the address of the next statement in the
source file, It is an error for the last statement of a block (or the
file, . if it 1is 'unstructured) not to contain a <next address
specifier> clause.

4.3.6.6 PROCEDURE LABELS

A procedure statement may be ogtionally prefixed by a label. A
label 1is anZ valid <identifier> prefixed bg.a dollar-sign, '$'!. See
paragraph_ 4.2.2 for the _definition of an_<Xidentifier>, Some labels
ma be formed automatically b{ the compiler. The compiler need not
detect that the program ~“contains a label that uplicates _an
automatically-generated "one. It will be ug to the user to_ensure that
such duplication does not occur, provided that the compiler's method
for generating labels is documented.

A label may be specified as the target of a _<next

addressspecifier> "“operation, the operand of an EXTERN or a PUBLIC
statement or as the operand of a PUSH or ADDR operator.

PAGE 4-6 TRANSFER LANGUAGE AND COMPILER

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

16-BIT CUSTOM PROCESSOR SPECIFICATION (601656964) PAGE 4-7

Any_ identifier which is used_in a procedure statement clause must
have already been_ defined or else be a reserved word or pre-defined
1d%nt1f1e§. Labels, however, need not be defined before they are
referenced.

4.4. EXPRESSIONS

An expression consists of identifiers, reserved words, constants
and operators.

4.4.1 IDENTIFIER
An identifier may consist of from one to sixteen characters.
An identifier must begin with a letter.

An identifier may contain (after 1its initial letter) any
combination of characters from the set

'A' through 'Z'

'a' through 'z'

'0' through '9'
hyphen

The identifiers shown in Table 4-2 have been pre—-defined and may
not be used as either block names or user-defined identifiers.

TABLE 4-2
IDENTIFIERS
ABCD ADRA ADRB ADRPH ADRPL ADRX CYCLE
D DECODE| F FO Fl F2 F3
F4 F5 F6 F7 F8 F9 F1l0
Fl1 Fl12 F1l3 Fl4 F15 FLAGS FQ
H 1 IC IFB ILE ILEl I0
1S ISCR IV 12 122 INRA INRB
INRX MCA oP OPT PO Pl
P3 P4 P5 P6 P7 PB PCTR
Q R RO RAR RAMAD RBR RCR
RDR SCRAM SYND TO T1 T T3
T4 T5 T6 T7 Y Z ZSH
4.4.2 INTEGER CONSTANT
An <integer constant> may be either:
o A decimal constant, consisting of one or more decimal
digits. -
e} A hexadecimal constant, consisting of one Or - more
characters from the set of:

0123456789 ABCDETF
abcdef

followed by the sharp-sign, '#', which indicates the radix.
4.4.3 EVALUATION RANGE
ressions must evaluate within the range from 00000000# through

Ex
OOOOFFgF# or the range OOFF0000# through™ OOFFFFFF#. The compilér
shall detect out-of-range expressions as an error.

PAGE 4-7 TRANSFER LANGUAGE AND COMPILER

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

16-BIT CUSTOM PROCESSOR SPECIFICATION (6016569b4) PAGE 4-8
4.4.4 OPERATORS
The following operators have been defined, in order of
precedence:
(unary) - right-to-left evaluation
++ == right-to-left evaluation
AD& right-to-left evaluation
. R() SELECT() right-to-left evaluation
(binop) + - lett-to-right evaluation
<< > K@ @ left-to-right evaluation
& left-to-right evaluation
left-to-right evaluation
| left-to-right evaluation
right-to-léft evaluation
= right-to-left evaluation
p right-to-left evaluation
4.4.4.1 PARENTHESIS
Parenthesis may be used to override operator grecedence, subject
to the_ restrictions imposed by the hardware target. Parenthesis also
surround the argument list__of the ADDR, PUSH and SELECT functions.
Expressions [if “any are _allowedl whic are arguments of these
f%nci%ons are evaluated in right-to-left order béfore the function
itself.
4.4.4.2 UNARY MINUS
The unary minus operation performs arithmetic negation.
Example: ,
-1234
4.4.4.3 UNARY TILDE
The unary tilde, '~ ', operator_ performs bit-wise negation; i.e.:
the operand is exclusive-ORed with all ones. Example: ’
“maskl4
The unar; tilde operator also performs logical negation; i.e.:
TRUE becomes FALSE and vice-versa. Example:
“I-ZRO
4.4.4.4 UNARY ++ and -- :
The unary operators "++" and "--" Trepresent increment and

degrement6 .respectivel
ei

which is

++RDR /* Increment RDR */
--F1 /* The same as Fl =

4.4.4.5 UNARY BRACKET SET

The bracket
Example:

F2 =

F1 -1 =/

set (

R[RAR] ;

{. These operators prefix the
ng incremented or decremented. EXamples:

/* Set F2 to the ARAM value at_

the location sgscified by the

RAR register.

PAGE 4-8

sub—-expression

[]) is used to represent "as addressed by".

TRANSFER LANGUAGE AND COMPILER

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

16-BIT CUSTOM- PROCESSOR SPECIFICATION (601656964) PAGE 4-9

4.4.4.6 UNARY ADDR()

The ADDR function evaluates to the firmware address of its
operand (which must be a label. Example:

F3 = ADDR(S$SSTEP12) /* Put the firmware address of
$SSTEP12 into register F3. */

4.4.4.7 UNARY SELECT

The SELECT function evaluates to the 24-bit value which is formed
by the concatenation of bits 0 through 7 (the high-order byte) of its
first operand with bits 8 through 15 of its seCond operand and bits
16 through 23 of_its third operand. Valid operands for this function
are a byte-sized literal, H, 2ZSH and PB. Example:

SELECT(H, ZSH, ZSH) /* Combine the high-order byte of_ the H
reqgister with the middle= and low-
order bytes of the shifted Z bus */

The variable ZSH specifies the Z-bus shifter output. ZSH is set
by an assignment of the form:

ZSH = Z <@ nn,
or
ZSH = Z @ nn,

where "nn" specifies the rotate distance (always a multiple
of four). See section 4.???? for a description _of the rotate
operator, The use of ZSH is restricted in that_(li there must be a
ZgH assignment clause within any statement that includes a reference
to ZSH and (2) the ZSH assignment clause must preceed any use of ZSH.

4.4.4.8 BINARY OPERATORS + and -

The . binary operators '+' and '-' stand for addition, and
subtraction, respectively. Note: because hyphen may appear in an
identifier, the binary "minus operator must always be surrounded by
spaces. Examples:

F2 + F1 /* Add F2 to Fl1l */
F3 - Fl1 -1 /* Subtract F1 from F3 and
subtract 1 from the result */

4.4.4.9 ROTATE BINARY OPERATORS

The £ left- and right-rotate binary operators_ (<@ and @,
respectively) perform bit-wise rotates by a specified numbér of bits.
Note: the "rotate operators must specify a rotation distance which is
a multiple of four. Example:

F3 = F3 <@ 16; /* Rotate F3 left 16 bits and
put in F3 */

The left- and right-shift operators (<< and >>, respectively
perform bit-wise shifts of a distance ofone bit. The second operah
of the shift operator specifies the "fill" bit. The shift operations
are ALU-based operations whose _first operand may be F (the ALU
output), an arithmetic / logical expression FQ (F concatenated with
the 0 re%lster) or . an arithmetic / logical expression concatenated
with : he fi111 bit _actually comes from flag TO, so specifying a
fill it _also causes TO to be_ set or cleared (éxcept for the secdond
example, below, where the_ fill bit specification 2 MUST_be Q%. If
altering TO 1is not desired, TO may be specified as the fill bit, in
which case T0 is unchanged.

PAGE 4-9 TRANSFER LANGUAGE AND COMPILER

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

16-BIT CUSTOM -PROCESSOR SPECIFICATION (601656964) PAGE 4-10

Examples:

F3 = (F3 + F4) >> 0; /* Add F3 to F4, shift right 1 bit,
zero filling the_left-most
bit and put result into F3 */

F3 = (F2 & F3) << Q; * For left shifts of F, the onl
() © / valid fill bit specifier is Q? x/

F3_ Q = (F1 F3)_Q << TO; /* For this shift, the fill bit
- - can be specified, but in this
case, we _did not want to
disturb TO. */

Fl = (F1 F2)_Q >> 1; * Right-shift long with 1-bit
Q= (F1 | F2)_ /* Bights g

4.4.4.10 UNDERSCORE BINARY OPERATOR

The underscore (__) is the concatenation operator. It is used in
the case where a qguantity must be constructed by concatenating two
other quantites in "ALU operations. A more gowerful concatenation
operator is the SELECT function; see section ????. Example:

F5_Q = FQ <<1; /* Shift F concatenated with Q left one bit
1-filled) and put result 1n F5 _and Q. The
value_must have been specified by some
other clause within the statement.” */

The concatenation operator may also be used for such constructs
as:
RBR_RCR, \ _
RAR_RBR_RCR_RDR (although ABCD is preferred),
Y INRA _
and
Y INRB
4.4.4.11 BOOLEAN BINARY OPERATORS
_Bit-wise (Boolean AND, Exclusive-OR, _and _OR, operations are
defined by means o the operators '&', '~ ' and '|', respectlvelg.
Other operations, such_as AND-NOT and Exciuslve NOR may be created
using the AND_ or XOR operators along with the unary negation (¥
operator applied to the second operand. EXamples:

Z = F3 ~ F2; /* exclusive OR F3 and F2 and put result
on Z bus */

F2 = F2 & F1l; /* %gD*§2 and NOT F1 and put result in
4.4.4.12 EQUAL BINARY OPERATOR

. The assignment ogerator is the equal-sign. It is included in the
list of operators so that its precedence can be represented.

PAGE 4-10 TRANSFER LANGUAGE AND COMPILER

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

16-BIT CUSTOM PROCESSOR SPECIFICATION (601656904) PAGE 4-11

4.4.4.13 COMMA BINARY OPERATOR

. . The comma operator specifies simultaneous operations performed
within a single step. Examples:

z = ES, F1 = F5 + Fl; /* 2 gets FS while F1 gets F5 + F1 */
gz, F1) = F2_+ 003F#; /* both Z and F1 get F2 + 003F# */
I, Z) = ++F2; * The arithmetic indicators, the 2

bus and F2 all get F2 + 1 */
Note: comma also appears within the argument list of some
keywords. When it 1s encountered in an argument list it 1is
not treated as an operator.
4.5. CONTROL CLAUSES
4.5.1 STALLS
The STALL operation is specified by the syntax:
STALL(<event>)
where <event> can be any one of ACK, BUSY or INRA.
4.5.2 READS
There are seven READ operations, all of which are formed:
{read-op>(<addr reg>) '
where <addr reg> may be either ADRA or ADRB and <{read-op>

ma e:
RBZB -- read two bytes of memory
RD2BN -- read two bytes of memory, no-cache
RD4B -- read _four bytes of memory
RD4BN -- read four bytes of memory no-cache

RDIO -- read 1/0
RDLK -- read and lock
RDULK —— read and unlock

4.5.3 WRITES
There are nine WRITE operations:
{write-op>(<addr reg>)

where <addr reg> is as defined in the read operations, while
{write—-op> may be: '

CMND —-- command

REPLY -- reply (SHBC)

RUPT -- cause 1interrupt

TEST -- wragped write

WI2B -- write two bytes to memory

WI2BN -- write two bytes to memory, no—cache
WIB -- write one byte to memory

WILK -- write and lock

WTULK -- write and unlock

4.5.4 LDSYND

The . LDSYND clause causes the syndrome register to be loaded from
the current status information.

'PAGE 4-11 TRANSFER LANGUAGE AND COMPILER

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

2

i s b s i s
£y

e

16-BIT CUSTOM PROCESSOR SPECIFICATION (601656904) PAGE 4-12

4.5.5 PROCEDURE FETCH
There are four procedural fetch control operations:

PTAKE —-—- take one byte of procedure
PTAKEN -- take one byte; no cache

PREFETCH -- load procedure buffer

PREFETCHN -- load procedure buffer; no cache

4.5.6 NOFAULT

The NOFAULT clause causes_ hardware error condition signals (e.g.:
data parity) to be ignored during the current step.

4.6. NEXT ADDRESS SPECIFIER CLAUSES

Eleven next address_ specifier clauses take_ as their target
operand,Z either some label whose scope includes the statemént
containing, _the address specifier clause Or an_integer constant which
is a_ valid firmware address. The compiler shall report as an, error
any label which is not resolvable or any integer constant not in the
range O through [TBD]. The.gxactlce of using integer constants as
the target of néxt address specifier clauses is Strongly discouraged.

4.6.1 GOTO

. The GOTO operation specifies an un-conditional jump to another
firmware step. Its syntax is:

GOTO <target>
where <target)> was defined in section 6.1.
4.6.2 SPLATTER

. The splatter operation specifies a "computed goto" or multi-way
jump to one firmware address of a group of addresses. Its syntax is:

SWITCH é(selector>),
CASE <int>: <(target),
CASE <int>: <target>
ICASE <int: <target$,]
ENDS

. where <(selector> can_ be PO, RAMAD, FLAGS, OP, I, or DECODE and
<int> may be 0 through 15 (in any convenient integer notation) which
specifies” the low-order digit of the target addreSs. It is an_error
tO0 have any <int> more than once in a single <splatter operation>.

4.6.3 CALL

The CALL operation specifies a subroutine call. It is a "macro"
statement, 'a combination of a PUSH operation and a GOTO operation.
Its syntax is:

CALL <target>

The CALL statment expands _to a PUSH of the address of the next

successive source statement and a GOTO to the <(target> that is the
CALL's operand.

PAGE 4-12 TRANSFER LANGUAGE AND COMPILER

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

i b b e RSB 3 B

16-BIT CUSTOM PROCESSOR SPECIFICATION (601656904) PAGE 4-13

4.6.4 RETURN

The RETURN operation is the converse of a CALL. It specifies that
the _tog_ of the subroutine _stack 1is to be popped and used as the
destination firmware address. Its syntax is: .

RETURN [(<mask>)]
where <{mask> can be 0 through 15.

4.6.5 CONDITIONAL

The conditional operation sgecifies a _two-way (if/else)_ jump. Its
syntax is hlghlg complex, as other next address specifier clauses may
be parts of~ the conditional operation. The following forms are

permitted:

1. IF (<test condition>) <target> [ELSE <target>]
IF (<test condition>) <return operation> [ELSE <target>]
IF (<test condition>) <splatter operation> [ELSE <(target>]
IF (<{test condition>) ELSE <target>
IF (<test condition>) ELSE <return operation>
IF (<test condition>) ELSE <(splatter operation>

Note that__in forms 1 and 4, the <target> in the ELSE clause does
not _necessarilly _have to be _in the ELSE-bank of firmware addresses;
so long ,as the IF target and the ELSE target are in opposite banks
the compiler can invert the test condition”to achieve alignment with
hardware requirements.

In, forms 1, 2_and 3 if the ELSE portion of the conditional
operation is omitted, the aédress'of the next source statement is _the
destination when _the tested condition is FALSE. In forms 4, 5 and 6,
the address, of the next source statement is the destination when_the
tested, condition 1is TRUE. Forms 4, 5 and 6 should be avoided unless
1nverglgg of the 'test condition makes the condition expression
unreadable.

A N W N

PAGE 4-13 TRANSFER LANGUAGE AND COMPILER

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

16-BIT CUSTOM PROCESSOR SPECIFICATION (60165904) PAGE 5-1

THE FIRMWARE DEVELOPMENT FACILITY

.This section_ contains a description of the Firmware Development
Facility K available for use with he 16-Bit Custom Processor. The
section” is divided into three parts:

o A general overview
o The menu
o) A description of each menu item

o A description of the optional Missing—Stall Catcher - ‘

The Firmware Development Facility_ (FDF) _is an _equipment which
allov_vst ch%ckout of firmware, coded and assembled under RTL. The FDF
consists of:

o A separate five—card cage with an independent power supply

o A processor board with a Z80 processor

o A SILO board with a 4096 location SILO

o] A 16384-by-96 location control-store-PROM substitute

o A terminal/keyboard unit (e.g., 7300)

o Appropriate interconnecting cables

Utilizing the FDF in a development environment, the firmware is
tested and_"finalized. It is then "burnt" into PROMs. A set of_ PROMs
are installed in _each, Custom_ Processor. The FDF_equipment listed
above 1is _not required in an end-user site. The resulting CUP product
‘connects directly to the Megabus system bus and requires no cables of
any kind.
5.1 FDF Interfaces

Figure 5-1 1is ,a diagram of the interconnections among the
elements which comprise a firmware checkout "test bed".

PAGE 5-1 THE FIRMWARE DEVELOPMENT FACILITY

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

'16-BIT CUSTOM PROCESSOR SPECIFICATION (60165904)

PAGE 5-2

FDF INTERCONNECT DIAGRAM

<
F 16K-BY-96—-BIT CONTROL STORE
FDF D (e
F
C
POWER 2 < e TO
C 280 PROCESSOR BOARD < / >
g o 7300
SOURCE L b
N ¢
E 4K-BY—-44-BIT SILO BOARD ¢ d
a
(]
16-BIT CUSTOM PROCESSOR g————
S <
g CACHE OR LOCAL MEMORY (OPTIONAL)
T
SYSTEM g
OTHER PROCESSOR (OPTIONAL)
B
BUS ¥ U ¥
S
B
POWER é SYSTEM CONTROLLER(S)
K ‘ CUSTOM
b4 '4 PROCESSOR
FIRMWARE
SOURCE p CHECKOUT
L SYSTEM
A CONFIGURATION
N SYSTEM MAIN MEMORY(S)
E FIGURE"5-1
a: Cables (2) CUP to SILO (04910202-001, 04910203-001)
b: Cable 1) SILO to 7280 (04910230—-001)
c: Cable 1) 280 to MEMOR 60128806-001
d: Cables (3) CUP to MEMORYAéO49lO2O4—OOIé
e: Cable 1) 280 to TERMIN 560156745*0 l; for RS232
60156675-001) for RS422
PAGE 5-2

THE FIRMWARE DEVELOPMENT FACILITY

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

16-BIT CUSTOM PROCESSOR SPECIFICATION (60165904) PAGE 5-3

5.2 THE HELP SCREEN
uestion mark _and, 6 carriage return causes a help screen to be

A
disglayed as shown in Figure 5- The help screen provides a summary
of FDF features. .
COMMAND FUNCTION - silo (latest offset)
FWPROM select PROMs east,west next,prev silo entr
FWRAM select RAM north, south next,prev silo bloc
Ca RAM word g a, nSCAa scan trom -n for addr=a
ack_hexadecimal nSCDhd scan from -n_ for data=d
Llabel fields A ADRA, ADRB, ADRP, ADRX
Ja aump to CSA = a AA ADRA
B 1sglay all brkpts AB ADRB
Ba no_brkpts CSA = a AP ADRP
Ba:H halt (@ CSa = AX ADRX
Ba:D disabIe silo CSA = a| F FO through FF
a: enable silo CSA = a Fn one of above alterable
XS+ XS- external stop enable H H register alterable
:2,2,... define epilog I INRA,; INRB, INRX, SYND
modify epilog Mn not supporéed
£\ scan right; left opP RAA, B, C, & D
insert) “delete . PB next procedure byte
mGOn rpt n command m times PC rogram counter (PCTR)
* invoke epilog n 0 régister
n*S store epilog ™ n . R REGO™ through REGF
execute current epilog| Rn REGn
" print current display =d latest alterable <= A4
FIGURE 5-2
THE FDF HELP SCREEN
PAGE 5-3 THE FIRMWARE DEVELOPMENT FACILITY

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

16-BIT CUSTOM PROCESSOR SPECIFICATION (60165903) PAGE 5-4

5.3 THE COMMAND SET

The command set for the Firmware Development Facilitg can be
divided into five groups as described in the following paragraphs.

5.3.1 SILO COMMANDS

When execution terminates, the silo provides a history of the last
%Ogg gtfps executed. Commands which apply to the SILO are shown in
able 5-1.

TABLE 5-1
FDF_COMMAND SET
SILO COMMANDS

COMMAND CAUSES TO BE DISPLAYED

? Summary of commands (help screen)
-n Silo location:
-n YYYy=zzzz2z . . .
where n" = silo offset from stop point, in decimal
yyyy = firmware address
22222z = content of zbus at that address

- Current offset in silo

nSCAXXXX Scan SILO for a firmware address = xXXXX.
Start scanning at an offset of -nnn (default = 4000).
Dlspla¥ each match until ejither: .)
an ofiset of zero is reached (THE END is dlsglaye@ or
3 matches have occurred (hitting the space bar will
dlsplax the next set of matches; "hitting any other
key will execute that command.)

nSCDXXXXX Scan SILO for a data = xXXXXXX.
Start scanning at_an offset of —nnn (default = 4000).
Display each match until either:) .
an offset of zero is reached ("THE END" is displayed)
or_ 23 matches have occurred (hitting the space bar
will display_the next set of matches; hitting any
other key will execute that command.)

nNEXT Next nnn locations in SILO
nnn cannot exceed 4000; default = 1.)
If offset of 0 is reached, "THE END" is displayed.

NBLK Next 23 locations in SILQ) ,

If offset of 0 is reached, "THE END" is displayed.
PBLK Previous 23 locations in SILO . .

If offset of 4000 is reached, "THE END" is displayed.
nPREV Previous nnn locations in

SILO
nnn cannot exceed 4000; default = 1.) .
If offset of 4000 is reached, ""THE END" is displayed.

RIGHT ARROW| same as NEXT
DOWN ARROW same as NBLK
UP ARROW same as PBLK
LEFT ARROW same as PREV

PAGE 5-4 THE FIRMWARE DEVELOPMENT FACILITY

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

16-BIT CUSTOM PROCESSOR SPECIFICATION (60165904) PAGE 5-5

5.3.2 RUN CONTROLS

Commands _which determine what the history memory should capture
and what should cause execution to terminate are shown 1n Table 5-2.

TABLE 5-2
FDF COMMAND SET
"RUN" CONTROLS

COMMAND CAUSES ACTIONS
| —— e ——
B Display all active breakpoints
Byyyy Delete Breakpoint at firmware address yyyy
B 12 Install Breakpoint at firmware address where:
YYYy z = D: Disable capturing of history,iny§¥z0
z = E: Enable capturing of history in SILO
z = H: Address Halt
NOTES: . L .
1 - Address is specified by last 14 bits _of yyyy.
2 - Breakpoints are armed only if command
RUNB or RUNL is used.
FWRAM CUP uses firmware in external RAM [Default]
State appears on line 25
FWPROM CUP uses firmware_ in PROMs (mounted on CUP boards)
State appears on line 25
INIT Clears the CUP to the initialized state; i.e., ready to
enter location zero at the next clock which may_ be
provided by depressing the RUNN, RUNB, or STEP keys.
JXXXX Transfer firmware control to address XXXXx
nRUNB Place CUP in RUN mode, prepared to stop after the
nnn-th occurrence of a breakpoint halt. Default nnn=1.
(Note: one stop for each of two addresses counts as
two_stops.i The contents of the EPILOG-preselected
action will then be executed.
RUNN Place the CUP in RUN mode, and continue in that mode
until "STOP" or "INIT" is depressed.
nSTEP Cause the CUP to execute nnn firmware steps
(default =-1).
STOP Put the CUP in STOP mode.)
NOTE: The onlg FDF functions allowed when not in STOP
_ mode are "STOP" and "INIT".
XS+ Enable the CUP to stop when_ the external signal fed
into the FDF goes from the low state to the " high state.
XS- Enable the CUP to stop when the external signal fed
into the FDF goes from the high state to thé low state.
XSD Disable external stop.
PAGE 5-5 THE FIRMWARE DEVELOPMENT FACILITY

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

16-BIT CUSTOM PROCESSOR SPECIFICATION (6016590%) PAGE 5-6

5.3.3 REGISTER DISPLAYS

Table 5-3 shows which Custom Processor registers can be displayed
and which can be altered. .

TABLE 5-3
FDF COMMAND SET
REGISTER DISPLAYS

L==COMMAND CAUSES TO BE DISPLAYED

A ADRA=xxXxxXX ADRB=xXxXXX ADRP=xxXXXxXX ADRX=XXXXXX
AA ADRA=XXXXXX
AB ADRB=XXXXXX
AP ADRP=XXXXXX
AX ADRX=XXXXXX
F FO through FF on two lines:
FO=xXXXXX 1=XXXXXX 2=XXXXXX
F8=xxxXXX 9=XXXXXX 1l0=XXXXXX
Fn F register #nn where n = 0 through F
Fn=xXXxXxx
G RAA=x RAB=x RAC=x RAD=x
PB Procedure byte (right justified):
PB=0000xx
PC PCTR (right justified):
PC=000xxX
0 Q register:
Q=XXXXXX
R ARAMO through ARAMF on two lines:
RO=XXXXXX =XXXXXX 2=XXXXXX
RB8=XXXXXX 9=XXXXXX A=XXXXXX
Rn ARAM specified by nn where nn may range from F:
RN=XXXXXX
RA ARAM location addressed by RAA:
RAA=Dn>XXXXXX (where n is the value of RAA)
RB ARAM location addressed by RAB:
RAB=n>XXXXXX (where n is the value of RAB)
RC ARAM location addressed by RAC:
- RAC=n>XXXXXX (where n is the value of RAC)
RD ARAM location addressed by RAD:
RAD=n>XXXXXX (where n is the value of RAD)
S SHRG register:
S=XXXXXX
= XXXXXX Alter most-recently-displayed "alterable" register

to equal xXxXXXXX.

PAGE 5-6 THE FIRMWARE DEVELOPMENT FACILITY

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

16-BIT CUSTOM PROCESSOR SPECIFICATION (6016590;) PAGE 5-7

5.3.4 EPILOGUE CONTROLS

The epilogue mechanism is invoked each time the FDF terminates
execution of “the Custom Processor, Table 5-4 defines the command set
which applies to the epilogue mechanism. ’

TABLE 5-4
FDF COMMAND SET
EPILOGUE CONTROLS

L COMMAND CAUSES ACTIONS

Define "EPILOG", a list of greselected commands which
gill ge executed when any STOP is encountered.

ormat:

: COMMAND , COMMAND , COMMAND , etc.
No blanks allowed between a comma and the next command.

80 characters_maximum.

see also \,/, , and keys.
* Display EPILOG and allpw corrections.
see also \, /, , and keys.
n* Retrieve EPILOG #n (n = 2 through 6)
n*S Save current as EPILOG #n (n = 2 through 6)
/ Skip next character of EPILOG
\ Skip previous character of EPILOG
- Insert blank into EPILOG
- Delete character of EPILOG
nGOTOm Repeat previous m EPILOG commands n times
(m,n = througn 9)
CLER Clear display screen (only)
E Execute (current) EPILOG
" Transmit present FDF screen display to hard-copy
printer, if attached.
PAGE 5-7 THE FIRMWARE DEVELOPMENT FACILITY

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

16-BIT CUSTOM PROCESSOR SPECIFICATION (6016590&) PAGE 5-8

5.3.5 FIRMWARE ARRAY COMMANDS

The @ FDF' s 16K bg 96-bit firmware array contains the firmware to be
debugged. _Tab lists the commands which allow the firmware array

to bé dlsplayed and altered.

TABLE 5-5
FDF COMMAND SET
FIRMWARE ARRAY COMMANDS

COMMAND l CAUSES TO BE DISPLAYED

COMMAND MEANING (TO DISPLAY AND CHANGE WRITABLE FIRMWARE ARRAY)

Cxxxx\ Display location xxxx, by fields, with headings
CxxxxX Display location xxxx, by fields

CXXxX. Display location xxxx, packed format, ready to modify
\ Revert to field format, with headings

LEFT ARROW Move cursor to previous field, ready to modify
RIGHT ARROW| Move cursor to next field, ready to modify
Revert to packed format, ready to modify

UP ARROW Move to previous location
DOWN ARROW| Move to next location
LOAD Prepare RAM for loading of firmware.

After loading, actuate "INIT" to_clear the CUP.
Line 25 will élsplay "LOAD" until "INIT" is depressed.

PAGE 5-8 THE FIRMWARE DEVELOPMENT FACILITY

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

16-BIT CUSTOM PROCESSOR SPECIFICATION (60165904) PAGE 5-9

5.4 MISSING STALL CATCHER

The Missin Stall Catcher 1is an additional debugging tool which
detects the absence_ of a required, stall micro. Thé Missing Stall
Catcher 1is installed "in serjes with" the FDF. It intercepts and
monitors, the cache/megabus related activity _and insures that each
transaction contains | the prescribe explicit or implicit stall
invocation(s). The monitoring_activity proceeds as the target firmware
load is_ executing. Thus, all traversed firmware paths are scrutized

for missing stalls:

PAGE 5-9 THE FIRMWARE DEVELOPMENT FACILITY

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

16-BIT CUSTOM PROCESSOR SPECIFICATION (601656964) PAGE A-1

ENHANCEMENTS

The redesigp of the 16-Bit Custom Processor provides the
following additional features:

1. A readable 10-bit Channel Number.
2. A configurable cycle stealer so that the Custom Processor

can behave as a low Rriority bus_requestor even when
"plugged into" a high priority MEGABUS slot.

3. Backward compatible Firmware visibility; i.e., an existing
set of PROMs (of any incarnation) will" work.

4. A bidirectional "local" interface so that both reads and
writes may use the "backdoor"; i.e., not require MEGABUS
cycles.

5. A semi-alterable Configuration Register which determines

certain operational characteristics of the 16-Bit Custom
Processor as shown in Table A-1.

6. A "timeslicing" mechanism which can be programmed to
interrupt aftér 2, 4, 8, or 16 milliseconds have elapsed.

7. Rgcggnition of a MEGABUS cycle "Function Code 01" directed
a

e CUP channel number,” which is interpreted as a local
CLEAR and intiates the OLT sequence.

8. A mechanism which interrupts processing when a power failure
" 1s detected. ‘

9. An optional 16k bank of writeable firmware space.

10. A multiprocessor feature which only_ retries_ NAKed lock
requests after detecting that an unlock cycle has occurred.

PAGE A-1 ENHANCEMENTS

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

16-BIT CUSTOM PROCESSOR SPECIFICATION (6016569b4) PAGE A-2

TABLE A-1
CONFIGURATION REGISTER

———— — —

CONFIGURATION BITS
(read only)

CSTEAL
(read only)

CMDPAR)
(read/write)

APLONG
(read only)

AP'512
(read only)

FCODE1l .
(read/write)

Three bits (C,B and_A) which determine the
value of the three-least significant bits of
the reply to the "who-are-you" (function code
26) inqulry.

Determines how the Custom Processor will
behave when regﬁestlng the MEGABUS. .

When Cgcle STE is false, the CUP is awarded
MEGABUS cycles as a function of its position
in the bus. .)

When Cycle STEAL is true, the CUP is awarded
MEGABUS cycles only when no other are
requesting.

Determines whether or not the CUP will
generate_and check parity on the MEGABUS
command lines.

Determines whether ADRP operates as a full
24-bit register or as a -bit/15-bit
Kgrtltloned register. When APLONG is_false,

RP does not increment beyond bit 23 .
ADRP(23-31 mag be loaded without d;sﬁurblng
ADRP(08-22) and the APWRAP feature is enabled.

Determines whether the procedure-page-cross
detector assumes a page size of 512 or
8192 bytes.

Enables the restart feature. When FCODEl is
true, a MEGABUS command directed at the CUP
channel number, having a_function code of 01,
and having data bit 0"= 1 causes_the CUP to
cancel all real or imagined stalls or waits
and causes it to initiate its QLT sequence.

PAGE A-2

ENHANCEMENTS

HONEYWELL BULL CONFIDENTIAL & PROPRIETARY

