A‘i‘&“

HONEYWELL INTEROFFICE CORRESPONDENCE EPCOVRDEF

Date: April 15, 1986

Subject: Approved DPS6 Stage 3 System and Central Subsystem Family EPS-1

To: LIST From: V. Morganti
Organization: Systems Engineering
HED: MA30
MS: 852A
HVN: 671-2778

Attached is the approved copy (Rev. E) of the DPS6 Stage 3 System and
Central Subsystem Family EPS-1 (i.e, the non MRX family). It describes the
functionality, performance and configurations of the different Central |,
Subsystems.

Any comments or questions should be directed to the author
V. Morganti.

V. Morganti

»

H ll SPEC. NO. L5011 29 ReYV,
oneywe 60149740 1 |

HONEYWELL INFORMATION SYSTEMS ’
LoC. PROJECTION [f=]-1 J

S=

PREPARED BY - DATRTITIR
J. Curley 10/4/84. Engineering Product ‘Specification, Part 1
APPROVED 87 DATE DPS6 Stage 3 Central Subsystem Family
REVISION RECORD
RE V1.) 0
REV. AUTHORITY DATE SIGNATURE SHEETS AFFECTED
A DRAFT, 10/4/82 All
B BLCE7883 11/2/84 A e All
c BLCF7540 8/1/85 K . ALL
D 12/11/85 /&',/W' -Rev. D_Pages
Rev. E Pages
E 4/30/86 et ev g
NOTE

This EPS-1, if not revised within one year, should be considsred
obsoiete and thersfore refsrencs shouid be mads to the appropriats

praduct manual.

This docurment and the informanon contlined nerein sre configentisl to and the prooerty of Honeywell information Svstams inc. and ere macke
ent, sny COOY thereat snd the nforme-
tion contained Rersin snail be Maintsined 1N sTrICTEST conficencs: sNall NOt De cOOIed iN WNOI® OF I DAt EXCTOT 88 AUTNONZEQ Dy MNe emdioves's
manager; ang snall 2ot De Gisciosed Or AIStridutsd ia) 3 persons who are NOt HoNeywell empioyees, Of (D) 10 MHonevweil empiovees fOFf wRGH
UGN 1ATOrTETION 3 NOT NECRISAry !N CONNECTION with tneir assigned responsibilities. Upon recuest, or when tNe MOIOVes N DOLAISIONR Of this
Jocument no tonger has need for the cocumaent for the authonzed HoNevwell Durpose, this COCUMAnt and Ny CODIeS thereot 1Nsl! D reTUrNed 0
ne emoloyee’'s manager. Thare sNaii De NO eXCIOUCNS 1O tNE TETMS ING CANATICNS $8T fOrTN NEreIN FXCIDT 28 AUINONZIA IN Wwriting OY NE responsIdts

VRO ONIY 1O Honeyweii em3iOyees fOr The $OI8 DUrpOLe Of CONCUCTING HONWvwell's ¢

1oneywell Vice Presicent.

i A e, AR . Emesm @B yEESy § ¢ e M G s o W o CEDEER ¢ CR Y

O

TN

LJ

—~—

et ——— = e ———— r——— .

Honeywell

HONEYWELL INFORMATION SYSTEMS

$2¢C. NO. . snaet
60149740 1.1

ENGINEERING

__SUBSYSTEM LEVEL

PRUDUCT | TITLE: DPS6 Stage 3 CSS

' YERSION: APPROVED ~ paTp._4/30/86
SPECIFICATION PRODUCT CALENDAR REFERENCE_____
(EPS - 1)

'HONEYWELL INFORMATION SYSTEMS
SYSTEMS ENGINEERING - BOSTON

o . o emo e o e o o mn om e amams o ame ¢

HONEYWELL INFORMATION
SYISTEMS

SPEC. NO.
60149740

SHEET | REV.
TC- 1. |

CONTENTS

SECTION 1 INTRODUCTION

1.1

1.2

1.3

1.1‘,

.1.1 16=-Bit Expanded Physical Memory Processor SubsystemsS ..cccocce
.1.2 32-Bit Enhanced Processor Subsystem ..c.ccoceccococcecsccccocs
.1.3 I/o support ® 0@ 0 Ve 00 O©OCIO@COCQC0 000 Q00O COIE OO @O0 0O EEO®QIVDOCOOO SO
.1.4 Documentation Tree StructuUre ..ccccescessceseccseccacscscsasac
.1 5 CSS Model Desigmtors ® 0 @ 0 000 Q0 90 ¢ QG0 SO E O NSO PNORCOPIIGRNT OSSOSOV TET

PE 9 00 0 0000 C QT QO S DO C O QOO QOO ST PO OO T OO0 000G 00O EOIORCESINLNESESEINOSIEPQCSEPOSEPVINCOES
O1 General Requrements @ 900 68000 8 0030 0C Q0SS 0O0ECEOOOSESEOOCEECEOPTOPETC OO OW
02 xey Features © 9 O 0 008 O 6 09O 0COO 9 OO O EDEC OO0 0E PO BCO OGO O SO C0 OO OOQEO
.3 Restrictions and Enhancements ..ccccccececceccccoccecsccscccnon
R

WCE DOCUMENTS 9090 €0 000000000 QCACEORC00AQa0CCEIOOOROEROIPIRECEEECECEAQRGOGCAITTTOES
Govel‘ning Doements €00 Q0C0QCL0CECE00ICQCQOICOEENEVCDOOOGBCEOSIEEESETICGQROEEOCRESETODOTS
Standal‘dﬁ €0 90CCOC0 6800 OCCIOREEQCIEENLIOECUE0OETOECO00e©ROEOCEOCIQOEOOE

1
2
3 Reference ONlY ccccececescacsaccecsoccsccsacsocccecsascecnassaoe
N
1
2

ITIONS ® © © 5 0 C O 00 0 8 6O G 0800 Q0 C O SO OT O89S PEO G0 CSEtCUOe 0 eOCECEOCTESsSOCOCTNTS
' Flo"chart Symbola 2 € 2 00 00 CN P00 00 CEEECOCE0COITCICEOROEREETEOTROEROOECEOSETS
Instruction Conventicn Descriptions ..ceeveccccecoccccccacccsne

SECTION 2 ARCHITECTURE

2.1
2.2

2.3
2.4

ovERvIB' OF m ws @G 90T 00 0T ESCOCOOC 0SS OO0E0OCOCSOCONOCOIOSOEOINECEECTOIERTITOSTEOETROSTIOTITOIESETVTE
stm Bus 06 000NN 0CRO0CEEEOCECEEEO0E00C0CEOCQRO0QCOOECLSEDCO0O00CCOROCCEOEOCEEBREOTTSO T

SISTEH CONFIGUMTIONS @0 8000 000080220 QCOERA0CCORO00CE0CEC0C©00000D0OTEO@EOEECACOOC

Css Armmums $C@ e 0PV I0CGCREV00000€00CIATOIBIOVDEO00VECROCOOIOCOEOOCO0 S

202‘.1 CR”1E ©060e0VEECO00CERBROEEICOCCO0COCA0C3000CEAACACR0COQCQERCO0Q2OCQO0QRISOOSGD

2“ 1 1 Processor €0 0 QGC0DAGOOCOEREETGCOLROIOEVCVPCEORYPQCOECOO0ES
-n 2 MQEOPY 90 0000000000000 000C0CECOCECCERICECCEGEOPEOEOCOORPOERCEOECEOETOE
Ouo 3 CaChe 20000 CC0 0000000090080 C0GA0CCEAGCEEISIOIROC0COTAGEURTDBTS

. P!'OCQSSO!‘ €06 e 00000800 E0ELEECEEB 000 CRCNINCGCOEOTROIEECEOIOIOCETOTETOSTEOETS

2.8.1

2.4.1.
2.4.2 M5XE ...

2.4.2.1

2.4.,2.2 MEMOrY .cceeececccssesscasasssssosasssencossscsananas

2.4.2.3

cache 2000000000000 000008000¢C0EeCE30806C0CEECAOCAEICIGCOETOTESITETTS

PAGE

1=11
1-12

2-1
2-2
2-14

2-14
2-4
2-4
2-4
2-4
2-4
2-4
2-4
2-5

i HONEIWELL INFORMATION
!
]

SPEC. NO.
SYSTEMS '

SHEET | REV.
TC- 2 i

60149740

Q

CONTENTS

2.“'3 Msm LB B B B B BB B A B B AR AR IR BE BN B B BN K BN AR B BE DU B BE BN RE AR BN DU BEBE L BN IR BN BEBE BUBY B BE B BB K BN AR BB 2
2.“.3.1 Proeesaor ® 9 0000808 C 0 9O GO0 T 0 8E 0O CET O PO SO ECESSS OOGSCOSOBe N
2.“.3‘2 Memory € 09 08000 C 00 0 E I UT 0N OS 0 CP QOO0 DO OCEIOSSOGSEOCIESECTIISITOS

2.“'3.3 caehe 9 G09S OCECTEOCO OO0 CE0 S0 CCETO0CCOCOQOOQOEQCGROIECROEOEECSOIOPOSITISETPTCTES

SECTION 3 FUNCTIONAL REQUIREMENTS

3.1 DATA FORMATS .ececcesccccacacacscsaccsscsacssacssoscossossssscsasssssssace
3.1.1 Data Formats for Non-Commercial or Scientific Instruments ..
3ele1el Memory WOrds .cccececccccaceccccsacaacsncsancsossase

3.1.1.2 Signed Integer Data ..ccccccccecacececsccosnencsanes

3.1.1.3 Unsigned Integer Data ...ccecccccecccccccscsccancca

3.1.2 Data Formats for Commercial InstructionS .cccecececcocsccsses
3.1.2.1 ove"i“ ® 0 0 OO T NOECUEO O 0ECOOROTECROCESCEIOSOQEOIECSEIOBTEPOREAOCEOVTEOEEOS

3.1'2.2 Decmu Data 9 0 00 0QC 0 0 Q0000 COPCPOSOCESOEOINORIOTEOIEQCEORTPOECSEOITIOITOSIOO

3.1'2020’ String Decimﬂ 9 P 0 098 09089 GO ORCOTIOVIICSCOIECETS

3.1.2.2.2 Packed Decimal ..cecccsccvsvccccacccccna

30103
1 Bexadecmal Floatins Point €80 00900998 O0CRCTOICOESTERIOISITOSES
2 Bim Intege!' Pomat ® 0P QUSRS EETOIOINRNEGEOIOPEOISOSOETROIOENTSTOIONTTS
3 "Pseudo Decimal™ Floating Point Format

(Mﬁx and Msxz only) ® 9 0 00 00009 90 E QTS OQABOPOPINETOCIEDYQTSSE

3.2 ADDRESSES 0000000000008 00008000000000C00000c00sCs000000000G0000c0sc0TsES
3.2-1 Addl'eas Types €0 €0 0000000000 0000 0EE000000CE000CE0QOCIGCEIOIEOSIOIOPOIECTE
3020101 Pwucal Addreas 9008000000000 000c00CeTOPOROIOOIRPOICEORCRTTS

3020102 Logical Addl‘ess NN N N N R N RN NN RN NN R]

303 vISmLE Rmmms LB B B B B B BC BE B BK BN BN BN BN K BN BN BL BN BN BN BN B BN BN B OB BE B B B B NN BN B BK BN N B BN BU NN B OB ONY B B NN
303.1 word opel'a-nd Registers ® 9 9009 8902480 CCledaT et TCeOSOQTETOTBTOOSOEOTDSOTS

3 3 2 ldd!‘ﬁsa 30818‘58!‘3 00 QS0 0QCE0COC0ERIQCECREREGESCOCOQCEOOIGEOESECETROITCETOTTCTTO
3.3.3 Double Word Operand Registers (M6X and M6XE Only) .cceccccse

‘ 3 3 n %ntrol Hegst‘rs ...I.C...I.O....‘QQQQ'.‘.O.I....'..........
3.3.401 8 Reaater L BK B BE B OBE B BE B BN B B BN BE AL B BE B BE BX BN BN NN WE BN BN BN N B AR BX BN OBE BN R NC BN N A)
3.3.4.2 Indicator (I) ReZLSter ..cccccecsccscscccassscacsas
3 Commercial Indicator (CI) Register .cccccescccccces
4 Scientific Indicator (SI) Register .ccececccccscsse
5 H1 Regater L B K BN BN B B BN BRI BE BN B0 B B BC B BN I B BN B NK X B N BN NN BK BN NN N BN N BN N N N)
6 m Resister G0 OO 0 0000 Qe 0 0 CEOCOCOSIPBQCIOSOPOEOTIOEQCREOSROTOETOTES
7 H3 Regster 0 0 8 908 8 00 ¢80 0 CCECCOPOOOCEELEOCSOSROCEOIOOTSIEAQOTEOSIEBTOTPOIETCTE
8 m Regster ® @ 08 000008 8 ¢ 00 QCRCIO 0G0 00 TOOOOOTPINCEOESETDBSITOSTITES
9 m Resister 00 99 00 ¢ Q00 9 0Q 0000 QTN TS9O CESOCOOIIOSOGEETRQTSTOEYS
10 MG andm Regaters ® 0 C 9 8 099 00 OC 0V OSRGOSO OCONINOEOEECSTOEEISTSTES
cientific Accumulators (SA) ceececcccccccccscsasacsssascans

NDWLWwWwwwwuww
.

3.3.5

3.1" STACK mmm‘r € € 0080 CC 00 CE0CP QOO TTCITLPEEE000CPCOOCOIEVPOGEESEQRBOIETOTCSTDS
3.2‘01 staCk Eeader © 0 0 90008 E2ECEV I CEOFTCCCELQANCEEPRPNIQEPOPEQGEOEECROOEOSEEOECEEESOETBSOAOT

PAGE -

2-5
2=5
2-5
2-5

3=10

3-10

3-10
3-10

3-11
3-11
3-11
3=13
3-13
3-13
3-14
3-14
3-15
3-16
3-16
3-17
3-17
3-18
3-18
3-18

3-18
3-18

@

—
@ ‘

HONEYWELL INFORMATION
SYISTEMS

SPEC. NO. | SHEET REV.
!
[}

1
]
60149740 TC~ 3]

3.5

3.6

3.7

3.9
3.10

3.11

3.12

3.13

'3.5.5

2 stack‘nelated Instructions 6 8 0 0 C Q908 0OV SO0 OO ON 00 QOO COO e
03 Stack‘Related Address SYIIable (M6x and Mst Only) esvevsvce
.4 Stack Management Restrictions (M6X and M6XE 0nly) eeccecccoes

ERRUPTS 9 0600000 ECCELOOTOTCO0ETO00CE00CECECVO0000000SSISOECEOIEETSERGCEEOETITITOCOE

Concept 8¢9 Q000 000LCENE0ENNV0I000000000C0ROCNISCETEESIOCOCRECEOROECEOEDITOSO

.1
2 Interrupt Handling .ceccececccccasccacscecscceccccsccnscssaacae
3.5'291 Level ActiVity Plass € 0 960 8¢9 0 0000 OO S OS OO TRTOPOOONTS
2.2 Interrupt VectorS c.ccecrecececooccccccsssaccncsnas
«2.3 Interrupt Save Areaccceecccecsecacescccocascacs
2.4 Hardware Context Area (M6X and M6XE Only) ccccoccces
Interrupt Handling .cceeccoccecsccocccecvceeaccccoocces
Interrupt Handlins @0 ©©® 900 €0 O©OOCCO00CQQE SO ECOCEOeEROEOGOEOSRECTESPCOO
01 LEV mtruction € @ 00 8 800008 08 005000 Cee OGOV OQRQETECAASSTDIPOOSEODS
«2 TSA Related INterrupt .cccececcccceccaccccncccccccasns
Fail Interrupt Handling ..cccecccccccccaccaccaccccaccs

TRAPS ® 000 0O 8 EO OO0 OO0 CCOCQ ©O0 8 EEESLECCE O EOGO08 2A0OCVESEOOEEIQCEECECEOSOEOOCEOESEOQORCOCE OO
3.6.1 CONCEPE ceeccoccencscscanccoccoassasscssscessosccsscaccoosos
0.2 Trap Handling ceeccecceccccccecsccaccassesscsccccoccccscsacncce
.6.3 Trap Vector DesScription ceecececcccccosaccascecccncecnscccannse
6.4 TSA Entries Descriptions ...ccceeccccecerseasscsscaccccncocaces

www

=)

) Real Time ClOCk ©©CO 00000000 0CCEELOEBOETRO0QEEOEO000CEOESOCEOCROO0S

6

6

6

TERNM. TI!ERS 000 E0COV S EO0CRCEO0 00 CRCICINCEETEO0C0OCETCECEETIOIO0OCOROEOOOCSCE
7.1

702 watchdog Tilﬂe!’ (WDT) ©00000E0000CRONCCCEOOOERROICEITEORECTCTRERETSBOEOOO

ww

CSS INITIALIZE OPERATIONS 0‘.......0".;...0...........-OO.‘.I...l'.
BOOTLOAD DEVICES 906000 0QCQCOEICELCLEIOCRE0CEECEN 000000 00CECRCEOISROICOIOEONOCCOCTOROETCTOGCTS

css DEDICAT@ mon! AREAS 0900 e 000 CeCPECOERPCEAIOCEOIECEORCECRUESECEOROEOROOREETEEOTDS

ADDRESS SYLLABLE ccccecsccccscacacsscaasasassaasacacccorcsssasscaccansss
3.11.1 Register AS (RAS) cececccccccascsaccananrcscasscsssssscccnnas
3.11.1.1 AS Map 1 Entry ReZ cecececceccecscccccccacccscnsons
3.110192 AS Hap 3 Entry 2 KNl ccececcacececcosscssacansscesna
3.11.2 Immediate Operand cc.ceccccecscesesoccccocccocccecsocnoscsccos
3.11.3 Memory AS (MAS) cccccccccccccscceascaaccscoosoocoasasecscnes
3.171.3-1 P Relative MAS .cccoceeccococcecocccccacscccaosscsos
3.11.3.2 Immediate Address MAS (IMA) ccccceccoassccccasncccs
3.11.3.3 B Relative MAS ..cieceecacascscccccssscassscnsscacs
J:11e3.4 IV Relative MAS .ceececcccaccccccooscccssasccnscces
3.11.3.5 Stack Relative MAS (M6X and M6XE Only) .ccccveccccs
3.11.4 Remote Descriptor Specifier (M6X and M6XE OnlY) ceeceonccees

INDEXING €9 Q00 EC00CCQCOECEERECE00ECECCQRAEEEELCO0AROCCCCECQRECEQCEROGEOSCOREECEQVTICTCTITSEQCTEUOEDROTCTES

MEMORY ADDR%S BOUNDS © e 90 00000 CPQEOE0EREEECCIRCRICCOOEECOICSTIOVNOOCEOEOTTBTITOTES

PAGE

3-20
3-20
3=-20

3-21
3-21
3-21
3-22
3-22
3-23
3-29
3-29
3-29
3-39
3-10
341

341
3=41
3-42
3-44
3-51
3-58
3-58
3-59
3-59
3-60
3-61
3-64
3-72
3-72

3=73
3=73

3-76
3-83

3-88
3-90

HONEIWELL INFORMATION
SISTEMS

SPEC. NO. | SHEET | REV.
60149740 i TC- 4 :

CONTENTS

3011" QUEUE MANAGEMENT...0'.‘O..C'.l‘.0.0‘OC.......'.l......Q.C'O'.QOO...C

3.15

3.14.1
3.14.2
3.14.3
3.14.4
3.14.5

LOCk word ® 00 920000000 ¢0 00 ECPC0 000000800 BCISOOCNSROSSRTSSCECEOIOEOIETCTEO
Scan ® 90090 0000 CC0900C0CCOCPEN 000N GC0PCOEO000ONPSIOSISIOIEIOSERPOIETYS
Ring Movement ® © 9 0000000 VOO S OO OO OOV OO OOP PO QOOSBNESNYNE

Lock Frme 9 0 99 900 0008 0000 I OO PSPCET OO0 N0 PGOS NGO TITCSEOSISTEIOTITOTOES

Queue Security ® 0 00 090 009 0 Q0 08T R0 0O 900 0PRSS OO ORCSOOONRPNOITOINTNTES

CSS HALT STATES 9 © 5 G 0 00 0O T OO O TP OO SO0 OO OO0 CO PP E OO0 CPS OOV EGEESESPOTITCO S

3.15.1
3-15'2
3.15.3
3.15.4
3.15.5

Pl‘ocedure Ha-lt © 9 0000 E 00 GOV I 0G0 000OPCRNCRRIESOECRBEOIIIPICEOIOCETOTTITTTS
Level 63 Halt LK B K B BN Y B B BN B K BN AR BN IR B BC U NE BB IR B BN 28 K B R BU BE AL B BN BN AL L B BN 2R K B BN N
omrator Halt ® 0 9 0 C 00O OCOIB OO0 OO0 SO0 COOROOIPOSICOGO SN

super Halt 9 9 8 0509 00000V OO0 OO OCVOPPCO 0T OO O COOSTEOOINOEPTOETTINTOSTTE

Hﬂt OQIO.......‘..C.....'...........‘O..‘...‘....'..'...'."

SECTIONu moaz mn&cmr UNIT © 0 09 0000 90O LPOIOCTO OO POV OPSIOOSIISISIOSECITCSTOS

u-1 'Qvngm OF THE WOR! HANAGMNT UNIT ©9 90 EeOS0COOIOPECEOOOIOCEOIEROIPOIOIOTOTORSCOTS

u‘z MFUNCTIONAI‘ITY .'..Q......0‘.....'Q...'.O....'..OO...»'O..'..‘.Q...

4.3

[\S IV
)

.
- K ooMEWw N -

D

Em O EEEHE O EE

W &

3.3.11

Sm Functiomity 9O 08 00O 0 Q0 ¢ OO E S 2O O T OO 9 CEE VSOOI POEOSOSOTINE
Extended m Functionality P 0 G0 P OO V0000 COPVTOOOECEROOININOEVIOSOIONSTONOSDOTES
n.z.z.’ M oveniew 9 60 09 0 09SO0 GG G0 OO0 O OEOOSORORTGOOSISOEOSOECSETPO
Segment Descriptor Definition ..ccecceccscescccscosssccccnces
m Initialization © 0 00 008 0 00 OTE P EOQACS IV TOCSCI IS OISTPOOIOSOSTSTIOSOETCTTS
m Checung 9 6 0 000 0 QO OCT I D 9O VOB OOV TOOD NSO ENOOPOVEOPSEOSSTOESTOSOS
I/0 Order Considerations .cceeccccccccecscacscscenvosccccsnse

ARE/SOFNARE mTERFACEs 00'000'.0..."0.;00'o..lo.‘."..'io..o-

General o....0'0'00‘.0.0-0.0.‘....0.0..'..0...0‘....00.0.0000

5.3.1.1 Privileged INStructions ceeececccccccsccsccscsaccsse
4.3.1.2 Execution Privilege of a Process ..cecececceccccccas
4.3.1.3 Address Space VeCLOr cececseccccocsccccssosscccasccce
4.3.1.4 EMMO Mode Task Segment Table Limit (TSTL) cccccceces
Omatins System ® 0 0 09GO OCC OO OOV QBT OOOSC P0G OSOSBSOOSOOIEIPIOGOEOPIOSIOIEAQCTOSEISIOIDS
semen: macriptor: 9 0 00 O8O 0 0O SO OTECOP SO OSOOP OSSOSO OPCSOSEEOCTTPOETDS
Addr.sa Spac’ Suitchins S 9 0 0 00 9000 OCO P OCC IO O QO OOTOOONOOO OSSN POTES
Acc‘ss checb'...Q....Q...'O....‘....'..Cl.....‘.".....'...
Rins Defiution 9 C 0 09 VW OO0 S 0TGP O OO0 SO0 SO0 S OOOOPOVPOIOOESTBSNCOCEOEESTT
m“ Trmition’ 90 00 0008 OO IO TOO OGS OEOOOOOOOOISTOIOCTOSTITOQESEOSTEOIOTEOSTTEO
u03.7.1 Trap PO O OGO T QO W DO O OO ODESODOCOLOOCOSOOSOISESNOSOSNPOSOSIBLOECEDS
u.3.7.2 RTT Inatr“ction @0 0000 009 P QOO SEP O SO CROOOIOGPIOIOIOSIEPSPBSOIOEPES
u.3.7.3 gnter Inatruction @0 80 09 QOO OCB OO NSCOEOSOIONPOSOESIOSEOITCQCSEOINTOTO
Transfer of Control InsStructions ..cccececsceccccecccccnceccce
HOde Switchins (Mst and Msxz Only) O @ 000 0 0O GO OO COSOINIOSIEPCOTOICSIOIOETS
MMO Support InsStructionS .cececccscscccececccscacccccccsccacnes
u0301001 validate 0 0 0 OO OO POV OO OGPV OOS O PO OD OO0V OO OO OSSCSSIs e
4,.,3.10.2 Convert Logical Address to Physical Address (CVP) .
4.3.10.3 Activate Segment Descriptor (ASD) ecccecccecscccccas
4.3.10.4 Activate System Segment Table (ASST) cecccesssascess
4.3.10.5 Activate Task Segment Table (ATST) .ccceccesccoccces
Segment Descriptor Access Checks (EMMU Mode Only) .eecececes

PAGE

3-90
3-92
3-92
3-92
3-93
3-93

3-93
3-93
3-93
3-93
3-93
3-94

f=1
4=1

42
a2
42
42
47
4~10
4=10
4~11

h-11
h=11
ha11
4-11
412
L
4-15
4-15
4-16
B=1T
4-18
4-19
4-19
4-21
4-21
421
421
422
422
422
422
422
422
422

' HONEIWELL INFORMATION { SPEC. NO. | SHEET | REV.
' SYSTEMS ! 60149740 | TC- 5 '

CONTENTS

SECTION 5 GENERAL INSTRUCTION SET DEFINITION

501 GENERAL msmUCTION SET © 000000000 E000C00CEC0CPOCECEOlORNOCEOEOGIROROIECEORESCOCEORNGCETCETOETS
501.1 InstPUCtiOB Rlﬂ.es © 9 000 0P ENNOP00000P000CCCEOERCERICEOIOTETEORCETCECOOTOSIDBITGCTE

5.2 DOUBLE OPERAND INSTRUCTIONS ..vececccccscccassascccssacsccccaaccnnss
Load Register R, LDR .ccceeeecascsscccscccsccosacanncccccnass
Store Register R, STR ccccccececccccscssnccscosccacacnconcna
Swap Register R, SWR ccoceccasccecocccsssssccsscsssscccaccan
Compare with Register Ry CMR ..ceccccccccecacoaccccacooncocoss
Add to Register R, ADD .cccccecccccccecccescccsccoacccocscea
Subtract from Register R, SUB .ccccceccccecoscsccsococccscsce
Multiply Register Ry MUL ...ccceccecocccccccsscsccoacsascccss
Divide Register Ry DIV .cececcccsccccccncsacsocacscecsccsaces
OR With Register R, OR .cccceesccccoscceacesccccncccccconccca
Exclusive OR with Registerr R, XOR cccecceeseccscccesccoaaccno
Store R Under Control of Mask, SRM ...cccescccccoceanccccsac
AND with Registe R, AND .cccceecceescccccesocccacceacacacass
Halfword (Byte) Load Register R, LDH .cccecscoccccoccsacccsn
Halfword (Byte) Store Register R, STH cccccccccovcccccscaces
Halfword (Byte) Compare Register R, CMH ...coccsccsccoccoccs
Halfword (Byte) OR with Registe R, ORH ..cccccccsccocsssnnas
Halfword (Byte) Exclusive OR with Register R, XOH .cceceoccce
Halfword (Byte) AND with Register R, ANH ...ccccccccccavocss
Halfword (Byte) Load Logical Register R, LLH ccccccccccovcns
Modify or test Register M, MIM ..ccceccececccacceccccsccoans
Store Register, STM ..ccccceccccccecccccascccscsosccsacescccss
Load Register B, LDB .ccceececsccccsvcacscacscacossccnscssnvas
Store Register B, STB .ceccecccccccsccccecaccssssccscsccoccscs
Compare with Register B, CMB ..cccccccccecccvocccsccccncsscnce
Swap Register B, SWB .cccccccacssccrcascsocscsssscccscccsosccccs
Load Effective Address Into B, LAB ..cccececcccceacccscacancac
Link Jump, LNJ ccccccoceoccccecccsescacossasenscscasscsacacscs

L L L d L] (] . L] L] L] L[] ® . o L] L[]

PP PPOODODPODODODDPODNDPDOONDODNDDDDDNDNDND

.
e o & o6 o ¢ o ® 6 o & o o & & & & o & & o o+ o

DN NDMNDNDODMNDN = ot e b eded 2 ed 2V OOITOVULEWN —

oOONMEWNhL200VO~I0MNNIEFEWN-—O

¢ 5 o o o o o
*

g
S

5.3 OPERAND ..cevccoescescsccccccaccsccascasconsocsscscsacoacscans
Increment, INC .ccecscccecccvocscecascscocasccscccacscocncocs
Decrement, DEC .ccceeccocsecccescccccsccccoescacscocsooscacncas
Negate, NEG ccccccceccccccoccascccccoocascosocoscaccoesoaaooe
Complement; CPL ccceccoceccascescacacccacccsocoacacsccncosese
Clear, CL ceccoccccacescaascscsscssscoccecccesconcscocscosasss
Clear Halfword (Byte), CLH ..csecceccccececacccocaassscsccns
Compare with Zero, CMZ ...cccceccvecacccensacsccccsscsccncsss
Compare Address to Null, CMN ..ccccceccccescccscacccsascsoasnaa
Add Carry, CAD cceceescoscescocsccvacscscsocscsnccasaccsansansnes
Store S-Register, STS .ccccecctcecccecccssscsaccncosscscsssnse
JumP, JMP tceecececececcocacveaacacsesacscaccacacacssascssses

Entel‘, ENT 99 000000000 0CE0C0ECR000C0GE000CFCEEROGCOIGETESEOSTOECECEEOOTS

Tyt UITVTUVTOTUVTVIVTVTVTVT IV VTUT T VTV VT BT i i Uy

(3 . '] . (] [] [] L] L] L]] L] .
WWwwuwuwuwwwuwwuwww
. L] . L[] L] L] L[] L[] . L] L] L] L]
-— et B O O-JOVU EWN =
wpp-—-=0

Level, LEV © 000960 00000000 C00EC00I0BC0CCEERQRCTIICECEOIOEOIECTROIEECETRTOEOTBTS

PAGE

5=1
5=2

5-4
5-8

5-9

5-9

5-10
5-10
5=11
5=12
5=12
513
514
5=14
5-15
5-15
5-16
5=17
5=17
5-18
5-19
5-19
5-20
5-20
5-21
5=22
5-22
5-23
5-24
5-24

5=-26
5-31

5=31

5=32
5-32
5-33
5-33
5-34
5-35
5-35
5-36
5=36
5=37
5=37

HONEYWELL INFORMATION | SPEC. NO. SHEET
]

SISTEMS i 60149740

22
(o]
=

i
i
TC- 6 i c

—
—— n

CONTENTS)

PAGE

SaYB context SAVE €€ 00000 0C000CC0RTCEEOERROERPNCEOIOIECSOIEETSROETRTOSEOCEEROEGETOTDS 5-38
Restore Context, RSTR ..cceecscccccccccasosrccasscancesascsos O=39
Load Bit, LB © 00 0000000000000 00000000000000CIOSIIOLIOCEOIERTREECROIETROPOTSOGTS 5‘“0
Load Bit and Set False, LBF .cccececcccccncsascsccancacasese O=i
Load Bit and Set True, LBT 60000 CE0C008CREORBOIOCROROIECQCREOCEOOROCTOEPOIETS 5‘“1
Load Bit and Complement, LBC ©0e0eceoses et rvseeceserenesncce 5-32
LO&d Bit and S"ap, LBS 000000000000 000000000000000000CCEISITITTTS 5‘“2
Add Integer Double, AID ..ceccccscscccccccocccscscsscssscnccsss D=3
Load Double Word Integerr, LDI .occcecescccsccccccccsccacaces DO=ll
Store Double Word Integer, SDI .ccececccscccccccrcacccansces S=lil
Subtract Integer Double, SID ccccecceccecccccacsccccacancees DO=i5

UouTuuuTuTuiuTuu i
e & o & o 6 o o o o
WwWwwwwwiuwwwww
¢ 6 6 & & o o o o v &
HFEWN-200003000 &

DN MNDMON b b et et -2

Son HORT quE mDIATE P 0 000 Q90 00CE QOO0 COEO 00 OO ROSCEOIQRARQRICGEEIOTSTCOIOICSTSTTOITOTR 5‘#6
u 1 Load vaue' LDV l..‘Q.‘...'C....I..................Q'.Q,..I‘. 5"“7
1' 2 cclpare Vith value’ cm 990 Q00099 EOOOE0CROTOREGSEEOEICAONOTSTOSTEILIOECEOITOeS 5-'1‘7
Quts Add vuue, ADV € 0 90 000 ° 8 Q8000000000 O0EC I TCCQS OO0 GSOSISIOSOSIDOITOS 5-38
4.4

Multiply byvalua, &v S 4 00600 280 ¢ 028000009 SOSCRCSOOIOISOSISCOITSTY s-ua

.

Twouvmun
L]

ou Rmmma 9@ 08 00 09 CEH OO VSO PV DO O PP TOECIOECERCECEACICOIESEOTCTOSIEOTPOPEOEDN 5-50
Branch if (R) Less than Zero, BLZ .cccceccccccccsccscacscnces 5=50
Branch if (R) Greater than or Equal to Zero, BGEZ ..cceseaees 5=53
Branch 1if (R) Equal to Zero, BEBZ cccceccccccssccccosccsccncaa 5-5& K
Branch if (B) Not Equal to ZGPO, BNEz I F R RRERERERRER R R RN NN 5-5”
Branch if (R) Greater than Zero, BGZ .cccceccccsscccsasascses 5=55
Branch if (R) Leaa than or Equﬂl to ZQPO, BLEZ Cecevecccsvoce 5-55
Branchif (R) odd’ BODD 90 000000000000 R0CRNS0SCOOOSCICEEOINOEIOINETTOIOITSTES 5-56
Branch if (R) Even, BEVN 00 0000008000000 00000000cCeos0cvscoces 5-56
Branch and Increment, BINC .cccccaccceccvccceaccessccccscncas D=5

' BranChaand Decrelent, BDEC €€ 00 0000000000000 0000000 000000 5‘57

B
&

- WO OOV FEFWN -

o

5.6

E
2

ON INDICATOR P 0 0 G 0000 ECT0ICCTRCCCITEOCE0ECECEECEQCEQEEETEESEOEUEEDROREOIOEOE 5-59
Branch’ B G @0 O G OCOCOCRECOOEOCCOIPOOOTOO0 000009 COCTOIRIOSIOEIOSTOSIOEOITOITOCES 5-59
No Operation, NOP tcceeecesccacccsacccconcaccacacsonannccnssnn 5‘59
Branch on Equal, BE tecacccvccncascnccsncesoscccscoscsocccccocs 5‘6&
M@ on ’ot qu, BNE 0 P00 COOOQOVEOQ000C90AQaCUTCTSOESEOTEETIOTPESTESTE 5_65
Branch on Algebraic Less than, BAL .ccececcceccccoasacccecee 5=65
Branch on Algebraic Greater than or Equal, BAGE ..cccccceecee 5=66
Bran& on ns‘b’uc Great” than’ BAG 99 000 00099 0SSO QOOOSIOCIOSITOITES 546
Br‘nch on ‘l&.braie LQSS than or Equal’ BALB eevevneccccscece 5-67
Branch on Lasas than, BL cececcccccsccsccssasccscscsccsscncssnse 5‘68
Branch on Greater than or Equal, BGE .cccccceccnsccccccacees 5-68
Bran& on Gr“t.r than, BG 0000060 0QQEQCBCOVPOSOOCEOOIOSINOIIOOEOGIOQCRAEAETCES 5-69
Branch on Less than or Equal, BLE ciecccceccsccccssccsscases 5=69
Branch on Sisn& Unlike, BSU €0 €000 82060000 CCOCEORQCEOGETROEOIOIOREOEEOTOTOTES 5-70
Branch on Signs Equal, BSE e evecreccseccvoccces oot Recssae 5‘70
BP&n@h on Carry True’ BCT Y R R RN RN RN RN NRREERERER RN RN 5_71 ‘\3
.Branch on carry False, BCF Y R R Y RN R RN RN NN RRR NN X 5-71({;/
Branch on Bit Test Indicator True, BBT .ceccecveccaasccccscace 5=T2

o o o
. e L]

.
—t ad b d ed b = b D OO~JONUI XD N

~SNoONEWwN-—-0

TuuuiuiTviuiuTuiuTUVLLUTLVTULTULT UL W guuTaTuTuTuTuiy,m
. . .
e o o o o o o o 0

L[] L] . L] L L[] L]

.
oo ononohnOnONOhOVONONONONON OV DN

() H HONEYWELL INFORMATION | SPEC. NO. | SHEET | REV,
- ' SYSTEMS i 60149740 | TC- 17 i

PAGE

8 Branch on Bit Test Indicator False, BBF ...cceceevccesssecees 5=T3
9 Branch on I/0 Indicator True, BIOT seeeeeccccsscccccecconcoces D=T3
0 Branch on I/0 Indicator False, BIOF ..ccveeccccscersccvccssecs 5=TH4
1 Branch on Overflow, BOV ...ccccvecvecrcecsssccccscsssesscescs 5S=TH
2 Branch on No Overflow, BNOV ..iccecvecsersccescscsccsssvessee D5=T5
507 T OPERATIONS € 9 000 @0 0000000 E00CN 000 COICELIENCOOOEPPSOSSIOEVPOEEEOITOES 5-76
1 Single Shift Open Left, SOL ciceeecreesesccacssasasscsassecs DO=T9
2 Single Shift Closed Left, SCL teceveccccssccsvosccsosnsssssss 5=80
3 Single Shift Arithmetic Left, SAL cicceeecvcsccceccccresesse 5=80
4 Double Shift Closed Left, DCL .ccccosvsscccecscacsccccnssons H=81
5 Single Shift Open Right, SOR .ccccecovcccoccsvscccccscscoassne H=82
.6 Single Shift Closed Right; SCR .cceccosccvcoccscccccscsscscss S5=82
7 Single Shift Arithmetic Right, SAR cccecevcvcescescsasssccos 5=83
8 Double Shift Closed Right, DCR ceevececcosccccscosevsccssssscs 5=8U
9 Double Shift Open Left, DOL teeeevetvecasssssccssnsncaassnes H=85
10 Double Shift Arithmetic Left, DAL ..eeeeececccsccnscconcsvss 5=85
11 Double Shift Open Right, DOR .ccececectcscccssscssossscccocos 5=86
12 Double Shift Arithmetic Right, DAR ..ccceccosscecssssescoocs H=8T

5.8 INPUT/OUTPUT ..veveccrovccoccesoocoonsascscesasccsscsccocsssscsescocce D=88
5.8.1 I/0 Instruction Execufion .veeveeeccseccscescrsocscsssaccocee 5H=G2
5.8.2 I/0 Instruction Description .s..eveececccosrsvvsoccssesossssaccs 5=03
5.8.2.1 Word Input/Output, IO ..eeeccecescsccsccceccossssseas 5=03
5.8.2.2 Halfword (Byte) Input/Output, IOH s.ccoceeececoccoes H=9lU
5.8.3.3 Output Address and Range, IOLD ...cccccecececcccoes 5=95

3]
=3

.
PDOMN b 2) e et e b ed 2O O-JOUIEWN — I

SOV~ OoOUMTFWN -0

509 ICS $ © 0 0 0 0 008 CCOCOEPO0EPECOPOC0CS0009 0000000600000 0600C8 800606660 0000CTOCS 5-97

Stop Program Execution, HLT .ccveecescccocccsccsacscsscscacse 5=101
Call Monitor, MCL ...eeececoascscccacasoscsasssasssssccscssoee H=101
Breakpoint, BRK sceeeeessccosesessssssacsssavreccasosssscscos H=102
Return From Trap, RTT cccccecccsccccccasccsscscssscssssnsceos H=102
Real-Time Clock On, RTCN ..ceeeecsnccceccssssoscscsssascsseeecs 5H=103
Real-Time Clock Off, RTCF .ceevvsasccosnccncssosccssacessasness 5=103
Watchdog Timer On, WDTN .ceeeececececencascccncsasevccennees 5=107
Watchdog Timer Off, WDTF ...c.ceceveccccccososcsnocoancaasssass 5=108
Memory to Memory Move, MMMcciecececsssccccsccncsecccce H=108
Activate Segment Descriptor, ASD ...ccocssccecosccsasancecess 5=109
Validate;, VLD .cccceccosccccocosccoccccoscccoccccssesccsccocss 5S=110
Convet Virtual to Physical Address; CVP .cccocccccceccoccces H=112
Queue on Head, QOH ccocccecoccocococccccsccccnocensecsoscsose H=113
Queue on Tail, QOT ...ccccoceccescccocccosccacosssosssooscoos D=illh
Dequeue from Head, DQH ..cccvoccesccecscsevcvcosenssccecsccas B5=115
Dequeue on Address, DQA ...c.ccevccovcsconsscccsesssscasseccss DH=116
Search Queue from Head, SQH .cicveeceecssccscccsnscacsscscess 5=117
Search Queue by Address, SQA .¢veiveveecescccsssoscascescase 5H=118
Store Remote Descriptor Base Register, SRDB .viveeseecceceeas 5=119
Load Remote Descriptor Base Register, LRDB .iiccceeeneseeses 5=119
Load Stack Address Register, LDT ..ccccceccocccccoccnassssse B5=120

e o e o o e e o & o e e e e o
e e e © o ¢ . a e o e o o o

.
.

* e e o

vviuivivTuiuituTuiytuTviyivTuiuTuiuTyiyin Q
.

(Yo JiNo JiVe Ve JEVo Ve JiVo JiVe JiVe JiVo JiVe Ve Ve Ve JiVe JiVe JiVo JiVo JiVe JiVo JRVo B~
L]

.

SPEC. NO. | SHEET

! HONEYWELL INFORMATION
| 60149740 ! TC- 8

SYSTEMS

REV.

CONTENTS

.

.

.

.

Who goes There, WGT .ceeeeeteesoccacaccscossconasoases

.
.

(LEGRGRC R RGRGRGRG R R RN
WO WO W WO W W WWWWYWWYYWY
WwwwwmMmphhPpphOhhP D
FWN2OowooIoumEWN

.
.

SECTION 6 EXTENDED INTEGER INSTRUCTION SET DEFINITION

6.1 EXT
6.1
6.1

I

o]

6.2

(oA We We We)WerWe We We We We We N ey
. « & o o
PPN DN
« o o e o o

P G G S Vo B o o IES BN o)N) BN R VI S I I o |

Divide Register K. KDIV .eveeveecncsacecaacsncsnncaanns

« o
« o
N - o

6.3 INGLE OPERANDvttttireeenncecncnconsoannnsnncsnnnnss

6.4 E S
6.4.1
6.4.2 Compare with Value, KCMV . ..iieeieerreenreaccnnncnnsan
6.4.3
6.4.4

Multiply by Value, KMLV ..eeeevenocnans ceeseseneensaan

Store Stack Register, STT .icecvtesesocsrsosnsccsosssessssssosnes
Acquire Stack Space, ACQ ceeeerersevsscsscessorsesvsssnssscncse
Relinquish Stack Space, RLQ teceeeesecavecccsssascscsaccsnes
Modify Frame Length, MFL ..ceceecesvecascotcoasosscscosncsce
Bit String Search, BSRCH civsecececacscncnccsassssssosnsasnan
Main Memory Diagnostic, MEMD ctesscssssssecanss ceccess
Memory Management Unit Diagnostic, MMUDveevecscncecoscs
Activate System Segment Table, ASST tieveeercocasccsnscanssse
Activate Task (User) Space Table (ATST) ceiecesceecccnnscess

.

e s 00 00

OR with Register K, KOR tceeeeesecceccoescsssasascasassccasnse
Exclusive OR with Register K, KXOR .cceeecececncnconncens
AND with Register K, KAND ...cceernccaccssocosancososcnnessnnse
Load Index and Address, LXA .iceeecercssccossssosscesaanassnse

Dump Hardware Registers, DHR ..ciceeevecccsasocscossosaccansas
Rescan Configuration, RSC .ceieeeecrcscrcsescnvccsossoasnsncs
CPU Self Identification, CPID .ccsevesccccsscccasccsrcansnss

ENDED INTEGER INSTRUCTION (EII) SET tevececsveoccccscsnsocesnnnas
.1 Data DesSCriptorS seeececsseccscsssasssosassscscassssansssssansns
.2 General RULES ...vieescosossseacssosessosssessosssssscsnsnosas
OUBLE OPERAND . cvevvcecreessavscansossosasssanssssssssacsnscnncss
Load Register K, KLD s.vvecececeosssssascssccsnssssascnsesns
Store Register K, KST ..ceeecercsacccssesasocscanocononness
Compare with Register K, KCM .iveieereeccroscvsscarssncsoncns
Swap Register K, KSW ..iveeereercrccsesocanscssnsssascnossenos
Add to Register K, KADD .tcvvereeecocesosvosscsscsosansessnas
Subtract from Register K, KSUB .ieeeeroecarcocconscscscansncs
‘Multiply Register K, KMUL .viceecavescnecevecsscsencassacsns

.

EII S

6.3.1 Increment, KINC ..veeevecesacnccoorsccnssososeocosscosooooosses

6.3.2 Decrement, KDEC ..vecececsaceososcssscsasccsscssssasoscsssscs

6.3.3 Negate, KNEG teeeeecocossaccesoscsconcsnsssssossasscssscoscses

6.3.4 Complement, KCPL .ceceeeecoococossesscconososcacosssasnososscnaes
I

HORT VALUE IMMEDIATE ..cveececcnoscosceaceccsssconossnsconnannos
Load Value, m‘DV ® 8 9 0 8 0 0 0 000 e O OOV EO NS TSN ® ® 8 0 0 000 00

Add Value, KADVi.iiiiieeennnneceanonnnnnns tececensaavnes

®

-

HONEYWELL INFORMATION | SPEC. NO.
SYISTEMS ! 60149740

SHEET
TC- 9

REV.

CONTENTS

6.6

OO OO O\O\O\ [

BRMCH ON RmISTER 9 @6 GO0 00 00 00 0 0 QOO QGO0 09 OSSO CVEOISCO OO OCOSOOINTNOC
1 Branch if (K) Less than Zero, KBLZ ...ccevcecccsccasccsccans
2 Branch if (K) Greater than or Equal to Zero, KBGEZ .ccccceee
3 Branch if (K) Equal to Zero, KBEZ .cceceesvsacccsccccscansensnc
) Branch if (K) Not Equal to Zero, KBNEZ .c.ceccecvccascaccccs
5 Branch if (K) Greater than Zero, KBGZ .c.cececcccccccasccnce
6 Branch if (K) Less than or Equal to Zero, KBLEZ .ccecccecess
7 Branch if (K) Even’ BEVN 9 © 0 0 Q09 00 5 00000 AT IS NC SO OSSP OO GSEPEO
8 Branch if (X) Odd; KBODD (cececcccsccccccccsascncsssccasansae
S
1
2
3
4
5
6

HIFT OPERATIONS .cccccosccccscsccsaceccccocvnocsacccasscasoascoe
Shift (K), Closed, Left, KCL cccceecccccccccoccccccsacscnscce
Shift (K), Closed, Right, KCR .cceececocccccacccoosaccacnaces
Shift (K), Arithmetic, Left, KAL .cceccecocecscccaccsscancace
Shift (K), Arithmetic, Right, KAR ..ccecacecccccecacccoccanse
Shift (K#), Open, Left, KSOL «cceececeaccesacscccccacanocvcas
Shift (K#), Open, Right, KSOR ..cceecececcccsccccacacasancas

SECTION 7 COMMERCIAL INSTRUCTIONS

T.1

7.2

7.3

mTRODUCTION 99 00 000 0C TG00 00000 CEEC0EC0CCECRIOETQOIGAI0EEINNOEQROOECEIECEEOEOTD

DATA DESCRIPTORS ccecececcccccosscscasccocsscsscsssssascsscsscascnssccncs
T.2.1 Decimal Data DescriptorsS .ccceecocccccscccccccncccoceoscacoce
T.2.1.1 String Decimal DD eccecsceaccccccocecccasaccceccoanns
T.2.1.2 Packed Decimal DD .ccececocscccossccacccaccccacccane
2.2 Alphanumeric Data Descriptors .ccceceececcecccccccnceccacccanes
2.3 Binary Data DesScriptorscccecccccccccscessnssccsccccsccns

OMRCIAL mSTRUCTION SET ® 4 8 0 90 QGO C OOV OC QOO QO OO OSO N SOOI ONOBSOSEOIOCOTATS
.3.1 Nmerie 90 0 00 08 00 €0 QOO0 QO T OO PO O P00 000 RECEeOeSOOCOITNTCEOEBNECSOIOSTEITIQTETCTDOE
703-1.1 Deciﬂal Add' DAD €€ 0000000000008 00CCOIIOECRITOIOCEEROCEORGETOICTOO
D‘m subtraCt, DSB 9 0000 oo sOCERRTEREOOPOPOIOGSOGCE
Decinﬂ Hﬂtiply, DML 900 009 S CQOOS0ACOCOINOCIQOEQOIEOSTESIOINOSTQOIEEOCEECTEOTS
D‘cimal Dj-Vide, DDv 909 000 e eCO OO EBCORCEOOOPOESONOSIECEOIOSOSECE
Decina cmpare’ DCM 9 9 06 000 0GECOO0ECOEOCOOOSSGCEOIECERCOTTCESC
Decimﬂ uove and comert, DMC 99 0 9GO0 OCOeEEQCOO0CR2QRESOCCOO
Convert Binary to Decimal, CBD .cccccccccccccccocan
convert Decinal to Bim, CDB $Q0 Q000060 QEOOEEQaOCO0BOO0
Docimal shift, DSH P00 PIEEOCQOC0IOEECECRCEVOCOCREOCIQROAGRC
7030109.1 De(:imal Shift-shift Left, DSH ©ee 6000006 0GC
T.3.1.9.2 Decimal Shift-Shift Right, DSH .ccccccoo
umeric INStructions ..ccececceccceccccscncsacacacccace
7 302.1 Alphanlmeric Move, ALR;...Q.l‘..'i..'OICOQOIQ
7.3.2.2 Alphanumeric Compare, ACM .cccececccccacssccannnace
T.3.2.3 Alphanumeric Move and Translate, MAT .cccccceccccse
T.3.2.4
Te3.2.5

~a ==

. . .
L]] L[] L) L] [

- b wd od wd b —h b
Woo-goonmHEWN

R b e e b B

L]] ° . L]

Wwwwwwww

° [° L . L] L] []

703.2

£
=3
:

A.lphanlme!‘ic sea-rch, SRCH e csceeccscseecsoscots e
Alpban‘.mepic verify, VRF 0006000 CTO0QCQ0P0008A00CSCTS

PAGE

6-26
6-26
6=-27
6-27
6-28
6-28
6-29
6-29
6-30

6=31
6-33
6=33
6-34
6-35

7-10
7-12
7-12
7-13
7-13
T-14
7-15
7-15
T=16
7-16
7-17
7=17
T=20
7=-21
7-22
7-23
7-24
7-26

! HONEIWELL INFORMATION { SPEC. NO. | SHEET i REV. i
{ SISTEMS i 60149740 H . TC=10 | c i
CONTENTS
PAGE
703.3 Edit InstructiOns 0008280000000 CE00T 0000 CETCELIQCRSICGCCEOROIOCEQOROIOQCTEOEOTTOITBTCOTES 7-28
Te3.3.1 Edit Instruction Descriptlon .ccccccecccccceccaccees T=29
T.3.3.1.1 Decimal Move and Edit, DME ..cccce0ceeee T=30
703.301.2 Alphanume!'ic MOVG and Edit, m eeecscas 7-31
7030302 MiQ!‘O-ODS IEEERNNERREEERENERERREENEEIIEFERENE RN RN N 7"32
7.3.3v3 Edit Inset‘tion Table 00000 RPIPOEERCOCOGCeRPCO T e 7"33
7.303."‘ Edit Flags 0000000000000 0000¢0000000000000s0 0000000 7-33
T.3.3.5 Difference Between a DME and an AME ..cccccvecvcaces T=35
703.306 Mic!'O-Op Deacription R R RN R NRERFERRRRERINEE N RN N 7-35
703.3-601 CET (Change Table) IR N RN ERENERENERREREEENNN] 7"‘35
T.3.3.6.2 ENF (End Floating Suppression) .cceceess 7=36
70303.603 IGN (Imre Source Charactat‘) IE R RN ERENNYX] 7-38
7.3.3.6.4 INSA (Insert Asteick on Suppress) T7T=-38
7.3.3.6.5 INSB (Insert Blank on Suppress) ..cc.... T=38
7.3.3.6.6 INSM (Insert Table Entry 1 Multiple) ... T7=39
T.3.3.6.T INSN (Insert on Negative)ccececceces T=39
7.3.30608 INSP (Inaert on POSitive) o0 ec0vcscerocesn 7"39
T.3.3.6.9 MFLC (Move with Float Currency Symbol
In!e!‘tion) @0 0890000 0000eECICEIOOIOIOITSTOEEOETORTOOS 7-1"1
Te3.3.6.10 MFLS (Move with Float Sign Insertion ... 7-42
7.3.3.6.11 MVC (Move Source Character) ..ccecceseses T=43
T.3.3.6.12 MVZA (Move with Zero Suppression and
AsteriCk Replacuent) Ceoseacsccsecscsovs0esee 7")'}3
7.3.3.6.13 MVBZ (Move with Zero Suppression and
Blank Replacwent) S8 escesecscncccccoos 7-1‘1‘
Te3.3.6.14 SEF (Set Edit Flags) .cceceeecccccccacess T=4U4
703.” B!‘anch Instmctions 0006 Q0 C 000 CECEERELCCECCCIVEECEEOROIOVOPOGCEOEACEOSOOCEOCEEOREOCGOE 7-46
T.3.4.1 Branch on Overflow, CBOV ...cccccecccsasccscscasceas T=49
T.3.4.2 Branch on no Overflow, CBNOV .cccccececccccccasance T=849
7-3-“.3 Bra.neh on Tl‘uncation, CBTR @0 eesenccecsoecsscvcecsvscce 7"50
7.3.“.“ Branch on no Truncation, CBNTR €000 ceeceeccecsoccsce 7"50
7'3‘“05 Bruch on Si@ Fault, CBSF 60 e 0o ecsessscseOOROOITCRTOIES 7‘51
7.3.#06 Brmch on no 518n Fault, CBNSF €e0000es0s00c000000 0 7-51
7.30».7 cm”cia-l Sync, csmc S$9ec0eccscaccseccsccevacccs 7-52
7.3.“.8 sync and Bl'anch, CSNCB [IEERERNNEEERENRNRERENEERN NN XRE 7-52
7‘3.“.9 Brm& on Bqual' CBE 90 090 Q80CO0CICOICEOICEQROSIEOIQOIEOTIOTSOSEOOCOON 7_53
7.3‘“010 Bl'anch on not Equal’ CBNE 900 cC0O0sOeQsIOOQEOCOEORQCEOIGCEQOEEOOTTOCTEO 7-53
7.3.3.11 Braneh on Graat” tha-n, CBG © 000 0O0QCOCIQCTQIIOSNOESBSIOEOEORGOGEQRDOTTEDS 7-51‘
7.3.‘.12 Branch on Leaa than or Equal, CBLE eeeecccccccsccce 7‘5”
7.3.“.13 Branch on Leas than, mL e 0CQOQOOOSTOIOCROIQTEEQCEOTESESECOSIIOCTEOQCEOEOPOETOSTS 7-55
T.3.4.14 Branch on Greater than or EqQual, CBGE .ccccccecaces T~55
SECTION 8 SCIENTIFIC INSTRUCTIONS 8-1
8.1 mTRODUmION 00 0 090000 ESECQ0 000 ST TG C0 QOO0 QOOC 0900 TE 0900 CCRTOOIOSICOESEDBNDPOSOITS 8.1
8'1.1 Address syllable 90 @9 CD 0 COQCCEOC PRS0 0COQANECGEIQACOECEOSESOOOIECOESBSOITOSTIITDE 8-1
8.101.1 Hegiste!‘ AS (RAS) 9000 0 NS OLCEECOIEOPOCEOEQEEOCPOTOIRCEOEECROEOPCEQROIOEECEDRPOE 8-2
80101.2 mediate Ope!’a.nd. A-s (IMO) C6csevecccsccccrcsoecsocre 8"2
8.1.1-3 Memory AS (MAS) 9 6000 €00 00020 QCP2000QSEPCEIECECEQTROSOSOIESEOROIOEOIEO 8-2

(L

il
i

| HONEYWELL INFORMATION | SPEC. NO. | SHEET | REV. H
H SYSTEMS | 60149740 | TC=- 11 | C i
CONTENTS
PAGE
8.1.2 Normalization and EqQualizationccecocccccccseccccsescaces 8=2
8.1.3 Mixed Mode Operands ..ccccccceeacscessccscscsscescsasccsscscssse 8=3
8.1.4 Mixed Precision 0perands ..ccecceccccaccscscensscsscscsasssces 8=T
8.1.5 Round/Truncate Mode ...cceccecosaccccccncscsscscsssacsascsaas 8=T
8.1.6 Notes on Scientific Operations .cccecececccccscccscsccsacscses 8=8
8.1.7 Abbreviations Used for Indicator Conditions and Traps ecce.. 8=8
8.2 SCIENTIFIC DOUBLE WORD OPERAND INSTRUCTIONS cecccecccccccsacccacssce 8=9
8.2.1 Scientific Load Instruction (SLD) eceececcscacccsccscsscases 8=11
8.2.2 Scientific Compare Instruction (SCM) .ecececceccvssccsscsccas 8=11
8.2.3 Scientific Add Instruction (SAD) .ceccecesccavsccccacsccsccas 8=12
8.2.4 Scientific Subtract Instruction (SSB) cecceccccecsccacccoses 8=13
8.2.5 Scientific Multiply Instruction (SML) .ccccccececcccesscosss 8=13
8.2.6 Scientific Divide Instruction (SDV) ceccccccosescccoceccscas S=14
8.2.7 Scientific Store Instruction (SST) cccecccscescecsscscocccee 8=15
8.2.8 Scientific Swap Instruction (SSW) ccececccceccccscscscsssense 8=16
8.3 SCIENTIFIC SINGLE OPERAND INSTRUCTIONS .cecccccccccscesacccscccsssenee 8=17
8.3.1 Scientific Compare to Zero - Two Word (SCZD) eeeecscsccccocs 8=19
8.3.2 Scientific Negate - Two Words (SNGD) .cevecesccscceccscccoocs 8=20
8.3.3 Scientific Compare to Zero = Four Words (SCZQ) .cccccesccsce 8=21
8.3.4 Scientific Negate = Four Words (SNGQ) cecseececscscecncccoce 8=22
8.4 BRANCH ON SCIENTIFIC ACCUMULATOR INSTRUCTIONS ceccesccceccccosscsces 8=23
8.4.1 Branch if (SA) Less than Zero (SBLZ) c.ccecoscccscccsscscoaas 8=25
8.4.2 Branch if (SA) Greater than or Equal to Zero (SBGEZ) cccccee 8=25
8.4.3 Branch if (SA) Equal to Zero (SBEZ) ccececsscccaccocesssscccs 8=26
8.4.4 Branch if (SA) not Equal to Zero (SBNEZ) ..cccccesccececscecs 8=26
8.4.5 Branch if (SA) Greater than Zero (SBGZ) cccccvccescascsasscs 8=27
8.4.6 Branch if (SA) Less than or Equal to Zero (SBLEZ) cccccceecsce 8=27
8.5 BRANCH ON SCIENTIFIC INDICATOR INSTRUCTIONS ceeeccaccscssscaccsccscs 8=28
8.5.1 Branch on Less than (SBL) cccecctcccsccocscscccasscscesscscccs 8=28
8.5.2 Branch on Precision Error (SBPE) ccccccccscecsasasccccnccace 8=30
8.5.3 Branch on Significance Error (SBSE) .ccccecescccsccsossascse 8=31
8.5.4 Branch on Greater Than or Equal (SBGE) .e.ceveaccccccccccses 8=31
8.5.5 Branch on No Precision Error (SBNPE) .cceiceececcaccccscssces 8=32
8.5.6 Branch on No Significance Error (SBNSE) .cccveeccsccceccsscecs 8=32
805»7 Branch on mual (&E) €0 00000ECCACOPCCEECEV0O0P000E0000C0COOOOIO 8‘33
8.5.8 Branch on Not Equal (SBNE) ccccocesccccececccccocencocscssscs 8=33
8.5.9 Branch on Greater Than (SBG) cccececccsvocsccscsccccacssooce 8S=34
8.5.10 Branch on Exponent Underflow (SBEU) ccccccecceccscecscscacss 8=35
8.5.11 Branch on Less Than or Equal (SBLE) ccecececcccoaccocsacecocs 8=35
8.5.12 Branch if No Exponent Underflow (SBNEU) .cevccescscccccacavs 8=35

H HONEYWELL INFORMATION
! SYSTEMS

SPEC. NO.
60149740

SHEET

—— -

i
i
TC-12 |

CONTENTS

8.6 SCIENTIFIC INTRINSICS cecveeccacecsccsccsnsaccssscsscossascssssansasossese

8.6.1 Convert Hexadecimal to Decimal (SHTD) eeeeescccccccccccacene
Convert Decimal to Hexadecimal (SDTH) cecsecccecsccescccccss
sine (ssm) 0 09 0 0 Q00 0000 T O S 0 0 QS OO0 GC OO0 OOPOBOCOSCTEOSISOSTOSSTOSIPOEOTRTOEY
COSine (SCOS) 9 00 0 2 ¢ 0 Q80009 QP CNCQOOT 0000 000 LTI TE OSSNSO TOBISIOOOYN
Naturu Logarithn (&m) LK B IR BN B BN B BN BE BK BR BN AN BN BN NN BN BX BN BE BN BY BX BN BN BN BN BN NN BN BN BN B B
Expcnentiata (SEIP) €0 000000000 0C00 000000 CE00C00QCCIEOSVPQIRSESROEOEEOSTESES
Arc Tangent (SART) €0 60 00000V eErersvsseeccsostcoscscccscssosaadcses
&we Hoot (SSRT) @ © 0 @0 0 0 08 00000 08 PO OE T E SO VeSO SCEO OO OSISIBSTOOOITSTTE

00 0o 00 0O GO €O O
® o o o o o o
ooV ON
® 4+ o o e o o
cogounmsEwih

SECTION 9 m INSTRUCTION SET DEFINITION 9000009 06800000 QCITOROEQCEROIQCEOETNEPOTTSICQOTOEO
- SECTICN 10 MULTIPROCESSOR CONSIDERATION/INTERFACES ccceecesceccccscoccsas

10.1 mLTIPROCESSOR CONSEERATIONS L N B IR BN N I BN BN AL B BN BN BN BN BE BN N B BN OB BN B BN IK N N OB N NN B BE BN OB K N 3
1001.1 Baaic co“iwations L0 B B B BN BN B B BN BR B B BN AR BN B BN BN BN BK BN B Y BN BN BU BN BN BN BT BE BN BN B B BRI N}
1001.2 Channel N‘mbering ® 0 8 98 00 09 0002 ECRUNE0OOE9 CEECTOOBROEEGEPOSOERTESIOTOESCOTOITOEDN
-100103 cm specialization €00 Q0009 000 C 008 8 00 8000V CVEESOIRSIISIOIOSITIPIPOOSEPONINTTTEO
10.1.n Dedicated Hwory 9 000000 O 9000 ON QORISR COOOGOOCIECEOINOOEPOSEBSSOICQTEOSTRTTSTSTOSDO
10.1.5 ccntrol Panel: L IE B IR B BE BN BN BN BK BN BN BN K CBK BN NN BB BN B B RY K B KB B B B BE B AR BN B B B BY BN BE Y BN N B 3
10.1'6 Iutializauon ® 0 O 000 8 80 CO PO EEPCOCE VOGP OO S VRSOGO TORTOSIOIOSEOSOSOIOPETOCIECQETS
10.1.7 Inteprocessor Communications .ceeveccrcececcccsecccsncecscanne
1001.8 Raad-HOdif]-write (M) Operatiou 08 0000009 POICEOEEROSIOOIOETSTITITCOEETS
10.1.9 Double Word (32 Bit) Operand CORErenNCY cceeccccccccccccssces
1001.10 I/o conaidarations 9 0 00 00090 800 T 0 0V VEEOOC T QO IO VIEO NSNS OETRIOIOSNY
1001.11 Caeﬁ.stanca Of Dirterent ws mdela L B BN B BK B B BN BK B OK BN BY AN B BN BN BN B BN Y W N)

10.2 mTERFACESQ.....l.....‘.......l""'.....O.....'.Q...‘Q.....QC'
’ 1002.1 Syste‘ Bus 09 00 0 C 0 S 00QEECVCPCODEPCUPREB OO CCECEIOOIILINSCSEEQROEOIEECROSOIOIOIEPOPEOETTDO
10.2.2 control Panel ®© 0 8 00 QCE QO OQCIOCOO0CDPE00 00000 QPCRCOCECAEROOOIDIPICGUOSESOTOTES

100203 QLr 2 00 0 00000 TR CLE0 0N COV0COTOECOCOOQCIRSAICECEICOQCEOEROEOIOSIOSIOEEQRIGOGIOITTE

10.3 Bgnmcz 0 90 Q0 000600000 CO Q00000000000 BPOORCOIORNONINOINCEOPTCEOEBTIQOEOERNTESOTOOINOTTYTS
SECTION 11 ENVIRONMENTAL AND PHYSICAL STRUCTURE

11‘1 PB!SICAL mumxg P 00 GO OB GO0 OO0 0 00 CCO 0CC0 S OQE POV E 000 CEEOOIBSIQESINTSABTSTIOSITOD
11.1.1 CRn1 and ca“1g Pwucal stmctwe 96 000 0GOS 000G OQCOIESOIOGONSBSTEOEOITISIDS
11.1.2 Ex ‘nd wn my‘ical structure 99000 O0O OGS 9SOGISTIOCEOGROEOIEESTAERQCRSOSIOONTCOCSTTOETS
11.1.3 Monoprocessor M6X and M6XE Physical Structure ..ccccceceeccss
11.1.% Dual Processor M6X and M6XE Physical Structure® .eccececccccces
11.1.5 Generic Stage 3 I/0 Physical StructuUre ..ccccccccccccccvsccce

11'2 mmmrn CONDITIONS LR B IR BX BN B B BY B BN B BN BN B BN BN W N BK BY B BN BN BK BE BE Y B BN BN B B BC B BK BK BN BE BN N N 3
1102.1 Opel'ating 90000000000 0020000000000 C000000QC00000CQCOCOIOVDPRIOGIOCOIROIOSGEOTE
11.2.1.1 Subsystem Level Operating Eaviromment ..cccccceccae

11.2.1.2 System Level Operating Enviromment ...ccccceceecces

11‘2.1.3 Nomowrating Q@ 9 000 00 Q0 Q QO Q90 e T OCONOSQECSTONOSECSESCTELESTTSE OO0

PAGE

8-36
8-38
8-39
8-39
8-40
8-41
8-41
8=-142
8-43

10-1

10-1
10-1
10=-1
10-2
10=-3
10-3
10-3
10-5
10-5
10-6
10-7

10-7

10-8
10-8 -
10-9
10-9

10-9
11=1

11=1
11=1
11=1
11=1
11=2
11=2

11=2
11=2
11=2
11=2
11=2

N

It =N

HONEYWELL INFORMATION

! SPEC. NO. | SHEET | REV.
! SYSTEMS |

60149740 | TC- 13

PAGE

2 Electrical CharacteristiCS ® 9 © 0 9 0 9 99 0 0 00O O OO O PT OO OO ORP OSSNSO 11-2

3 Electromagnetic Interference (EMI) .eueeecccccccsacsasceceas 11=3

.4 Electrostatic Discharge (ESD) .s.eveotevccecscscscssocscsessoss 11=3
11.2.5 Safety @ 0 0 0 @ 5 0 OO 0 OO OO B T OO OO NSO O OO NSO OS R OC eSO OSSN YN 11-3
06 Audible Noise ® 9 ® 9 0 00 0 0O 0 PO OV O OO T SO OC OSSP OO OO SNTS 11-3

T Power Distribution and Packaging Requirementsceceeceeee 11=3
SECTION 12 PERFORMANCE 12=1
12.1 PERFORMANCE GOALS ..ececavececccencsscsscsccncsosssosscsscssssssssacsassss 12=1
SECTION 13 AVAILABILITY/MAINTAINABILITY STRATEGY 13=1
1301 MAINTAmABn..ITY ® 00600086008 0006 0000000600000 0E6008300GCGCEE0ES$O0IOCECEEOGEOCOGEGSIECESI OO 13"‘1
13'2 MAINTENANCE STRATEGY 0 8 9 0 0 0 00 9 0 0T O 0O OO C O T E O O CEE OO0 OSSOSO 13-1
13.3 SYSTEM CONTROL FACILITY cceeeevcccccocecsascconsoccsossssssscscscscccsee 13=1
13.4 MAINTAINABILITY FEATURES .cievcoosccccocsvrecoscscooscoscsssnasasnssscs 13=2
13.5 VIRTUAL CONTROL PANEL 0 €00 0009 OOCEOSEIL SN 0T IL 0SSO0 000EeSPCOOOSOECOOOIO 13“2
SECTION 14 CONFIGURATIONS 14=1
1“01 I/O CONFIGURABEITY ® 0 © © 0 6 009 000 0 000 OO C OO SO0 OO 00 OO0 O OO 66 S O OO OO SO GO CC 1“'-1
14.1.1 GlossSary Oof TermsS ..ececoveccosscsseccocccosscsssscsasasscesss 1h=i
14.1.2 I/0 Controller Configurabiliby ...cceeecececcocccccosacsnases 14=2

1”.2 MEGABUS SLOT ASSIGNMENTS 9 0 00 0000000000090 0 209000 EOIOCLEIOLIOTEOCEITVOEIESETOTOIOTTS 12;“3
1“.2.1 DPSs/l‘OE ® © 9 0 0 0 0 0 00 0P O S PSSO O T I 0O SO OET OO OO SO PSS E NS E O SES 12‘-3
1"‘.2.2 DPS6/u5E © 0 0000 000000 GG 0L OCEEEOCESEIICECET0E T O S0 0P0000CCCESIOIOCIOIOCEOIEEOIEEOCEEOEES 1“’"4

12; 2 3 DPSS/?OE ® 0 0 6 0 0 00 00 SO OO E OO SO OOV OO OO OSSOSO E OSSN O eSO 11‘-5
2’4 DPSG/75E 0 € 0 0000 000000000000 00V ONCCO00TEO0CTRLGESOOUEOBCEOOOS 14-6
2 5 DP36/85E ® 6 @ 00 9 0 00 0O P 0O OO OB OO OO OISO OO OO ENEO eSS eE e 14-7
2 6 DPS6/95E © 9 00 ¢ 0000000 C0CECCC000LOTSEO00 000000000000 OCCOCIOCOIOEEOSTES 14-8
SECTION 15 WORLDWIDE MARKETING REQUIREMENTS 15=1
1501 AC INPUT POWER © © 0 0 6060 00 09 @ ©0 00 O© 0009000 C OO e 0O C 0 0 6o ¢ ¢ & ¢ 60 0600 ¢ 0000000 15-1
15.2 INTERNATIONAL mYBOARDS 0O © ® 00 80 00 6 O C 8 00O 0T 0O Q@O OO IO OO OO OO O OO0 S OO0 OO0 SO 15“1
15.3 INTERNATIONAL LANGUAGES ..vicceeessocooscossscosscscacscscsossscscscncss 15=1

APPENDIX A MAIN MEMORY DIAGNOSTIC FUNCTIONALITY A-1

Aol SCOPE tiereereeressesesecsanosaacnososonsssossssoassssnooccssassonsss A=l

| HONEYWELL INFORMATION
i SYSTEMS

SPEC. NO. | SHEET | REV.
60149740 | TC- 14 |

PAGE

A.2 MAIN MEMORY DIAGNOSTIC COMMAND CODES ivveeesovcocscscscscsassasecncsnsee A=2
A.2.1 Read ID WOord ..cececerecescocsosnscncsccsasscscsosasasncscssne A=3
A.2.2 Read Status Word ce.eeeceereosccccossoccccccsssssscsccsacncsss A=l
A.2.3 Set EDAC MOAE tevevevocsovncssrscecvcnsosssoscsssccscsasssaccsses A=l
A.2.4 Clear EDAC MOGE .vvvecsesncssosccecsssscccccssssssnccansscecse A=l
A.2.5 Address Reconfiguration ..eceeeeescccescscsoccasscsascsnssaans A=Y
A.2.5.1 Communication with Memory ceveccssenesesss A=5
A.2.5.1.1 Normal Mode (BSYELO=0) tiveevesesecosees A=b
A.2.5.1.2 Maintenance Mode (BSYELO=1) veeeveceeess A=H
A.2.5.2 Memory Reconfiguration ...ieveseesccsscccocanscccase A=6
A.2.5.2.1 Half Board and Quarter Board Swap A=6
A.2.5.2.2 Address Reconfiguration ...cecececcocsee A=T
A.2.6 "Here I Am"™ Light (ieveeecrccecscescsovavcscssscsssssncssese A=10
A.2.7 Soft Error Rewrite Control ..ceceeececcccccsscscssacacacncase A=10

A.3 MAIN MEMORY DIAGNOSTIC PROGRAMMING ...ecvevvcecorescoccascsaannoasss A=11
APPENDIX B MMU DIAGNOSTIC FUNCTIONALITY B=-1
Buel SCOPE .ueeeveeocacescceccscasoscsconcsssncssoscsssssssnsoscsssssssoscssess D=l
B.2 MMUD FUNCTIONS teeessrsssisecsestestcscencncssansencessavsvene D=l
B.3 MMUD FAULT CONDITIONS ..eeeveeceseccsnssesoasasasssnas cecseecssscccaces DB=3
B.d MMUD MODES .vveieeeeoenoncoseocsosanssssssconsssssessnsssscsssssosssse DB=3
B.5 M6X & M6XE CACHE ACTIONS AND TERMINOLOGY (WITH ALL MODE BITS CLEARED) B-5
B.6 M6X & M6XE SYNDROME P -)
APPENDIX C SEARCH INSTRUCTION EXAMPLES C-1
C.1 SEARCH STRING SINGLE EXAMPLE +.cieveeecveenonsevncnceannnnssssssssssess C=1
C.2 SEARCH STRING MULTIPLE EXAMPLE ..ciieeecececovcocnseannsansasscasnses (=2
C.3 SEARCH ARRAY SINGLE EXAMPLE P &

CCu SEARCH ARRAY MULTIPLE EXAMPLE 9 8 69 0 00 7 OO SO0 OO SO SOE OO PN OSSOSO N SO OE TS CTDS C-3

.

! HONEYWELL INFORMATION | SPEC. NO. | SHEET | REV. i
| SISTEMS ! 60149740 ! TC-15 | c i
CONTENTS
PAGE

APPENDIX D VERIFY INSTRUCTION EXAMPLES D=1
D.1 VERIFY STRING SINGLE EXAMPLE cecccocccccccooscocacsaccocaccoscsaccseas D=l
D.2 VERIFY STRING MULTIPLE EXAMPLE ..c.cccceecosccasesceasscncccassocsses D=2
D.3 VERIFY ARRAY SINGLE EXAMPLE .ccceeccecscsccssoscscsscosccsscossccsace D=2
D.4 VERIFY ARRAY MULTIPLE EXAMPLE (cccececcoccevecascascascoscsncesossass D=3
APPENDIX E GENERAL INSTRUCTION SUMMARY E=1
APPENDIX F EXTENDED INTEGER INSTRUCTION (EII) SUMMARY F=1
APPENDIX G COMMERCIAL INSTRUCTION SUMMARY G=1
APPE&DIX H SCIENTIFIC INSTRUCTION SUMMARY H=1

HONEIWELL INFORMATION

SPEC. NO.
60149740

SHEET REV.

1
i
TC-16 |

SISTEMS

ILLUSTRATIONS

Figure

2=-1
2=-2
2-3

3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3=11

3=12°

3-13
3-14
3-15
3=16
3-17
3-18

31
3-2
4-3
4-4
45
1-6
8-7
4-8
1-9
4-10
4-11
8=12

5-1
5-2
5-3

Standard 16-Bit Megabus Interconnection Block Diagram for CRUIE ...
Standard 16-Bit MegaBus Interconnection Block Diagram for MSXE
Extended 32-Bit MegaBus Interconnection Block Diagram for M6XE

Visible Reglsters (ccccecccececacscccesscecccsccscacncsncsccsacsnancans
Stack Structure LB B B BE B BE B BN BRI BE B BN BC BN BN B BN BE BN BN BN IR BN AR N AR BK AR BE BE BE BE BN BLBK BC BX B RX BE BN B BX B BN BN BN BY N]
Interrupt ConstruUCtS .cccecescncccscscccscscrccacesescccancsscancas
Inter!'upt Save Area (Sheet 1 Of 2) €0 eve0ecesecsrc0r et 00t cessO0s e
Interrupt Sequence Flow Chart (Sheet 1 Of 10) cececcsccccascasscens
Trap and Interrupt ConSErUCLS cccecccccscceccsccsccscsasosscsscscccne
Trap Context Format When Using TSA Functionalily .eeccecccceccsccse
Trap Sequence Flow Chart (Sheet 1 Of U§) .cececcccoccsccscccccccccncne
css Dedicated nwory ”Qu L 2 BN K BB IR BN BN B B B BN N BN BE AN BN BN BCBE B B Y BE B NN B NN B N BN NX N B B BN BN N
CSS Dedicated Memory Area Content (Sheet 1 Of 2) cecccecccccoscsacs

_'AS Hap 1 Fomat ® 00000 A0 0TS CP0C0C000ROTTOEIPAECCEOICETEPTECESOENOSCEOIROETENDNOSETCTITRTES
AS mp 2 Fomt 9 008 0T 0 C 0 000800 008 QCC00 0908 COSICEQRIPIGECEQOCEECETITIOISTTSTOSIOCOSIAEGEOINSOIONINTBTOE

AS mp 3 Fomat L 2K B I R B BN BE BN B BN R BN BE BN BN BN BC BN BN B RN BN N RN BN BY OB B ONE BC B BN B N BE BX NX BX N BE NE BN B N W BN B N B I)
AS Interpretation for General INStructlionS ..ceccscescccsccccccscssse
AS Interpretation for Extended Integer Instructions ...ccccceccceccs
AS Interpretation for Commercial InsStructionS .cceccecscccscacecsscs
Remote Descriptor Formats (Sheet | Of 4) ..ceeccevcccsccsccncconans
Queue mment 9 00 Q00 QG008 899008 CCOC OO TOIO VPO VO SO OPVEOSOQGROIESESIOEDNISDS

m Block Diag!'m 9 0 ® 90 00 08 RO Q OO OECE R OAOICOCQSITOOISIOIOSIEOQROSOSIOGTEECEOSTBTORNTORTES
SMMU Logical Segment Address Interrpretation (ccccccccccccccccacasse
M5X MMU Storage Array Layoul ..cecececccecccecsscvescccccacsencsscccoce
EHMU LOgical Add!‘esa SD&QQ €0 0000000 E00CEE0C00000CEEC0IC0CICCCERNSIOIOIGOEOETTES
M Se@ent Addresa Interpretaiton 9 @0 9806900 Q09 C QOO ECOOOIOIPOSOCSOCEOSIOSTOPCQCTPOTOEST
Asv Fomt €0 00 00 Q0 0808 €00 CO 00O OO0V CO0 0 E O 00 P OQO QOO COOCOOEBTOIRNTBTOOIEOITVNOES
Segment Table Format in Memory in SMMU Mode ..ccecececcccccccccccce
Task Segment Table Format in Memory in EMMU MOd® .ccccceccccocacens
TSTL Fomt S 0 0 00 CGCOGE OO QO S C0 000 CEPTRENCCETOOS PRGOSO EBSPOSEINSIOTEOROESETINTNTCOE
Process Context and Address Space Definition .c.eecccccccceccccesccns
P!'Ocaas 713' Of Mory LK B K IR BY B B BN BN AN B B BN B BE B BN BN BN BN B BY B BC B BN BK OBE N BK R N BY BN N OBX ONX B BN N BX WY J
State Tz'anaitiou - SchrQ Syst&l €000 000 C0Q00CQCROCCICEOCIETEEORIRGCEOIOIOECEOIPOICEQRETOTIEOETOTTES

Branch on Register Instruction FOrmats c.cccececccccccccsssccascens
Branch on Indicator Instruction Formats .cccececccocccccccccccancne
RTT Instruction Flow Chart (Sheet 1 Of 3) eccecsccccccccsccsvccccnns

PAGE

2-3
2=3
2-3

3=-12
3-19
3-24
3-25
3-30
3-50
3-51
3-54
3-61
3-62
3-65
3-66
3-67
3-70
3-70
3-? 1 N
3-84

3-91

4-3
41
4-5
4-8
4-9
a2
3-13
41l
4-14
415
4-16
4-20

5=51
5-60
5-104

-

f"\
; /

| HONEYWELL INFORMATION | SPEC. NO. | SHEET | REV. H
H SYSTEMS | 60149740 | TC= 17 ! E 1
JLLUSTRATIONS

Figure PAGE
T=1 Decimal Data Descriptor Format ..cceeecsceceecescecscscocsascoscossssnse [=2
T=2 Alphanumeric Data Descriptor Format ..cieeeecccccccccscscscccancasee =D
7‘3 Binary Data Descriptor FOPmat © 900000 5000000 Ee0000C0EICCIEOCOOCECOIOCIEOC®ROIEOIOIEOIEOITSEOETDS 7-6
T-4 Numeric, Alphanumeric and Edit Instruction Formats ..ccceeeccescece T=T
7-5 Shift Instruction Formats (Sheet 1 Of 2) civeecveccccccssccsarenvses T=18
7—6 Set Edit Flags (SEF) MiCPO—Op FlOW LICIR IR I K IR BUIR B BF B AC I Y B N B A N I IR I AR I SO IR A I NCArY 7-u5
=7 Commercial Branch Instruction Formatecceeevccvessocacsnecsssnes [=U46
8-1 Instruction Pre-Execution (Sheet 1 Of 2) cieveerccesssescscscccsesee 8=5
8-2 Branch on Scientific Accumulator Instruction Format ..cececececcecees 8=23
10=-1 Format of I/0 Instr. Used to Generate a CSS~to~CSS Interrupt 10=5
10-2 Overlapped Double words © 0 0 02 € ® 00 000 00O L0 Q00 ©O0C 0@ ©6 00 0©0°0 Q0 OO0 8 0600 060 O 10-7
1“‘1 DPS6/”0E Megabus Assignments © 9900000000000 SCVESEOOSECONOSICOEOUEOECEOISOEEOIEOOEEOETOCTOTS 14-3
14-2 DPS6/45E Megabus ASSigNMENLS tveeeecececcresvcoossvessossoscssnssss 1U=ll
14-3 DPS6/TOE Megabus ASSignmentsS cccecececccovesscccecscscssasasccssasccsse 14=5
1)"-4 DPS6/75E Megabus ASSignmentS © 00000000900 00000CC0EE0E0O0O6EPOSSOEOEOIEOEOTOEC 1’4"6
14-5 DPS6/85E Megabus AsSignments ...cocccceescsccoocoscsccososcssoccsas 14=T
14-6 DPS6/95E Megabus ASSignments .c.ccocesecsscscoscccecsecssosssscssscoco 14=8
A-1 Logical to Physical Address Translation ...ccececccscceccecocsccces A=13

! HONEYWELL INFORMATION i SPEC. NO. i SHEET | REV. H
| SYSTEMS | 60149740 | TC- 18 | E |
TABLES

Table PAGE
1=1 Model DesSignatorsS .ieeeeecsccesccsccasecssscsosasssesosssssssssascses 1=T
1=-2 Conventions and Definitions Used in Instructionseeeececcscesese 1=13
3=-1 Sign conventions for String Decimal Operands ...eceececescescsesnsee 3=T
3-2 Packed Decimal Sign ConventionsS ...ceecessccececcsccssccssssscacanes 3=T
3-3 Interrupt Level ASSignments ...eececescecsscessscsnssssscscscsossane 3=22
3-4 Trap Vectors and Eventscc.ceeecececes . D
3-5 RTT @Nd TraD cecscoescscecscoscoassassssossossassosncssessssscsnsensnsese 3=53
3-6 Bootload Devices and Record FOrmatsS eeeeeceecccosconcscscsascssccscasse 3=60
3-7 Address Syllable Notation for Word Address Forms (Sheet 1 of 2) 3-68
3-8 (V)FT(?T) AS Functions (ShEet 1 OFf 6) veveeeesseosenssocsssccnsnseaes 3=T8
3-9 Super Halt ConditionNsS c.ceeveesercecescnscassasssssssssscscssssncanse 3=0U
3=10 Halt CondifionS ceeieeerenocencososascscscasonsaassssossassassosssnssess 3=95

1]

4-1 DPS6 Model Specific Variations in Logical/Physical Address Space ... 4-5
5-1 Carry and Overflow Truth Table ...cccicecessccncescsescccanscoscosnsecsee D=3
5-2 Double Operand Instructions (Sheet 1 Of 3) cevsececceccoccocssessnnece 5=5
5-3 Numerical Representation of Double Operand Instructionsececeee. 5=8
5-4 Single Operand Instructions (Sheet 1 Of 3) ceeecececscesnassscoanaes 5=27
5-5 Numerical Representation of Single Operand Instructionsecce... 5=30
5-6 Short Value Immediate INSEtruUCtionS ..ceeeevecececcacoccasseccccesoases 5=Ub
5=7 Numerical Representation of Short Value Immediate Instructions 5=U46
5-8 Branch on Register InStructions ...iiciecececeescssceccnccnnssoasens 5=52
5-9 Numerical Representation of Branch on Register Instructions 5=53
5=-10 Branch on Indicator Instructions (Sheet 1 of 2) .(iveeveeen. ceessanss -61
5-11 Numerical Representation of Branch on Indicator Instructions 5=63
5=12 Shift Operations (Sheet 1 Of 2) .tevevecesccccccsassavesoccsansansnee 5=TT
5-13 Numerical Representation of Shift Instructions ...ceececececescccsecse 5H=T9
5-14 I/0 Instructions (Sheet 1 Of 2) tieeieerecososcasscsconsasassosascecnss 5=91
5-15 Numerical Representation of Word 1 of I/0 Instructionsceceeee. 5=92
5-16 Generic Instructions (Sheet 1 Of 3) ceceecececcsoscccncsssssscnssses 5=07
5-17 Numerical Representation of Generic Instructions ...cececeececececasss B5H=100
5-18 (BS) Functionality ((B5) is an even word address) ..eceeeececsceecess 5=127
5-19 (K6) Functionality ((B5) is an odd word address) .c..cecececeeceeees 5=130
6-1 EII Data Types (Sheet 1 Of 2) ceeeeeesesoccssascncasasoseasssensesas D=2
6=2 EII Double 0DErandsS s.eeeseessssocsesosscsoscsososassssososscsoncsncnses 0O=T
6-3 Numerical Rep. of Word 1 of EII Double Operand Instructions 6=8
6-4 EII Single Operand Instruction SUMMAPrY ...ccceessocessccsceccccassees B6=16
6-5 Numerical Rep. of Word 1 of EII Single Operand Instructions ee 6=17
6-6 EII Short Value Immediate Instructionsceeeee.. vessasuensencass 6=20

-»

O

é‘lﬁ:&;\

! HONEYWELL INFORMATION | SPEC. NO. | SHEET | REV. i
! SYSTEMS ! 60149740 ! TC-19 | o] !
TABLES

Table PAGE
6-7 Numerical Rep. of EII Short Value Immediate Instructionscccccee 6=20
6=-8 EII Branch on Register INStructionsSccceceeccsccecccccccccacccacee 0=25
6-9 Numerical Rep. of Word 1 of EII Branch on Register Instructions 6=26
6-10 EII Shift Instl‘uetions (Sheet 1 Of 2) 00000 ss0c 00000030 Cs 0PSSO OE 6“31
6-11 Numerical Rep. of EII Shift INStructionsS (ceceevecececscccecccscssessss 0O=32
7-1 Comm. Numeric, Alphanumeric, and Edit Instr. Summary (Sheet 1 of 2) 7-8
7-2 Numerical Rep. of Numeric, Alphanumeric, and Edit Instructions T7T=10
7-3 Comme!‘cial Bl‘anch InStX‘UCtion Sumal‘y (Sheet 1 of 3) @00 0O0EOE000GOOO0 7-2‘6
T-4 Numerical Representation of Commercial Branch Instructions ccecccoece T=U8
8-1 Scientific Instruction Summary - Double Operand Imstructions 8=10
8-2 .Numerical Rep. of Double Operand Scientific Instructions ...ecceeee. 8=10
8-3 Scientific Single Operand Instruction SUMMArY ...cececesscacsccccecss 8=18
8§-4 Numerical Rep. of Single Operand Scientific Instructions ...ececec.. 8=18
8-5 Bt'a.nch On Scientific Accumu-lators © 9P CVOOOC0E6ECOEOL0CEPOECOOCOEEEEO0SGO0OCOCGE S 8‘2“
8-6 Numerical Rep. of Branch on Scientific Accumulator Instructions 8=24
8"‘7 Bt'anch on Scientific Indicators © 26020 QCO00OCCOEOPOCO0CG000OE6OCODOSO0EAOEOOCC S 8"‘29
8-8 Numerical Rep. of Branch on Scientific Indicator Instructions 8=30
8-9 Scientific Instruction Summary -~ Intrinsic Instructions ...cececceee 8=37
8-10 Numerical Rep. of Intrinsic Scientific Instructions ..ceeeecccecccss 8=38
10-1 CSS Bus Slot Requi.rwents 9 00 O0PO0CO0OOOCCO 00O O ODOD OO0 PO OIOOCOC OISO OO OE OO 10-2.
10-2 Dedicated Memory AI‘eaS 00 CE0OCCOECCOEO0O0O00COCOOC0000@E0CCO0OC0C00E0CEICEECEOETCEDO 10"3
10-3 Multiprocessor Coexistance on the System BuS ...cccececcscsccscacces 10=8
12-1 P!'OCSSSOP Relative Pel'fomance Goals @0 000000000000 PCOCOOGIOIOIOROIEOEOIRECOISETBOREOYDS 12-1
12;-1 Disk DQVices supported 9 © 08 9 0006 OO0 POEOCNOE O OOH OO0 QPO OOVPOIOELIOOEOTQOIECTOSECSES 1“‘2
1“‘2 Disk DGVice Interfacea supported ® ® 90 0 O 0 0000 CSC OO OEPOCOPOOSIOCOIONSOECEOOOSNTOTODS 11'-3
A-1 Hardw”e ccmnd Smmary ® 9 60O C© 0 0 0090 VOB OO O PO OO O QT OO O OO ECORO OO SSS PO OEOSCEEC A-11

HONEYWELL INFORMATION

SISTEMS

SPEC. NO. { SHEET
60149740 i

TC=- 20

REV.

This page is intentionally blank.,

®

'

L

SPEC. NO. | SHEET REV.

‘i”x ' HONEYWELL INFORMATION |
/ ' 60149740 i 1= 1 i c i

SISTEMS

SECTION t INTRODUCTION

1.1 DOCUMENT DEFINITION

This document is the Engineering Product Specification for the DPS6 Stage 3
Central Subsystem Family, consisting of the following:

o CRU1TE The extended physical memory version of the CR41,

o M5XE The extended physical and logical memory version of the M5X,
featuring both a Standard Menory Management Unit (SMMU) and an
Extended Menory Management Unit (EMMU),

o M6XE The extended logical memory version of the M6X, which will be
available in two speed versions, normal and slow.

o Dual M6X The dual processor version of the M6X and

o Dual M6XE The dual processor version of the M6XE.

1.1.1 16-Bit Expanded Physical Memory Processor Subsystems

The CR41E and MS5XE models are being introduced to replace the current CR4{- and
M5X-based Stage 2.1 DPS6 Systems. These new processor systems are instruction
™ compatible with their predecessors and feature expanded physical memory beyond the
(:,f current limitation of two megabytes (internal processor performance remains the
same). The CR41E supports the SMMU for a logical memory addressability of 2 MB.
The M5XE supports both the SMMU and the EMMU for a logical memory addressability of
either 2 MB or 32 MB. Processor features are as follows:

! HONEYWELL INFORMATION
]
!

SPEC. NO. SHEET i REV.

1= 2 | c

———
——

SISTEMS 60149740

' T
o CRY1E: @:}

Physical memory capacity of up to 4 MB maximum;
SMMU support for a logical memory addressability of 2 MB;
Internal CIP, external SIP functionality;

Field upgradable from DPS6/40, 45 models (only the CSS needs
replacement); and

Fully supported in M4QQ Release 3.1 and beyond.

o MSIXE:

Physical memory capacity of up to 8 MB maximum;

SMMU and EMMU support for a logical memory addressability of either 2 MB
or 32 MB;

External cache, CIP, and SIP functionality;
Monoprocessor configuration only;

Field upgradable from DPS6/75 models (only the cache and CPU need 4
replacement); and : N

Fully supported in MAQQ Release 4.0.

1.1.2 32-Bit Enhanced Processor Subsystem

' Increased logical addressing through the use of the Extended Memory Management

Unit (EMMUO), in both monoprocessor and dual processor M6XE configurations and dual
processor 6X models, with SMMU only, will be introduced to supplement the current
Model 6X- based Stage 2.1 DPS6/95 System. These new processor subsystems feature
increased processing power through the use of multiprocessor techniques and all
provide for field upgradability. Specific features are:

o M6XE:

Physical memory capacity of up to 16 MB maximum;

EMMU support for a logical memory addressability of 32 MB;
Field upgradable from selected DPS6/95 models; ard

Fully supported in MU00 Release 4.0.

Available in two speed versions, normal and slowed down.

HONEYWELL INFORMATION

SPEC. NO.

SHEET REV. i
SYSTEMS !

] |
i i
60149740 H 1=-3 : c

1.1.3

Multiprocessor Support:

- Dual Tightly Coupleg configurations of M6X and M6XE systems;

-~ Up to 16 MB of physical address space capacity;

~ Field Upgrade Kits will be provided for selected DPS6/95 models; and
- Fully supported in MOD400 Release 4.0.

I/0 Support

All of the new Stage 3 systems offer the following attachments:

o

1.1.4

Communications:

~ NMLC-~based Standard Radial Communications with FLAPs and/or FLAPless
RS232 and RS422 adapters; and

~ Local Area Network Connections including OMNINET, CSMA/CD (ETHERNET),
and, later on, IEEE Token Bus and Ring.

Mass Storage:

- 9" FSD family of Winchester disk drives;

- 9" removable disk drives, if available; and

- Future 5-1/4® and 8" Winchester disk drives, when available.
Tape/Unit Record:

-~ New lower-cost GCR/PE reel-to=reel drives;

- Card Reader/Punches;

- Floppy disk;

- Serial and line printers; and

- Reader/sorters.

Documentation Tree Structure

Document Number Title Responsibility

Produet Functional Description

No. TBD DPS6 Stage 3 PFD SCMO Market Planning

Product Functional Specification

60149834 DPS6 Stage 3 PFS SCMO Market Planning

HONEIWELL INFORMATION

| SPEC. NO.
! SISTEMS

{ SHEET i REV.
60149740 i 1- 4 i

1.1.5 CSS Model Designators e

This EPS-1 uses engineering model designators. Table 1-1 shows the
relationship between the engineering and the marketing model designators.

Table 1=-1 Model Designators

ENGINEERING MARKETING

M37
CR41, CRMME

DPS 6/3X, 48

DPS 6/4X, (except 48)

5X DPS 6/7X

5XE DPS 6/T7ZE

6X(slow) DPS 6/85

6X(normal) DPS 6/9X ~
6XE(slow) DPS 6/85E -
6X2(normal) DPS 6/9XE

- et G G S G G ——— — . USWE M SR . Swe G —— ——— e -——
e cmee e ar e e P Grar e . Grem e Sew e s Geee e s —. —
- G —— —— PO . ———— — —— —— —— WA Goes S . . - So

1.2 SCOPE

1.2.1 General Requirements

This document specifies the DPS§ Stage 3 Central Sybsystem Family, consisting
of the CRA1E, MS5XE and MSXE models. As evolutionary members of the Level 6 Product
Family, they offer increased functionality while maintaining upward compatibility
with the Level 6 models 3X, 4X, 5X and 6X CSSs.

In the interest of clarity, the functionality defined in this specification is
for the MGIE CSS, the top of the line model. Whenever functionality does not apply
to the other models, it is so stated. The term 'CSS' is used and is meant to refer
to all models unless stated otherwise.

Although this document is specifically intended to describe the Stage 3
products, it is also intended for use as an up-to-date reference for the older DPS
CSS products. @jk\

'

Configurations presented in Section 13 are not all inclusive but are the recom-
mended set,

SPEC, NO. | SHEET

HONEYWELL INFORMATICN i
60149740 i 1= 5 i C

SISTEMS

—— ——

-

1.2.2 Key Features

Some of the Key features of this system are:

o Physical memory vextensions on the lower 16-bit members

0 Commercial instruction capability as standard

o Scientific instruction capability (optional on CRA1E and MSXE)

0 Memory Management Unit (MMU) - CR41E and M6X support the SMMJ while the MSXE
and M6XE support SMMJ and EMMJ

o Extended MRX Megabus (M6X and M6XE only)

0 Full coanpatibility with selected Megabus elements.
1.2.3 Restrictions and Enhancements

o . The CSSs support Long Address Form Addressing only.

o MMJ enhancements have been made. (Refer to Section 4.)

éf 0 Unavailable resource trap conditions detected during the execution of com=-
mercial and scientific instructions result in a trap TV23, as in a 6X envi-
romient, rather than a TV23 or TVi5 in a 4X-5X enviromment. See Table 3=3.
1.3 REFERENCE DOCUMENTS
1.3.1 Governing Documents
1. 60149834 DPS6 Stage 3, PFS
2. 60139142, L6 System Control Facility,.EPS-1
3. 60130080, L6 Model 43, EPS~1
4, 60126298, Extendead Megabus, EPS-1
5. 60129876, L6 Maintainability, EPS-1
6. 60135091, 6X Processor, EPS-1
o 7. 60135295, 6X Cammercial Instruction Processor, EPS-1
8. 60135281, 6X Scientific Instruction Processor, EPS-1
9. 60130079, L6 Memory Management Unit, EPS-1
(10. 60138362, L6 Power Specification

11. 60149832, MRX Megabus EPS-1,

HONEYWELL INFORMATICN
SISTEMS

SPEC. NO. | SHEET
60149740 i 1- 6

1.3.2 Standards

The subsystem referenced herein shall be designed to meet or exceed the stan- ‘
ards listed below. Any deviations to standards for the device and device-oriented
electronics is detailed in the appropriate section of this Product Specification.

Recent regulations, EMI rules pertaining to Class A ccamputing devices, enacted
by the Federal Communications Commission require that the subsystem described here-
in adhere to FCC rules part 2.805, 15.4 pp. N through Q, 15.804, 15.810 through
15.818 and 15.838 even sections only. It is expected that the European community,
Canada, and so forth, will be enacting similar rulings in the near future,

1. General Design, Honeywell Standard:

B03.07, Reliability - Standard Failure Rate Data Base
B03.08, Reliability Failure Rate & MIBPF Predictions
B04 .08, Selection and Qualification of Standard Finishes
B01.08, Enviroment, Operating
301..09, Equipment Safety
B01.10, Enviromment, Transportation, Storage & Installai:ion
2. Electrica Design, Honeywell Standard: - (
B0O1.48, Primary Power - Utility Supplied
BO4 .06, System Grounding
3. Mechanical Deaign, Honeywell Standard:
A00.10, Metrication
BO4.09, Application of HIS Standard Finishes
4, Industrial Design, Honeywell Standard:
D01.00, Product Use and Appearance
D01.01, Human Factors/Industrial Design
D01.02, Enclosure and Structure Design
D01.03, Materials and Finishes
D01.04, Signals and Controls
D01.05, Cabinet Hardware

D01.06, Miscellaneous Hardware, Accessories and Other Consumables

Ak

HONEYWELL INFORMATION

1
]
! SYSTEMS

SPEC. NO. | SHEET | REV.
60149740 | -7 ' c

5. Product
BOT7.11,
BO7.12,
B0O7.13,
B07.38,
B07.39,
G02.01,
Go2.05,
Go7.01,
GOT .02,
GOo7.03,
Go7.08,

G07 009)

Maintainability, Honeywell Standard:

Logic Namenclature

Location Reference Designation

Identification Nomenclature for ICs, Printed Cards and Card Cages

Logic Symbology

Logic Block Diagrams

FE Tools and Test Equipment Catalog

FE Product Tools & Test Equipment

Field Product Maintenance Documentation

Product Manual Content Guide

Product Style Guide for Manuals

Major and Intermediate Block Diagrams

Repair Documentation, Draft

6. D.002.01, PWA/PWB Testability Design Rules

T. Manufacturing Testability Guidelines:

MTG1, PWA Test equipment Connection Requirements

MIG3, PWA Microdiagnostic Creation

8. 60129949 - Application Rules for Minicamputers & Terminals Products

1.3.3 Reference Only

1. Q4.1

2. MG1

PWA/PWB Testability Design Rules
Canponent Availability

PNA Test Documentation Requirements

PWA Test Monitor/Test Box Deé:l.gns

PWA Quality Logic Test Creation

PWA Test & Verification Program Creation
WA IC Socket Utilization

Design for Producibility, Installability, Maintainability and
Replaceability

! HONEYWELL INFORMATION | SPEC. NO. ! SHEET ! REV. !
: SYSTEMS ! 60149740 ! -8 | c |
BN
9. MPTG1 - PWB/PWA Producibility Guidelines .

10. 58035052

1.4 DEFINITIONS

A
AAS
AL
ALY
AS
ASV
Atam

B
BCD
BD

Bn

c
Ccas
cI
cIp
CL
av
cpru

EDAC
EII
EPS=-1
EQF
EUF
EOM

FZ

- Wordwide Maintenance Requirements,

Address associated with a Trap

I/0 starting address AS

Active Level

Active Level Interrupt Vector

Address Syllable

Address Space Vector

Single item of information; e.g., bit, digit, byte, word, etec,

Bit test indicator of I register

Binary Coded Decimal

A 32-bit signed displacement that follows the address
syllable

Base register n, 1 {0 <7

Carry indicator of I register

Non-procedural I/0 Comtrol Word AS

Cammercial instruction indicator register

Commercial Instruction Processor _

Current Level N
Current Level Interrupt Vector Loy
Central Processor Unit

Central Subsystem

Current Stack Length in words

Clean Zero

Small displacement

A 16-bit signed displacement that follows the address syllable
I/0 PLata Address Syllable

Data Descriptor

Divids by Zero

Exponent

Effective Address

Error Detection and Correction

Extended Integer Instruction

Engineering Product Specification, Part 1
Exporent Overflow

Expopent Underflow

Exponent Underflow Trap Mask

Fraction

Address of the top element of the current active frame in the
stack

Fuzzy Zero e

A

! HONEYWELL INFORMATION { SPEC. NO. | SHEET | REV, !
! SISTEMS ! 60149740 i -9 H c i
G = Greater than indicator of I register
i = Integer
I - Indicator register; or I/0 indicator of I register

I -
IA -
IL -
v -
IMa -
IMO -
/70 -
ISA -
ISM -

LAF -

LAS -
LSB -
MAS -
MB -
MBN -
MBZ -
MMPO -

MMO -
Mn -
MSB -

Mi -
M3X -
M4X,5X -
M6X -

NATSAP 0-3 =

NULL -
0 -
0s -

ORU -
ov -

P -
PAS -
PE -
PEM -
PFS -

QLT -

Part of TSA containing I register and Trap number
Intermediate Address

Interrupting Level

IL's interrupt vector

Immediate Address

Immediate Operand

Input/Ouput

Interrupt Save Area

Interrupt Save Mask

Interrupt Vector

K register n, 1 {n <7

Less than indicator of I register
Long Address Form

Logical Address Space

Least Significant Bit(s)

Memory Address Syllable

Megabyte

Must Be NULL Address

Must Be Zero

Main Memory PROM Option

Memory Management Unit

Mode Register n, 1 { n <7

Most Significant Bit(s)

Maximum Stack Area Length in words

Model 37 CSS (and functionality)

Models 43/7 and 53/7 Central subsystems (and functionality)
Model 6X CSS (and with enhanced functionality)

Next Available Trap Save Area Pointers
An Address of all Zeros

Offset

Operating System

Optimum Replaceable Unit
Overflow indicator of I register

Program Counter

Physical Address Space

Precision Error

Precision Error Trap Mask
Product Functional Specification

Quality Logic Test

HONEIWELL INFORMATION
SISTEMS

SPEC. NO. SHEET

REV. i
1= 10 i

—
——

601497 40 —

L J

RDBR
RFU
RHU

Rn
RSU
RTC

]

S
SA
SAF
SB
SBZ

sSD
SE

SEM
SI(EUF)
SI(G)
SI(L)
SIP
SI(PE)
SI(QE)
SI(SE)

T
18D
THP
TSA
TSAL
TSAP
v
T&V

7

WIT

Register Address Syllable

Remote Descriptor Base Register

Reserved for Future Use (Zero expected but not checked)
Reserved for Hardware Use

Read Modify Write

Register n, 1 { n <7

Reserved for Software Use

Real Time Clock

- Sign of Mantissa (operand)

System Status Reglister

Scientific Accumulator

Short Address Form

Significant Bit(s)

Should Be Zero., A SBZ field should be set by the software to
Zero, The hardware does not check this field; if it is not Zero,
unspecified results occur. -

Segment Descriptor

Significance Error

Significance Error Trap Mask

Scientific Indicator Exponent Underflow

Scientific Indicator Greater Than

Scientific Indicator Less Than ‘ o
Scientific Instruction Procsssor o)
Scientific Indicatar Precision Error ~
Scientific Indicator Quality Logic Test

Scientific Indicator Significance Error

Stack Address Register
To Be Defined

Trap Handling Procsdure
Trap Save Area

Trap Save Area Link
Trap Save Area Pointer
Trap Vector

Test & Verification

Signs unlike indicator of I register
Watch Dog Timer

Miscellansous Trap Informatiomn in TSA.

ABin,

! HONEYWELL INFORMATICN ! SPEC., NO. | SHEET ! REV. '
! SYSTEMS ! 60149740 ! 1= 11 | |
1.4.1 Flowchart Symbols
BRERARRRS bbb bbb oo
L s + START/ + o o
START/END # + RETURN + (CONTINUE)
]] + SUBROUTINE + o)
4844 RE bbb bp o 0
H | / \
! ACTION BOX | < DECISION BOX >
! ! -7
() < >
(COMMENT BOX) < GO TO SUBROUTINE >
() < >

HONEIWELL INFORMATION
SYISTEMS

SPEC. NO.

SHEET i REV.
60149740 i

1= 12

1.4,2 Instruction Convention Descriptions

Table 1=-2 lists various conventions and descriptions used in describing
instructions in this document,

Table 1-2 Conventions and Definitions Used in Instructions
(Sheet 1 of 2)

Raised to the power of; e.g., 2%%n = 2 raised to the power n

{SIMBCLE DEFINITICNS

: B# } Base Address register selected by # field in instruction

: R# : Word operand register selected by # field in instruction

; K# : Double word operand register selected by # field in instruction
; [:] ! Contents of; e.g., [R6] = contents of R6

§ EA i Effective Addreass

: () : Bit field specification; e.g., R3(6) = bit 6 of R3; I(C) = bit C
| or . | of I-register; S.AN = RN field of status register

; : : Field operater; e.g., R3(1:7) = bits 1 through 7 of K3

} > ; Greater than

; < ; Less than

TP P

: # : Not equal to

: + : Addition operatar

: - i Subtraction operator

: b ; Multiplication operator

: / § Division operator

P

! !

—— G e Gaen G B AP Grer W A G e G- e Ges SHU o GLn TSN G aman G ae s Ghae G UGS Gmem S et Bemt Shan B WSew Geas e

Ak

HONEYWELL INFORMATICN

SPEC. NO.
60149740

SHEET

1
1
1= 13 i

SYSTEMS

Table 1-2 Conventions and Definitions Used in Instructions
(Sheet 2 of 2)

following definitions are used:

o Pa: Points to the word containing the address syllable;
o Pd: Points to the word containing the displacement

SYMBOL | DEFINITIONS
]
1
"] ! Exclusive OR
!
\/ | Inclusive OR
1
1
/\ | Logical AND
_ _
| One's complement; e.g., [R6] = complemented contents of register
| R6
!
{== | Is replaced by; e.g., [R1] <== [R2] = Transfer contents of R2 to
! R1
;
<==> | Swap
!
TEMP | Temporary register
]
1
;. | Separator for non-simul taneous operations; e.g., [R2] <-= [R1];
i [R3] <-- [R2]
|
= | Equivalent
i
P | Program counter. For the purpose of P Relative Addressing, the
i
|
!
!

e moan Sems Cmew T Sees OEES cmen TS eea e — - Cowh Cman SEE St Ghem Seee e e W Gmen Gmen e e ean Gam— -

HONEIWELL INFORMATICN
SISTEMS

SPEC. NO.

60149740

—— ———

SHEET

1= 14

-

o

i

HONEIWELL INFORMATION

! SPEC. NO.
d SYSTEMS

| SHEET | REV.
601497450 | 2= 1 i

SECTION 2 ARCHITECTURE

2.1 COVERVIEW OF THE CSS

The CSS offers a contemporary and open ended architecture., The CSS supports
variable sizes (model dependent) of Physical Address Space (PAS) as well as Logical
Address Space (LAS). Word size is 16 bits (2 bytes). The CSS may consist of a
monoprocessor (CRY1E); or monoprocessor or tightly coupled dual processors (MS5XE
and M6XE). ' '

The key processor architecture features are:

o 38 (31 for CRA1E and M5XE) program visible registers including multiple
accumulators, address, index, and control registers

o Bit, digit, byte, word, and multiword instructions

o Bit test, set, and mask capability

o Immediate, register to register and register to memory operations
o 64 standard interrupt levels

0 Multiple vectored trap structure

0 Hardware executed scientific and commercial instructions

o0 Hardware supported context save and restore

HONEIWELL INFORMATION | SPEC. NO. { SEEET
!
1

{ REV. |
! 1
i i

SYSTEMS l 60149740 2= 2 c

] \
Multiple addressing modes including indexing, indirect, base plus displace= Q:)
ment, Interrupt Vector plus displacement, program counter relative, auto
increment/ decrement, stack relative, base plus displacement plus offset,
ete.
Permanent bootstrap
Power fail detection
Real time clock and watch dog timer
Automatic restart (optiornal)

Stack and Queue management

Extended Memcry Management supporting 32 MB of LAS (available on the MSXE
and M6XE only). '

Note that in the CR41E, commercial instructions are executed synchronously
rather than asynchronously as in an M6X, M6XE, M5X, and MS5XE.

The'instructions supported by the CR41E CSS are classified as follcws:

o
o)
o)

General
Commercial (all M5X CIP instructions) Y
Scientific (all MSX SIP instructions) o/

The instructions supported by the MSXE CSS are classified as follows:

o
o
[¢)
o

General

Commercial (all M5X CIP instructions)
Scientific (all MSX SIP instructions)
Extended Memory Management.

The instructions supported by the M6XE CSS are classified as follows:

000O00O0

General

EII (all M6X EII instructions)
Commercial (all M6X CIP instructions)
Scientific (all M6X SIP instructions)
Extended Memory Management.

NOTE

In the CRY1E and MSXE, certain instructions are not supported. Refer to
Sections 5 through 8 for more information about specific exceptions.

2.2 SYSTEM BUS

The CR41E and M5XE communicate with other system components via the standard £
Megabus; the M6XE does so via the Level 6§ Extended megabus. Block diagrams of L
typical configurations are shown in Figures 2-1, 2-2 and 2-3.

A,

} HONEYWELL INFORMATION | SPEC. NO. | SHEET ! REV. !
| SYSTEMS ! 60145780 | 2- 3 H c |
STANDARD 16-BIT MEGABUS
i]] i '
- ! 1 | !
! ! 1 ! ' o |] !
| CRM1E ! ! DEVICE ! ! DEVICE ! | DEVICE | ! DEVICE H
! CENTRAL | | CONTROLLER ! ! CONTROLLER | | CONTROLLER !==>! CONTROLLER |
! SUBSYSTEM ! ! 1 ! i 2 o 3 | ! N H
! !] ! ! I] | '

Figure 2-1 Standard 16-Bit Megabus Interconnection Block Diagram For CRAL1E

STANDARD 16-BIT MEGABUS

H E !

1

1

| 1 t
1 i

SO

[E——

| ! | | | b] |]
! M5XE ! ! DEVICE | ! DEVICE | | MEMORY | ! MEMORY |
! CENTRAL | ! CONTROLLER !=-=>! CONTROLLER | | CONTROLLER |-->! CONTROLLER |
! SUBSYSTEM |] 1 1 ! N [1 H | N !
! ! ! | | oo !

Figure 2-2 Standard 16-Bit Megabus Interconnection Block Diagram For MS5XE

LEVEL 6 EXTENDED MEGABUS (M6XE)

!
3 | ! |

|
!

SUBSYSTEM|
]]
T

i1 o P oo P i
M6XE | ||MEMORY|-->|MEMORY! | DEVICE |-->| DEVICE | | SECOND | |_
CENTRAL ! |} 1 | | N | |CONTROLLER! |CONTROLLER! | M6XE | | |_
|SUBSYSTEM| |l P P 1 oo N | | CENTRAL | | -
! P | o P |
! ! |
!

—— e ——

]
1

——— e Crme wmen v Gwes

!
!
|
!
1 }
I I
[
1

—— - - —— o
— - - —— —on

I

Figure 2-3 Extended 32-Bit Megabus Interconnection Block Diagram For M6XE

- ————— n—- om—- ————

i HONEIWELL INFORMATION | SPEC, NO. | SEEET i REV. i
i SYSTEMS i 60149740 | 2= 4 i c |
2.3 SYSTEM CONFIGURATIONS &”/
For system configurations, refer to Section 14.
2.4 CSS ATTRIBUTES
2.4.1 CR41E
2.4.1 1 PROCESSOR
o Control Store Size - 48X2K (processor), 56X4K (processor + CIP)
0 Cycle Time = 240 nsec.
0 MIPS - 0.4
2.4.1 2 MEMORY
o Size - 4 MB (on CPU board)
o Cycle Time - Read 350 / 1000 nsec. and Write 300 / 750 nsec. with
; times representing approximate memory controller and
processor cycle times respectively.
2.3.1 3 CACHE o
None
2.4.2 M5XE
2.4.2 1 PROCESSOR
o Control Store Size - 72X2K
o Cycle Time - 160 nsec.
o MIPS - 0.7
2.4.2 2 MEMORY
o Size - 38 MB (on separate board)
o Cycle Time - Read 350 / 1000 nsec. and Write 300 / 750 nsec. with
times representing approximate memory controller and
processor cycle times respectively.

ﬁ&g\

SISTEMS

] HONEIWELL INFORMATION | SPEC. NO.
!
i

REV.

SHEET | H
2- 5 ! c |

—

60149740

2.4.2 3 CACHE

(o)

(o)

Size
Organization
Addressability

Cycle Time

2.4.3 M6XE

2.4.3 1

PROCESSOR

4K X 16 bits.

Set associative 4 Levels.

CPU only reads and writes through cache to memory.
Read 160 nsec.

Write is write through to memory.

o Control Store Size = 96X2K

o

0

Cycle Time

MIPS

2.4.3 2 MEMORY

o

o]

Size

Cycle Time

2.4.3 3 CACHE

o

o

' Size

Organization
Addressability

Cycle Time

- 98 nsec.

- 1'8

16 MB (on two board)

Read 350 / 1000 nsec. and Write 300 / 750 nsec. with
times representing approximate memory controller and
processor cycle times respectively.

‘4K X 16 bits.

Set associative 2 Levels.
CPU, CIP and SIP read and write through cache to memory.
Read 200 nsec.

Write is write through to memory.

HONEIWELL INFCRMATION | SPEC. NO.

SISTEMS

| SHEET
! 60149750 |

2- 6

— -

This page is intentionally blarnk.

AN
{\{Jv"

TN
N

Ainti;

! HONEYWELL INFORMATION | SPEC. NO.
! SYSTEMS ! 60149740

SECTION 3 FUNCTIONAL REQUIREMENTS

3.1 DATA FORMATS

3.1.1 Data Formats for Non-Commercial or Scientific Instructions
3.1.1.1 MEMORY WORDS

411 data elements are based on 16-bit memory words. The format of each memory
word is defined from left to right with the first btit numbered Zero.,

0 15
|
!
|

—— woe o

Memory may be accessed by instructions to the bit, byte, word or multiword data
item level. In all cases, the leftmost element is the most significant element,
such that bit O above is the first bit, bit 1 is the second bit, bits 0 through 7
are the first byte, bits 8 through 15 are the second byte, etec. Multiword items
require successive word locations with the lowest address defined as the most sig-
nificant or leftmost part of the data item.

3.1.1.2 SIGNED INTEGER DATA
Signed integer data is in two's complement form. S represents the sign bit,

where for S = 0, integer is positive or Zero; for S = 1, integer is negative. The
following types are available:

HCONEIWELL INFORMATION | SPEC. NO. | SHEET i REV. i
SISTEMS l 60149740 H 3- 2 i

¢ Signed Integer Data Byte - Data is an 8-bit integer with the radix point to(\j;.

the right _of bit 7, the least significant bit. S indicates the sign. Range
(r) is =27< r ¢ 27=1,

0 _1 4

S DATA

—— - ——
o e o=
. om. -

Sign Extended Integer Byte in a Word - Data is a 16-bit integer with the

radix point to the right of bit 15, the least =aignificant bit. S indicates
the sign. Range (r) is =27 < r < 27T-1,

0 7 8 ¢ 15
b |
SSSSSsSSsSs|{SiDATA|
HE. |

Signed Integer Data Word - Data is a 16-bit integer with the radix point to

the right of bit 15, the least significant bit. S indicates the sign. Range
(r) is: =215 < p < 21541,

Q_1 15

|
i s D AT A
!

Sign Extended Integer Word in a Double Word - Data is a 32-bit inte'ger with

the radix poiat to the right of bit 31, the least significant bit. S indi-
cates the sign. Range (r) is: =215 < r < 2151,

0 ' ' 15 16 17 31
] | |
! S - . e W e e e e e O ® o e S ’ S l D A ‘r A
| | !

— —— —

Signed Integer Data Double Word - Data is a 32-bit integer with the radix

point to the right of bit 31, the least significant bit. S indicates the
sign. Range (r) is: =231 < r < 237-1,

0_1 31

(7]
o
B
-1
[

ﬁi 9{5 .

! HONEYWELL INFORMATICN | SPEC. NO. | SHEET

SISTEMS | 60149740 | 3-3

3.1.1.3 UNSIGNED INTEGER DATA

The following unsigned integer data types are available:

Q

Unsigned Integer Byte - Data is an 8-bit integer
with Range (r): 0 < r < 28-1,

Unsigned Integer Byte in a Word - Data is a 16-bit integer
with Range (r): 0 < r < 28-1,

0 78 15

|
! ALL ZEROs
|

1
i
DATA |
|

Unsigned Integer Word - Data is a 16-bit integer
with Range (r): 0 < r < 2161,

0 15

D AT &

omt— e e
—— ame W

Unsigned Integer Word in a Double Word = Data is a 32-bit integer

with Range (r): 0 < r < 216-1,

Q 15 16

31

ALL ZEROSs D AT A

— —n oo
hoee cnam @

Unsigned Integer Double Word - Data is a 32-bit integer
with Range (r): 0 < r < 232-1,

0

31

D AT A

— —— ——

! HONEYWELL INFORMATICN | SPEC, NO. | SHEET ! REV. !

i SISTEMS | 60149740 i 3-8 ! c |
3.1.2 Data Formats for Commerecial Instructions AN

(¥
3.1.2.1 OVERVIEW

Commercial instructions operate on three data types:

o Decimal strings - binary-coded-decimal representation
o Alrhanumeric strings -« ASCII-8 code characters
0 Binary numbers - 16 or 32 bit precision.

Each instruction is designed to assume a specific data type for each operand.
Operations on each data type, therefore, are limited to specific mutually exclusive
subsets of the commercial instruction repertoire. These are listed below:

0 Decimal data operations:

Arithmetic: Add, subtract, multiply, divide
Decimal comparison

Conversion between decimal data formats
Conversion to binary

Decimal shift

Numeric string edit

o Alpnanumeric operations:

Al phanumeric camparison o
Translation by character ./
String search - identify equality
String verify - detect inequality
String move

Al phanumeric string edit

o Binary:

= Conversion to decimal string

The instructions are described in Section VII of this specification. Each of

the data types, including its representation and format in memory is described in
this subsection.

The operands for each instruction are specified by a set of descriptors which
provide iaformation regarding the location, size and format for each operand.
These descriptors may be coded in line with the processing instructions or located
in tables. The data type (i.e., decimal, alphanumeric or binary) is implicit
according to the instruction so that mixed data=-type operations are not performed.
3.1.2.2 DECIMAL DATA '
Decimal data operands have the following general characteristics: B
0 A decimal datum 1s assumed to be a real integer. {-ﬂ"

o Digits of a decimal number occcupy contiguous storage locations.

H HONEYWELL INFORMATION | SPEC. NO.
! SYSTEMS] 60149740

I
E
:

o They are referenced by the location of the most significant digit or leading
sign if there is one. .

0 The most significant digit is assigned to the location with the lowest
memory address. The most significant digit within a word is to the left of
less significant digits in the same word.

The various representations of decimal data differ primarily with regard to:

o Whether there are one or two digits in a byte; namely string or packed
decimal.

o Whether the value is signed or unsigned (assumed positive).
o The position of the sign, if any.
3.7.2.2.1 String Decimal

Each digit of a string decimal datum occupies one byte in storage. The datum
can occupy an even or odd number of bytes and can start at an even or odd byte
address.

Depending on the coding of the descriptor for the datum, any of four sign
conventions are assumed:

o Unsigned - assumed positive
o Leading separate sign byte - before the most significant numeric digit
o0 Trailing separate sign byte = after the least significant numeric digit

o Trailing over-punched sign - in the same bDyte as the least significant
digit. ' '

All digit bytes, except the one containing an over-punched sign, must have
valid pure binary-coded decimal (BCD) values in the least significant four bits.
The most significant four bits of each non-sign digit byte is ignored in performing
the operation. These bits (termed zone bits) are set to hexadecimal three in digit
bytes stored as a result of an operation. The resulting digits are represented,
therefore, as the ASCII codes for numeric characters 0 through 9.

Up to 31 bytes can be used to store a decimal string datum including sign. The
numeric precision is therefore 30 digits for numbers with the leading or trailing
separate sign bytes and 31 digits for over-punched sign or unsigned data.

Table 3=1 indicates the sign code conventions recognized and generated when
processing commercial instructions. For the leading and trailing separate sign
convention, the positive and negative signs are denoted by the ASCII plus and minus
characters, respectively. In the trailing over-punched sign convention, the least
significant four bits of the least significant digit byte do not adhere to BCD
coding and undergo a transliteration when over-punched by a sign to form an ASCII
character. The full 8 bits are examined to determine the sign and digit value for
numeric operations on over-punched sign operands (The older models decode only the
least significant T bits to determine sign and digit value).

—

i HONEYWELL INFORMATION { SPEC. NO. { SHEET { REV. i
! SISTEMS | 601497 40 ! 3-6] c i

3.1.2.2.2 Packed Decimal ' @

Each byte of a packed decimal datum contains two BCD digits; i.e., each digic
occupies a half-byte. Two sign conventions are provided; unsigned or trailing
separate sign. Unsizned numbers are assumed positive. The coding of the sign for
signed number strings is indicated in Table 3=2.

Up to 31 half-bytes of storage can be used to represent a packed decimal

datum. The numeric precision is therefore 31 digits for an unsigned datum and 30
digits. for a signed datum.

The first and last digits representing a number can be situated in any
hal f-byte aligned position of a word. The length of the operand for this data type
is expressed in half-bytes. Any half-byte position in memory can be specified as
the location of the datum.

Except for the sign, all digits must be in the BCD code set for aumeric 0
through 9; otherwise an illegal character trap TV27 occurs.
For a detailed description, refer to subsection T.3.

3.1.2.3 " ALPHANUMERIC DATA

Alphanumeric operands consist of 8-bit characters. Their maximum size is 255

characters except as specified otherwise., Alphanumeric strings in memory can start
and/or end on either odd or even byte boundaries.

N

'3.1.2.3 BINARY DATA | . ~
Binary operands can be either 16 bits long or 32 bits long. They are

2's=camplement integers and thus the most significant bit is the sign bit and tke

binary point is assumed to be to the right of the least significant bit. The range
of the value of the binary operand is:

o For a 16-bit long operand: -215¢ r < 215-1.

o For a 32 bit long operand: =231 ¢ r < 231-1,

Note that the length of binary data is specified in bytes; thus, the length of
the operand should be specified as either two or four bytes, otherwise unspecified
results will occur. Binary operands in memory can start on either odd or even byte
boundaries,

3.1.3 Data Formats for Scientific Instructions

Scientific instructions operate on two data types:
©c Hexadecimal Flocating Point

o Signed Binary Integer

HCONEIWELL INFORMATION { SPEC. NO. { SHEET { REV.
SISTEMS i 60149740 ' 3=-7 i

A

Table 3=1 Sign Conventions for String Decimal Operands

SEPARATE LEADING AND TRAILING SIGN

SIGN VALUE : ASCII CHARACTER : HEXADECIMAL CODE

e oo se oo o0 oo
86 oo ec ee 0c oo

8o oo o8 e

+ : + 2B

- : - 2D
: TRAILING OVERPUNCH SIGN :
: SIGN : DIGIT : ASCII : HEXADECIMAL CODE : HEXADECIMAL COIDE :
: VALUE : VALUE : CHARACTER : RECOGNIZED AND : RECOGNIZED OMNLY :
: : : ' : GENERATED : :
o+ 0 : 7B : 30 :
: 0+ 1 A : 41 : 31 :
o+ 2 3 B : 42 : 32 :
: + 3 3 : C : 43 : 33 .
: + : L} : D : 4y : 34 :
: + : 5 : E : 45 : 35 :
: + : 6 : F : 15 : 36 :
: + T G s 47 : 37 :
: + 3 8 H : 48 : 38 :
: + : 9 : I : 49 : 39 :
: - N : : 0 : None :
: - : 1 : dJd H 4A : None :
: - 3 2 : 4 : 4B : None :
: - : 3 : L : 4Cc : None :
: - y : ‘M : 4D : None :
: - H 5 : N : 4E : None :
: - : 6 : 0 : 4 : None :
: - : T : P : 50 : None :
: - 3 8 Q H 51 : None :
: - : 9 H R : 52 : None :

Table 3-2 Packed Decimal Sign Conventions

SIGN DIGIT PACKED DECIMAL ASCII SIGN
(HEXA-
DECIMAL) GENERATED BY HARIWARE : RECOGNIZED BY HARDWARE

0 40 et 4, %¢ 6o se 0 so
+ 0 + + +
e oo 88 88 6o Se oo ©3 06

QUOIIIID

.
(]

HCNEIWELL INFORMATION { SPEC., XNO.
SISTEMS ! 60149740

i
E

3.1.3.1 HEZADECIMAL FLOATING POINT

A hexadecimal floating point numbter can be 32 bits (a double word) or 64 bits
(a quadruple word) in length. The format cf the number is:

0 6 7 8 31/63

e 18 £

o
.o

where: e - The exponent in excess 64 form. The range (r) of the true value of e is
<64 < r £ +%63. The radix is 16;

8 = The operand sign where 38 = 0 is positive and s = {1 is negative; and
£ -« The fractional mantissa in magnitude form. The range of f is:

0 <f < (165-1)/168 for double word

0 <f < (1614<1)71614 for quadruple word.

Thu;s, the value (v) of the flcating point number is defined to be:

v = (=1)8zfx 16(e64),

N

For normalized floating point numbers, N
£=0or > 11

A flcating point number in which all bits, including fraction (mantissa), sign,
and exponent are Zero is defined as a flcating point Clean Zero (CZ).

A flcating point number in which all bits of the fraction (mantissa) are Zero
and bits of the sign and/or exponent are not Zero is defined as a floating point
Fuzzy Zero (FZ).
3.1.3.2 BINARY INTEGER FORMAT

A signed integer number can be 16 bits (a single word) or 32 bits (a double
word) in length, The format of the number is:

0 15/ 31

where 1 -« The integer in two's complement form. The radix point is to the right of
bit 15/31, the least significant bit. The range of the signed integer
is:

-215 ¢ 1 < 2151 for a single word and

-231 < 1 < 237-1 for a double word.

A \

i HONEYWELL INFORMATION { SPEC. NO. | SHEET
1 !
i 1

SISTEMS | 60149740 393

3.1.3.3 "PSEUDO DECIMAL™ FLOATING POINT FORMAT (M6X AND M6XE ONLY)
A "pseudo decimal®™ floating point number can be three or five words in length.

The length is specified by the accumulator length field of Mi. The format of the
number in memory is:

o]

) o e o=
= [

(7]

Word N

| o= e =
°

=

EX

Word N + 2 or &4

———— = -}
—————— — §

EX - The exponent in two's complement form. The useful range of EX is =77 £
EX < 7T. The radix is 10.

S - The operand sign where S = 0 is positive and S = 1 is negative. S is bit
0 of word N.

M and S form the mantissa in two's .oomplan_ent form. The range of the mantissa
is: ' ” :

-2Y < mantissa < 2¥-1
where y = 31 for double word mantissa, 63 for quad word mantissa.
The value (v) of the number is defined to be:

v = mantissa x 10EX

! HONEYWELL INFORMATION | SPEC. NO. | SHEET ! REV. !
! SYSTEMS ! 60149740 | 3-10 | c |

/4?’ o
3.2 ADDRESSES A

Addresses are used to point to an operand, specifically, to a data item (for
example, bit, byte, word, and so forth) or to an instruction. Addresses are stored
in memory or address registers. Word addresses are the native address form of the
processor.

3.2.1 Address Types

The processor supports both physical addresses (PAs) and Logical Addresses
(LAS). Most software visible addresses (for example, in base registers, memory,
and so forth) are LAS. PAs are typically computed by the processor by translating
LAs as a function of descriptors stored in the Memory Management Unit (MMU).

Segment descriptors use PAs.
3.2.1.1 PHYSICAL ADDRESS

A Physical Address (PA) is used by the processor to address the main memory.
Its format is:

0 ‘ #

PHISICAL ADDRESS

e m——

Where: %

20 for a CR4M1E (4 MB addressability)

21 for an M5XE (8 MB addressability)

22 for an M6XE (16 MB addressability)

Whenever the processor addresses a subword data item or passes a buffer address
to a device controller, the processor extends its word PA to a byte PA by appending
a byte bit to it. Note that the PA supported by the Megabus is in bytes.

3.2.1.2 LOGICAL ADDRESS

A Logical Address (LA) is the address used by a process to address its logical
memory. An LA is 20-bits or 24-bits as a function of the Memory Management Unit
(MMU) mode used, when contained in a base register. A4n LA occupies 32 bits when
stored as an address value in memory or when in IMA form. Whenever an address
value or IMA is loaded into a base register or used as an address, then use only
its low order n bits (where n = 20 for a CRUIE and n = 24 for the M5XE, M6X and
M6XE) and check the remaining high order bits for zero. If the high order bits are
non zero, then post a Trap TViS.

il

-

! HONEYWELL INFORMATION ! SPEC. NO. | SHEET | REV. !
] SYSTEMS | 60149780 | 3-11 |

3.3 VISIBLE REGISTERS

Thirtyeight (31 for a CR41E) program-visible registers can be loaded and read
by various instructions in the Level 6 instruction set. There are:

Seven general word operand registers

Ten address registers

Seven general double-word operand registers (not available on a CRY1E)
Twelve control registers

Three scientific accumulators, and

One descriptor segment base register.

0O 0O0O0OOO0

The register names and functions are defined below, and are shown in Figure
3-1 °

3.3.1 Word Operand Registers

Registers R1 through RT are 16=bit word operand general registers and accumu-
lators. They can also be used for post-indexing of addresses.

0 15

R1 through RT }

3.3.2 Address Registers

Address registers are 20 bits (or 24 bits if EMMU) in length. Registers Bi
through BT are base registers, P is the program counter, RDBR is the Remote
Descriptor Base Register used whenever an AS specifies a remote descriptor, and T
is the Stack Pointer Register.

0 19/23

B1 through B7,
T, P, and RDBR |

The seven base registers (B1 through B7) can be used for formulating addresses
pointing to any word of procedure, data, or arbitrary location in the virtual
memory space. Address registers will typically contain addresses, pointers or base
references for use in generating effective addresses and referencing program and
data relatively. Base registers have auto increment and auto decrement capability
to allow easy use of these registers for stack, queues, and program loops.

The contents of P or the program counter is the address of the current
instruction. Normally, P is incremented to point to the next instruction, except
as noted for branches and jumps.

#jpvailable only in

i HONEYWELL INFORMATICN | SPEC. NO. | SHEET ! REV. H
! SYSTEMS ! 60149750 | 3=-12 ! c |
A
WCRD OPERAND REGISTERS GENERAL REGISTERS INDEX REGISTERS W
0 15 AND ACCUMULATORS
: R1 : L {mmen
: R2 : e L
: R3 : e e
: R4 : e {mme
: RS H (e (e
: A6 : (e e
: R7 : mmen (o=
ADDRESS REGISTERS PROGRAM BASE STACK
0 19723 COUNTER REGISTERS POINTER
: P : {omm=
: B1 : (e
: B2 : mamer
: B3 H e
: BY : (o
: BS 3. e
: B6 : o
BT : e
: RDBR : {oem
: T : (e
DOUBLE-WORD REGISTERS* GENERAL REGISTERS INDEX REGISTERS
0 31 AND ACCUMULATORS o
: K1 s, S {omm w
: K2 : e e
H X3 : o { e
: K4 : (e
: K5 : (e
: K& : e
: K7 : e
CONTRCL REGISTERS SYSTEM AND INDICATORS TRAP ENABLE/
0 7 15 SECURITY KEIS MODE CONTROL
S : : e
I: : s
CI : : meman
SI : : s
M1 : e
M2 : : e
M3 : : e
My : S mamen
M5 : : - {mmem
M6 : : :_used by CR41E-based designs as hardware
MT ¢ _¢ support for integrated CIP
SCIENTIFIC ACCUMULATORS GENERAL SCIENTIFIC REGISTERS
0 31 63 AND ACCUMULATORS .
SA1 : : L @
SA2 : : : (e S
SA3 : : :]
Figure 3-1 Visible Registers

the M6X and M6XE models.

| HONEYWELL INFORMATICN | SPEC. NO. | SHEET | REV.
! SYSTEMS | 60149780 | 3= 13 ! c

3.3.3 Double Word Orerand Registers (M6X and M6XE only)

Registers K1 through K7 are used with Extended Integer Instructions (EII) and
are 32 bits in length. K1, K2, and K3 can also be used for indexing of addresses.

0 31

K1 through K7 |

3.3.4 Control Registers

3.3.4.1 S REGISTER

The S register contains the process status security keys. The contents of the
S register can be read via the Store S Register instruction and are also saved at
context switch time. At context load time, the processor only uses the RN field,
all other flelds/bits are ignored. The bit fields are defined as fallows:

0 1 2 3 3 T8 9 10 15
S=4iC/| RN | SH| RFU | CH# | CL i
where C = Check indicator:
o For C = 1 then one or more ORUs {for example, processor, Device
Controller) have not passed their QLTs
o For C = Q then all QLTs have been completed successfully.

RN = Ring Number. The number of rings supported by the processor is four,
numbered fram 0 to 3. Ring 0 is the most privileged and ring 3 the
least. The current ring of execution of the processor (RCR) is stored
in the S register (S.RN). The ring number codes are as follows:

Level 6 Code
Ring O 11
Ring 1 10
Ring 2 01
Ring 3 00
SH = Super Halt indicator (M6X and M6XE only):

SH=1 = The CSS is in the super halt state. A super halt is posted
during Trap, RTT, LEV or interrupt processing upon detection
of any of the following: a NULL TV, NULL NATSAP, UAR, RED,
parity Error or protection violation. The super halt does
not cause a ring change, but it disables the EXECUTE
function. To restart, push the STOP function, enter a new P
and depress EXECUTE or alternatively, depress MASTER CLEAR.

SH=0 = The CSS is not in the super halt state.

! HONEYWELL INFORMATICN | SPFEC. NO. | SHEET | REV. H
l SISTEMS | 60149740 | 3= 14 i c !
RFU = Reserved for Future Use,

O

a#

Channei Numbter. This two=-bit field defires the processor channel
nunber. The channel numbers reserved for the processor are 0 - 3,
The CH# prcvides the least significant two bits of the channel aumbter,
the remaining bits of the processor channel number are Zero,

Circuitry on the processor determines the (3% as a function of its
position on the Megabus.

CL = Current Interrupt Level number where 0 { CL £ 63. "CL = 0" is the
highest priority level and ®CL = 63" is the lowest priority level.

See subsection 3.5.

3.3.4.2 INDICATOR (I) REGISTER

The I register contains the program status indicators for general and extended
integer instructions.

6 1 2 3 4 5 6 7

I= {(oviRFU|CI|{BI{I{GI|L]|U]

where OV = Overflow indicator
| Cc = Carry of latest operation designated to affect this bit (/‘\;
B = Bit Test indicator, representing the state of last bit tested o
I = Input/Qutput (I/0) indicator representing the status of the last

peripheral interrogated. The meaning of the bit is peripheral
dependent, but generally I is set to One if the device accepted the
I/0 cammand sent to it.

Greater than , Less than, and signs Unlike bits representing the
results of the latest campare.

G,L,0

3.3.4.3 COMMERCIAL INDICATOR (CI) REGISTER

- This eight-bit indicator register is cleared at initialization time and gets
updated during the execution of commercial instructions.

Only the bits pertinent to the instruction are changed (set or cleared); all
other bits remain unchanged. These bits are testable via the commercial branch
instructions. Note that when testing any one or more of the bits, all the indi-
cators, including the one(s) being tested, are left unchanged.

o 1 2 3 4% 5 6 T

CC ! OvVI|TRISFI|RFU |G [L | RF |

AR,

! HONEYWELL INFORMATICN ! SPEC. NO. ! !
! SYSTEMS] 601497450 | 3= 15 | c |

o Bit 0 (OV) = Overflow Indicator - This bit is set during decimal operations
when either:

- The receiving field cannot contain all significant digits of the result,
or

= A divide-by~Zero condition is detected.

o Bit 1 (TR) - Truncation Indicator - This bit is set during alphanumeric
operations when the receiving field cannot contain all characters of the
result,

o Bit 2 (SF) = Sign Fault - This bit is set during decimal operations when a
negative result is to be stored in an unsigned field.

o Bits 3 and 4 (RFU) - Reserved for Future Use,

o Bit 5 (G) = Greater Than - This bit is set during the executing of certain
decimal and alphanumeric instructions. The following conditions are
reported:

= Result is greater than Zero for decimal arithmetic instructions,

- The first operand i3 greater than the second operand for either decimal or
al phanumeric comparisons.

o Bit 6 (L) - Less Than - This bit is set during the execution of certain
decimal and alphanumeric instructions. The following conditions are
reported:

- Result is less than Zero for decimal arithmetic instructions.

- The first operand is less than the second operand for either decimal or
al phanumeric comparisons.

It should be noted that the Commercial Indicator Register is part of the system
context and will be saved/restored as a function of the mask bits in the Interrupt
Save Area.

3.3.4.4 SCIENTIFIC INDICATOR (SI) REGISTER

This 8-bit indicator register is cleared at initialization time and gets
updated during the execution of scientific instructions. Only the bits pertinent
to the instruction are changed (set or cleared); all other bits remain unchanged.
These bits are testable via the scientific branch instructions.

0 1 2 3) 5 6 7

| EOF | RFU | SE | PE | RFU | G | L | RFU |}

o Bit 0 (EUF) - Exponent Underflocw - Set when the result of a scientific
operation has an exponent value which i3 smaller than the allowed range for
an exponent. Refer to subsection 3.1.3.1.

| HONEIWELL INFCRMATICN | SPEC. NO. { SHEET | REV. i
i SISTEMS | 60149740 | 3-16 i c |
o Bits 1, 4 and 7 (RFU) - Reserved for Future Use (MBZ) ah

"
o Bit 2 (SE) - Significance Error - Set if an integer is truncated during a
flcating point to integer conversion operation.

o Bit 3 (PE) - Precisicn Error - Set when a nonzero portion of a fractionm is
truncated during a floating point to integer conversion operation., See the
SST instruction for specific intermretation of SI(FE).

o Bit 5 (G) = Greater Than - May only be changed during a compare operation.

o Bit 6 (L) - Less Than - May only be changed during a compare operation,

The scientific indicator register is part of a system context and is
saved/restored as a function of the interrupt save mask in the ISA.

3.3.4.5 M1 REGISTER

The M1 register contains the trap enable mode control keys for jump and branch
instructions as well as any instruction that sets the OV indicator because of an Rn
register overflow. The flelds are defined as follows:

0 1 7

Ml = 13 | T#]

where J = Trace Trap Enable for jumps and branches:
0 = Trace Trap disabled
1 = Trace Trap enabled (TV02)
T# =

T1 through T7, Overflow Trap Enable contrals for registers R1 through R7
respectively: , ‘

0 = Trap disabled '

1 = Trap enabled (TV06).

A trap can be requested during the execution of the following jump and branch
instructions: JUMP, LNJ, ENTER and all branch instructioas.

A trap can be requested when an overflow occurs during the execution of the
following instructions: ADD, SUB, MUL, DIV, ADV, MLV, SAL, DAL, AID and SID.

3.3.4.6 M2 REGISTER

In the CR41E and MS5IE models, the M2 register is present but not used (RFU).
In the M6X and M6IE models, the M2 register contains trap enable, mode control
keys, for any extended integer instruction that sets the OV indicator because of a
En register overflow. The fields are defined as follows:

(‘ ! HONEIWELL INFORMATION | SPEC. NO. | SHEET ! REV.
! SYSTEMS ! 60149740 H 3= 17 i

where T# = T1 through I7, Overflow Trap Enable controls for registers K1
through K7 respectively:
0 = Trap di=abled
i = Trap enabled (TV06).

A trap can be requested when an overflcw occurs during the execution of the
following instructions: KADD, KSUB, KMUL, KDIV, KAL, KADV and KMLV.

3.3.4.7 M3 REGISTERS

The M3 Register contains trap enable mode control keys for commercial ixistruc-
tions. The fields are defined as follows:

0 1 2 7

M3= JOV| TR |RFU |

where OV

Overflow Trap Mask:
0 = Trap disabled
1 = Trap enabled (TV29)

Trap disabled

i TR = Truncation Trap Mask:
: 0
1 = Trap enabled (TV28).

3.3.4.8 M} REGISTER

The Mi Register contains control information for scientific instructions. The
fields are defined as follows:

0 1 2 -3 4 5 6 7

Mi = | R/AT | RFU | ML1 | AL | ML2 | AL2 | ML3 | AL3 |
i | | !
|] i
SA #1 SA #2 SA #3
where R/T = Round/Truncate Mode:
0 = Truncate
1 = Round
SA #1 = Scientific Accumulator #1
SA #2 = Scientific Accumulator #2
SA #3 = Scientific Accumulator #3
(ML = Memory Length. Length of Main Memory data field associated with

this SA:
0 = Two words
1 = Four words

| HONEIWELL INFORMATION | SPEC. NO. { SHEET | REV.
i SISTEMS i 60149740 i 3-18 i

C
£
AL = Accwnulator Length. Length of the value in the SA: { Y
0 = 1Two words
1 = Four words.
3.3.4.9 M REGISTER
The M5 Register contains trap enable mode control keys for scientific instruce
tions. The fields are defined as follows:
Q 1 2 3 4 7
M = | EUM | RFU | SEM | PEM | R F U |
where EUM = Exponent Underflow Trap Mask:
0 = Trap disabled
1 = Trap enabled (TV19)
SEM = Significance Error Trap Mask:
0 = Trap disabled
1 = Trap emabled (TV21)
PEM = Precision Error Trap Mask:
0 = Trap disabled
1 = Trap enabled (TV22). N
./

3.3.4.10 M6 AND MT REGISTERS

In the CR41(E) model, the M6 and M7 registers cannot be used else post a trap
TVW5. In all other models, the M6 and M7 Register are reserved for future use,

3.3.5 Scientific Accumulators (S4)

Three variable length scientific accumulators are supported. These contain
hexadecimal floating point values two or four words in length. MY contains control
bits for each SA (1, 2, or 3) which define both the accumulator length and the
length of memory operands directed to the accumulator.

3.4 STACX MANAGEMENT

The S functionality provides a simple stack capability for each interrupt
level., The Stack Address Pointer (T), points to the first word of the stack header
(See Figure 3-2).

3.8.1 Stack Header

The stack header contains four entries; two are not used by the processor and
must contain null pointers.

Mi is a 16=-bit positive integer that defines the number of words allocated to@{)

the stack. M is set by software when the header i3 created and referenced (but
not altered) by hardware,

| HONEYWELL INFORMATION | SPEC. NO. | SHEET | REV.
! SYSTEMS] 60149740 | 3-19 !
T V11717777777117777171177} H
(Lower in memory, V17771770 777777777777777) !
top of stack) 1// AVAILABLE SPACE //! !
W1117772777772717171777} !
E/////////////////////// . ;
]]]
For D = pos, For D = neg. | L(C) =6 ! : i
|
FT==>0 -6 R I
1 -5 | Cll = = e e e e == R
2 -4 |_C3 = = -FRAME C- = = | N
3 -3 |_C2 = = (ACTIVE)- - = | L(C) | |
4 -2 |_Cl e e e e mema} R N
5 -1 |_CO% = = « = = = = = H \ S B
!] I
FT+L=FB > L(B) ! |
|] I
| ! I
| ! o
! FRAME B ! O M
| | I
! ! I
! | P
! L(4) | o
| ! i
| i o
]] P
| FRAME A ! P
! ! P
] H \ S 4
! N\
| P CW AN
| STACK ADDRESS REGISTER(T) |==>! (Current stack b
i i | length in words) : E
! i
! I
| MW I
| (Maximum stack I
! length in words) | 1_ STACK
: ‘ g | HEADER
i
]
| RFU & MB2Z P
i P
(Higher in memory, | i
bottam ¢f stack) { RFU & MBZ i//
v

% ywhere Cn = Word n of Frame C

Figure 3-2 Stack Structure

| HCNEIWELL INFORMATION | SPEC. NO. | SHEET | REV. i
!
J

] SISTEMS ’l 60149740 i 3= 20 c i
Ci is a 16-bit positive integer that defines the mumber of words currently PN
consumed by the stack. Ci¥ is set by software when the header i3 created; ‘L/

thereafter, the value of C§ is updated by the hardware.

3.4.2 Stack-Related Instructions

The following generic instructions are provided to manipulate the stack:

Load Stack Address Register (LDT)

Store Stack Address Register (STT)

Acquire Stack Space (ACQ)

‘Relimquish Stack Space (RLQ).

Modify Frame Length (MFL). (M6X and M6IE only)

0O 0000

These instructions all contain two words and have a common first word.
Appropriate checks are made for stack/overflow conditions, For a description of”
the above instructions, refer to Section 5.

3.4.3 Stack-Related Address Syllable (M6X and M6XE only)

A set of Stack related Address Syllables is defined to perform limit checking
whenever data in the active frame is being accessed. These ASs are relative to the
the top of the current active frame (FT) and assure that the data being referenced
is within the active frame. If an indirect stack related AS is used (e.g.,
8(FT+D]+0), then the CSS assures that the pointer to the data is within the active
frame., Any limit check vioclation results in a Trap 16 (program error). N

/

In Figure 3-2 examples of FT+D addressing are given. Herer to subsection e

3.11.3.5 for a description of these entries,

3.4.4 Stack Management Restrictions (M6X and M6XE only)

The stack functionality supported by the CSS is fully campatible with that
supported by the previous members of the DPS6 family. The following restricticns
however apply when using the Modify Frame length instruction and stack related
address syllables.

o The stack header in memory must not be accessed by software following the
execution of a Modify Frame Length (MFL) instructiocn or usage of a
stack-related address syllable since the CSS does not update the header in
memory but rather hidden CSS registers only. Note that as long as an MFL
instruction or stack-related address syllable is not used, the stack header
is maintained current in main memory as in previous members of the DPSH
family.

o0 The stack header in main memory may be accessed by the software after it is
made current by the CSS following a reload of the T register,

-
J

A,

| HONEYWELL INFORMATION
' SYISTEMS

SPEC. NO. | SHEET | REV. H
60149740 ! 3= 21 ! c H

3.5 INTERRUPTS

3.5.1 Concept

Interrupts are events generally unrelated to the current process. They can be
generated in four ways:

o Externally by:

- A peripheral device requiring service;
- A watchdog timer runout;

- A real time clock runout;

- (CSS-CSS dialog;

o Internally by:
- An LEV instruction execution or
= The exhaustion of a trap save area pool

o0 By an incipient power failure.

Typically, external interrupts and power fail interrupts are honored at the end
of the current instruction and internal interrupts are honored during the execution
of an instruction. Regardless of the type, interrupts, when honored, typically
result in a level and context change. The context of the currently executing
process is stored in main memory and then the context of the interrupting process

is fetched from main memory.

2.5.2 Interrupt Handling

Every process executes at a priority level defined by the CL field in the S
register. CL is the Current Interrupt Level number (0 < CL £ 63). Level 0 is
defined to have the highest priority while Level 63 has the lowest priority. Level
assignments for various events are shown in Table 3=3.

Any event having a priority greater than the currently executing process causes
the latter to be interrupted; that is, the currently executing process is
interrupted if IL < CL, where IL = Interrupting Interrupt Level Number.

When an interrupt is honored, a context switch is performed by using the
following comnstructs:

Level Activity Flags (AFs),

A set of Interrupt Vectors (IVs),

Interrupt Save Areas (ISAs), and

Hardware Context Areas (HCA) (M6X and M6XE only)

00 0o

The CSS requires that the above constructs be in main memory. The CSS (M6X and
M6XE only) also can not tolerate a trap (i.e., TViS or 17) when accessing any of
the above construets. If a trap is encountered, then the CSS will post a super
halt. In a CR41E and M5XE a trap will cause unspecified results.

—

SISTEMS

HONEIWELL INFORMATION

——— ——

SPEC. NO.

| SHEET
60149740 H

3-22

i
]

f

REV.

c

The CSS does not perform any access right checks when it accesses any of the
Specifically, it assumes to have ring Q0 privilege and ignores

above constructs.

the access permit flags.

Table 3=3 Interrupt Level Assigmments

i | i i

! EVENT CAUSING H LEVEL | DEV WORD | LEVEL

i INTERRUPT ! ASSIGNMENT | SETING | ASSIGNED
1 1]] BY

| :' B T

| Power Failure] 0 { No change | Hardware
H i ! {

| Watchdog Timer | 1 i No change | Hardware
i | | |

! Exhaustion of Trap | 2 | No change | Hardware
| Save Area Pool | ! i

d | H !

| INHIBIT ! n | No change | Software
] | | !

| Real Time Clock ! n | No change | Software
!] | !

| Peripheral Device | n | Device | Software
| ! ! Channel # |

| ! ! H

{ CSS=-CSS Dialog | n i Interrup- | Software
' ' i | ing CSs |

! ! | Channel # |

! ! |]

3.5.2.1

LEVEL ACTIVITY FLAGS

Cmem v G han EEee GHes e GRe Swws Smas Ehev Mo SaEs Ees SNen GeaE PR Wwowh WS SHew W S S

64 Level Activity Flag (AF) bits in four dedicated locations (20 - 23 hex) are
maintained to indicate the processor levels that are currently active (that is,

ready for execution - see Figure 3-3).

Usually, the level currently executing

corresponds to the most significant bit set, and its number is stored in S.Cl.
Activity flag bits are set by interrupt requests and are set and/or cleared by the

LEV instruction.

3.5.2.2 INTERRUPT VECTORS

63 Interrupt Vectors (IVs) in 128 dedicated locations (8 - FF) are

maintained,
3=3 and 3-4).
word of the ISA.

The IVs have a one-to-one relationship with the AFs (refer to Figure{/
They point to Interrupt Save Areas (ISA). An IV points to the DEV

’/f/\\

/

SHEET | REV.
3=-2a3 ' c

! HCNEIWELL INFORMATICN
SISTEMS

SPEC. NO.
60149740

—
- .
—— o

3.5.2.3 INTERRUPT SAVE AREA

The context for each level is stored in main memory in an area called the
Interrupt Save Area (ISA). See Figures 3-3 and 3=-4 for the format of the ISA. The
ISA is pointed to by an IV associated with each specific level. Thus, the
currently executing process running at level n, as well as the interrupting process
running at a higher priority level m, will each have a unique IV pointing to its
respective ISA, If the two IVs point to the same ISA, no context swap takes place,
but a change to the higher priority level takes place. Once the context swap and
level change have occurred, the interrupting process starts executing at its
assigned level., Definitions for the entries in an ISA are listed after Figures 3=7
and 3-8.

o HARDWARE CONTEXT POINTER (HCP) (M6X and M6XE only) - A two-word entry that
points to a 32-word Hardware Context Area (HCA) in memory, if the H bit in
ISM2 equals one.

o ADDRESS SPACE VECTOR (ASV) -~ A two-word entry that points to the base of a
segment table in memory. Refer to subsection 4.3.1.3.

o TASK SEGMENT TABLE LIMIT (TSTL) (EMMU only) - A one word entry that defines
the maximum addressable segment available to the task. Refer to subsection
4.3.1.4.

o TRAP SAVE AREA POINTER (TSAP) - A two-word entry that points to a Trap Save
Area (TSA) during trap processing. As a pointer, its two high-order bits
consist of a ring number and should be set to zero,

o INTERRUPTING DEVICE ID (DEV) - A one-word entry used to identify the
interrupting source. The format of DEV for external interrupts is:

- For device and CSS-CSS interrupts, set DEV to:

0 9 10 15

DEV = CHANNEL NUMBER OF INTERRUPTING

]
1

INTERRUPTING UNIT | LEVEL NUMBER
!

—— amen S —

— mem e -

- For Real Time Clock interrupts, DEV is not changed.

For Watch Dog Timer interrupts, DEV is not changed.

= For internal interrupts, DEV is not changed.

For power fail interrupts, DEV is not changed.

Note that the IV points to DEV and IV relative addressing is relative to
this entry.

3-24

!

60149740

| SPEC. NO.

HONEIWELL INFORMATION
SISTEMS

.

|
1
i
|
1
!

HARIWARE
CONTEXT |
AREA

HARDWARE
CONTEXT
AREA

—— e — -

(/2] 2]
AT O XTTTTT ATTTT R M =TT
by - i — - = ! m -
Ay L L.
o | ;
« m < o3 <
a8 B g 8 8 A 8
B
[| [|
!XIM!ZI 3%!!3!! TTTTARAT
K
(/2]
mnm
e
U N P
| U I I
a I T 17 T7-1T"7T"7T77 " 717 . .
5] n 0 o - [~] 0
un - Py [d » [} ° Qo
m.m \m 0 0o0 _ M M [« B« I o} M oo o0 S
o ¥ o @ R B B
(] [} [] []
T . e Il R
Q 0 S = B

0O00O0OO0O

——]

where IV No. n = Interrupt Vector for Level No. n

= Interrupt Save Area

ISa

Flgure 3-3 Interrupt Consfructs

EEN

! HONEYWELL INFORMATION | SPEC. NO. ! SHEET ! REV. }
! SYSTEMS ! 60149740 | 3-25 ! H
ISA 1)
I HCP 2)__l=====>] i
| ! ! HARDWARE !
HARDWARE i ASV __|-- | CONTEXT !
DEDICATED MEMORY ! ! E ~ AREA -
LOCATION ! TSTL 3) | H H

i Tsap _} I 1 (32 WORDS) |
N i H — ! H
! IV J—— ———>! DEV o

! ISM1 !

' ISM2 I

:_ P i SEGMENT

| I TABLE

1 S H

__ BT __| ===>|__ SEGMENT __|

1 ! I DESCRIPTOR !

i | ! i

I Bl 1 | '

i i |__ SEGMENT __|

! 00 | I | | " DESCRIPTOR !

! R7 |

i) i

o o —_

| R1 i

! FF | M1 |

. |

_FF | M7 |

i T |

] I

00 | CI ! \ Commercial Instruc-

i__ RDBR __| >tion Context

! i

100 ! sSI '\

1SA1 (4 words)!
1SA2 (4 words)!
1SA3 (4 words)! /
K7 2)1

1)ISA shown above assumes all defined bits of ISM1
2) Applicable to M6X and M6XE only.
3) Applicable to EMMU models only, else RSU.

Figure 3-4 Interrupt Save Area

\ Scientific Instruc-
/ tion Context

and ISM2 equal to One.

(Sheet 1 of 2)

! HONEYWELL INFORMATION ! SPEC. NO. | SHEET ! REV. |
' SYSTEMS ! 60149740 i 3= 26 | E i
1/\‘:
%
where IV = Interrupt Vector
HCP = Hardware Context Pointer
ASV = Address Space Vector
TSTL = Task Segment Table Limit
TSAP = Trap Save Area Pointer
DEV = Interrupting Device ID
ISM1, ISM2 = Interrupt Save Mask
T - = Stack Address Register
CI = Commercial Instruction Indicator Register
RDBR = Remote Descriptor Base Register
SI = Scientific Instruction Indicator Register
SA = Scientific Accumulator
Figure 3-4 Interrupt Save Area (Sheet 2 of 2)
INTERRUPT SAVE MASK 1 (ISM1) = A one-word entry used in the save/restore
hardware process., Its format is: -
\\/

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ISM1 B

1

B
2

B
3

B
b

n o

w
& o

B
5

—
—
v o
o\ o
~
o
~w

Processor registers selected by the mask bits (bit = 1) are stored in memory
in consecutive locations starting at the specified location. The mask bits
are scanned from right (bit 15) to left (bit 0); ISM1 is scanned first, then
ISM2, If the mask bit is a one, the corresponding register is saved or
restored as applicable. If the mask bit is a zero, the corresponding
register is not saved or restored and, in addition, the word or words
required by the register is/are assumed not to be in the ISA,

INTERRUPT SAVE MASK 2 (ISM2) - A one-word entry used in the save/restore
process. Its format is:

o1 3 & 5 6 7 8 9 13 14 15
TR

NATSAP |[RFU | K | S | C | H | LA
f 1 1 ! ! 1
! ! ! !] !

ISM2

&

1 1]
1]]
RFU P T M
P !

®

* Applicable to M6X and M6XE only.

HONEYWELL INFORMATION

SPEC. NO. | SHEET | REV.
1
1

SYSTEMS 60149740 | 3=-27 E
The following defines the ISM2 mask bits.
- MU = MMU Context. If set, then an Inrush operation is requested at
context load time, Refer to subsection 4.3.4.
- NATSAP = NATSAP Select. The NATSAP Select field is used to select

which NATSAP, and therefore which TSA pcol, will be used during Trap
processing. The field is encoded as follows:

NATSAP Select NATSAP Used Memory Location

0 0 O 0 00010
0 0 1 1 0000E
0 1 0 2 0000C
o 1 1 3 0000A
1 X X RFU RFU
- K = K1 - K7 (M6X and M6XE only). If set, then save/restore K1 - K7

in/from the specified locations. If not set, do not save/restore K1 =
K7, and, the words required by the registers are assumed not to be in
the ISA.

- S = Scientific Context. °‘If set, then save/restore the scientific
indicator (SI) and the scientific accumulators (SAs) in/from the
specified locations. If not set, then do not save/restore the
scientific context; the words required by the registers are assumed
not to be in the ISA.

- C = Commercial Context and RDBR. If set, then save/restore the
commercial indicator (CI) register and the RDBR in/from the specified
locations, If not set, then do not save/restore the commercial context
and RDBR. The words required by the registers are assumed not to be
in the ISA. ' ‘

- H = Hardware Context Area (HCA) Indicator (M6X and M6XE only). If H
is set then make certain long instructions interruptable. The CSS
uses the HCA to store any intermediate instruction context.

- LA = Level Active (M6X and M6XE only). This bit is set by the
sof'tware to request the CSS to write a Flag word (at the end of the
ISA), after having saved all the process context in the ISA. Flag is
written only if the context change is caused by an LEV instruction.

- T = Stack Address Register. If set, then save/restore the stack
address register in the specified locations. If not set, then do not
save/restore the register. The words required by the register are
assumed not to be in the ISA.

- M = M2 through M7. If set, then save/restore M2 through M7 (M2
through M5 for CR41E) in the specified locations., Six words are
assumed allocated in all models. If not set, do not save/restore the
registers., The six words are assumed not to be in the ISA.

PROCEDURE COUNTER (P) - A two-word entry used to save/restore P.

HONEYWELL INFORMATION

SPEC. NO. SHEET REV.

]
i
3-28 |

SYSTEMS 60149740

(o]

o

P
s
S REGISTER (S) - A one-word entry used to save/restore S. Refer to

subsection 3.3.4.1.

BASE REGISTERS (B) - Up to seven two-word entries used to save/restore Bl =
B7. Mask bits in ISM1 determine_which entries are to be saved/restored.

INDICATOR REGISTER (I) - A one-word entry used to save/restore I. A mask
bit in ISM1 determines if the entry is to be saved/restored. Since I is

eight bits, it is stored in the right half of the entry with the left half
set to 00.

WORD OPERAND REGISTERS (R) - Up to seven one-word entries used to

save/restore R1 - R7. Mask bits in ISM1 determine which entries are to be
saved/restored.

MODE REGISTER (M) - Up to seven one-word entries used to save/restore M1 -
M7. Mask bits in ISM1 and ISM2 determine which entries are to be
saved/restored. Since an M register is eight bits, it is stored in the
right half of ther entry, with the left half set to FF.

STACK REGISTER (T) - A two-word entry used to save/restore T. A mask bit in
ISM2 determines if the entry is to be saved/restored.

COMMERCIAL INDICATOR REGISTER (CI) - A one-word entry used to save/restore
CI. The C mask bit in ISM2 determines if the entry is to be /
saved/restored. Since CI is eight bits, it is stored in the right half of \«/
the entry with the left half set to 00.

REMOTE DESCRIPTOR BASE REGISTER (RDBR) ~ A two-word entry used to save/
restore the RDBR. It is saved/restored along with CI when so specified by
the C bit in ISM2. The RDBR ring number is saved/restored as is.

SCIENTIFIC INDICATOR REGISTER (SI) - A one-word entry used to save/restore
SI. The S mask bit in ISM2 determines if the entry is to be
saved/restored. Since SI is eight bits, it is stored in the right half of
the entry, with the left half set to 00.

SCIENTIFIC ACCUMULATORS (SAs) - Three four-word entries used to save/restore
the scientific accumulators. These entries are saved/restored along with SI
when so specified by the S bit in ISM2. The format of this area is as
follows:

SA3 Same as SA1

[]
[} i
! | (MSB)e | S | (MSB)f |
N !
|} £ !
N |
SA1 -1 | £ i
| ! |
[t
- : : e
t=i 1 & 3
sa2 | Same as SA1 : ~
l }
| i
i |

ELN

REV.

H HONEYWELL INFORMATION !
| 3-29 1 E

SPEC. NO. | SHEET
SYSTEMS |

60149740

where SA1, SA2,and SA3 = Scientific Accumulator Registers for Registers 1,2
and 3; e= Exponent; s = Sign; and f = Fractional mantissa.

c DOUBLE WORD OPERAND REGISTERS (K) (M6X and M6XE only) - Up to seven two-word
entries used to save/restore K1 - K7. The K mask bit in ISM2 determines if
the entries are to be saved/restored.

o FLAG (M6X and M6XE only) - A one word entry which is set by the processor to
FFFF after having saved all process context in the ISA., Flag is written
only if the LA mask bit in ISM2 = 1 and the context change is caused by an
LEV instruction. Flag is not updated if context change is caused by an
interrupt.

3.5.2.4 HARDWARE CONTEXT AREA (M6X and M6XE only)
The Hardware Context Area (HCA) consists of 32 words and is used by the CSS to
store intermediate instruction context when certain long instructions are specified

to be interruptable (ISM2.H = 1).

The HCA is pointed to by the HCP contained in the ISA.

3.5.3 External Interrupt Handling

External interrupts (EIs) are typically sensed between instructions., In a few
cases (for example, when executing interruptable instructions), EIs are also sensed
during instruction execution.

When an EI is sensed, the CSS compares the current interrupt level number (CL)
with the interrupting interrupt level number (IL). If CL < IL, then the EI is not
honored and the interrupt source is told to stack the interrupt. If CL > IL, the
EI is honored. Context is saved in the ISA of the interrupted level and a level
change to the interrupting level is performed and its context loaded. The DEV word
in the ISA of the interrupting level is updated to indicate the interrupt source.
The AF of the interrupted level is left on and the AF of the interrupting level is
set.

If during a level change operation the IV of the interrupting level is found to
be NULL, then the interrupt is ignored and a scan and dispatch function performed.
(Refer to Figure 3-5.)

3.5.4 Internal Interrupt Handling

Internal Interupts (IIs) occur during the execution of an instruction. In the
case of the LEV instruction, the instruction specifies that an II be generated. 1In
the case of a TSA-related interrupt, an interrupt to level 2 is generated because
during instruction excution a trap was detected and the Trap Save Area (TSA) being
used is the last one in the pool. Refer to Figure 3-5.

! HONEYWELL INFORMATION ! SPEC. NO. | SHEET | REV.
! SYSTEMS ! 60149740 ! 3-30]
HERRERR
* START *
EREERRR
i
v
oo
o(A)o
oo
!
v
(DETERMINE CSS STATE)
[}
1
v
/ IS CSS IN THE \ YES o0
< HARDWARE Demmm———— >o(D)o
\ ERROR HALT STATE ? / oo
! NO (Sheet 4)
v
/ IS CSS IN \ YES 00
< THE OPERATOR HALT D e >o(E)o
\ STATE ? / o0
! NO (Sheet 4)
v
/ IS CSS IN \ YES 00
< THE PROCEDURE demmmmee=d0(F)o
\ HALT STATE ? / oo
I NO (Sheet 5)
v
/ IS CSS IN EITHER THE \ YES (eI}
< LEVEL 63 , HALT OR D D=w=mceee- >o(F1)o
\ SUPER HALT STATE ? / 0 0
! NO (Sheet 5)

v
(THE CSS IS IN THE RUN
(STATE. THE FLOW STARTS
(WITH THE FETCHING OF
(__THE NEXT INSTRUCTION
!
i
v
FETCH NEXT INSTRUC-
TION
]

st e s v

Figure 3-5 Interrupt Sequence Flow Chart (Sheet 1 of 10)

N

/{\

S

N

HONEIWELL INFORMATICN { SPEC. NO. | SHEET | REV. i
] 1
i i

SYSTEMS | 60149740 | 3-31 c
Q O
o(B o
c o0
'
v
/ IS \ YES oo
< INSTRUCTION AN LEV DJee=ee===>0o(L)o
\ INSTRUCTION 2 / oo
| NO (Sheet 9)
v
{ START INSTRUCTION |
| Exzcxlrnou |
>l
! v
! NO / IS INSTRUCTION \
! el INTERRUPTABLE >
! | \ ? /
| | | YES
| | v
] | / IS AN \ YES oo
! ! < INTERRUPT p—-Y G e I T
i v \ PENDING 2 / oo
! o o ! NO (Sheet 3)
! 0(Bl)Oowmecceacaas)|
] o o v
| / HAS A TSA \ YES oo
! < (LEVEL 2) INTERRUPT DJww=e===>o(T Jo
! \ BEEN POSTED ? / oo
! i NO (Sheet 10)
] v
H NO / IS \
cewmceeeee={ INSTRUCTION EXECUTION >
\ COMPLETE ? /
| IES
v
/ IS AN \ NO 00
< INTERRUPT demme=w=do(A)O
\ PENDING ? / oo
| YES (Sheet 1)
\'2
(o o]
o(C o
o0

Figure 3-5 Interrupi Sequence Flow Chart (Sheet 2 of 10)

HONEYWELL INFORMATICN ! SPEC. NO. | SHEET | REV.
SYSTEMS] 60149740 | 3=32]
[« I}
o(C)o
Q0

(INTERRUPT IS AN)
(__EXTERNAL INTERRUPT)

i
7
| II. <== LEVEL # FROM |
! INTERRUPT SCURCE !
|
v IES 00
IS IL < CL ? dewmeceee=>0(I)o
o © | NO c 0
o(€2)o > (Sheet 6)
o o© v

{ INFORM INTERRUPT SQURCZ |
{_TO STACK THE INTERRUPT |

Q@ o e e = —— o e —

/ IS THE \ XNO 00
< CSS IN THE RON deemew=edo(4)o
\ STATE ? / 00
| YES (Sheet 1)
v
o0 YES / IS INSTRUCTION \ NO o o
0(A)O{=wwwewsl EXECUTION COMPLETE dwewe===>o(B1)o
00 \ ? / : o o
(Sheet 1) (Sheet 2)

Figure 3-5 Interrupt Sequence Flow Chart (Sheet 3 of 10)

>

HONEYWELL INFORMATION ! SPEC. NO.
SYSTEMS | 60149740

SHEET
3-33

(CSS IS IN THE)
(HARDWARE)
(__ERROR HALT STATE)
|
)
| CSS IS FROZEN | L)
| AND WAITS FOR |e=====>0(A)o

|_AN INTTIALIZE | oo
(Sheet 1)

o(E)o
o0

< -

(CSSISIN)
(THE OPERATOR)
(_ _HALT STATE)
]
i
v
YES / IS AN \
wwe==={ INTERRUPT >
_PENDING 2 /
i NO
v
! WAIT FOR |} oo
| OPERATOR |====>0(4)o
|_INTERVENTION ! 0o
(Sheet 1)

!
v
/ IS INTERRUPT \ NO o o
< A POWER FAIL DJ==e====>c(C2 o
__INTERROPT 2 / o o
| YES (Sheet 3)
v
c o
o(C Jo
o 0
(Sheet 3)

Figure 3-5 Interrupt Sequence Flow Chart (Sheet 4 of 10)

! HONEYWELL INFORMATION i SPEC. NO. | SHEET | REV. H
! SYSTEMS ! 60149780 | 3= 34 ! c |
//‘/\ '
\b“’;
oo o0
o(F Jo o(F1)o
oo 00
| H
v v
(CSS IS IN THE) (CSS IS IN EITHER)
(PROCEDURE) (THE LEVEL 63, HALT OR)
(HALT STATE) (SUPER HALT STATE)
]]
] {
]
v
/ IS AN \ YES o0
< INTERRUPT > . >o(C)o
_PENDING 2 / o0
i NO (Sheet 3)
v
NO / HAS TEE OPERATCR \
< DEPRESSED THE EXECUTE >
i \ KEY ? /
} } ’//""\
= v {‘\.\’,/"
! LEVEL 63, / \
i< < IN WHICH HALT STATE IS THE CSS IN? >
{ HALT OR \ /
| SGPER EALT |
! { PROCEDURE
H v
' i SKIP HALT INSTROUCTION |
! |_AND ENTER THE RUN STATE | i
1]
1]
i |
>| WAIT FOR AN | |
i_INTERROPT | !
] !
v i
oo |
o(A)oK
-]
(Sheet 1)
Figure 3-5 Interrupt Sequence Flow Chart (Sheet 5 of 10)
s

\7{./‘

S,

HONEYWELL INFORMATION

SPEC. NO. | SHEET | REV.
SYSTEMS ! !

60149740

SEE NOTE ON SHEET 10 o(I)o

| SET AF CORRESPONDING |
{ TO IL. UPDATE DEV !
|_WORD IF APPLICABLE !
! o o
i< o(I1)o
v (o] [o]
SCAN FOR AL STARTING |
FROM AF 0 ==> 63 !

1

]
YES v
< IS AL = CL ? >
NO

o0 NO

o(J)ol====< IS ALV
00

(Sheet 7)

NULL 2 >

=
}
=
!
:
l
{
YES !
l
I}
I
i
i
|
i
|

PTI [Tl PR

YES
m——eeeel IS AL = 63 2 >

! NO
v

! RESET AL AF !
]

v
ENTER LEVEL 63 |
HALT STATE |
]
]
v
oo
>o(A)o
oo
(Sheet 1)

Figure 3=5 Interrupt Sequence Flow Chart (Sheet 6 of 10)

HONEYWELL INFORMATION

SPEC. NO. | SHEET
SYSTEMS i

60149740

3-36

SEE NOTE ON SHEET 1C o(J)o

YO DL R —— < IS ALV = CLV ? >
oo i NO o o
(Sheet 1) i< o(Jd1 o
v O O
(PERFORM A LEVEL CHANGE)
]
1
YES v
---------- < IS CLV = NULL? >
I NO
v
STORE CSS CONTEXT !
INTO CL ISA !
]

NO v
{m===< IS THIS AN M6X OR MBXE?>
! YES
\'4 NO
< IS THIS AN LEV INSTR.? dw=we=-
YES

i
v

/ IS \ NO
< LA BIT IN ISM2 = 1? Deeee=- >

1
H
|
1
|
[
i
]
y
i
|
i
)
1
1
]
)
i
i
]
i |
i H
y 1
i H
| |
i i
1 '
1 i
| }
i \ / i
) i
i 1
| 1
i i
| |
1 i
1 1
] i
]
]
1
[
:
i
i
i
i
H
]
|
|
1
1
H
i
i
1
1

! YES
) v
| SET FFFF--> FLAG |

<

!
i
v
NO / IS THERE \
(o < CONTEXT TO BE SAVED >
___IN THE CL HCA ? /
| YES
v

| STORE CONTEXT '
! INTO CL HCA !

>

Q@ mm - —

00
o(K)o
00
(Sheet 8)

Figure 3-5 Interrupt Sequence Flow Chart (Sheet 7 of 10)

R

| HONEYWELL INFORMATION | SPEC. NO. | SHEET | REV.
{ SYSTEMS | 60149740 ' 3-37 | E
o 0
SEE NOTE ON SHEET 10 o(K)o
(ol ¢]

'
1
v

j_LOAD CONTEXT FROM AL ISA INTO CSS |
]

1
v
NO / IS THERE \
-------- < CONTEXT IN THE AL HCA >
\ ? /
| YES
v

| LOAD CONTEXT FROM |
i_AL HCA INTO CSS |

]
i
1
1
1}
!
1
I
]
1
] 1
1
1
i
1
i
]
1
1}
1
1
1

v
(USE CONTEXT IN THE AL HCA)
(TO RESUME INSTRUCTION)
(EXECUTION)

]

]

>

v
! BROADCAST ON BUS FOR PENDING INTERRUPTS |
]
!
v
00
o(A)o
oo
(Sheet 1)

Figure 3-5 Interrupt Sequence Flow Chart (Sheet 8 of 10)

[J——

i HONEYWELL INFORMATION { SPEC. NO. | SHEET | REV. i
| SYSTEMS i 60149740 i 3-38 | E i
: oo
SEE NOTE ON SHEET 10 o(L)o
(o e}
|
v RERREREREEE

/ DOES INSTRUCTION MEET THE \ NO * TRAP # 13 #
< PRIVILEGE REQUIREMENTS >=--->#%* PRIVILEGE ¥

\ ? /

i
v
| IL <-- IL FIELD FROM
{_LEV_INSTRUCTION QPERAND
1

(T -

* VIOLATION *
I YES ERRBURBRERS

SCHEDULE LEVEL IL

CORRESPONDING TO IL

i SUSPEND CL BY !
! CLEARING ITS AF, |
| SCAN AND DISPATCH !

i
v

SCHEDULE LEVEL IL oo

/ S =1 \ YES / Q=1 \ NO
< IS CL TO BE d>ew=e=><{ IS A QUICK LEVEL >
\ SUSPENDED? / \ CHANGE REQUESTED? / |
I NO ! YES '
' v v
! ! PERFORM QUICK LEVEL | ! !
! ! CHANGE BY ' ! BY SETTING THE AF |
! | = SETTING AF FOR IL ! ! !
! | = SET ILV <=- CLV ! !
! H !
! v v
! ' SUSPEND CL BY |
! ! CLEARING ITS AF, |
' | GO TO LEVEL IL !
. ! !
' !
! i ! !
v | PERFORM QUICK LEVEL | ! !
/ Q=1 \ YES | CHANGE BY ! ! |
< IS A QUICK LEVEL D===== >! = SETTING AF FOR IL |===== >! !
\ CHANGE REQUIRED ? / | = SET ILV <-- CLV | | !
! NO ! = GO TO LEVEL IL '] i
' | i
! | !
v ! SCHEDULE LEVEL IL | v !
/ D= 1 \ YES | BY SETTING THE AF | oo !
< IS INTERRUPT TO BE D=-e=== >! CORRESPONDING TO IL,!-->0(A)o !
\ DEFERED 2 / ! NO LEVEL CHANGE ! oo !
| NO ! IS PERFORMED | (Sheet 1) !
]
:
:

CORRESPONDING TO IL, oo

]

1

BY SETTING THE AF ! >o(I)o<
I

i .
SCAN AND DISPATCH | (Sheet 6)

Figure 3-5 Interrupt Flow Chart (Sheet 9 of 10)

O

—

-
-

! HONEYWELL INFCRMATION | SPEC. NO. | SHEET ! REV. !
1 SYSTEMS | 60149740 ! 3=-39 H c l
oo
o(T)o
oo
]
v
! SET AF = 2 SINCE |
! THIS INTERRUPT TYPE |
] IS PROCESSED AT !
! Lmlzg_z. 2 i
]
v
| SET AL TO LEVEL 2 |
]
; YES #RE3Rsanas
< IS ALY = NULL de—a==)# SUPER &
| NO ® HALT #
v 2SS RERRER
)
o(J1)o
o o
(Sheet 7)

Where: IL - Interrupt Level No.
AlL, = Activate Level No.
CL <« Current Level No.
AF = Activity Flag
ALV - AL's Interrupt Vector
CLV - CL's Interrupt Vector

NOTE
The CSS (M6X and M6XE only) can not tolerate a trap (i.e., TVi5 or 17) when
accessing any of the above constructs. If a trap is encountered, then the CSS will
post a super halt. In a CRU1E and M5XE a trap will cause unspecified results.

Figure 3-5 Interrupt Sequence Flow Chart (Sheet 10 of 10)

3.5.4.1 LEV INSTRUCTION

The LEV instruction is used to set/clear "Level Activity Flags"™ (AFs), inhibit
interrupts, enable interrupts, and so forth. It uses a 16-bit operand to control
the various sequences of actions. The format of the operand is as follows:

o1 2 7 8 9 10 i5

Q: 0

|7}
[~}
o
o
[=]
o
o
o
H

S

- ——

SISTEMS

HONEIWELL INFORMATICN | SPEC. NO. | SHEET

REV.

—— —-—

Q

! 60149740 | 3- 40

where: S

D
Q
IL

CcL

Susperd current level

Defer Interrupt

Quick level change (inhibit)
Interrupting Level #
Current Level

The actions performed are summarized as follows:

| |]]

! S1 Q1! D/ 4 C T I ON
1] !

!] i |

1 0} 01} 0| Schedule level IL, scan and dispatch
| | ! |

| 01 01! 1] Schedule level IL, defer interrupt

i | P

} 01 1) X | Inhibit to level IL

! ! i |

! 1101} X! Schedule level IL, suspend CL, scan and dispatch
| | P

1111 X! Inhibit to level IL and Suspend CL

! |

. M aeee Ghes Gt Gnas Shen GRS ves Ches moew Gwaw o=

where Schedule = Set activity flag for IL;

Scan and dispatch = Scan AF, find highest priority active level, save

context of current running level, and restore context of the highest
priority active level;

Defer Interrupt = Do not scan nor dispatch. Continue executing at CL;

Inhibit = Set AF for IL. Change level of running process to IL. Set IV of
IL (ILV) to IV of CL (CLV). Do not perform context save/ restore or change
the process address space. (Used for quick level change to higher priority

level.); and

Suspend = Clear AF for CL.

The above functionality and interrupt related functions are described in Figure
3=-5. The hardware guarantees that a process is always active at level 63; that is,
the AF corresponding to 63 i3 treated as if it is always set. If the IV of level
63 equals NULL, then the CSS performs the equivalent of a Halt instruction,
entering the instruction halt state. In this state, the CSS minimizes the use of
bus cycles while waiting for an interrupt. If the IV of level 63 is not NULL, the
processor treats this level like any other.

3.5.4.2 TSA RELATED INTERROUPT

This interrupt type is posted by the processor if during Trap execution the TSA
being used is the last one in the pool. An interrupt to level 2 1s generated to
report this condition to the software. Refer to Figure 3-5.

\

o

M'A

] HONEYWELL INFORMATION | SPEC. NO. ! SHEET | REV.]
SYSTEMS ! 60149740 | 3= 41 ! c]

—

3.5.5 Power Fail Interrupt Handling

Power fail interrupts (PFIs) are, like EIs, typically sensed between
instructions. In a few cases (for example, when executing interruptable
instructions), PFIS are also sensed during instruction execution.

¥hen a PFI is sensed, the CSS determines the value of the current interrupt
level number (CL):

o If CL =0, then the CSS enters the operator halt state.

o If CL >0, the PFI is honored. Context is saved in the ISA of the
interrupted level and a level change to level zero is performed and its
context loaded. The DEV word in the ISA of level zero is not changed. The
AF of the interrupted level is left on and the AF of level zero is set.
Refer to Figure 3-5,

Sof tware reaction to a PFI is expected to be as follows:

0 A minimum of Level zero context is requested to be locaded;

o 'An instruction is executed to update an indicator to log the fact that a PFI
has occured; and

0 A halt instruction is executed.

Note that the above defined functionality applies to all CSSs whether the (CSS
is the master or a slave in the case of dual processor systems.

3.6 TRAPS
3.6.1 Concept

A trap is an event that can occur during the execution of an instruction and
indicates that software intervention is required. A set of trap vectors and a Trap
Save Area (to hold the trap context) are used to pass control to the software and
to provide the software with the necessary trap context.

As a function of the trap type, the appropriate trap vector is used to identify
the trap handler, The trap handler, using the trap context, can then process the
trap condition. Following successful resolution of the trap condition, the trap
handler performs a Return to resume execution of the trapped procedure. Precisely
which instruction is executed following the Return is a function of the trap type
and is defined by the trap handler, by updating the trap context in the trap save
area, if needed.

Since trap handling can require a change in the process' execute privilege, the
trap vector is used to define the execute privilege of the trap handler.

i HONEIWELL INFORMATION | SPEC. NO.
i SISTEMS | 60149740

3.6.2 Trap Handlinz

Each type of trap is asscciated with a Trap Vector (that is, a Trap handler
pointer) that is stored in a dedicated main memory location. The various avents
that can cause a trap and their asscciated vector numbers are given in Table 3=4.

The following constructs are used (refer to Figure 3-6):

Interrupt Vectors (IVs)

Interrupt Save Area (ISA)

Interrupt Save Mask Word 2 (ISM2)
Trap Save Area (TSA)

Trap Vectors (TVs)

Next Available TSA Pointer (NATSAP).
Trap Save Area Link (TSAL)

Trap Save Area Pointer (TSAP)

0O 0000O0O0O

The CSS requires that the above constructs be in main memory. The CSS (M6X and
M6XE only) can not tolerate a trap (i.e., TV15S or 17) when accessing any of the
above ccnstructs, If a trap is encountered, then the CSS will post a super halt.
In a CR41E and M5XE a trap will cause unspecified results.

The CSS does not perform any access right checks when it accesses any of the
above constructs., Specifically, it assumes to have ring 0 priviledge and ignores
the access permit flags. o7

Trap handling is performed using Trap Save Areas (TSA). Detection of a trap
condition causes the CSS to save the trap context into a TSA and then to transfer
control to the appropriate trap handler. Figure 3-T shows the trap context.

The CSS uses the NATSAP selected by ISM2 (1-3) to access one of the four TSA
pools. If the selected TSA pool is empty (that is, the selected NATSAP contains a
NULL 1link), the CSS will enter the super halt state; otherwise, the first available
TSA stack entry is unlinked from the selected pool and linked to the ISA of the
current level. The TV# identifies the trap handler procedure, its execution ring
and entry point.

The execute privilege of the trap handler is determined as a function of the
TV. For TV = even, no ring change takes place and the trap handler uses the same
privilege as the trapped prodecure. For TV = odd, a ring change to ring 0 occcurs
and the trap handler runs in ring Q.

Before entering the trap handler, B3, whose content was saved in the TSA, is
loaded with a pointer to the TSA's A field. In addition, TSAL is checked to insure
that it is not equal to NULL (indicating that this TSA is the last stack frame in
the pool). If NULL, a level 2 interrupt is generated before the trap handler is
entered.

The generic instruction RTT must be used to return from a trap which uses a
TSA. The RTT uses the current level ISA to access the TSA, from which it restoresf
the values of all visible registers saved during the trap. The TSA frame is L
returned to the head of the appropriate memory pool (as defined by ISM2 (1-3)).

Al
J

-

34 thru 46
]

} HONEYWELL INFORMATION | SPEC. NO. | SHEET | REV.
l SYSTEMS | 60149740 | 3-43 i
Table 3-4 Trap Vectors and Events
i i P
| VECTOR # | EVENT]
! L |
! i i
1 1 | Monitor call SMCL instruction)]
H 2 | Trace trap (debug) or BRK instruction H
! 3 | Scientific Opcode not supported |
H 4 { RSU |
! 5 | Address syllable or opcode (not Scientific) H
! | not supported : '
! 6 | Integer register overflow 1)
! T | Scientific divide by zero !
H 8 | Scientific exponent overflow |
H | !
i 9 | Stack underflow !
H 10 | Stack overflow]
! 11 | RFU ' H
! 12 | Recursive remote descriptor usage !
X 13 | Unprivileged use of privileged operation !
] 14 | OUnauthorized reference to protected memory !
! 15 | Reference to unavailable resource i
! 16 | Program error |
| ! i
H 17 | Memory or bus error !
! 18 | Segment descriptor access error 2)
| 19 | Scientific exponent underflow 11
! 20 ! Scientific program error !
! 21 | Scientific sigaificance error 11
! 22 | Scientific precision errorl) !
i 23 | Reference to unavailable resource by CIP or SIP 3)
i 24 | Memory or bus error detected by CIP or SIP 3
! | i
| 25 { Commercial divide by zero !
H 26 | Commercial specification error]
1 27 | Commercial illegal character (data code) !
] 28 | Commercial truncation error 1 |
! 29 | Commercial overflow 1) |
| 30 | CIP QLT error 4) |
| 31 | SIP QLT error b)
| 32 | Unauthorized reference to protected memory !
| ! by CIP or SIP 3)
] |]
| 33 | Illegal Argument detected during a scientific &) 1
] | instruction !
! | RFU !
I i

1)
2)
3)

4)

NOTES
This trap occurs only if enabled.
This trap occurs only when in EMMU mode.

This trap is applicable only on systems that have a separate processor for CIP
and/or SIP. For systems with no separate processor(s), TV23, 24 and 32 are

mapped into TV15, 17 and 14 respectively.
This trap is applicable only on a M6X or M6XE.

SHEET i REV, i

H HONEIWELL INFORMATICN | SPEC. NO.
H 3- 44 ! c 1

! SISTEMS

60149740

£
During the execution of a trap or an RTT instruction, the CSS does not tolerate a\{ ,
NULL pointer. Detection of a NULL pointer results in the action(s) shown in Table
3-5 -

Figure 3-8 gives a flow chart of the trap sequence. For informatiocn on the
Return sequence, refer to the RIT instruction in Section 5.

3.6.3 Trap Vector Descriptions

Defined below are the trap types given in Table 3-4. For more information also
refer to Figure 3-7 for a description of the trap context.

TVO1 Monitor Call - This trap is posted whenever an MCL instruction is
executed.
TV02 Trace or BRK Instruction - This trap is posted whenever either a BRK

instruction is executed or whenever a trace trap is requested in M1
and the branch condition is true during the execution of an LNJ, JMP,
ENT or any branch instructioan.

TVO3 Scientific Opcode not supported - This trap is posted whenever a
- scientific instruction is encountered by the CSS but no SIP is
configured.
TV05 Address Syllable or Opcode (not scientific) not supported - This trap
is posted whenever an unassigned Address Syllable is used or an ./

unspecified opcode is encountered by the CSS.

This trap is also posted, in a CR41E, if the MTM or STM instructions
specify M5 or MT7.

TVO6 Integer Register Overflow - This trap is posted whenever an overflow
trap is requested in M1(#) and an overflow occurs during the execution
of any of the following general (R register) instructions:

ADD, SUB, MUL, DIV, ADV, MLV, SAL, DAL, AID and SID.

This trap is also posted whenever an overflow trap is requested in
M2(#) and an overflow occurs during the execution of any of the
following EII (X register) instructions:

KADD, KSUB, KMUL, KDIV, KAL, KADV and RMLV.

The trap is posted upon completion of the instruction. The register
remains unchanged, on an overflow, for the following instructicns:

MUL, DIV, MLV, KDIV, RMUL and KMLV.

For all the other instructions, the register is modified, on an

overflow. @;ﬂl

TVOT Scientific Divide by Zero - The Divide by Zero (DZ) trap is generated
whenever the divisor of a scientific divide (SDV) instruction is equal
to Zero. Operands remain unchanged.

A

| HONEYWELL INFORMATION { SPEC. NO. | SHEET | REV. i
! SYSTEMS ! 60149740] 3-45 ! E |
TV08 Scientific Exponent Overflow - This trap is posted whenever the

V09
V10

TVi2
V13

TV14

V15

exponent (e) of the floating point result is greater than +63. The
scientific instructions that can cause this trap are:

SLD, SAD, SSB, SML, SDV, SST and SSW.

The trap is posted upon completion of the instruction and the result
field(s) are altered.

Stack Underflow - This trap is posted when a RLQ instruction returns
the last frame on the stack.

Stack Overflow - This trap is posted when an ACQ instruction requests
a frame that is larger in size than the available space on the stack.

Recursive Remote Descriptor Usage - This trap is posted when the
remote descriptor of a commercial instruction points to another remote
descriptor. '

Unprivileged Use of Privileged Operation - A privileged instruction
was executed in a ring other than zero or one., Refer to subsection
4.3.1.1.

Unauthorized Reference to Protected Memory - During instruction
execution one of the following conditions was detected:

(o] Process did not have the required privilege to execute the
instruction,

o Process did not have the required privilege to read the operand,
o Process did not have the required privilege to write the operand.
Reference to Unavailable Resource -

o] During a Megabus operation (e.g., to memory, I/0 controller, CSS,
etc.), one of the following conditions occured:

- A deadman timeout condition was detected. Specifically, the
memory address or I/0 channel number does not exist or
required parity(s) of address was incorrect.

- A Megabus operation timeout was detected. Specifically, an
excess prinet delay was detected or a Megabus unit responds
with excess waits or a Megabus unit accepts a read command but
does not deliver requested data.

o During the address translation process one of the following
conditions was detected:

- Segment descriptor not valid,
- Segment size violation or

- Segment number > TSTL (EMMU Mode only).

HONEYWELL INFORMATION
SYSTEMS

SPEC. NO. | SHEET ! REV,
60149740 ! 3~ 46 H

=1

TV16

The high order bits of an LA where non zero. Refer to subection
3.2.1.2.

During the execution of the VLD or CVP instructions when in SMMU
Mode (applicable to MS5XE or M6XE only), the Segment number in B5
is greater than OF i.e., ([B5] > OFXXXX).

During the execution of the ASST instruction:

- The SST did not start in a valid segment or

- The SST was not contained within the physical memory space..

During the execution of the ATST instruction, the TST did not
start in a valid segment.

Program Error - During instruction decoding, the AS used is found to
be illegal as follows:

o}

0

AS = REG and the instruction is a LAB, JMP, LNJ, ENT, SAVE, RSTR,
LXA or IOLD-AAS; :

AS = IMO from Map 1 and the instruction is an LXA, or any EII
using a data type with atom size less than a word;

AS = IMO from Map 2 and the instruction is not a commercial instr;

AS = AS3 from Map 2 and the instruction is not a commercial instr;

AS = AS3 from Map 2 is being used by a remote descriptor;

AS = =Kn and the instruction is a LAB, JMP, LNJ, ENT, SAVE, RSTR,
LXA, I0, IOH or IOLD;

AS = AS23 from Map 1 and the instruction is an EII instruction;

The AS chosen by the escape AS EII1 is = ASN, EII1 or EII23 (refer

to Figure 3-14);

The AS chosen by the escape AS EII23 is = AS3 (see Figure 3-14);

During RTT instruction execution, [TSAP] = Null (there is no TSA);

During MMM or BSRCH instruction execution, [R6] < zero;

During LDT, STT, ACQ, or RLQ instruction decoding, an encoding error
is detected in the second word of the instruction;

During LXA or EII instruction decoding,

be illegal.

During MMUD instruction decoding, an encoding error ié detected in
(R51;

the data type used is found to

e

|

N

A~

HONEYWELL INFORMATION
SYSTEMS

SPEC. NO. SHEET REV.

3-47

60149740

TVIT

TV18

During the execution of the RLQ instruction, CW = 0 at the start of
RLQ execution or RLQ returns more space than exists on the stack.

During the execution of the RLQ or ACQ instructions, [T] = NULL.
Usage of a stack related AS resulted in a limit check violation,
During the execution of the ASD instruction:

o [B5] > OFXXXX and processor is in the SMMU mode (applicable only
to M5XE and M6XE).

o An attempt was made to invalidate Segment 0 in an M6X or M6XE in
any Mode or in an M5XE in EMMU mode.

During the execution of the ATST instruction:
o CSS was in SMMU mode.
o The TST (MS5XE only) was not double word aligned.

Memory or Bus Error - During a Megabus read operation (e.g., from
memory, I/0 controller, etc.) one of the following conditions was
detected:

o Memory controller indicated a memory read error via the RED
Megabus lines; or

o CSS detected a parity error in data received from cache or
Megabus.

Segmént Descriptor Access Error (EMMU Mode only)-

o During the fetching, by the EMMU, of a segment descriptor from the
EMMU Storage Array, a parity error was detected (M6XE only).

o] During the demand fetching, by the EMMU, of a segment descriptor
from the Task Segment Table, one of the following conditions was
detected:

- A deadman timeout condition was detected. Specifically, the
memory address does not exist or required parity(s) of address
was incorrect; or

- A Megabus operation timecut was detected. Specifically, an
excess prinet delay was detected or the memory controller
accepts a read command but does not deliver requested data.

- A memory controller indicated a memory read error via the RED
Megabus lines. :

- A segment descriptor is found not to be double word aligned
(M5XE only). This implies that the TST is not double word
aligned. Refer to subsection 4.3.4.

HONEYWELL INFORMATION
SYSTEMS

SPEC. NO.

| SHEET | REV.
i 3-48 |

60149740 P
- W

V19

V20

V21

Tv25

TV26

Scientific Exponent Underflow - This trap is posted whenever an
underflow trap is requested in M5 and the exponent (e) of the floating
point result is less than -64. The scientific instructions that can
cause this trap are:

SLD, SAD, SSB, SML, SDV and SSW.

The trap is posted upon completion of the instruction and the result
field(s) are altered.

Scientific Program Error - During scientific instruction decoding, the
AS used is found to be illegal as follows:

[¢)

(e}

o

AS

AS

AS =

IMO and the instruction is an SST or SSW;

REG or =Kn and the instruction is an SCZD or SCZQ;

REG (specifying R4, R5, R6, R6/R7) or =Kn and the instruction
is an SNGD or SNGQ;

Scientific Significance Error - This trap is posted during the
conversion of a floating point number into an integer value if all of
the following conditions are true:

- a significance error trap is requested in M5 and N

- the integer does not fit in the destination register.

The trap is posted upon completion of the scientific instruction.
Refer to subsection 8.1.3.

Scientific Precision Error - This trap is posted during the conversion
of a floating point number intc an integer value if all of the
following conditions are true:

- a precision error trap is requested in M5,

- MY(R/T) is a zero and

- the integer fits in the destination register but there are non zero
fractional digits.

The trap is posted upon completion of the scientific instruction.
Refer to subsection 8.1.3.

Commercial Divide by Zero - The Divide by Zero (DZ) trap is generated
whenever the divisor of a decimal divide instruction is equal to

Zero.

Note that the CI(OV) is also set.

Commercial Specification Error - The Illegal Specification (IS) trap A

is generated whenever any of the following conditions is detected: [l,y

(e}

An undefined Commercial op code is detected;

ada,

HONEYWELL INFORMATION
SYSTEMS

SPEC. NO.

SHEET ! REV.
3=-49 |

60149740

Va7t

TV28

Tv29

o] Any DD of an alphanumeric instruction is a packed decimal DD;
o A decimal operand has zero length;
o An operand in an Edit instruction has zero length;

o] A separate signed decimal operand consists of only a sign byte or
half byte;

o) In a Move and Edit instruction, the receiving field length has not
been exhausted but either there are no more micro-ops or the
sending field length is exhausted;

o Attempt to execute an illegal Move and Edit micro-op;

o A DD2 specifies an IMO for other than DCM and ACM instructions;
o In a DSH, DD1 specifies an IMO;

o A DD3 specifies an IMO;

Commercial Illegal Character (data code) -~ The Illegal Character (IC)
trap is generated whenever any of the following conditions is
detected:

0 An illegal decimal digit is detected (i.e., low order four bits of
digit are not 0-~9);

o An illegal sign digit is detected (i.e., a digit that is not one
of the recognized sign values); or

o] An illegal overpunch digit is detected.

Commercial Truncation Error - The Truncation (TR) trap is generated
conditionally ([as a function of the setting of M3(TR)] whenever the
receiving field of an alphanumeric instruction cannot contain all
characters of the result.

Whether a trap occurs or not, the receiving field is altered [it will
contain the leftmost part of the result and the CI(TR) will be set].

Commercial Overflow - The Overflow (OF) trap is generated
conditionally [as a function of the setting of M3(0V)] whenever the
receiving field of a decimal instruction cannot contain all the
significant digits of the result (leading zeros are not considered
significant) or, if during a shift left instruction a non-Zero digit
is shifted out.

If a trap occurs [M3(0V) = 1], then instruction execution is suspended
and the original operands remain ummodified. The CI(OQOV) indicator is
set.

If no trap occurs [M3(OV) = 0], the receiving field is altered (it
receives the least significant part of the result). The CI(OV)
indicator is set.

i HONEYWELL INFORMATION | SPEC. NO. | SHEET | REV. i
! SYSTEMS ! 60149740 ! 3-50 ! !
o :
! RHU |
P :
2 | i TSA TSA TSA
¢ | NATSAP 3 |==>] TSAL }|==>] TSAL |~-=>! NULL | :
2 b b P P
: H H ! i ! ! ! : POOLS
~ - : OF
~ = TSA TSA TSA :-TRAP
| NATSAP 0 |-=>| TSAL {-=>|_ TSAL }|-=>|_ NULL | : SAVE
: b b Lo | : AREAS
p ! P P Lo _:
DEDICATED : ~ =
MEMORY ~ ~
(SEE SUB-< | TV NO. 2 | > i
SECTION : | | i TH |
3.10) i TV NO. 1 | ! |
]]] 1
i i] 1
s | |_TSAP | ->|__TsaL |
i IV NO. 0 {-=>} ISA | i\ LATEST |
! I | FOR | | TSA |
} IV NO. 1 |-- | LEVEL | =>! IH | | FOR |
! b 0 i ¢+ | FOR | { LEVEL |
- R P {=- | LEVEL | ! 0 H
- e b0 |
: :
_1_IV NO. 63 |
] 1
1 i
: | TSAP | > TSAL !
S ->! ISA. ! , | LATEST |
{ FOR | =->] 1IH | 1 TsA '
| LEVEL | : | FOR | i FOR !
| 1 { + | LEVEL | | LEVEL |
I P A N S T B
: :
where IH = Interrupt Handler
IV NO. n = Interrupt Vector for Level No. n
NATSAP 0 - 3 = Next Available TSA Pointers
RHU = Reserved for Hardware Use
TH = Trap Handler
TSA = Trap Save Area
TSAL = Trap Save Area Link
TSAP = Trap Save Area Pointer
TV NO. n = Trap Vector for Class No. n
ISA = Interrupt Save Area

Figure 3-6 Trap and Interrupt Constructs

@::;

A,

H HONEYWELL INFORMATION | SPEC. NO. | SHEET | REV. H
| SYSTEMS ! 60149740 | 3= 51 | c |
TSA FORMAT
ISA

: : 0 15

|_TSAP_j~=>|_ TSAL I n

: : ! 7 8 ! D+t
{_TRAP # | COPY OF I | n+2
| R3 | o+3
| _INSTRUCTION 1ST WORD ! n+4
{ Z | o+5

1_B3 i1==>i_ A _| n+6
| | o+7
I_ P _| n+8
| { o+9
_ B3 _| o+10
! | n+11
H OPTIONAL H
: SOFTWARE H
- WORK -
: SPACE :

Figure 3-7 Trap Context Format When Using TSA Functionality

3.6.4 TSA Entries Descriptions

Descriptions for the TSA entries are:

1. TSAL = Trap Save Area Link, used to link TSA stack entries to either a pool
of TSAs or to the ISA.

2. TRAP # = An eight-bit number that identifies the trap. That is, TRAP # =
30(Hex) - Vector # as shown in Table 3-4.

3. COPY OF I = A copy of [I] at trap time.

4, R3 = A.copy of [R3] at trap time.

5. INSTRUCTION 1ST WORD = A copy of the instruction's first word. This entry
is undefined whenever the instruction's first word can not be fetched (e.g.,
1f a TV 15 or 17 is detected).

6. Z = Miscellaneous information. Its format is:

0 1 34 78 9 10 11 12 15
! i I !
alo ool B I | B |oO
H | ! |

—— —

e —
=
-3
H
7]

HONEIWELL INFORMATION { SPEC. NO.

— ——

SISTEMS ! 60149740 3=52 ! c !

where:

a. A defines whether the A field in words 6 and 7 of the Trap Context

Format is meaningful or not: for A = 0, the 4 field is meaningful; for

A = 1, the A field is meaningless.

b. BI is a four-bit index field that is meaningful when subwerd indexing

is specified in the AS. BI is meaningless on word and multiword

operations and when 4 = 1. BI can be viewed as being the exteasion of

the A field: together [A] and [BI] form an atom address.

For byte operand addresses, BI = X000, where X is the low-order bit of

the byte address followed by three Zeros.

For digit (packed decimal) operand addresses, BI = XX00, where IX are

the two low=order bits of the digit address followed by two zeros.

For bit operand addresses, BI = four low-order bits of the bit
address,

c. RN is the Saved Ring Number from S.RN of the Trapped procedure.
d. NT is the Nested Trap indicator (M6X or M6XE only).

e. IS is the Instruction Size (up to the instant of trap detection).

A o Mana o
o5 == dndub S

trap type

For TV02 trace traps, [A] points to the instruction following the jump or.

branch instruction, causing the trap.

£ A depends on the

J/ \\\

l\x; .

For recursive remote descriptor usage, [A] points to the second word of the

remote descriptor that attempted to point to another remote descriptor.

For an unauthorized reference to protected memory, reference to an
unavailable resource, and memory or bus error traps, [A] contains the
address causing the trap.

For CIP and SIP traps, on systems that have a separate processor for CIP
and/or SIP, A points to the CIP or SIP instruction.

NOTE

1. The above descriptions define the typical setting
of A for the specified trap types. If in certain
situations A cannot be defined, then the CSS sets
bit 0 of Z to one to indicate that A is meaningless.

2. For the other trap types, the address saved is
unspecified and bit 0 of Z is set to one to indicate
that A is meaningless.,

HONEYWELL INFORMATION
SYSTEMS

SPEC. NO.
60149740

—— e
- ——

SHEET { REV. i
3-53 | {

N

8. P = A copy of the program counter. The content of P is always a word
address and depends on the trap type:

For TV02 trace traps, [P] points to the next instruction to be executed as a
result of the jump or branch.

For CIP or SIP traps, on systems that have a separate processor for CIP
and/or SIP, P points to the next instruction to be executed, which is beyond
the CIP or SIP instruction which caused the trap.
For all other trap types, [P] points socmewhere beyond the first word of the
instruction that caused the trap. If the instruction is to be retried,
subtract from [P] the content of Z.IS.

9. B3 = A copy of [B3] at trap time.

10. OPTIONAL SOFTWARE WORK SPACE = n words that software may allocate in the TSA
for its own use,

Table 3-5 RTT and Trap

block) |

! RTT }
i]
]]
{CASE! [IV] | [TSAP] | ACTION ! COMMENT H
1]]]]]]
1]]] 1 1
| A4 | #NULL | #NULL | Execute RTT ! !
]]]] 1]
1]] i])
! B | #NULL | =NULL | Generate TV16 (Program | !
| | | | error) i |
| ! ! H ! !
i C | =NULL | X | P {== Address of IV | CSS posts a halt |
H] 1 ! ' ! or super halt]
! TRAP f
]]
1 1
{CASE{[NATSAP]! ([TV] | [IV] | ACTION ! COMMENT |
1] 1] i] 1
]] 1]] 1]
! D | =NULL | X ! X ! P <== NATSAP | Same comment as C |
H] ! ! | H H
! E | #NULL | =NOULL | X | P == Address of | Same comment as C |
! ! 1 H | TV] i
| ! ! ! | H |
' F | #NULL | #NULL | =NULL | P <-= Address of | Same comment as C |
H H !] i IV | '
! H H | H i H
1 G | #NULL | #NULL | #NULL | Execute Normal ! }
! i (Not | ! | Trap ! !
H ! last | | |] |
| | trap | ! ! ! |
| | Dblock)| ! ! | !
H ! ! H 4 { !
' H | #NULL | #NULL | #NULL | Level 2 interrupt| !
! ! (Last | H | (after trap con- | !
| i trap | | | text is saved) | !
] 1] 1]] i
i i !] i]

HONEIWELL INFORMATION | SPEC. XNO. | SHEET
i SYSTEMS | 60149740 | 3-54
(IITI Y
START *
ARRBRAR

1

i

v
ASSIGN THE APPROPRIATE |
TRAP # TO THE TRAP !

]
v
! PROCESSOR PROCESSING |
! THE TRAP DETERMINES |
| ITS CPU # !
H
v
(STORE TRAP FRAME)
(IN TSA)

|

N4
| USING CPU # AND CURRENT |
| LEVEL #, COMPUTE THE VA |
{_OF THE IV AND FETCH IT |

|

!

¥

/ \ ES sSassssssesas
< WAS - A TRAP Vevwawew=>® HALT OR #
___ENCOUNTERED 2?2 / # SUPER HALT #
I NO SRABRBLRBRAS
! ’ *
v YES
. < IS [IV] = NOLL ? > >
! NO

v
| DETERMINE THE NATSAP # |
! BY READING ISM2 |

i
v
/ \ IEs
< WAS A TRAP >
\ ENCOUNTERED 2?2/
| NO
!
v
0o
o(A)o
o0
(Skeet 2)

S R

Figure 3-8 Trap Sequence Flow Chart (Sheet 1 of 4)

HONEYWELL INFORMATION ! SPEC. NO. | SHEET | REV. !
SYSTEMS ! 60149740 i 3=-55 i !
Q0
o(A)o
o0
i
|
v
| USING CPU # AND NATSAP #, |
! COMPUTE THE VA OF THE !
! NATSAP AND FETCH IT !
1
1
|
v
/ \ YES SRR RRBRRES
< WAS A TRAP = Dweecee=o>® HALT OR #
___ENCOUNTERED 2 / ® SUPER HALT #
= NQ RSN RRARES
! -~
v YES
<_IS [NATSAP] = NULL ? > >
! NO

v
| "USING NATSAP, STORE |
| THE TRAP CONTEXT* |
|___IN THE TSA !

P R—

. en e e ey SR Geau tmew = S ——

/ \ IES
< WAS A TRAP >
__ENCOUNTERED ? _/

| NO
]
v
oo
o(B Jo
co
(Sheet 3)

#Refer to Figure 3-7

Figure 3-8 Trap Sequence Flow Chart (Sheet 2 of 4)

HONEIWELL INFCORMATION

SPEC. NO. | SHEET
SYSTEMS]

60149740

oo
o(B)o
)

q -

| USING CPU # AND TRAP #, |
| COMPUTE TEE VA OF THE |
! Ty AND FETCH IT |

!
|
v
/ \ YES FRFFERVIERS
< WAS A TRAP >emmwmewa>® HALT OR @
__ _ENCOUNTERED ? / # SUPER HALT #
NO FRIERERIRRER

' -~

v
<_IS [TV] = NULL ?
[NO
v
UNLINK TSA FROM TSA
POCL AND LINK IT TO
THE ISA AS FOLLOWS:

4
v

- s W e B S P Seen e Sm— Sam Gmaw e Svem S

(TSAP] -=> TEMP

raramean —
Livalwas } —-) TSAP

[TSAL] ==> NATSAP
[TEMP] -‘-> TSAL
v
/ \ IES
< WAS A TRAP pu.
__ENCOUNTERED ?__/

NO

e Sew naw Gmae Goea v mews Sww

v
| COMPUTE ADDRESS OF |
| TEE A FIELD IN THE !
: f

TSA, [TSAP] + 6

]
v
oo
o(C)o
oo
(Sheet 4)

Figure 3-8 Trap Sequence Flow Chart (Sheet 3 of 4)

RN

-

£

HONEYWELL INFORMATION { SPEC. NO. | SHEET

SYSTEMS | - 60149740 | 3-57 i
o0
o(C)o
oo
!
v
| ADDRESS OF THE A FIELD |
! IN THE TSA -=> B3 |
| |
i
v
| TV.SN => P.SN |
| TV.DSP => P.DSP |
|
\4 NO
<_IS TV.DSP = ODD ? Dw====
| IES H
v !
! ! H
|_11 ~=> S.BN | i
] !
i<
v
NO / IS TSA USED THE \ YES
cemmeee={ LAST ONE IN THE TSA POOL de=eeecmeca=
! ____([TSAL] = NULL) 2 / |
v v
| START TRAP HANDLER | | GENERATE A |
| EXECUTION AT | | LEVEL 2 .
) CURRENT LEVEL ! |_INTERRUPT |
: S48 :
>% END ¥
SSAEE
Figure 3-8 Trap Sequence Flow Chart (Sheet 4 of 4)

! HONEYWELL INFORMATION
SYSTEMS

SPEC.

-
- -

NO.

60149740

——— —

3-58

3.7 INTZRNAL TIMERS

O

A system timer that ticks at 120 Hz (every 8.33 milliseconds) is a
standard CSS feature., This timer is used to implement real time clock and
watch dog timer functionality. For this purpcse, a set of words in memory is
defined as follows:

! LOCATION | MNEMONIC | DESCRIPTION !
| ! | i
| 000014 | RTCI | Real time clock initial value. Format is !
! | | 16-bit unsigned integer. !
| ! H]
! 000015 | RTICC | Real time clock current value. Format is !
| ! | 16=bit unsigned integer. !
H | | !
! 000016 | RTCL | Real time clock interrupt level. Format is:|
g - | I !
] | ! 0 g 10 15 |
i H |]
H H | t10000000000 | L VvV L H
H ! i !
| i ! H
{ 000017 | WDIC | Watchdog timer current value. ~Format is i
i] i !

16=bit unsigned integer.

3.7.1 REAL TIME CLOCX
When RTC is turned on by the RTCN generic instruction each tick of the
internal timer will cause the following to occur:

1. [RTCC] <== [RICC]=1

2. If [RTCC] = 0, then [RTCC] <== [RTCI] (i.e., initialize) and generate
an interrupt to level specified by [RTCL]. If the interrupt is of
lower priority, i.e., [RTCL] > [S.CL], it is scheduled for service when
the level beccmes low enough.

¥hen the RTC is turned off via the RICF generic instruction, no further
decrementation of the counter takes place.

',

AEw,

<,

SHEET { REV.
3-59 ! C

SPEC. NO.
60149740

HONEIWELL INFORMATION
SISTEMS

—— -

3.7.2 WATCHDOG TIMER (WDT)

When the WDT is turned on by the WDTN generic instruction, each tick of

the internal timer will cause the [WDTC] to be decremented by 1. If [WDTC] =

0 and the CSS running level is greater than 1, i.e., [S(10:15)] > 1, then a
level 1 interrupt is generated., If [WDTC] = 0 and [S(10:15)] = 0, then the
WDT interrupt is scheduled for service when the level is low 2nough. After
WDT runout, the [WDTC] continues to be decremented.

When the WDT is turned off via the WDTF generic instruction, no further
decrementation of the [WDTC] takes place.

3.8 CSS INITIALIZE OPERATIONS
The following Initialize operations are supported by the CSS:

o START = Action taken following a power-up when the content of main
memory is not valid.

0 BRESTART - Action taken following a power-up when the content of main
memory is valid.

o SCF/SYSTEM INITIALIZE - Action taken following the activation of Dump

and Control-I from the SCF keyboard. This operation is the equivalent
of a START with no change in the state of the power supplies. All the

system units, including the SCF, get initialized.

0 SYSTEM INITIALIZE - Action taken following the activation of Master

Clear from the SCF keyboard. All the system units, except the SCF, get

initialized.

© CSS INITIALIZE - Action taken following the activation of CSS Clear
from the SCF keyboard. This initialize operation affects only the
selected CSS.

In all cases the above operations are directed by the SCF. Refer to the
SCF EPS=1 for a description of these operations.

HONEIWELL INFORMATION

SYISTEMS

| SPEC. NO. | SHEET REV.
1

1
]
i 60149740 l 3-60 ! c

3.9 BOOTLOAD DEVICES

The bootlocad devices supported and the boot record formats are given in

Table 3=6.
Table 3-6 Bootload Devices and Record Formats
DEVICES RECORD FORMAT
Diskette Data portion (128 bytes) of track 0, sector 0

(first sector).

Disk Devices

Data portion (2%6 bytes) of cylinder 0, track O,
sector 0

Magnetic Tape

.= Streamer
.= 9§ track PE

1600 cpi
« 9 track GCR
6250 cpi

One record or less., The record must be the first
after BOT,

L64 Front End
Processor
Coupler

Refer to the Level 64 FEP Coupler EPS=1.

L66 Front End
Processor
Coupler

Refer to Level 66 FEP Coupler EPS=1, Document No.

60132445,

Communication
Boot Adapter

!
'z
:
5
i
5
i
x
|
!
x
!
|
z
!
|
i

One record 8K bytes or less.

e . G S Gmm S GSus GEas Sren Gy GSay BAGR ShEe Geen Grer et GEaE W ae e Serm Gewr GBee e thae Gewe awen

O

(

™

HONEYWELL INFORMATION
SYSTEMS

SPEC. NO. SHEET | REV.
!
i

3-61

60149740

3.10 CSS DEDICATED MEMORY AREAS

Each configured CSS requires an area of 256 dedicated locations. These
are allocated as shown in Figure 3-9.

LOCATION SEGMENT O WORD # 00000 DEDICATED MEMORY

]
[]
|= 256 words

i i
000FF | FOR PROCESSOR ZERO |
: f=-
00100 | DEDICATED MEMORY |
001FF | FOR PROCESSOR ONE |
] |
i i
00200 | DEDICATED MEMORY |
002FF | FOR PROCESSOR TWO |
1 1
i ==
00300 | DEDICATED MEMORY |
003FF | FOR PROCESSOR THREE |

Figure 3-9 CSS Dedicated Memory Areas

The dedicated memory areas are stored in segment zero and require that
their VA = PA. This is necessary to satisfy the SCF which in certain cases
needs to access the Display Address location, in dedicated memory, without
going through an address translation process.

At Start time, the CSS QLTs must insure that PAs 0 - 128 Kbytes are error
free by reconfiguring main memory if needed (M6X or M6XE only).

Figure 3-10 shows the entries in a dedicated memory area. All entries are
processor number relative except for the memory error count. The memory error
count is updated by all CSSs but is maintained only in processor zero's
dedicated memory area..

! HONEYWELL INFORMATION ! SPEC. NO. | SHEET ! REV.]
! SYSTEMS ' 60149740 | 3=-62 ! E | ﬁﬁm
ADDRESS
00 | POWER FAIL !
01 ! RESTART !
02 ! AREA |
03 ! i
- RHU -
05 ' !
06 ! H
- RSU -
09 ! !
oA _ |
0B | NATSAP 3 !
oc — i
oD ! NATSAP 2 !
0E - i
OF ! NATSAP 1 H
10 i |
11 ' NATSAP 0 |
12 ! i
13 ! FLBP *!
14 ! RTC INITIAL !
15 ! RTC CURRENT |
16 ! RTC INT. LVL. .|
17 ! WDT CURRENT ! —~
18 - — (
15 : RSU ! -
#% M6X and M6XE only 1A i__ DISPLAY *¥|
else RFU 1B ! ADDRESS !
1C i i
1D i___ RSU i
Supported only in 1E !]
processor zero's 1F | MEM. ER. COUNT #!
dedicated memory 20 N R ——. > 15 | | LEVEL
area, 21 | 16 ===ewe=> 31 | |- ACTIVITY
22 I 32 emecaa- > 47 | | FLAGS
23 | U8 —mmmmem > 63 11
24 - |
25 ! TV #46 H
26 ! . i
7D] . !
TE i |
TF ! TV #1 {
80 . i
81 ' IV #0 |
82 i |
83 | IV #1 !
84 ! . !
FD ! . !
FE ! ! ™
FF ' IV #63 ! @/

Figure 3-10 CSS Dedicated Memory Area Content (Sheet 1 of 2)

e

! HONEYWELL INFORMATION | SPEC. NO. | SHEET | REV. |
' SYSTEMS | 60149740 | 3=-63 ! E H
where:

NATSAP 0 - 3 = Next Available TSA Pointers (1 = 3)

FLBP = Firmware Load Buffer Pointer (M6X and M6XE only). This
pointer (consisting of a PA) points to a 2K buffer which is
used by the software to load firmware, into I/0O controllers
which have a loadable control store, during a restart
operation.

RTC INITIAL = Real Time Clock Initial Value.

RTC CURRENT

RTC INT. LVL.

WDT CURRENT

DISPLAY ADDRESS

MEM. ER. COUNT

Real Time Clock Current Value.
Real Time Clock Interrupt Level.
Watch Dog Timer Current Value.

Contains the PA of a memory location whose content is
displayed, by the SCF, when so requested by the operator.

Memory yellow Error Count. This count is updated by the
CSS at every TIC of the Real Time Clock if a Megabus yellow
condition was detected since the last TIC..

Figure 3-10 CSS Dedicated Memory Area Content (Sheet 2 of 2)

REV.

SPEC. NO. | SHEET !
| 3- 64 i E

60149740

g

N

! HONEYWELL INFORMATION
! SYSTEMS

3.11 ADDRESS SYLLABLE

The Address Syllable (AS) field of an instruction is used to compute an
operand address., The AS maps are identified as follows:

0o AS Map 1 - The AS map available to the general instruction set (refer
to Figure 3-11). The map as shown is as defined in a M6X and M6XE.
Note that CRYU1E and MSXE models support a subset, as indicated.

o AS Map 2 - The AS map available to the commercial instruction set
(refer to Figure 3-12). This map may also be used by non commercial
instructions in a M6X and M6XE. The map as shown is as defined in a
M6X and M6XE. Note that CRY1E and MSXE models support a subset, as
indicated.

o0 AS Map 3 - The AS map available only to a M6X and M6XE that allows
access (with checking) to the active frame of a stack, and provides for
indexing operations using a 32-bit index register (refer to Figure

3-13).

The format of any AS is as follows:

9 1112 15

AS ! m | n ! \

where m, n = coordinates of AS map.
The AS can take one of the following forms:

Register AS (RAS)

Immediate Operand (IMO)
Memory AS (MAS)

Remote Descriptor Specifier.

0O 00O

Figures 3-11 through 3-13 give the representations of AS MAP 1 = 3
respectively. Table 3-7 lists a set of definitions to facilitate these AS
descriptions.

Entries in Figures 3-11 to 3-13 are mnemonics for the various address
forms available and are described in subsections 3.11.1 through 3.11.4.

A

HONEIWELL INFORMATION | SPEC. NO. | SHEET | REV.

]
]
SYSTEMS ! 60149740 | 3-65 | c i

'\ n! | | | | ! |
I v] o |o1=7 | 8 ! 9-B o ! D-F |
fm\ | | ! ! |] |
| | | ! ! !
i 0 | IMA } Bn 1 eIMA ! 6B(n=8) i
! i | (Note 1)1 | |
| | ! 1 1 1
! 1 | IMA+R1 | Bn+R1 | @IMA+R1 | €B(n-8)+R1 !
| 1 H | ! |
! 2 | IMA+R2 | Bn+R2 | €IMA+R2 | 6B(n-8)+R2 |
{ | | H | !
| 3 | IMA+R3 | Bn+R3 | @IMA+R3 | @B(n-8)+R3 !
i | H i i]
| 4 | P+«D | BneD | 8[P+D] | €[B(n=-8)+D] |
H H ' H i !
| 5 | RFU ! REG | RFU i B(n=8) | AS23%* | B(n-C) |
! | (TVO5) !(Note 2)] (TVOS) | + ¥vR1 (Note 3)} + R1T |
! | ! ! | ! | !
! 6 | ¥FT or | {Bn | FT+D®* | B(n-8) | EII1® | B(n-C) |
] i FIT® | ! ! + ¥R2 {(Note 4)} + R2T |
i H H H i ! : i
I 7 | IMO | Bal | IV+D | B(n-8) | EII23%* | B(n=C) !
| |(Note 5)! | ! + VR3 |(Note 6)| + R3T |

#Not supported in CRU1E & MSXE (TV0S)
NOTES

Map 1 entries, except for Bn and REG (SAt1, 2, 3), may not be used by
intrinsic scientific instructions, else TV16.

REG = Rn except as noted in subsection 3.11.1.1.

AS23 may be used by general or non-intrinsic scientific instructions and
specifies that AS Map 2 or 3 is to be used.

EII1 identifies an extended integer instruction and specifies that AS map 1
is to be used.

IMO may not be used by the LXA, SAVE or RSTR instructions, the AAS of an
IOLD instruction (except CRU1E), nor any extended integer instruction whose
data type is less than a word. If IMO is used in any of these cases, then a
trap, TV16 is posted.

EII23 identifies an extended integer instruction and specifies that AS Map 2
or 3 is to be used.

Figure 3-11 AS Map 1 Format

HONEIWELL INFORMATION i SPEC. NO. | SHEET | REV.
]
1

SISTEMS] 60149740 3= 66 | C
O
i \n}] | i H
PN 0 H 1=T | 8 i 9-F !
R SN H | | |
H] | ! i]
i o | | Bo+D+0 | P+D+0 | @[B(n=-8)+D]+0 |
! | | (Note 1) | ! |
| e | ! | H H
I B | Bo#D+R1+0 | P+D+R1+0 | 8[B(n=8)+D]+R1+0 |
| | H] ! |
2 | REMOTE | Bn+D+R2+0 | P+D+R2+0 | 8[B(n=8)+D]J+R2+0 |
e | H H i !
i3 | | Bo#D+R3+0 | P+D+R3+0 | 6[B(n=8)+D]+R3+0 |
- | wwe==| DESCRIPTCR | | ! |
S S | Bo+D+R4+0 | 6[{P+D]+0 | €[{B(n=8)+D]+RU+0 |
| m———| H !] !
i 5 | | Bn+D+RS+0 | AS3 #| 8[B(n-8)+D]+R5+0 |
| ! H | (Note 2) | H N
e | ! H | "/
i 68 | i Bo+D+HO+0 | P+BD+0 | 8(B{n-8)+D]+R0+0 |
| ——| | |] H
L S ! Bn+D+RT+0 | IM0 ! 8[(B(n~=8)+D]+R7+0 |
H | ! | (Note 3) | |

#Not supported in CRU1E & MSXE (TVOS)

NOTES
Map 2 entries are not applicable to non CIP instructions in a CR41E and MS5IE.

Map 2 entries may also not be used by M6X and M6XE intrinsic scientific
instructions, else TVi6.

1. 0 = offset (applicable only to M6X and M6XE subwcrd instructions, see Table
3=7 for further clarification).

2. In a M6X and M6XE this entry is available only'to commercial instructiomns,
else TV16.

3. In a M6X and M6XE this entry is available only to commercial instructions,
else TV16.

Figure 3=12 AS Map 2 Format @

#

HONEIWELL INFORMATION

i | SPEC. NO. | SHEET ! REV. i
! SYSTEMS ! 60149740 | 3-67 ! E |
i\ n| ! ! ' !
N 0 | 1=7 | 8 | 9-F !
m\ | ! | | i
! ' ! ! ' |
N B ! FT+D+Rn+0 | @FT+0?7 ! '
! ! ! (Notes 1 & 2)| ! 1
R] ! | ! H
o1 ! Bn+D+K140 ! ! 1
leommm ! ! ! RFU | i
! 2 | REMOTE | Bn+D+K2+0 | (TVOS5) | !
Jommmmm | i i i RFU |
{ 3 | DESCRIPTOR | Bn+D+K3+0 | ' !
e ! !] -1 (TV05) |
P4 ! @[FT+D]+Rn+0 | €[FT+D]+0 | !
| ! | H ! !
b5 | ! = Kn H ! !
i ' i (Notes 2 & 3)| i |
jmm——— ! ! ' RFU ! !
L6 | I (Tvo5) | !
| oo i ! RFU (TV05) ! | i
T] | | H
NOTES

Map 3 entries are not applicable to a CR41E and MSXE.

Map 3 entries may also not be used by M6X and M6XE intrinsic scientific
instructions, else TV16.

1. offset (applicable only to M6X and M6XE subword instructions; see Table

0 =
3=-7 for further clarification).
2. This AS may not be used by M6X and M6XE commercial instructions, else TV16.

3. = Kn specifies a Kn except as noted in subsection 3.11.1.2.

Figure 3-13 AS Map 3 Format

! HONEYWELL INFORMATION | SPEC. NO. { SHEET ! REV. i
! SYSTEMS ' 60149740 | 3-68 ! E |
\ W4
Table 3-7 Address Syllable Notation For Word Address Forms (Sheet 1 of 2)
{NOTATION! DESCRIPTION i
1 1 1
1 1 i
! D i D indicates a 16-bit signed displacement in words_that i
I | follows the address syllable, where -215 < D < 215-1 |
1] 1
] i]
| BD | BD indicates a 32-bit signed displacement in words that |
| | follows the address syllable, where -231 < BD < 231-1, !
] 1 1
]]]
!] | Indirect operator !
]] 1
1]]
! +R | Specifies indexing in atoms where -215 < R < +215-1 i
| i |
| +K | Specifies indexing in atoms where -231 < K < 231-1 i
1 1]
t] 1
| FB | FT + L !
1 i]
1 1]
H FT | Address of the top element of the current active frame in !
! | the stack !
1 1 1
' i]
| L { Length in words of the current active frame in the stack !
1] 1
]]]
! H ! Auto increment (BT, RT, or FT? indicates post-incrementation) |
] { 1
1 ! i -
! v | Auto decrement ({B, %R, or ¥FT indicates pre~decrementation) | (\\\>
1 1 | .
1 1 1)
! IMA ! Immediate Word Address !
]]]
1 1)
! IA | Intermediate word Address '
| |]
! B | Base Register !
]] 1
i] .]
H K i Double Word Operand Register '
1] [
] 1]
H R | Word Operand Register !
]] . 1
1] i
| P | Program Counter. For the purpose of P Relative addressing, !
! { the following definition is used: !
1 1 1
i 1 i
! ' Pd - Points to the leftmost word of the displacement. The |
! ! displacement maybe in line or in a remote descriptor. (At |
! ! the completion of an instruction, P points to the first !
! H word of the succeeding instruction) !
1 [} 1
i 1 !
! () | Logical Binding !
1 1]
[} i]
N | Contents of !
1 1 1
i i i
! + | Addition operation |
[} 1 1
] 1]
! IMO | Immediate Operand ! (\
1 1) .
i 1 1)/
! Iv | Interrupt Vector (a word address) i
i 1 1]
i i i

et

_—

! HONEYWELL INFORMATION | SPEC. NO. | SHEET
1
i

! SYSTEMS ! 60149740

| REV.
3-69 |

c |

Table 3-7 Address Syllable Notation For Word Address Forms (Sheet 2 of 2)

NOTATION | DESCRIPTION

0

L

:
]
!
]
i
!
i
|
!
!
i
]
!
|
!
!
|
|
! Is replaced by
|

|

EA Effective Address

i
!
H
i
]
|
i
{
|
|
]
| = For byte inmnstructions LDH, STH, CMH, ORH, ANH, LLH, IOH,
|
|
!
i
|
i
|
i
|

Specifies an offset in bits. O is recognized only when exe-
cuting subword instructions (Figure 3-14):

- For bit instructions (LB, LBF, LBT, LBC and LBS), O
specifies an offset in bits of 0 < 0 £ 15.

- For digit instructions (packed decimal operands), 0 (C1, C2)
specifies an offset of either 0, 4, 8 or 12 bits.

IOLD, and commercial string operands (where 0 = C1),
only the high order bit of the offset field is used.
Thus, O specifies an offset of either 0 or 8 bits.

- For all other 1nstruétions, 0 is ignored.

et e Tmen e GReD SoCE Gm S Gewe mes e M G BE GwE S e B men Cwem

In order to assure upward instruction compatibility, the three AS maps are

referenced as follows:

o For general instructions:

" The AS field of a general instruction can directly reference an entry in AS

Map 1, with the exception of the escape entries EII1 and EII23.

The

instruction can also use entries from AS Map 2 or 3, by specifying entry

AS23 (not applicable to CRUTE and MS5XE models).
a word to the instruction that specifies:

- An offset field, if applicable,
-~ The AS map number (AS Map 2 or 3),and

- The entry in the selected AS map (2 or 3).

See Figure.3-14.

AS23 adds

i HCNEYWELL INFORMATICN | SPEC. NO. | SHEET i REV, !
! !
i i

SYSTEMS ! 601497% | 3-70 c |
0 89 15 If AS does not equal C
INSTRUCTION escape codes EII1, EI123
WORD 1 ! | iS | or AS23, then the AS is
used tc select an entry
in AS Map 1.
0] 34 T 89 15 If AS = AS23, then AS
INSTRUCTION specifies that the
WORD 1 H | 4823 | following word be inter-
| - preted as shewn.
WORD 2 | OFFSET | RFU | MAP# | AS(2, 3) |

where MAP# = 0 ==> AS Map 2; MAP# = 1 ==> AS Map 3. AS(2,3) - word 2, bits
9-15 may not specify AS3 or IMD fram Map 2. If it does, then TV16 will
result,

Flgure 3«14 AS Interpretation for General Instructions

o0 For Extended integer instructions (not applicable to CR41E and MSXE models):

TN
The AS field values, EII1 and EII23 identify the opccde as belonging to the |
extended intsgsr instructicn subsst of the instruction set, The pext word ~

contains the AS. to be used for the instruction, and i1s interpreted as shown
in Figure 3=13.

0 1 34 89 15 .
The escape AS

INSTRUCTION | 1 | K# | OP CODE | EII1 or | (EII1, EII23)
WORD 1] | | | BEII23 | and the Map number
| i in Word 2, bit 8,
WORD 2 | INSTROCTION | MAP | AS | specifies which of
i SPECIFIC | # | (1,2,3) | ‘the three AS maps
is to be used.
0 7 8 9 15
ESCAPE AS MAP#
(Word 1, bits 9=15) (Word 2, bit 8)
EII1 0 = RFU (TV0S)
EII1 1 = AS Map 1
EII23 0 = AS Map 2
BIIZ3 1= AS Map 3

AS(1, 2, 3 = Word 2, bits 9=15) may not specify AS23, EII1 or EII23 fram Map
1 or AS3 or IMO fram Map 2. If it does, then TV16 will result.

_\\\
Figure 3-15 AS Interpretation for Extended Integer Instructions ' (W

() | HONEYWELL INFORMATION.
) ! SYSTEMS |

{ SPEC. NO.

| SHEET

i
60149740 | 3-71 !

¢ For Commercial Instructions:

The AS field of a data descriptor can directly reference an entry in AS MAP

2 (note the CRUIE and MS5XE exceptions).
entries fram AS MAP 3 by specifying entry AS3 (M6X and M6XE only).

A data descriptor may also use
AS3 adds

a word to the data descriptor which is interpreted as shown in Figure 3-16
Refer to subsection 7.2 for more specific information.

4] 1 2 3 T 8 9 15
WORD 1 | COMMERCIAL INSTRUCTION OPCODE |
WORD 2 Jc1}c2i¢3) L [T | A | .: DATA
:= DESCRIPTOR
WORD 3 | DISPLACEMENT or IM ! : (EXAMFLE)
! HI
:_ DATA
] ! : DESCRIPTOR

If AS does not equal code AS3, then the AS is used to select an entry in A4S

MAP 2,
0 1 2 3 T 8 9 15
WORD 1 | COMMERCIAL INSTRUCTION OPCODE |
WORD 2 | RFU ! as3 | : A
: DATA
WORD3 JC1}c2{c3] L | T ! AS | :- DESCRIPTOR
: (EXAMPLE)
WORD 3 |} DISPLACEMENT s
! |
:_ DATA
H | : DESCRIPTOR

If AS = AS3, then the rest of the word containing AS3 is RFU and the

following word is treated as the descriptor.
used except for FT+D+Rn+0 and =

All entries in AS Map 3 may be
Kn which, if used, results in a TVOS5.

Figure 3-16 AS Interpretation for Commercial Instructions

-~

HONEIWELL INFORMATION | SPEC, NO. | SHEET

REV,

——
Q
———

SISTEMS ! 60149740 | 3-72

0 FPFor Scientific Instructions

3.11.1

- Nop-intrinsic scientific instructions

The AS field of a non-intrinsic scientific instruction can directly
reference any entry in AS Map 1, with the exception of the escape entries
EII1 and EII23. The instruction may also use entries fram AS Map 2 or 3,
by specifying entry AS23. AS23 adds a word to the instruction which is
interpreted as shown in Flgure 3=134, The offset field does not apply to
scientific instructions and should be considered as RFU, In CR41E and
M5ZE models, only AS Map 1 is applicable.

- Intrinsic scientific instructions (M6X and M6IE only) -
The AS field of an intrinsic scientific instruction may only specify the
entries Bn and REG (SA1, 2, 3) of AS Map 1. AS Map 2 and Map 3 may not
be used else TVOS results.

Register AS (RAS)

RAS addresses a register which is the source or destination for the operand.
Two entries specify this form:

.

o

AS Map 1 entry REG (m= 5, 0 = 1=T)
AS Map 3 entry=Kn (m=5, n = 1=7).

£
\

Interpretation of these entries depends on the instruction type.

3.11.1.1 AS MAP 1 ENTRY REG

The entry REG = Rn except as follows:

o

Information transferred between an SA and an int'eser register (R) is con- (\
verted as appropriate from flcating to fixed form or vice versa.

REG is illegal (TV16) for instructioms LAB, JMP, LNJ, ENT, SAVE, RSTR, LIA
and the ICLD=AAS.

REG is illegal (TV20) for scientific instructions SCZD and SCZQ.

REG = Bn for the instructions LDB, STB, SWB, CMB, CMN and extended integer
instructions specifying ADDRESS for data type.

REG = R2/R3, R4/B5, R6/RT, for n = 3, 5, T respectively for the double word
instructions AID, LDI, SID, SDI and extended integer instructions specifying
double word for data type. For n= 1, 2, 4 and 6, results are undefined.
REG selects SA1, 2, 3 for n= 1, 2, 3 for all scientific instructions.

REG selects R4, ’5, R for n= 4, 5, 6; and R6/RT for n = T for

non-intrinsic scientific instructions. R4, RS, B6, R6/HT cannot be selected
by the scientific instructions SNGD and SNGQ else post a Trap TV20.

/
e

N

_—

| HONEYWELL INFORMATION | SPEC. XO.
: SYSTEMS ! 60149740

LO—

SHEET i REV. i
3-73 ! c i

3.11.1.2 AS MAP 3 ENTRY = En
The AS selects a K register. It is illegal (TV16) in the following cases:

o The instructions LAB, JMP, LNJ, ENT, SAVE, RSTR, LXA and all I/0
instructions;

o0 Any instruction whose operand is less than a word;

0 Any extended integer instruction whose data type is other than double-word
or address; and

o Commercial instructions.
It is illegal (TV20) for the scientific instructions SCZD, SNGD, SCZQ and SNGQ.

Information transferred between an SA and an integer register (K) is converted
as appropriate from floating to fixed form or vice versa.

3.11.2 Immediate Operand

The IMO form specifies an immediate operand, of the appropriate size, which
follows the address syllable. AS Map 1 and 2 may specify IMO (Map 2 only for
commercial instructions; Map 1 only for general, scientific, arnd EII instructions,
else post a TV16).

In general instructions, the size of the IMO is determined by the instruction
opcode. In Extended Integer and scientific instructions, the size of the IMO is
determined by the data type field. In commercial instructions, the size of the IMO
is always one word.

If IMO is interpreted as an address, then it uses a word address form.

The IMO form may not be used by the LXA and LSO instructions or any EII
instruction using a data type with atom size less than a word else a TVi6 is
posted.

The IMO form may also not be used by the SST and SSW scientific instructions
else a TV20 is posted.

The IMO form when used in a store operation will cause alteration of procedure.

3.11.3 Memory AS (MAS)

These forms specify an Effective Address (EA) of a memory location. MAS can
have the following forms:

o P Relative

o Immediate Address (IMA)
o0 B Relative

o IV Relative.

0 Stack Relative.

! HCNEYWELL INFORMATICN ‘} SPEC. NO. | SHEET . | REV.]
H SISTEMS } : 60149740 H 3=-74 i c i
AT
. ' N
3.11.3.1 P RELATIVE MAS
The follcwing AS entries specify P Relative MAS address forms:
o0 Fram AS Map 1:
B+D - EA is formed by adding D to Pd.
8[P+D] - The EA is contained in the location pointed to by Pd+D.
o Fram AS Map 2:
P+D+0 - EA is formed by first adding D to Pd, and then concatenating to
this word address, the offset Q.
P+D+Rne0 - EA is formed by first adding D to Pd, then concatenating to
this word address the offset 0, and lastly adding the atam
index specified in Rm. '
@(P+D]+0 - IA is a pointer read fram the location defined by Pd+D. The
offset O is then concatemated to IA to obtain the EA.
P+BD+0 « EA i3 formed by first adding BD to P4, and then concaterating
to this word address the offset O, =
3.11.3.2 IMMEDTATE ADDRFSS MAS (IMA)

The following AS entries in AS Map 1 specify IMA MAS address forms:

o IMA
o 6IMA

o IMA+Pm

o @IMA+Rm

Immediate address, The EA is contained in the location following
the instruction.

€ i1s the indirection operator. The EA is contained in the
location pointed to by IMA.

The EA is IMA indexed by the scaled contents of Rhm.
The EA is obtained by adding the scaled contents of Hm to the

contents of the location pointed to by IMA (indirect post
indexing).

3.11.3.3 B RELATIVE MAS

The following AS entries specify B Relative MAS address forms:

o Fram AS Map 1:

Bn

€B(n=-8)

Bo+Rm

- The EA i3 contained in register Bn,

- The EA is contained in the memory location pointed to by ({\

- The EA is obtained by adding the scaled contents of the
index register Sm to the contents of Bn.

i HONEYWELL INFORMATICN

| SPEC. NO. | SHEET | REV, i
! SYSTEMS ! 60149740 } 3=-75 i c |
€B(n-8) +Fm - The EA is obtained by adding the scaled contents of the
index register Rm to the contents of the location pointed
to by B(n=-8).

Bo+D ~ The EA is formed by adding D to the contents of Bn.

€[B(n-8)+D] - The EA is contained in the location pointed to by

yBn - The EA is contained in Bn after the contents of Bn is
decremented by One#,

Bn? - The EA is contained in Bn, The contents of Bn is incre-
mented by One®, The incrementation takes place after EA
formation and prior to execution of the opcode.

B(n=C)+R(m=-4)T - The EA is obtained by adding the contents of B(n=C) with
the scaled contents of index register R(m=-4), After EA
formation and prior to execution of the opcode, the index
reglster is ineremented by One.

B(n=-8)+¢R(m-4) ~ The contents of the index register R(m=-4) is decremented

o Fram AS Map 2:

Bo+D+0

6{B(n-8)+D]+0

B+ D+ Rm+ O

é({B(n=8)+D]+Rm+0

o Froam AS Map 3:

Bo+D+Km+0

by One and then scaled and added to the contents of
B(n=-8) to form the EA.

- EA is formed by first adding D to Bn and then concate~
enating to this word address the offset 0.

- JA is a pointer read fram the location defined by
B(n=-8)+D, The offset 0 is then concatemated to IA to
obtain the EA, ' .

~ EA is formed by first adding D to Bn, then concatena-
ting to this word address the off'set 0, and lastly
adding the atan index specified by Rm.

IA i3 a pointer read fram the location defined by
B(n=8)+D. The offset 0 is then concatenated to IA, and
lastly the atom index specified by Rm is added to ob-
tain the EA.

- EA is formed by adding D to Bn, then concatenating to
this word address the offset O, and lastly adding the-
atam index specified by register Xm.

#Or more, depending on operand size.

HONEIWELL INFORMATION | SPEC. NO. | SHEET ! REV.
SISTEMS ! 60149740 { 3=-76 { c

-——

3.11.3.4 IV RELATIVE MAS

The following entry in AS Map 1 specifies the IV relative MAS address form:

IV+D - The IA is the contant of the location defired by the Interrupt Vector
for the current level. D is added to IA to obtain the EA.

3.11.3.5 STACK RELATIVE MAS (M6X and M6XE only)

The following entries specify stack relative MAS address forms. For checking

conditions, see subsection 3.4.

o From AS Map 1:

YFT?: The vFTT AS is opcode dependent. As a function of the opcode
used, the active frame will either be pushed (4), popped(1),
or a Trap 16 (program error) will result. The criteria for
determining what operation applies are as follows:

de

5.

Co

All store instructions imply PFUSH.

A1l read-write instructions and the following instructions result
in a Trap 16:

LINK JUMP (LNJ)
JUMP (JMP) o
ENTER (ENT)

LAB

LA

I0 (DAS)

Ali other inst:uctions imply POP.

See Table 3-8 for the effect of the 4?T1 AS on all the
the pertinent general, EII and scientific instructions.

A PUSH (4) operation implies that an operand is to be
be stored in the active frame., Consequently, the active frame must

be enlarged accordingly. Following the enlargement of the frame,
the new "acquired"™ space is used to store the operand.

The frame enlargement is in words. Consequently, if a byte is to
be stored, then the frame is enlarged by one word, and the data is

left=justified within the word. If an address is to be stored,
then the frame is enlarged by two words.

(' ! HONEYWELL INFORMATION | SPEC. NO. | SHEET | REV. |
: ! SYSTEMS ! 60149740 | =77 | c |

A POP (T) opperation implies that the operand pointed to by
FT is to be used as defined by the instruction and then
subsequently removed from the frame.

The frame size reduction is in words. Consequently, if the operand
is a bit or a byte, the frame will be reduced in size by one word.

FT+D: This AS is used to access data within the active frame. See Figure
3-2.

o If D> O (positive), then FT+D applies. In Figure 3-2, FT points
to CsS.

o If D <0 (negative), then FB+D applies where FB = FT+L. In Figure
3=2, L = L(C) and FB points to L(B).

Examples from Figure 3-2:

For D= 0: EA -=>C5
For D= 5: EA -=>CO
i For D = =1: EA -=> CO
) For D = =4: EA -=> C3

The referenced operand must start and end within the active frame,
else Trap 16 (program error).

Note that if the active frame > 32K, D is incapable of reaching from
one end of the frame to the other.

o From AS Map 3:

8FT+07T: JA is a pointer read from the location defined by FT.
The offset O is concatenated to IA to form the EA. IA is then
removed from the frame,

FT+D+Rn+0: This AS is used to access data within the active frame. The
word address IA is formed following the rules defined for the
FT+D AS. The offset O is then concatenated to IA and lastly
the atom index specified by Rn is added to obtain the EA.

8[FT+D]+0: IA is a pointer read from the location defined by FT+D. (The
same rules defined for the FT+D AS apply.) The offset 0O is
concatenated to IA to form the EA.

8[FT+D]+Rn+0: IA is a pointer read from the location defined by FT+D. (The
same rules as defined for the FT+D AS apply.) The offset O is
then concatenated to IA and lastly the atom index specified by
Rn is added to obtain the EA.

A~

HONEYWELL INFORMATION | SPEC. NO. | SHEET ! REV,
SYSTEMS | 601497430 | 3-78 H

Table 3-8 (v)FT(?) AS Functions (Sheet 1 of 6)

CPU INSTRUCTIONS

| |
(¥)FT(T) | MNEMONIC | INSTRUCTION DEFINITION

!]

WORD OPERAND INSTRUCTIONS

!
!
]
|
|
1
|
|
!
| t | LDR | Load Register R
| | |
} v | STR | Store Register R
! | |
! X | SWR | Swap Register R
| ' !
| T | CMR | Compare with Register R
| | !
1 H | cM2Z ! Compare to Zero
B ! |
] H ! ADD ! Add to Register R
! | |
i H | suB | Subtract from register R
] | |
i T | MOL { Multiply Register R
! | |
! T | DIV ! Divide Register R
! | |
| T | OR | OR with Register R
| I |
] 1 ! XOR | Exclusive OR with Register R
| ' |
H X | SRM | Store R through Mask
! ! |
| H | AND | AND with Register R
|] |
|
| BYTE INSTRUCTIONS
1
]
! T | LDH | Halfword (byte) Load Register R
| ! !
| X | STH | Balfword (byte) Store Register R
| ! !
| 1 ! CMH | Halfword (byte) Compare Register R
! | !
! T ! ORH | Halfword (byte) OR w/ Register R
] ! |
! H | X0B | Halfword (byte) Exclusive OR w/ Register R
| ! ! : '

e e S o — — — Go> G Seat SEEE Ges SDWS GPUD Has B W SE—E Wren v Swn e G WS GNh R G e e G Gt G Grew Gn e Ghen et S e S e Geen S e Gmam Bees Gams Seee Sen

®

T = POP v = PUSH X = Trap 16

HONEYWELL INFORMATION

SPEC. NO. | SHEET | REV.
SISTEMS i

60149740 3-79 !

—— —

A,

f"@

Table 3-8 (¥)FT(T) AS Functions (Sheet 2 of 6)

CPU INSTRUCTIONS (Continued)

|
(¥)FT(?) | MNEMONIC
!

INSTRUCTION DEFINITION

fee o

BYTE INSTRUCTIONS (Continued)

1

t

]

1

]

!

|

H

!

]

!

Pt | ANH | Halfword (byte) AND w/ Register R
| |

bt { LLE | Halfword (byte) Load Logical Register R
| L |

| , _

! MODE REGISTER INSTRUCTICNS
|

| | MTM | Modify and/or Test Register M
i | |

boov | STM | Store Register M

] ! !

=

: ADDRESS INSTRUCTIONS

1

]

. | LDB ! Load Register B

| | |

! v | STB | Store Register B

] ! !

I 1 1 cvB | Compare with Register B
i | !

i1 | CMN { Compare Address to NULL
H !]

D ¢ | SWB | Swap Register B

! | |

| X | LAB | Load Effective Address into B
| | |

| X | LXA | Load Index and Address

| | H

!

} MODIFY INSTRUCTICONS

|

I X | INC { Increment

i] |

D 4 | DEC | Decrement

| ! !

! X | CAD | Add Carry

! ! |

! ! |

———— Cman - GBS e me G —aw CRue ams e S SheE Geee Geen Sem e Geoe RGO M S GRAR AP ORUD Chem PRGS SewD e et RO RO R WeWO e Giem SeAm Smes e SEEE S Gmew Gmes Seae eee Smen G-

»

* = POP ¥ = PUSH X = Trap 16

HONEIYWELL INFORMATICN | SPEC. NO. | SHEET
1
i

SISTEMS ! 60149740 3-80

Table 3-8 (¥)FT(?) AS Functions (Sheet 3 of 6)

CPU INSTRUCTIONS (Continued)

]

!
]
{ .
]
i (¢)FT(T) | MNEMONIC | INSTRUCTION DEFINITION
H | |
|
] MO STROCTIONS (Continued
1
]
{4 | NEG | Negate
] ! |
D 4 i CPL | Complement
| | |
v H - ® | Clear
| | |
[¢ | CLE | Clear Halfword (byte)
| | |
i
1 CONTROL INSTRUCTIONS
|
roy | STS | Store S Register
! H l
! X | JMP | Jump
! l |
D ¢ ! LNg | Link Jump
! ! !
| X ! ENT ! Enter
! | |
T | LEV ! Level
| |] _
| v | SAVE | Save Context (FT {== FT=23)
| | |
N § | RSTR | Restore Context (FT <== FT+23)
H | |
|
i BIT INSTRUCTIONS
|
Pt | LB | Load Bit
| | |
D ¢ | LBF | Load Bit and Set False
i] i
] X | LBT | Load Bit and Set True
| ! |
| X | LBC | Load Bit and Complement
| ! |
D ¢ | LBS | Load Bit and Swap
!] !

et G G e Ghun Gt WS SN GPe Gem ShGs e e G G Eem G TP e SRS - Geew G (. G MUGw G e ha R Geen EREE Gt e WSS SR S Ehs STa GEWh Sh e Gwee e e e - . .

* = POP v = PUSH X = Trap 16

HONEYWELL INFORMATION | SPEC. NO. | SHEET ! REV.
SYSTEMS | 601497430 | 3- 81 1

A,

Table 3-8 (¥)FT(]) AS Functions (Sheet 4 cf 6)

DOUBLE_WORD

EII SINGLE OPERAND INSTRUCTIONS

!
!
|
|] i
| (+)FT(T) | MNEMONIC | INSTRUCTION DEFINITION
|] |
!
H _
PoT ! LDI | Load Double Word Integer
! | |
| v | SDI | Store Double word Integer
| } {
. § | AID ! Add Integer Double
| ' |
b1 | SID | Subtract Integer Double
| 1 {
|
} INPUT/OQUTPUT INSTRUCTIONS
N
|] IOLD | Output Address and Range:
| ' !
HED ¢ | AAS |
Pt | CAs |
i1 ! RAS | (If CAS also specifies POP, then POP CAS
| ! | first, then RAS)
! H |
| | IOH ! Halfword Input/Output
H ! !
I X | DAS !
! | _ i
Pt | CAS |
! i |
i | I0 | Word Input/Qutput
| ! |
| X | DAS]
I 1 | cAs |
! | !
!
!
|
| | |

D ¢ | KINC ! Increment

] !]

| X | KDEC | Decrement

| | !

LD 4 | RNEG | Negate

| |]

] X | KCPL | Complement

| |

1

—— e G Gmac Gmeh Gres Gt Gew e Cews Gmes BT e e e e e e e Them SeAn e ES GMem GEGE GMOU ems GreD Cewe Swes Smwn feee wnee Chee SHes MM GoeO Gmen Seem Smes Mo s Sew Eeah ees Een Seee Smem cnoe See

{
t = POP v = PUSH X = Trap 16

HONEYWELL INFORMATICN .

SISTEMS

1
]

SPEC. NO.
60149750

Table 3-8 (v)FT(?) AS Functions (Sheet 5 of 6)

CPU INSTRUCTIONS (Continued)

—— - - . G G Goon Smim Mem Saa. b an G S en e En GEes an G Ghun MU Gnan TS Ghwr GEE Vear WA GoMS POl TR Gued s TPUS CTES bar Shus GEen SV Ehwn Med M mmms SPEP ENee Gwen Sman e

. Gmen . Grws G Geee GG Gews SPW Cewe Gheas Geue S emas Sven Geah Shem WEE Guws AL Soww GSes Gmew GSel EMew GRes GBee SWEl Eman Shae SEEE RRTE Gewe W Gmaw SEee TEEw RPN mrae ST chum . PO s Gmee e

; ;
(V)FT(T ;' MNEMONIC ':[INSTRUCTION DEFINITION
!
EIT DOUBLE QFERAND INSTRUCTIONS

H | XLD 'i Load
v § EST : Store
? i KCM § Campare
X !l KW 'i Swap
H : EADD ; Add
H i! KSUB } Subtract
1 § KMOL ‘z Mul t1ply
T ll KDIV 'i Divide
T ‘x KOR lz OR
H i} KXOR ll Exclusive OR
i ‘l KAND ’: AND

1 |

SIP DOUBLE OPERAND INSTRUCTIONS

H | SLD | Scientific Load
v } SST { Scientific Store
X ; SSH i Scientific Swap
1 ; s : Scieatific Campare
t 'l SAD § Scientific Add
T ‘§ SSB ‘} Scientific Subtract

1 |

1 = POP v = PUSH X = Trap 16

(| HONEYWELL INFORMATICN | SPEC. NO. | SHEET | REV. i
‘ | SISTEMS ! 60149740 | 3-8 | c i

Table 3-8 (¥)FT(!) AS Functions (Sheet 6 of 6)

CPU INSTRUCTIONS (Conrinued)

! 1
{ H
| H
H ,]] A {
! (v)FT(T) | MNEMONIC | INSTRUCTION DEFINITION |
] (] 1
5 !] E
i SIP DOUBLE OPERAND INSTRUCTIONS (Continued)]
]]
] 1
. | sSML | Scientific Multiply !
1] [] 1
{ 1 [i
i1 ! spv | Scientific Divide !
H ! i |
|]
! SIP SINGLE OPERAND INSTRUCTIONS !
' H
H H ! saD { Seientific Compare to Zero - Two Words !
| ! | !
| X | SNGD | Scientific Negate - Two Words i
! ! ! i
T1 i sczQ | Scientific Campare to Zero - Four Words !
4 { !]
I X i SNGQ | Scientific Negate - Four Words |
| H H : !
t = POP v = PUH X = Trap 16

3.11.4 Remote Descriptor Specifier (M6X and M6XE only)

When the four low order bits of the word containing an AS fram Map 2 or Map 3
equal Zero, the twelve most significant bits of the word containing the AS are
interpreted as a label. The label is multiplied by two (since all remote
descriptors are assumed to be two words long) and added to the base value in RDBR.
This address defines the location of the remote descriptor which is to be used.

A remote descriptor may not point to another remote descriptor; if it does, a
Trap TV12 is posted. ’

Figure 3-17 shows how the different instructions appears when using an escape
AS and when using a remote descriptor.

] HONEIWELL INFORMATION | SPEC. NO. | SHEET | REV. !
H SISTEMS ! 60149740 i 3= 84 H c] -
AS INTERPRETATICN FOR GENERAL INSTRUCITONS
(AS Not Equal to EII1 or EII23)
01 31 7839 15 _
il] i .
WORD 1 111 # | OPCOLE | AS23 P
i1 i | | |_ Does not specify a
i | M} { | Remote Descriptor
WORD 2 ! OFF | RF A} AS2 OR As3 | | (=®D).
| | P! P
! H 131 i
01 34 89 1112 15 _
Pt | i N
WORD 1 i1l # | OPCODE | As23 | | Specifies a Remote
i ! | | |_ Descriptor in a
! ' , ! | Remote Descriptor
WORD 2 =—=| LABEL 10000 | array.
§ 1 L !
1 ([Labell X 2) + [RIBR] (See Note 1)
1
]
{0 8 9 15 _
P { | | Remote Descriptor _
WORD 1 |=>| RFU ! As i | using an 4S fram (-
P H ! | A8 Map 1 (evrept s
WORD 2 | | 1 |= AS23). Usage of
R D ! | entries EII1 or
WORD 3 | | See Note 2 | | EII23 will cause
P i | a Tvi6.
or
:
L0 34 789 15 _
b] P
WORD 1 ==>} RFU 1 4323 I
} | i | Remote Descriptor
| | iM] | |_ using an AS fram
WORD 2 |OFFSET | RFU A} AS(2,3) | | either AS Map 2
! ! P} I | or 3.
| H 1#] o
WORD 3 { b
! See Note I eweeccawee=| |
WORD 4 : i

Figure 3-17 Remote Descriptor Formats (Sheet 1 of 'll)

~_,

HONEIYWELL INFORMATION
SISTEMS

SPFEC. NO.

- ———

|
60149740 |

3-8

01 34 7 89 15
P] g |
WORD 1 {11 kK¢ | OPCODE |EII1 or EII23 |
I ! ! !
{ M| }
WORD 2] DATA 1A}l AS1 OR As2 |
! TYPE 1P} OR AS3 |
| ! 12} !
01 314 89 1112 -15
P ! i]
WORD 1 111 K¢ | OPCOIE | EII23]
i] ! H
! i !
WORD 2 ===} LABEL 1 000 0}
P] !
{
'} ([Label] X 2) + [RIBR] (See Note 1)
)
1
| 789 15
L M| !
WORD 1 {=>} DATA A} AS !
I TYPE P |
I 1] !
WORD 2 | | !
I e ———eeeee- |
WORD 3 | | See Note 2]
i !
1
or
'
I 0 34 789 15
I |]
WORD 1 ==>} RFU ! As23 ;
! ! !
| M| |
WORD 2 I DATA 1A} AS(2,3) !
! TYFE Pl !
! [#1 i
WORD 3] |
|emmeccceee See Notg 3 c—cecccanx|
WORD 4 :

AS INTERPRETATION FOR EXTENDED INTEGER INSTRUCTIONS

_ Does not specify a
Remote Descriptor
(RD).

—— S Gmen ovee SPw Swm w——

pecifies a Remote
_ Descriptor in a
Remote Plescriptor
array.

Remote Descriptor

__using an AS fram
AS Map 1 (except
AS23.

—— e G an. e - Gres Soes

Remote Descriptor
__ using an AS from
either AS Map 2

or 3.

G et Bhaw eman Gne e amen GeEms Smas

Figure 3-17 Remote Descriptor Formats (Sheet 2 of 4)

| HCNEIWELL INFORMATION | SPEC., NO. | SHEET | REV.]
H SISTEMS } 60149740 H 3-8 1 c !
/ﬁ/\k\,
L
AS INTERPRETATION FOR COMMERCIAL INSTRUCTIONS
0 10 18
i]
WCRD 1 10000000001 XXXXZX |
| |
! |
WORD 2 I DATA DESCRIPTOR | Data Descriptors
WORD 3 | DD1 H do not specify
'! - 5 a Remote Descriptor.,
[} !
WORD 4] DATA DESCRIPIOR i
WORD 5 ! DD2 H
! i
Q 10 15 :
! . !
WORD 1] 0000000001 XXXXX |
' | Data Descriptor for
! ! the second operand
WORD 2 - | DATA DESCRIPTOR] specifies a Remote
WORD 3] DD1 ! Deseriptor in a
H ! Remote Descriptor
| | i array.
WORD 4 ww=| LABEL 10000 | 5
§ !] ! N
! ([LABEL] x 2) + [RIBR] (See Note 1)
! ,
! a 1 2 3 789 15
I | !] i | | Remote Descriptor
WORD 1 |->{ C1 | C2]| C3}{ L IT! AsS | |_ using an AS fram
: P ! L | | 1 | | AS Map 2 (except
WORD 2 | | i 1 As3).
| |eeeeeccee- See Note 2 eeeececcceea] |
WORD 3 § H Pt
or
!
| o0 1 2 3 7189 15 _
|] Remote Descriptor
WORD 1 ==> RFU i AS3 using an AS fram
- AS Map 3. Usage
|]] P - of entries FT + D
fclic3i L |{T| + Rn+ 0 or =Kn
| | H !

b e

will result in a
TVi6.

=
o
8
n
[¢]
b
7

e Gn e G W e T Gpun W mew

Figure 3=-17 Remote lescriptor Formats (Sheet 3 of 4)

A,

A~

i HONEIWELL INFORMATICN | SPEC. NO. | SHEET
i SISTEMS | 60149740 | 3-87

REV. =!

AS INTERPRETATION FOR NON-INTRINSIC SCIENTIFIC INSTRUCTIONS

0 89 15 _
H ! P
WORD 1 ! OPCODE | As23 I
! 1 | |_ Does not specify a
H M| i | Remote Descriptor
WORD 2 ! RFU Al AS2 OR AS3 | | (RD).
i 1P| P
H 1#! : 4l
0 89 1112 15 _
H | P
WORD 1 | OPCODE ! As23 ! | Specifies a Remote
: H | |_ Descriptor in a
!] | | Remote Descriptor
WORD 2 ===} LABEL |l 0000 | arrsy.
P H P
!
't ([Label] X 2) + [RIBR] (See Note 1)
]
H
I 7.8 15 _
P] I
WORD 1 |=>} RFU | AsS | | Remote Descriptor
Vo } ! | using an AS fram
WORD 2 | | | |- &S Map 1 (except
e c—emeeeee=] | AS23).
WORD 3 | | See Note 2 L
P P i
!
or .
!0 34 7.89 15 _
I { Vo
WORD 1 ==>| RFU ' AS23 I
! ! P
! M} ! | Remote Descriptor
WORD 2] RFU Al As(2,3) | |_ using an AS froam
| P ! | either AS Map 2
! 141 ! 1 or 3.
WORD 3 ! HE
|emececaees See Note 3 —emceecee=| |
WORD 4 : |

Figure 3-17 Remote Descriptor Formats (Sheet 4 of 4)
Notes for Figure 3-17

1. An RD entry consists of two words, hence the formula ([Label] X 2) + .
[RIBR]. As a function of the AS used, the RD may use 1, 2, 3, or 4 words.
Whenever more than 2 words are required, two entries in the RD array must be
reserved.

H HONEYWELL INFORMATICN | SPEC. NO, | SHEET ! REV.
H SISTEMS | 60149740] 3- 88 ! o

Notes for Figure 3-17 (continued)

2. RDs using entries fram AS Map 1 may consist of:

- 1 Word (e«g., AS = Bm)
- 2 WO!‘dS (eosoy AS = Bm'D)
- 3 Words (e.g., 435 = IMA)

3. RDs using entries fram Map 2 or 3 may consist of:

AS
- 2 WOX‘dS (e.g.. As = ém+m)
- 3 Words (e.g., AS = Bo+D+Q)
- 4 Words (e.g., AS = B+ /\+0)

Note that the offset field 0 is recognized only when executing subword
instructions, Refer to Table 3-T.

.12 TNDEXING

Many address syllable forms specify indexing. During EA generation, the valus
of the index register is algebraically added as the last step, after any
indirection, to form an EA.

'mo sets of index registers are available:

o Short index registers, R1 through R7. The index value is a signed integer
data word with range r: <215 < r < +215-1, N

/
|

N
o Long index registers, Ki through K3 (M6X and MOXE oniy). Thne index valus is

a signed integer data double word with range r: ~231 < r < 231.1,

While indexing, the hardware autamatically aligns the index value to correspond
to the size of the item (atam) being referenced. The size of the item (i.e., bit,
byte, decimal digit, word, double word or quad word) is determined by the opcode

type, or by the data type field of the d.ata descriptor (e.g., word, double weord or
address).

As an example, consider the address syllable B4+Ro which specifies indexing.
If [By] = 100 and [R3] = + n, then as a function of the atam the following applies:

atam = bit
0 ; 15
99 |=16{=15|=18]=13|=12|{=11|=10|=0|=8|=T|=6|=5|=f|=3|=2]=1}
Bt e e e e B e e E e e E e e I B B B B
By=100 |oj1{2)131usis5i61] 7|8l 9lt0fl11i12{13]14}15]
R B e Bt B £ B B e e e R B P R P
101 | 161 171 181 19} 20! 21} 22}23}24{25126}127128]29i30131!

—

60149740

i SPEC. NO.

HONEIWELL INFORMATICN
SYSTEMS

digit (4 bits)

atan

15

—— vt wmen —e. w—

—— - w—— - o—oo

-4

—— - wes

-

—— - o -

[=A]
[<A)

o
o

B =1

101

atom = byte

15

—— - o v e

-1

-2

el

—— e omen e o

(oA}
o

o
o

B =1

101

atom = word

15

— . o - ——

s o ————— ——

B1 =1

101

= double word

atom

15

s e Gmem GeED Eeoe Cees WAGE eee EEEE Cmww -

-1

—— . e - ees S Gea GV Coe St e

o]
o

(=)
o

o

B1=10

101

101

102

i HONEIWELL INFORMATIGN | SPEC. NO. | SHEET ! REV. i
i SISTEMS i 60149740 H 3=-90 ! c |

atam = quad word

o
Y
wn

9% | i
97
98

| ewenanen ‘1 ---x

99

100
101
102

103

104
105
106

107

3.13 MEMORY ADDRESS BCOUNDS

Following conversaion of a VA to a PA, the PA is used to address the main
memory, Any attempt to address an uninstalled memory address will result in a
reference to unavailable resource trap (TIVis).

Concerning memory sizing, since the Physical Address Space exceeds the logical
addressing limits in all models but the M5IE and M6XE, memory sizing operations
must use the segment base relocation capability of those systems, using memory
management, Adjusting the value of the segment base field in conjunction with the
CMZ with B + X address syllable will cause a TV#15 if [B+X] > M or [BeX] < 0 (where
M = configured memory size)., Usage of any other instruction to size memory can
result in undefined operation.

3.14 QUEUE MANAGEMENT

The processor provides a queue management capability that facilitates
maintenance of ordered lists of "frames®., A frame contains a frame priority
number, a pext frame pointer, and an associated data structure. Each list is {
identified by a LOCX frame which contains a LOCX word and list head and tail J/
pointers., Reference Figure 3-18, ‘

b,

] HCNEYWELL INFORMAT ION | SPEC. NO. | SHEET | REV. |
! SISTEMS | 60149750 | 3=-91 H c |
]]
P ! | 1 | H H P
—>] LOCK | «==>| PRIORITY | -->| PRIORITY | ~=e=>| PRIORITY | |
| N b |] | P
| I T I ! H | I
! FIRST I | NEXT i | | NEXT] ! ! LOCK I
| FRAME j=== | FRAME |=== | FRAME fe~=>|] jm——
! POINTER | ! POINTER | | POINTER | © | POINTER |
| !] | | ! ! ! !
! !] ! | i i | H
| LAST ! ' DATA ! ! DATA ! H ! DATA]
| FRAME o = - - -] = -
| POINTER | | | (OPTIONAL) | | (OPTIONAL) | | | (OPTIONAL) |
! | ! ! {] H !
: I : : : | : :
H !
! | | ! ! H
LOCK FRAME ! FIRST FRAME INTERMEDIATE ! LAST FRAME
! (HEAD) FRAME ! (TAIL)
] (]
]]
| |
! LOCX I Go—
d ! | u
! ! | NOTES
! FIRST ! |
| FRAME j=—==>] 1. Scanning (if any) is always performed fram the
! POINTER i ! first frame (head) toward the last frame
| ! ! (tail).
| | |
| LAST | ! 2. Priority is an unsigned 16-bit integer.
| FRAME |
{ POINTER | 3. Frame pointers are two words.
H !

1
s
-- LOCK FRAME FOR EMPTY QUEUE

Figure 3-18 Queue Management

' HONEYWELL INFORMATION ! SPEC. NO. ! SHEET | REV.
! SYSTEMS | 60149740 | =92 H

-

c

The following generic instructions are provided to engueue/dequeue/search
rames in the list: .

Queue on Head (QCH)

Queue on Tail (QOT)

Dequeue from Head (DQH)

Dequeue by Address (DQA)

Search Queue from Head (SQH) (M6X or M6XE only)
Search Queue by Address (SQA) (M6X or M6XE only)

0 00O0O0O0O

For a description of the above instructions, refer to Section 5.

3.14.1 Loek Word

The LOCX word is used to insure that only one procedure is accessing a
particular queue at a time. Each instruction causes a fetch of the LOCX word with
a Read-Modify-Write (RMW) cycle. If the low order bit of the LOCK = 1 (i.e., list
is locked), the RMW cycle is completed without changing LOCK, I(C) is cleared, and
the next instruction is fetched. If the low order bit of LOCK = 0 (that is, list
is urlocked), the CSS completes the RMW cycle, writing a one into the low order bit
of the -LOCK word and initiates execution of the queue management instruction.

For the QOH, QOT, DQH and DQA instructions, the LOCK word is cleared (that is,
1list is unlocked) upon completion of the instruction. o

For the SOH and SOA. instructions, the LOCK word is left set (that is, list is -
left locked) upon completion of the instruction. To unlock the list, a non-
queue-management instruction must be used. Any instruction, using an RMW cycle,
capable of clearing the low order bit of LOCK word to Zero can be used (e.g., LBF).

2,14.2 Sean

The execution of all the queue management instructions causes a scan of the
frames in the list, from head toward the tail.

The scan continues until the conditions of the particular instruction are met
(a hit), the last frame is reached without a hit, or amn interrupt cccurs.

When a hit occurs or if the last frame is reached without a hit, the frame is

linked into or out of the list as appropriate. I(G) and I(L) indicate the results
of the scan.

If an interrupt occurs, the CSS will stop the scan, initiate an RMW cycle,
write Zeros in the LOCX word, clear I(C), leave I(G) and I(L) undefired and backup
P to point to the queue management instruction, before servicing the interrupt.

3.14.3 Ring Movement

During the scan, the effective Ring number (REF) is moved outward whenever a
frame is scanned in a segment having less privilege. If a frame is scanned in a -
segment requiring greater write privilege than REF then, a trap TV14, access @[j)
violation, is posted. Following a successful scan (i.e., one where no access
violations were encountered) the CSS performs any enqueuing or dequeuing operations
without any further access checks.

—~

HONEIWELL INFORMATION | SPEC. NO. | SHEET | REV.
!]
]]

i}
i
i SYISTEMS 60149740 | 3-93 c

3.14.4 Lock Frame

Software must build the lock frame of each list to be used. A list with no
entries is a lock frame in which the first and last frame pointers point to the
LOCK word, see Figure 3-18. The CSS will leave the lock frame in the same
condition when a frame is unlinked from a single frame list.

3.14.5 Queue Security

For security reasons it is recommended that the Lock frame as well as all
frames of a queue, reside in one or more segments having the same write access
rights.

3.15 CSS HALT STATES

The processor supports the following types of HALT states:

Procedure Halt

Level 63 Halt

Operator Halt

Super Halt (M6X and M6XE only)
Halt (CRY41E and M5XE only)

O 0 00O

3.15.1 Procedure Halt

This halt state is entered by the CSS when it detects a Halt instruction during
procedure execution. In this state, the CSS does not execute any instructions but
simply waits for an interrupt. Depression of the Execute key, by the operator,
will cause the CSS to skip over the HALT instruction and resume execution at the
next instruction., Other operator commands are also honored when in this state.

3.15.2 Level 63 Halt

This halt state is entered by the CSS when it goes to Level 63 and finds the IV
= NULL. In this state, the CSS does not execute any instructions but simply waits
for an interrupt. Depression of the Execute key, by the operator, will have no
effect in this state. Other operator commands however are honored when in this
state.

3.15.3 Operator Halt

This halt state is entered by the CSS when so commanded by the operator via the
SCF. In this state the CSS does not execute any instructions or honor inter-
rupts. It exits this state only via operator command or initialize.

3.15.4 Super Halt (M6X and M6XE only)

This halt state is entered by the CSS upon detection of an error condition.
Upon entering this state, the CSS sets the SH bit in the S register and waits for
either operator intervention or an interrupt. Refer to subsection 3.3.4.1 and

HONEIWELL INFORMATICN | SPEC. NO.

SISTEMS] 60149740

REV.

. SBwE - G M. S e am Gewe G e mw WWS Wi GEGE GHEE v M G ST e SRS EeE Seee SN TGS ek e See Geat WEE S Geen oot Smuw

Table 3-9 Super Halt Conditions (M6X and M6XE only)

CONDITIONS CAUSING A SUPER HALT

o LEVEL CHANGE

- TV15 or TV17 is detected when accessing any of the
constructs specified in subsection 3.5.2.

« During an INRUSH, the ASV points to an invalid
segment,

- During an INRUSH, a TV15 or TV17 is detected when
accessing any of the SMMU mode SDs.
o RTT
- [IVv] = NULL

- TV15 or

AAnabPwirA
WA Lhind WhH

detected when accessing any of the

ecifiad in subsection 3.6.2

DA T i = 2 - e

g4
(=~
b

o TRAP
- [NATSAP] = NULL
- [Tv] = NULL

- [IV] = NULL

TV15 or TV1T is detected when accessing any of the
constructs specified in subsection 3.6.2.

3.15.5 Halt (CR41E and MSXE only)

—eh e Gr. Gmen e e . . Gmm v em N WIAS MMWE GG GEND GPun EEeS HNer TGS e EEUE R GEE G An el MTE SReE GeWR GIeE Sees EeWY SreE WPER Seen Smew e

This halt state 1s entered by the CSS upon detection of an error condition.
Opon entering this state, the CSS waits for either operator intervention or an

interrupt.

Refer to Table 3=10.

®

\\

_/

Al

HONEYWELL INFORMATICN

SPEC. NO. | SHEET
60149740 i 3-95

—— a—

SISTEMS

- nwe en mer Erew e s seas Smam Eran S . e e Sean e e

Table 3-10 Halt Conditions (CR41E and M5XE only)

CONDITIONS CAUSING A HALT

o RTT
- [Iv] = NULL
o TRAP
- [NATSAP] = NOULL
- [TV] = NULL
- [1v] = NULL

vwn e s a0 GEES s Gwes ESer GEen San e Wree Seem Geee Seme Secm Wma

HONEIWELL INFORMATION
SISTEMS

SPEC. NO.
60149740

SHEET

- -
o -

3-96

- -

This page is intentionally blank.,

O

A,

-

HONEYWELL INFORMATICN

i SPEC. NO. | SHEET i REV.
i SISTEMS

]
N
60149740 | b= 1 { c i

SECTION 4 MEMCRY MANAGEMENT UNIT

4.1 OVERVIEW OF THE MEMORY MANAGEMENT UNIT

The Memory Management Unit (MMU) supports segmentation with memory relocation
and Read-Write-Execute protection based on a ring protection scheme. Depending
upon the memory management software used to manage the system, a simple base~and-
bounds foreground/background system or a secure, sSegmented system is provided.

Two Memory Management modes are available to the DPS6 Stage 3 Central Subsys=-
tems (CSSs): Standard Memory Management (SMMJ) mode and Extended Memory Management
(EMMU) mode. The SMMU mode is available on all CSSs while the EMMU mode is offered
only on the MSXE and M6XE CSSs as a software selectable option.

An address is treated by the MMJ as a logical address consisting of three
fields: a Segment Number field, a Block Number field, and an Offset field. The
creation of a logical address (LA) takes no cognizance of this field division;
hence it is possible, for example, to increment/decrement an LA across Block and
Segment boundaries. The MMUJ enforces protection and relocation whenever the CSS
performs memory references.

Two segment sizes are defined: Small Segments (512 bytes < size < 8192 bytes)
and Large Segments (512 bytes £ size £ 131,072 bytes).

Note that Small Segments are not supported in EMMU mode.

! HONEIWELL INFORMATICN | SPEC. NO. | SHEET REV,
1
1

SISTEMS i 60149740 ! bt 2

— ——
e Smw

/(\\
4.2 MMJ FUNCTIONALITY g

Subsection 4#.2.1 describes the unique functionality of the SMMJ and subsec-
tion 4.2.2 describes that of the EMMU,

4.,2.1 SMMJ Functionality

In SMMU mode, a task is provided with a 220 words (2 Megabytes) of Logical
Address Space (LAS). 31 Segments (16 small segments and 15 large segments) are
used to describe the LAS., The =mall segments are denoted SDO.0 through SDO.F
(hexidecimal) and represent the least significant 128 Kbyte region of the Logical
- Address Space (LAS). The large segments are denoted SD1.0 through SDF.0 (hexi-
decimal) and represent the LAS regions above 128 Kbytes through the maximum of 2
Megabytes.

The SMMJ contains a storage array consisting of 31 entries., Each entry holds a
Segment Descriptor (SD) consisting of 32 bits, which are used to perform address
relocation and access checking, The SMMJ resides at the CSS's interface with the
Level 6 bus, where it mediates all CSS accesses to memory. SDs are loaded into the
SMMJ array. Fligure -1 is a block diagram of the SMMJ; Figure %-2 shows how a
logical address is interpreted (parsed) and absolutized by the SMMU.

The locaticns in the SMMJ storage array are assigned as follows:

o Locations 0 to 15 are used for segments 0.0 to 0.F S
o Locations 16 to 30 are used for segments 1.0 to F.O0.

The organization of the SMMO is shown in Figure 4-3,

4.2.2 Extended MMU Functiomality

4.2.2.1 EMMJ OVERVIEW
The EMMJ features the follcwing extensions:

o The Logical Address Space (LAS) is extended from 220 words (2 Megabytes) to
224 ywords (32 Megabytes).

o The maximum number of segments is extended to 256 (Large Segments only).

o0 The Loglical Address Space of a Task is divided evenly between the system

- space and task space (128 segments assigned to each). A System Segment Table
(SST) is used to describe the cammon (to all tasks) segments. 4 Task Segment
table (TST) is used to describe the per-task segments,

0 Multiple variable length Segment Tables (STs) located in main memory are
supported. One ST for the System Segments (SST) and one ST for each task
(IST). At any given time only the SST and one TST are active,

C

il

_—

i HONEIWELL INFORMATICN | SPEC. NO. | SHEET i REV,
i SISTEMS ' _ 60149740 i

o

CHECKING |=--> TRAP
LOoGIC |

0 19
| i |
! (12) | (3) ! LOGICAL ADDRESS#®
1 1]
1 : [} = $
!
v
: | (4/8) ! : !
Y |
: A !
==>! STORAGE | ==>| A | !
: { ARRAY | I D} : |
i_(31 SD) | i D |]
: i H {E |]
| eeeee==>| R | i
: '% 1 ':
! '
i
i
v

L1
q e S e - -

e
(=]

)
' (15) e

MMU

- —— e
~
[o2]
~

.o
—— tmwn ==

1
PHYSICAL ADDRESS#®

#3411 Addresses are Word Addresses. :
##For non-M6X or -M6XE models see Table 4-1,

Figure 4-1 SMMJ Block Diagram

- - oo

{ REV.

SHEET
4= 4

19

11 12

601497540

4 78

| SPEC. NO.
3

HNEIWELL INFORMATIQN
SISTEMS

»
4
m
3 8
H
8 ~
. | s e o s e " T oo Mae e e e U et e om0 cmas oo o ceen e [0
~
ray
——— e — !.......l.._ . n ..lib/
~ Oy ———— - = e = D
[eo] - — e =
; % |
85 I I
fre 0 m
o] fzy o ~ m
o - 7 b O - oo e
T B < w vi
M - u Pl g |- ————b L a
O~ m " [J
Q = ~] [~ (o] L]
N 0 3] m ~
3 2 | V-2 e £ A
v — o -
—— St wmos wmed OO c ”~~ A D |I-v ~s
Q (4} m
m\l -J ~r
=t .o m - (@] [=]
V) ~— | & o
= .
— s w0 _ lllillqv.a B e s e -
o | N eeememeo ety Pt
~ ~
o] =t 5]
~ MID o
(@) —on m — - < UVlj-= b »
o (7] S o~ o o
o - & - - ———
—— I e e - enem woen o6 (/2] o
e i e i
P, o]
— e e S)
. o 4 39
c Pe M H
. .) s
a o ~ [SPRE]
L] L]
o - a
5] 8 ”
[2] 2]

Figure U4-2 SMMU Loglcal Segment Address Interpretation

#4For non-M6X or -MGIE models see Table 4-1.

#A1]1 Addresses are Word Addresses,

SEG#

31

22 23

!

21

601497 40
19 20

| SPEC. NO.
;
17_18

15 _16

SISTEMS
1

Loc

HONEIWELL INFORMATICN

- SO AR s R G BOND e D e Smme e

m
]
il g
o] N MmN NN
BI — = = v~
< 9 ° 8l =3
B T T e bl T Bt Rt g “a
g .il.!.Li..........la....ua.ilL
-~~~ ~~ ~~ A
N e N o 21
m <] 3] m mm))))u\.l.n\ﬁ)
H H| H 5 58 | S85R83
(%] %] (2] o B > NN NN N
e TN St St ST T 2| 3% sagass
B B | R o H
o = o3 W m MI N o0 0
— e e e o ——-—]] —— ey e o s = S s oo = | [} PS— . u o mL
= £y 3 T it IR N
o [o o |= m. 5 - . - ”
SRS [t EN B e N 2 | B 0
v |a o S m oo
= = = & “ e} - g &
= [+ Q m g n \I))m\)m
- % .m m) - o= -
B T T B I e e i R o (%) NN o
v - o £d NN NN
0 Dn s (N M)
[~ [+ d m o w ~ ~
e . o= 9 - s | 888,80
e e, [I Qe g 7 A 3 TR
13)
» L L] = ~s ~r
~ ~ ~ S| o g H
o o w oS 7 3 a a
~r ~r ~s = M P |
[(5] =3 n.; ﬁ m R S o Mc..||
4 a 2| o ke R
m m m b4 d
0
RN R T e B R S I | =11 3 Q
> M 2 X m 0 g K
] - 4] RR%%GG
B T T e T TN QNS SRR] 0o =
& =)
° o e 2 & o | g
43 m
&1 3
a

—— raun et - NS G CHEs Geew Ceme Gemo mew

SEMMU mode selected.

HONEIWELL INFORMATION | SPEC. NO. { SHEET | REV.
' 1
i

SISTEMS i 60149740 H b= §

The key differences between the SMMJ and EMMU modes are as follows:

™
L

o Small Segment Descriptors

o

In SMMU mode, the lower 128K-byte region of the Logical Address Space (00000

==> QOFFFF Hex) is mapped through the Small SDs (SD0.0 =-=> SDO.F). In EMMU
mode, this region is described by one Large SD (Segment #Q0).

Small Segment Descriptors are not supported in EMMU mode.

Logical Address Space

Unlike SMMU mode, which presents one contiguous Logical Address Space (LAS),
EMMU mode partitions the LAS, into two separate and distinct regions: System
Space and Task Space.

System Space:

The System Space region is assigned to be the lower 16 MB portion of the
32 MB Logical Address Space. It is described by the System Segment Table

- (SST). System Space is accessed through SDs GO through TF. The SST may
be activated (i.e., loaded in to the EMMU) only through execution of

either the Activate System Segment Table (ASST) instruction cr the
Activate Segment Descriptor (ASD) instruction. The ASST instructicn N
causes n system SDs to be copied, from the SST in memory, into the EMMU .
storage array and the remaining m system SDs (where m = SUs n+i tarouga

TF) to be locaded as invalid SDs. The ASD instruction allows any one
system SD, to be updated in the EMMU storage array.

Task Space:

The Task Space region is assigned to the remaining (upper) portion of the
LAS and is described by the Task Segment Table (TST). Task Space is
accessed through Segment Descriptors 80 through FF.

Task Space is assumed to specify !Task Local' procedure/data. The TST may
be activated either through execution of the Activate Task Segment Table
(ATST) instruction or at INRUSH time (i.e., during interrupt process-
ing). Consequently, a TST must be attached to each Intarrupt Save Area
(ISA) which requires a TST change. The Address Space Vector (ASV) in the
ISA is used to point to the TST. A Task Segment Table Limit (TSTL) field
in the ISA specifies the number of SDs in the TST. At activation time the
TST SDs are not 'INRUSH'ed as in SMMU mode. Rather, the pointer to
(e.g., ASV) and the size of (e.g., TSTL) the TST are stored in EMMU
registers, the old EMMU Task Context is flushed from the EMMO task cache
and the new Task SDs are demand loaded, individually, as needed. SDs in
the TST must be double word aligned else post a Trap (TV18).

The execution of the ASD instruction is different when activating a taaﬂjj
SD. The single task SD is not actually activated by the ASD instruction;j/
but rather it is marked "not Present®™ in the EMMU task Cache. These task
SDs are demand loaded intoc the EMMU task Cache upon subsequent memory
reference,

A*r‘?ﬂ-\

A~

HONEIWELL INFORMATIGN { SPEC. NO. { SHEET | REV.
SISTEMS i 60149740 ! -7 ! c

——— o

A view of the EMMJ Logical Address Space is given in Figure 4-4 and a descrip-
tion of the EMMU Logical Address interpretation is given in Figure 4-5.

Segment Descriptor formats supported by the EMMJ are identical to those used in
SMMU mode and are described in subsection 4.2.3.

4,2.3 Segment Descriptor Definition

The Valid (V) bit of an SD defines how to interpret the other fields of the SD.
If the Valid bit is a Zero, the remainder of the SD is reserved for software use
(RSU) and any attempt to access through that SD causes a Trap (TV15). If the Valid
bit is One, then the remainder of the SD is interpreted as follows:

The base field defines the modulo 256 word (512 Byte) physical address of the
start of the segment.

The RR, FW and RE bits are used to enforce the protection of memory against il=-
legal access. The access rules are described in subsection 4.3.5. If the rules
are violated, the access is not performed and a Trap (TV14) is taken.

The size field defines the size of the segment in terms of 256 word (512 Byte)
blocks. The size value defines the highest allocated hlock number, Being nine
bits in length, it allows for specification of more blocks (up to 512) than can
exist within a single segnent (i.e., in SMMJ mode, 16 for segments 0.0 = O.F or 256
for segments 1 - F). This functionality allows any number of segments to be
treated as concatenated segments by the MMJ if Memory Management software wishes to
define them in this way. Inherent in the creation of concatenmated segments by the
Memory Management software is the requirement that such segments must be logically
and physically contiguous. The size field thus indicates a number of blocks that
are physically contiguous with respect to this particular segment base. The abil=-
ity to represent concatenated segments to the MMU is required in connection with
checking of instructions that operate on arrays of contiguous data (e.g., commer-
cial and scientific instructions and the VLD instruction). An address space
consisting of a single set of concatenated segments is a simple memory partition
conventionally described by a base and bounds (size) register pair.

If the size checks are not satisfied, the access or instruction is not per-
formed and a Trap (TV15) is posted. If all checks are satisfied, the Block Regis-
ter is added to the Base field in the SD and the offset is concatenated to form the
physical address., If a carry occurs while performing this addition, a Trap (TV15)
is posted. Note that although the Logical address in a MGXE and M6XE is 24 bits,
whenever a memory reference is made in SMMU mode, only the low order 20 bits of the
logical address are used. The high order four bits of a logical address MBZ in
SMMU mode, else Trap (TViS).

| HONEYWELL DINFORMATICN | SPEC, NO. | SHEET | REV.]
i SISTEMS | 60149740 H 4o 8 ! o] |
C
LOGICAL ADDRESS
SEGMENT # (WORDS)
/i { 000000 hex
| | 00 H
I ! OQOFFFF hex
Vo | 010000 hex
System _| | |
Space i |
I !
i1 | TEFFFF hex
P | TFO000 hex
I TF !
A | T7FFFFF hex
/1 | 800000 hex
1 80 |
i !
P L ! ‘
Task 1 | N
Space P ! s
I I |
S I
/4 |
TSTL ew==>| | | XX |
AAY !
/1 |
i |
Invalid _]} | |
Space P i
I FF i
\ | FFFFFF hex

where TSTL (Task Segment Table Limit) is
defined as the highest numbered segment
assigned (addressable) to the Task.

Flgure 4-4 EMMJ Logical Address Space

|
|

60149740

| SPEC, NO.

HONEYWELL INFORMATICN
SISTEMS

23 .

!
OFFSET (8) |
1
i

15 16

78

LOGICAL
¢«= ADDRESS

.
-

!

i BLOCK (8)

| SEG# (8)

(WORD)

1
1

/ \

/ \

L
o A)
e e e e e = nn.w(e e e e Q) = e ———
-1
m & |
5 i
T T~ v w9
~~ .l
[, | Fa
~r o0 [o
e Q== e e e e - > el RO PR
” : i 00" "L B
! o M =~ @
v [Te) m i
m m (o N o) ~ e e e
oo ST ST VDA S SN m
©o o, 7 9 e m
4 m MAS el
4 B o MRRB -
! A8
—— - S—en . o S A aad
R Cmn GRWD e —— ——
m&
.’

o e Sme e S TS e e s Ewp W D S CTEE T Geew e TS Geen ees A Smwr Eat SR R Mg Ceme SeER Men AR e TP ey W = i e Coen cmen P

— e omes

22 _

[3U

14 15

— >
o

1

PHYSICAL
- ADDRESS
(WORD)

°
e
.
.

(8)

—— ———i

(15)

Figure 4-5 EMMJ Segment Address Interpretation

| HONEYWELL INFORMATION | SPEC. NO. ! |
' SYSTEMS | 60149740 | 4=10 | c |

4,2.4 MMO Initialization o

At initialize time the MMU is always set to a default state. This state is
applicable to all the CSS models. The mode selected is SMMU mode. The MMU is loaded
with default SDs which define a 2MB Address Space. The default setting of the SDs
follows:

o The Valid bits are set to One,
o The Size fields are set to all Ones,
¢ The RR, RW and RE fields are set to all Zeros.

0 The Base fields are loaded with values that result in a one-to=cne mapping
between logical and physical memory.

If a Main Memory Prom Option (MMPO) is configured in an MSXE, M6X or MEXE and
its base address is set greater than 2MB, then:

- for panel in the unlocked state set SD# F as specified above.
- fop panel in the locked state set SD# F to map to the MMPO base address.

MMO functionality, during normal operation, has no overall enabling control; it
is always enabled. It starts in the default state and may be subsegquently altered
by the software. On the MS5IE, M6X and M6XE, an MMU diagnostic instruction is .
provided which allows for example, address relocation (mapping) and access rights%gx/
checks to be disabled. Refer to subsectiocm 5.5.28 for a description of the MMID :
instruction.

The means by which the MMU storage array may be loaded or altered after
Initialization, are described in subsection 4.3.4.

4.2.5 MMU Checking

The Block Registers shown in Figures 4-2 and 4-5 are fictitiocus registers shown
here to facilitate the description of the checking performed by the MMU.

The MMU uses the Segment field of the logical address to select an entry in its
storage array and uses its contents to perform validity, access right and size
checks., The size check verifies that the nine-bit content of the Block Register is
equal to or less than the Size field from the MMU entry. When performing this
check the Block Register consists of either, the four Block field bits from the
logical address with five high order Zeros (for Small Segments 0.0 to 0.F); or the
eight Block field bits from the logical address with one high order Zero (for Large
Segments).

An additional check is performed in EMMU mode to dynamically verify that the
selected SD# i3 not greater than the Task Segment Table Lim;tw(TSTL). else TRAP

(TV1S).))
A

Ak,

i HONEIWELL INFORMATION | SPEC. NO.
! SYISTEMS ! 60149740

SHEET | REV.
4= 11 ! c

On certain commercial, certain scientific and Validate instructions, the CSS
uses the MMU to perform a Limit check; the MMU storage array entry (i.e., the 3D)
used i1s determined by the segment field of the LA. Before performing the Limit
check the CSS calculates a Limit address by taking the block and Offset of the LA,
and adds to this a 16-bit Range value derived from the instruction. The high crder
eight bits of this result, together with the carry, if any, are sent to the Block
Register as the nine~bit value to be used to perform the Limit check.

The Limit check is used to verify that the operand(s) of the instruction about
to be executed, which could involve a field of n atoms, is within the segment or
concatenated segments.

4.2.6 TI/0 Order Considerations

I/0 orders are privileged and thus may be executed only in ring 0 or ring 1.
The Validate order must be used to ensure that the I/0 buffer is within a segment
or two concatenated segments. When the IOLD instruction is executed, the address
of the buffer, defined by the AAS, is absolutized by the MMU.

4.3 HARDWARE/SCFTWARE INTERFACES

4.3.1 Génera;

The protection scheme of the MMU is based on a ring structure. Memory objects
are visible to a process through SDs. Each SD specifies the access rights applic-
able to the segment (object). A process executing in ring R has access to any
segment in ring R and in all rings of lesser privilege. A process may switch
between rings only under tightly controlled conditions. Access rights are enforced
through a comparison of an effective ring number and a pertinent access control
field in the appropriate SD. This comparison is performed by the MMU hardware.

4.3.1.1 PRIVILEGED INSTRUCTIONS

In order to ensure system integrity the following instructions can be executed
only when in:

o Ring 0: MEMD, MMUD, DHR, CPID, ASST and ATST,

o Ring 0 or 1: ASD®, LEV, HLT, IO, IOH, IOLD, RSC, RTCN, RTCF, WDIN and WDTF.

Violations of the above conditions result in Trap (TV13).
4.3.1.2 EXECUTION PRIVILEGE OF A PROCESS

The execution privilege R current (RCR) of a process that is running on a
processor is defined by a two-bit ring number in the S register. At dispatch time
the process execution privilege is saved in its ISA. If a trap is posted while the

process is running, then its execution privilege is saved in the Z word (bits 8 and
9) of the TSA.

® ASD may be executed only in ring 0 in a CR41E, M6X or M6XE.

! HONEIWELL INFORMATION

SPEC. NO. | SEEET | REV. !
l SISTEMS i

60149740 | 4= 12] c

A
4.3.1.3 ADDRESS SPACE VECTOR Qw/

In order to accommodate hardware dispatching of processes with their respective
address spaces, the IS4 supports an Address Space Vector (ASV). The format of the
ASV is shown in Figure 4-§.

The PTR field specifies the base of a segment table (ST) in memory. The ST
consists of 62 locations in SMMU mode and from Zero up to 256 locations for the TST
in EMMU mode, as determined by TSTL (see subsection 4.3.4). The structure of the
ST is shown in Figure 4-T7 and the TST in Figure 34-3.

Note that the TST must be memory resident during execution due to demand
loading of SDs by the EMMU.

0 ' 78 11 12 15

! i PTR (EMMU MODE) |
- WORD 1 H R F U ! i
E |] PTR !
! | (SMMO MODE) |
]]
] i
WORD 2 | P T R ! N
!] o
Figure 4-6 ASV Format
4

'

—— e

0.0
0.F
F.0

60149740

SPEC. NO.
SEGMENT TABLE FCRMAT FOR SMMU MODE

SYSTEMS

ISA

HONEIWELL INFORMATION

- smo
- SEG.
- SEG. 1.0
- sm.

—~
*® se 00 o9 o0 oo 20 00 09 o0 06 00 00 8 e% 09 e e *8 e¢ o0 o0 oe oo -—
b A
ﬁ ~ ~ ~~ ~ (V]
o h o o -~
~ ~s ~ ~ @
3] m 2] m B
N) N H @
(2] (%] (2] [2] [}
t [7]
————.] ————] —— e —— [EUEE— ~r
ol X~ | B b I A =N I 1T E | 3
mn " n ~ mn [+ mn " Q
 aad - - -— hel
~ — S eee} ~r UGN — ~r ——] ~r —— o L o
ok <3] - (<] M 3] M 5] ™ =
m m m m 0
= =
—— e e llll|J —— wme — — e oo
oy 1
= = = °
" ~ W 2] b4
0
o - =
- [
— con e " — e - [+] e R [— e e [« -] nnu
" 24 ~ ~ [}
> > ES =
o 1 9]
s e e e e |] rmen e s e e s e e e - e weaw o o [T (o)
fzs
[]
o - o - N m Q =
(48] m m (12] 0 \O
N
1
!
] - ————] -
[os]
[£3])
2
o
(=7}
z

Figure 4-T7 Segment Table Format in Memory in SMMU Mode

| HONEIWELL INFORMATION ! SPEC. NO. { SHEET { REV.
1
[}

Q

s

| SISTEMS ! 60149740] J- 14
ISA TASX SEGMENT TABLE FORMAT FOR EMMO MUDE a™
i !
- - 012 34 5 6§ 7 15 _
b i ! | s
{ASV PCINTER| ==> 0 IR BASE (15) | e
| TSTL ! | H | := SEG. 80
! i] | !] | | e
- - 1 | RR | RW | RE | RFU | SIZE (9) | :
! H | | ! ! | 1
| |
| I
|] | @
2548 | 7 | BASE (15) | s
| | | := SEG. FF
! | i i | S
255% | RR | RW | RE | RFU | SIZE (9) | :
] | | H ! s

® Location of the last segment descriptor word pair is dependent
upon the value of the TSIL. Shown here is the case where

TSTL = FF (128 SDs assigned). Space requirements for TST are
(TSTL - 80)%* 2 words. \

S

Figure 4-8 Task Segment Table Format in Memory in EMMU Mode

4.3.17.4 EMMO MODE TASK SEGMENT TABLE LIMIT (TSTL)

The TSTL is contained within a word adjacent to the ASV of the ISA and defines
the maximum addressable segment available to the Task. Each memory reference
dynamically compares the value of the TSTL with the referenced segment number (80
-=> FF) and if SEG# > TSTL, then Trap (TVi5).

For a description of the ASV and TSTL fields refer to the description of the
ISA in subsection 3.5.2.3. The format of TSTL is shown in Figure 4-9.

o
=Y
oo

15

Highest Segment

— e — et S

foae com e cmn o

|
l
! RFU
|
z

Number Allocated
To The Task
TSTL = 00 -=> FF, for values 00 --> TF, no Task Space is allocated. 1

Figure 4-9 TSTL Format

A s,

SPEC. NO. | SHEET

1 HONEYWELL INFORMATION |
' 60149740 | 4- 15 ! E

SYSTEMS

4,3.2 Operating System

Operating System (0S) procedures typically are assigned to run in privileged
rings. In order to reduce context switching, the 0S is not centralized into a
separate process, but rather it is distributed (i.e., it is a part of each pro=-
cess). Thus a switch from a user to an 0S procedure occurs through a controlled
switch in ring of execution.

4.3.3 Segment Descriptors

As shown in Figures 4-10 and 4-11, memory is viewed by a process through its
segment descriptor (SD).

! ! DATA/PROCEDURE
! ! SEGMENTS

! !

| !

! e > '
' ! ! ! !
! ! ! ' '
' ! ! .

' ! ! .

| ! !

! IV No. 0 | I ASV J=<>| H i ———] |
| IV No. 1 }== | ! | SEGMENT !|===ee ! .

| . I ! | DESCRIPTOR |====ce=e-

! . S ! | TABLE ! >! !
| . | i Isa | ! ' /| '
| . ' ! ! / | !
! . ! ' ' /| '
! . ! / ' '
! . ! / ! !
} . = /

: . : /

! ' /

{_IV No. 63 {-= | _ASV }|==>| ! /

' b] ! SEGMENT |-==/

] <>l H | DESCRIPTOR ! >1 !
| H ! ! ! TABLE R ' !
! 1 1 IsA | ' i ! ! !
] 1]]] 1]
]]]] 1] 1
]] [} 1 1

] 1]] 1] °

! ! ! .

] 1]

1 1]

! e eemeee- > |
! '

Figure 4-10 Process Context and Address Space Definition

HONEYWELL INFORMATION
SYSTEMS

SPEC, NO. ! SHEET ! REV. !
60149740 | 4- 16 ! E | A

SMMU MODE SUPPORTS 16 SMALL SEGMENTS AND 15 LARGE SEGMENTS
EMMU MODE SUPPORTS O SMALL SEGMENTS AND 256 LARGE SEGMENTS
! 1

/ \ / \
I : | : ; P b
. 1 g ! | R i
UPTO | | SEG | | SEG | | SEG | O | SEG | |
4k - | i oo | i oo | i F | I
WORDS | | # 0.0 | | # 0.F | f#n} F | #m | |
]] 1] 1 1 1 S 1] i
] 1 i]] 1 1]] 1
it H | ! ! ! E | I
| VT .
] 1 1 1] 1
I 1 I] 1 H

Where for: | I 11 UP TO

SMMU mode n= 1 andm= F ! [1 1= 64K

EMMU mode n = 0 and m = FF ! _bov ! | WORDS
| ' \ DATA | |
] 1] 1 i
I i 1]]
i 1] 1 i
1 1 1 1 1
]]] 1]
] 1 1 !]
! ! i P
]]] 1)
] i] 1]
] 1 1 1 i
i i 1 [

"'/>x\
Figure U4-11 Process View of Memory N/

Addresses generated by a process are logical addresses and are mapped by the
MMU through the SDs stored in its storage array into physical addresses.

The SMMU is designed to accept a logical word address of 20 bits and maps this
into a physical address. Refer to Table 4-1 for the appropriate physical address
size as a function of mcdel.

The EMMU is designed to accept a logical word address of 24 bits and maps this
into a 23-bit physical address.

4,3.4 Address Space Switching

The OS assigns a logical space to each Task. The logical space of a Task is
defined by its ST in SMMU mode or by the combination of the SST and its TST when in
EMMU mode. The transition from one address space to another (which takes place at
process dispatch time) can be performed in one of two ways:

o INRUSH - This method is applicable at context switch time and uses ISM2 bit
0 (MU bit) to cause an address space change.

In SMMU mode, the SDs contained in the ST pointed to by the ASV are loaded

into the MMU storage array at context load time.

In EMMU mode, the MMU task cache used to store Task 3Ds is flushed and the gjﬁ\
[ASV] and [TSTL] are loaded into MMU registers. All subsequent references —
to the TST will be made dynamically through on-demand loading of the MMU

task cache.

HONEYWELL INFORMATION

SPEC. NO. | SHEET | REV.
i 1
1 J

SISTEMS 60149740 417

4.3.5

In an M5XE the following applies at inrush time:

The TST is checked to insure that it is in a valid segment. If not then
the TSTL is set to TF (i.e., no task space is allocated). Subsequent
references to the TST will result in a Trap (TV15).

The TST is not checked to insure that it is double word aligned.
Subsequent references of a segment descriptor from the TST will result in
a Trap (TVi8).

In an M6XE the following applies at inrush time:

The TST is checked to insure that it is in a valid segment. If not post
superhalt for the level.

The SST is not affected by an INRUSH.

ACTIVATE - This method uses the Activate Segment Descriptor (ASD), Activate
System Segment Table (ASST) and Activate Task Segment Table (ATST)
instructions to cause an address space change.

In SMMU mode the OS may use ASDs to cause an address space change,.by
changing only the required number of SDs in the MMU storage array (e.g., it
may change the task SDs but not the system SDs).

In EMMU mode, the OS may use an ASST and/or an ATST to cause an address
space change. Typically it will only use an ATST since the system SDs are
common to all tasks.

Access Checks

The access permission checks performed by the MMU are as follows:

(o)

A segment descriptor contains three fields defining the access control
attributes of the segment as follows:

- RW = Write permission
- RR = Read permission
- RE = Execute permission.

The current privilege of a process is defined by an R current (RCR) and is
contained in S(1:2).

R effective (REF) is used to determine whether the process may make a memory
reference as follows:

- REF = RCR if no indirection is involved, or
- REF = Least privileged of RCR or RW of the segment containing the
indirect pointer.

" Whenever fetching an instruction, check that:

RCR < RE i.e., RCR is as privileged or more privileged than the RE of
the segment containing the instruction.

SPEC. NO.
60149740

SHEET REV.

; HONEYWELL INFORMATION : |
' 4-18 | E |

SYSTEMS

o Whenever reading an operand, check that:
REF < RR
o Whenever writing an operand, check that:
REF < RW
In all statements of access checks in this specification the tests are stated
in terms of ring values rather than in terms of the encoding of the ring values (as
given in the next subsection). On this basis, for example, Ring 0 < Ring 1 < Ring
2 < Ring 3 although this is not true of the binary codes which represent these ring

values.

Ring 0 always has access rights to any valid segment in the currently defined
address space.

4.3.6 Ring Definition

In a system using four ring values the following assignments could be used:

o Ring 0 - Kernel (Privileged)

o Ring 1 - Supervisor (Privileged)

0 Ring 2 - Subsystem (Non-privileged)
o Ring 3 - User (Non-privileged).

In a system using only two ring values, the following assignments could be

o Ring 0 - Supervisor (Privileged)
o Ring 3 - User (Non-privileged).

PriVileges and access rights accorded the various rings are in inverse order to
the ring's number (i.e., Ring 0 is most privileged).

There are two kinds of ring values of interest: Current Value (RCR) and
Effective Value (REF). REF can be equal to or can differ from RCR (see subsection
4.3.5).

RCR is contained in S(1:2) and may be changed only under certain limited
situations (see subsection 4.3.7).

REF is calculated whenever one of the following situations are encountered:

1. Indirect addressing or remote descriptor reference is performed. In this
case REF = lesser privileged of REF or RW of segment containing the indi-
rect pointer/remote descriptor.

2. When the firmware references system-base type areas such as interrupt vec-
tors, trap vectors, saving areas, ete. In this case, since the firmware is
considered to be part of 0S, an Effective Ring Value of Zero (highest priv-
ilege) is used.

'S

! HONEYWELL INFORMATION | SPEC. NO. | SHEET i REV. i
H SYSTEMS | 60149740 ! 4= 19] c !

For compatibility with lower processors of the Level 6 family, the ring values
are encoded as one's complements whenever they appear. Thus the ring values and
their binary encodings are as shown below:

Ring Values Binary Code
0 11 H
1 10 ! Inecreasing
2 01 | Privileges
3 00 H

4,3.7 Ring Transitions

Figure 4-12 shows the four rings in which a process can be and the transition
paths between rings. Ring crossing occurs whenever the RCR of a process running on
a processor is changed. The conditions under which this occurs are described
below.

Following a system initialize, the CSS places the current process in ring 0.
To exit ring 0, i.e., perform an outward ring crossing, the process can either exe-
cute an ENTER instruction and thus cause a transition to ring 3, or execute an RTT
instruction that results in a transition (through a Trap or emulation of a Trap) to
the ring (e.g., 1, 2 or 3) specified in the TSA.

Inward ring crossings are performed via a trap (e.g., Monitor Call instruc-
tior). As a functiom of the Trap vector (i.e., odd or even address), a ring cross=-
ing to ring 0 or no ring change occurs. Note that performing an inward ring cross-
ing to a ring other than ring 0 requires that first an inward ring crossing to ring
0 be performed and then an outward ring crossing to the desired ring.

4.3.7.1 TRAP

A Ring crossing can occur as a result of a trap. The trap procedure can run in
either the same or the most privileged ring (ring 0).

When a trap occurs, the CSS accesses the next Available TSA Pointer to obtain a
TSA, links the TSA to the current ISA and stores appropriate information in the
TSA. These operations are accomplished using an REF = Zero, since these are CSS
firmware functions, ’

RCR is saved in bits 8 & 9 of the Z word in the TSA., Still using REF = 0, the
CSS then accesses the appropriate Trap Vector. If the least significant bit of the
Trap Vector is a Zero, the Current Ring Value in S1, S2 is retained unaltered
(i.e., execute the Trap procedure at the current ring value); if it is a One, the
Current Ring Value in S1, S2 is set to 11 (i.e., execute the Trap procedure in ring
0).

The address in the Trap Vector is delivered to the P counter and the Trap
procedure is executed using the new current ring value.

—~—

HONEIWELL INFORMATION | SPEC. XNO. | SEBEET | REV. !
SYSTEMS H 60149740 | B~ 20 i c |
’,{ ’\‘
L
KERNEL (PRIVILEGZED)
INITIALIZZ
SUPSAVISCR 7
(PRIVILEGED) “‘\/

SUBSYSTIM

Figure 4=12 State Transitions - Secure System {/

! HONEYWELL INFORMATION
!
I

SPEC. NO. ' | SHEET ! REV.
SYSTEMS ! 1

]
]
60149740 4o 21 E !

Non-privileged procedures should not be allowed access to either interrupt or
trap vectors or saving areas. Thus, in order for a non-privileged trap procedure
to gain read access to the information regarding the trap, it is necessary for a
privileged procedure to move this information to a non-privileged area and then
pass control to the non- privileged procedure.

4.3.7.2 RTT INSTRUCTION

A Ring crossing may occur as a result of an RTT instruction. The RTT restores
the context contained in the TSA, which includes the ring information in bits 8 and
9 of the TSA Z word. Refer to Section 5 for more information about the RTT in-
struction.

4.3.7.3 ENTER INSTRUCTION
A Ring crossing may occur as a result of an ENTER instruction. The ENTER in-
struction causes a ring change from any ring to ring 3. Refer to Section 5 for

more information about the ENTER instruction.

4.3.8 Transfer of Control Instructions

During the execution of a transfer of control type instruction (e.g., branch,
jump, etc.) no ring change takes place regardless of the outcome of the instruc-
tion. It is the software's responsibility to insure that privileged procedures not
branch to less privileged procedures since this would allow a less privileged
procedure to run in a more privileged ring thus jeopardizing system security.

4.3.9 Mode Switching (MS5XE and M6XE Only)

Switching the CSS between SMMU and EMMU modes is accomplished with the Activate
System Segment Table (ASST) instruction. The ASST instruction is used to activate
a new system address space and to activate (or deactivate) EMMU mode as follows:

o For SST pointer ([B5]) equal to NULL:

Deactivate EMMU mode (switch to SMMU mode) and generate a trivial map in the
MMU (31 SD) Storage Array. All subsequent references are made from the MMU
Storage array and the processor is in SMMU mode.

o For SST pointer ([B5]) not equal NULL:

INRUSH the SDs contained in the system segment table pointed to by [B5] into
the EMMU (128 SD) storage array up to and including the SD whose # = [R6]
where 00 < [R6] < TF. Note that not all SDs loaded are necessarily Valid/
assigned. Mark in the EMMU storage array all SDs beyond the SD specified in
R6 as invalid and set the TSTL Register to TF (127). EMMU mode is activated
and all subsequent references are made through the System Space descriptors
until a level change specifying an INRUSH is made or an ATST instruction is
executed. For a definition of the ASST and ATST instructions, refer to
subsection 5.9.

SPEC. NO.
60149740

SHEET REV.

! HONEYWELL INFORMATION !
| 4 22 ! E

SYSTEMS

4.,3.10 MMU Support Instructions

The following briefly describes the instructions which are pertinent to the
MMU. Refer to Section 5 for a detailed description of these instructions.

4.3.10.1 VALIDATE

The Validate instruction provides a means whereby a called procedure running in
a more privileged ring can validate the access rights to data of a less privileged
caller. This assures that any reference made by the more privileged procedure on
behalf of the less privileged procedure is consistent with the less privileged pro-
cedure's access rights., The Validate instruction operates identically in both SMMU
and EMMU modes.

4.3.10.2 CONVERT LOGICAL ADDRESS TO PHYSICAL ADDRESS (CVP)

The CVP instruction converts a logical address to a physical address and per-
forms a Validate operation. The CVP instruction operates identically in both SMMU
and EMMU modes.
4.3.10.3 ACTIVATE SEGMENT DESCRIPTOR (ASD)

The ASD instruction allows a SD to be updated in the MMU storage array. As a
function of MMU mode the following applies:

0 SMMU Mode - The specific SD (one of 31) is updated in the MMU storage
array.

o EMMU Mode - For segment # equals 00 -TF, the specific system SD is updated
in the EMMU storage array.

o EMMU Mode - For segment # equals 80 -FF, the specific task SD is flushed
from the EMMU task cache.

4.3.10.4 ACTIVATE SYSTEM SEGMENT TABLE (ASST)

The ASST instruction allows entry into or exit from EMMU mode. It also defines
the system address space by causing the system segments in the system segment table
to be loaded into the EMMU storage array.

4.3.10.5 ACTIVATE TASK SEGMENT TABLE (ATST)

The ATST instruction defines the task address space by causing the EMMU task
cache to be flushed and the pointer to the TST and its limit TSTL to be saved in
the EMMU. All subsequent references to the task address space will be allowed and
will take place via on demand loading of the EMMU storage array.

4.3.11 Segment Descriptor Access Checks (EMMU mode only)

During demand fetching, of a segment descriptor, from the EMMU storage array
certain checks are performed by the CSS. Refer to the definition of TV18, in
subsection 3.6.3, for a description of these checks. &4

| HONEYWELL INFORMATION | SPEC. NO. | SHEET ! REV. !
SYSTEMS] 60149740 | |

SECTION 5 GENERAL INSTRUCTION SET DEFINITION

BN

5.1 GENERAL INSTROCTION SET

This section describes the General instruction set., Table 1-2 lists the
various conventions and definitions used to describe these instructions.

The instructions are classified as follows:
o Double Operand (subsection 5.2)

o Single Operand (subsection 5.3)

o Short Value Immediate (subsection 5.4)

o Branch on Registers (subsection 5.5)

o Branch on Indicators (subsection 5.6)

o Shift Operation (subsection 5.7)

o Input/Output (I/0) (subsection 5.8)

o Generics (subsection 5.9)

(The double and single operand and I/0 instructions use an Address Syllable (AS)
' field. Refer to subsection 3.11 for a description of an AS.

For convenience the instructions are summarized in Appendix E. Appendix E also

includes the summaries of those Ccmmercial and Scientific instructions which use
the format of general instructions.

HONEIWELL INFORMATICN | SPEC. NO. | SHEET | REV.
1

SISTEMS 1 60149740 H S= 2] Cc
PR
S.1.1 Instruction Rules ‘.

While reading instruction definitions, the following special cases should be
noted:

1. IMO usage: This AS should be used with caution. Improper usage can lead to
a modification of the procedure (i.e., IMO AS should never be the
destination of an operand).

2. Indexing: Indexing can be used to select bits, bytes, words or double words
when using a word address form or bytes only when using a byte address
form. Refer to subsection 3.13 for details.

Compare Instructions

Execution of a Compare instruction results in the setting of I(G) or "greater
than,"™ I(L) or "less than,” and I(U) or "sign unlike™ bits of the indicator
register. The compare is performed between two operands, namely, OP1 and OP2,
where OP1 is contained either in register R or B or [EA] as determined by the
opcode. OP2 can reference a memory location or an R=- or B-register, or have an
implied value of zero, as determined by the opcode. For the purpose of the
compare, both quantites (OP1 and OP2) are treated as unsigned binary integers.

o If OP1 > OP2 then I(G) == 1 else I(G) <==0
SN

o If OP1 < OP2 them I(L) <= 1 else I(L) <==0 N

o If OP1(0) # OP2(0) then I(U) <==1 else I(U) <--0, with the exception of the
CMB (Compare with B-register) and CMN (Compare with NULL) instructions
during which the setting of I(U) is undefined.

Arithmetic Instructions

Most arithmetic operations (e.g., add, subtract, multiply, arithmetic shifts,
etec.) affect the setting of I(OV) or Overflow and I(C) or Carry bit of the
indicator register.

I(OV) will set if the Result that is being loaded into a register exceeds the
capacity of the register.

This operation is shown for the ADD instructions in truth-table form in Table
5-10

| HONEYWELL INFORMATION | SPEC. NO. {
| SYSTEMS ! 60149740 | 5- 3 ! c |

Table 5=-1 Carry and Overflow Truth Table

H (Assuming Add Operation)
]
]

i

i
{BIT O OF {BIT 0 OF | CARRY-IN |BIT O OF| STATE OF | STATE CF |
|OPERAND 1|OPERAND 2{FROM BIT 1| RESULT | I(C) i I(ov) 5
! i i | i i |
i 0 i 0 i 0 i 0 ! 0] 0 |
i 0 i 0 i 1 oo i 0 ! 1 i
i 0 ! 1 i 0 1 i 0 i 0 |
' 0 i 1 | 1 i o0 i 1 i 0 i
i 1 i 0 i 0 i 1 i 0 i 0 i
! 1 | 0 i 1 i 0 i 1 i 0 |
! 1 i 1 i 0 i 0 ' 1 | 1 i
! 1 | 1 i 1 P | 1 | 0 i

During a divide operation, I(OV) is also set to a One under the following
conditions:

1. If the divisor = 0, or
2. IfrQ>2¥8 .4, or

3. Ifr Q< -2N (where N = the size minus one of the register receiving QJj,
€. 8.

If the dividend = -2N and the divisor = =1 (the true value of the
quotient would be 2N, which is not representable and therefore
constitutes an OV).

I(C) is set during some arithmetic and shift operations.' If an add or subtract
operation results in a carry fram bit 0, then I(C) is set. This operation is shcwn
for the ADD instructions in truth-table form in Table 5-1,

For shift operations that modify I(C), I(C) reflects the state of the last bit
shifted out.

I(C) is set during divide if a non-zero remainder is discarded, If the above
operation does not set I(C) and/or I(OV), these indicators are cleared.

| HCNEIWELL INFORMATICN

SISTEMS

| SPEC. NO.

5- 4

{ REV,

i 60149740

5.2 DOUBLE OPERAND INSTRUCTIONS

Double operand instructicns have the following format:

where #

0P

AS

Selects one of the general registers.

(io e" B’ R,

Opcode field;

0 1 34 89 15
! 11 # 1| oP | AS 5
i Additional words as needed ;

or (M6X and M6XE only)

0 1 3% 89 15
11 # 1 oP] ASN i
‘! OFFSET | RFU |MAP#| As2,3 ;
llo 34 67 89 15;
! !
| i

Additional words as needed

M) is a function of the opcode;

Address Syllable field.

The type of register selected

Within this group, the following types of instructions are available:

0000

Depending upon whether the AS specifies RAS, MAS, or IMO form, the double
operand instructions are defined to have the following format respectively:

o RR:
o RM:
o RI:

These instructions are summarized in Table 5-2.

Address register (B) instructions
Word operand register (R) instructions
Halfword (byte) instructions

Mode register (M) instructions

register to register |
register to memory
register immediate

is given in Table 5=3,

Their numerical representation

-

! HONEIWELL INFORMATION

SYSTEMS

!

i SPEC. NO.

| SHEET

60149740 |

55

REV. |
l

Table 5-2 Double Operand Instructions (Sheet 1 of 3)

|REFERENCE |MNEMONIC! DESCRIPTION ! OPERATION IINDICATORS| COMMENTS |
| SUBSECTION | ! | | AFFECTED | !
! WORD OPERAND REGISTER INSTRUCTIONS |
1

]

| 5.2.1 i LDR | Load Register R | [R#] <-- [EA]] ! |
| H ! ! ' ! !
| 5.2.2 | STR | Store Register R | [EA] <== [R#] ! | |
| ! | ! | ! |
| 5.2.3 | SWR | Swap Register R | [R#] <-==> [EA] ! | !
! ! | ! ! | i
| 5.2.4 i CMR | Compare with | [R#] :: [EA] ! ¢, L, U | |
! | i Register R ! | | !
| { o ! ! | !
| 5.2.5 | ADD | Add to Register | [R#] <-- [R#] + | ¢, OV | !
g | | R ! [(EA] | ! |
| ! | i | | |
| 5.2.6- | SUB | Subtract fram | [R#] <-= [R#]1 - | ©¢C, OV |]
b ! | Reglster R | [EA] ! ! |
! | ! | | | |
5.2.7	MOL	Multiply	[R#] K==	£ #<7T,! [R6, RT]	
	'	Register R { [R#] ® [EA] ex-	ov { is double		
			cept 1f # =7,		integer
! ! ! { then [R6, R7] <== | | format |
E § i i [R7] ® [EA] f : i
1 h !

| 5.2.8 | DIV | Divide Register | [R#] <== | If # < 7,! [R6, RT] |
! ! | R { [R#] 7/ [EA] ex- | C, OV | is double !
! ! ! | cept if # = 7, | If # = T7,) integer |
! | | ! then [R7] <— ooV | format !
| | | { [86, RT] 7/ [EA]; | ! '
! i | { [R6] <== remain- | | |
| ! ! | der | | |
' | | ! | | |
| 5.2.9 | OR | OR with Register | [R#] <-- | | !
| | | R | [R#] \/ [EA] ! | |
| | | | | | !
! 5.2.10 | XOR | Exclusive OR | [R#] <= ! } !
| ! | with Register R i [(R#] @ [EA] ! | !
! | ! i | | |
! 5.2.11 | SRM | Store R | For 0 <1i< 15, | | If [M] = |
!] | through Mask | 1f [M(1)] = 1, H i 0, use !
! ! ! | [EA(1)] <- [R(1)] | i [R1] as |
| !] | else [EA(1)] is | | Mask. If |
! | | | unchanged | { (R1] =0, |
| | g ! - ! | SRM = NOP |
! | | g | | !
! 5.2.12 | AND | AND with Reg. R | [R#] <==]] !
! | ! | [R#] /\ [EA] | ! i

[EA(8:15)] K==

| ECNEYWELL INFORMATICN | SPEC. NO. | SHEET | REV. !

H SISTEMS i 60149740 ! S= 6 i Cc |
LN
\{Wy/’

Table 5=-2 Double Operand Instructions (Sheet 2 of 3)

|REFERENCE |MNEMONIC| DESCRIFTION ! OPERATION {INDICATORS| COMMENTS |

|SUBSECTION| H i | AFFECTED | i

d |

i BYTE INSTRUCTIONS # !

3]

1 1

! 5.2.13 | LDH | Halfword (byte) | [R#(8:15)] <= | ! |

! | | Lecad Register R | [EA]; [R#(0:7)]1 |] |

! | ' { <== [R#(8)] !] i

H ! ! | H i !

| 5.2.1% | ST™ | Balfword (byte) | [EA] <= ! | }

| | | Store Register R | [R#(8:15)] { ! |

| ! { H H | , !

i 5.2.15 | o | Halfword (byte) | [R#] :: [EA] i G, L, U0 | [EA] is |

! H | Compare Reg. R | } | sign ex- |

! | | | i | tended |

} | ! ! | ! |

! 5.2.16 | OHRH | Balfword (byte) | [R#] K==] | [EA] is]

| S ! OR with Register | [R#] \/ [EA] i | sign ex- |

| ! | R] | | tended |

| H ' ! ! | i

i 5.2.17 | XH | Halfword (byte) | [R#] K== 'I { [EBA]l 48 '

| | | Exclusive OR | [R#] @ [EA] | | sign ex- \

| | | with Register R | H | tended |

| i ! | | | i

| 5.2.18 | ANE | Halfword (byte) | [R#]<== | | [EA] 18 |

| ! | AND with ! [R#] 7\ [EA] ! | sign ex- |

! | | Register R | | | tended }

! | i ! H | |

i 5.2.19 | LLH | Halfword (byte) | [R#(8:15)] <-=]] |

| | | Load Logical | (EAl; [R#(0:T)1 |] |

! H | Register R | <== 0 o ! !

|]

! MODE REGISTER INSTRUCTIONS |

' |

! 5.2.20 | MTM | Modify and/or | See text ! B]]

! H | Test Reglister M | | | B

| ! ' | | | i

! 5.2.21 | S™ | Store Register M | [EA(0:7)] K== FF; | | }

| i 1 | } ! |

i | | ! | ! i

(M#]

#Tn all byte instructions [EA] = addressed byte.

g,

! BEONEYWELL INFORMATION | SPEC. NO. | SHEET REV. 1
| SYSTEMS ! 60149740 | 5= 7 c |
Table 5-2 Double Operand Instructions (Sheet 3 of 32)

|REFERENCE |MNEMONIC| DESCRIPTION H OPERATION {INDICATORS| COMMENTS |
| SUBSECT ION | | 1 | AFFECTED | H
] !
]]
i ADDRESS REGISTER INSTRUCTIONS !
1]
] 1
| 5.2.22 | LIB | Load Register B | [B#] <-—- [EA] | ! !
] | | i ! ' |
! 5.2.23 | STB | Store Register B | [EA] <-- [B#]. !]]
| i ! ! | !]
I 5.2.24 | CcMB | Compare with | [B#] :: [EA] 16, L, U |]
! | i Register B | i H |
i ! | ! | H |
! 5.2.25 | SWB | Swap Register B | [B#] <--> [EA] } } }
1 | | | |] |
! 5.2.26 | LAB ! Load Effective ! [B#] <=-= EA H | |
! ! | Address into B | ! ! |
| | | | ! H |
i 5.2.27 | LN { Link Jump | [B#] <~ [P]; ! | [B#] |
!] | ! [P] <-=~ EA ! | points to |
! ' ! | i | the first |
! | H H ! | word |
! | '] ! | after !
] ! | | i | Link Jump.|
| ! ! ! ! | If M1(J) |
i] | ! ! | =1 then !
1 ! | | | | Trap TV02.]

' HONEIWELL INFORMATION | SPEC. NO. | SHEET | REV.
{ SISTEMS | - 60149740 i

Table 5-3 Numerical Representation of Double Operand Instructions

SUBSECTION| H1 | H2 | E3 | H4 | MNEMONIC | ATOM SIZE

! H
t i H
| 5.2,.20 | 8&r | 0 | O+m | n | MIM | Word !
| 5.2.13 | 8+r | 0 | 8m !n | LIH | Byte]
| 5.2.15 [&r |1 | 8min | CMH | Byte]
i 526 | 8+r | 2 | 0+m {n | SUB ! Word !
{ 5.2.19 | 8r |2 | 8m|{n | LLH | Byte }
| 5.2.8 | B+r | 3 | O+m | n | DIV | Word |
i 5.2.27 | &r |3 | 8m | n | LN ! Word !
i 5.2.9 | 8r | 4 |0+ |n | OR ! Word]
| 5.2.16 | 8+r |4 | 8m |n | ORH | Byte H
i 5.2.12 [8r |5 | O+m {n | AND ! Word !
| 5.2.18 | 8r |5 | 8&m|n | ANH | Byte]
| 5.2.10 | 8+r | 6 | O+m {n | XCR | Word H
| 5.2,17 | 8r |6 | 8m | n | XOH | Byte }
{ 5.2.21 | 8r |7 {0+m [n | SIM | Word !
i 5.2.14 | 8+r |7 | 8m}in | ST | Byte !
! 5.2.1. | 8r | 8 | 0O+m !{n | LDR ! Word !
i 5.2.4 |} 8r |} 9 | O+m}|n | CMR ! Word |
| 52.5 | 8r | A | O {n | ADD ! Word !
| 5.2.11 | 8r | A | 8m|{n | SRM | Word !
| 52,7 | 8r |B | O+m {n | ML ! Word !
| 5.2.26 | 8&r |B | 8m|n | LAB | Word H
! 52.22 | 8+r | C | 8em | n | LIB ! Word |
| 5.2.24 | &r |D | 8m|n | CMB ! DWord !
! 5.2.3 | 8r |E | O+«m !n | SWR ! Word !
| 5.2.25 | 8r |E | 8&m | n | SWB ! DWord !
{ 52.2 | 8+r |F | O0em {n | STR | Word]
| 5.2.23 | 8r | F | 8m!n | STB ! DWord |}

where pr = Register number contained in bits 1 through 3
and m, n = Coordinates of AS Map (see subsection 3.11).

5.2.1 Load Register R, LDR

Format:
RR, RM, RI
Description:

The contents of the location specified by the AS are loaded into the
designated R-register.

Operation:

[R#] <=-- [EA]

H HONEYWELL INFORMATION
[
]

SPEC. NO. ! SHEET | REV.
(SYSTEMS ! |

60149740

Indicator Condition:

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
OV Unchanged

aroaHw A

Special Conditions:
None.

5.2.2 Store Register R, STR

Format:
RR, RM, RI
Description:

The contents of the desigrnated R-register are stored in the location
specified by the AS.

Operation:
[EA] <=- [R#]
Indicator Conditionms:

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
OV Unchanged

araa+Hwa

Special Conditions:

Use of IMO address form may cause alteration of procedure.

5.2.3 Swap Register R, SWR

Format:

RR, RM, RI

-~

Desecription:

The contents of the designated R-register are swapped with the contents of
the location specified by the AS.

! HONEYWELL INFORMATION | SPEC. NO. | SHEET { REV. !
' SISTEMS ! 60149740 ! 5= 10 | c {
Cpreration: W

[R#] <==> [EA]
Indicator Conditions:

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
OV Unchanged

aroHwa

Special Conditions:

Use of IMO address form may cause alteration of procedure.

5.2.4 Compare With Register R, CMR

Fomé.t:
RR, RM, RI \

Description: u ~
The contents of the designated R-register and the contents of the location
specified by the AS are compared as unsigned integers, G-, L=, and
U=indicator bits are set to indicate the results of the compare.

Operation:

I(G), I(L), I(U) <K== [R#] :: [EA]

Indicator Conditions:

C Unchanged

B Unchanged

I Unchanged
If [R#] > [EA] then. G (== 1 else G <== 0
If [(R#] < [EA] then L <= 1 else L <== 0

If [R#(0)] # [EA(0)] then U <K== 1 else U <== 0
' OV Unchanged .

Special Conditions:
None,

5.2.5 Add To Register R, ADD 'Y

Format:

RR, RM, RI

HCNEYWELL INFORMAT ION | SPEC. NO. | SHEET | REV. i
SISTEMS | 60149740 ! 5= 11 | c |

-—— o

Description:

The sum of the contents of the designated R-register and the contents of the
location specified by the AS is lcaded into R.

Operation:
[R#] <-- [R#] + [EA]
Indicator Conditions:
== 1 else C <== 0
Unchanged

Unchanged

If carry then c
B
I
G Unchanged
L
g

Unchanged
Unchanged
If overflow then OV <== 1 else OV <-= 0
Special Conditions:
If an overflow occurs and M1(#) = 1, then a Trap TV06 occurs.
5.2.5 Subtract Fram Register R. SUB
Format:
RR, RM, RI
Description:

The difference of the contents of the designated B—regisier and the contents
of the location specified by the AS is loaded into R.

Operation:
[R#] <== [R#] - [EA] (Using two's complement arithmetic)
Indicator Conditions:
(== 1 else C <== 0
Unchanged

Unchanged

If carry then C
B
I
G Unchanged
L
U

Unchanged
Unchanged -
If overflow then OV K== 1 else OV <== 0
Special Conditions:

If an overflow occurs and Mi(#) = 1, then a Trap TV06 occurs.

i HONEYWELL INFORMATICN i SPEC. NO. | SHEET | REV. |
] SISTEMS | 60149740 | 5= 12 | c |

5.2.7 Multi Register R, MOL
Format:
RR, RM, RI
Description:

The product of the contents of the designated R-register and the contents
the location specified by the AS is loaded into R. If the designated

A

of

R=register is R7, then the product (double precision format) is loaded into

RS and R7T with RT being loaded with the least significant portion of the
product.

Operation:

[(R#] <= [R#] ® [EA]
except if # = 7
then [R6, R7T] <= [R7] # [EA]

Indicator Conditions:

Unchanged

Onchanged

Unchanged

Unchanged

Onchanged

Unchanged

If overflow then QV K== 1 else OV <«= Q except for # =7,
‘then OV is cleared., All operands remain
unchanged if OV <e= 1,

cQrrQHL O

Special Conditions:
If an overflow occurs and M1(#) = 1, then a.’rrap TV06 occurs,
5.2.8 Divide Register R, DIV
Format:
RR, RM, RI
Description:

The designated R=register contents are divided by the contents of the
location specifed by the AS, and the resulting quotient is locaded into R.
If the designated R-register is RT, then the operation is performed on the
double integer operand contained in RS and R‘{, and the remainder in single
integer format is loaded into R6. °

C

! HONEYWELL INFORMATICN ! SPEC. NO. | SHEET]
' SISTEMS | 60149740 | 5= 13 | c |

If the contents of the location specified by the AS (divisor) are zero, or
if the resulting quotient (Q) is Q < =215 or Q > 275 -1, then the overflow
condition is set, the contents of the selected registers are unchanged, and
the C-indicator bit is in an undefined state.

Operation:
(R#] <-- [R#] / [EA]
except if # = 7, then

(R7] <-- [R6, R7] / [EA];
[R6] <-- Remainder (supplied with the same sign bit as the dividend)

Indicator Conditions:

For # £ 7, if the remainder £ 0, then
For # = T

C <(==1, else C <== 0
C Unchanged
B Unchanged
I Unchanged
G Unchanged
L Unchanged
U Unchanged

If the divisor is zero, or if the quotient causes overflow, then the
operands remain unchanged and OV K==1,

Special Conditions:
If an overflow occurs and Mi(#) = 1, then a Trap TV06 occurs.

5.2.9 OR With Register R, OR

Format:
RR, RM, RI
Description:

The inclusive OR of the contents of the designated R-register and the
contents of the location specified by the AS is locaded into R.

Operation:

[R#] <-- [R#] \/ [EA]
Indicator Conditions:
Unchanged
Unchanged

Unchanged
Unchanged

QWA

—— e

HONEIWELL INFORMATION | SPEC. XNO. | SHEET | REV, |
SISTEMS . 60149740 | 5= 14 | c i

L Unchanged rf\

U Unchanged ~
OV Unchanged
Special Conditions:

None.

5.2.10 Exclusive OR With Register R, XOR

Format:
RR, RM, RI
Descri ption_:

The exclusive OR of the contents of the designated R-register and the
contents of the location specified by the AS is locaded into R.

Operation:
[R#] <= [R#] @ [EA]

Indicator Conditions:
TN
Unchanged _
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
OV Unckhanged

araoHwa

Special Conditions:

None,

5.2.11 Store R Under Control Of Mask, SRM

Format:
RR, RM, RI
Description:

Transfer bits of R# as specified by a Mask word to the corresponding bit
positions of [EA]. The Mask word is the last word of the instruction.

Operation:

™~

O

i

For 0 < i < 15, 1f [M(1)] = 1 then [EA (4i)] <~= [R#(1)]; otherwise, [EA(1)]
is unchanged. (M = Mask word.) '

«

! HONEYWELL INFORMATION
]
]

SISTEMS

SPEC.

NO.

60149740

——

5= 15

Indicator Conditions:

arrOHW A

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged

OV Unchanged

Special Conditions:

1. If [M] = 0, use [R1] as the Mask word, and if [R1] = 0 treat the instruction
as a NOP,

2. The use of IMO address form may cause alteration of procedure,

3. If AS requires additional words (i.e., IMA, displacement, descriptor), then
these precede the Mask word.

5.2.12 AND With Register R, AND

Format:

RR, RM, RI

Description:

The logical AND of the contents of the designated R-register and the
contents of the location specified by the AS is loaded into R.

‘Operation:

(R#] <-= [R#] /\ [EA]

Indicator Conditions:

araoarwao

Unchanged
Unchanged

" Unchanged

Unchanged
Unchanged
Unchanged

OV Unchanged

Special Conditions:

Nons.

5.2.13 Halfword (3yte) Load Register R, LTH

Format:

RR, RM, RI

! HONEYWELL INFORMATION | SPEC. NO. | SHEET | REV. |
| SYSTEMS | 60149740 | 5= 16 ! c |
R
Description: N/

The byte specified by the AS is loaded (sign extended) into the designated
R=register.

Operation:

[R#(8:15)] <== byte addressed by EA; [R# (0:7)] <== [R#(8)]

Indicator Conditions:

araoaHwa

Uachanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged

OV Unchanged

Special Conditions:

T&é byte specified by the AS is a function of the AS format:

(o]

Q

When a MAS with indexing is used, the byte used 1s as specified in

subsection 3.12

e
% N,

K//‘

When an IMO or MAS without indexing is used, the leftmost byte of the
addressed location is selected.

When R-register AS is used, the right byte, i.e,, [R#(8:15)]1, is taken.

5.2.14 Halfword (Byte) Store Register R, STH

Format:

RR, RM, RI

Description:

The least =significant eight bits of the contents of the designated
R-register are stored into the byte location specified by the AS.

Operation: ‘

[Byte addressed by EA] <-= [R#(8:15)]

Indicator Conditions:

QAR WA

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged

£Ew,

| HONEYWELL INFORMATION
SYISTEMS

c

SPEC. NO. | SHEET | REV. :
{ !

60149740 | 5- 17

U Unchanged
OV Unchanged

Special Conditions:

1. The byte specified by the AS is as described in the LIH instruction under

Special Conditions.

2. Use of IMO address form may cause alteration of procedure.

5.2.15 Halfword (Byte) Compare Register R, CMH

Format:
RR, RM, RI

Description:

The unsigned comparison of the contents of R# with the byte (sign extended)
specified by the AS is used to set the G-, L=, and U-indicators.

Operétion:

[TEMP (8:15)] <-- [Byte addressed by EA]
[TEMP (0:7)] <-- [TEMP(8)] - Sign Extend Operation
I(G), I(L), I(U) <~= [R#] :: [TEMP]

Indicator Conditions:

If (R#) > [TEMP] then
If (R#) < [TEMP] then
If [R# (0)] # [TEMP(0)] then U

[N >R N Ne}

Unchanged
Unchanged
Unchanged }
{== 1 else G <== 0
== 1 else L <==C
{== 1 else U K== 0

OV Unchanged

Special Conditions:

The byte specified by the AS is as described in the LIH instruction under

Special Conditions.

5.2.16 Hal fword (Bvte) OR With Register R, ORH

Format:
RR, RM, RI

Description:

The inclusive OR of the contents of the designated R-register and the byte
(sign extended) specified by the AS is loaded into R.

| HONEYWELL INFORMATION | SPEC, NO. | SHEET |
| SISTEMS ! 60149740 | 5= 18 ! c |

Operation:

[TEMP (8:15)] <== [Byte addressed by EA]
[TEMP (0:7)] <=- [TEMP (8)] Sign Extend Operation
(R#] <-- [R#] \/ [TEMP]

Indicator Conditions:

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
OV Unchanged

SraoaHwQa

Special Conditions:

The byte specified by the AS is as described in the LIH instruction under
Special Conditions.

5.2.17 Halfword (Byte) Exclusive OR With Register R, XCH

Format:

RR, RM, RI
Description:

The exclusive OR of the contents of the designated R-register and the byte
(sign extended) specified by the AS is locaded into R.

Operation:

[TEMP (8:15)] <= [Byte addressed by EA]
[TEMP (0:7)] <== [TEMP (8)] Sign Extend Operation
(R#] <-- [R#] @ [TEMP]

Indicator Conditions:

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
OV Unchanged

araHte o

Special Conditions:

The byte specified by the As is as desceriled in the LI8 insatruction under
Special Conditioans.

| HONEYWELL INFORMATICN | SPEC. NO. ! SHEET ! REV. !
(H SYSTEMS | 60149740] 5- 19 H

5.2.18 Halfword (Byte) AND With Register R, ANH

Format:
RR, RM, RI
Description:

The logical AND of the contents of the designated R-register and the byte
(sign extended) specified by the AS is loaded into R.

Operation:

[TEMP 8:15)] <== [Byte addressed by EA]
[TEMP 0:7)] <== [TEMP (8)] Sign Extend Operation
[R#) <-= [R#] /\ [TEMP]

Indicator Conditions:

Unchanged
. Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
OV Unchanged

aQrmHW o

Special Conditions:

The byte specified by AS is as described in the LIH instruction under
Special Conditions.

5.2.19 Halfword (Byte) Load Logical Register R, LLH

Format:

RR, RM, RI
Description:

The byte specified by the address syllable is loaded into the right half of
R#; i.e., R# (8:15). The left half of R#, i.e., R# (0:7) is cleared to
Zero.

Operation:
) [R# 8:15)] <== [Byte addressed by EA]; [R# (0:7)] <-= 00
(| Indicator Condition:
Unchanged
Unchanged

Unchanged
Unchanged

QWA

' HONEIWELL INFORMATION SPEC. NO.
!
]

SISTEMS

%
&
h

——

60149740

L Unchanged
U Unchanged
OV Unchanged

Special Conditions:

The byte specified by the AS is as described in the LDH instruction under
Special Conditions.

5.2.20 Modify Or Test Register M, MTM

Format:
RR, RM, RI
" Description:

The designated eight-bit register M is altered and/or tested as specified by
the contents of the location specified by the AS.

Operagion:
[(I(B)] <= 0, then
for 0 <1 <7
If [EA (1)] = 1 then [M#(1i)] <= [EA (i+83)] else S
Ir (EA (1)] = 0, [EA (4i+8)] = 1, and [M#(i)] = 1,

then [I(B)] <== 1 else
If [EA(1)] = 0, and [EA(i+8)] = 0, then [M#(i)] unchanged.

Indicator Conditions:

C. Unchanged
If for i
[EA (1)1

0y15000096,7 [MB(1)] = 1 and
0 and [EA (1+8)] = 1 then

B (== 1 else B<== 0
I Unchanged
G Unchanged
L Unchanged
U Unchanged
OV Unchaaged

Special Conditions:
If M6 or M7 is specified in a CR41E then Trap TVOS.

5.2.21 Store Register M, STM

Format:

RR, RM, RI | @)

Description:

The designated eight-bit register M is loaded into the right half of the
location specified by the AS. The left half of the location specified by
the AS 13 set to all Ones. '

i HONEYWELL INFORMATION
]
!

SISTEMS

| SPEC. NO.
! 60149740

Operation:

[EA (0:7)] <== FF;
[EA (8:15)] <== [M#]

Indicator Conditions:

araHwaoO

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged

OV Unchanged

Special Conditicns:

1. If M6 or M7 is specified in a CRY1E then Trap TVOS.

2. Use of IMO address form may cause alteration of procedure.

5.2.22 Load Register B, LDB

Format:

RR, RM, RI

Description:

The contents of the location specified by the AS are loaded into the

designated B-register.

Operation:

[B#] <-- [EA]

Indicator Conditions:

araoaHwaoOn

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged

OV Unchanged

Special Conditions:

1. The two words beginning at EA are loaded into the designated B register,
Bits 12 (or bits 8, if EMMU) through 15 of the EA are loaded as the

high-order bits of B.

2. If high order bits of [EA] are non zero then Trap TViS.

3.2.1.2.

[EA + 1] is loaded as the low-order 16 bits of B.

See subsection

!

HONEYWELL INFORMATION | SPEC. NO.
SISTEMS ! 60149740

:
s

5.2.23 Store Register B, STB

®

Format:
RR, RM, RI
Description:

The contents of the designated B-register are stored in the location
specified by the AS.

Operation:
[EA] <~-- [B#]
Indicator Conditions:

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
OV Unchanged

araHqdoao

Special Conditions: o) NS

. 1. The contents of the designated B register is stored in the two words

beginning at EA. Bits 12 (Bit 8 if EMMU) through 15 of EA contain the
high-order bits of B. [EA + 1] contains the 16 low-order bits of B.

2. Use of IMO address form may cause alteration of procedure,

5.2.24 Compare With Register B, CMB

Format:
AR, RM, RI
Description:

The comparison of the contents of the designated B-~register and the contents
of the location specified by the AS is used to set the G- and L-indicators.

Operation:

I(G), I(L) <=-= [B#] :: [EA]

H HONEYWELL INFORMATION | SPEC. NO. { SHEET ! REV. !
(”] SYSTEMS ! 60149740 ! 5= 23 | c !
Indicator Conditions:
C Unchanged
B Unchanged
I Unchanged

If [B#] > [EA] then G <K== 1 else G <= 0

If [B#] < [EA[then L <== 1 else L <=-= 0
U <== X i,e.,, setting of U is undefined
OV Unchanged

Special Conditions:

1. [B#] and [EA] are treated as addresses, i.e., unsigned 20 or 24~bit
integers.

2. If the high~order 12 bits (high order 8bits if EMMU) of [EA] are not Zero,

5.2.25 Swap Register B, SWB

Format:

RR, RM, RI

Description:

The contents of the designated B-register are swapped with the contents of
the location specified by the AS.

Operation:
[B#] <==> [EA]
Indicator Conditions:

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
OV Unchanged

araoHwaa

Special Conditions:

1. The two words beginning at EA are swapped with B. The four high-order bits
of B (8 high-order bits if EMMU) are swapped with [EA (12:15)] (or [EA

(V& (8:15)] if EMMU. The 16 low-order bits of B are swapped with [EA + 1].

2. Use of IMO address form may cause alteration of procedure.

3. If high order bits of [EA] are non zero then Trap TV15. See subsection
3.2.1.2.

' HONEIWELL INFORMATION
! SISTEMS

—— -

SPEC. NO. | SEEET { REV. !
60149740 i 5-24 H c |

5.2.26 Lload Effective Address Into B, LA4B
Format:
EM, RI
Description:

The EA specified by the AS is loaded into the designated B-register.
Operation:

[B#] <-- EA
Indicator Conditions:

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
OV Unchanged

aroHoa

Special Conditions: -
N

1. For IMO form of AS, B# is loaded to point to the second word of the
instruction.

2. Indexing and IMO AS act as if LAB had a one-word operand and B# is loaded to
~point to IMO.

3. If high order bits of EA are non zero then Trap TV15. See subsection
3.2.1.2.

5.2.27 Link Jump, LNJ

Format:
RM, RI

Description:
Store the program counter in the designated B-register, thean jump to the
location specified by the AS. On completion of the instruection, the
contents of that Beregister points to the instruction following LNJ. Thus,

LNJ can be used for subroutine linkage, with B containing the return
address.

Operation:

[(B#] <== [P]; [P] <== EA

' HONEIWELL INFORMATIOCN | SPEC, NO.
H SISTEMS !

60149740

!
!

Indicator Conditions:

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
linchanged
OV Unchanged

arQ W o

Special Conditions:

If M1(J) = 1 then trap to TVO2.

SISTEMS

! 60149740 |

HONEIWELL INFORMATICN { SPEC. NO. | SHEET
5= 26

5.3 STNGLE OPERAND

Single operand instructions have the rollcwing format:

where

X

QP

AS

Within

o Modify operands
o Bit instructions

0 1 314 89

15

| 11 x00 | oP] &S

| Additional words as needed

or (M6X and MBXE only)
c 1 3% 89

Py
wm

1| x00 | oP | ASN

|
| OFFSET | RFU |MAP#] AS2,3
|
]
!

0 34 67 89
- Additional words as needed
!

= Y
(V]
-] o - ————

0 for all single operand instructions except

1 for scientific single operand instructions (reference Section 8);

Opcode field;

Address Syllable field.

this group the follcﬁing types of instructions exist:

o Control instructions.

Depending upon whether the AS specifies a RAS, MAS or IMO form, these

instructions are defined to have the following format:

R
M
I

These instructions are summarized in Table S5-4,
is given in Table 5«5,

Register only
Memory only
Immediate only.

The numerical representation

__/

A,

HCNEYWELL INFORMATION | SPEC. NO. | SHEET ! REV. !
SYSTEMS | 601497450 | 5= 27 | c |

Table 5-4 Single Operand Instructions (Sheet 1 of 3)

|REFERENCE !MNEMONIC; DESCRIPTION] OPERATION JINDICATORS| COMMENTS
| SUBSECTICN | ! i ! AFFECTED |

MODIFY OPERANDS

H

!

H

! 5.3.1 | INC | Increment | [I(B)] <=-= { oV, C, B | Read

! | ! { [EAC0)]; [EA] <== | | Modify
i 4 ! ! [EA] + 0001 | | Write
! !] | | !

{ 5.3.2 | DEC { Decrement | [EA] <== [EA] + | OV, C, B | Read

! | ! | FFFF; [I(B)] K== | | Modify
! | | | [EAJ(0) ! | Write
| ! | | | !

| 5.3.3 | NEG | Negate | [EA] <== 0000 - | OV, C }

| ! | | [(EA] ! !

] ! | ! | !

! 53.4 | CR ! Canplement ! [EA] <=~ [EA] @ | !

H ! | | FFFF ! !

! y | | ! | !

! 5.3.5 | CL ! Clear ! [EA] <-- 0000 ! !

! | ! ! | !

| 5.3.6 | CLH ! Clear Hal fword | [EA] <== 0Q] H

] ! ! ! : | |

| 5.3.7 | cMz | Compare with i [EA] :: 0000 16, L, O |

} | | Zero ! | !

i | | | | !

i 5.3.8 | CMY | Compare Address | [EA(2:31)] :: 1 G, L i

i] | to Null | 00000000 1 i

! | | ' 1 !

! 5.3.9 | CAD | Add Carry | [EA] <— [EA] + | OV, C !

i | I | I(C)- ! |

] CONTROL INSTRUCTIONS

]

]

! 5.3.10 | STS | Store S Register | [EA] <-- [S] ! !

| | ! ! | !

| 5.3.11 | JMP | Jump ! [P] <-= EA ! ! Trap TV02
| ! !]] | if M1(J)
! | H P] b= 1

| ! ! ! ! |

! 5.3.12 | ENT | Enter ! [P] <= EA ! | Trap TVO2
! i % g [S.RN] <== 00 | | 1f M1(J)
' | | =

! HCNEYWELL INFORMATION ! SPEC. NO. | SHEET | REV. |
| SYISTEMS ! 60149740 S5- 28 | C H
O
S
Table 5-4 Single Cperand Iastructions (Sheet 2 of 3)

{REFERENCZ |MNEMONIC! DESCRIPTION ! OPERATION {INDICATORS| COMMENTS |
|SUBSECTICN | i H | AFFECTED | !
! |
i CONTROL INSTRUCTIONS (Continued) i
1
| 5.3.13 | LEV | Level | See text ! | Privie H
| | i ! { | leged In- |
H ! ! | | | struction |
| ! ! | i ! |
! 5.3.14 | SAVE | Save Context | [EA]l + 0, 1,...]1 | | Save and |
! | ! { <== [B7-B1, I, | | Restore |
| H | | R7=-R1, M1] H | are done |
| | | | ' ! under !
! 5.3.15 | RSTR | Restore Contaxt | [B7-B1, I, R7-R1, | See text | contral |
| ! | .} M1] == [EA + 0, | | of the !
! ! | B PP ! | Mask that |
!] ! | H | follows |
| |] | | | the i~ |
| - | ! |] ! struction |
! ! H | ! |]
! H ! ! ! ! See rules |
! ! | !] { in sub- |
| ! | !] | section |
! | | 1 i | 3.3.2.2 |-~
} BIT INSTRUCTICNS® }
! 5.3.16 i L3 { Load Bit E [I(B)] <= [EA] ! B ! |
i | H | !]
| 5.3 1T | LBF | Load Bit and set | [I(B)] <— [EAl; | B }]
H b | False - { [EA]l <==0 ! | !
! ! ! i | | !
! 5.3 18 | LBT | Load Bit and set | [I(B) <-~ [EA]; ' B] !
! ! | True | [EA] <== 1 ! | !
! | | } ! | |
| 5.3.19 | LBC | Load Bit and | (2(B)] <=—_[EAL; | | |
i : i Canpl ement ll [EA] <-- [EA] x | !

] ! |
! 5.3.20 | LBS | Load Bit and | [I(B)] <===> [EA] | B ! !
H } | Swap ! | ! !

8211 instructions excluding LB exscuts in Read-Modify-Write mode.,

If the AS involves indexing, the index value is aligred to count bits and [EA] is
the bit thus addressed.

If the AS is not indexed, [EA] is the logical product of the addressed word and
the 16-bit Mask following the instruction,

RN

e

Lo,

H HONEYWELL INFORMATICN | SPEC. NO. | SHEET | REV. !
! SYSTEMS] 60149740 ! 5= 29] c |

Table 5-4 Single Operand Instructions (Sheet 3 of 3)

|REFERENCE |MNEMONIC| DESCRIPTION ! OPERATION IINDICATORS!| COMMENTS
| SUBSECTION | | ! ! AFFECTED |

DOQUBLE WORD

—— e ovee e

| 5.3.21 | AID ! Add Integer i [R6], [RT] <= i ov,c |}
H ! ! Double i [R61, [R7T] + [EA] | |
! ! ! | ! !
! 5.3.22 | LDI | Load Double Word | [R6], [R7] <—=] !
! H | Integer ! [EA] ! |
| ! | | ! |
i 5.3.23 | spI | Store Double ! [EA] <= [RS, ! H
! i ; Word Integer ; [R7] I. l}
i]

! 5.3.24 | SID | Subtract Integer | [R6], [R7] <-= 1 ov,c |}
| ! ! i | |

Double [(R61, 1RT] - [EA]

s s St eee Meen Gme G e Gwe Gen

| 60149740

{ SPEC. NO.

HONEIWELL INFORMATION
SISTEMS

!
|

AN
, ‘

Table 5-5 Numerical HRepresentation of Single Cperand Instructiocns

i
z
1
z
:
!
x
|
z
|
!
|
;
f
!
|
i
|
l
|
:

{ B4 | MNEMONIC | ATOM SIZE

| B2 | B3

{SUBSECTION

e Rt G S e EANS G SN WM et Smen Al EEGE SAGS HLGE FEE Gwep Seee Gt Gm Geee SnEme s S—an

e Tmr Gt Shan S EER Geem Chan Chun P e AP WD FEEP = et oS W GGG Cewe Shaw e S—

. ehee GEaD WD G SO SRS cmes Ceup Cowe CBAP Goms VI Guup VO Goas TP ey TP wmew T wmes T s

BT W G Eeh Ern A DAL WD Chen SR Gmep TER PEUE EREs SEES Smme TR emap VRN M T aves "V

" S Eh R WeR EEp RN GRCE IS Wt BLAD CLED FeEd TEET CEES WIGE WAL PR WSS RS SheD Weas wmew emew

\O v v =t t~ 0] o ONONM [\l = 0
M~ NN INO N~ N~ 0NNO ™ OV —
® e ® ¢ % ® 2 e ¢ e & ° & © O 6 o ° s s e * o o
333 3333333333333333333

555555555555555555555555

—m et e SR Gee GRP Ceep Gman Cre PN A AP e Ve U CEEN WA S G NP e e ws TS Gewe ==

Where m,n = coordinates of AS Map (see subsection 3.11)

() | HONEIWELL INFORMATION | SPEC. NO. | SHEET , | REV.
- | SISTEMS | 60149740 ! 5= 31 ! c

5.3.1 Increment, INC

Format:
R, M, I
Description:
Increment by one the contents of the location specified by the AS.
Operation:
[(I(B)] <-- [EA(0)]; [EA] <-= [EA] + 0001
Indicator Conditions:
If carry then C <K== 1 else C K== 0

Before incrementing,

if [EA (0)] = 1 then == 1 else B K== 0

B
I Unchanged
G Unchanged
L Unchanged
U UOnchanged
i If overflow then OV <== 1 else OV <== 0
The setting of OV for this instruction will not cause a trap.
Special Conditions:
1. Use of IMO address form may cause alteration of procedure,
2. Operand is addressed with a read-modify-write cycle.

3.2 Decrement, DEC

Format:
R, M, I
Description:
Decrement by one the contents of the location specified by the A4S,
Operation:
(EA] <-= [EA] + FFFF; [I(B)] <~-= [EA(Q)]
Indicator Conditions:

(If carry then
After decrement if [EA(0)] = 1 then

== 1 else C <== 0
== 1 else B <== 0
Unchanged
Unchanged

QHWO

b HONEYWELL INFORMATICN | SPEC., NO. ! SHEET ! REV. |

| SISTEMS o 60149740 H 5= 32 { c i
£
(&)/
L UOnchanged
J Unchanged

If overflow then

OV K== 1 else OV <~== 0

The setting of OV for this instruction will not cause a trap.

Special conditions:

1. Use of IMD address form may cause alteration of procedure,

2. Operand is addressed with a read-modify-write cycle.

5.3.3 Nezate, NEG

Format:

R, M, I
Description:

Two's complement on the contents of the location specified by the AS.

Operation:

[EA] <-= Q000 = [EA]
Indicator Conditions:

If [EA] = 0 then c
B
I
G
L
1]

Ir [EA] = 8000, then OV

== 1 else C <== 0
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
{== 1 else OV <== 0

The setting of OV for this instruction will not cause a trap.

Special conditions:

Use of IMD address form may cause alteration of procedure,

5.3.4 Complement, CPL

Format:

Ry, M I

Description:

One's complement on the contants of the location specified by the AS,

i HONEIWELL INFORMATION { SPEC. NO. | SHEET.
SISTEMS ! 60149740 ! 5-33

Cperation:
[EA] <— [EA] @ FFFF
Indicator Conditions:

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
OV Unchanged

araHxwa

Special Conditions:
Use of IMD address form may cause alteration of procedure.

5.3.5 Clear, CL

Format:
R, M, I
Description:
Zero is stored in the location specifed by the AS,
Operation:
[EA] <=- 0000
Indicator Conditions:

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
OV Unchanged

SArQHWwWAO

Special Conditions:
Use of IMO address form may cause alteration of procedure.

5.3.6 Clear Halfword (Byte), CLH

Format:

R, M, I

HONEIWELL INFORMATION | SPEC. NO.
SISTEMS g 60149740

—————

SHEET | REV. i
5- 34 ! c |

®

Description:
Zero is loaded into the byte location specified by the AS.
Cperation:
| [Byte Addressed by EA] <== 00
Indicator Conditions:

Unchanged
Unchanged
OUnchanged
OUnchanged
Unchanged
Unchanged
OV Unchanged

araqHoa

Special Conditions:

1. The byte specified by the AS is as described in the LDH instruction under
Special Conditions. Refer to subsection 5.2.13.

2. The use of IMO address form may cause alteratiocn of procedure.

5.3.7 Compare With Zero, CMZ w

Format:
R, M I
Description:

The unsigned comparison of Zero with the content of the location specified
by the AS is used to set the G-, L-, and U-indicators.

Operation:
I(G), I(L), I(U), <== [EBA] :: 0000
Indicator Conditions:

Unchanged

Unchanged

Unchanged

Ir [EA] 2 0000 then G <=~ 1 else G <== 0
L <=0 ‘

If [EAJ(O) = 1 then U <K== 1 else U <== 0
OV Unchanged

HWE A

SPEC. NO.
60149740

SHEET
5-35

(i‘, ! HONEYWELL INFORMATION REV.
I
|

SISTEMS

Q

——

Special Conditions:
MNone.

5.3.8 Compare Address To Null, CMN

Format:
R, M, I
Description:

Compare the contents of EA to a null address.

Operation:

I(G) <== [EA] :: 00000000
I(L) <== 0
I(0) <-= Ondefined

Indicator Conditions:

Unchanged

Unchanged

Unchanged

If [EA] #0 then G <== 1 else G <== 0
L <=0
U <== X (i.e., setting of U is undefined)
OV Unchanged

s,
~H WO

Special Conditions:
The EA is defined to contain an address.

5.3.9 Add Carry, CAD

Format:
R, M I
Description:

Add the carry bit I(C) to the contents of the location specified by the AS.
Operation:

[EA] <= [EA] + [I(C)]
Indicator Conditions:

(If carry then C (== 1 else C <K== 0
B Unchanged
-

Unchanged

- e

HONEIWELL INFORMATION { SPEC. NO. | SHEET { REV.
1
)

SISTEMS ! 60149740 H 5= 36

G Unchanged
L Unchanged
U Unchanged
If overflow then QV == 1 else QV K== 0
The setting of OV for this instruction does not cause a Trap TVQ6.
Special Conditdions:
Use of IMD address form may cause alteration of procedure.
5.3.10 Store S-Register, STS
Format:
R, M, I

Description:

Store [S] in the word specified by the AS.
Ope:x.'ation:

[EA] <= [s]
Indicater Conditions:

Unchanged
Onchanged
Unchanged
Unchanged
Unchanged
Unchanged
OV Unchanged

arQaMoo

Special Conditions:
Use of IMO address form may cause alteration of procedure,
.3.11 Jump, JMP
Format:
M
Description:
Junp to the memory location specified by the AS.
QOperation:

[(P] <-= EA

'

//7 ' ™~

! HONEYWELL INFORMATION | SPEC. NO. ! SHEET | REV, |
| SYSTEMS ! 601497450 |} 5- 37] c |

Indicator Conditions:

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
OV Unchanged

araoHwa

Special Conditions:

If the trace trap bit (i.e., ML(J)) is on, a Trap TV02 is performed after
the JMP instruction has been executed.

5.3.12 Enter, ENT

Format:
M
Description:

Jump to memory location specified bty the AS and change the process priv-
ilege (RCR) to ring 3.

Operation:

[p] {== EA; and
[S.RN] <-= 00,

Indicator Conditions:

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
' Unchanged
OV Unchanged

arQHuwo

Special Conditions:

If the trace trap bit (i.e., MiL(J)) is on, a Trap TV02 is performed after
the ENT instruction has been executed.

3.1 Level, LEV
Format:

R, M, I

! HONEIWELL INFORMATICH | SPEC. NO. | SHEET i
i SISTEMS : 60149740 | 5-38 i c |

Description:

Set/clear level Pactivity" flag bit, inhibit interrupts, or enable
interrupts under control of the cperand.

Operation:
Reference subsection 3.5.4.
Indicator Conditions:

See subsection 3.5.%4
See subsection 3.5.4
See subsection 3.5.4
See subsection 3.5.4
See subsection 3.5.4
See subsection 3.5.4
OV See subsection 3.5.4

QrQ <A

Special Conditions:

‘The LEV instruction can only be executed if in ring 0 or 1, else Trap TVi3.

5.3.14 Save Context, SAVE
Format: | \'/,\
M
Description:

Save registers under control of a 16-bit Mask word. The Mask word is the
last word of the instruction.

Operation:
[BA+ 0’1.0.] <.'. [m - Bl, I, m‘R’, ML], undB!‘ OontZ‘Ol of lhak wo!'d.
Indicator Condition:

Unchanged
Unchanged
Unchanged
Unchanged
Unchangsd
Unchanged
OV Unchanged

aQroHqw

Special Conditions:
1. Refer to Restore instruction, special conditions. @

2. If AS requires additional words (that is, IMA, displacement, deseriptor),
then these precede the Mask word.

| HONEYWELL INFORMATION
SYSTEMS

SPEC. NO.
60149740

SHEET | REV. !
5-39 i C

.3.15 Restore Context, RSTR

Format:
M
Description:

Restore registers under control of a 16-bit Mask word. The Mask word is the
last word of the instruction.

Operation:

[BT - Bl, I, RT - R1, Ml1] <= [EA + 0, 1...]. under control of Mask word.

Indicator Conditions:

For Mask.I = 0
I is Unchanged
For Mask.I = 1

I <-= [EA+N]

Special Conditions:

Mask Format for SAVE and RSTR

012345678910 111213 14 15

MRRRRRRR B B B B B B B |
! I i [[Pl+(n=1)]
111234567 1 2 3 4 5 6 7 |

If bit = 1 save/restore corresponding register

o If Mask is all Zeros use Rl as mask; if Rl = 0 then treat the instruction
as NOP.

o For address syllable forms that require auto increment/decrement, the
address is incremented or decremented by a unit of one word regardless of
the number of mask bits that are on.

o For address syllable form 4FT1, FT is incremented or decremented by
23 words regardless of the number of mask bits that are on.

] HONEYWELL INFORMATION | SPEC. NO. | SHEET | REV.
H SYSTEMS ! 60149740 H 5= 40 ! C

For SAVE:

The processor registers selected by the mask bits are stored in memory in

consecutive address locations starting at the specified location., The
mask bits are scanred from right (bit 15) to left (bit 0). If the mask

bit is On, the corresponding register is stored in memory and the address
register is incremented. Only as many memory words as needed are used.

For RSTR:

The contents of memory in consecutive address locations starting at the
specified location are placed in the registers selected by the mask word
bits. The mask bits are scanned from right (bit 15) to left (bit 0).
The contents of the starting address is placed in the register corres-
ponding to the first mask bit that is on. The contents of the consecu-
tive memory locations are placed in the appropriate registers as each
mask bit that is on is encountered.

The high order bits of the address values being locaded in to the base
. registers must be zero else Trap TViS. Refer to subsection 3.2.1.2.

5.3.16 Load Bit, LB
Format: -
R, M, I

Description:
The bit specified by the AS is copied into I(B).

Operation:
[I(B)] <== [Bit addressed by EA].

Indicator Conditions:

Unchanged
{== 1 else B == 0
Unchanged
Unchanged
Unchanged

. Unchanged

OV Unchanged

If addressed bit = 1 then

aQra+Hwoaa

Special Conditions:

If AS involves indexing, the index value is aligned to count bits and [EA]

is the bit thus addressed. If AS is pot indexed, [EA] is the logical
product of the addressed word and the 16-bit Mask in the last word of the 1:‘
instruction, and I(B) receives the logical OR of the selected bits, If the k
Mask is Zero, [R1] is used as the mask; if [R1l] is Zero, I(B) is cleared.

REV.

SPEC. NO. i
S 41 H c

60149740

! HONEYWELL INFORMATION SHEET
]
]

SISTEMS

5.3.17 Load Bit And Set False, LBF

Format:
R, M, I
Description:

The bits sbecified by the AS are loaded into I(B). The addressed bits are
then cleared to Zero.

Operation:
[I(B)] <=— [EA]; [EA] <== 0 (3Bit position selected)
Indicator Conditions:
Unchanged
{== 1 else B <== 0

Unchanged

c
If addressed bit = 1 then B
I
G Unchanged
L
¢f

Unchanged
Unchanged
OV Unchanged
Special Conditions:

1. See LB instruction (subsection 5.3.16).
2. Operand is addressed with a read-modify-write cycle.

5.3.18 Load Bit And Set True, LBT

Format:
R, M, I
Description:

The bits specified by the AS are loaded into I(B). The addressd bits are
then set to One.

Operation:
[I(B)] <= [EA]; [EA] <~~ 1 (Bit position selected)
Indicator Conditions:

C Unchanged
If addressed bit = 1 then B <== 1 else B <== 0
I Unchanged
G Unchanged
L Unchanged
U Unchanged

OV Unchanged

| HONEYWELL INFORMATION | SPEC. NO. | SHEET ! REV, !
! SISTEMS ! 60149740 H 5= 42 ! c }
AN
L
Special Conditions:
1. See L3 instruction (subsection 5.3.16).
2. Operand is addressed with a read-modify-write cycle.
5.3.19 Load Bit And Complement, LBC
Format:
R, M, I
Description:
The bits specified by the AS are loaded into I(B). The addressed bits are
then complemented.
Operation:
[I(B)] <== [EA]; [EA] <=-- [EA] (Bit position selected)
Indicator Conditions:
C Unchanged
If addressed bit = 1 then B <= 1 else B <= 0 PN
I Unchanged w
G Unchanged
L Unchanged
U Unchanged
OV Unchanged

Special Conditions:

1. See LB instruction (subsection 5.3.16).
2. Operand is addressed with a read-modify-write cycle.

5.3.20 Load Bit And Swap, LBS

Format:

R, M, I
Description:

The bits specified by the AS are swapped with I(B).
Operation:

[I(B)] <==> [EA] (Bit position selected)

C‘
»
! J

SHEET
S- 43

HONEYWELL INFORMATICN ! SPEC. NO.
SYSTEMS | 60149740

&
3
=

Indicator Conditions:

Unchanged
{~= 1 else B <== 0
Unchanged
Unchanged
Unchanged
Unchanged
OV Unchanged

If addressed bit = 1 then

aQaraoaHwaoO

Special Conditions:

1. See LB instruction (subsection 5.3.16).
2. Operand is addressed with a read-modify-write cycle.

5.3.21 Add Integer Double, AID

Format:
R, M, I

Description:
The sum of the double word integer contained in R6 and R7 and the contents
of the double word location specified by the AS is loaded into R6, RT.
R6(0) is considered the high-order bit; R7(15) is considered the low-order
bit.

Operation:
(R6]1, [RT] <-- [R6], [RT] + [EA]

Indicator Conditions:

{== 1 else C <=0

Unchanged

Unchanged

If carry then C
B
I
G Unchanged
L
)

Unchanged
Unchanged
If overflow then OV <== 1 else OV <== 0
Special Conditions:
1. See LDI instruction (subsection 5.3.22 below).

2. If an overflow occurs and M1(6) = 1, then a Trap TV06 occurs.

! HONEYWELL INFORMATION ! SPEC. NO.

SHEET { REV.
| SYSTEMS ! 60149740 '

5= 44

Py

5.3.22 Load Double Word Integer, LDI

Format:

Ry M, I
Description:

Place contents of the EA into R6 and RT7.
Operation:

(r61, [R7] <— [EA]
Indicator Conditions:
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged

Unchanged
OV Unchanged

arQaxwa

Special Conditions:

1. RAS form of addressing is defined as follows:

{ #IN | REGISTER PAIR | _ i
! RAS | SELECTED i COMMENT !
! ! ! i
i3 i\ R2, R3 ! i
! 5 ! R4, RS] |
. \ R6, RT i |
11,2,4,6} b4] Operation H
| | | Unspecified !

2. IMO and MAS forms of AS select a two-word operand.

.3.23 Store Double Word Integer, SDI
= _tateger, oU1

Format:

R, M, I
Description:

Place the contents of R6 and RT into the location specified by EA.
Operation:

[EA] <— [R6], [RT]

®

)

! HONEYWELL INFORMATICN
| SISTEMS

SPEC. NO.
60149740

—— ———

——— o

SHEET

5= 45

Indicator Conditions:

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
OV Unchanged

araoa+HwaOQ

Special Conditions:

1. See LDI instruction (subsection 5.3.22).

2. The use of IMO form may cause alteration of procedure,

5.3.24 Subtract Integer Double, SID

Format:
R, M, I

Description:

The difference of the double word integer contained in R6, R7T and the
contents of the double word location specified by the AS is loaded into RS,
R7. R6(0) is considered the high-order bit; R7(15) is considered the

low=-order bit.

Operation:

[R61, [R7] <-- [R6], [R7] - [EA] (using two's complement arithmetic)

Indicator Conditions:

If carry then C
B
I
G
L
1}
If overflow then OV

Special Conditions:

== 1 else C <== 0
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
== 1 else OV <== 1

1. See LDI instruction (subsection 5.3.22).

2. If an overflow occurs and M1(6) = 1, then a Trap TV06 occurs.

HONEIWELL INFORMATION | SPEC. NO.
SISTEMS ' 60145740

SHEET | REV.
5= 46 ! c

— e
—— o

————

5.4 SHORT VALUE IMMEDTIATE

Short value immediate (SI) instructions have the following format:

'0 1 34 738 15'
tot # 1| o | v |
i |
where # = Selects one of the seven word operand registers (R);
OP = Opcode field;
V = Immediate Operand Value, sign extended range is: =128 < V < + 127

These instructions operate on the R-registers and perform load, compare, add,
and multiply operations.

These instructions are summarized in Table S-6. Their numerical representation
is given in Table 5-T.

Table 5-6 Short Value Immediate Instructions

|REFERENCE |MNEMONZIC| DESCRIPTION ! OPERATION | INDICATORS| COMMENTS 3/,\
| SUBSECTION!| | ! | AFFECTED | ‘ '/\ ,
H |
| S.4.1 | LDV | Load Value | [R#] ==V H | In all !
! | i ! | | cases V¥ |
! | ! | | | is sign |
! ! H | | | extended |
H ! H ~ | ! ! !
| 5.4.2 | cMy | Compare with | [R#] :: V ! G,L,0 | !
i | | Value ! ! H !
! ! | | | ! !
! 5.4.3 ! ADV { Add Value | [R#] <-- [R#] + V| C, OV H |
! | | 1 | | |
1 5.4.4 | MLY | Multiply by | [R#] <~= [R#] ®*# Vv | ov, |]
| | | Value | except if R# = 7, | 4if ##7 | !
! | | ! then (R6, R7T) (== |] !
| H ! | (RT) & V | | |
Table 5-7 Numerical Representation of Short Value Immediate Instructions
I|SUBSECTION} H1 | B2 | H3 | B4 | MNEMONIC | ATOM SIZE |
H | H
| 5.4.1 } O#+r | C | v ! Lov | NOT |
1 5.4,2 | C+r |} D | v ! CMv } APPLI- |
| 5.4.3 | O#r } E |} v | ADV ! CABLE |
| s.4.8 | Owr | F | v | My | ! @;:

where r = Register number contained in bits 1 through 3 of the instruction

¥V = Immediate Operand Value.

A

-

HONEYWELL INFORMATION ! SPEC. NO. | SHEET ! REV.
SYSTEMS] 60149740 H 5= L7 |

—— -

5.4.1 Load Value, LDV

Format:
SI
Description:
Load the 8-bit V-field (sign extended) into the designated R-register.
Operation:
(R#(8:15)] <= [V(8:15)] ; [R#(0:7)] <= [V(8)]
Indicator Conditions:

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
OV Unchanged

croHwAO

Special Conditions:
Nore.

5.4.2 Compare With Value, CMV

Format:
SI
Description:

The comparison of the contents of the designated R-register and the 8=bit
V-field (sign extended) is used to set G-, L-, and U-indicators.

Operation:

[TEMP(8:15)] <=- [V(8:15)] ;
[TEMP(0:7)] <=- [V(8)] ;
I(G), I(L), I(U) <== [R#] :: [TEMP]

Indicator Conditions:

Unchanged

Unchanged

Unchanged

If [R#] > [TEMP] then G <== 1 else G <== 0

If [R#] < [TEMP] then L. <== 1 else L <=—= 0

If R#(0) # V(8) then U <K== 1 else U == 0
OV Unchanged

HWAO

SISTEMS

HCNEIWELL INFORMATION

! SPEC. NO. | SHEET | REV. !
! 60149740 : 5= 48 | c |

Special Conditions:
None.

5.4,3 Add Value, ADV

Format:
SI

Description:

The sum of the contents of the designated R-register and the V-field (sign
extended) is locaded into R.

Operation:

[TEMP(8:15)] <= [V(8:15)1;
[TEMP(0:7)] <== [V(8)1];
[R#] <== [R#] + [TEMP]

Indicator Conditions:

If carry then

c
B
I
G
L
'}

== 1 else C <~ 0 P
Unchanged
Onchanged
Unchanged
Unchanged
Unchanged

If overflow then OV <K== 1 else OV <«= 0

Special Conditions:

If an overflow occurs and M1(#) = 1, then a Trap TV06 occurs.

5.4.4 Multiply By Value, MLV

Format:
SI

Description:

The product of the designated R-register contents and the eight-bit V-field
(sign extended) is loaded into R. If # is 7, then the signed double
precision product is loaded into R6 and R7 with R7 being locaded with the
least significant portion of the product.

Operation:

[TEMP(8:15)] <= [V(8:15)1; @;w
[TEMP(0:7)] <== [V(8)I;

[R#] <== [R#] ® [TEMP]

except if # = T then [R6, RT] <== [R7]*[TEMP]

HONEYWELL INFORMATION
SISTEMS

SPEC. NO. | SHEET REY.

60149740 | 5= u49

—— —

&,

A1

Indicator Conditions:

C Unchanged
B Unchanged
I Unchanged
G Unchanged
L Unchanged
U Unchanged
If Overflow then OV == 1 else OV <-= 0 except if # = T,
then OV is cleared.

Special Conditions:
1. If OV <== 1, [R#] is unchanged.

2. If an overflow occurs and Mi1(#) = 1, then a Trap TVO6 occurs.

——

{ HONEYWELL INFCRMATION | SPEC. NO. - | SHEET | REV. !
! SISTEMS | 60149740 ' 5-50 | c ! —
s
5.5 BRANCH ON REGISTER
General Branch on Registerv(BR) instructions have the format shown in Figure
5=1.
These instructions enable branching on selected R-registers; e.g., egqual to
zero, less than zero, increment and test, ete. These instructions are defined in
summary form in Table 5-8. Their numerical representation is given in Table 5-9.
5.5.1 Branch If [R] Less Than Zero, BLZ
Format:
BR
Description:
Branch to EA if the contents of the Reregister are negative.
Operation:
If [R# (0)] = 1 then [P] <— EA
Indicator Condition: o
C Unchanged P
B Unchanged
I Unchanged
G Unchanged
L Unchanged
U Unchanged
OV Unchanged
Special Conditions:
If the branch condition is true (i.e., a branch is executed) and Mi(J) = 1,
then a Trap TV02 occurs after the BLZ instruction is executed.
V. A

'y

e

! HONEYWELL INFORMATION | SPEC. NO. | SHEET ! REV. !
| SYSTEMS ! 60149740 ! 5= 51 ! c |
0 1 34 89 15
WORD 1 | O | R# | oP l d#0or1 | -64<d<63
WORD 1 | O | R# | OP ' d=1 | =215 < D < 215-1
WORD 2 | D !
WORD 1 | 0 | R# | oP ! d=0 !
WORD 2 | '
jomm MA -
‘WORD 3 | !

where R# = One of seven operand registers (R)
OP = Opcode - determines the branch condition
d = Displacement -~ defines how to compute the EA:

o Ifd#Z0or 1, EA = Pd + d, where Pd is the address of the word con=-
taining d (or D); =64 < d < +63; and d is a word displacement.

o Ifd=1, EA = Pd + D.

o If d =0, then EA = IMA;

Figure 5-1 Branch on Register Instruction Formats

H HONEYWELL INFORMATION | SPEC. NO. | SHEET | REV. !
H SYSTEMS ! 60149750 ! S5« 52 ! c | AN
L
Table 5-3 Branch On Register Instructions
|REFERENCE |MNEMONZIC! DESCRIPTION i CPERATION {INDICATORS| COMMENTS |
| SUBSECTION| i 1 ! AFFECTED |]
] 1
]]
i 5.5.1 | BLZ | Branch if [R] ! I [R#(0)] =1, |} | In all !
[! | less than O | then [P] <—— EA] ! branch H
H ! ' ! ! | opera=- |
1 5.5.2 | BGEZ | Branch if [R] ! I [R#(0)] = O, | | tioms, if |
! H ! Greater than or | then [P] <=-= EA] ! the !
] ! | Equal to O H] | branch !
| | | ! b ! condition |
! 5.5.3 ! BEZ | Branch if [R] | I£ (R#] = Q, then | ! i3 true !
! | ! Equal to 0 ! [P] <=~ EA H | (L.e.,]
! H | ! | | branch is |
I 5.5.4 ! BNEZ | Branch if [R] | I [R#] # 0, then | | executed) |
] ! | Not Equal to O ! [P] <== EA H | and if |
i | ! ' i i M1(J) = 1 |
{ 5.5.5 | BGZ | Branch if (R] | If [R#(1:15)] £ 0 | | then trap |
! . H | Greater than 0 | and if { ! to TVO2 H
1 H ! | [R#(0)] = 0, then | ! !
' ! ! | [P] <== EA H] i
] ! !] H ! R
| 5.5.6 | BLEZ | Branch if [R] | If [R#(0)] = 1 or | | o
! ! | Less than or { if [R#] = 0, then ! |]
! ! ! Equal to 0 i [P] <== EA | i]
!]] | o |
| 5.5.7 | BODD | Branch if [R] is | If [R#(15)] =1, | | !
] : { Odd | then [P] <= EA | ! i
H o ! | | ! !
! 5.5.8 | BEVN | Branch if [R] is | If [R#(15)] = 0, ! i |
| . ! Even | then [P] <-= EA | !]
| ! i i ! ! !
| H i ! ! H |
| 5.5.9 | BINC | Branch and ! [(R#] <— [(R#] + | H !
H | ! Increment ! 0001; if [R#] # 0 | ! !
! | | | then [P] <= EA | | {
]] | i ! H |
! 5.5.10 | BDEC | Branch and ! [R#] <== [R#] + | ! !
| | | Decrement | FFFF; if (R#] # |] H
! | | | FFFF, then i |]
H |] { [P] <—= EA ! ! |

-

SHEET { REV.

i HONEIWELL INFORMATION | SPEC. NO.
i ! 5= 53 ! c

SISTEMS i 60149740

[E—
— ———

Table 5-9 Numerical Representation of Branch On Register Instructions

SUBSECTION| H1 | H2 | H3 | H4 | MNEMONIC | ATOM SIZE

' i
i H H
! 5.5.10 J 0+r | 7 | 0+d | BDEC | H
! 5.5.9 [0+r | 7 | 8+d | BINC | H
| 5.5.1] O+r 1 8 | 0O+d ! BLZ | NOT |
1 5.5.2] O#¢r | 8 | 8+d ! BGEZ ! !
| 5.5.3 1 0+r 19 | 0+d ! BEZ { APPLI- |
| 5.5.4 1 0+r | 9 | 8+d ! BNEZ | H
| 5.5.5 Jo+r A | O+d ! BGZ ! CABLE]
! 5.5.6 | 0+r | A | 8+d { BLEZ | !
| 5.5.8 | O0+r | B | 0+d ! BEVN | !
| 5.5.7 | 0+r | B | 8+d ! BODD | H

where r = register number contained in bits 1 through 3 of the instruction;

d

Seven-bit displacement.

5.5.2 Branch If [R] Greater Than Or Equal To Zero, BGEZ

Format:
BR
Description:
Branch to EA if the contents of the R-register are positive or Zero.
Cperation:
If [R#(0)] = 0 then [P] <-- EA
Indicator Conditions:

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
OV Unchanged

aroHwAO

Special Conditions:

If the branch ccndition is true (i.e., a branch is executed) and Mi(J) = 1,
then a Trap TV02 occurs after the BGEZ instruction is executed.

H HONEIWELL INFORMATION
]
1

SISTEMS

| SPEC. NO.

SHEET

5- 54

—

5.5.3 Branch If [R] Equal To Zero, BEZ

Format:

BR

Description:

Branch to EA if the contents of the R-register are Zero.

Operation:

If [R#] = 0 then [P] <-= EA

Indicator Conditions:

araHwaO

ov

Special Conditions:

If the branch condition is true (i.e., a branch is executed) and ML(J) = 1,

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged

then a Trap TV02 occurs after the BEZ instruction is executed.

5.5.4 Branch If [R] Not Equal To Zero, BNEZ

Format:

" BR

Description:

Branch to EA if the contents of the R-register are not Zero.

Operation:

If [R#] # 0 then [P] <= EA

Indicator Conditions:

araHuoa

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged

OV Unchanged

-

7N

N

C
4 J
;

HONEYWELL INFCRMATION | SPEC. NO.
1

| SHEET
SISTEMS i 60149740 H

5= 55

Special Conditions:

If the branch condition is true (i.e., a branch will be executed) and M1(J)
= 1, then a Trap TV02 occurs after the BNEZ instruction is executed.

5.5.5 Branch If [R] Greater Than Zero, BGZ

Format:
BR
Description:
Branch to EA if the contents of the R-register are greater than Zero.
Operation:
If ([R#] # 0) /\ ([R#(0)] = 0) then [P] <= EA
Indicator Conditions:
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged

Unchanged
OV Unchanged

aro+HwAO

Special Conditions:

If the branch is true (i.e., a branch is executed) and Mi(J) = 1, then a
Trap TV02 occurs after the BGZ instruction is executed.

5.5.6 Branch If [R] Less Than Or Equal To Zero, BLEZ

Format:
BR
Description:

Branch to EA if the contents of the R-register are less than or equal to
Zero.

Operation:

If ([R#(0)] = 1) \/ ([R#] = 0) then [P] <-— EA
Indicator Conditions:

C Unchanged

B Unchanged
I Unchanged

H HONEYWELL INFORMATION ! SPEC. NO. | SHEET
] !

! REV.
SYSTEMS ! 60149740 H

——

Unchanged
Unchanged
Urchanged
Unchanged

QGF‘Q

Special Conditions:

If the branch condition is true (i.e., a branch is executed) and ML(J) = 1,
then a Trap TV02 occurs after the BLEZ instruction is executed.

5.5. Branch If [R] Odd, BODD
Format:
BR
Description:
Branch to EA if the R-register contains an odd value.
Opebation:
If [R#(15)] = 1 then [P] <~= EA
Indicator Conditions: _ N
Onchanged
Unchanged
Unchanged
Unchanged
Unchanged

Unchanged
OV Unchanged

arao+Hw o

Special Conditions:

If the branch conditiom is true (i.e., a branch is executed) and ML(J) = 1,
then a Trap TV02 occurs after the BODD instruction is executead.

5.5.8 Branch If [R] Even, BEVN

Format:
BR
Description:
Branch to EA if the Reregister contains an even value.

Operation: @l;

If [R#(15)] = 0 then [P] <K== EA

| HCONEIWELL INFORMATION
1
i

SYSTEMS

| SPEC. NO. | SHEET | REV. i
! 60149740 i 5-57 | ¢ |

Indicator Conditions:

araQaHoma-O

ov

Special Conditions:

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged

If the branch condition is true (i.e., a branch is executed) and ML(J) = 1,
then a Trap TV02 occurs after the BEVN instruction is executed.

5.5.9 Branch And Increment, BINC

Format:

BR

Description:

Add one to the contents of the R-register. If the result is not Zero, then

branch to the EA.

Operation:

[R#] <-- [R#] + 0001

Indicator Conditions:

aQroaHoaQ

ov

Special Condition:

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged

’

if [R#] # 0 then [P] <-- EA

If the branch condition is true (i.e., a branch is executed) and M1(J) = 1,
then a Trap TV02 occurs after the BINC instruction is executed.

5.5.10 Branch And Decrement, BDEC

Format:

BR

SPEC. NOQ. { SHEET | REV. i
60149740 i 5= 58 | c 1

HONEIWELL INFORMATION
SISTEMS

Description:

Subtract one from the contents of the R-register. If the result is not
equal to =1 (FFFF), then branch to the EA.

Operation:
[R#] <== [R#] + FFFF ; if [R#] # FFFF then [P] <-— EA
Indicator Conditions:

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Onchanged
OV Unchanged

araa+HWaO

Special Conditions:

'If the branch condition is true (i.e., a branch is executed) and ML(J) = 1,
then a Trap TV02 occurs after the BDEC instruction is executed.

(T' H HONEIWELL INFORMATION | SPEC. NO. | SHEET i REV. H
i SYISTEMS ! 60149740 ! 5-59 ! c i

5.6 BRANCH ON INDICATOR

Branch On Indicator (BI) instructions have the format shown in Figure 5-2.

These instructions enable branching on various indicator conditions, e.g.,
carry, equal, less than, greater than, I/0 bit, ete. These instructions are
summarized in Table 5-10. Their numerical representation is given in Table 5-11.

5.6.1 Branch, B

Format:

BI
Description:

Branch to EA.
Operation:

[P] <-- EA

Indicator conditions:

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
OV Unchanged

aQraoHWO

Special Conditions:

If M1(J) = 1, then a Trap TV02 occurs after the B instruction is executed.

5.6.2 No Operation, NOP

Format:

BI

' HONEYWELL INFORMATION | SPEC. NO. | SHEET | REV. |
! SYSTEMS ! 60149740 | 5= 60 | c C\
.
0 1 89 15
WORD 1 | O | oP | d#£0o0r1 | =64<d< 863
WORD 1 | 0 ! oP | d=1 | =215 < D ¢ 215-1
WORD 2 | D !
WORD 1 | O | oP | d=0 |
WORD 2 | " !
- j— ™A -
WORD 3 | |

where OP = Opcode - determines the branch condition

A
(1]

Displacement - defines how to compute the EA:

o Ifd£0or 1, EA = Pd + d, where Pd is the address of the word cone-
taining d (or D); =684 < d £ +63; and d is a word displgcement.

o Ifd=1, EA = Pd + D,

0, then EA = IMA,

o Ifd

Figure 5-2 Branch on Indicator Instruction Formats

TN

! BONEYWELL INFCRMATION | SPEC. NO. | SHEET ! REV. H
| SYSTEMS H 60149740 | 5-61 | c |
Table 5~-10 Branch On Indicator Instructions (Sheet 1 of 2)

|REFERENCE |MNEMONIC! DESCRIPTION i OPERATION {INDICATORS| COMMENTS |
| SUBSECTION| | | ! AFFECTED | !
i . |
| 5.6.1 | B | Branch ! [P] <=-= EA] | In all i
! ! ! | | | branch i
| 5.6.2 ! NOP | No Operation !] | operations|
! i ! | |- | if the i
| 5.6.3 ! BE ! Branch on Equal | If [I(L)IV[I(G)] | | branch !
! ! ! | = 0, then ! | condition |
| | ! | [P] <== EA] | is true |}
! ! | ! | | (1.e.,]
! 5.64 | BNE | Branch on Not | Ife [T(L)IVII(G)] | ! branch is |
! | | Equal !} = 1, then | | executed) |
| ! | | [P] <-- EA ' | and if]
! | | ! H | MI1(J) = 1 |
! 5.6.5 | BAL | Branch on | If [I(L)] o] ! then trap |
i '] | Algebraic Less i [I(U)] = 1, then | | to TVo2. |
' ! | than | [P] <— EA !] H
| H ! 1 ! H H
i 5.6.6 i BAGE | Branch on 1 If [I(L)] @ ! ! |
! ! | Algebraic i [I(U)] = 0, then | !]
! | | Greater or Equal | [P] <-= EA ! ! !
| H ! : ! ! H 1
i 5.6.7 | BAG | Branch on | If [I(G)] @ ! ! !
| } | Algebraic i [I(U)] = 1, then | } !
! ! | Greater i [P] <-—= EA ! | !
i ! ! ! ! H '
| 5.5.8 ! BALE | Branch on 1 If [I(G)] @ ! H !
! ! | Algebraic Less | [I(U)] = 0, then | | !
|] | than or Equal | [P] <= EA ! ! |
! ! | i H : !
| 5.6.9 | BL | Branch on Less | If [I(L)] =1,] 1 !
! | § than ! then [P] <-- EA l ! !
| ! | | H !
! 5.6.10 | BGE ! Branch on | If [I(L)] = 0,]] |
! ! ! Greater than or | then [P] <-= EA | } !
H ! | Equal] - ! H H
! H ! i | |]
| 5.6.11 | BG ! Branch on | If [I(G)] = 1, ! ! |
! i | Greater than | then [P] <-= EA | | !
i i ! | ! i |
! 5.6.12 | BLE | Branch onLess | If [I(G)] = O, ! !]
! ! 1 ! ! ! !

than or Equal

then [P] <-= EA

HONEIWELL INFORMATION

H | SPEC. XO. ! SHEET REY. !
! SISTEMS ! 60149740 | 5= 62 c ! ﬂ“\
O

Table 5-10 Branch On Indicator Instructions (Sheet 2 of 2)

{REFERENCE |MNEMONIC! DESCRIPTION = | OPERATION |INDICATORS| COMMENTS |

| SUBSECTION! H ! | AFFECTED | H

| |

! 5.6.13 | BsSU | Branch on Signs | If [I(U)] = 1, ! | !

! H { Onlike | then [P] <~ EA H !]

'] ! H H i |

! 5.6.14 | BSE | Branch on Signs | If [I(U)] = O,] ! |

! ! | Equal ! then [P] <-= EA | | !

| | | ! ! { In all |

! 5.6.15 | BCT | Branch omn Carry | If [I(C)] =1, | | branch !

! ! | True ! then [P] <-— EA | | operations|

] { | ! | | if the !

! 5.6.16 | BCF | Branch on Carry ! If [I(C)] = O, | | branch !

! ; ! | Palse | then [P] <~= EA | | condition |

! i] | | | is true |

| 5.6.17 | BBT | Branch on Bit !} If [I(B)] = 1,] I (i.e., |

! H | test indicator | then [P] <= EA |} | branch is |~

| H ! True | ! | executed) |

i i ! ! | | and if i

! 5.6.18 | BBF ! Branch on Bit | If [I(B)] = 0, | | MI(d) = 1 |}

| | | test indicator | then [P] <= EA | | then trap |

! | | False | 1 | to TVO2. |

! i H | | H H

! 5.6.19 | BIOT | Branch on I/0 P Ie [I(T)] = 1, | } H

! ! | indicator True ! then [P] <-— EA H ! {

H H | : ! i !

| 5.6.20 | BIOF | Branch on I/0 | If [I(I)] = 0, !] |

| ! | indicator False | then [P] <-= EA | !]

| i H H] | i

1 5.6.21 | BOV | Branch on | I [T(oW)] = 1, 1 | !

| H | Overflow ! then [P] <== EA | ! !

H { ! H] | !

i 5.6.22 : BNOV | Branch on No ; If [I(O0V)] = O, : §]

!]]

Cverflow

then [P] <-= EA

C

(&]
.
b
n
"
m
(Ve
|
mn
£
3]
o
(2]
o
=
~
(=]
=t
-—
o
\Ve]
*
o
=
i
(&)
[%3]
(a4
%]
8
-
m
o
A
a9
ﬂv..
vﬂs
b
=
(o]
m
p

Numerical Representation of Branch On Indicator Instructions

Table 5-11

Pl

ATOM SIZ

H4 | MNEMONIC

H1 | H2 | H3

SUBSECTION|

—— e G EOE Eer Ay CrEn Geme SmES Gmen (R Gnes et Gms AR Me ey STEe mmar SOt s e -

NANMMMT TN OO--000 OO <@ MM x By

ar Gmms s mer St G oo Gmn WS Gmem - T— W CeAp SEne Smae et WCD Grew S Gmee =

0OO000000D0D0D0O0DO0DO0D0DO00DO0ODO0D0DO0OO0O

- S Gy D e e e Smer e Eear Gewe M. TGN R Wmee EmEe Tm Fees Seen - e e

Orr N QN0 WNWNHO m =
OV = (™ v == NN M =0 — N~

. ° o ° ° e ° L . ° ° L] ° ° ° L] L] ® ® ® . .

6666665666656666666666

5555555555555555555555

i
!
i
!
!
!
I
i
1
i
i
|
1
1
|
i
1
t
1
1
¢
|
1
!
|
i
1
]
]
1§
t
i
I
i
i
]
H
]
1
!
1
|

Sy

T7-bit displacement.

where d

HONEIWELL INFORMATION

SISTEMS

| SPEC. NO.

S5- 614

Description:

No operation is performed.

Operation:

As

Indicator Conditions:

ara+Hwao

av

Special Conditions:

above.

Unchanged
Unchanged
Unchanged
Cnchanged
Unchanged
Unchanged
Onchanged

None,

5.6.3 Branch On Equal, BE

Format:

BI

Description:

Branch to EA if I indicates equality.

Operation:

Ifr [I(L)] \/ [I(G)] = 0 then [P] <== EA

Indicator Conditions:

aQrrao+-Hoa

Unchanged
Unchanged
Unchanged
Onchanged
Unchanged
Unchanged

OV Unchanged

Special Conditions:

If the branch condition is true (i.e., a branch is executed) and MI(J) = 1,
then a Trap TV02 occurs after the BE instruction is executed. 4

! HONEYWELL INFORMATICN | SPEC. NO. SHEET REV.
1
1

1
]
SYSTEMS i 60149740 ! 5= 65

5.6.4 Branch On Not Equal, BNE

Format:

BI
Description:

Branch to EA if I indicates inequality.
Operation:

If [I(L)] \/ [I(G)] = 1 then [P] <-=-= EA
Indicator Conditions:

C Unchanged

B Unchanged

I Unchanged

G Unchanged

L Unchanged

U Onchanged

OV Unchanged
Special Conditions:

If the branch condition is true (i.e., a branch is executed) and M1(J) = 1,
then a Trap TV02 occurs after the BNE instruction is executed.

5.6.5 Branch On Algebraic Less Than, BAL

" Format:
BI
Description:
Branch to EA if I indicates an algebraic less than.
Operaticn:
If [I(L)] @ [I(U)] = 1 then [P] <-- EA
Indicator Conditions:
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged

Unchanged
OV Unchanged

QrQHWO

| HONETWELL INFORMATICN | SPEC. NO. |
SISTEMS | 60149740 | 5-66 | c |

Special Conditions:

1. If the branch condition is true (i.e., a branch is executed) and M1(J)
then Trap TV02 coccurs after the BAL instruction is executed.

1,

2. Should not be used following CMB or CMN instructions, as [I(U)] is
undefized.

5.6.6 Branch On Algebraic Greater Than Or Equal, BAGE
Format:
BI
Description:
Branch to EA if I indicates an algebraic greater than or egual.
Operation:
If [I(L)] @ [I(U)] = 0 then [P] <— EA
Indicator Conditicns:
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged

Unchanged
OV Unchanged

aroaHqtuQn

Special Condi tions:

1. If the branch condition is true (i.e., a branch is executed) and ML(J) = 1,
then a Trap TV02 occurs after the BAGE instruction is executed.

2. Should not be used following CMN or CMB instructions, as [I(U)] is
undefined.

5.6.7 Bfa.nch On Alggbfaic Greater Than, BAG

Format:
BI
Description:
Branch to EA if I indicates an algebraic greater than,
Operation: {,/

Ie [I(G)] @ [I(U)] = 1 then [P] <= EA

==

| HONEYWELL INFORMATICN | SPEC. NO. | SHEET ! REV.
SYSTEMS | 60149740 ! 5= 67 ! c

— wen

Indicator Conditicns:

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
OV Unchanged

araoaHnttao

Special Conditions:

1. If the branch condition is true (i.e., a branch is executed) and M1(J)
then a Trap TV02 occurs after the BAG instruction is executed.

n
-
-

2. Should not be used following CMN or CMB instructions, as [I(U)] as

undef'ined.
5.6.8 Branch On Algebraic Less Than Or Egual, BALE
Format: '
BI
Description:

Branch to EA if I indicates an algebraic less than or equal to.
Operation:

If [1(G)] @ [I(U)] = 0 then [P] <-- EA
Indicator Ccnditi‘ons:

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
OV Unchanged

AdAr O+

Special Conditions:

1. If the branch conditions is true (i.e., a branch is executed) and M1(J) = 1,
then a Trap TV02 occurs after the BALE instruction is executed.

2. Should not be used following CMN or CMB instructions, as [I(U)] is
undef'ined.

- ——

HONEYWELL INFORMATICN

SISTEMS

No.
60149740

[T

SHEET

5= 68

———

5.6.9 Branch On Less Than, BL

Format:

BI

Description:

Branch to EA if I indicates less than,

' Operation:

If [I(L)] = 1 then [P] <-= EA

Indicator Conditions:

arQrHwa

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged

OV Unchanged

Special Conditions:

If the branch condition is true (i.e., a branch is executed) and M1(J) = 1,
then a Trap TV02 occurs after the BL instruction is executed.

5.6.10 Branch On Greater Than Or Equal, BGE

Format:

BI

Description:

Branch to EA if I indicates an algebraic greater than or equal to.

Operation:

If {I(L)] = 0 then [P] <== EA

Indicator Conditions:

QraoHwao

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged

OV Unchanged

-

HONEIWELL INFORMATION { SPEC. NO. | SHEET
SYISTEMS | 60149740 ! 5-69

Special Conditions:

If the branch condition is true (i.e., a branch is executed) and M1(J)
then a Trap TV02 occurs after the BGE instruction is executed.

5.6.11 Branch On Greater Than, BG

Format:
BI
Description:
Branch to EA if I indicates greater than.
Operation:
If [I(G)] = 1 then [P] <-- EA
Indicator Conditions:

Unchanged
Cnchanged
Unchanged
Unchanged
Unchanged
Unchanged
OV Unchanged

aQraHoa

Special Conditions:

If the branch condition is true (i.e., a branch is executed) and M1(J)
then a Trap TV02 occurs after the BG instruction is executed.

5.6.12 Branch On Less Than Or Equal, BLE

Format:
BI
Description:
Branch to EA if I indicates an algebralic less than or equal to.
Operation:
If [I(G)] = 0 then [P] <-- EA
Indicator Conditions:
C Unchanged

B Unchanged
I Unchanged

=1,

=1,

] HONEIWELL INFORMATION i SPEC. NO. | SHEET REV. i
!
i

SISTEMS | 60149740 ! 5=-70

Lo p—

Unchanged
Unchanged
Unchanged
Unchanged

gdl"ﬁ

Special Conditions:

If the branch condition is true (i.e., a branch is executed) and M1(J) = 1,
then a Trap TV02 occurs after the BLE instruction is executed.

.6.13 Branch On Signs Unlike, BSU

Format:
BI
‘Description:
Branch to EA if I indicates that signs are unlike,
Opepation:
If (I(U)] = 1 then [P] <= EA
Indicator Conditions:
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged

Unchanged
- OV Unchanged

AQr-QHwAa

Special Conditions:

1. If the branch condition is true (i.e., a branch is executed) and M1(J) = 1,
then a Trap TV02 occurs after the BSU instruction is executed.

2. Should not be used following CMB or CMN instruction, as [I(U)] is undefined.

5.6.14 Branch On Signs Equal, BSE

Pormat:

BI
Description:

Branch to EA if I indicates that signs are equal.
Operation:

If (I(0U)] = 0 then [P] <— EA

Bk,

| HONEYWELL INFORMATION
! SYSTEMS

—

SPEC. NO. | SHEET | REV. !
60149740 | 5=-T1 | c |

Indicator Conditions:

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
OV Unchanged

araoaHWwa

Special Conditions:

1. If the branch condition is true (i.e., a branch is executed) and M1(J) = 1,
then a Trap TV02 occurs after the BSE instruction is executed.

2. Should not be used following CMB or CMN instructions, as [I(U)] is
undefined.

5.6.15 Branch On Carry True, BCT
Format:
BI
Description:
Branch to EA if the carry indicator is true.
Operation:
If [I(C)] = 1 then [P] <== EA
Indicator Conditions:
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged

Unchanged
OV Unchanged

ArQHW Qo

Special Conditions:

If the branch condition is true (i.e., a branch is executed) and M1(J) = 1,
then a Trap TV02 occurs after the BCT instruction is executed.

5.6.16 Branch On Carry False, BCF

Format:

BI

HONEIWELL INFORMATION

SISTEMS

| SPEC. NO.
t

60149740

| SHEET

72

REV.

-

Description:

Branch to EA if the carry indicator is false.

Operaticn:

If [I(C)] = 0 then [P] <-= EA

Indicator Conditions:

aQroHmT o0

ov

Special Conditions:

JIf the branch condition is true (i.e., a branch is executed) and M1(J)

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged

then a Trap TV02 cccurs after the BCF instruction is executed.

5.6.17 Branch On Bit Test Indicator True, BBT

Format:

BI

Description:

Branch to EA if the bit test indicater is true.

Operation:

If {I(B)] = 1 then [P] <= EA

Indicator Conditions:

araQaHWO

ov

Special Conditions:

If the branch condition is true (i.e., a branch is executed) and M1(J) = 1,

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Onchanged
Unchanged

then a Trap TV02 occurs after the BBT instructicn is executed.

N

O

~_

d HONEYWELL INFORMATION ! SPEC. NO. | SHEET | REV.
! SISTEMS] 60149740 | 5= 73 ! ¢

5.6.18 Branch On Bit Test “Indicator False, BBF

Format:
BI
Description:
Branch to the EA if bit test indicator is false.
Operation:
If [I(B)] = 0 then [P] <-— EA
Indicator Conditions:}

Onchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
OV Unchanged

QraoHDO

Special Conditions:

If the branch condition is true (i.e., a branch is executed) and M1(J) = 1,
then a Trap TV02 occurs after the BBF instruction is executed.

5.6.19 Branch On I/0 Indicator True, BIOT

Format:
BI
Description:
Branch to EA if I/0 test indicator is true.
Operation:
If [I(I)] =1 then [P] <= EA
Indicator Conditions:

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
OV Unchanged

Qra+Hwaa

HCONEIWELL INFORMATICN | SPEC. NO.

! SHEET | REV. |
! SYSTEMS | 60149740

5-74 | c I
L

PR

Special Conditions:

£ the branch condition is true (i.e., a branch is executed) and Mi(J) = 1,
then a Trap TV02 occurs after the BIOT instruction is executed.

5.6.20 Branch On I/0 Indicator False, BIOF

Format:
BI
Description:
Branch to EA if IO test indicator is false.
Operation:
If [I(I)] = 0 then [P] <-= EA
Ind;cator Conditions:

Unchanged
Unchanged
Unchanged [
Unchanged e
Unchanged
Unchanged
OV Unchanged

aQraHwaO

Special Conditions:

If the branch condition is true (i.e., a branch is executed) and Mi1(J) = 1,
the a Trap TV02 occurs after the BIOF instruction is executed.

5.6.21 Branch On Overflow, BOV

Format:
BI
Description:
Branch to EA if the overflow indicator (QV) is true.
Operation:
If [I(OV)] = 1 then [P] <= EA
Indicator Conditions:
C Unchanged

B Unchanged
I Unchanged

! HONEYWELL INFORMATION
]
i

SPEC. NO. | SHEET ! REV.
SISTEMS]

60149740 | 5-75

—

Unchanged
Unchanged
Unchanged
V Unchanged

ocar o

Special Conditions:

If the branch condition is true (i.e., a branch is executed) amnd M1(J) = 1,
then a Trap TV02 occurs after the BOV instruction is executed.

5.6.22 Branch On No Overflow, BNOV

Format:
BI
Description:
Branch to EA if the overflow indicator (OV) is false.
Operation:
If [I(OV)] = 0 then [P] <= EA
Indicator Conditions:
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged

Unchanged
OV Unchanged

garaHo O

Special Conditions:

If the branch condition is true (i.e., a branch is executed) and M1(J) = 1,
then a Trap TV02 occurs after the BNOV instruction is executed.

} HONEYWELL INFORMATION ! SPEC. NO. ! SHEET | REV. !
| SYSTEMS | 60149740 | 5= 76 ' c |

5.7 SHIFT OPERATIONS

The shift ipstruction has two formats: shift short (SHS) and shift leng (SHL):

0 1 34 7 8 9 1112 15

1. Shift short (SHS) format: i 01 R# i 00060 (O I|T 1 d

-

where R# = Selects one of seven operand registers (R)

T Identifies type and direction of the shift

d

Distance (1 £ d < 15); if d = 0, substitute content of R1 (12:15)
for distance. If [R1(12:15)] = 0, the register’s contents are
unchanged and the indicators relevant to the instruction are
cleared.

0 1 34 T 8 9 10Mn 15

2. -Shift long (SHL) format: | 0| R# | 000C | 1} T | D

where R# = Selects one of the three word operand register pairs (R) where
must be 3, 5, or T or the operation is unspecified e

//
Kg/

-3
]

Identifies type and direction of the shift

Distance (1 < D £ 31); 4f D = 0, substitute contents of R1(11:15)
for the distance. If [R1(11:15)] = 0, then the register's con-
tents are unchanged and the indicators relevant to the instruce
tion are cleared.

o
[[]

Various types of shifts on single or double registers (two registers linked
together) are possible, e.g., closed, open, arithmetic, left, right, etec. For’
double shifts # must equal 3, 5, or 7, otherwise the operation is unspecified.
Double shift pairing of registers is as follows, where #'! is the implied register
linked together with #.

| 4=1 1 # |
. N
b2 13 |
{8 15 |
L6 17 1

Some shift operations modify I(C) or I(OV). I(C) will reflect the state of the
last bit shifted out . When I(C) or I(OV) is to be mecdified and the actual shift
distance is Zero (i.e., content of R1 (11/12:15) is Zero), them I(C) or I(OV) is _
cleared to Zero. The various types of shift instructions available are summarizedf
in Table 5-12. The numerical representation 1s given in Table 5-13. .

———

| REV,

5- 77

SHEET

!
{

60149740

| SPEC. NO.

HONEIYWELL INFORMATION
SYSTEMS

!
I

Table 5-12 Shift Operations (Sheet 1 of 2)

{ INDICATORS

OPERATION

DESCRIPTION

!
!

{REFERENCE |MNEMONIC

| SUBSECTION |

AFFECTED

- et eman - Pae Gmms See tmne een Gt G Gwed eT N AR GRS Geee Pete @ CeE CREe e Ge RS MG GeaD PO CUme W e e mws S SRee Cewn Meen e e, Geal GhaD EAEO GOme GO0 Weme Wvae = Ceww =

'
i
!
i
E
!
|
i
i
i
l
i
i
I
i
!
i
!
i
|
:
;
'
i
;
!
;
i
!
|
|
!

o 8
o o P ad -
ol = 4 &
- o ks)
_ e B § - _ ~ g \4
v v f Sh — v o n —
| Qe v 7 - =3
= - P Gy —— — n: Mw o
v n o ot 0
5 | 43
- — lhub v id 01!
m v [] _ A - “
Ke) - 0 N
g v - o9 v
—~ Sw OM\W L _.Dll
S1%7 By o I 38 T3
gl 4 &% %5 v 4% i
I o~ | Y- e — | o
61 S~ & D
B H H | -
D B BRT AR CEEE SR WPV PR CReh G AP e e e S, .- . G WD - - AT G - -
|
=
H P
Jar} Gy
(%]]
» FL P I P
' L2 fM..v G4 o f“
—~ Mt ue ui m]
m [S } [V i) em [el
~ — - @ — - Q
wn ms o0 » a0
=]] (SIS 30
2] N O ot iu O ri
m o v (%] [s Q&)
n e - e = e e > T —— o —— - — — ———_— — - o——e
E |
o |8 8 = 3]
7] 7] [72] (2] (2]
- (41} ™M =
. . . .
~ t~ - ~
. L] L] *
n mn wn wmn

e e Tmn e et G . e A Ate SE e MR Gme SRS Tmim e et Ge e CEES Gmes e G e meae e Ceam Smom ey e e Gmee e A GeeS CHaE SMeS Gmeh BeEs Mee TEAS SSAT Peew Sem weep S —em

-~
]
L]

Saves last bit ==
shifted out of R#(15)

0

—
Saves last bit shifted --
-—
<
i
=S| ===> la=> I(C)

out of R#(15)

!
|
|
l
x
|
i
:
:
s
:
|
1
|
:
|
|

| Single Shift

| Open Right

| Single Shift

| Closed Right
Arithmetic Right

| Single Shift

e eer G en ceen e Gmee Seun ean Rene EDEE G meP hes —een POAD Gwme MG G e e s CHAD Cmms Teal Geem meem e e LR ap e G Get et e oGO FEED Goeme WS Smae e

| HONETWELL INFORMATION | SPEC. NO. | SHEET | REV. i
1 SISTEMS ! 60149740 ! 5= 78 ! c !
Table 5-12 Shift Operations (Sheet 2 of 2)
|REFERENCE |MNEMONIC! DESCRIPTION } QPERATION { INDICATORS!
|SUBSECTION! H ! | AFFECTED |

— —— —— Gtwe Whn e . —— - e e o GoAE Seew foes Ge Gres Sees GSew Gmem Gew SUE SEER ShEe S SRAS SW GEeR Geas Smen GPee Gl GOME Snwe GEem SEEE Gums Sewe -

SHIFT SHORT (SHS) - SHIFT DISTANCE (N) IS 1 < N < 15 (Cont.)

I ”~

Saves last bit ==

5.7.8 | DCR | Double Shift] o__15 0__15 |
] | Closed Right | ==>] Rffel lam=d] RF |=d= |
} | I it
}] | ¢ H
SHIFT LONG (SHL) -« SHIFT DISTANCE (N) IS 1 < N < 31
5.7.9 | DOL ! Double Shift | 0] i5 g __15 |
| | Open Left | I{(C)<=] Rf#=1 i<=! R |<=0 | C
H i . |
H | H ! |
H ! | == Saves last bit !
}] | shifted out of R#-1(0) H
| H H H
5.7.10 | DAL ! Double Shift H 9 115 0_15 |
' } | Arithmatic Left | I(OV)<=|{S|R#=1{<=|_R# i<=0 | ov
| | | “ : H
! { ! | |
H H ! == Set to 1 if R#=1(0) |
| ' I changes during shift |
! ! ! !
5.7.11 | DOR | Double Shift ! 0_15 0__15 H -
' . | Open Right | 0=>|R#=1 |=>| R# |=>I(C) | c
|] | *]
! | | ! |
] 4 H Saves last bif == |
] | | shifted out of R#(15) !
! | ! |
5.7.12 | DAR | Double Shift] 0115 Q_ 15 -
! | Arithmetic Right | ==>{S{R#=1!=>|_R# l=>I(C) | c
! | ! *
| | } !
| ! ! '
| ! ! !
| | ! !

shifted out of R#(15)

—— e Sren GEen Svam Grem e e eb Shew Gmew Geeh G - et SOAE W MEE GWee SUED uhe Seas Heas GeG GReE Gew TR uwe Ceen GReE TEEL S S Gy e SEew G e Gmen S

AR

' HONEYWELL INFORMATION | SPEC. NO.
H SYSTEMS |

60149740

| SHEET ! REV.]
H 5- 79] c |

Table 5=13 Numerical Representation of Shift Instructions

{SUBSECTION! H% | H2 | H3 | H4 | MNEMONIC | ATOM SIZE |
! |
! 5.7.1t | r {0 fO0 | 4 | soL ! !
| 5.7.2 | r ‘0 }'1 | 4 | sCL ! i
| 5.7.3 |} r 0 }2 | d4 | sAL] }
! 5.7.4 ' r 10 {3 } d | DCL ! NOT]
| 5.7.5 | r {0 {4 } d4 | SOR | 1
! 5.7.6 | r 0 |5 | 4 | SCR | APPLI- |
i 577 |t r O |6 } d | SAR] !
i 5.7.8 ' r 0 |7 |} d | DCR | CABLE i
{ 579 | r 0 |8 } D | DoL® | !
{ 579 + r |0 |9 | D-161| DOLE® | !
| 5.7.10 | r |0 }A } D | DAL® | !
{ 5.7.10 | r | 0 | B | D=16 | DAL®® | |
! 5.7.11 { r |0 | C | D | DOR® | H
! 5.7.11 | r | 0 | D | D=16 | DOR#® | H
i 5.7.12 | » {0 | E | D | DAR® | |
{ 5.7.12 | r |0 | F | D-16 | DAR#® | |

where r selects one of the seven operand
of the instruction;

d = Distance in bits, 1 < d £ 15.

o
"

Distance in bits, 1 < D £ 31;

% = For D £ 15; and

L 24

For D > 15.

5.7.1 Single Shift Open Left, SOL
Format:
SHS

Description:

registers in bits 1 through 3

The contents of R# are shifted d bit positiohs left. Zeros fill the d least
significant bit positions of R#. The last bit shifted out of R# (0) is

saved in the C-indicator.

Operation:
0]

15

I(C) em== | o

| {mmmm 0

R#

-~ Saves the last bit shifted out of R#(0)

! HONEIWELL INFORMATION

SISTEMS

60149740 |

| SHEET

5- 80

Indicator Conditions:

If d 2 0 and if the last bit
shifted out of R# (G) = 1 then

Special Conditions:

C <==1 else C <= §
B Unchanged
I Unchanged
G Unchanged
L Unchanged
U Unchanged
OV Unchanged

If d = Q0 then the R-register!s contents are unchanged and I(C) is cleared.

5.7.2 Single Shift Closed Left, SCL

Format:

SHS

Description:

The ccntents of R# are shifted d bit positions left.
{R#(0)] replace bits vacating [R# (15)].

Operation:

Indicator

aQroHmao

v

Special Conditions:

15

o |

T
!

v

Conditions:

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Onchanged

Bits shifted out of

If d = 0 then the R=register's contents are unchanged.

5.7.3 Single Shift Arithmetic Left, SAL

Format:

SHS

HONEIYWELL INFORMATION | SPEC. NO.
SYSTEMS ! 60149740

SHEET REV.

1
i
5- 81 i c

— -
— o

Description:

The contents of R# are shifted d bit positions left. If the sign bit (i.e.,
R#(0)) changes at any time during the operation, the OV indicator is set.
Zeros fill the d least significant bit positions of R#.

Operation:
0 1 15

I(OV)<==] S | | (ome= 0
]
]
| R#
--Set to 1 if R#(0) changes during shift.

Indicator Conditions:

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged

- Unchanged

If [R#(0)] changes then OV <=~ 1 else OV == 0

aramrwaoa

Special Conditions:

1. If d = 0 then the R registers! contents are unchanged and I(0V) is
cleared.

2. If an overflow occurs and M1(#) = 1, then a Trap TV06 occurs.

5.7.4 Double Shift Closed Left, DCL

Format:
SHS

Description:
The contents of the even-odd register pair are shifted d bit positions
left. Bits shifted out of [R#'(0)] of the even register replace bits
vacating [R#(15)] of the odd register.

Operation:
0 15 0] 15

<=} R# - 1 | <=1 R# | G
1

]]
S
7

Indicator Conditions: ’

C Unchanged
B Unchanged
I Unchanged

HONEYWELL INFORMATION
SISTEMS

SPEC. NO. | SHEET | REV.
60149740 i 5- 82 ! c

®

G CUnckhanged
L Unchanged
U Unchanged
OV Unchanged

Special Conditions:

1. # in instructions must specify the odd registers 3, 5, or 7, else the
operation is undefined.

2. If d = 0, then the R-register's contents are unchanged.

5.7.5 Single Shift Open Right, SOR

Format:
SHS

Description:
The contents of R# are shifted d bit positions right. Zeros fill the 4 most
significant bit positions of R#. The last bit shifted out of [3#(15)] is
saved in the C-indicator.

Operation: o

0 15

(o QU S

> | m———> I(g)

R# !
Saves the last bit shifted out of R#(15)==

Indicator Conditions:

If d £ 0, and the last bit
shifted out of [R#(15)] = 1 then C <~ 1 else 0
B Unchanged

I Unchanged

G Unchanged

L Unchanged

U Unchanged
OV Unchanged

Special Conditions:

If d = 0 then the R-register's contents are unchanged and I(C) is cleared.

5.7.6 Single Shift Closed Right, SCR

Format: ~

SHS

-

! HONEYWELL INFORMATION
! SYSTEMS

| SPEC. NO.
! 60149740

SHEET

REV.

Q

5- 83

Description:

The contents of [R#] are shifted d bit positions right. Bits shifted out of
[R#(15)] replace bits vacating [R#(0)].

Operation:

Indicator Conditions:

Unchanged
Unchanged
OUnchanged
Unchanged
Unchanged
Unchanged
OV Unchanged

araoaHwaOQ

Special Conditions:

If d = 0 then the R-register's contents are unchanged.

5.7.7 Sipgle Shift Arithmetic Right, SAR

Format:
SHS

Description:

The contents of R# are shifted d positions right.

Operation:

15

-->| s | -—>

I ==> I(C)

R#

Saves the last bit shifted

—— -

out of R#(15)=~

Bits equal to the sign
bit of the R-register fill the d most significant bits of the R-register.
The last bit shifted out of [R#(15)] is saved in the C-indicator.

! HONEYWELL INFORMATION | SPEC. NO. | SHEET | REV.
| SYSTEMS ! 60149740 ! |

Q

A ™
L

Indicator Conditicns:

If d # 0 and the last bit
shifted out of [R#(15)] = 1 then C <== 1 else C <= @
' B Unchanged

I Unchanged

G Unchanged

L Unchanged

U Unchanged

OV Unchanged

Special Conditions:

If d = 0 then the R registers' contents are unchanged and I(C) is cleared.

5.7.8 Double Shift Closed Right, DCR
Format:
SHS
Description:
The contents of the even-odd register pair are shifted d bit pesitions SN
right. Bits shifted out of [R# (15)] (the odd register) replace bits N,
vacating [R#'(0)] (the even register).

Operation:

0 15 0 15

> R#=1 l=>| R# {=>=

P
S\

Indicator Conditions:

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
OV Unchanged

aQraoaHwaO

Special Conditions:

1. # in instruction must specify registers 3, 5, or 7, else operation is
undefined.

. ™
2. If d = 0 then the R-register's contents are unchanged. \1;/

! HONEYWELL INFORMATION ! SPEC. NO. | SHEET | REV. !
! SYSTEMS H 60149740 H 5= 85 | c H

5.7.9 Double Shift Open Left, DCL

Format:
SHL

Description:
The contents of the even-odd register pair are shifted d bit positions
left. Zeros fill the d least significant bit positions of the register
pair. The last bit shifted out of [R#'(0)] (i.e., bit 0 of the even
register) is saved in the C-indicator.

Operation:

0 15 0 15

I(C)<=—1| R# = 1 <=1 R# i<== 0

-- Saves the last bit shifted out of R#-1(0)
Indicateor Conditions:

If d # 0 and the last bit
shifted out of R#' = 1 then C <«= 1 else C <~== 0
B Unchanged

I Unchanged

G Unchanged

L Unchanged

U Unchanged

OV Unchanged

Special Conditions:

1. # in instruction must specify registers 3, 5,or 7 else the operation is
undefined.

2. If d = 0 then the R-registers' contents are unchanged and I(C) is
cleared.

5:7.10 Double Shift Arithmetic Left, DAL
Format:
SHL
Description:
The contents of the even-odd register pair are shifted d positions left, If
the sign bit (i.e., [R#'(0)]) changes at any time during operation, then the

overflow indication is set. Zeros fill the d least significant bit
positions of the register pair.

HONEYWELL INFCRMATICN
SISTEMS

SPEC. XNO. SHEET

— -
——

!
)
60149740 5- 86 i c |

Operation:
01 15 0 15

I(QV)<==iS| R# - 1 j mmm | R# {<== 0

-= Set to 1 if R#-1(0) changes suring shift

Indicator Conditions:

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged

If [R#'(0)] changes then OV <~ 1 else OV <— 0

araoaHwo

Special Conditions:

1. # in the instruction must specify registers 3, 5, or 7, else operation
is undefined.

2. If d = 0 then the R-registers' contents are unchanged and I(OV) is
cleared.

3. If an overflow occurs and M1(#) = 1, then a Trap TV06 occurs,

5.7.11 Double Shift Open Right, DOR NS

Format:
SHL

Description:
The contents of the even-odd register pair are shifted d positions right.
Zeros f1l1 the d most sigrificant bit positions of the register pair. The
last bit shifted out of [R#(15)] (i.e., bit 15 of the odd register) is saved
in the C~indicator.

Operation:
0 15 0 15

0 ==>| R# - 1 j==>1 R# {==> I(C)

!
i

Saves the last bit shifted out of R#(15) ===
Indicator Conditions:

If d # 0 and the last bit

shifted out of R#(15) = 1 then C <== 1 elze C <= 0 .
Unchanged f

Unchanged o

Unchanged

QHW

ﬁiag

! HONEYWELL INFORMATION | SPEC. NO. | SHEET | REV. i
| SYSTEMS ! 60149740 ! S- 87 i c |
L Unchanged
U Unchanged
OV Unchanged

Special Conditions:

1. # in instruction must specify registers 3, 5, or 7, else operation is
undefined.

2. If d = 0 then the R-registers' contents are unchanged and I(C) is

cleared.
5.7.12 Double Shift Arithmetic Right, DAR
Format:
SHL
Description:

The contents of the even-odd register pair are shifted d bit positionms
right. Bits equal to [R#'(0)] (sign bit of the even register) £ill the d
most significant bits of the register pair. The last bit shifted out of
[R#(15)] (i.e., bit 15 of the odd register) is saved in the C-indicator.

Operation:

o 1 15 0 15

-==>! S | R# - 1 j==>1 R# j==> I(C)

w=={=== Saves the last bit shifted out of R#(15) ==

Indicator Conditions:

If d # 0 and the last bit
shifted out of R# (15) = 1 then C <— 1 else C <-= 0
B Unchanged

I Unchanged

G Unchanged

L Unchanged

U Unchanged

OV Unchanged
Special Conditions:

1. # in the instruction must specify register 3, 5, or 7, else operation is
undefined.

2. If d = 0 then the R-registers' contents are unchanged and I(C) is
cleared.

! HONEYWELL INFORMATICN ! SPEC. XNO. { SEEET | REV. !
! SYISTEMS ! 60149740 H 5- 88 | C ! AN
£.8 INPUT/OGTPUT
I/0 instructions have two formats:
o Data and Command I/0 (IO and IOCH)
o Address and Range Output (IOLD).
The governing document for I/0 standards is the Extended Megabus EPS-1
(60126298). This subsection describes the format of the I/O instructions. For the
purpose of programming I/0, see the bus and appropriate controller specifications.
Also refer to section 10 of this EPS=-1.
Data and Command I/0 (I0 and IOH) Instructions
These instructions specify two quantities, (1) a Data word or byte indentified
by an AS called Data AS (DAS) analogous to the single operand instruction formats,
and (2) a Control word identifying the external channel (or device) and the
function it is to perform. The control word may be embedded in the procedure as
follows:
0 1 3% 89 15
For i11000 | oP | DAS HEH
control H HIH Points to data N
word ! Additional word(s) if | := word or byte N
embedded ! needed by DAS S
in the H I Is the control
procedure | cH H F { = word (CW) when
CW(0:8) # 0
0 9 10 15

or the control word can be pointed to by the Channel Addres;.Syllable_(CAS) as
follows: ' '

Additional word(s) if
needed by CAS

control word
when CW(0:8) = 0

0 1 34 89 15

111000 oP ! DAS |

| |
For | Additional word(s) if |
control | needed by DAS }
word ! j-
pointed | 000000000 | CAS | 3
to by CAS | | ¢ Points to the

1]

] i

!]

ae oo

If either DAS or CAS use an AS from an AS Map other than AS Map 1 (M6X and M6XE
only), the following applies: @:3

- on—-

HONEYWELL INFORMATION | SPEC. NO. | SHEET | REV. '
SYSTEMS ! 60149740 | 5- 89 H c |

0 1 34 7 89 15

17000 ! oP | DAS = ASN

For DAS using

se se o0

i]
1 i
i |
When | OFFSET | RFU|MAP #| AS2,3 ! :_ an AS fram a
either | ! ¢+ Map other than
DAS or ! Additiomal word(s) if | ¢+ Map 1
CAS use ! needed by DAS | ¢
an AS ! |-
fram a i1 000000000 | CAS= ASN | :
Map other | { + For CAS using
than AS | OFFSET | RFU|MAP #| AS2,3 { *_ an AS fram a
Map 1 ! { ¢+ Map other than
! Additional word(s) if 1 ¢ Map 1
i needed by CAS |
where QP = Opcode field
DAS = Data Address Syllable - Specifies a location fram/to which a data
word or btyte is transferred to/fram the I/0 bus
| = Channel number (or device address), where:
o0 CH is odd for output LCMA transfer channels
o (4 is even for input DMA transfer channels,
F = Function Code, which is controller specific under the following
constraints:
o If F is even, data will be transferred fram the controller to the
Cru
o If F is odd, data or commands will be transferred fram the CPU to
the controller
CAS = Control Address Syllable - Points to control word containing CH and
F.
OFFSET = Specifies the atam offset when using a word address form or is not

used if using a byte address form.

Address and Range Qutput Instruction

This instruction specifies three quantities:

1. Buffer virtual address identified by an AS analogous to that in the single
operand instruction format,

2. Control word identifying the external channel (or device) and the function
it is to perform.

3. Range identified by an AS analogous to that in the s=ingle operand instruc-
tion format.

The control word may be embedded in the procedure as follows:

000000000 ! RAS
Points to the

word that

specifies the

range of the buffer

H HONEIWELL INFORMATICN | SPEC. NO. | SHEET | REV. !
: SYSTEMS : 60149740 | 5-90 | S
'\u
0 1 3 4 89 10 18
For 111000 ! oP i AAS HE Points
centrol ! i := to the
word | Additional word(s) if needed by A4S | : Buffer
embedded H |
in the H CH H F ! := Is the control word
procedure ! = (CW) when CW(0:8) #Z 0
]]
' |
H !

Additional word(s) if needed by RAS

or the control word can be pointed to by the CAS as follows:

000000000 i RAS

0 1 3 4 89 15

11000} oP H AAS |

1 1

] 1

| Additional word(s) if needed by AAS |
For H {o=
control }] 000000000] Ccas | + Points to the
word ! | := control word N
pointed to | Additional word(s) if needed by CAS | : when CW(0:8) = 0 L
by CAS H jo— B

H i

1 1

]]

H !

Additional word(s) if needed by RAS

- If any of the ASs use an AS from an AS Map other than AS Map 1 (M6X and NSXE
only), then the following applies:

HONEYWELL INFORMATION | SPEC. NO. | SHEET ! REV. !
! SYSTEMS ! 60149740 | 5- 91 ! !
0 1 34 7 89 15
11000} 0P ! AAS = ASN For AAS using
an AS from a
OFFSET | RFU|MAP #| AS2,3 - Map other than

When
either
DAS or

a
CAS

uses an AS

Additional word(s) if needed by AAS

000000000

i CAS # ASN

om0 Gmam Gmn man et ma FEs Smme S et e o s ———

e 06 8¢ oo oo

®e ss oo

Map 1

From CAS using
an AS from
Map 1

For RAS using
an AS from a
Map other than
Map 1

to an address

Specifies the atom offset when using a2 word address form or is

from a Map Additional word(s) if needed by CAS
other than
Map 1 000000000 ! RAS = ASN
OFFSET | RFU|MAP #| AS2,3
Additional word(s) if needed by RAS
where AAS = Address Address Syllable, pointing
OFFSET =
not used if using a byte address form
RAS =

The F-field in the Address and Range output instruction must specify the
function code needed to load the controller address register.
above, the operation is unspecified.

Range Address Syllable, pointing to a range word.

If F is other than

channel

For F = even,
receive byte

The type of I/0 instructions available are summarized in Table S5-14, The
numerical representation is given in Table 5-15.
Table 5-14 I/0 Instructions (Sheet 1 of 2)
|REFERENCE |MNEMONIC| DESCRIPTION | OPERATION {INDICATORS| COMMEN