“-‘ ‘.'\‘) o

-~ ° THE CUSTOM PROCESSOR SERIES

' TECHNICAL

DESCRIPTION
OF THE
32-BIT
CUSTOM

~ CENTRAL

PROCESSOR

TABLE OF CONTENTS

This document and the information contained herein are confidential to and
tbe Joint property of Honeywell Corporation and the Ultimate Corporation
for the sole purpose of conducting their business. This document, any copy
thereof and the information contained herein shall be maintained in
strictest confidence; shall not be copied in whole or in part except as
authorized by the enmployee's manager, and shall not be disclosed or
distributed (a) to persons who are not Eoneywell or Ultimate employees, or
(b) to Honmeywell or Ultimate employees for whom such information is not
necessary in connection with their assigned responsibilities. Upon
request, or when the employee in possession of this document no longer has
need for the document for the authorized Honeywell or Ultimate purpose,
this document and any copies thereof shall be returned to the employee’s
manager. There shall be no exceptions to the terms and conditions set

forth herein except as authorized in writing by the responsible Honeywell
or Ultimate Vice President.

Throughout the text of this document, the term "custom processor" shall be
interchangeble with the term "Ultimate Processor”. :

CUSTOM PROCESSOR TECHNICAL DESCRIPTION PAGE 1-1

/

* -

CUSTOM CENTRAL

PROCESSOR

TABLE OF CONTENTS

SECTION I

TABLE OF CONTENTS

1.0 SCOPE AND PURPOSE

1.1 Disclainer

S s_c TION 11
2.9 OPERATIONAL
2.1 System

. 1.2 References

OVERVIEW

environment

2.2 Introductory description

2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.2.7
2.2.8
2.2.9
2.2.10
2.2.11
2.2.12
2.2.13
2.2.14
2.2.15

the ralu

the aram

the dbus

the sbus

the zbus

the local bus
flags

the ahifter
indicators

op registers
other registers
the clock

the stack

the next address generator

availability

CUSTOM PROCESSOR TECHNICAL DESCRIPTION

2-4
2-4
2-5
2-5
2-5

2-5
2-6
2-6
2-6
2-6
2-6
2-7
2-7
2-7
2-7

PAGE 1-2

L~
[
[4 CUSTOM CENTRAL PROCESSOR TABLE OF CONTENTS
i
[SECTION III .
3.0 HARDWARE DESCRIPTION 3-1
[3.1 Register file and alu 3-2
_ 3.1.1 the 2901's _3-2
(.) 5.1.2 ralu addressing and confrol . 3-2
3.1.3 ralu support logic 3-3
[3.2 Auxiliary Random Access Memory _ 3-3
} 3.2.1 aram read or write 3-3'
[3.2.2 aram addressing - 3-4
k 3.3 The D Bus 3.4
; 3.3.1 dbus brte w. 3-5
(3.3.2 dbus byte x 3-5
' 5.3.3 dbus byte y 3.6
[3.3.4 dbus byte z 3-7
‘ 5.4 The 8 Bus 3-8
[3.4.1 sbus byte w 3-8
5.4.2 sbus byte x, y, £ 3-9
[3.4.3 sbus enables . 3.10
3.5 The Z Bus 3-10
[5.5.1 zbus sources 3;11
5.5.2 zbus enables ’ 3-11
[
[-
[
[
t CUSTOM PROCESSOR TECHNICAL DESCRIPTION PAGE i-3
[

e oy Jc;!ﬂ\ pan pun pEm Saa gEm R !-!‘:!'i! pen pug g Een pER PR !i‘; p 9

CUSTOM CENTRAL PROCESSOR

TABLE OF CONTENTS

3.6 The Local Bus

3.6.1 local bus addressing
3.6.2 local bus data storage
3.6.3 local bus procedure storage
5.6.4 local bus control circuitry
3.7 Temporary, Permanent and Control Flggs
3.7.1 temporary flags
3.7.2 permanent flags
3.7.3 control flags
3.8 Nibble Shifter
3.8.1 shifter data flow
3.8.2 shifter control
3.9 Arithmetic and Miscellaneous Indicators
3.9.1 arithmetic indicators
5.9.2 miscellaneous indicators
3.9.2.1 scram indicator
3.9.2.2 difbuf indicator
3.9.2.5 hashit indicator
3.9.2.4 illadd indicator
5.9.2.5 leading zero detector
3.19 The OP Register
3.19.1 the sbus multiplexor
5.18.2 the op multiplexor
3.10.3 the op registers
3.12.4 the type register

CUSTOM PROCESSOR TECHNICAL DESCRIPTION

3-12
3-12,
3-12°
3-13
3-13
3-15
3-15
3-16
3-16
3-16
3-17
3-17
3-17
3-17
3-18
3-19
5.19
3.19
3.19
3.19
3.19
3.19
3.20
3.20
3.29

PAGE 1i-4

CUSTOM CENTRAL PROCESSOR TABLE OF CONTENTS

3.11 Loading Various Registers 3-20
3.11.1 loading the H register 3-29

3.11.2 loading the output register 3-21°

3.11.3 loading the V register 3-21

3.11.4 changing adra, adrb, and adrp 3-21

. 3.11.5 changing grbr) 3-21
3.11.6 changing bsbr 3-22

3.11.7 chasnging bsar 3-22

3.11.8 loading the accounting timer 3-22

3.f2 The Four Speed Clock 3-22
3.12.1 the basic clock 3-23

5.12.2 the gear shifter 3-23

3.12.3 clock stalls 3-24

3.13 The Return Stack 3-26
3.13.1 tﬁe 16 location return memory 3-26

3.13.2 the 4 bit return memory address register 3-26

3.13.3 the return memory local register 3-27

3.13.4 the relative push local register 3-27

3.13.5 the absolute push local register . 3-27

5.13.6 the hardwvare interrupt register 3-27

3.13.7 the return address bus 3-28

5.13.8 the stack overflow/underflow detector 3-28

CUSTOM PROCESSOR TECHNICAL DESCRIPTION PAGE i-5

p—

A / ‘
| g eem ewm Gmy pun SR SR R Glem gEm eum SEm sEn G gem fER Y

CUSTOM CENTRAL PROCESSOR TABLE OF CONTENTS

5.14 The Next Address Generator 3-28
35.14.1 bank selection 3.29,
3.14.2 else next bank address generation 3.29
3.14.3 {f bank next address generation 3.38
5.14.3.1 1f bank address bits 01-05 3.350
- 3.14.3.2 1f bank address bits 06-09 3.31
3.14.3.3 if bank address bits 10-13 3.31
3.15 Availability Circuits 3.33
3.15.1 error detection circuits 3.33
3.15.1.1 procedure parity 3.33
3.15.1.2 data parity 3.3,
3.15.1.3 procedure red 3.34
5.15.1.4 data red ' 4 3.34
3.15.1.5 procedure uar 3.34
5.15.1.6 data uar 3.34
3.15.1.7 stack overflow or underflow ’ 3.35
3.15.1.8 control store parity 3.35
3.15.2 parity generation circuits . 3.36
5.15.3 verifying the integrity circuits 3.36
3.15.4 branch to zero 3.36
S_ﬁ CTION IV .
4.0 FIRMWARR DESCRIPTION ' 4-1
4.1 2981 Control 4-3
4.2 Aram Control . _ 4-6
'CUSTOM PROCESSOR TECHNICAL DESCRIPTION PAGE 1i-6

CUSTOM CENTRAL PROCESSOR TABLE OF CONTENTS

4.3 D Bus Control
4.3.1 DG=1iteral
4.3.2 DG=broadside
4.3.3 DG=mix
4.3.4 DG=sign extend
4.4 S Bus Control B
4.4 Z Bus Control
4.6 Local Bus Control
4.7 Flag Control
4.7.1 permanent flags
4.7.2 control flags
4.7.3 temporary flags
4.8 Nibble Shifter Control
4.9 Indicator Control
4.9.1 arithmgtic indicators
4.9.2 miscellaneous indicators
4.190 OP Register Control
4.18.1 pbus to OP
4.19.2 gbus to OP
4.10.3 OP increment/decrement
4.11 Load Controls
4.11.1 loading adra, adrb, or adrp/pctr
4.11.2 loading outr, v, or h
4.11.3 changing rbr
4.11.4 changing rar
4.11.4.1 loading all of rar

4-7
4-7
4-7 *
4-8
4-8
4-9
4-10
4-10
4-14
4-14
4-15
4-15
4-15
4-15
4-16
4-16
4-17
4-18
4-19
4-20
4-20
4-21
4-21
4-22
4-22
4-22 _

4.11.4.2 changing rarh
4.11.4.3 changing rarl

CUSTOM PROCESSOR TECHNICAL DESCRIPTION

| : -y pm P

4-23
4-23

PAGE 1i-7

e v s

CUSTOM CENTRAL PROCESSOR

TABLE OF CONTENTS

4.12 Clock Control

4-23
4.13 Stack Control 4-24
4.14 Next Address Control 4-24:
4.15 Availability 4-30
CUSTOM PROCESSOR TECHNICAL DESCRIPTION PAGE 1i-8

CUSTOM CENTRAL PROCESSOR INTRODUCTION

INTRODUCTION

The thirty-two-bit custom processor is a ten megahertz, thirty-two-bit
wide, microprogramable firmware engine drivemn by a one-hundred and
twenty-eight bit wide control store word and having a blank identity.

1.1 PURPOSE

This tchnical description imparts information which is necessary for
any who wish to provide the custom processor with a new incarnation. Those
who attempt personalization of the custom processor need be capable of
writing and testing microcode. For testing microcode, Custom and Special

Products offers a PFirmware Development Facility which greatly simplifies
the task (see appendix Ai).

1.2 SCOPEB

This document is 1intended for <the prospective microprogrammer. It
describes the operation of the 32-bit custom processor at the level of an

experienced coder. Others, such as test technicians, might also find the
information in section three useful.

In addition to this section, this document contains four other
sections and three appendices.

Section II describes the system environment, an exposure of the

custom processor capabilities and a brief discussion of each of its major
areas.

Section III 4s a detailed description of each of the fifteen hardware
areas.

Section IV 1is a detailed description of each of the fifteen firmware
areas.

Section V is a discussion of internal speed considerations.

Appendix A contains a description of the Firmware Dévelopment Facility

which 1s available for the checkout of firmware written for the Custom
Processor.

Appendix B contains a description of the Quality Logic Test firmware
which is available for 1linking into the custom firmware load and is

recommended as a means of verifying the integrity of the Custom Processor
at every system initialization.

CUSTOM PROCESSOR TECHNICAL DESCRIPTION PAGE 1-1

CUSTOM CENTRAL PROCESSOR INTRODUCTION

Appendix C 18 a description of the Test and Verification routine
available with every incarnation of the Custom Processor.

1.3 DISCLAIMER

The firmware dicticnary serves as <the specification for the custom

processor. The firmware dictionary shall govern 1in any disagreement
between it and this technical descript;on.

_ 1.4 REFERENCES

In order to code firmware to execute on the CUP32, the following
additional documents may prove useful:

CUP32 dictionary
CUP32 logic block diagrams
for the mother board ..601608259
for the daughter board 60160249
RTL6 assembly language manual

document #LDA-021

CUSTOM PROCESSOR TECHNICAL DEéCRIPTION PAGE 1-2

Hgnﬂﬂ‘ﬂgﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂl

SECTION 1II OPERATIONAL OVERVIEW

OPERATIONAL OVERVIEW

.-

This section describes the system environment into which the 32-bit
Custom Processor may be connected. The section also gives a first-level
description of the Custom Processor's inner workings.

2.1 SYSTEM ENVIRONMENT

The 32 bit Custom Processor is housed in a central subsystem chassis
(see figure 2-1). This chassis contains an interconnect backplane called
the Local Bus which allows communication among elements within the central
subsystem chassis. A minimum of two elements must be installed into the
central subsystem chassis: namely, a 32-bit Custom Processor and a tri-
port memory. One port of the tri-port memory connects to a Custom
Processor on the Local Bus, another port comnects via a Custom MECABUS
Adapter board to a 32-bit MEGCABUS System Bus, and a third port is
available to connect to a second Custom Processor on the Local Bus. The
Custom MEGABUS Adapter board physically plugs into the 32-bit System Bus
and a set of cables connect it to the tri-port memory. The central
subsystem chassis 1is designed to accommodate a total of two 32-bit Custom
Processors and two tri-port memories. In configurations where two
tri-port memories are 1installed, each tri-port memory is connected via
cables to its dedicated Custom MEGABUS Adapter board. The Custom MEGABUS
Adapter board provides a Custom Processor access to System Bus elements
including peripheral controllers, communication controllers, central
memories, and other processing elements (e.g., a Series 6 CPU).

Each tri-port memory may be configured to contain either two-megabytes
or four-megabytes of memory. When more than one tri-port memory is
installed, the total address space is contiguous. Figure 2-2 illustrates
possible memory configurations which are supported. Note that 1t is
possible to connect another complete central subsystem chassis to the

System Bus for a maximum of four 32-bit Custom Processors and four
tri-port memories. :

The configuration should include at least one Level 6 processor, if
for no other reason than to allow test software to be locaded and executed.

This 4s the most effective way of allowing the user to verify the
integrity of all device and communication controllers. :

Architecturally, the system is strategized to minimize System Bus
memory —traffic-—in support of a processor's instruction stream. In these
systems memory traffic on the System Bus will service direct memory
access(DMA) almost exclusively. The only other System Bus traffic will be
that programmed I/0 dialogue required to institute and control DMA and

that interprocessor mailbox dialogue necessary for sharing system
resources.

CUSTOM PROCESSOR TECHNICAL DESCRIPTION PAGE 2-1

VY

L T I

N

HONEYWELL CONFIDENTIAL AND PROPRIETARY

ULTIMATE

CONFIGURATION

s
SYSTEM Y
s
T OTHER SYSTEM
E BUS SLOTS
u PR
BUS 8
v CR41E CENTRAL PROCESSOR
s
B
POWER Q CUSTOM MEGABUS ADAPTER #2 ——
™ ,
P
L
A
SOURCE : CUSTOM MEGABUS ADAPTER #1 —
| | ARRAY PAK | [ARRAY PAK |
css g CUSTOM MEMORY CONTROLLER #1 —
c
A Maximum
L 4 daughter
| __aRRAY PAK] | ARRAY PAK] boares
CHASSIS 3 CUSTOM MEMORY CONTROLLER #2 ——
s .
Maximum
2 daughter
B boards
A
POWER ﬁ CUSTOM PROCESSOR #2
P
L
A
N .
SOURCE E CUSTOM PROCESSOR #1

SYSTEM ENVIRONMENT

HONEYWELL CONFIDENTIAL AND PROPRIETARY

10-1-5

[
) |
[
[

a
[
[
|

¢
|
|
[

1
[
[
[
N |
[
[

& Rttt et
[[}
> |
o4] 4o - 4
S T SR v
(o]
> -
=
5 48| |48 f
— al 1
£ 8 ¥ 8
< . o o I o @)
a4 o Q L & . M m
[X] a .a o= d
5 4 41 18| - 7
(o] o > » “
o [+ . m [+
B Re Lt (o] o— (o] [&]
AR HEE :
g 21 5 5 g
-h n] 0 W
5 B 4 B
O APV MCOMALI<LEM 0N>™NK
(4]
3 2 B ¢ B
3 a - o A
- | 8 B
N """"" G G GNE G TP GRS GER GNP GMR FED GED GUP NS P SN D GED GNP N G w
o
-~
&
C .
0
[/)]

R

OTHER SYSTEM
BUS SLOTS

CUSTOM MEGABUS ADAPTER

FIGURE 2-1
SYSTEM ENVIRONMENT

PAGE 2-2

CUSTOM PROCESSOR TECHNICAL DESCRIPTION

i
W llllllllllllllllllllllll e - o~
—
> .
o > B v.m a B
= e 237 0 <
N Sy oM B o
o mn mB &
42 B o [
A 17 17 = ©
) 'y
> e o o o = o = =~ - = - — e - " - —— = - - - 7]
O 0
- f 2 8 4
< 5 17 =0 B a
m n L] meB w =
=] B n & o
o, e mm mm 2 # M
o = n 7] H M e
lllllllllllllllllllllll e o - o Gn en G o m] A N R
B a o
4 B g . B 5
O > =g B 5 m e la)
mm B4 [S]
[=] o - g
7] = b 0 &)
3 —
""""""""""""" e we aw e len me G S D GD GE G IS GIE IR G WO GO WD G D S I
3 =
q o fi A : 2
[7)] MS [%2] - 13
B < B e
5 Ba 5 8 &
= m = N %
llllllllllllllllllllllllllllllll e ————————— o 3]
! o % M A © m < o ® ©~ w »n <& »m &6 - o m b
| a.
» N """""""""""""""""""""" S NS) G M WG AR D U D D GME D IR WEP TGN TP S
| (@] =
i H o
, B B
i (6] 0
! @ jo]
)] O

[

f

o
(
\
3
[
[
\
l
"
[
\
i
[
\
L
ol
(
(

SECTION II

OPERATIONAL OVERVIEW

FFFF

1000
- @FFF

OEQO
@DFF

ocoa
@BFF

GA00
@9FF

0800
87FF

MEMORY ADDRESS ALLOCATION FOR 32-BIT ADDRESS SPACB

CUSTOM PROCESSOR TECHNICAL DESCRIPTION

FFFF

FFFF

00020

PR Y ey

15716 OF 4 GIGABYTES
OF PUBLIC SPACE

| MEMORY
| SUBSYSTEM
ZERO

32MB~

3
8

]
!
|
|
!
|
+
l
|
|
|
!

i MEMORY
| SUBSYSTEM
! ONE

&
T

-
RO W -
- - o —-——

16MBv

- an - e e o= e - - - -

:

1 MEMORY
| SUBSYSTEM
VO

32MB~

16MB~

- en wn am e o So oo an o en e

1 MEMORY
| SUBSYSTEM
THREB

-
[
[R

-
5
- an e e e e an § o on on ee o en e

:

- e wn dp o=

|

'y

128K BYTES OF
PUBLIC SPACE

v

FIGURE 2-3B

J k. ket 4 - . - - - —n .o o= - man) o=

PAGE 2-4

SECTION II . OPERATIONAL OVERVIEW

2.2 INTRODUCTORY DESCRIPTION

The major block diagram of figure 2-3 is a representation of the
Custom Processor. This section is divided into fifteen paragraphs each of
which discusses the topic at a first level. The discussions in sections
three and four are similarly subdivided allowin the reader quick
reference to greater hardware detail (section three? or greater firmware
detail (section four). The fifteen sections are listed below, each with
their associated block diagram identifier:

) - I. the ralu
II. the aram
III. the d bus
IV. the s bus
V. the z bus
VI. the Local Bus
VII. flags
VIII. shifter
IX. indicators
X. op code registers
XI. other registers
XII. the clock
XIII. the stack
XIV. the next address generator

IV. availability
2.2.1 the ralu (see block diagram identifier I)

The register file and alu is comprised of eight 2921 bit slice
chips constituting a thirty-two-bit alu, a sixteen-location dual-ported
random- access memory and a bit shifter (32 or 64 bits wide). Operations
inside the alu occur at nearly a ten megahertz rate. The ralu receives

external thirty-two-bit data from the dbus and transmits thirty-two-bit
results to the gzbus.

2.2.2 the aram (see block diagram identifier II)

The auxiliary random access memory is a single-ported
4096-location memory. Each 1location contains thirty-two bits. The memory
may be addressed in any one of seven different ways. Its data is read onto
the sbus. Data wvritten into the aram is taken from the sbus. Writing of
the aram is byte partitioned; that is, any combination of 1, 2, 3, or 4
bytes may be "copied" from the sbus into the addressed aram location.

CUSTOM PROCESSOR TECHNICAL DESCRIPTION PAGE 2-5

SECTION II OPERATIONAL OVERVIEW

2.2.3 the dbus (see block diagram identifier III)

The dbus 1s the place where all roads lead. It is a thirty-two
bit bus which receives data from the sbus, the zbus, the pbus and numerous
other secondary sources. It may deliver its wealth to the ralu, the output
register, and to the zbus. It has byte partitioning capabilities; e.g., it
may take a byte of the aram for its upper eight bits, an h register byte
for 1ts next eight bits, a literal for its next eight bits, and a bunch of
zeros for its last eight bits.

= 2.2.4 the ebus (see block diagram identifier 1IV)

The sbus receives and provides aram data. It receives and
provides data for the three Local Bus address registers. It has the unique
capability of receiving and reflecting two of its sources during the same
firmware step by virtue of a time-multiplexing mechanism.

2.2.5 the zbus (see block diagram identifier V)

It the dbus is where all roads 1lead and the sbus 1is
hermaphroditic, the zbus is totally colorless. Indeed, 1t 1is a
journeyperson bus, capable of receiving data from the outside world (the
memory subsystem), receiving ralu revelations and sending all this to the
v register, and/or to the dbus, and/or to the sbus via the nibble shifter.

2.2.6 the Local Bus (see block diagram identifier VI)

The Local Bus is the area of the processor responsible for
communicating with the memory subsystem and through it, via the Systenm
Bus, to all other system elements; e.g., a Series 6 processor or a Series
6 controller. The Local Bus area contains, along with the interface
circuits required to carry on a dialogue upon the Local Bus, an eight-byte
look-ahead procedure buffer and two four-byte data buffers. The two data
buffers receive information from memory to be deposited onto the zbus. The
look-ahead procedure buffer is organized to supply one or two bytes to the
op register and/or the dbus and automatically replentish the prefectch
buffer as bytes are consumed.

2.2.7 flags (see block diagram identifier VII)

The Custom Processor contains twenty-four firmware settable and
testable flops. Some have hardware dedicated functions (e.g., processor
off-line); others have more sophisticated firmware sequence control
characteristics (e.g., they may participate in sixteen-way "splatters”).

2.2.8 shifter (see block diagram identiffer VIII)

The shifter is a nibble rotator connected between the zbus and
the sbus. All__eight —possible 4 bit shift distances are supported e.g.,
shift 1left four nibbles, shift right four nibbles and "word swap" are
three equal operations.

2.2.9 indicators (see block diagram identifier IX)

Indicators are storage elements vhich remember some property of
the results obtained in one firmware step so that they may affect the
firmware sequence later on. There are arithmetic indicators like "zero"
and “"carry" which are provided at any byte partition and there are more
specialized indicators 1like the leading-zero detector. Many have the
ability to participate in "splatters” vhich permits up to 17-way firmware
branches.

CUSTOM PROCESSOR TECHNICAL DESCRIPTION PAGE 2-6

—

-

SECTION II OPERATIONAL OVERVIEW

2.2.10 op registers (see block diagram identifier X)

The op registers permit capturing interesting nibbles of the
procedure stream for future reference. The storage mechanisms involvéd may
also receive nibbles from the sbus; they contribute to aram addressing,
they may be incremented or decremented, they may be tested for crossing
the zero boundary, and they may participate in 17 way branches.

2.2.11 other registers (see block diagram identifier XI) -

Many other registers provide strategically located storage for
information. Address registers for data and procedure fetches, which can
be incremented or decremented, are loaded from the sbus and communicate
their content to the memory subsystem. The output data register is loaded
from the dbus and communicates its content to the memory subsytem. The v
register 1is connected bidirectionally to the zbus and is a convenient
stopover for =zbus data. The h register, one of the byte partitionable

sources to the dbus, and the accounting timer are also loaded from the
sbus. '

2.2.12 clock (see block diagram identifier XII)

: The clock has a maximum frequency of nearly ten megahertz. It is
an asynchronous mechanism whose speed for each step is selected by the
firmware assembler. The clock is structured to wait before starting the
next step (stall) if <the coder wishes, implicitly or explicitly, to
postpone its start until an external event occurs (such as receiving
previously requested memory subsystem data).

2.2.13 the stack (see block diagram identifier XIII)

The return stack 1is a mechanism which simplifies the use of
subroutines. It contains seventeen levels. Absolute or relative addresses

may be "pushed" onto the stack. Unconditional, conditional and masked
returns are provided.

2.2.14 the next address generator (see block diagram identifier XIV)

The next address generator is a particularly flexible element in
that 1t eliminates the need for numeric sequentiality in the execution of
firmware steps. The next address may be any one of the 16384 locations
provided. The destination may bde specified as a "go-to" or it may be
chosen from a pair of addresses dependent upon one of seventy-two test
conditions. It may instead be chosen among sixteen locations dependent
upon some group of four indicators (six groups are provided) or the
destination may be a seventeenth 1location dependent upon one of the
seventy-two test conditions. Then again, it may be chosen among one of 256
locations dependent upon a byte of the procedure stream via a table
look-up mechanism containing sixteen look-up tables. Or, 1t may be a
subroutine return. Three types of returns are provided: an unconditional
return or one which returns depending on one of the seventy-two test
conditions or one which returns to an alternate return location as a
function of subroutine processing discoveries.

2.2.15 availability

The Custom Processor 1is possessed of data parity checking
circuits, data uncorrectable memory edac error detectors, and firmware
parity error detectors. It can also detect references to unavailable
system resources, and inappropriate return stack references. Parity bits
accompany data sent from <the Custom Processor to other system elements

allowing them the opportunity of verifying the integrity of the received
information.

CUSTOM PROCESSOR TECHNICAL DESCRIPTION PAGE 2-7

=

SECTION II OPERATIONAL OVERVIEW

All Custom Processors include an imbedded comprehensive
self-test firmware routine called the quality logic test (QLT) which, at
every system initialization, exercises all processor and memory subsystem

hardware elements verifying their specified - operation. This firmware
routine includes a thorough memory array test.

major block diagram goes here

CUSTOM PROCESSOR TECHNICAL DESCRIPTION "PAGE 2-8

SECTION THREE , HARDWARE DESCRIPTION

HARDWARE DESCRIPTION

This section describes hardware entities at a 1level of detail
sufficient for comprehension if the reader has a set of custom processor
schematics (LBD's) and if the reader has experience in the interpretation

of logic diagrams. LBD page references are suffixed with m for mother

board or 4 for daughter board. Reference is also made to the block diagram
of 2-3,

The hardware discussion will be sﬁbdivided into fifteen zones. Each of
these zoaes is a separable entity that has one or more firmware fields
dedicated to its control as shall be seen in section iv.

The fifteen sections and the block diagram identifier are:

I. Register file and alu (2901°'s)

II. Auxiliary random access memory (ARAM)
III. D bus

IV. S bus

V. 2 bus

VI. Local bus
VII. Temporary, permanent and control flags

VIII. Nibble shifter |

IX. Arithmetic and miscellaneous indicators

X. OP register and OP register multiplexers
XI. Load of H, V and other registers -

XII. Pour-speed clock

XIII. Return stack

XIV. Next address generation

IV. Availability

CUSTOM PROCESSOR TECHNICAL DESCRIPTION

PAGE

SECTION THREE HARDWARE DESCRIPTION

In the text which follows, capitalization is used sparingly so that
all signal names and micro names may stand out. Signal name polarities are
avoided wherever possible; instead the terms "on" and "off" are’ used.
When, for instance, REQNOW 4s "on", REQNOW+ is high and REQNOW- is low.
This applies even when the signal exists 1in only one polarity (e.g.,
"MCX000 is on" means MCI@00- is low and would alsc mean MCX000+ is high
were there such a signal. A neutral polarity indicator "." is used for

those signal names which achieve uniqueness only in their eighth and ninth
_Characters (e.g2., NAEB13.EX).

3. 1 Register file and alu (block diagram identifier I)

‘The ralu is the resource which performs thirty-two-bit arithmetic and
logic operations. It resides between the dbus, from which it receives
operands, and the zbus to which it delivers results.

}.1.1 The 2981's (see page 134d)
The ralu is comprised of eight 290{'3. These eight chips constitute:
1. a dual-ported 16-location by 32-bit register file
2. a 32-d1it arithmetic and logic unit
3. a 32-bit q register

4. a shifting element capable of shifting the alu output one bit
left or right.

5. a shifting element capable of shifting the concatenation of
the alu output and the q register one bit left or right.

6. a zero detector, an overflow detéctor. a sign detector and
a carry detector.

3.1.2 Ralu addressing and control (see 1lbd pages 34, 4d and 5d)

The raw control register provides the 2981's almost all of their’
control inputs:

A port address CRAA(00-03)
B port address CRAB(00-03)
source select ‘ CRAS(00-02)
function select CRAF(00-02)

destination select __CRAD(08-82)_

CUSTOM PROCESSCR TECHNICAL DESCRIPTION PAGE 3-2

o N T I

— L

SECTION THREE : HARDWARE DESCRIPTION

3.1.3 Ralu support logic (see page 12d)

The carry look-ahead network is comprised of 74S182's connected in a

somewhat unconventional manner. Pirst, the carry into the

least

significant 2981 (AUC032) 1is derived by decoding bits three and four of

the AF field to produce four cases:

AF3 AF4 AUC@32
2 8 cause a cafry into alu unconditionally
- ’] 1 cause a carry into the alu if the carry indi-

cator is off

1 0 cause a carry into the alu if the carry indi-

cator is on

1 1 do not cause a carry into the alu

Next, the carry 1into the second 2901 is from the first's ripple carry.
Then . the 74S182's take over, providing 1input carries for the most
significant 8ix ¢991's. Last, the carry out of the most significant stage

(AUCO28) is derived by combining the G and P outputs

significant 74S182 chip using a couple of inverters and a 74S51.

of <the most

The zero detector of <the 2901 is an open-collector output requiring
pullup. Eight resistors are required since the leading-zero indicators
must examine each 4individual nibble even though the =zero arithmetic

indicator is partitioned only to the byte.

The signal ALUTOZ is derived as shown (predecoded)
enable/disable the 2921's to the zbus in a timely manner (see

in order to
5.0).

5.2 AUXILIARY RANDOM ACCESS MEMORY - ARAM (block diagram indentifier II)

The auxiliary random access memory is comprised of eight 1421-45's.
Each chip contains 4096 1locations of four bit wide static ram. The aram
receives a twelve-bit address from an eight-way selector called rmad. The

aram may be read/written to/from the sbus.

3.2.1 Aram read or write (see 1bd pages 17d and 19d-26d)

Wbhen written, the aram is byte partitioned. When read, 32 bits of data
are placed upon the sbus for normal reads. The signals RAMWCE, RAMICE,

RAMYCE,

and RAMZCE are the four chip enables. They are structured simply

to provide <the split cycle sbus capability having a gate for first half
cycle,a gate for second half cycle and a gate to "bridge”™ the early and
late gates when <the ARAM is the sbus source for the full cycle. The four
signals ARM@WR, ARMIWR, ARM2WR, and ARM3WR provide the write enabdle for
the w byte, the x byte, the y byte, and the z byte, respectively.

3.2.2 Aram addressing (see pages 18d and 294)

-

CUSTOM PROCESSOR TECHNICAL DESCRIPTION

PAGE 3-3

P

e B |

¢

/

/

SECTION THREE

HARDWARE DESCRIPTION

The three-bit firmware field RM provides control for an eight-to-one

selection

aram addressing sources.
selection resulting in RMAD(@0-11).

results from each selection:

Twelve 74AS151°'s perform the
The table below shows what address

s:ggzt RMAD(002-03) RMAD(94-07) RMAD@8-15)
"] zeros GRBR(00-03) OPRGA(9-3)
. 1 zeros CRBR(00-03) OPRGB(9-3)
2 . zeros GRBR(00-83) OPRGC(9-3)
3 zeros GRBR(©2-03) OPRGD(9-3)
4 CRFT(01-04) CRDK(©08-03) CRDK(04-07)
5] P a r e
6 BSBR(00-03) BSAR(00-0%3) BSAR(04-07)
7 1,2BUS(19-21) 2ZBUS(22-25) ZBUS(26-29)

grbr 1s a four bit "general bank” register which permits the sixteen
aram locations accessible by opa, b, ¢, and 'd to be any block of sixteen
in the first 256 aram locations (see 3.11). bsar and bsbr are a four and
an eight-bit register which together provide an independent aram
addressing mechanism (see 3.11). crft together with crdk provide the
n]1iteral™ address where crdk 4is part of the dbus control (see 3.3) and
crft normally controls <the temporary flags (ses 3.7). The last selection
has a rather specialized use. It allows 2048 locations of the aram to
become a cachs of control structures wvhere a field of the zbus is used to
access one of the 2048 locations and data in the accessed location can be
used tg determines hit or miss at the discretion of the microcoder (see
5.9.2.3). .

5.3 THE D BUS (block diagram identifier III)

The dbus is a major node in the 32-bit custom processor. It is one of
three 32-bit buses but it is the most prolific. Data may be deposited upon
it from a wide variety of sources. Such data may then be made available
for computation in the ralu, or placed into the output register, or
transmitted to the zbus. The dbus 18 siructured as four eight-bit buses,
allowing up to four dbus sources to be combined (see section 4.3 for a
complete list of tbe combinations and permutations).

3.3.1 abus byte w - bits 80-07 (see 1bd pages 17d, 19d and 20d)

Byte w may receive from six nutuaily exclusive sources which are

listed belov along with the signal, emanating from a pal, that enables
each source:.

source enable signal
1. the sbus to dbus latch (LTCE@3-07) LTCHWE

2. the h register (HREC02-87) HREGWE

3. the zbus (BUSZ00-87) B2TOBD

4. a r111 byte (SGNEXT) . FILLVE

5. the 8 bit "J" literal (CRDJGB-07) CRDJVE

6. the 8 bit "k" literal (CRDK20-07) CRDKWE

CUSTOM PROCESSOR TECHNICAL DESCRIPTION PAGE 3-4

SECTION THREE HARDWARE DESCRIPTION

There is more discussion of source #1 in 3.4.

At the firmware level, the normal fill bit is CRDFO0O0 which becomes an

input to an eight-to-one multiplexer along with three sbus bits in order
to provide three +types of sbus sign extension as a function of certain
dbus control bits (CRDJB2, CRDJ?4,

and CRDTRE). The output of the
multiplexer 1is replicated 8, 16, 24 or 32 times providing the required
fill or sign extension.

3.3.2 dbus byte x - bits 08-15 (see 1lbd pages 17d, 21d and 22d)

byte X may receive from six mutually exclusive sources which are
listed below along with the s8ignal, emanating from a pal, that enables
each source:

source enable signal

1. the sbus to dbus latch (LTCE28-15)

LTCHXEB
2. the h register (HREG28-15) HREGIE
3. the <hur (4JS260 -18) BZTOBD
4. a £111 byte (SGNEXT) FULLIE
5. petr/p history (PHSTBB—15) register PCTREN
6. the 8 bit "k" literal CRDKXB

By examination of <the 1last two characters of the enable signal, one
may determine 4if the source is partitionable or if it is a “"broadside”
source. In the six sources above, the latch, the h register, the fil1ll1, and
the k 1literal are partioned sources whereas the =gbus and the pctr/p
history are not.

3.3.3 dbus byte y (bits 16-23) see 1bd pages 17d, 23d and 24d

Byte y may receive from eleven mutually exclusive sources which are
listed below along with the signal, emanating from a pal, that enables
each source:

source enable signal

1. the sbus to dbus latch (LTCE16-23)

LTCHYRE
2. the h register (HREGi5-73) ' HREGYE
5. the zbus (BUSZ16-23) BXToDd .
4. a fili nibble (SGNEXT) FILLYE.QX
a £111 nibble {SGHEXT) FILLYE. 37
5. the "3" 8 d1t literal (CRDJ2O-87) _ —CRDJYE —
6. the "k~ & bit 1iteral (CRDKP@-03) CRDKYE. 03
the "k" 4 bit literal (CRDK@4-07) CRDXYE.47
7. the pctr/p history register (PHST16-23) PCTREN
8. the hex decoder (EEXD20-87) ’ HEXDEN
9. the opath registers {OPRCAZ-3,0PRGB2-3) OPRGYS
12. the "procedure” mxz (PTOD16-23) PICYEN
{t. the aram bank registeras (GRBRGd-O’) ASEREN
(BSHROG-93) ’
CUéTOM PROCESSOR TECHNICAL DESCRIPTION PAGE 3-5

p——n

L T m‘igﬂw pan pum amm pEm gEm RN lll!‘(T

pun pum e !';! p—y !l‘; ”"!-.! e

SECTION THREE HARDWARE DESCRIPTION

Sources #4 and #6 are partitioned at the nibble level in order to
support the micro D:RAMAD-IX8 (see 4.3).

Source #8 is one byte of the hex decoder, a mechanism which decodes,
with a couple of 74S138's, <the least significant four bits of thé aram
address (RMADO8-11) and emits a one in a field of fifteen zeros.

Source #9 allows the op register to be placed upon the dbus.

Source #10 for <this byte deposits the output of a 2:1 mux onto the

..dbus. The two sources on the input of the mux are:

a. the most significant byte of the pbus (BUSPOG-07)

b. seven f1ll1 bits (CRDF22) and the most significant bit
of opc(OPRGCO) which, with the help of the correspon-
input on byte £, yields opc/d shifted left one place
for the micros D:0PCD-X2 and D:OPCD-X2°'1,

Source ~ #11

provides access to ‘the independent aram addressing
mechanisnm,

3.3.4 dbus byte £z - bits 24-51 (see lbdipages 174, 25d and 264)

Byte =z may receive from eleven mutually exclusive sources which are

listed below along with the signal, emanating from a pal, that enables
each source:

source enable signal
1. the sbus to dbus latch (LTCH24-31) LICHZE
2. the h register (HREG24-31) | HREGZE
S. the zbus (B2US24-31) BZTOBD
4. a £111 byte (SGNEIT) FILLZE
S. the rmad times 8 mechanism » PCBREN .
6. the 8 bit "k" literal (CRDK90-07) CRDKZE
‘7. the pctr/p history register (PEST24-31) PCTIREN
8. the hex decoder (HEXD@8-15) HEXDEN
9. the opc&d registers (OPRGC®-3,0PRGD@-3) OPRGZE
19. the "procedure® mux (PTOD24—31) . PTOYEN
11. an aram address register (BSAR20-07) ASBREN

Source #5 implements <the least significant eight bits of the micro
D:RAMAD-X8 placing onto this byte the high order k literal bit CRDK@O,
RMAD(@8-11), and the next three k literal bits (CRDK@1-03).

Source #1080 for <this byte deposits the output of a 4:1

mux onto the
dbus. The four sources on the input of the mux are:

- a. the eight least-significant bits of the pbus (BUSP@8-15)

b. the three least significant bits of opc (OPRGC1-3),
opd (OPRGD9-3), and the fill bit (CRDF20).
This input along with the corresponding input on byte y
allows the dbus to receive opc/d doubled (CRDF08=0) or
dibbled (CRDF@0=1) for micros D:0PCD-X2 or D:0PCD-X2'1.

CUSTOM PROCESSOR TECHNICAL DESCPIPTION PAGE 3-6

SECTION THREE HARDWARE DESCRIPTION

c. the most significant eight bits of the pbus (BUSP0O-07)

d. registers opc/d shifted right three bits for the micro
D:0P-BIT-AD :

3.4 THE S BUS (block diagram identifier 1IV)

The sbus 1is a very special kind of 32-bit bus. Although it has a
limited number of sources and few destinations, it is unique because, in

. _the . same step, two different 32-bit sources may be placed upon it. The

“jJustification for this construction 1is that data-from the aram must be
read, modified and written in the same step (the 1421's share input/output
data pins). Thus the sbus 1is a split-cycle mechanism capable of having
data from one source in the early phase of a step (e.g., the aram) and
another source during the 1late phase (e.g., the zbus-shifter). Another
unique property of the sbus is its ability to send either the early data
or the 1late data (but not both) to the dbus. This is accomplished via
transparent latches which, on a byte-partioned basis, either go blind at
mid-cycle (thus capturing the early sbus data) or remain transparent
throughout the cycle (thus delivering to the dbus the late sbus data).
"Byte partioned”™ means that micros are provided which permit each dbus
byte 1independent choice of the early sbus information, the late sbus
information, or other sources as described in 3.3.

3.4.1 sbus bytes w, x, ¥y, and z (see 1bd pages 14d, 15d, 21d, 224,
17m, 21m, and 33m)

Bytes x, Yy, and ¢ may receive from eight mutually exclusive sources
which are 1listed below along with the signal which enables each source.
These thirty-two bits of the sbus appear on both the mother and daughter

boards. Three of the eight sources are on the daughter board and five are
on the mother board.

source .) enable signal
1. the aram byte v (ARAMGO-03) RAMWCE
byte x (ARAM28-15) RAMXCE
byte y (ARAM16-23) RAMYCE
byte z (ARAM24-31) RAMZCB
2. the shifter a output (SHFTE8-31) SFT1EN
5. the shifter b output (SHFTE8-31) SFT2EN
4. the stack top (KTOP@6-13) and ACTN2S
the accounting timer (ACTMOS-15) .
5. the syndrome register (SYND28-31) SYND2S.
6. address register a (ADRA28-31) ADRA2S
* 7. address register b (ADRB28-31) ADRB2S
8. address register p (ADRPB8-31) ADRP2S

Regarding .source #1, the enable circuitry has been discussed in 3.2
but one should note that when writing the aram, both the chip enable
(RAMWCE) and the write enable (ARMOWR) must be on. This condition causes
the 1421 rams’ output circuitry to go to the high impedance state. This

arrangement allows the sbus to receive data from any other source while
the aram is writing.

CUSTOM PROCESSOR TECHNICAL DESCRIPTION PAGE 3-7

SECTION THREE HARDWARE DESCRIPTION

Sources #2 and #3 are listed separately because of the configuration
of shifter chips (25S10's) used. Sixteen chips, each with four output
Pins, are connected in a parallel structure such that, as a function of
the high order bit of the shift distance (CRSD80), either one or the other
8roup of eight chips is enabled to the sbus (see 3.8).

Source #4 1is, at the full sbus level, a collection of two sources
which total 1less than 33 bits. The upper 16 bits "read” the stack top
(the firmware address which the next RETURN micro will utilize) and the

.lower 16 bits "read” the accounting timer (see 3.11.8).

-Source #S5, the syndrome register, is a mechanism which captures
subsystem configuration information, the most recent error event or reason

code. The path to the sbus merely allows the coder to view this reason
code (for more about errors, see 3.15{.

Sources #6, #7, and #8 allow reading adra, adrb, and adrp
respectively. For more about these registers, see 3.11.

3.4.2 Sbus enables (see 1bd pages 17d, 1@m and 17m)

The sbus control field (CRSS80-82) allows one of six typess of sbus
cycles in any step. The table shown below summarizes the six cases:

CRSS@20-02 early data from late data from

- adra/b/p adra/b/p

1 adra/b/p zbus
.2 synd/actm.stack synd/actm.stack
3 zbus zbus

4 8 r e

5 8 r e

6 aram aram

7 aram zbus

The aram split cycle controls are discussed in 3.2. The general
technique for the shifter and the address registers is the same; namely,

there 18 an input on each enable circuit for the early half of the cycle
and another for the late half.

The shifter enable circuits receive an input from a flop (CRSSE3)
which predecodes the control store word loocking for the only code which

requires the zbus to the sbus during the early phase (i.e., code 3). The
late input is decoded in a pal.

The early gate on the address register enable circuits (ADRAZS,
ADRB2S, and ADRP2S) is timed with MCLOCK whereas the late inputs are
essentially untimed. Notice <that the choice among adra/b/p is the
responsibility of <the BS field and not of the SS field. The 74S139 which
decodes two bits of BS for this purpose is enabled for codes @6, 1, 4, and

5, but 4 and 5 are not used and @ and 1 are the codes which deposit
adra/b/p to the sbus.

5.5 THE Z BUS (block diagram identifier V)

The 2zbus 1is a place where the ralu may deposit its computations, is
the bus upon which external data arrives (from inra/b) and is the bus
which feeds the nibble shifter.

CUSTOM PROCESSOR TECHNICAL DESCRIPTION PAGE 3-8

SECTION THREE HARDWARE DESCRIPTION

3.5.1 zbus sources (see 1bd pages 164, 294, 324, 33d, and 34d)

The 2zbus is thirty-two bits wide and receives from six thirty-two-bit-
wide sources. Alorg with the ralu and the input data registers, the zbus
may receive from the v register, the dbus, and from an external conneéction
(i.e., the firmware development facility). The six sources are listed
below along with their respective enable signals:

source enable signal
.. - 1. inra (INRAQ®-31) ') . CRIA2Z
2. inrb (INRBEO-31) CRIB22Z
5. v register (VREC22-31) VREGEN
4. ralu (ALUYGO-31) ALUTOZ
5. the dbus (BUSD@2-31) DBTPZB
6. the fdf (BUSZ@0-31.EX) . CRTB2Z

3.5.2 zbus enadbles (see lbd pages 12d, and 324d)

The ZB field controls the zbus sources as shown below:

crzb(ee-82) source enable signal
0 ralu ALUTOZ
1 fafr CRTB2Z
2 inra CRIA2Z
5 inrd . CRIB22
4 dbus DBTOZB
5 vreg VIRHEN
6 inra CRIA2Z
B inrb _ CRIB2Z

All s8ix enables emanate from a pal which decodes crzb. Codes @ through
S produce results previously discussed. When inra or iarb is placed upon
the gbus as a result of code two or three a parity check is performed on
all four bytes. VWhen inra or inrb is placed upon the zbus as a result of

code six or seven, a parity check is performed on only the two most
significant bytes.

3.6 THE LOCAL BUS (see block diagram identifier VI)
The local-bus hardware can be divided into four sections:
An addressing mechanism
A data storage mechanism
A procedure storage mechanism and

Local-bus control circuitry

The BS field is responsible for managing the resources represented by
the above 1list which contains three address registers, 64 bits of
procedure stream storage, and 64 bits of data storage.

CUSTOM PROCESSOR TECHNICAL DESCRIPTION PAGE 3-9

SECTION THREE HARDWARE DESCRIPTION

5.6.1 Local bus addressing (see 1bd pages 18m, 19m, and 20m)

Addresses from the processor +to the memory subsystem(s) may emanate
from one of <three sources: adra, adrb, or adrp. A three-to-one mux is
formed using 74S241's selected by ADRAEN, ADRBEN, and ADRPEN. Once the
selection has been made, the address 1s 1latched via another group of
74S241's connected as a batlatch. (A batlatch 1is used to eliminate
propagation delay. Batlatches require delicate timing.) Thirty nanoseconds
into a firmware step which has made a local bus request, the flop ABATEN
comes on, enabling the batlatch which connects its input to its output.

" “About thirty nanoseconds later, ADRSQP comes on, disabling the

multiplexer. The batlatch thereby swallows its tail.
3.6.2 Local bus data storage (see 1bd pages 32d, 33d, 34d and 34m)

Data from the 1local bus 1s captured off the 1local bdbus with a
transparent latch (i.e., four 74S373's). The behavior of the signal LBLOOK
is that it puts the latch in transparent mode sometime after the request
to memory has been made; as soon as the memory signals that valid datz is
present on the interface (DCNNUS), the latch is closed. The data may now

be safely transferred to either 1inra, or inrb dependent upon which was
requested.)

The signals ' DALOOK and DBLOOXK perform the transfer of data from the
local-bus latch to inra or inrb. During the step in which the request was
initiated, both <these ‘looks’ clear. At the beginning of the step
immediately following the request, the appropriate look activates causing
the latched data to <flood into inra or inrb. The look signal remains on
until the next local-bus request occurs.

3.6.3 Local-bus procedure storage (see 1bd pages 15m, 16m, 28m, 30m, 34m

The mother board captures 1local-bus data in the same manner as the
daughter board, using a duplicate set of 745373 transparent latches. From
the local bus latch, the information moves into the procedure “prefetch”
buffer. This buffer receives procedure 32 bits at a time and dispenses
procedure either eight or sixteen bits at a time. In order to allow for

eno look-ahead, the procedure buffer can remember eight bytes (64,

bits). Thus the destination for each 32-bit delivery from the local-bus
latch alternates; the first 32 bits are placed in the procedure buffer at
bytes a, b, ¢, and d; the second 32 bits are placed in the procedure
buffer at bdytes e, £, g and h; the third 52 bits are placed in a, b, ¢,
and d again etc..The alternation results from the look signals (PALOOX and
PELOOK) taking turns, because pareqt and pereqt take turns because FRELOD
complements each time a procedure request is made.

In order to dispense one byte at a time, eight 74S373 chips form this
64-bit storage register with their outputs connected together to form an
eight bit bus. The output of this network is called BUSP0GG-@87. A three bit

counter, called the take counter, keeps track of _which byte is next for — —

delivery onto BUSP0G-07. When PTAKE4/2/1=0, <the first latch chip
=(INRPA@-7) 1is enabled onto BUSP@0-87, when PTAKE4/2/1s1 then INRPBO-7 is
enabled onto BUSP@0-07 ... and when PTAKE4/2/1=7, then INRPH@-7 is enabled
onto BUSP00-07.

In order to dispense two bytes of procedure at a time, eight more
74S373's form a completely duplicate 64 bit storage register also with
their outputs connected together to form an eight-bit bus, but this bus is
called BUSP28-15 and the network differs from the one previously described
only in enabling. Above, when PTAKE4/2/1=1, BUSP90-07 received from
INRPB8-7; in that instance, the secondary buffer enables INRPCO-7 to
BUSP@8-15. Thus whatever byte the take counter sends to BUSP20-07 from the

primary procedure buffer, the next byte in line is sent to BUSP08-15 from
the secondary buffer.

CUSTOM PROCESSOR TECHNICAL DESCRIPTION PAGE 3-10

SECTION THREE HARDWARE DESCRIPTION

Deccding the take counter 18 accomplished with a 74S138. The take
counter 1itself is comprised of three 74S112 j/k flops which, with the help

of a pal, increment by zero, one, or two each firmware step, recording the
removal of procedure bytes. :

3.6.4 Local-bus control circuitry (see 1bd pages 9m, 1im, 28m and 33m))
Sometime during the middle of each firmware step, the address of the

next firmwvare step is determined by mechanisms described in 3.14. Sometime
near. the end of each firmware step, the output. of the control-store array

"“(the next firmware word) becomes valid. The BS field emanates from the

control-store array at bits 120-127 (CSBSC8-7) and is captured in eight
control register flops (CRBUS8-7). Processor timing i1s such that CSBSC@-7
are valid 20ns before the end of each step allowing certain decisions to
be made before the next step actually begins. Two decisions are made which

are related:

1. Does the action in the upcoming step require that a request
" to a memory subsystem be intiated?

2. Does the action in the upcoming step require that the
present step be delayed in terminating?

If, for any reason, a transaction between the processor and a memory
subsystem 48 in .process, the signal REQNOW is on. As an illustration of
the two decisions above, suppose a firmware sequence is encountered which
calls for two memory writes in twvo consecutive firmware steps. As the
first step nears completion, CSBSC2-7 alerts the request logic (REQTEN,
REQUST, and the <flop USREQT) that the next step will initiate (another)
transaction but, since only one transaction may proceed at a time and
since the <first memory write is still 3in process, this step must be
delayed in terminating (stalled). Thus, REQNOW and CSBSC8-5 have a
gignificant impact upon the clock logic (see 5.12). USREQT gets a chance
at the beginning of every step and is, of course, structured to assume
that whatever stall was required, has occurred and has been released.

A summary of the control sequence is as follows:

1. USREQT comes on at the beginning of any step which ini-
tiates a memory-subsystem transaction.

2. An array of PALs determines whether the request is to be
sent to Memory Subsystem #1 (or Memory Subsystem #0)

a. MIREQT 1s clocked by USREQT and activates 1f the
tri-state request collector MIRQID.€0 is true

b. MIRQTD.01-85 are active in 32-bit address systems
(ADDR32=1) if M1PRZT (M1 present) is true

c. MIRQTD.-04,85 are active in 24-bit address systems
(ADDR32=0) if M1PRZT (M!1 present) is true

d. MIRQTD.24 18 active to disengage the network 1if M1 is
~not present

e. MZREQT is also clocked by USREQT and activates for all
cases where MIREQT does not: :

Memory Subsystem #1 not present
A lock/unlock memory reference
A memory reference not in M1 space

A non-memory reference

CUSTOM PROCESSOR TECHNICAL DESCRIPTION PAGE 3-11

o e T T

y
pEg pum G RN AR N

!4-! e B !-'!'r

SECTION THREE HARDWARE DESCRIPTION

2. immediately, REQNOWV comes on.

3. the memory subsystem "grants"” the processor. (If the me-
mory subsystem was not busy, the grant arrives im about °
59ns; but if it was busy, who knows.)

4. about 50ns after the grant is received, USREQT goes off.

5. now REQNOW is in charge and will remain on until the trans-
S . action completes:

a. for memory reads, when data arrives from memory
(DCNNUS signals the arrival ard OUTREN is off)

b. for 1/o reads, when the data arrives from the MEGABUS
(second-half bus cycle) via the memory subsystem
(DCNNUS signals the arrival and OUTREN is off)

c. for 1/o reads where no data arrives, when grant
(RQGTUS) goes off.

d. for all wvrites, when grant goes off.

Once the request is initiated, the firmware sequence is permitted to
80 on its merry way, ignoring the local-bus interface until such time as a
resynchronization point 1is encountered (e.g., a data stall, a new local

bus transaction initiation). During this interval, the transaction is
remembered in three storage elements:

1. the thirty-two-bit address is in the batlatch of 3.6.1
2. the data to be written (if any) is in outr

3. the control information is in the "fred" register
Item #3 above 1s comprised of two registered pals. One pal monitors
eight inputs and creates six local-bus control signals. Notice that the
pal 1is allowed to change d1ts output values only on the leading edge of

each new memory subsystem request, snapshotting its other seven inputs to
decide whether this transaction is:

) 1. a vrite? (FWRITE)
2. a doubleword read/write? (FRDBLW)
3. a lock/unlock? (FRLOCK)
4. a memory reference? (FRMREF, two copies))

5. to use adra, adrb or abrp? (FRBUS2/3)

- 6. to capture the ACK/NAX indicator (ACKREN) T

A second pal (16R6B) monitors four inputs and generates three outputs
deciding whether this transaction is:

1. to send a response notification? (LBSHBC)

2. to write only eight bits of the first sixteen (ZBVCT!)
Note: other system elements refer to this signal as xxBYTRE

3. to write all sixteen bits of the second sixteen (LBWCT2)
Note: other system elements refer to this signal as xxDBPL

CUSTOM PROCESSOR TECHNICAL DESCRIPTION : PAGE 3-12

SECTION THREE HARDWARE DESCRIPTION

A third pal (16R6b) monitors ten inputs and creates four local-bus
related outputs which determine whether this step is:

1. one which initiates a local bus request (CRREQT) :
2. one which performs a local bus "wrap” test (CRWRAP)

3. one which will consume (one or two bytes of) procedure

.- - . 4. one which will change the procedure steerage mechanism

(FRELOD). If FRELOD=0, arriving prefetched procedure is
captured by procedure buffers A, B, C, and D. If FRELOD=1,

arriving prefetched procedure is captured by procedure
buffers B, P, G, and H.

3.7 TEMPORARY, PERMANENT AND CONTROL FLAGS (block diagram identifier VII)

There are twenty-four flags organized as <three groups of eight.

Sixteen of the twenty-four are controlled by one firmware field while the
other eight have their own.

3.7.1 temporary fiags (see 1bd pages 9m, 24m and 29m)

The temporary flags are controlled by the FT field (CRFT20-04).
Seventeen of the <thirty-two possible codes are devoted to the temporary
flags; one to clear them all, eight to set one of them at a time and eight
to clear one of them at a time. The flops themselves are a 74LS259. One
pal output (CLRTFL) determines when a broadside clear occurs, and another
(FLGTEN) determines when a one-bit change occurs. The polarity of the
change 18 determined by the data input CRFT20. Which flop is to change is
determined by the select i1inputs CRFT22-04. The eight outputs are
synchronized by a 745374 and sent to eight test-condition inputs (see
3.14). FLGT6B, temporary (f1 6 before synchronization, is the data bit
written into the stop code ram (see 3.9.2.1).

3.7.2 permanent flags (see 1bd pages 13m, 28m and 29m)

The permanent flags are controlled by the BS field (CRBUS0-7).

Sixteen of the possible 256 codes are devoted to the permanent flags;
eight to set one of them at a time, and eight to clear one of them at a
time. The flops themselves are a 745259. A broadside clear occurs at
master clear. A pal output (FLGPEN) determines when a one bit change
occurs. The polarity of the change is determined by CRBUS3. Which flop is
to change is determined by the select inputs CRBUS5-7. The eight outputs
are synchronized by a 74S374 and sent to eight test conditions (see 3.14).
Permanent flag #7 (FLAGP7) is one of the "break"” stimuli.

3.7.5 control flags (see 1bd pages 24m, 27m, 29m and 33m)

The control flags are controlled by the BS field (CRBUS@-7). Sixteen
of the possible 256 codes are devote to the control flags; eight to set
one of them at a time, and eight to clear one of them at a time. The flops
themselves are a 74LS259. A broadside clear occurs at master clear. A pal
output (FLGCEN) determines when a one-bit change occurs. The polarity of
the change 1is determined by CRBUS3. Which flop is to change is determined
by the select inputs CRBUS5-7. The eight outputs are sychronized by a

74S374 and sent to eight test conditions (see 3.14). Some of the control
flops have side-effects:

CUSTOM PROCESSOR TECHNICAL DESCRIPTION PAGE" 3-13

| PE PR W5 SEN @ pEn FER SR A R el (ré"! En gy pER G e e !";—)

SECTION THREE HARDWARE DESCRIPTION
FLAGCO off line
FLAGCH qQlt failed (1f flagcd is off) .
FLAGC2 generate even parity to outr (if flagcd is off)
FLAGC3 enable the accounting timer
FLAGC4 undedicated

) FLAGCS inhibit disaster

FLAGC6 undedicated
FLAGC7 stack error detection enable

3.8 NIBBLE SEIFTER (see block diagram identifier VIII)

The nibble shifter 4is <the only connection between the zbus and the
sbus and 13 therefore in a critical path. The shifter is really an eight
nibble rotator; there 18 no distinction for instance between, shifting
three nibbles left and shifting five nibbles right.

3.8.1 shifter data flow (see 1bd pages 11d, 14d and 15d)

The shifter is implemented with sixteen 25S10's connected as two
parallel groups of eight. The first group 1is enabled when the shift
distance prescribed by the §D field (CRSD00-082) is either zero, one, two
or three, and the second group 1s enabled when the shift distance is
either four, five, six, or seven.

The 25S18 whose output names are SHFT00.S5A, SHFT24.SA, SHFI?®8.SA and
SHFT12.SA reveals first that this chip is enabled for shift distances of
6, 1, 2, or 35 and that for a distance of zero, the chip internally
connects 1its four outputs to its lowest four inputs;: for a shift distance
of omne, the four outputs are connected to the next higher four inputs; for
a shift distance of two, to the next higher four inputs; and for a shift
distance of three, to the top four data inputs.

The second group of eight shifter chips operates like the first, but'
are enabled for shift distances of four or more and thus their data inputs
are wired bias by sixteen bit positions.

5.8.2 Shifter control (see 1bd pages 1fm, 11d, 14d, 154 and 174)

Since the shifter deposits 1its result onto a split-cycle bus, the
enable requires early/late timing. For SS (CRSS@0-2) code three only, the
shifter 13 enabled to the sbus during the early phase; a pal generating
signals S1LATE and S2LATE determines what circumstances allow the shifter
to the sbus during the late phase.

3.9 ARITHMETIC AND MISCELLANEOUS INDICATORS (block diagram identifier IX)

There are gix arithmetic indicators and eight miscellaneous
indicators. The 4intent of these indicators is to allow the coder to
remember some characteristic(s) of some data for the purpose of affecting
the addressing sequence of a subsequent firmware routine.

5.9.1 arithmetic indicators (see 1bd pages 5d, 12d, 13d, 274 and 28d)
Five of the six arithmetic indicators derive their inputs from the
output of the alu. The sixth samples the least-significant bit of the zbus

(BUSZ31). In addition to storage for the indicators, four 4:1 muxes are
employed. Three of the muxes are halves of 74S153's and one is a 74564.

CUSTOM PROCESSOR TECHNICAL DESCRIPTION . PAGE 3-14

-[
[
[
[
[
[
[
|
[
|
|
[
[
[
[
[
[

SECTION THREE ' HARDWARE DESCRIPTION

The overflow mux (OVFMUX) selects one of four 2981 overflow signals as
a function of the ID code (CRIDG0O,01) as follows:

CRIDg2O,01 overflow source

00 carry into alu bit 24 not equal to carry
out of alu bit 24

‘- e1 carry into alu bit 16 not equal to carry

out of alu bit 16

18 carry into alu bit €8 not equal to carry
out of alu bit @8

11 carry into alu bit 00 not equal to carry
out of alu bit @0

The carry mux (CRYMUX) samples ohe of four alu carries as a funciion
of the ID field as follows:

CRID@O,01 carry source
oo carry out of alu bit 24
o1) carry out of alu bit 16
10 carry out of alu bit @8
11 carry out of alu bit 20

The sign mux (SGNMUX) samples one of four alu "signs" as a function of
the ID field as follows:

CRID2S,01 sign source
00 alu output bit 24
21 alu output bit 16
10 alu output bit @8
- 11 alu output bit 20

The zero mux (SZRMUX) samples four groupings of bits as a function of
the ID field as follows:

CRIDe¢O, 01) zero source
0o if alu output bits 24-31'are all geros
) o1 if alu output bits 16-31 are all zeros
10 ‘ if alu output bits £8-31 are all zeros
11 if alu output bits 80-31 are all zeros:

These four mux outputs are stored into the overflow indicator
(OVFIND), the carry indicator (CRYIND), the sign indicator (SGNIND), and
the zero 1indicator (SZRIND) at the behest of a pal output (AINDEN). Also
captured are the double <zero indicator (DZRIND) and the odd indicator
(ODDIND). A code emanating from the FT field causes the arithmetic

indicators to "clear” such that four indicators are off and the zero and
double-zero indicators are on.

CUSTOM PROCESSOR TECHNICAL DESCRIPTION PAGE 3-15

SECTION THREE HARDWARE DESCRIPTION

3.9.2 miscellaneous indicators (see 1lbd page 27d)

The eight miscellaneous indicators can be divided into ome group of
four and four groups of one. A pal output (BINDEN) determines when the
miscellaneous indicators sample their inputs.
3.9.2.1 SCRAM indicator

The stop code ram is a 256-location by one-bit-wide memory addressed
from byte y of the dbus. It is written from FLGT6E under command of a pal

. output (WRSCRM) modulated with appropriate timing. Its data output is

captured along with the other seven miscellaneous indicators when the pal
output BINDEN occurs. -

3.9.2.2 DIFBUF indicator

This mechanism compares eight bits of the dbus with eight bits of the
zbus utilizing a 74F521.

3.9.2.3 HASHIT indicator

This mechanism compares thirteen bits of the zbus with thirteen bits
of the sbus utilizing two 25L52521's.

3.9.2.4 ILLADD indicator

This mechanism uses a 16L8A pal to decide whether the rightmost byte
of an operand is in the same 512-byte buffer as a specified base address.
The pal assumes that the base address and the displacement locating the
leftmost byte of an operand are being added in the alu, that one of these
values 1is on the dbus, and that the type register contains the operand-
length information (1, 2, 4 or 6 byte operand). The pal would prefer a
carry signal out of alu bit 23 but one is not available so the pal derives

it from the 1input carry to alu bit 235 (AUCO24), the dbus bit 23 (BUSD23)
and the sum bit 23 (BUSZ23).

5.9.2.5 leading zero detector

This mechanism, utilizing a 16L8A pal, determines <the number of
leading zeros present in the value from the alu. The pal receives the zero
detector from each of the eight 2981°'s. The outputs from the pal (AUP2e8,
AUPZ34, AUPZ02, and AUP2Z201) are captured in the miscellaneous indicators.
The four indicators (PZ8IND, PZ4IND, PZ2IND, and PZ1IND) are coded such
that: 0000 means no leading-gero nibbles were detected, 9101 means that

five 1leading-zero nibbles were detected and 1000 means the entire alu
output was zero. '

3.10 THE OP REGISTER (block diagram identifier IX)

Certain bytes and/or nibbles of the procedure stream must be stored
for future reference. The four 4-bit wide registers opa, opb, opc and opd
provide - said -storage.— These four registers can also be loaded from the
sbus, can be incremented or decremented, and have the ability to address
the aram. The seven bit field OP controls the entire op area.

35.16.1 the sbus multiplexer (see 1bd pages 10d and 31d)
When the op register(s) are to be 1loaded from the sbus, the sbus
multiplexer (SMUX28-15) is required to narrow the 32-bit sbus to a width

of 16 bits, matching the width of the op muxtiplexer. CROP92 decides
which half of the sbus is chosen.

CUSTOM PROCESSOR TECHNICAL DESCRIPTION PAGE 3-16

PR pER SE SER EEm AR SER Suy SGN paun G N CpEm RN PR R PN !'*! P

SECTION THREE HARDWARE DESCRIPTION

3.10.2 the op multiplexer (see 1bd pages 18d and 314d)

The op multiplexer (OPMX008-15) iz comprised of four 16L8A pals. Each
pal has four data outputs, nine data a=d four control imputs. At the first
level, the choice 1is between the g>5us data inputs and the sbug data
inputs. At the next level, a choice of which nibble of the selected bus is
to be directed to the output (sort of a rotate). And at the last level, a
choice as to whether the four bit lZteral inputs (CRFT81-04) should be
presented to the outputs. All this is cc=trolled by the inputs CROP20-03.

.3.10.3 The op registers (see 1bd page 312)

There 4is a 74AS169 for each of opa (OPRGA8-3), opb (OPRGB@-3), opc
(oPRGCO-3), and opd (OPRGDO-3). Loadi=g, incrementing or decrementing is
controlled by a pal which emits, for each register, one load signal and
one count signal. For opa, the load sizznal is OPALOD and the count signal
is OPAPAT . VWhen the count signal 1is on, the appropriate op register
increments if crop@2 1is on and decrements otherwise. OPATOP, OPBTOP,
OPCTOP, and OPDTOP are provided to det=ct when the counter in questicn is
"wrapping” (in the firmware verna- cular) i.e., incrementing from F to
zero or decrementing from zero to F.

3.10.4 the type register (see 1bd page 3:d)

The type register stores two bits in a 74S169. The input to the type
register 1is the same as the two most sigmificant inputs of opa. The unused
twvo stages of the 74S169 are wired so that when the type is 11 (three),
the "carry"” output of the chip (TYPISZ) will be on. A signal from the FT
field (CLRIFL) clears the type register and a load signal (TYPELD), also
from an FT pal, performs the load honors.

3.11 LOADING VARIOUS REGISTERS (block diagram identifier XI)

Many firmwvare fields have no other purpose but to control the loading
of various registers. These fields are H, LA, LO, and LV. Other fields
have a secondary Justification for existence by providing the 1load
controls to certain registers in need. Trtese fields are BS and FT.

3.11.1 loading the H register (see 1lbd pages 184, 174, 204, 224, 224, 26d)

The B register is loaded at the behest of a dedicated control store

bit (CSHPS56) with its attendant control-register flop (CRE@eB)
pulse-formed in HREGLD.

5.11.2 loading the output register (see 1bd pages 11d and 35d)

The output register (OUTRES-31) is loaded at the dbehest of a dedicated
control store bit (CSLOA®) with 1its attepndant control-register <flop
(CRLO20) pulse-formed in outrck. Note that 36 bits are captured with this
load stimulus; namely, <the 32 bits of the dbus and four byte-parity bits
in flops OUTRGP, OUTRiP, OUTR2P, and OUIR3P. These four parity bits are
generated by _four 82862 . parity. generator/checker—chips called MYDPOO,
MYDP28, MYDP16, and MYDP24. See section .15 for more about checking.

3.11.3 loading the v register (see 1lbd pages 11d and 34d)

The v register (VREGGO-31) 4is 1loaded at the behest of a dedicated
control-store bit (CSLVS6) with its attendant control register flop
(CRLVOS) pulse-formed in vregld.

CUSTOM PROCESSOR TECHNICAL DESCRIPTION PAGE 3-17

A
N
[
[
1
[
[
|
1
l
l
[
|
1
[
l
|
[
[

SECTION THREE HARDWARE DESCRIPTION

5.11.4 changing adra, adrb, and adrp/pctr (see 1bd pages 10m, 26m
< 174, 214, 23d and 26d)

Four control-store bits (CSLAB6-9) and four cr flops (CRLA®D-03) are
provided to control the changing of the three address registers. Each
address register 1is thirty-two bits long and is comprised of four 74AS869
chips. Address registers adra (ADRAGP-31) and adrb (ADRB28-31) may be
loaded from the shus, or may be incremented by four, or may be decremented
by four. The address register adrp (ADRP29-31) may be fully loaded from

. the . sbus or may have only its nine least significant bits copied from the

“sbus or may have its twenty-three-most-significant bits copied from the
sbus. Note that adrp 18 implicitly incremented by four whemever four
procedure bytes are requested from the memory subsystem.

The pal which controls all this generates two mode bits (ADRAMO,1) and
a carry-in (ADRACI) for adra, and two mode bits (ADRBMO,1) and a carry-in
(ADRBCI) for adrb. When ADRA/BM@=90 and ADRA/BMi=1, ¢the register

decrements; when m@=1 and mi=0, the register increments; and when m@=1 and
mi=1, the register loads from the sbus.

For adrp, the pal generates two load signals (PULOAD, PLLOAD) for
copying twenty-three or nine sbus bits into adrp. Because of the partioned

load and the necessity to dincrement by four, a thirty-third flop is
required to stor# ADRP30.

The register PCTR(28-30) mimics adrp for loading actions. Its bit
Justification 4in the three 74AS869 chips permit incrementing by one or two
wvhen procedure bytes are removed from the prefetch buffer. When pctr is

delivered to the dbus, the least-significant bit of the take counter
(PTAKE1) becomes the units position of pctr.

3.11.5.changing grbr (see 1bd page 38d)

The four-bit register GRER(90-03) is used in combination with opa,b,c,
and d to address the aram. The OP field controls grbr. A 16R8A pal
receives the seven control-store bits of the OP field and generates
control signals for the 74AS169 chip which houses grbr. The pal output
GRBRLD causes GRBR(98-903) to load from the four most significant bits of
the opmux (OPMX29-03). The pal output GRBRPT causes GRBR(20-03) to
increment by one or decrement by one as a function of CROP@2. If CROPO2 is
on, grbr increments; if CROP?2 is off, grbr decrements. The firmware name
for grbr is rbdr. :

5.11.6 changing bsbr (see 1bd page 30d)

CUSTOM PROCESSOR TECHNICAL DESCRIPTION PAGE 3-18

= e P

SECTION THREE HARDWARE DESCRIPTION

The four-bit register BSBR(009-03) 1is used in combination with
BSAR(98-07) to address the aram. The OP field controls bsbr. A 16R8A pal
receives the seven control-store bits of the OP field and generates
control =signals for the 74AS169 chip which houses bsbr. The pal output
BSBRLD causes BSBR(9¢-83) to load from opmux bits 4-7 (OPMX94-07). The pal
output BSBRPT causes BSBR(00-83) to increment by one or decrement by one
as a function of CROP22. If CROPS2 is on, bsbr increments; if CROP@2 is
off, bsbr decrements. The firmware name for bsbr is rarh.

3.11.7 changing bsar (see 1bd page 38d)

The eight-bit register BSAR(00-07) is used in combination with bsbr to
address the aram. The OP field controls bsar. A 16R8A pal receives the
seven control-store bits of the OP field and generates control signals for
the two 74AS169 chips which house bsar. The pal output BSARLD causes
BSAR(@8-07) to 1load from the eight-least significant bits of the opmux
(OPMX@815). The pal output BSARPT causes BSAR(28-07) to increment by one
or decrement by one as a function of CROPB2. If CROP22 is on, bsar

increments; if CROPO2 is off, bsar decrements. The firmware name for bsar
is rarl. ’ - .

3.11.8 loading the accounting timer (see lbd pages 24m and 33m)

The accounting timer 1is a mechanism which provides real time
information for job accounting and other purposes. The accounting timer 1is
constructed from two 74AS869 counter chips wired to either 1load or
increment. The timer (ACTM28-15) has a 100 microsecond period (i.e., it is
incremented at a 10khz rate when enabled by FLAGC3). It is loaded by an
FT-field micro decoded by a 16L8A pal (ACTMLD) which invokes an implicit
clock stall (see5.13) whose purpose is to insure that an accounting timer
clock (MHZPO1) occurs while the data to be loaded from the sbus is valid
at the d1nputs of the 74AS869 chips. Note that when the accounting timer
increments from 65,535, an accounting timer interrupt (ACTINT) is stored.
This interrupt (synchronized through ACTITF) asserts the break stimulus

and thereby causes a "derail®™ at the next sample of break by the RNI
macro. :

3.12 THE FOUR SPEED CLOCK iblock diagram identifier IXII)

The custom processor resides in an asynchronous world. The custom

processor clock 1is an asynchonous mechanism. The clock has two orthogonal
properties: :

1. the clock allows the duration of each firmware step to be any one

of four lengths as a function of the combination of micros coded in
that step. . '

2. the clock allows each firmware step to delay its completion until
some external event occurs.
3.12.1 the basic clock (see 1bd pages 3m and 4m)

The basic clock has three delay lines, three delay-line drivers, one
one 74S64 and two switch banks for adjustment purposes. Two of the three
delay 1lines are connected in parallel. When MCX200 occurs because all of
its inputs are high (take it omn faith), a positive to negative edge
travels down the 100ns delay line MCX018 through MCX128. At about the sane
time, MCI010 creates an edge of the opposite polarity (negative to
positive) traveling down the delay line MCPW@5 through MCPW58. The outputs
of this latter delay 1line are switch selected to create the width of
MCLOCK. This is accomplished by connecting the output of the switch bank
(MCKPWA) through a 74S64 (MCSTLA) to the original delay line driver
(MCX200) making one of 1its dinputs low vhich achieves a pulse width of
about 70ns. Having established that a "negative" seventy-nanosecond pulse
is wending 1its way down the MCX@10-100 delay line, it is now appropriate
to pursue what happens to cause the cycle to complete (and start over). In

CUSTOM PROCESSOR TECHNICAL DESCRIPTION . PAGE = 3-19

SECTION THREE HARDWARE DESCRIPTION

the simplest case (i.e., the fastest clock speed), MCX200 causes the delay
line driver MCY300 to go high. The delay 1line MCY210-030 4is now
propagating a “"positive" seventy-nanosecond pulse. The output of the
switch bank to which this delay 1line is connected (THEEND) has the
responsibility for terminating the cycle. That is accomplished by first
sustaining the effect which MCKPWA achieved upon MCSTLA. When MCKPWA rose,
MCX008 went high and MCLOCK went low signifying the "middle” of the cycle
and completing MCKPWA's contribution. Just before this midpoint, THEEND 1is
allowved to take over the responsibility of keeping MCLOCK low. The stage
is now set 8o that when THEEND gets exhausted, the cycle ends and, of

. course, a newv one begins.

3.12.2 the gear shifter (see 1bd page 4)

ihé clock speed for each firmware step is selected when the firmware
is assembled. The assembler or an agent thereof selects, as a function of
the particular combination of micros in every step, a two-bit clock speed

code for the CK field. Listed below are the four speeds and their
definition:)

CK . definition'

00 very fast (vf)
21 . ﬁalf fast (hf)
108 half long (hl)
11 . very long (vl)

Control-store bits 64 and 65 (csck64, 65) are sampled by a 16R6A
registered pal which generates three clock-speed-enable signals. On the
delay 1line driver MCY00O, one "diode” is devoted to each of four delay-
line taps as selected by the clock enable outputs of the pal. For a very
fast speed, no enables from the pal are active and the operation is as
described above (i.e., the vf tap 1is always enabled). For a half-fast
step, CKHFEN from the pal causes MCLKHF to sample another delay-line tap
which has the effect of extending the on time of MCY000; that is, it goes
positive at the same time as a vf step but lasts longer and makes THEEND-
last 1longer. It was established previously that the positive to negative
transition of THEEND ends the firmware step, so0 now, because of CKHFEN,
the MCLOCK low time increases.

Vhen a half-long step is prescribed, both CKHFEN and CXHLEN activate
causing three of the four inputs of the delay line driver MCY000 to get
into the act. The additional contributor, MCLKHL, stretches the high time
of THEEND even further and increases the delay to the completion of the
step. S

Finally, when a very-long step is required, all inputs to MCY0@d get a - — -

turn because all three enable outputs of the pal (CKHFEN, CKHLEN and
CKVLEN) are active, and the high time of THEEND stretches even further
creating the longest firmware step available.

The 16R6A pal from which the clock speed enable signals emanate
provides another service. It monitors six control atore bits involved in
return stack functions (see 3.13) and detects certain firmware sequences
vhich require a non-minimum clock speed setting.

3.12.3 clock stalls (see 1bd page 3m)
Pour 74S64's provide the inputs for stalling the clock from "external®

stimuli. The bYasic clock operation uses two of the sixteen inputs; that
is, the MCKPWA ocontrols the clock first-phase pulse width and the THEEND

CUSTOM PROCESSOR TECHNICAL DESCRIPTION PAGE 3-20

SECTION THREE

HARDWARE DESCRIPTION

provide stalls for the

these

stall gate
CSBSCQ.CSBSC2.REQNOW

STLADU.REQNOW

CSBSCO.BLOTER.REQNOW

DSTFF1 .WAITUP

BSYSTL.REQNOW

TBSTOP

CSBSC1.CSBSC4 . EMPTER

POWRON.MYMCLR

PLLOAD.REQNOW

input controls the second-phase pulse width. The other active input gates
conditions 1listed below. Each gate must be off
during the first phase of the step. During the second phase of the step,
ates are ignored until THEEND relaxes (the gear shifter time has
elapsed). Then <these gates come into play each having the powver to
postpone the completion of this step. .

explanation

stall WHEN the next firmware step is to
unconditionally initiate a local-bus
request IF previously initiated local-
bus activity is still in progress.

stall WHEN an explicitly coded stall
micro requires that the completion of -
this step be postponed until inra re-
ceives local-bus data from a previous
request IF the data bas not yet arrived.
stall WHEN the next firmware step is to
conditiornally initiate a local-bus re-
quest and the condition is satisfied IF
previously initiated local-bus activity
is still in progress.

stall VHEN a hardware error has been
detected until such time as the reason
code (syndrome) has been captured in
BWIA(99-135) and the next-address gene-
rator has generated and accessed loca-
tion gero.

stall WVHEN an explicitly coded stall
micro requires that the completion of
this step be postponed until all local-
bus activity has subgided IF local-bus
activity is still in progress.

stall if the firmware development faci-
lity says so.

stall WVHEN the next firmware step will
examine byte(s) of the procedure buffer
IF the procedure buffer is empty.

stall during the master clear pulse
stimulated by power coiing on.

stall WHEN an explicitly coded load of
adrp-lower occurs IF previously initia-
ted local-bus activity is still in pro-

LOADED

CSBSCS.CSBSCS5 . REQNOW

. STLDBU.REQNOW

1
1
1
|
|
[
[
{
{
[
[
|
|
[
|
|
(
l;
|

CUSTOM PROCESSOR TECHNICAL DESCRIPTION

gress.— o

stall WHEN an explicit load of the
accounting timer is required UNTIL the
accounting timer clock (mhz001) has had

an opportunity to sample the sbus
inputs.

stall WHEN the next firmware step will
initiate a prefetch IF previously ini-
tiated local-bus acivity is still in
progress.

stall WHEN an explicitly coded micro re-

PAGE 3-21

v

phy pen

e I T T B

|

e T I

SECTION THREE HARDWARE DESCRIPTICH

quires that the completion of this s%ed
be postponed until the data previsusly
requested for inrd arrives I? 3he caza
has not yet arrived.
PAUSED.ACT2S stall VHEN an explici{t read of tte ac-
counting timer is im process 1Y the ac-
counting timer is adbout to incre=ent.

3.13 THE RETURN STACK (block diagram identifier XIII)
= The return stack 1s a last-in-first-out (11fo) mechanisa for storing
and retrieving firmware addresses. It can store seventees addresaes. A
firmware address 13 written 1into the stack when any of the three pusn
micros is executed. An address is read from the stack wvhen arcy of the
return micros is successfully executed. An unconditional return 1s alvays
successful; i.e., it uses and discards the stack's ©“top® entry. A
conditional return is successful only if the test condition is met; if the
condition 18 not met, the stack is undisturbed. A push i{s performed in
preparation for calling a subroutine and a return is the mechanisa used to
exit a subroutine. The return stack hardware is comprised of:

1. a 16-location return stack

2. a 4-bit return-stack address register

3. a return-stack local register

4. a "relative push” local register

5. an "absoluts push”" local register

6. a hardwvare-interrupt address register

7. a return address bus

8. an overflow/underflow error detector
35.15.1 the 16 location return stack (see 1bd page 25m)

The sixteen-location return stack is comprised of four 745189 chips
providing a 16-by-16 array. Since the firmware address space is 16k, only
fourteen data bits are used. The data out (RTRN@2-13) is connected to the
return-memory local register (EKRAM3G-135). The memory is addressed by a
four bit address register (FWSTK2-3). :

3.13.2 the 4-bit return-stack address register (see 1bd page 24m)

The return-stack addresé registeé consists of one 745169 counter chip.

The counter may be initialized to a kmown state via FSTKLD, which is used

in testing and other situations. In normal operatiom, a push causes the
counter to increment before a new entry is written into the stack, and a

. pop (RETURN) causes the address register to be decremented after the entry

has been read from the stack. First, notice that the counter chip "clocks®
at midcycle(MCX260); then, notice that the counter chip increments if
CDPUSH afrom a pal); and last, that it counts if PSNPOP (also from a pal).
The 16L8A from which these signals emanate has inputs which permit it to:
1. CDPUSH: in any step in which a push micro is coded unless the pre-
vious step performed a successful return. :

2. POPING: in any step which performs a successful return.
3. PSNPOP: 1 or 2 above.

CUSTOM PROCESSOR TECHNICAL DESCRIPTION PAGE 3-22

SECTION THREE HARDWARE DESCRIPTION

3.13.3 the return-stack local register (see 1bd pages 24m, 25m)

In a successful return, the return address bus is sent to the next-
address generation circuits. The next return candidate is then read from
the return stack into the return-stack 1local register so as to be
available for the a subsequent return. A successful return generates
POPING which 1is pulse shaped into POPCLK for capturing, in KRAM(20-13),
the data output of the ram chips. The output of the return-stack local
register, 1like the other three registers which capture return addresses,

. is connected to the return address bus (FSTK@2-13).

3.13.4 the relative-push local register (see 1bd page 25m)

One of the push micros allows the address saved to be relative to that
specified in the next-address field (CRNAG1-15). A relative push creates a
firmware address to push by combining the eight most significant bits of
crna with the five bits of the ft field and always pushing an if bank
address. This combination of fourteen bits is captured in the relative
push local register (NAFTI00-13). Capturing takes place whenever any push
is performed since each push source has 1its own local register. The
selection as to which is used is a function of the local register enables.
The output of the relative push 1local register, like the other three

registers which capture return addresses, is connected to the return
address bus (FSTK@2-13).

3.13.5 The absolute push local register (see 1bd page 29d)

Another push micro allows fourteen bits of the dbus to be saved in the
return stack. At the end of any push step, BUSD(@2-15) are captured in the
absolute push 1local register. This register, 1like the other three

registers which capture return addresses, 18 connected to the return
address bus (FSTK@9-13).

3.15.6 The hardware-interrupt address register (see 1bd page 25)

The hardware-interrupt address register (HWIAGG8-13) captures the
address to which the firmware sequence would have proceeded had an error
(DSASTR) not been detected. This register, like the other three registers

which capture return addresses, is connected to the return address bus
(FSTK@0-13).

5.13.7 the return-address bus (see lbd pages 24m and 25m)

The return-address bus connects together all four sources of return
address. Constructed as a tri-state mechanism, the squrces are mutually
exclusive. The bus operates under the following rules to supply a
candidate return address to the next-address generator (see 3.14):

1. If the most recent stack operation was a successful return, then
the candidate for the next return is the return-stack local re-
gister (KRAMGO-13). POPPED is generated in the step immediately
following the successful return. Pulse-shaped via POOPED, it
clears a 74S175 chip. This 74S175 creates an enable for each
of the four return address bus (FSTK98-13) sources. Clearing

this chip enables the kram source and disables the three other
sources.

2. If the most recent stack operation was not a successful return,
then one of the "push®" sources is enabled to the return address
bus. The register enabled is that which received the most recent
push. The 74S175 is clocked (FSTKWE) by any push. When the clock

occurs, one d input will be on: that corresponding to the type of
push performed. _

CUSTOM PROCESSOR TECHNICAL DESCRIPTION PAGE 3-23

p—

SECTION THREE HARDWARE DESCRIPTION

When any push occurs, a new candidate for the next return 1is
"stacked”. The previous candidate (former stack top) is written into the

return stack memory via FSTIKWE formed from CDPUSH with a bit of pulse
shaping. . .

3.13.8 the stack overtlov/un&erflow detector (see 1bd page 24m)

The stack overflow/underflow detector 1is a pal which monitors the
address register (FWSTK8-3), the nature of the stack transactioa (CDPUSH,
_POPING) and an error detector enable. It generates two signals:

1. a stack error was detected (STKOUT) which is connected to the
syndrome register and to the DSASTIR circuitry for causing
an unprogrammed branch to firmware location zero (if FLAGCS=08)

2. a stack underflov indicator which is connected to the syndrome
register for distinguishing overflow from underflow.

3.14 THR NEXT ADDRESS GENERATOR (block diagram identifier XIV)

The next-address generator determines what <the address of the next
firmware 1location will be. One next address is as attainable as any other
next address because the custom processor has no concept of address
sequentiality. This <flexibility is provided bdy devoting five firmware
fields (29 control-store bits) to the task of deciding what control-store
location shall next be executed. The control-store array is physically
implemented as two 8192 location memories; the lower addresses access the
else bank and the higher addresses access the if bank. Figure 3-1 diagrams
the if and else next address generators.

Of the five fields involved in this activity, the BR field code is the
major determining Cfactor distinguishing "go-to’s” from “returns”® from
"splatters” and deciding how the MK field will be applied. The IC field
specifies which one of the 72 “"conditions®™ shall be tested; when the

condition 1is met, the 1if bank is enabled, and when the condition is not
met, the else bank is enabled.

3.14.1 bank selection (see 1bd pages 23m, 29m and 28d) ,

The TC field (CRTC20-06) can specify one of seventy-two conditions to
be tested in order to decide which bank shall be selected. Nine 74S151's
and three 74AS151's accept ths seventy-two test conditions, the seven bits
of the TC <field and one bit of the next address field (CRNA@O) reducing
all this into one signal called TCTRUE. The high order next address bit
gspecifies the test polarity which is why the firmware dictionary has twice
as many (144) tests. The signal TCTRUE is.fed to four 745149 drivers for
distribution purposes. The drivers. are disabled if the (firmware

development facility is providing the control store output instead of the
proms (TBRMEN).)

"%.14.2 else bank next-address generation (seé 1bd pages 5m, 6m, &m, 12m,

30m and 32m)

The else bank may receive an address onto its tri-state address bus

from one of three sources which are listed below along with the BR code(s)
that enable(s) each source:

else bank source BR code

1. the next address field (CRNAG1-13) e,1,2,%,4,5,6,7,8,C,D

2. the return stack (FSTE21-13) . 9

3. the firmware development facility (NAEBO!-13.EX) all
CUSTOM PROCESSOR TECHNICAL DESCRIPTION PAGE 3-24

SECTION THREE HARDWARE DESCRIPTION

Note that <the determination of which bank shall be selected is the
responsibility of the TC field.

Source #1 1s the register which stores the thirteen control storé bits
CSKA67-79 connected through tri-state drivers to the else bank address bus
(NAEB@1-13). The drivers are enabled by a 16R6A pal output (NA2ELS). The
mest significant bit of na (CRNAGOG) determines the polarity of the test
condition. This bit is referred to as the BI field.

.o Source #2 1s the return-stack address bus (FSTKG1-13) connected
through tri-state drivers <to the else bank address bus. The drivers are
enabled by a 16R6A pal output (RTNELS).

Source #3 is the input which the firmware development facility employs
vhen 1t forces the custom processor to start execution at some arbitrary
address. The signal TBNASB imports the fdf-specified address and disables
the other tri-state sources to the else bank address bus by disabling the
pal and connecting to the pal output a 74S241 driver enabled by TBNASB

whose inputs are biased to inactivate other sources of else bank
addresres.

3.14.3 if-bank next-address generation (see 1bd pages 12m and 32m)

The 4if bank. may receive an address upon its address bus (NAIB21-13)

from any one of six sources which are listed below along with the BR
code(s) that enable(s) each source:

if bank source addfess BR code(s)
1. the next-address field (CRNAG1-13) 6,8
2. the return stack (FSTE21-13) ' 1.9
5. the firmware development facility (NAIBG1-13.EX) all
4. the 16-way masked splatter (SPLATA-D) 2,%,4,5,6,7
5. the 256-way unmasked splatter (PROC29-87) c,D
6. the 16-way unmasked "break” splatter (BREK22-07) c

The if-bank address generator is divided into three partitions: that
circuitry which develops bits 1 through 5, that circuitry which develops
bits 6 through 9, and that circuitry which develops bits 10 through 13.

3.14.5.1 if-bank address bits 01-05 (see 1bd pages 12m and 32m)

The five most significant bits of the address bus (NAIBO1-85) receive
their 4inputs from one of three sources as shown below with the BR code(s)
that enable(s) each source:

sourée for if-bank address bits 21-05 BR code(s)

1. the next-address field (CRNA21-05) ,2,%,4,5,6,7,8,C,D
via one 74864 chip (NAIBS1) and
one 74S240 section (NAIBP2-05.11)
enabied by NA2IFH emanating from
a pal.

2. the return stack (FSTK01-05) 1,9
via the 74S64 chip (NAIBO1) and
portions of 74S240 chips (NAIB22-05.RI)
enabied by RTN2IF emanating from
a pal.

CUSTOM PROCESSOR TECHNICAL DESCRIPTION PAGE 3-25

-
[SECTION THREE HARDWARE DESCRIPTION
fommw—- + L TP Lt + L D +
“CRNA -1| I 4 CRMK20-03-1 [} 4 1 |
‘ RETURN ! [y | LITTLE |eveceea— /-1 !
RAMAD -1| | CRNA10-135-1 MISS | | |
FLAGT -1 ! NAIB18-13.EX-| MASKER | | !
TYPE -1 4 | F—— /---1 (1 1 1
[ARITH -1 8:1 | ! ;N S + I !
OPMUX ~IMUX'S!] ! |
SCALE -1| | I deeeccae- + ! |
= .]] ! CRNAG6- 09-ltrist3tel----+ ! !
= CRBRO! -Is4 1 1 l driver 1 | 1 1
CRBRE2 -1i82 1 R S ——— (| | IF 1
CRBRE3 -lsa1 1 | ~“FDF(90,2-8, A B,E,F)-* | : !
l]) ! |
----- [B s & | 4 | |
[~FDF(0- B B,F)-* ! RETURN -ltristatel——--(+)}--/-I |
| I driver |] | |
1 demccaaaa + t ! |
- I W— + | 'I-'DF(1 9)-* 1 1 1
PBUSB-7-/—-I RNI | | } 1 |
| | | 4 | | {
msx--/--: PROMI / (+)}+ / + ! |
l |] : :
----- 1 + + +
["FDF(C.'BRK D)-* | NAIBO1-08.EX-1 FDF | 1 1
1 PO —— T S] 1
I | 1 1
o + o S + | 5 1 BANK |
l ZGND===/--1] ! CRNAM-05-!tr13tatel--—(+)- /-1 |
|BREAK] 8 | l driver | } 1]
FLAGP§-=-~1 lef==+ = #eeece——- 1] !
TAKOVR====1 1] ~FDF(@, 2-8 A-F)=? !] 1
¢ » MYINTP~-—- | SPLAT! ! 1 1
; ACTITF-——-1 l Y S —— + | | 1
tom———— + : RETURN -ltristatel——--+ ! {
) “FDF(C.BRK)-" I driver I I |
L pecececee- Prm—————- +
[‘FD?(I 9)-
[— + Y . +
(CRNAG1-13-Itristatel—-——+]]
| driver | { L] 1
N e 1 | ELSE |
~FDF(9-8,A-F)-' 1 : 1
] i
[e + 1 131 |
RETURN -ltristatel-—-(+)}--/-1 !
| driver | : : |
-------- |
l “FDF(9)-' | | !
1 | BANK |
-------- + | ! !
NAEB91-13.EX-1 FDF |] 1
l PO + SN +
[FIGURE 3-1
IF AND ELSE BANK NEXT ADDRESS CENERATORS
m CUSTOM PROCESSOR TECHNICAL DESCRIPTION PAGE 3-26
[

m

SECTION THREE HARDWARE DESCRIPTION

3.

the firmware development facility

(NAIBG1-05.ex) via TBNASB. Note that

the drivers for this source are in

the fdf.)

all

3.14.3.2 if-bank address bits 06-089 (see lbd pages 12m and 32m)

The "middle” four bits of the if bank address bus receive their

via a 745240 section enabled by
NA2IFM emanating from a pal.

2. the return stack (FSTK86-09)
via portions of 745240 chips
(NAIBG6--092.RI) enabled by RTN2IF
emanating from a pal.

5. the firmware development facility

(NAIBR6-09.EX) via TBNASB. Note that
the drivers for this source are in
the fdf.

4. the 256-way unmasked splatter (PROC00-03)
via a 3632 prom enabled by BRPROC and
no break splatter (BRKSPL‘.

5. the 16-way unmasked break splatter
- via a 74S241 enabled by BRKSPL.
Note that when a break splatter
occurs, these four address bits
are forced off.

3.14.3.3 if-bank address bits 10-13 (see lbd page 13m)

inputs from one of five sources as shown below with the BR code(s) that
._enable(s) each.source: .
source for if-bank address bits 06-09 BR code(s)
1. the next-address field (CRNA26-09) 2,2,3,4,5,6,7,8

1,9

all

c,D

The four least-significant bits of the if-bank address bus receive
six types of inputs as shown below with the BR code(s) that enable(s) each

input:
source for if-bank address bits 190-13

1. the next-address field (CRNA10-13)
Two elements are used to allow the four
least-significant bits of the if/else al-
ternatives in two-way branches to differ.
These two elements are a 74S64 chip per

BR code
e

bit and a 74AS151 chip per bit (i.e., eight
- total chips). The three low-order bits of the

BR code select among the eight inputs of the

74AS151. Vith a BR code of zero, “crna is selected

and sent to the 564 anded with the mask

(CRMKGP-03). Another gate of the S64 ands

“mask with crna. The effect of these two gates

is to allow the assembler, by controlling the

mask field, to generate any four-bit value

for the if bank as a function of the raw

else-bank value.

CUSTOM PROCESSOR TECHNICAL DESCRIPTION PAGE 3-27

SECTION THREE HARDWARE DESCRIPTION

2. the return stack (FSTK10-13)
The BR code selects input #1 on the
74AS151 (FSTK19-13) whose output is
anded with the mask bit on the 74S64. :
Another gate on the S64 allows the
crna field through if the mask is off.

This mechanism provides alternate
returns.

1,9

e - 3. The firmwvare development facility - all
(NAIB190-13.EX) via TBNASB which, after
disabling all other inputs, routes
four bits through the 74S64's.

4. the 256-way unmasked splatter (PROC24-07) c,D
via a 3632 prom, enabled by BRPROC and
no break-splatter, through the 74S64°'s.

5. the 16-way unmasked break splatter via a c
74S241 enabled by BRKSPL and wire-or'd to

the output of the 3632 prom, and connected
to the 74S64°'s.

6. the 16-way masked splatters 2,3,4,5,6,7
The 74AS151's are selected by the three.low-
order bits of the BR code to choose among
six types of sixteen-way splatters. The
outputs of the selectors (SPLATA,B,C,D)
are anded with the mask bits on the 74S64's.
Another gate on the 74S64 allows the crna
bits through if the mask is off. In this
’ ' manner, any combination of the four selec-

tor outputs may participate in the splatter.
These splatters are:

~
i

’

[
[
[
[
[
[
[
|
|
’ splatter - BR c@de
‘ a. four bits of aram address
' b. four t flags
l c. operand-type information
d. four arithmetic indicators
[
[
[
|
|
PN
[
lﬁ
[

‘e. four outputs of the opmux

NS 00 e wWN

£. four leading-zero indicators)
3.15 AVAILABILITY CIRCUITS (block diagram identifier XV)
The availability circuits are of three types:

1. those that detect errors,

2. those that generate check information so that other system elements
might detect errors, and

3. those that verify the 1n£égrity of the other two.

CUSTOM PROCESSOR TECHNTCAL DESCRIPTION PAGE 3-28

SECTION THREE HARDWARE DESCRIPTION

3.15.1 error-detection circuits

Error detection requires that data, transmitted around the system, be
accompanied by redundant information 1like parity or an error dectection
and correction code (EDAC). Another mechanism for error detection is to
recognize that a totally unexpected event occurred, such as receiving no
response when attempting to communicate with another system element.

The custom processor’s areas of error detection are listed below.

. Subsequent paragraphs will discuss each area in further detail:

1. procedure parity
é. data parity
3. procedure red (uncorrectable edac error)
4. data red (uncorrectable edac error)
S. procedure uar (unavailable resource)
6. data uar (unavailable resource)
7. stack overflow or underflow
8. control store and pal parity
3.15.1.1 procedure parity (see 1bd pages 15m, 16m, and 34m)

WVhen procedure is delivered from the memory subsystem, 352 information
bits are accompanied by 4 parity bits. These parity bits are captured (by
PALOOK or PELOOK) in a register parallel to that which captures the
procedure itself. In the meantime, the latched procedure bus (BUSP20-15)
is monitored by two 74S280 parity checkers. The trick is to select the
parity bits which correspond to the procedure bytes now on the pbus. This
selection 1s performed by a pal which receives as input the 4 parity bits
stored for “"pa", the 4 parity bits stored for "pe", and the take counter
(resychronized to match the pal's needs) emitting a selected parity bit
(PARPG® and PARPO8) for each 74S280. The output of the 74S280 which
monitors BUSP(8-7) 4is gate by PEKLFT when "left"™ procedure is sampled
while the output of the 745280 which monitors BUSP(8-15) is gate by PEKRGT
when "right" procedure is sampled ("peeked” or "taken").

In order to allow testing of procedure related hardware. both PEKLFT
and PEKRGT are inhibitted in a firmware step containing a NOFALT micro.
Otherwise PERPRC 1s sent to the general error collector DSASTR and to the
syndrome register. . :

3.15.1.2 data parity (see 1bd pages 324, 33d and 27m)

—__When inra or 1inrb-is placed upon the zbus, stimull coming from-a pal
(NOFALT.DT) which decodes the field TC, gates the output of the 745280
parity checkers which monitor the four zbus bytes. Two pair of outputs are
collected 4in PERDTL and PERDTR. The result (PERDAT) is sent to DSASTR and
to the syndrome register.

CUSTOM PROCESSOR TECHNICAL DESCRIPTION PAGE 3-29

[
[
[
1
[
[
|
o |
[
[
|
[
(
|
|
[

SECTION THREE HARDWARE DESCRIPTION

3.15.1.3 procedure red (see 1bd pages 16m and 27m)

VWhen procedure 1is delivered from the memory subsystem, 32 information
bits are accompanied by 2 "red" indicators. These indicators, accusing the
left 16 bits or the right 16 bits of containing an uncorrectable edac
error are captured (by PALOOK or PELOOK) in a register parallel to that
which captured the ©procedure itself. A simple selection is now required
as a function of which procedure bytes are being sourced to the pbus. This
selection 13 performed by a 16L8A pal which receives the two red bits
stored for "pa", the two red bits stored for."pe", and the take counter

"“(resynchronized to match the pal's needs). The error signal (REDPRC) is

sent to the general error collector (DSASTR) and to the syndrome register.
3.15.1.4 data red (see 1bd pages 27m and 34m) ‘

Vhen 4nra or 1inrb is placed upon the zbus, stimuli coming from a pal
which decodes the 2B field, enables two sections of a 74S157 selector
(REDDTL and REDDTR) which discover whether the left and/or right data
wvords had good edac. The two data-red error signals are or’'d (REDDAT) and
sent to the general error collector (DSASTR) and t¢ ihe sy:drome register.

3.15.1.5 procedure uar (see 1lbd pages 16m and 27m)

¥hen procedure 1is delivered from the memory subsystem, 32 information
bits are accompanied by 2 unavailable resource indicators. The "left®
indicator means that the system resource addressed does not exist whereas
if <the left indicator is off, the "right" indicator means that the address
delivered to the memory subsystem from adrp was the last one installed in
this system. A pal samples the four error signals (PAUARL, PAUARR, PEBUARL,
and PEUARR) and determines whether an error (UARPRC) is to be sent to the
general error collector (DSASTR) and to the syndrome register.

5.15.1.6 data uar (see 1bd pages 34m and 27m)

Vhen inra or inrb is placed upon the zbus, stimuli coming from a pal
which decodes the 2B field, enables two sections of a 74S157 selector
(uardtl and uardtr) which discover whether the system resource addressed
exists (i.e., a left uar) and whether the memory location provided to the
memory subsystem from adra or adrb, while requesting four bytes, was the
last address of installed memory (i.e., a right uar and no left uar). The
outputs of these two sections (UARDTIL and UARDTR) are or’'d in UARDAT and
sent to the general error collector (DSASTR) and to the syndrome register.

3.15.1.7 stack overflow or underflow (see 1bd page 24m)

The stack overflow/underflow detector. is a pal which monitors the
address register (FWSTK0-3), the nature of the stack transaction (CDPUSH,
POPING) and an error detector enable (FLAGC7). It generates two signals:

1. STKOUT: a stack error vas detected (i.e., a push was attempted and
the stack was full, or a return was attempted and the stack was
empty). This signal is connected to the general error collector
(DSASTR) and to the syndrome register.

2. STKUNW: a stack underflow error was detected (i.e., a return was
attempted and the stack was empty). This signal is sent to the
syndrome register to distinguish overflow from underflow.

CUSTOM PROCESSOR TECHNICAL DESCRIPTION PAGE 3-30

pEm pen pEn pam R pER R PR puy e P

L I

SECTION THREE HARDWARE DESCRIPTION

3.15.1.8 control-store parity (see 1bd pages Sm, 6m, 8m, 9m, 11m,
3d, 44, 54, 64, 74, 84, 94, 104, and 11d)

The 128-bit control-store array contains one parity bit 1d each
thirty-two. The parity bits are CSXX16, CSXX48, CSXX80 and CSXXB2. In each
thirty-two-bit group, the control-register (cr) outputs are tested for
correct parity. In some firmware fields, raw control-register flops do not
exist because registered pals are used to perform "in-flight" decoding of
the control-store output. In these instances, the pal(s) check(s) parity
on the portion of the field in its purview and sends the result along with

‘‘raw cr bits to a gaggle (14) of 74S280 parity checker chips.

Parity chip EPGOO7 checks parity on the first nine control-store bits,
EPO815 checks parity on the next nine (including the parity bit for this
thirty-two-bit group), EP1623 generates parity for the next eight and
accepts PORTLY as an input which represents the next three, and finally
FWPAR® gathers <them all up along with PARTLY, which represents the last
three. The error signal FWPARD 18 sent to the general error collector
(DSASTR) and to the syndrome register.

In the second group of 32 control-3tore bits, EP3239 checks parity on
the first nine bits, EP4047 checks parity on the second nine bits
including the parity bit for this group, EP4855 checks parity for the next
nine bits and FWPAR! checks parity for the last five and gathers the
outputs of the other three chips to form an error signal which is sent to
the general error collector (DSASTR) and to the syndrome register.

In the third group of 32 control-store bits, EP6472 checks parity on
the first nine bits (CKPRTY gathers the first two), EP7381 gets the next
nine including the parity bit for this group, and FWPAR2 gathers the
remaining fourteen (four via BRPRTY, three via TCPRTY.13, and three via
TCPRTY.46) 4in addition to accepting the output of the previous checkers.
The error signal is sent to the general error collector (DSASTR) and to
the syndrome register.

In the fourth group of 32 control-store bits, EP96A3 checks parity on
the only eight of this group (a pal gathers three bits into CRZBPB) which
are on the daughter board, and sends this knowledge to the mother board
where EPA8BS checks parity on the next nine bits including the parity bit
for this group, and FWPAR3 gets the last fifteen bits (three via FTPRTY,
four wvia BSPRTY.@3, and four via BSPRTY.47) in addition to gathering the
contributions of the previous checkers. The error signal FWPAR3 is sent to
the general error collector (DSASTR) and to the syndrome register.

3.15.2 parity generation circuits (see 1bd pages 35d)

When outr is loaded, four parity bits are created by four 74S280 chips
which each examine one byte of the dbus and place the parity bit in a
register loaded by the same signal as that which loads outr. These four
parity bits accompany the data wherever i1ts final destination may be
(e.g., the memory, an i/o controller). See also 3.11.2.

5.15.3 verifying the integrity circuits (see 1bd pages 35d)

When parity is generated on the dbus to accompany the data loaded into
outr, the bhardware provides a method of generating even rather than the
conventional odd parity. This can be accomplished only if the processor is
off-line (FLAGCO® is off) and if FLAGC2 1s on. This mechanism, in
conjunction with the WRAP micros, allows a firmware routine (presumbly the
quality logic test) to verify the integrity circuits by transferring data
with both even and odd parity from outr to inra, from outr to inrd, from
outr to pa and from outr to pe.

CUSTOM PROCESSOR TECHNICAL DESCRIPTION o PAGE 3-31

A

SECTION THREE HARDWARE DESCRIPTION

The micro SYND 4is available to verify the integrity of the syndrome
register by causing a simulated error, stimulating the general error

collector (DSASTR) and sampling the presumably quiescent error sources
into the syndrome register.

3.15.4 branch to zero (see 1lbd 27m)

When <the 74S133 (DSASTR) is stimulated, it sets SYRCLK at the start of
the next firmware step. The 1leading edge of SYRCLK samples all error

._sources into the syndrome register (SYND@8-31). During the first step

following the detection of an error, the control flop FLAGCS controls
whether the flop DSTFF! will set leading toward the hardware interrupt. If
FLAGCS5 1f off, DSTFF!1 starts a chain of events which will cause location
zero to be the next executed. The delay-line driver DSAQ0Q starts an edge
down the delay line DSA2¢80 while, at the same time, the otherwise intended
next address 18 being allowed to settle in the next-address generator.
After 200 nanoseconds, DSTFF2 sets, clocking the intended next address
into the hardware-interrupt-address register (HEWIAGOG-13). A 180-nanosecond
pulse 1is formed by HOLDIT which clears the next-address control-register
flops (CRNAGO-13) and the test-condition muxes are disabled, forcing ar
else bank enable. The next-address generator emits zero and the control-
store array 1s accessed. A clock stall signal (WAITUP), which has been

active through this entire ceremony, is allowed to relax and the content
of location zero 'is executed next.

CUSTOM PROCESSOR TECHNICAL DESCRIPTION PAGE 3-32

SECTION FOUR FIRMWARE DESCRIPTION

FIRMWARE DESCRIPTION

.'4.0'FIRMVARE DESCRIPTION

"This section provides a detailed description of the 32 bit Custom
Processor firmware structure.

The custom rocessor divides its firmware word into thirty-one fields
(see figure 4-1). The discussion that follows is organized into fourteen
gones where the micros available in these zones are described one field at
a time. Some fields contain no micros but serve merely as arguments for
other micros. Some fields control more than one hardware element. The
coder may not recognize that even though each hardware element appears to
have a selection of micros, only one mnicro from one of the groups is
allowed in each step. The fourteen zones are listed below with a brief
description of the related hardware each zone controls:

CUSTOM PROCESSOR TECHNICAL DESCRIPTION PAGE 4-1

SECTION FOUR

FIRMWARE DESCRIPTION

I. 2901 control
II. ARAM control
III. D BUS control

. . IV. S BUS control

V. 2 BUS control

VI. LOCAL BUS
control

VII. FLAG control

VIII. NIBBLE SHIFTER
control

IX. INDICATOR
control

X. OP register
control

XI. LOAD control

XII. CLOCK control

XIII. STACK control

XIV. NEXT ADDRESS
control

The six fields which control the 2981 are
AA, AB, AS, AF, AD, and ADE.

The two fields which control the ARAM are
RM, and RV.

The five fields which control <the D bus
are DF, DG, DI, DJ, and DK.

The fieid which controls the S bus is SS.
The field which controls the Z bus is ZB.

The field which controls the Local bus
is BS.

The field which controls the TEMP flags
is FT. The field which controls the PERM
and CONTROL flags is BS.

The field which controls the nibble Shift-
er is 8SD.

The field which controls the loading of
both the arithmetic and miscellaneous
indicators is ID.

The field which controls the loading
and modification of the OP register is
oP.

The fields which control the loading of

other major registers are LA, LO, LV and
H and OP.

The field which controls the Clock speed
is CK.

The field which controls which firmware

address (i1f any) is pushed onto the stack
is P8.

The five fields which control the value of
the next firmware address are BI, NA, TC,
BR and MK.

A field is a group of control store bits devoted to the control of a
hardware entity. In general, a one bit field has one possidble micro, a two
bit field has three possible micros, a three bit field has seven possible’
micros etc. In any firmware step, each field may contain only one micro.
The design attempts to collect those micros which are naturally mutually

~exclusive into the same field; e.g., in some step, the coder may wish the
alu to add or he may wish it to subtract but certainly not both. The
firmware word format is depicted in figure 4-1.

CUSTOM PROCESSOR TECHNICAL DESCRIPTION PAGE 4-2

SECTION FOUR

Daughter

Daughter

Daughter

Daughter

Mother

Mother

Daughter

Mother

Mother

CUSTOM PROCESSOR TECHNICAL DESCRIPTION

P U GRS WEPEST WP SRS WS SRS SHURST WO WU R S UV WU G i S
| AA | AB | AS] AP |
S S SV Wi F U S W WO S
20 3 7 1 15

e T S s s S IR S ST SRR SR S S
jue| AD | ADE | ID IDFI DG | DI |

i S LI P S Sy
16 19 23 27 31

U WUNPUUNT ST SPIOF UV WY ST DS VY U U WY WUV SH SIS
| DJ i DK |
¥ ALY ORI RPN VHUY SRS WAVHF SHQRS S SRIST ST VI I U SI SR S
32 35 39 43 47

R QU PR SRR S S ST ST SEOUT SR ST SR SR SIS
jon) RM | RW (D:] oP t

F SRS U WA SN UY AT SUPIST S S SIS S WU S SIS
48 51 55 59 63

T R U NPT SRR ST S S S S WU S S S "
| CK IBII NA) [
UV SRR S S S S S S S S " Sy
64 67 1 75 79

F WRUT U Y WIS VR VY VRN S S S SR SR SIS S S "
jon] TC ! BR | MK |
S N VAN GHU UL W W SUUL SRPY DD VST SUOLY WU SHp S
88 83 87 91 95

foetbemtentectectontantand
ILVI 2B 1LOI SD 1
(PO T WY WU WA W W W— Y

96 99 103

a1
1 P8 | 1 FT |
e e e 3
104 107 11

i»s] 88 I LA 1 BS !

P SR ISP VS CHU ST VU VS GUPHY DU SR SEVT SO S 3

112 115 119 123 127

VHERE ** = F/W PARITY CHECKS

FIGURE 4-1
THE CUSTOM PROCESSOR FIRMWARE WORD FORMAT

FIRMWARE DESCRIPTION

PAGE 4-3

SECTION

FOUR FIRMWARE DESCRIPTION

AB

4.1 2901 CONTROL

Six fields which control the 2901 register file and ALU:
AA provides the four bits which select the register file °

location available at the A port. The coder specifies the
A-port address in an argument of an AS-field and/or AD
field micro (see below).

provides the four bits which select the register file
location available at the B port. When the ALU output is to
be retained, the AB field selects the register file lo-
cation where the ALU output is stored. The coder specifies

the B-port address in an argument of an AS field and/or AD
field micro (see below).

AS selects two operands (r/s) for manipulation by the ALU from

among five sources: the A port, the B port, the Q register,
the D bus and zero. The available micros are:

x
|
l
r
|
(
(
[
1
1
(
l
[
[
l
|
Jd
[
[

micro

R:A'S:Q(AA)

R:A'S:B(AA,AB)

.R:D’S:Q

R:0°'S:B(AB)
R:@°S:A(AA)
R:D'S:A(AA)

R:D’S:Q

R:D'S:@

description

the r input to the
AA of the register
the s input of the
ister.

the r input of the
AA of the register
the s input of the
AB of the register

the r input of the
the s input of the
register.

the r input of the
the 8 input of the

AB of the register

the r input of the
the s input of the
AA of the register

the r input of the
the s input of the
AA of the register

the r input of the
the 8 input of the

e __4ster. - ——-

the r input of the
the 8 input of the

alu receives
file.
alu receives

alu receives
file.
alu receives
file.

alu receives
alu receives

alu receives
alu receives
file.

alu receives
alu receives
file.

alu receives
alu receives
file.

alu receives
alu receives

location

the q reg-

location

location

Zero.
the q

zero.
location

Zero.
location

the dbus.
location

the dbus.
the q reg-

alu receives
alu receives

CUSTOM PROCESSOR TECHNICAL DESCRIPTION

the dbus.
zero.

PAGE 4-4

SECTION FOUR FIRMWARE DESCRIPTION

AF determines what manipulation shall be performed on the two
operands provided by the AS field. The available micros

are: .
micro the alu output receives:
F:ADD1 the s input plus the r input plus one
F:ADDC the s input plus the r input [plus one
- . if the carry indicator (indit) is true].
F:ADDC® the s input plus the r input [plus one
if the carry indicator (indi1) 1is false].
F:ADD the s input plus the r input.
F:S-R the s input plus not the r input plus
‘ one
F:S-R-C' the s input plus not the r input [plus ~ne
if the carry indicator (indi) in on].
FP:S-R-C the s input plus not the r input [plurc one
. if the carry indicator (indi) 1is off].
F:S-R-1 ‘the s ipnput plus not the r input.
F:R-S . the r input plus not the s input plus one.
P:R-S-C* .the r input plus not the s input [plus one
if the carry indicator (ind1) is on].
P:R-8-C the r input plus not the s input [plus one
- if the carry indicator (ind1) is off].
F:R-S-1 the r input plus not the s input.
F:0R the 8 input inclusive ored with the r in-
put.
F:SR the s input anded with the r input.
F:SR* the r input anded with not the 8 input.
F:IO0R the s input exclusive ored with the r in-
‘ put.
F:XINOR the s input exclusive ored with not the r
input.
CUSTOM PROCESSOR TECHNICAL DESCRIPTION PAGE 4-5

SECTION FOUR

FIRMWARE DESCRIPTION

AD determines where the ALU output is to be retained within
the 2901. The choices are the register file, the Q register,
or neither. The AD field also allows any register file .
location to be presented to the zbus port. The AD field also
controls the single-bit shifter. The 32-bit output of the
ALU may be shifted one bit left or right and stored in the
register file at location AB. The 64-bit ocutput of the ALU
and the Q register may be shifted one bit left or right and

micro

Y:F'Q:P

Y:F

Y:A'B:P(AA,AB)
Y:FP'B:F(AB)

Y:F*'BQ:FQSR
(AB,ADE)

.Y:F'BQ:FQSL
(AB,ADE)

CUSTOM PROCESSOR. TECHNICAL DESCRIPTION

stored in the register file and Q. The available micros are:

description

the q register receives the alu output.
the zbus control field may also select
the alu output.

the zbus control field may select the alu
output.

the alu output is written at location AB
in the register file.

the zbus control field may select the data
from the A port of the register file.

the alu output is written at location AB
in the register file.

the zbus control field may also select the
alu output.

the 64-bit concatenation of the alu output
and the q register are shifted right onse
bit position. The shift-end-effect control

(see ADE below) determines the value of

the most-significant bit.

the 32 most-significant bits of the shifted
result are written at location AB in the
register file.

the 32 least-significant bits are written
into the q register.

the zbus control field may also select the
alu output.

the 64-bit concatenation of the alu output
and the q register are shifted left one
bit position. The shift-end-effect control
(see ADE below) determines the value of
the least-significant bit.

the 32 most-significant bits of the shifted
result are written at location AB in the
register file. »

the 32 least-significant bits are written
into the q register.

the zbus control field may also select the
alu output. .

PAGE 4-6

pun pum Gam pES pEn pER pun ey R P

e B

L T

e I

SECTION FOUR FIRMWARE DESCRIPTION
micro description
Y:F'B:FSR the alu output is shifted right one bit
(AB,ADE) position. The shift-end-effect control

(see ADE below) determines the value of
the most-significant bit.

the 32 most-significant bits of the shif-
ted result are written at location AB in
the register file.

the gbus control field may also select the

.o - alu output. - ,
Y:F'B:FSL the alu output is shifted left one bit
(AB,ADE) position. The shift-end-effect control

(see ADE below) determines the value of
the least-significant bit.

the 32 least-significant bits of the shif-
ted result are written at location AB in
the register file. ' '
the zbus control field may also select the
alu output.

ADE controls the "shift end effects”; i. e.,the bit which shifts
into the ALU (for 32- and 64-bit shifts) and the bit which
shifts into Q (for 64-bit shifts). There are six choices for
insertion: the most- or the least-significant bit of the
ALU, the most- or the least-significant bit of Q, the one-
bit value of Flagti (early), or a literal zero. Combinations
are restricted to four for any given direction and length of
shift. As an example, for a 64-bit circular left shift:

. Y:P'BQ:FQSL(AB,CIRC)
4.2 ARAM CONTROL
Two fields control the ARAM:

RM determines which of the seven sources of ARAM addressing is
to be used. Four of the sources are restricted to the first
256 ARAM locations where RBR further isolates a group of 16
and OPA, OPB, OPC, or OPD select one of those 16 to be ac-
cessed. A twelve-bit literal may be used as an ARAM addres-
sing source or the twelve-bit content of register RAR. The
last ARAM addressing source allows the high 2248 locations
of the ARAM to be used as a cache mechanism where eleven Z
bus bits address the 2048-location ARAM bdlock and informa-
tion within the addressed location may determine hit versus
miss as well as provide appropriate retained values which
may be used for algorithm acceleration.

RV determines which (if any) of the ARAM data bytes selected

-—- are to be overwritten. If RW=0, the content of the ARAM lo-

- cation is left unchanged; otherwise, one or more bytes will
: be made equal to the value of the sbus-late.

CUSTOM PROCESSOR TECHNICAL DESCRIPTION PACE 4-7

SECTION FOUR FIRMWARE DESCRIPTICN

4.3 D-BUS CONTROL

The D bdbus has many sources. The five fields discussed in this
paragraph determine which source or combination of sources is allowed to
the D bus. The DG field specifies how the other four fields are ‘to be
interpreted. In general, DF is a £ill1 bit wvhich is replicated where
necessary to create 90 or FF bytes; DI has a bit per byte specifying which
D bdbus Byte(s) shall receive the eight bit literal DK; DJ is sometimes a

literal and sometimes a code choosing among many and varied D bus sources.
The dbus is subdivided into 4 bytes named w, x, y, and =.

*<4.3.1 DG=1iteral

'When DG=literal, DP, DI, DJ and DK provide five types of literals:

micro byte w byte x byte ¥y byte z
D:00JK zeros zeros DJ DK
D:FFJK ones ones DJ DK
D:JK0o0 DJ DK zeros zeros
D:JKFP DJ DX ones ones
D:JKJX DJ DK . DI DK
4.3.2 DG=broadside
D:HEX DK DK hex decoder
‘D:HHPP H : { procedure bus (00-15)
D:0P DX) 9 OPA/OPB OPC/OPD
D:0P-BIT-AD geros zeros DK Q.G.G.OPC(D-S).D
D:0PCD zeros zeros orPC OPD
D:0PCD-X2 DK DK 0000000,0PC(0-3),0PD(0-3),0
D:0PCD-X2'1% DK DK 0000009.0?0(0-3).OPD(G-}).1
D:0PESTRY DK DK OPA/B/C/D of previous step
D:PB1 ‘geros zeros DK PBUS(0-7)
D:PB2 ’ DK zeros . procedure bus (08-15)
:-PB2 ones ones procedure bus (22-15)
D:PCTR DK program counter
D:PHSTRY DK program counter at last rni

D:RAMAD-X8 zeros.DOGOGBEUQGGG,DK(4-7.0).RAMAD(B-i1).DK(!-S)

D:RBR'RAR DX DK RBR(92-3),RAR(0-11)
D:2 z bus z bus z bus i bus
CUSTOM PROCESSOR TECHNICAL DESCRIPTION PAGE 4-8

pun pun pen pEm P

o

SECTION FOUR FIRMWARE DESCRIPTION

4.3.3 DG=mix

Certain sources may, on byte boundaries, be mixed onto the
dbus. These sources are the ARAM, ADRA, ADRB, or ADRP via
the sbus-early; the Z bus via the shifter and the sbus-
late; the H register; a literal byte (DK); a fill byte
(DF). The micro D:: requires up to six arguments, the
first four specify the source for bytes w, x, y and z,
respectively; the fifth specifies the eight-bit literal

. . if any, and the sixth specifies the value of the fill byte,

if any.
4.3.4 DG=sign-extend

Three sign extend micros are provided to place onto the
D bus some right portion of the S bus with the most-si-

gnificant bit of that right portion replicated in all
bits to the left.

micro byte w byte x byte ¥ byte =z
D:SEX8 8*sbus(24) 8*sbus(24) 8%sbus(24) sbus(24-31)
D:SEX16 8%gbugs(16) 8%sbus(16) sbus(16-23) sbus(24-31)

D:SEX24 8%"sbus(08) sbus(e8-15) sbus(16-23) sbus(24-31)
4.4 SBUS CONTROL '

One field, S8, controls which source is placed upon the 8 bus. This
field allows two different sources onto the sbus in the same step. A
"split cycle” is a firmware step in which the sbus receives from a
different source during the early phase than it does during the late
phase. Two types of split cycles are provided: the first sends ADRS
(ADRA, ADRB, or ADRP) to the sbus during the early phase and the Z bdbus
during the late phase, vhereas the second sends the ARAM to the sbus
during the early phase and the Z bus during the late phase.

CUSTOM PROCESSOR TECHNICAL DESCRIPTION PACE 4-9

1
'
:
[

1
:
|
|

¥
.
:
[
[

1
1
[

SECTION FOUR

FIRMWARE DESCRIPTICY

micro

S:ADRA

S:ADRA'2Z

S:ADRB

S:ADRB'2

S:ADRP

S:ADRP'Z

S:ARAM

S:ARAM'Z

S:STK'ACCT

S:SYND

8:2

Byte w

early
late

early
late

early
late

early
late

early

byte x

byte y

byte z

ghifted by SD

adrp(16-23) adrp(24-31)
adrp(16-23) adrp(24-31)

adra(00-07) adra(08-15) adra(16-23 dra(24-
adra(@90-07) adra(e8-15) :dr:€l6-23; :dr:£22~;:;

adra(090-07) adra(@8-15) adra(16-23) adra(24-31)
Z bus(90-31) nibble ghifted by SD

adrb(@0-27) adrb(08-15) adrb(16-23) adrb(24-31)
adrb(00-07) adrb(88-15) adrb(16-23) adrb(24-31)

adrb(00-27) adrb(88-15) adrb(16-23) adrb(24-31)
Z bus(020-31) nibble

adrp(00-07) adrp(88-15)
late adrp(20-87) adrp(98-15)

early adrp(@0-07) adrp(08-15) adrp(16-23) adrp(24-31)
late Z bua(00-31§ nibble shifted by SD
early aram(@-7) aram(8-15) aram(16-23) aram(24-31)
late aram(@-7) aram(8-15) aram(16-23) aram(24-31)
early aram(0-7) aram(8-15) aram(16-23) aram(24-31)
late Z bus(90-51) nibble shifted by SD
early 9,0,top of return stack, accounting timer
late 9,8,top of return stack, accounting timer
early ? syndrome at latest dsastr or “"synd"
late ? syndroms at latest dsastr or "synd"”
early Z bus(89-31) nibble shifted by SD
late Z dbus(20-31) nibble shifted by SD

4.5 Z BUS CONTROL

The zbus may receive from any one of six sources. Two of the six

sources are

outside world. Two flavors of INRA and INRB sourcing are provided.
One flavor validates the parity om all four bytes, whereas the other
validates the parity only on the leftmost two bytes. Another zbus source

comes from an external element.
only.

purposes

register, and the dbus.

‘micro
Z:D
Z:EXT
2:V
2:Y
Z:INRA
2:INRB

byte w
DBUS(2-7)
FDF(9-7)
v(e-7)
ALUY(02-7)
INRA(ﬂf7)
INRB(0-7)

byte x
DBUS(8-15)
FDF(8-15)

v(8-15)
ALUY(8-15)
INRA(8-15)
INRB(8-15)

byte ¥
Dnus(is-zsi
FDF916-23)

v(16-23)
ALUY(16-23)
INRA(16-23)
INRB(16-23)

CUSTOM PROCESSOR TECHNICAL DESCRIPTION

byte =
DBUS(24-31)
FDF(24-31)

v(24-31)
ALUY(24-31)
INRA(24-31)
INRB(24-31)

PAGE

INRA and INRB which each may receive 32 bits of data from the

This interface is intended for testing
The other <three sources to the zbus are the ALU, the V

4-10

. _previous request.

SECTION FOUR FIRMWARE DESCRIPTION

4.6 LOCAL-BUS CONTROL

The BS field controls the local bus. Thus, the BS field initiates data
reads and writes, I/0 reads and writes, and procedure reads. Data and 1/0
reads and writes are explicit while procedure reads are implied by other
micros, also in the BS field, which cause procedure bytes to be consumed
by an 4incrementation of PCIR. If all this sounds complicated, it is. The
initiation, monitoring, and consummation of local-bus activities requires
reasonable care in the use of resources which may still be committed to a

- Vhen an interlock is required, the cup will stall its
clock automatically. It recognizes that a stall is required as follows:

- 1. Stall unless and until at least two bytes are available in the
prefetch buffer before entering any step which will examine or
consume one or two such bytes; e.g., before entering a step
which contains a PTAKE1, an OP:P4, a D:PB2, or an RNI micro.

Stall unless and until the local-bus interface is quiescent be-
fore entering a step which will initiate a new local-bus re-

quest i.e., before enteri a step which contains a PREFETICH,
a read (RD..), or a write (WR..) micro.

3. Stall unless and until the local-bus interface is quiescent be-
fore entering a step which will consume procedure bytes, if and
only if the procedure buffer has at least four “"empty”" byte po-

sitions; i.e. a step which contains a PTAKE or an RNI'REFILL mi-
cro.

Other stalls must be stated explicitly as follows:

1. Stall unless and until the local-bus interface is quiescent be-
fore leaving a step which contains a STALL micro.

2. Stall unless and until any outstanding non-procedural request

has concluded before leaving a step invoking a "data stall";

i.e., before leaving a step which contains PEEK’STL or a
PTAKE1'STL, or a PTAKE2'STL micro.

3. Stall unless and until the specified or implied input register
has received the requested data before leaving a step invoking
such a stall; i.e., before leavi a step which containg STALL-A
(waits for new data to enter inra) or STALL-B (waits for new
data to enter inrdb) or micros of the form RD-..’'STL(A/B).

The BS field supplies the following local bus micros:

micro description

PEEK view one or two bytes of procedure whose memory

addresses are pctr and pctr+1; verify parity.
The two procedure bytes are available to be

---—1loaded into OP or to be placed onto the d bus
or both.

PEEK'STL same as peek, but stall before leaving this

step until any non-procedural local-bus ac-
tivity terminates. .

PREFETCH stall before entering this step until all local
bus activity has concluded; then initiate a
procedure read with the address in adrp. When

the memory responds, place the four bytes into
procedure buffers a, b, ¢, and d.

CUSTOM PROCESSOR TECHNICAL DESCRIPTION PACE 4-11

L I

Joen

ol

SECTION FOUR

FIRMWARE DESCRIPTION

PTAKED

PTAKE1
PTAKE1'STL

PTAKE2

PTAKE2'STL
RD-2B(SA)

RD-2B’STL(SA)

RD-4B(SA)

RD-4B’STL(SA)

RDLK-2B(SA)

RDUL-2B(SA)

CUSTOM PROCESSOR TECHNICAL DESCRIPTION

same as peek, but stall before entering this
step if the procedure buffer has space for

four bytes and if so, iritiate a four byte pro-
cedure request.

same as PTAKE®, but add one to pctr.

same as PTAKE!, but stall before leaving this
step if and until any non-procedural local-bus
activity terminates. -

same as PTAKEO, but add two to pctr.
same as PTAKE1'STL, but add two to pctr.

stall before entering this firmware step until

all local-bus activity has concluded; then ini-
tiate a read request on the local bus, reading

two bytes at memory addresses adra/b-adra/b+1.

Inra/b(8-7) and (16-23) will receive the first

byte and inra/b(8-15) and (24-31) will receive

the second byte.

same as RD-2B'(SA), but stall before leaving
this step until the two bytes requested have
arrived into inra/b.

stall before entering this step until all lo-
cal-bus activity has subsided; then initiate
read request reading four bytes on the local
bus at adra/d, adra/b+1, adra/b+2, and
adra/b+3.

same as RD-4B(SA), but stall before leaving

this step until the four bytes requested have
arrived into inra/b.

stall before entering this step until all lo-
cal-bus activity has subsided; then initiate

a read-and-lock-memory request on the local
bus. Note: ack must dbe tested before attemp-
ting to remove data from inra/b. If ack is

not received, memory module was previouly lock-
ed, indicating the resource vas seized by ano-
ther requester. Note: any successful rdlk must
be followed by either a rdul or a wrul micro;
otherwise, the memory module will remain seized
indefinitely.

stall before entering this step until all
local-bus activity has subsided; then initiate
a read-and-unlock memory request on the local
bus reading two bytes at memory addresses
adra/b and adra/b+t. Inra/b(6-7) and inra/b
(16-23) will receive the first byte; inra/d
(8-15) and (24-31) will receive the 2nd byte.
The memory module is released.

PACE 4-12

SECTION FOUR

FIRMWARE DESCRIPTION

RD-I0(SA)

. RD-LCL(SA)

REPLY(SA)

WR-1B(SA)

WR-1'1B(SA)

WR-1'2B(SA)

WR-2B(S5A)

WR-2'1B(EA)
WR-4B(SA)
WR-IO(SA)

WR-LCL(SA)

stall before entering this step until all lo-
cal-bus activity has subsided; then initiate an
i/o read on the megabus, using adra/b(16-25) as
the channel number and adra/b%26-31) as the °
function code. If the channel acknowledges the-
request, the data will be placed into inmnra/db
(0-15). Note: ack must be tested before attemp-
ting to remove the data from inra/b.

stall before entering tkis step until all lo-

cal-bus activity has subsided; then initiate a
read local using adra(8-9) as the channel num-
ber and adra(18-15) as the function code. (For
reading memory subsystem control information).

stall before entering this step until all lo-
cal-bus activity has subsided; then initiate a
megabus request using adra/b(16-25) as the
channel number and adra/b{(26-31) as the func-
tion code. Send outr(0-15) to the specified
channel.

stall before entering this step until all lo-

cal-bus activity bhas subsided; then initiate a
memory byte write request on the local bus.

If adra/b is even, then outr(9-7) 1is written;

- 1f adra/b is odd, then outr(8-15) is written.

stall before entering this step until all lo-
cal-bus activity has subsided; then initiate a
memory write request on the local bus.

If adra/b is odd, then outr(8-23) is vritten;
if adra/b is even, the results are unspecified.

stall before entering this step until all lo-
cal-bus activity has subsided; then initiate a
memory write request on the local bus. .-

If adra/b is odd, then outr(8-31) is written;

if adra/b is even, the results are unspecified. .

stall dbefore entering this step until all lo-
cal-bus activity has subsided; then initiate a
memory write request on the local bus.
Outr(8-15) is written and adra/b(31) is assumed
be zero!

same as WR-2B(SA), but outr(8-23) is written.
gsame as WR-2B(SA), but outr(o-BI) is written.

- ——satall before entering this step until all lo- o

cal-bus activity has subsided; then initiate a
megabus non-memory request to the channel in
adra/b(16-25) and the function code in adra/b
(26-31). Send outr(9-15) to the specified
channel.

stall before entering this step until all lo-
cal-bus activity has subsided; then initiate a
local bus non-memory request to the channel
adra(8-9) and the function code adra(108-15).
Send outr(@-31) to the specified channel.

CUSTOM PROCESSOR TECHNICAL DESCRIPTION PAGE 4-13

ol e i

SECTION FOUR FIRMWARE DESCRIPTION

WRAP(BSA) copy outr(9-31) into imra(0-31), inrb(0-31),
procedure buffers abcd, or procedure buffers
efgh. Note: the coder is respomsible for gua-
ranteeing that the local bus is quiescent! °

WRLK(SA) stall before entering this step until all lo-
cal-bus activity has subsided; then initiate a
memory-write-lock request on the local bus.

If the memory module was not locked, then

e e ~ outr(9-15) is written at adra/b, (adra/b31

is assumed to be zero). If the memory module
was previously locked, no data is written.

The coder must test ack to determine which
result occurred. Note: any successful WRLK
must be followed by either a RDUL or a WRUL
micro; otherwise, the memory module will remain
seized indefinitely.

WRUL(SA) stall before entering this step until all lo-
cal-bus activity has subsided; then initiate a
write-and-unlock memory request on the local
bus. Outr(8-15) is written at adra/d (adra/b31
is assumed to be zero). The memory module is
released.

4.7 FLAG CONTROL

There are three groups of flags. Bach group has eight elements for a
total of twenty-four flags. They are: the eight permanent flags, the eight
control flags, and the eight temporary tlags.

4.7.1 Permanent flags

Sixteen micros are dedicated to the eight permanent flags. There are
no s8ide effects which result from permanent flag actions. However, since
the BS field controls the permanent flags, no local bus activity can be
initiated in steps which set or clear permanent flags. Also, since the BS
field allows consuming the procedure stream and local-bus transaction
initiation, ptakes and setting or clearing of control flags are all
mutually exclusive with modifications to the permanent flags.

4.7.2 Control flags

Sixteen micros are dedicated to the eight control flags. Bach control
flag 18 dedicated to a hardware entity. FlagCd is dedicated to testing.
FlagC! and C2 are dedicated to testing only when flagCld is off. FlagC3 is
dedicated to the accounting timer. FlagC5 allows the microcoder to ignore
hardware detected faults (e.g., memory parity). FlagC7 is dedicated to the
return stack. Note that altering the state of a control flag is mutually
exclusive with initiating local bus activity, viewing the procedure stream
or changing the state of a permanent flag.

~4.7.3 Temporary flags

Seventeen micros control the temporary flags. Sixteen of them set or
clear one flag while the seventeenth clears all eight temporary flags.
£1lagT! has hidden effect in that it participates in controlling the shift
end-effects of the ralu. flagt6 serves as the data written into the scram.
Micros which control the temporary flags are mutually exclusive with
micros of the form RAR:N'S.. or RARH: Nafloading rarh with a literal) or
PUSH-R (relative push) or RAMAD:LIT (addressing the aram with a literal).

CUSTOM PROCESSOR TECHNICAL DESCRIPTION PAGE 4-14

SECTION FOUR FIRMWARE DESCRIPTION

4.8 Nibble-shifter control

The field which controls the nibble shifter is SD. The nibble shifter
rotates the 32 bits of the £ bus from zero to seven places (any multiple
of four bit positions) and puts the result onto the 8 bus. The notion of
left/right is provided in the dictionary for convenience.

The SD field bhas no micros but instead provides an argument for those
micros which allow the sbus to receive the zbus.

_4.9.Indicator control

The 4indicators are stored in two groups: the arithmetic indicators and
the - miscellaneous indicators. The gemeral structure encourages the coder
to manipulate data in one step, storing the result of the manipulation in

indicators and then, in a subsequent step, test <the appropriate
indicator(s) via either IF... or BR... micros.

4.9.1 Arithmetic indicators

There are six arithmetic indicators called ind(9-5). For the purpose
of performing operations on data whose width 18 1less than 32 bits,
arithmetic 1indicator sensing can be partitioned to the rightmost 8 bits or
the rightmost 16 bits or the rightmost 24 bits as well as all 32 bits. The

argument (1d23) provides control of the partioning using convenient
labels:

dblw (doudbleword) ind(©8-4) are sensitized to the full width of
the alu i.e., 32 bits.

addr (address) ind(-4) are sensitized to alu(8-31);
e.8., ind2 captures alu(8).

word ind(0-4) are sensitized to alu(16-51); e.g.,
- ind3 becomes true if alu(16-31) are all zero.

byte ind(©8-4) are sengitized to alu(24-51); e.g.,
: ind4 becomes true if alu(24-31) are all zero
and ind3 is on.

Arithmetic-indicator opartitioning has no effect on 1ind5 since 1t
monitors only the least significant bit of the = bus [2(31)]. Overflow
(ind0) 1s intended for add or subtract operations and furthermore lives up
to its name only in two's complement arithmetic. Ind@® becomes true if the

carry into the leftmost bit (as partitioned) does not match the carry out
of the same bit.

4.9.2 Miscellaneous indicators

The miscellaneous 1indicators are all stored in one "register”™ dbut m
be thought of as four separate groups. The one indicator (ind6) which
stores -the output of —the stop-code ram is the simplest of the lot. Note
that the stop-code ram is addressed by byte y of the dbus. The second
group, ind(7,8) are dedicated to detecting frame-bound crossings where a

frame 18 a 512-byte contiguous block of memory, starting at any multiple
of 512 bytes.

indé the stdp—code ram indicator stores the output’
of the stop-code ram as addressed by dbus
(16"23)-

ind7 frame-bound indicator #7 becomes true if dbus

bits 15 through 22 do not match zbus bits
15 through 22.

CUSTOM PROCESSOR TECHNICAL DESCRIPTION PAGE 4-15

-

r
l
(
[
m
(
1
m
l
[
[
l
l
[
1
w
l

SECTION FOUR FIRMWARE DESCRIPTION

inds frame-bound indicator #8 assumes the addi-

tion of three values: a base address, a dis-
placement, and an operand length where:
the base address is in a ralu register, *
the displacement is on the d bus,
and the operand length is in type(2,1) where @0
is length one, 081 is length two, 19 is length
four, and 11 is length six.
Ind8 becomes true if the three way add would

- . produce a carry out of alu bit 23.

Note that ind#8 operates equally well if the
ralu register contains the displacement and the
dbus has the base address.

The next indicator group contains one indicator which becomes true if
zbus bits 8 through 20 match sbus bits 16 through 28, respectively. With
careful planning, the hash indicator permitas detection of a "hit" by
addressing the aram with gbus bits 19 through 29, and placing the aram
data onto the sbus for viewing by this indicator.

ind9 hash-hit indicator becomes true if zbus bits
8 through 20 are equal to sbus bit 16 through
28.

The 1last indicater group provides a mechanism for detecting the
postion of an operand's most-significant nibble.

ind(10-13) the leading-zero indicators store the number
of leading zeros at the output of the.alu.

Micros which appear to allow 1less than the complete set of
miscellaneocus indicators to be stored are provided merely to inform the
automated clock speed calculation program of the coder's intent since
setting the clock speed to allow for the slowest of the eight would be an
unnecessary performance sacrifice.

4.10 OP-REGISTER CONTROL

The OP register 1is a sixteen-bit register intended as long-term
storage for interesting nibbles of the procedure stream. Since each of the
four nibbles of OP may be incremented or decremented and since each nibble
may be tested for containing extreme values, each is well suited
to provide loop closure functions. For this reason (and others), OP may be
loaded from various nibbles of <the sbus. The multiplexer which selects
what data is presented to the opa register inputs is also made available
for branching upon. Thus, sixteen-way branches are available on any pbus
nibble or on any sbus nibble (see paragraph 4.14).

CUSTOM PROCESSOR TECHNICAL DESCRIPTION PAGE 4-16

N pEm e e

o pam

SECTION FOUR

FIRMWARE DESCRIPTION

4.19.1 Pbus to OP

Those OP-register loads which capture

stream are:

pu— i!-'! p—

nibbles of the instrpction

micro description

OP:Pg opa receives pbus(0-3), opb receives pbus(4-7),
opc receives pbus(8-11), opd receives pbus(12-15)

-) OPA:PO opa receives pbus(8-3) .

OPA:P4 opa receives pbus(4-7)

OPA:P8 opa receives pbus(8-11)

OPA:P12 opa receives pbus(12-15)

OPB:P@ opb receives pbus(9-3)

OPB:P4 opb receives pbus(4-7)

OPB:P8 opb receives pbus(8-11)

OPB:P12 opb receives pbus(12-15)

OPC:PO opc receives pbus(g-3)

OPC:P4 opc receives pdus(4-7)

OPC:P8 opo receives pbus(8-11)

OPC:P12 opo receives pbus(12-15)

OPD:PO opd receives pbus(8-3)

OPD:P4 opd receives pbus(4-7)

OPD:P8 opd receives pbus(8-11)

OPD:P12 opd receives pbus(12-15)

OPA'B:P@ " opa receives pbus(8-3), opb receives pbus(4-7)

OPA’B:P8 opa receives pbus(8-11), opb receives pbus(12-15)

OPC'D:PO opc receives pbus(ﬂfs); opd receives pbus(4-7)

OPC'D:P8 opc receives pbus(8-11), opd recéiGes pbus(12-15)

CUSTOM PROCESSOR TECHNICAL DESCRIPTION PAGE 4-17

o SECTION FOUR FIRMWARE DESCRIPTION
i
4.10.2 Sbus to OP
([The OP-register micros which capture nibbles of the sbus are:
micro description
[OP:S0O opa receives sbus(9-3), opb receives sbus(4-7),
: opc receives sbus(8-11), opd receives sbus(12-15)
T . oP:S16 opa receives sbus(16-19) opb receives sbus(20-23)
(opc receives sbus(24-27) opd receives sbus(28-31)
" OPA:S8 opa receives sbus(9-3)
. OPA:S16 opa receives sbus(16-19)
l OPB:S4 opb receives sbus(4-7)
‘ OPB:S20 opb receives sbus(20-23)
(OPC:S8 opc receives sbus(8-11)
OPC:S24 opc receives sbus(24-27)
t OPD:S12 opd receives sbus(12-15)
OPD:S28 opc receives sbus(28-31)
t OPA'B:SO opa receives sbus(@-3), opb receives sbus(4-7)
’ OPA'B:S16 opa receives sbus(16-19),0pb receives sbus(28-23)
((OPC'D:58 opc receives sbus(8-11),opd receives sbus(12-15)
'\ : OPC’'D:S24 opc receives sbus(24-27),0pd receives sbus(28-31)
[
|
[
‘
[
(_
[
{ :
: CUSTOM PROCESSOR TECHNICAL DESCRIPTION PAGE 4-18
[
[
|

SECTION FOUR

FIRMWARE DESCRIPTION

4.18.3 OP increment/decrement

are:
micro

OPA-DEC
OPB-BEC
OPC-DEC
OPD-DEC
OP*-INC
OPB-INC
OPC-~INC

OPD-INC

4.11 LOAD CONTROLS

description

The OP-register micros which increment or decrement an op register

opa receives opa minus one (if opa was zero,
test condition opa-wr becomes true).

opb receives opd minus oné (if opb was zero,

test condition opb-wr becoges

true).

opc receives opc minus one (if opc was zero,

test condition opc-wr becomes

true).

opd receives opd minus one (if opd was zero,

test condition opd-wr becomes

opa receives opa plus one (if
test condition opa-wr becomes

opb receives opd plus one (if
test condition opb-wr becomes

opc receives opc plus one (if
test condition ope-wr becomes

opd receives opd plus one (if
test condition opd-wr becomes

true).

opa was F,
true).

opb was F,
true).

opc was F,
true).

opd was F,
true).

Many registers are found lurking on the ends of buses just waiting for
an opportunity to snarf up the data therefrom. These registers are adra,
adrb, adrp/pctr, outr, v, h, rar, and rbr.

CUSTOM PROCESSOR TECHNICAL DESCRIPTION

PAGE 4-19

C m——

SECTION FOUR

FIRMWARE DESCRIPTION

4.11.1 Loading adra, adrb or adrp/pctr

Adra may be loaded from the sbus or may be incremented by four or may
be decremented by four. The same applies to adrb. Adrp may te loaded from

4.11.2 Loading of outr, v, or h

The micros which load these registers are:

the sbus three different ways. Micros which load adrp also load pctr. The
applicable micros are:
micro description
ADRA:S adra(00-31) receive sbus(00-31).
= ADRB:S adrb(00-31) receive sbus(90-31).
ADRP:S adrp(ﬂO-}lg receives sbus(00-31).
pctr(90-31) receives sbus(90-31)
ADRPH:S adrp(088-22) receives sbus(00-22)
petr(00-22) receives sbus(90-22)
ADRPL:S adrp(23-31) receives sbus(23-31)
petr(23-31) recnivea sbus(23-31)
ADRA-DEC adra receives adra minus four
ADRB-DEC * adrb receives adrb minus four
ADRA:INC adra receives adra plus four
. ADRB-INC adrb receives adrb plus four

micro description
OUTR:D outr(90-31) receives dbus(00-31)
v:2 v(80-31) receives zbus(00-31)
H:S h(00-31) receives sbus(@0-31)
CUSTOM PROCESSOR TECHNICAL DESCRIPTION PAGE 4-20

t

SECTION FOUR FIRMWARE DESCRIPTION

4.11.3 Changing rbr

Rbr 1s a four-bit register which can participate in addressing the
aram. When opa, opb, opc, or opd provide the low nibble of ramad, rbr
provides the middle nibble. The micros which load or change rbr are: °

micro description
RBR:S0 rbr receives sbus(8-3)
. RBR:S8 rbr receives sbus(8-11) X
RBR:S16 rbr receives sbus(16-19)
RBR:S24 rbr receives sbus(24-27)

RBR'RAR:S0@ rbr receives sbus(8-3), rar receives sbus(4-15)
RBR'RAR:SlS rbr receives abua(16-19). rar receives sbus(20-31)
RBR-DEC rbr receives rbr minus one

RBR-INC rbr receives rbdr blus one

4.11.4 Changing rar

Rar is a twelve-bit register which may be used to address the aram.
It 4is subdivided into a four-bit register (rarh) and an eight-bit register
(rarl). Bither registers may be incremented or decremented.

4.11.4.1 Loading all of rar

The micros which load rar, other than those of paragraph 4.11.3 are:
micro description

RAR:N'SO(FT) rarh receives a four-bit literal (FT),
rarl receives sbus(8-7) ’

RAR:N'S8(FT) rarh receives a four-bit literal (FT),
rarl receives sbus(8-15)

RAR:N'S16 rarh receives a four-bit literal (FT),
rarl receives sbus(16-23)

RAR:N'S24 rarh receives a four-bit literal (FT),
rarl receives sbus(24-31)

RAR:S4 rar receives sbus(4-15) :
RAR:S20 rar receives sbus(20-31)
CUSTOM PROCESSOR TECHNICAL DESCRIPTION PAGE 4-21

|

DBE&-AHE

SECTION FOUR FIRMWARE DESCRIPTION

4.11.4.2 Changing rarh

The micros which or changes of rarh, other than those previously

mentioned are:
micro description

RARH:N(FT) rarh reéeives a four-bit literal (FT)

RARH:S4 rarh receives sbus(4-7)

" RARH:S12 rarh receives sbus(12-15) .
RARH:S20 rarh receives sbus(20-23)
RARH:S28 rarh receives sbus(28-31)
RARE-DEC rarh receives rarh minus one
RARH-INC rarh receives rarh plus one

4.11.4.3 Changing rarl

.

The micros which change rarl, other than those previously mentioned

are:
micro description
RARL:S@ rarl receives sbus(0-7)
RARL:S8 rarl receives sbus(8-15)
RARL:S516 rarl receives sbus(16-23)
RARL:S24 rarl receives sbus(24-31)
RARL-DEC rarl receives rarl minus one
' RARL-INC rarl receives rarl plus one

4.12 CLOCK CONTROL

A preprocessor to the firmware assembler determines what speed each
firmware step should be, by examining the microcode source. The microcoder
seldom has reason to explicitly state the clock speed. For completeness,

the clock micros are listed below:

micro © description

c(VF) very fast clock - 105 nanoseconds
C(HF) ~ “half fast clock - 125 nanoseconds
c(HL) half long clock - 145 nanoseconds
c(VL) very long clock - 175 nanoseconds

CUSTOM PROCESSOR TECHNICAL DESCRIPTION

PAGE 4-22

pun Eam pEm pEm pER

e T

g ey pEn e

SECTION FOUR FIRMWARE DESCRIPTION

4.13 STACK CONTROL

The return stack may contain up to seventeen firmware return
addresses. The return stack operates as a last-in-first-out (LIFO)
mechanism, allowing sufficient levels of nesting for most applications.

The coder may push firmware addresses onto the return stack in one of
three ways:

micro description

. PUSH-D return stack receives dbus(@2-15); i.e., an abso-
lute address which occupies the dbus in this step.

PUSE-R return stack receives an if bank address relative
to the value in the next-address field but may
differ from the next address field in the five
least significant bits.

PUSB-HWIA when a hardware detected error occurs, an unpro-
grammed branch to firmware location zero occurs.
The hardware remembers what location was otherwise
d:stined for execution in a register called hwia.
This micro allows the captured address to be pla-
ced onto the return stack so that the routine
which was interrupted may be resumed.

4.14 NEXT-ADDRESS CONTROL

Pive fields control which of the 16384 firmware locations is next to

be executed. Before each field 1s discussed, it is first necessary to
expose some general information.

Firmwvare steps are identified by a 14-bit "control store address”
(CSA) and optionally a mnemonic 1label. In the discussion that follows,
"CSA®" is used instead of "CSA/LABEL" but it should be understood that

restrictions applicable to a CSA (e.g., must be an IF-bank address) are
equally applicable to the label.

The 16384 location firmware array is divided into two banks. The first
8192 1locations, 0000 through 1FFF (hex), constitute the ELSE bank. The
last 8192 locations, 2000 through 3FFF (hex), constitute the IF bank.

Firmware sequencing in the custom processor is never implicitly nor
arithmetically determined. Every step specifies its successor or choice of
successors. There are numerous vays in which the coder may specify what
firmware location is next to be executed and they are best exposed
by explaining each of the five fields which control firmware sequencing:

CUSTOM PROCESSOR TECHNICAL DESCRIPTION . PAGE 4-23

—

SECTION FOUR FIRMWARE DESCRIPTION

field explanation

BI branch invert - a one-bit field which controls the
polarity of the test condition.

NA next address - a thirteen-bit field which, in its
simplest form, specifies which of the 8192 loca-
tions of the bank specified by BI is next to be
executed, as in the micro GOTO(STHEEDEVIL).

TC test condition - a seven-bit field which allows the
coder to specify that the next step shall be a loca-
tion in the IF barnk or a location in the ELSE bank
as determined by the result of testing one of seven-
ty-two unary indicators
(e.g., IF-I-2RO(SFAIR,SRAIN)

In this example the addresses of SFAIR and $RAIN are
required to have the following relationship:

1. SFAIR must be in the IF bank
2. SRAIN must be in the ELSE bank

3. Their addresses may not be different except
in the most-significant bit (from 1 and 2
above) and the four least-significant bits.
(i.e., if SFAIR is in a particular "block"
of sixteen locations in the IF bank, then
SRAIN must be in the corresponding sixteen-
location block in the ELSE bank.

The result of all this is that if the arithmetic in-
dicator I-ZRO was on, $FAIR will next be executed;
if the arithmetic indicator I-ZRO was off, SRAIN
will next be executed.

MK mask - a four bit field wvhich serves many purpo-
ges. One of the purposes is best descridbed here
while the others can wait for the BR field:

Vhen the coder has specified a simple choice
between IF and ELSE, MK identifies which of
the four least-significant bits of the alter-
native addresses differ. For instance if, in
the previous example SFAIR had been allocated
CSA 2340 and $SRAIN. had been allocated CSA
034F, the assembler (not the coder) would set
the value of the MK field to F indicating
that all four least-significant bits of the

-alternative addresses differ and the hardware
does the rest.

CUSTOM PROCESSOR TECHNICAL DESCRIPTION PAGE 4-24

SECTION FOUR FIRMWARE DESCRIPTION

BR branch - a four-bit field which determines how the
succeeding firmware step shall be chosen. It permits
the coder a veritable plethora of mechanisms for de-
ciding the value of the next CSA as follows: .

mechanism description
GO-TO($SNOW) ' gpecifies an unconditional suc-
cessor
o) IF-224(2345#,0452F) specifies a two-way choice as a

function of the value of zbus bit
24. If Z24 13 on, then 2345 1is
executed next; otherwise, 452 is
executed next.

RETURN specifies that the succeeding step
is that CSA at the top of the
geventeen-level return stack.

RETURN’'(9) specifies that the succeeding step
is that CSA at the top of the
gseventeen-level return stack
but with the two-weight bit and
the four-weight bit set equal to
zero (masked by FFF9). Here the MX
field contains the four least-
significant bits of the mask and
the hardware sets the other mask
bits to ones.

IP-ACK RETURN-OR($DONT) specifies that the succeeding
step is that CSA at the
top of the seventeen-level re-
turn stack only if the ACK indi-
cator is on. If the ACK indicator
is off, the succeeding step is
SDONT. Note that SDONT must be
in the ELSE bank, thus it is ad-
vised that CSA's pushed onto the
return stack be if-bank addres-
ses only. Note also that a condi-
tional masked return of the form:
IFP-ACK RETURN'-OR(A,SDONT)
is also provided (a conditional
masked return.

CUSTOM PROCESSOR TECHENICAL DESCRIPTION PAGE 4-25

-

— g

——

SECTION FOUR

FIRMWARE DESCRIPTION

BR-ARITH(9,3210#)

BR-FLAGS(F,3450#)

Bﬁ-PB(D.ZABE#)

CUSTOM PROCESSOR TECHNICAL DESCRIPTION

specifies that the succeeding
step is to be one of four as a
function of the condition of two
arithmetic indicators; namely,’
I-SGN and I-ODD. If they are
both off, location 3210 will dve
next executed; if I-SCN is off
and I-ODD is on, location 3211
will be next; if I-SCN is on and
I-0DD is off, location 3218 will
be next; if they are both on,
location 3219 will be next. Note
that this mechanism permits the
exanination of two other arith-
metic indicators. By specifying
a mask with a four-weight bit,
I1-2R0 may be examined, and by
specifying a mask with a two-
weight bit, the dynamic alu car-
ry may be examined. Note also
that a conditional version, of
the form:

IFP-2'Z BR-ARITH(4,$CLOUDY)

is also provided.

specifies that the succeeding
step is to be one of sixteen

in the block of if-bank loca-
tions starting at 3450 as a
function of four temporary flags
(to, t1, t2, and t3). Note that
a conditional version of the
form:

IF-POOF BR-FLAGS(6,$BANG)

is also provided.

specifies that the succeeding
step is to be one of eight in
the block of addresses starting
at location 2ABO as a function
of pbus bits 9, 1, and 3. Note
that a conditional version of
the form:

IF-FLAGP1 BR-PO(E,S$SWIT)

is also provided. Note also that
the BR mechanism may examine the
other three pbus nibbles with e-
qual alacrity.

PAGE 4-26

SECTION FOUR

FIRMWARE DESCRIPTION

BR-S8(5,SSLEET)

BR-SCALE(F, $SUNNY)

BR-TYPE(3,222C#)

CUSTOM PROCESSOR TECHNICAL DESCRIPTION

specifies that the succeeding
step i8 to be ome of four in

the IF-bank block in which
SSLEET resides, as a function of
sbus®9 and sbusiti. Note that a
conditional version of the form:
IF-NOT-OPA-WR BR-S8(A,S$SLUSH)

is also provided. Note also that
the BR mechanism is available to
examine any of the other seven
sbus nibbles.

specifies that the succeeding
step is to be one of nine in
the IP-bank block in which
$SUNNY resides as a function of
the leading-zero indicators
(ind 10 through 13). In this
case the number of destinations
is limited, not by the mask, but
by the fact that the leading
gero indicators may store only
nine unique values. Note that a
conditional version of the form:
IF-RUPT BR-SCALE(F,S$SMILE)

is also provided.

specifies that the succeeding
step is to be one of 4 (222C,
222D, 222E, or 222PF as a func-
tion of the two type-register
bits. Note that other mask
values allow examination of
I-ODD and sbus@@. Note also that
a conditional version of the
form:

IF-NOT-BREAK BR-TYPE(F,S$SPLASH)
is also provided.

PAGE 4-27

e X

N

T

SECTION FOUR

FIRMWARE DESCRIPTION

BR-PROC(2,S$BEGIN)

CUSTOM PROCESSOR TECHNICAL DESCRIPTION

specifies that the succeeding
step is to be one of 256 IF-bank
locations. The SBEGIN CSA is
used as a base address. A substi-
tution of the eight least-signi-’
ficant bits emanates from an op
code decode unit. This unit is,
in essence, a table look-up me-
chanism which contains sixtzen
tables selected by the mask
field (in this case, table #2

is selected). The value -
from the table becomes the out-
put of the opcode decode unit.
This splatter mechanism is in-
tended to permit 16 different
interpretations of procedure
stream bytes (e.g., based upon
position‘.

Vhen this micro becomes part of
the combinatorial micro "RNI"

the existance of a BREAK over-
rides the splatter on pbus, and
instead performs a 16-way branch
on the four sources of BREAK.

In this application, the first

16 locations of the splatter

nust be reserved.

PAGE 4-28

[
[

[
(
{.
\
[
\
l
l
l
|
|
[
[
[
(

-

SECTION FOUR ' FIRMWARE DESCRIPTION

4.15 AVAILABILITY

The custom processor has many availability features which insure that
processing proceeds error free. Some of these features test parity of
incoming data, some check integrity data delivered to the custom processor
from other system elements, some test the validity of the control-store
array, and some generate parity to accompany output data, so that other

system elements may verify that the data sent arrived intact. The list of
availability features follows:

1. data and procedure parity checks - whenever information is
sourced from an input data register (e.g., Z:INRA) or from
a procedure buffer (e.g.,PTAKE!), parity is checked on the
appropriate bytes.

2. data and procedure edac errors - whenever information is
sourced from an input data register (e.g., Z:INRB) or
from a procedure buffer (e.g., D:PB1), any uncorrectadle
memory error associated with the information is detected.

3. stack checks - whenever return addresses are added to (e.g.,
PUSH:$SHOVR) or removed from (e.g.,RETURN) the stack, a full

or empty condition, respectively, may optionally be treated as
an error. -

4. control-store array checks - a parity bit is imbedded in each
32 bits of control-store data. During each firmware step exe-
cuted, four separate parity checks are performed to validate
the integrity of the control-store read-out.

5. parity generation - parity generation for the control-store
array is performed by the assembler. Parity generation for
-data destined for other system elements via outr is performed
when outr is loaded from the dbus. In order to verify the inte-
grity of the parity generation and checking circuits, a mecha-
nism is available in test mode for generating both even and odd
parity.

6. self testing - as part of every system initialization, the cus-
tom processor executes a sequence of firmware routines whose
purpose is to detect any hardware fault, either in the proces-
sor or in the memory subsytem. This routine utilizes the inte-
grity features mentioned above and take advantage of the syn-
drome register and the hardware interrupt register. The syn-
drome register captures the reason code for any bhardware
detected error and the hardware-interrupt-address register

captures the next address intended had the interrupt not oc-~
curred. : ' :

CUSTOM PROCESSOR TECHNICAL DESCRIPTION PAGE 4-29

| o gy e

SECTION FIVE THE NANOSECONDS

THE NANOSECONDS

5.0 THE NANOSECONDS

The assembler rejects micro-op comﬁinations which would result in a
clock speed ouside the range of the longest clock setting. The purpose of
this section is to help explain how the "gear"™ is selected.

The diagram of 5-1 1is a representation of the
oriented toward the subject of nanoseconds. In essence, the assembler
contians a model which depicts the information of figure 5-1 along with a
definition of each clock speed (i.e., 105ns, 125ns, 145ns and 175ns§.

custom processor

The subjJect shall be approached as follows:
first, a detailed explanition of the symbols used in figure 5-1;

second, an explanation of why some paths have multiple symbols and,
in general, how the reader handles choices;

and last, an example of how one converts a set of micros into a number
of nanoseconds.

5.1 the symbology

Clearly, for performance reasons, it is desirable for every step to be
a VF step. PFigure 5-1 1illustrates those paths which might prevent the
desirable but does not 1illustrate those paths which cannot impact the
clock. An example of this point 1s shown in the table labeled “"next
address”". Notice that only two of the seventy-two test conditions are
listed. This is because the other seventy will each succeed at performing
its appointed function (bank selection) in no more than 185ans.

Values in squares or non-squares are nanoseconds and abide by the

' following rules:

{. squares contain the number of nanoseconds from the beginning of
the firmware step until the data, at the point where the square
is located, is valid. This number means something only if the micro
combination require the data path and can be ignored otherwise.

2. non-squares (mostly circles) contain the number of nanoseconds the
data must pay in order to propagate through.

CUSTON PROCESSOR TECHNICAL DESCRIPTION PAGE 5-1

SECTION FIVE THE NANOSECONDS

5.2 the choices
Choices are essentially of two types:

1. depending upon the micro combination, the nanosecond value fron
the beginning of the firmware step may or may not be determined.
A simple example of this is both the input and the output of the
box called "PCB". Its input is valid at nanosecond 16 unless the
aram address mux has the gbus selected in which case the output of
the aram address mux is valid 6ns later than the zbus. That means

. that the output of the PCB box is valid at nanosecond 38 if the
aram address mux isn't selecting the zbus but if it is, then the
output of the PCB box is valid 15ns after the zbus.

2. a non-square contains conditions. A simple example is the path
through the alu oval. If the alu is required by the F:... micro
to perform an arithmetic operation, then the data must pay 67.5ns
to pass; otherwise the cost is only 25ns.

5.3 putting it together
In the step:

R:A’'S:B(0,8)
F:ADD
IND:DBLV

The <first micro specifies the two alu sources to be the two ports of
the register file. The second micro specifies that the alu shall add. The
third micro specifies that the arithmetic indicators shall be loaded.

In figure 5-1, the rectangle labeled "ram”" is signified to have it=s
output valid at nanosecond 16 (from the beginning of the step). From
there, the alu is encountered where, because an add is to be performed,
the 16 must be 4increased by 67.5ns. Leaving the alu and heading for the
indicators, it 1s necessary to select another addend which, since the alu
operated arithmetically, 1is 25.5ns. The subtotal (16+67.5+25.5) is 189ns
which, to arrive at the total, must be increased by 1¢% to account for

non-gilicon delays (i.e., media). This yields 119.9 which requires a clock

setting of 125ns namely, an HF "box".

CUSTON PROCESSOR TECHNICAL DESCRIPTION PAGE 5-2

SECTION FIVE THE NANOSECONDS

In a more complicated step, where there are multiple end points, it is
necessary to analyze each path in order to discover the longest one. The

%eggth of the step is determined by the longest path. An example is shown
elow: .

MICRO CUMUL
RD-4B(ADRA) 0.0
RAMAD:RAR 16.0
_ . S:ARAM'Z . 56.0
D::(K.A.A.A' '34) ’ 62.0
OUTR:D 90.0%
R:D'S:A(3) PF:ADD Y:F'BQ:FQSL(2,0PEN) 146.5%
2:Y 131.5
V:2 136.5
IND-D:2Z 146.0
OPC'D:PO 48.0%
S:ARAM'Z (again) 143.5
H:S 148.5%
ADRB:S 159.0%
IF-NOT-BREAX BR-PROC(7,$NOWAY) 133.5#

%zend point

In this step, RAMAD is valid at 16, the .ARAM readout is valid on the
sbug at 56 , and the dbus receives twenty-four bits of the sbus at 62 and
eight bits at 38 from the literal source. The first eand point, OUIR, is
encountered at 90 (62+28). F3's content is added to the dbus data in the
alu shifted, along with Q, and written into the ram yielding 146.5
(62+67.5+17) for <the second end point. The alu output is sent to the zbus
at 131.5 (62+467.5+2) and to the third end point, the V register at 136.5.
Seven bits of the dbus are compared to seven bits of the zbus and sent to
the fourth end point, IND7, at 146 (from £ at 151.5 + 14.5). The zbus 1is
sent to the sbus unshifted at 143.5 (131.5+412). From there the fifth end
point (H) receives the sbus at 148.5. The sixth end point (ADRB) receives
the sbus (148.5) at 159.0. The last end point is the next firmware address
at 133.5 (68.5+65). Thus, loading ADRB is the longest path and with the
addition of 10% (175.9) requires, the longest gear or a VL "box".

CUSTON PROCESSOR TECHNICAL DESCRIPTION PAGE 5-3

APPENDIX A FIRMWARE DEVELOPMENT FACILITY

THE FIRMWARE DEVELOPMENT FACILITY

-

This appendix contains a description of the firmware development

facility available for use with the 32-bit Custom Processor. The appendix
is divided into three parts:

A general overview

The menu
A description of each menu item

The Firmware Development Facility (FDF) is an equipment which makes

firmware, coded and assembled under RTL, easy to checkout. The FDF
consists of: .

A separate five card cage with an independent power supply
A processor board with a Z80 processor (BF4RMP)
A SILO board with a 4996 location SILO (BF4TFU)

A 16,384 by 128 location control store PROM substitute (BF4CMX)
including four memory array daughter boards (BS4CS4)

A terminal/keyboard unit (e.g., 7300)
Appropriate interconnecting cables

Once the {firmware bhas been tested and "burnt®™ into PROMs, the FDF -
equipment 1listed above 1is no longer required and is never shipped to the
end-user. The resulting CUP product connects to the MEGABUS System Bus
through the Custom Memory Subsystem and the Custom MECABUS Adapter unit.

Figure A-1 is a diagram of the interconnections among the elements
which comprise a firmware checkout "test bed".

CUSTOM MEMORY SUBSYSTEM TECHNICAL DESCRIPTION PAGE A-1

»

APPENDIX A FIRMWARE DEVELOPMENT FACILITY

! { i
[1 i e +
| 1 F 1 16K BY 128-BIT CONTROL STORE ! !
! FDF I D 1 l—=+ |
! I P 1 [|
{ i] cl 1
| I B | [|
| POWER I A 1 [I | e TO
{ 1 ¢ | 280 PROCESSOR BOARD e Y s)
| I K 1 et | i1 7300
| 1 P 1 t 1 |
| SOURCE I L 1 bl | !
| I A (| ! HARD
{ I N | ==+ +-=>
! I B 1 4K-BY-46-BIT SILO BOARD ! dl COPY
| ! | [
! | ! [|
I
al |
i I L i | I |
{ LOCAL I 0 1 I |
! 1 C 1 32-BIT CUSTOM PROCESSOR i |
1 I A | P +
| BUS I L 1
| ! !
1 { B
{ POWER I 0 1 i
1 i1 8 | CUSTOM MEMORY CONTROLLER : ----- +
i i ! {
! | [
!
!
|] | I
! i ! R i
! I M 1 CUSTOM MEGABUS ADAPTER R + CUSTOM
| MEGABUS | B | | PROCESSOR
! v G v FIRMWARE
i ~ A - CHECKOUT
! 1 B 1 1 SYSTEM
I POWER [I | 1 CONFIGURATION
! I 8 1 OTHER MEGABUS SYSTEM ELEMENTS 1
! | ! 1 FIGURE A-1
! | |
a: Cables (2) CUP to SILO (@4910202-001, 04910203 201)
b: Cable (1) SILO to Z80 (94910230-001)
c: Cable (1) 280 to MEMORY (60128806-001)
: Cables (4) CUP to MEMORY (94910204-001)
e: Cable (1) 280 to TERMINAL (68156745-001) for RS232

(66156675-001) for RS422

CUSTOM MEMORY SUBSYSTEM TECHNICAL DESCRIPTION PAGE A-2

APPENDIX A FIRMWARE DEVELOPMENT FACILITY
COMMAND DISPLAY
? Summary of commands
-n Silo location:
-n YYYY = ZZZZZZZZ
where n = silo offset from stop point, in decimal
(6 - 4095+, default n = current value)
_ yyyy = firmware address
zzzzzzzz = content of zbus at that address -
NBLK Next 23 locations in SILO
- If offset of @ is reached, "THE END" is displayed.
nNEXT Next n locations in SILO
(n=1 - 4000; default = 1)
If offset of 0 is reached, "THE END" is displayed.
PBLK Previous 23 locations in SILO
If offset of 4008 is reached, "THE END" is displayed.
nPREV Previous n locations in SILO
(n=1 - 4000; default = 1)
If offset of 4000 is reached, "THE END" is displayed.
nSCAxxxx Scan SILO for a firmware address = xxxx.
Start scanning at an offset of -n (default = 4008).
Display each match until either:
an offset of zero is reached ("THE END" is displayed) or
23 matches have occurred (hitting the space bar will
display the next set of matches; hitting any other
key will execute that command.)
nSCDxxxxxxxx Scan SILO for a data = xxxxXXXX.
Start scanning at an offset of -n (defanlt = 4000).
Display each match until either:
an offset of zero is reached ("THER END" is displayed) or
23 matches have occurred (hitting the space bar will
display the next set of matches; hitting any other
key will execute that command.)
LEFT ARROW same as PREV
RIGHT ARROW same as NEXT
DOWN ARROW same as NBLK
UP ARROW same as PBLK

CUSTOM MEMORY SUBSYSTEM TECHNICAL DESCRIPTION PAGE A-3

A

[——

‘s

APPENDIX A FIRMWARE DEVELOPMENT FACILITY
A ADRAaxxxxxxxx ADRBaxxxxxXX¥X ADRP=XXXXXXXX PHST=XXXXXXXX
AA ADRA = xxxxxx*x
AB ADRB=xx00xxxx
AP ADRP =xxxoxexx
F Fo/8 F1/9 F2/A F7/F

AAXXXXXX XXXAAXXX XXXXXXXX cee AAAXXXKX
WLXAXAXKX~ XXXXXXXX XXXXXAXK cee AWXXXKKKX
- Fn F register #n wvhere n = 8 through F (alterable by =
followed by input data)
Fn=xooooexx
H H register (alterable by = followed by input data)
H=xxxxxxxx
I Input registers and syndrome
INRA=xxxxxxxx INRB=xxxXxXXX SYND=XxXXXXXXX
Mn Main memory location #n: (n = 0 through FFFFFFFF)
Mn = xxxxX}XXXX
Note: If location #n is nonexiestent or otherwise
.inaccessible, the value "xxxxxxxx" displayed
is the current content of register OUIR.
No error indication is given.
M. Main memory location most recently displayed:
Mn = xaooooex
M+ Next doubleword in main memory:
Mn = xxxxxxxx
M- Previous doubleword in main memory:
Mn =xo0oxxxx
OP OP=xxxx RBR'RAR=xxxx I=bbbbbbbbbbX
OP = OPA, OPB, OPC, OPD (1 hex digit each)
RBR'RAR = RBER (1 digit), RARH (1 d1§1t). RARL (2 digits)
I = Indicators @ through 9 (10 bits),
Indicators 10 through 13 (1 digit)
PB Procedure bytes (right justified)
PB=xxxX
PH PCTR history:
PHST=x0xxxxx
Q

Q register (alterable by = followed by input data)

Q=xxx0XXXX

CUSTOM MEMORY SUBSYSTEM TECHNICAL DESCRIPTION PAGE A-4

oy

APPENDIX A FIRMWARE DEVELOPMENT FACILITY
R Ro/8 R1/9 R2/A R7/F

XXXXXXXX XXXXXXXX XXXXXXXX cee XXAXXXXX

IXXXXXXE XXXXXXXX XXXXXXXX cee TAXXAXXX
Rn

= XXX

o

n*

n*S

Byyyy

- ——Display all active Breakpoints

ARAM specified by n where n may be 800 through FFF
(Alterable by = followed by input data)
Rn =xxxxxxxx

ARAM location most recently displayed:
Rn=xooexxx

Next location in ARAM:
Rn=xxxxxx%X

Stack register:
S =xxxxxxXXX

V register
V=xxxxxxxx

Alter most-recently-displayed "alterable" register
to equal xxxxxxxx. (Alterable registers are:
AA, AB, AP, Fn, H, Mn, M+, M-, Q, Rn, R+, R-)

Define "EPILOG", a list of preselected commands which

will be executed when any STOP is encountered.
Format:

:COMMAND, COMMAND, COMMAND,etc.
No blanks allowed between a comma and the next command.
80 characters maximum.
see also \,/.”~, and ~ keys.

Display EPILOG and allow corrections.
see also \, /, ©~, and ~ keys.

Retrieve EPILOG #n (n = 2 through 6)

Save current EPILOG as EPILOG #n (n = 2 through 6)
Skip next character of EPILOG

Skip previous character of EPILOG being corrected
Insert blank into EPILOG being corrected

Delete character of EPILOG being corrected

Repeat previous m EPILOG commands n times
(m,n=1 through 9)

Specify Breakpoint at firmware address = yyyy
z = D: Disable capturing of history in.SILO
z = E: Enable capturing of history in SILO
z = H: Address Halt not exclusive of D or E

Clear Breakpoint at firmware address = yyyy

NOTES:

1 - Address is specified by last 14 bits of yyyy.
2 - Breakpoints are armed only if command
RONB or RUNL is used.

CUSTOM MEMORY SUBSYSTEM TECHNICAL DESCRIPTION PAGE A-5

APPENDIX A FIRMWARE DEVELOPMENT FACILITY
CLER Clear display screen (not breakpoints, addresses, etc)
E Execute (current) EPILOG
FWRAM CUP uses firmware in external RAM
State appears on line 25
FWPROM CUP uses firmware in PROMs (mounted on CUP boards)
State appears on line 25
INIT Generate a Master Clear in the CUP.
[c;l—clear] Breakpoints are left in the state they were in.
Jxexx Transfer firmware control to address xxxx
nRUNB Place CUP in RUN mode, prepared to stop after the nnn-th
[F6] occurrence of a breakpoint halt. Default n = 1.

The contents of the EPILOG-preselected registers will

then be displayed.

RUNT Place CUP in RUN mode, propared to stop aat the first
[F8] occurrence of a breakpoint halt, or the writing of the

n-th SILO entry. (default = 4000)

The contents of the EPILOG preselected registers will

then be displayed.

RUNN Place the Cup in RUN mode, and continue in that mode until
(Transmit) the "STOP" or "INIT" is actuated.
n?TE? Cause CUP to execute nnn firmware steps (default n = 1).
F4
STOP Put the COP in STOP mode. The contents of the
[(F2] EPILOG-preselected registers will then be displayed.

Note: The only functions allowed when not in STOP mode

are "STOP" and "INIT".

XS+ Enable the CUP to stop when the external signal fed into
the FDF goes from the low state to the high state.
XS- . Enable the CUP to stop when the external signal fed into
the FDF goes from the high state to the low state.
XSD Disable external stop.
" v%yansmit present FDF screen display to hard-copy printer,
attached. Line 25 status is included, but without

underscores, intensity variations, blinks, etc.

CUSTOM MEMORY SUBSYSTEM TECHNICAL DESCRIPTICXN

PAGE A-6

APPENDIX A FIRMWARE DEVELOPMENT FACILITY
COMMAND MEANING (TO DISPLAY AND CHANGE WRITABLE FIRMWARE ARRAY)
Cxxxx. Display location xxxx, packed format, ready to modify
Cxooxx\ Display location xxxx, by fields, with headings
Cxxxx Display location xxxx, by fields
. Redisplay in field format, with headings
LEFT ARROW Move cursor to prévious field, ready to modify
RIGHT ARROW Move cursor to next field, ready to modify
. Revert to packed format, ready to modify
UP ARROW Move to previous location
DOWN ARROW Move to next locétion
LOAD Load firmware into RAM. :

[Fi1o]

After this command, actuate INITIALIZE to clear the CUP.
Line 25 will display "LOAD" until "INIT" is pressed.

-~

CUSTOM MEMORY SUBSYSTEM TECHNTCAL DESCRIPTION PAGE A-7

