HONEYWELL ,

*
MULTICS COBOL
REFERENCE
MANUAL

€

>

SOFTWARE

MULTICS COBOL
REFERENCE MANUAL

SUBJECT
Description of Multics COBOL Language Rules, Syntax, Formats, and Usage

SPECIAL INSTRUCTIONS

This manual supersedes AS44, Revision 1, dated December 1976, and its
addenda, AS44-01A, dated October 1977, AS44-01B, dated January 1979,
AS44-01C, dated May 1979, AS44-01D, dated September 1979, AS44-01E, dated
December 1979, and AS44-01F, dated July 1981. Refer to the Preface for
“Significant Changes.’ .

The manual has been extensively revised and reorganized. Throughout the
manual, change bars in the margins indicate technical additions and asterisks
denote deletions.

SOFTWARE SUPPORTED
Multics Software Release 10.2

ORDER NUMBER
AS44-02 December 1983

Honeywell

PREFACE

This manual is published as a reference guide for programmers and systems
analysts whose programs written in the COBOL language are to be compiled and
executed in the Multics environment. It is designed to provide a formal definition
of the COBOL language as specified in American National Standard COBOL X3.23-1974
and implemented for the Honeywell Multics computer systems. It contains formats,
syntax rules, and general rules for the construction of a working COBOL source
program. The manual is organized on the basis of a functional processing concept
in a manner similar to the standard specifications from which it is derived.

Areas in this manual which are enclosed in boxes indicate Multics
extensions to the American National Standard COBOL. Use of these
extensions in COBOL source programs intended to be compiled
interchangeably by one or more COBOL compilers may lead to different
compilation and/or execution results.

Section 1 describes the syntax rules used in this manual. Section 2 presents
a general treatment of all COBOL language concepts. Section 3 provides an overall
outline of the COBOL divisions and their uses. Section U4 explains the reference
format used in COBOL programming.

Section 5 describes the Control Division, a Honeywell extension that allows
the user to specify default values for the current compilation of the source
program. Section 6 describes the Identification, Environment, and Data Divisions
in the nucleus; the Procedure Division in the nucleus is described in Section 7.

The standard defines a Nucleus and eleven functional processing modules:
Table Handling, Sequential I-0, Relative I-0, Indexed I-0, Sort-Merge, Report
Writer, Segmentation, Library, Debug, Inter-Program Communication, and
Communication. Each module contains either one or two levels. In all cases the
lower level is a proper subset of the higher level. The Nucleus contains language
elements that are necessary for internal processing.

Section 8 describes the Table Handling module which contains the language
elements necessary for: (1) the definition of tables, (2) the identification,
manipulation and use of indices, and (3) reference to items within tables (two
levels are provided).

The information and specifications in this document are subject to change without notice. This
document contains information about Honeywell products or services that may not be available
outside the United States. Consult your Honeywell Marketing Representative.

©Honeywell Information Systems Inc., 1984 File No.: 1L23 AS44-02

Section 9 describes the Sequential, Relative, and Indexed I-O0 modules. The
Sequential I-0 module contains the language elements necessary for the definition
and access of sequentially organized files (two levels are provided). The Relative
I-0 module provides the capability of defining and accessing mass storage files
in whichrecords are identified by relative record numbers (two levels are provided).
The Indexed I-O module provides the capability of defining mass storage files in
which records are identified by the value of a key and accessed through an index
(two levels are provided).

Section 10 describes the Sort-Merge module that allows for the inclusion of
one or more sorts in a COBOL program (two levels are provided).

Section 11 describes the Segmentation module which provides for the overlaying
at object time of Procedure Division sections (two levels are provided).

Section 12 describes the Library module which provides for the inclusion
into a program of predefined COBOL text (two levels are provided).

Section 13 describes the Debug module which provides a means by which the
user can specify a debugging algorithm--the conditions under which data and
procedure items are monitored during execution of the program (two levels are
provided).

Section 14 describes the Inter-Program Communication module which provides
a facility by which a program can communicate with one or more other programs
(two levels are provided). .

Section 15 describes the Communication module which provides the ability to
access, process, and create messages or portions thereof, and to communicate
through a Message Control System with local communication devices (two levels
are provided).

Section 16 describes the Report Writer module which provides for the
semi-automatic production of printed reports (two levels are provided).

Appendix A contains a 1ist of reserved words that may not be employed as
user-defined words.

Appendix B is a glossary of terms used in this manual. Many terms, such as
data-name and identifier, have similar meanings but very specific differences in
the technical sense, of which the user must be aware. The exact meaning of all
such terms, which is the intended meaning each time the word is used in this
manual, is contained in the glossary.

Appendix C contains ASCII and EBCDIC collating sequence and bit configuration
charts.

Appendix D describes FIPS leveling.

Other manuals that contain related supporting information are:

Multics COBOL Users' Guide, Order Number ASUY3

Multics Programmer's Reference Manual, Order Number AG91

Multics Commands and Active Functions, Order Number AG92

iii ASU4-02

7

*

Multics Subroutines and I/0 Modules, Order Ndmber AG93

Significant Changes In ASU44-02

1.

Material which constitutes an extension to the COBOL Standard is enclosed
in boxes.

The data alignment rules have been rewritten.

Delimited scope statements (a feature defined in the new COBOL standard)
were added to Multies COBOL,

Delimited scope statements are derived from existing statements (such
as ADD) which may be followed by conditional phrases (such as ON SIZE
ERROR) and which become conditional/imperative statements accordingly
as the conditional phrase is present/absent. These statements become
delimited scope statements if they are terminated by explicit scope
delimiters (in the case of the ADD) statement this consists of the
reserved word END-ADD). For example:

ADD A TO B
ON SIZE ERROR DISPLAY "FOOEY"
NOT ON SIZE ERROR DISPLAY "GOODY" END-ADD

A delimited scope statement is an imperative statement. It may contain
or be contained in other delimited scope statements.

The table which follows summarizes the delimited scope statements,
which were added to Multics COBOL:

Statement Conditional Phrase Scope Delimiters
ADD ON SIZE ERROR END-ADD
SUBTRACT ON SIZE ERROR END-SUBTRACT
MULTIPLY ON SIZE ERROR END-MULTIPLY
DIVIDE ON SIZE ERROR END-DIVIDE
COMPUTE ON SIZE ERROR END-COMPUTE
READ AT END END-READ
READ INVALID KEY END-READ
WRITE INVALID KEY END-WRITE
WRITE AT END-OF -PAGE END-WRITE
REWRITE INVALID KEY END-REWRITE
DELETE INVALID KEY END-DELETE
START INVALID KEY END-START
RECEIVE NO DATA END-RECEIVE
RETURN AT END END-RETURN
STRING ON OVERFLOW END-STRING
UNSTRING ON OVERFLOW END-UNSTRING
PERFORM END-PERFORM
IF END-IF
SEARCH END-SEARCH

iv AS44-02

ACKNOWLEDGMENT

This acknowledgment has been reproduced from the CODASYL COBOL Journal of

Development 1981, as requested in that publication, prepared and published by
the CODASYL Programming Language Committee.

"Any organization interested in reproducing the COBOL report and
specifications in whole or in part, using ideas from this report as
the basis for an instruction manual or for any other purpose, is free
to do so. However, all such organizations are requested to reproduce
the following acknowledgment paragraphs in their entirety as part of
the preface to any such publication. Any organization using a short
passage from this document, such as in a book review, is requested to
mention "COBOL" in acknowledgment of the source, but need not quote
the acknowledgment.

COBOL is an industry language and is not the property of any
company or group of companies, or of any organization or
group of organizations.

No warranty, expressed or implied, is made by any contributor
or by the CODASYL Programming Language Committee as to the
accuracy and functioning of the programming system and language.
Moreover, no responsibility is assumed by any contributor,
or by the committee, in connection therewith.

The authors and copyright holders of the copyrighted material
used herein

FLOW-MATIC (trademark of Sperry Rand Corporation),
Programming for the Univac (R) I and II, Data
Automation Systems copyrighted 1958, 1959, by Sperry
Rand Corporation; IBM Commercial Translator Form
No. F 28-8013, copyrighted 1959 by IBM; FACT, DSI
27A5260-2760, copyrighted 1960 by
Minneapolis-Honeywell

have specifically authorized the use of this material in
whole or in part, in the COBOL specifications. Such
authorization extends to the reproduction and use of COBOL
specifications in programming manuals or similar publications."

v ASU4-02

CONTENTS

Section 1 Notation Used in Formats and Rules
Definition of a General Format
Syntax Rules « o &
General Rules « « « « « &«
Elements e e e e e e e e e e
Words . . « ¢« ¢« ¢ v « o o o o o
Level-Numbers

.

Brackets, Braces: end éheiee Indicators

Ellipsis . o .
Format Punctuation Characters
Special Characters ..

Section 2 Language Concepts e e e e e
Character Set . . .
Uppercase and Lowe"case Letters
Separators e e e e e e
Character- Strings e e e e e e
COBOL Words . . e e e e e e
User-Defined Hords e e e e e e e
Condition-Name
Mnemonic-Name
Paragraph-Name
Section-Name
Other User-Defined Words . . .
System-Names+ ¢ « o
Reserved Words
Key Words « . . .
Optional Words &
Connectives e e .
Special Reslsters
. Figurative Constants . .
Special-Character Words . .
System-Names e e e e
Literals
Nonnumeric Literals
Nonprinting Characters
Numeric Literals . .
Figurative Constant Values . .
PICTURE Character-Strings .
Comment-Entries
Computer Independent Data Description
Logical Records and Files . . .
Physical Aspects of a File

Conceptual Characteristics of a File

Record Concepts e e e s
Concept of Levels
Classes of Data

Selection off Character Representation and

Radix . . e e e e e e e e
Algebraic Signs .. . e e
Standard Alignment Rules . .

Item Alignment for Increased Objeot

Efficiency .
Multies COBOL Data Allocation Rules
Uniqueness of Reference
Qualification
Subscripting
vi

.

e o o e o

« o e e & o o

.

.

.

.

o

)]
1]

(4]

— b b b wd D wod b wd —d b
WW N NN = e et

-, m OOV VNITUVTTNNNIUVNEWWWN == =

AS44-02

CONTENTS (eont)

Page
Indexing « + + « + o o o o e e e e e 2-21
Identifier « . « « « « ¢ o o o e e e 2-22
Condition-Name . e e e . 2222

Expliecit and Impliecit Specifiﬂations . . . 2223
Procedure Division References = 2-24
Transfers of Control . e . . . 2224
Explicit and Impliﬂlt Attributes . e . . 2225

External Switeh . . . e e e s e e e . . 2=26

Section 3 Overall Outline of the COBOL Divisions 3-1

General Description of COBOL = 3-1

COBOL Divisions . . e e e e e e e . 3=2
Control Division . . S 4
Identification Div181on . £ -
Environment Division . . .« « « « 3-3
Data Division e « « o« « 3-4
Procedure Division . e e e e . . .« 3-6

Procedure Division Heade* e e+« « .« 3-6
Procedure Division Body .+« .« . 3=-6
Declaratives . . . « « ¢« o o o o o e 3=-7
Procedures . . e e e e e e e 3=T7
Statements and Sentenoes . e e .« . 3-8
Conditional Statements and
Sentences . . 3-8
Compiler- Directing Statements and
Sentences . e e e+ e+« 3=9
Imperative Statements and Sentences, 3-9
Scope of Statements 3-10
Categories of Statements 3-10
Specific Statement Formats 3-12

Section U4 Reference Format . e e e e e e . a1
) Reference Format Representation e
Sequence Numbers« o .+ o o o o o 4.2

Continuation of Lines . . . « « « « ¢ « & 4.2

Blank Lines . . « + o o ¢ ¢ o o o o o o o 4.2

Division, Section, and Paragraph Formats . . 4.3

Data Division Entries . . . ¢« ¢« ¢« o o o o & 4-3

Declaratives . . « « « ¢ o o ¢ o o o o o o e 4-4

Comment Lines . . . « ¢« ¢« ¢ o« o o o o o o 4-4

Uppercase/Lowercase Output . e« e o o« o kU

Source Input Segment . . e« « s o o H4-5

Section 5 Control Division . . .« . e « ¢ o s 5B-1
Description of the Control Division « « . o 5-1

Structure of the Control Division e « « « o B-1

DISPLAY SIGN Clause . . . e+ e e o« « B=2

COMPUTATIONAL Clause . . e e e e s e« o« 5-3

GENERATE DESCRIPTOR Clause e « « o o« + . 5=M

Section 6 Nucleus of Multies COBOL . e o . 6=1
Identification Division for the Nucleus . . 6-1

Structure of the Identification Division 6-1

PROGRAM-ID Paragraph . . . « « « « « « » 6=2

DATE-COMPILED Paragraph « « « « « 6=3

Environment Division for the Nucleus 6-4

Structure of the Environment Division . . 6-4

Configuration Section . . « . « « « « o & 6-4

SOURCE-COMPUTER Paragraph 6-6

OBJECT-COMPUTER Paragraph 6=7

SPECIAL-NAMES Paragraph . e« o . 6-9
Data Division for the Nucleus 6<-14
Structure of the Data Division 6-14
Working-Storage Section « + « « & 6-14

vii ASUY-02

CONTENTS (econt)

Noncontiguous Working-Storage
Working-Storage Records
Working-Storage Initial Values

Constant Section . .

Data Desecription - Complete Fntry

Skeleton . . .
BLANK WHEN ZFRO Clause c e
Data-Name or FILLFR Clause . . .
JUSTIFIED Clause e e
Level-Number « « « « =
PICTURE Clause
REDEFINES Clause
RENAMES Clause e e e s
SIGN Clause . . . v e s
SYNCHRONIZED ’lause e e e e
USAGE Clause . . .+ + « + « +
VALUE Clause « v .

Section ‘7 Procedure Division for the Nucleus .
Procedure Division Funetions
Arithmetic Expressions «
Arithmetic Operators
Formation and Evaluation Rules
Conditional Expressions ..
Simple Conditions
Relation Condition
Comparison of Numeric Operands
Comparison of Nonnumeric Operands
Comparison of Operands of Equal or
Unequal Sizes . . e e e e
Class Condition . e e e e e e
Condition-Name "ondition e e e e e e
Switeh-Status Condition
Sign Condition .
Complex Conditions
Negated Simple Conditions
Combined and Negated Combined
Conditions
Abbreviated Combined Relatxon Conditions
Condition Evaluation Rules e e
Common Phrases in Statement Formats
ROUNDED Phrase e e e e
SIZE ERROR Pnrase
CORRESPONDING Phrase
Arithmetic Statements
Overlapping Operands .
Multiple Results in Arithmetic Statements
Exponentiation in Arithmetic Expressions
Incompatible Data . e e e e e e e e
Non-Input/Qutput Frrors
ACCEPT Statement e e e e e e e
ADD Statement o . . .
ALTER Statement e e e e e e e e e
COMPUTE Statement
CONTINUE Statement
DISPLAY Statement

DIVIDE Statement . . « « ¢ « v o« ¢« o« o « o
‘EXIT Statement ¢« ¢ ¢ ¢ ¢ ¢ o o o 4
GO TO Statement e e e e e e e e e e e

IF Statement . . e e e e e e e e e e e e
INSPECT Statement e e e e e e e e e e e e
MOVE Statement ¢ ¢ v o ¢ ¢ o« « o o« &

MULTIPLY Statement
PERFORM Statement

viii

NNNNNNNNNNNAN NN NN NN NN NN NN NN N NN NN NN NNNNNN—N—-S oo

[}
= EW
N O oo

| I R R N A T B |

EZWWMNNDNMNDNDMNDN S S Dbk 2 =D oo ononWn NN EWW N = s

WO NIONWN=—=2,0UVUIVNEEFWWNN— =0

AS44-02

CONTENTS (eont)

INVALID KEY Condition .

END-OF-PAGE Condition . .
LINAGE-COUNTER Register .

Page
SET Statement« ¢« & o o s e e e e 7-52
STOP Statement+ o « o o o o o o o o 7-53
STRING Statement . . . « « « « ¢« « « « « « . T=54
SUBTRACT Statement « « « + « « T[=57
UNSTRING Statement « ¢« « o« o o o o = 7-59
Section 8 Table Handling . e e e e e s . 8-1
Description of Table Handling e e e . . 8-1
Table Definition . . e e e e e e e . 81
References to Table Items S - Y4
Table Searching . . B -
Data Division For Table Handllng e e+« + . B8=5
OCCURS Clause . . . e e e e s e o . 8=5
USAGE Clause . . .« +« « . . B8=8
Procedure Division For xable Handling . « . 8=9
Relation Condition « « « « « « . 8-9
Overlapping Operands « « « « « 8-9
SEARCH Statement . . . « « « +« « « « « «» 8=10
SET Statement . . . « « « + « « s o + « + 8=15
Section 9 File Input/Output . . e e e e e e 9-1
Description of File Input/Output e e e e e e 91
Input/Output Organization 9-1
Access ModesS . . « v ¢ 4 o o o o e e o . 9=2
Current Record Pointer « « « « o 9=2
Input/Qutput Status . R Y-
Status Key 1 « « & e« o« s« « 9=3
Status Key 2 e e s e « o 9-3
Valid Combinations of Status Keys 1
and 2 . . 0 4 e e e e e e s e « « o 9-U4
Status Key 3 . . e e e e e e e o o« 9-U4
Actions Following Input/Outpu
Statement Execution -
Error Processing« o s -
AT END Condition . . AN -
s

Label Processing for Tape File

e o o o o o o o
[}

Reel/Unit Swap Procedure . .

e o o © o o o & o o o o o o o o
e © o © o o o ¢ o o o o o o o o
e o © o o o o o e o o o o o o o

..g.......;........ﬂ..

9-4

9-8

9-8

9-8

9-9

9-9

9-9

9-9
Environment Division for Input/Out 9-10
Input-Output Seetion 9-10
FILE-CONTROL Paragraph 9-11
I-O-CONTROL Paragraph 9-23
Input/Output Techniques 9-25
Data Division For Input/Output . . 4 9-29
File Section 9-29
Record Description Structure . . 9-29

File Description - Complete Entr

Skeleton 9-30
BLOCK CONTAINS Clause . e e« o« 9=32
CODE-SET Clause e o e« o o« « 9=34
DATA RECORDS Clause e+ s e e« « « « 9=35
LABEL RECORDS Clause . . « « « « « » o+ 9=36
LINAGE Clause . . . e e e e s e o o 9=37
RECORD CONTAINS Clause e+ « « e« e+« « 9=40
VALUE OF Clause . . ¢« e e e e e . 9-U42
Procedure Division For Input/Output e e« o o 9-U4y
CLOSE Statement . . e e 4 e e e e e o 9-U4y
DELETE Statement . . . + « + « &+ « « « « 9=49
OPEN Statement +« ¢ « « « o o« « o« 9=50
READ Statement . . . e« o« s+ s« o« 9=55
REWRITE Statement e e e s e s e« e« 9=60
START Statement . . « « « « « o « o+ o« o » 9=62

ix ASU44-02

Section 10

Section 11

Section 12

Section 13

Section 14

CONTENTS (cont)

USE Statement

WRITE Statement
Sort-Merge . e e e e e .
Deseription of Sort Merge e e e v e e

Record Ordering . .
Relationship with File Input/Output
Environment Division for Sort-Merge -
Input/Qutput Seectiono .
FILE-CONTROL Paragraph
File Control Entry
I-0-CONTROL Paragraph . .
Data Division for Sort-Merge .
File Section for Sort-Merge . .
File Description - Complete SD Entry
Skeleton
Procedure Division for Sort Merge
MERGE Statement
RELEASE Statement .
RETURN Statement . .
SORT Statement . . .

Segmentation . . .

Description of Segmentation
Program Segments
Fixed Portion . C e e e e e
Independent Segments e e e e e e
Segmentation Control

Structure of Program Segments
Segment-Numbers e e .
SEGMENT-LIMIT Clause .

Restrictions on Program Flow . . .
ALTER Statement in Segmented Programs
PERFORM Statement in Segmented Programs
SORT Statement In Segmented Programs

Library Facility
COPY Statement . .
REPLACE Statement

Debug Facility .

Description of the Debug Facillty
Special Register DEBUG-ITEM
Compile-Time Switenh
Object-Time Switeh . . e e
USE FOR DEBUGGING Statement o e e
Debugging Lines

Environment Division for Debugging
WITH DEBUGGING MODE Clause .

Procedure Division For Debugging .
USE FOR DEBUGGING Statement
Debugging Lines . . . e e e e

Interprogram Communication

Description of Interprogram Communication

Program Modularity . P
Transfer of Control (CALL) e
Interprogram Data Storage .

Interprogram Communication Data Division -

Linkage Section . . . e e e .
Noncontiguous Linkage Storage o o e 4
Linkage Records . . . e 6 e s e s e s
Linkage Initial Values e e e e e e

Page

9-65
9-67

10-1
10-1
10-1
10-1

10-2
10-2
10-2
10-3
10-5
10-5

10-5
\1-6
10-6
10-10
10-11
10-13

P N
LI R A |

!

-, — b — el wd wd d w—d d d wd b b e —d
NS - b oD b s

L I B} [I L T [
- VTN EWW NN = e

— et wd wd b b b b d wdd ed e

= wwwwwu.;uwwwwww
OWWWWW N NNV N D -

-
1
—_

14-1

-—

F—3
]

—_

14-1
14-2

14-3
14-3
14-4
14-4

ASu4y-02

CONTENTS (cont)

Procedure Division for Interprogram

Communication e e e e e e e e
Procedure Division Header e e e e e
CALL Statement « ¢ « ¢ o o o o
CANCEL Statement . . e e e e e e e e
EXIT PROGRAM Statement e e e e e e e e s
Seation 15 Communication Facility .

Deseription of the Communioation Faellity
COBOL Message Control System (CMCS) . .
Relationship with COBOL Object Program .
Relationship of COBOL Program to the CMCS

and Communication Devices . . .
Invoking the COBOL Object Program ..
Scheduled Invoecation of the COBOL
Object Program . . .
Invocation of the COBOL Objeot
Program by the CMCS
Determining the Method of
Secheduling . . . o o e s e
The Concept of Messages and Message
Segments . . e e e e e e e e e
The Concept of Queues e e e e e e e e e
Independent Enqueueing and Dequeueing
Enabling and Disabling Queues .

Queue Hierarchy« o+ s
Communication Facility Data Division -
Communication Seetion e

Communication Deseription - Complete
Entry Skeleton« e e e e . e
Procedure Division for the Communication

Facility . . o e
ACCEPT MESSAGF COUNT Statement .
DISABLE Statement

ENABLE Statement « « &
PURGE Statement+ .

RECEIVE Statement
SEND Statement

e o o o o o
e o o o o o o

Section 16 Report Writer
Description of the Report Writer . o .
Line-Counter « « « « « & .

Page-Counter . .
Relationship with File Input/Output
Data Division for the Report Writer
File Section for the Report Writer
Report Section for the Report Writer
Report Description Entry
Report Group Deseription Entry . .
File Description Entry For The Report

e o ® ¢ o o o o o o
e o o o o

Writer . . .« e
Report Descrlption - Complete Entry
Skeleton e

Report Group Description - Complete Entry
Skeleton« ¢« ¢ ¢ o .
CODE Clause . . .
COLUMN NUMBER Clause . .

.

. .

CONTROL Clause . . .

Data-Name Clause
GROUP INDICATE Clause . .
LINE NUMBER Clause . .
NEXT GROUP Clause

.

.
.
.
.
.
.

. o
e e o o o o o o o

PAGE Clause . . « + + v + . o
REPORT Clause . . « « « o+ & e e e
xi

Page

14-5
14-5
14-6
14-8
14-9

15-1
15-1
15-1
15-2

15-2
15-3

15-3
15-3
15-3

15-3
15-4
15-4
15-5
15-5

15-6
15-7

15-17
15-17
15-18
15-20
15-22
15-23
15-26

16-1
16-1
16-2
16-2
16-2
16-3
16-3
16-3
16-3
16-3

16-4
16-6

16-8

16-29
16-30
16-31
16-32
16-33
16-34
16-36
16-37
16-40

AS44-02

Appendix
Appendix

(@]

Appendix
Appendix D

Index

Figure

7
Figure 7-2.
7

Figure 7-3.
Figure 8-1.
Figure 15-1.
Figure 15-2.
Table 2-1.
Table 2-2.
Table 6-1.
Table 6-2.
Table 7-1.
Table 7-2.
Table 7-3.
Table 8-1.
Table 9-1.
Table 9-2.
Table 9-3.
Table 9-4,

Table 16-1.

Table 16-2.
Table 16-3.
Table 16-4.
Table 16-5.
Table 16-6.

CONTENTS (eont)

SOURCE Clause . . ¢ ¢ « o « o o o .
SUM Clause . « « « + o o o o o o o .
TYPE Clause

Procedure Division For The Report erter
GENERATE Statement

* o o o o o o
.

INITIATE Statement
SUPPRESS Statement
TERMINATE Statement . . e e e e

USE BEFORE REPORTING Statement e e e e e
Reserved Words . . « ¢ v ¢« ¢ v o v « ¢ o o« o &
GloSSary . . v v 4 e e e e e e e e e e e e e

Collating Sequence and Bit Configuration Charts

FIPS Leveling . . .« ¢ ¢ v v ¢ ¢ ¢ ¢« ¢« o o o« o o

. .

ILLUSTRATIONS

Equivalent Program for the VARYING Phrase of a
PERFORM Statement Having One Condition . . .
Equivalent Program for the VARYING Phrase of a
PERFORM Statement Having Two Conditions . .
Equivalent Program for the VARYING Phrase of a
PERFORM Statement Having Three Conditions .
Flowchart of Format 1 SEARCH Operation e e
Hierarchy of Queues

Communication Status Key/Evror Key Conditions

TABLES

Values of Digit Pairs in Nonnumeric Literals
Data Item Classes and Categories .
Results of Fixed Insertion Editing Symbols

PICTURE Character Precedence Chart . . . e
Combination of Symbols in Arithmetie
Expressions . e e e e e e e e e
Combinations of Conditions, Logical Operators,
and Parentheses . e o o s o o u

Valid Types of MOVE Statements . .
Operand Combinations in SET Statement .
Values of Status Key 3
Possible Values of Status Keys 1 2, and 3
Returned by Multies COBOL . . .
Relationship of File Categories and CLOSF
Statement Formats . ..
Input/Output Statements Permitted to Follow an
OPEN Statement
Permissible Clause COmbinations in Format 3
Entries . .
REPORT HEADING Group Presentation Rules .
PAGE HEADING Group Presentation Rules . .

e o o
.
.

Body Group Presentation Rules
PAGE FOOTING Presentation Rules . .
REPORT FOOTING Presentation Rules . . .

e o o o o o

xii

Page

16-41
16-42
16-45
16-50
16-50
16-52
16-53
16-54
16-55

7-48
7-49

7-50

8-14
15-5
15-16

| U |
-0 &

~N O

O \OGDNITI -~ OV N
N NasWw W W=

\Ve]
[]
F—4
o

9-51

16-12
16-16
16-18
16-20
16-25
16-27

AS44-02

CONTENTS (eont)

Page
Table 16-7. Page Regions 16-39
Table C-1. ASCII Collating Sequenne (Hexadevlmal) and Bit
Configuration . . . e e e . B o |
Table C-2, EBCDIC Collating Sequence e v s e s s e 4« 4 . C=3

xiii ASyy-02

SECTION 1

NOTATION USED IN FORMATS AND RULES

This section contains descriptions of the rules of syntax applied in the
language specifications of this manual.

DEFINITION OF A GENERAL FORMAT

A general format is the specific arrangement of the elements of a clause or
a statement. A clause or a statement consists of elements as defined below. In
this manual, a format is shown adjacent to information that defines the clause
or statement. If more than one specific arrangement is permitted, the general
format is separated into numbered formats. Clauses must be written in the sequence
given in the general formats. (If used, optional clauses must appear in the
sequence shown.) In certain cases, stated explicitly in the rules associated
with a given format, clauses can appear in sequences other than those shown.
Applications, requirements, or restrictions are shown as rules.

SYNTAX RULES

A syntax rule is one that defines or clarifies the order in which words or
elementsarearrangedtoformlargerelementssuchasphrases,clauses,orstatements.
Syntax rules also impose restrictions on individual words or elements.

Syntax rules are used to define or clarify the exact manner in which the
statement must be written; i.e., the order of the elements of the statement and
the restrictions on what each element may represent.

GENERAL RULES

A general rule is one that defines or clarifies the meaning or relationship
of meanings of an element or set of elements. It is used to define or clarify
the semantics of the statement and the effect that it has on either compilation
or execution.

ELEMENTS

Elements which make up a clause or a statement consist of uppercase words,
lowercase words, level numbers, brackets, braces, connectives, and special
characters.

1-1 ASluy-02

Words

Underlined uppercase words are called key words and are required when the
functions of which they are a part are ‘used. Uppercase words that are not

underlined are optional and may be included in the source program at the discretion
of the user. Uppercase words, whether underlined or not, must be spelled correctly.

In a general format, lowercase words are generic terms used to represent
COBOL words, literals, PICTURE character-strings, comment-entries, or a complete
syntactical entry that must be supplied by the user. If such generic terms are
repeated in a general format, a number or letter appendage to the term serves to
identify that term in a subsequent explanation or discussion.

Level-Numbers

Specific level-numbers appearing in data descriptionentry formats arerequired
when such entries are used in a COBOL program. In this manual, the convention
01, 02, ..., 09 indicates level-numbers 1 through 9.

Brackets, Braces, and Choice Indicators

When brackets, [], enclose a portion of a general format, the user may
include or omit the enclosed portion. When braces, {}, enclose a portion of a
general format, the user must select one of the enclosed options. When choice
indicators, {i!}, enclose a portion of a general format, the user must select
one or more of the unique options, but any option may be specified only once.

Options are indicated in a general format by vertically stacking alternative
possibilities. When braces, brackets, or choice indicators enclose a portion of
a format, but only one possibility is shown, its function is to delimit that
portion of a format to which the following ellipsis applies.

Ellipsis

In the general format, the ellipsis (...) represents the position at which
the user elects repetition of a format. The portion of the format that may be
repeated is determined as follows:

1. Given an ellipsis (...) in a clause or statement format, scanning
right to left, determine the right bracket (]), right brace (}), or
right choice indicator (}) immediately to the left of the ellipsis.
Continue scanning from right to left and determine the logically matching
left bracket, brace, or choice indicator. The ellipsis applies to the
material contained within the delimiters.

2. If an ellipsis is immediately preceded by a comma (,...) or a semicolon
(;...) then instances of the material may be optionally separated by
separator commas or separator semicolons.

1-2 AS44-02

o

Format Punctuation Characters

The punctuation characters comma and semicolon are shown in some formats.
Where shown in the formats, they are optional and may be included or omitted in
the coding. In the source program, these two punctuation characters are
interchangeable and either one may be used when oJne of them is shown in the

formats. Neither character may immediately precede the first clause of an entry
or paragraph.

A comma or semicolon can be used to separate statements in the Procedure
Division.

Paragraphs within the Identification and Procedure Divisions and entries
within the Environment and Data Divisions must be terminated by the separator
period.:

Special Characters

When the characters + - < > and = appear in formats, they are required when
such formats are used, even though they are not underlined.

1-3 AS44-02

SECTION 2

LANGUAGE CONCEPTS

CHARACTER SET

The basic and indivisible unit of the language is the character. The character
set used to form COBOL character-strings and separators consists of 85 characters,
including both uppercase and lowercase letters, digits, and special characters.
In the case of nonnumeric literals, comment-entries, and comment lines, the
character set is expanded to include the computer's entire character set. The
characters allowable in each type of character-string and as separators are
defined in this section and in Appendix B.

Individual characters of the language are joined to form character-strings
and separators. A separator may be concatenated with another separator or with
a character-string. A character-string may be concatenated only with a separator.
The concatenation of character-strings and separators forms the text of a source
program.

Uppercase and Lowercase Letters

In Multics COBOL, the user can employ both lowercase and
uppercase letters to form character-strings wherever the rules for
formation of character-strings allow the usage of uppercase letters.

Two characters form a corresponding uppercase and lowercase pair
if they differ only in case (for example, A and a). The following
rules define the conditions under which two characters of a
corresponding uppercase and lowercase pair are treated as two distinct
characters or as the same character.

Within PICTURE character-strings, in user words, and in reserved
words, the. two characters of a corresponding uppercase and lowercase
pair are treated as specifying the same character. (For example, PIC
X and pic x both describe a one-character alphanumeric item. Further,
MOVE, move, and Move are all considered correct usages of the reserved
word MOVE.)

2-1 ASl4y-02

pair

The two characters of a corresponding uppercase and lowercase
are treated as two distinct characters in the following cases:

o Within nonnumeric literals and comment-entries. For
example, these two statements are different:
IF "A" EQUALS TEMP ...
IF "a" EQUALS TEMP

e Within internal file names (in the SELECT clause)

) Within program-id (in the Identification Division)

™ Within text-name (in the COPY statement)

Separators

A separator is a string of one or more punctuation characters. The rules
for forming separators are: '

The punctuation character space is a separator. Wherever a space is
used as a separator in a program, more than one space may be used.

The punctuation characters comma, semicolon, and period, when immediately
followed by a space, are separators. These separators may appear in a
COBOL source program wherever explicitly permitted by the general formats,
by format punctuation rules, by statement and sentence structure
definitions, or by reference format rules. (Refer to Section 4.)

The separator comma and the separator semicolon may appear anywhere
that a separator space may appear.

The punctuation characters right parenthesis and left parenthesis are
separators., Parentheses may appear only in balanced pairs of left and
right parentheses delimiting subscripts, indexes, arithmetic expressions,
or conditions.

The punctuation character quotation mark is a separator. An opening
quotation mark must be immediately preceded by a space or a left
parenthesis; a closing quotation mark must be immediately followed by
one of the separators: space, comma, sSemicolon, period, or right
parenthesis.

Quotation marks may appear only in balanced pairs delimiting nonnumeric
literals, except when the literal is continued. (Refer to "Continuation
of Lines" in Section 4.)

Pseudo-text delimiters are separators which consist of two contiguous
equal sign (==) characters on the same line. An opening pseudo-text
delimiter must be immediately preceded by a space; a closing pseudo-text
delimiter must be immediately followed by one of the separators space,

2-2 AS4y-02

6. The separator space may immediately precede all separators except:
a. As specified by the reference format rules.

b. The closing quotation mark, in which case a preceding space is
considered as part of the nonnumeric literal and not as a separator.

c. As the opening pseudo-text delimiter, where the preceding space
is required.

7. The separator space may immediately follow any separator except the
opening quotation mark, in which case a following space is considered
as part of the nonnumeric literal and not as a separator.

Any punctuation character that appears as part of the specification of a
PICTURE character-string or numeric literal is not considered as a punctuation
character, but rather as a symbol used in the specification of that PICTURE
character-string or numeric literal. PICTURE character-strings are delimited
only by the separators space, comma, semicolon, or period.

Rules established for the formation of separators do not apply to the characters
that make up the contents of nonnumeric literals, comment-entries, or comment
lines.

Character-Strings

A character-string is a character or sequence of contiguous characters that
form a COBOL word, a literal, a PICTURE character-string, or a comment-entry. A
character-string is delimited by separators.

COBOL WORDS

A COBOL word 1is a character-string of not more than 30 characters that
forms a user-defined word, a system-name, or a reserved word. Within a given
source program, these classes form disjoint sets; a COBOL word may belong to
only one class.

User-Defined Words

A user-defined word is a COBOL word that the user must specify to satisfy
the format of a clause or statement. Each character of a user-defined word is
selected from the following set of characters:

L A, B, C, ..., 2

@ a, b, ¢, «oo, 2

[0, 1, 2, «v., 9
e - (hyphen)

NOTE: The hyphen may not appear as the first or last character.

2-3 ASl4y-02

There are 16 types of user-defined words:

alphabet-name mnemonic-name
cd-name paragraph-name
condition-name program-name
data-name record-name
file-name report-name
index-name section-name
level-number segment-number
library-name test-name

Within a given source program, 14 of these 16 types of user-defined words
are grouped into the following 12 disjoint sets:

alphabet-names
cd-names
condition-names, data-names, and record-names
file-names
index-names
library-names
mnemonic-names
paragraph-names
program-names
report-names
section-names
text-names

All user-defined words, except segment-numbers and level-numbers, can belong
to only one disjoint set. Further, all user-defined words within a given disjoint
set must be unique, either because no other user-defined word in the same source
program has identical spelling or punctuation, or because uniqueness can be
ensured by qualification. (Refer to "Uniqueness of Reference" in this section.)

With the exception of paragraph-name, section-name, 1level-number, and
segment-number, all user-defined words must contain at least one alphabetic
character. Segment-numbers and level-numbers need not be unique; a given
specification of a segment-number or level-number may be identical to any other
segment-number or level-number and may even be identical to a paragraph-name or
section-name.

CONDITION-NAME

A condition-name is a name that is assigned to a specific value, set of
values, or range of values, within a complete set of values that a data item may
assume. The data item itself is called a conditional variable.

Condition-names may be defined in the Data Division or in the SPECIAL-NAMES
paragraph within the Environment Division where a condition-name must be assigned
to the ON STATUS or OFF STATUS, or both, of SWITCH=-n.

A condition-name is used only as an abbreviation for the relation condition;
this relation condition stipulates that the associated conditional variable is
equal to one of the set of values to which that condition-name is assigned.

2-4 ASH44-02

MNEMONIC -NAME

A mnemonic-name assigns a user-defined word to a hardware or operatiné
system feature. These associations are established in the SPECIAL-NAMES paragraph
of the Environment Division.

PARAGRAPH-NAME

A paragraph-name is a word that names a paragraph in the Procedure Division.
Paragraph-names are equivalent only if they are composed of the same sequence of
the same number of digits and/or characters.

SECTION-NAME

A section-name is a word that names a section in the Procedure Division.
Section-names are equivalent only if they are composed of the same sequence of
the same number of digits and/or characters.

OTHER USER-DEFINED WORDS

Refer to Appendix B for definitions of other types of user-defined words.

System-Names

A system-name is a COBOL word that is used to communicate with the operating
environment. System-names are used to refer to a specific feature of the
hardware/software environment, such as SYSOUT, SYSIN, etc.

Reserved Words

A reserved word is a COBOL word that is one of a specified 1list of words
that may be used in COBOL source programs but must not appear in the programs as
user-defined words. Reserved words can be used only as indicated in the general
formats. (Refer to Appendix A for a listing of the reserved words.)

The seven types of reserved words are:

Key words

Optional words
Connectives

Special registers
Figurative constants

Special-character words

System-names

2-5 ASH44-02

KEY WORDS

A key word is a word whose presence is required when the format in which
the word appears is used in a source program. Within each format, such words
are uppercase and underlined. The three types of key words are:

L 4 Verbs, such as ADD and READ

L] Required words, which appear in statement and entry formats

) Words that have a specific functional meaning, such as NEGATIVE and
SECTION

OPTIONAL WORDS

Within each format, uppercase words that are not underlined are called
optional words and may be specified at the discretion of the user. The presence
or absence of an optional word does not alter the semantics of the COBOL program
in which it appears.

CONNECTIVES

The three types of connectives are:

e Qualifier connectives that are used to associate a data-name,
condition-name, text-name, or paragraph-name with its qualifier: OF,
IN

e Series connectives that 1link two or more consecutive operands: ’

(separator comma) or ; (separator semicolon)

e Logical connectives used in the formation of conditions: AND, OR

SPECIAL REGISTERS

Certain reserved words are used to name and reference special registers.
Special registers are designated compiler-generated memory areas whose primary
use is to store information produced in conjunction with specific COBOL features.
The special registers are LINAGE-COUNTER, LINE-COUNTER, PAGE-COUNTER, and
DEBUG-ITEM.

FIGURATIVE CONSTANTS

Figurative constants are reserved words used to name and reference specific
compiler-generated constant values. (Refer to "Figurative Constant Values" later
in this section.)

2-6 ASl4-02

~/

SPECIAL-CHARACTER WORDS

Arithmetic operators, e.g., + and -, and relational characters, e.g., >, <,
and =, are reserved words. (Refer to Appendix B for definitions.)

SYSTEM-NAMES

System-names are used to refer to a specific feature of the hardware/software
environment, such as SYSOUT, SWITCH-n, CATALOG-NAME, etc.

LITERALS

A literal is a character-string whose value is implied by an ordered set of
characters of which the literal is composed or by specification of a reserved
word that references a figurative constant. Literals are either nonnumeric or
numeric.

Nonnumeric Literals

A nonnumeric literal is a character-string delimited on both ends by quotation
marks and consisting of any ASCII characters. A nonnumeric literal may be up to
256 characters in length. To represent a quotation mark character within a
nonnumeric literal, two contiguous quotation marks must be used. The value of a

nonnumeric literal in the object program is the string of characters itself,
except that:

] Delimiting quotation marks are excluded.

(] Each embedded pair of contiguous quotation marks represents a single
quotation mark character.

All other punctuation characters are part of the value of the nonnumeric
literal rather than separators; all nonnumeric literals are categorized as
alphanumeric. (Refer to "PICTURE Clause" in Section 6.)

Nonprinting Characters

Any character within a nonnumeric literal can be represented by a
string of digit pairs enclosed within quotation marks. In the
following example of such a string, the leftmost digit in a pair
represents the left five bits of the character and the rightmost digit
represents the right four bits of the character:

"AX4n3BHC"YZ"

Thus, AX4 and YZ represent normal ASCII characters, and 3BHC
represents the following bit pattern (see Table 2-1 for digit values):

"00011 1011 10001 1100"

2=-7 AS44-02

Note that spaces (<SP>) are included in the above example only to
indicate blank characters and to improve its readability.

Binary values for these digit pairs are listed 1in Table 2-1.
Digits on the left side of the table can be used as either the leftmost
or rightmost digit of a pair. However, digits on the right side of the
table can be used only as the leftmost digit.

Table 2-1. Values of Digit Pairs in Nonnumeric Literals

Left or Right Binary Left Digit Binary
Digit Value Only Value
0 0000 G 10000
1 0001 H 10001
2 0010 I 10010
3 0011 J 10011
y 0100 K 10100
5 0101 L 10101
6 0110 M 10110
7 0111 N 10111
8 1000 0 11000
9 1001 P 11001
A 1010 Q 11010
B 1011 R 11011
o 1100 S 11100
D . 1101 T 11101
E 1110 U 11110
F 1111 v 11111
NOTE: The specification of nonprinting characters may change in
subsequent releases of Multics COBOL. The Multics COBOL user
should be prepared to modify programs that contain nonprinting
characters.

2-8 ASH44-02

Numeric Literals

A numeric literal is a character-string whose characters are selected from
the digits O through 9, the plus sign, the minus sign, and the decimal point. A
numeric literal may be from one to 18 digits in 1length. Rules for forming
numeric literals are:

1. A literal must contain at least one digit.

2. A literal must contain no more than one sign character. If used, a
sign character must appear as the leftmost character of the literal.
If unsigned, the literal is positive.

3. A literal must contain no more than one decimal point. The decimal
point is treated as an assumed decimal point and may appear in any
location within the literal except as the rightmost character. If the
literal contains no decimal point, the literal is an integer.

If a literal conforms to the rules for the formation of numeric literals
but is enclosed in quotation marks, it is a nonnumeric literal and is
treated as such by the compiler.

4, The value of a numeric literal is the algebraic quantity represented
by the characters in the numeric literal. Every numeric literal is
category numeric. The size of a numeric literal in standard data
format characters is equal to the number of digits specified by the
user. (Refer to "PICTURE Clause" in Section 6 for additional information.)

Figurative Constant Values

Figurative constant values are generated by the compiler and are referenced
by using the reserved words given below. These words must not be delimited by
quotation marks when they are used as figurative constants. The singular and
plural forms of figurative constants are equivalent and may be used interchangeably.
Figurative constant values and reserved words used to reference them are:

ZERO/ZEROS /ZEROES Represents the value '0', or one or more of the
' character '0', depending on the context in which
it appears.

SPACE /SPACES Represents one or more of the character space (octal
040).

"HIGH-VALUE /HIGH-VALUES Represents one or more of the character that has
’ ‘ ‘the highest ordinal position in the programcollating
. »3equence.

2-9 ASUY4-02

If a PROGRAM COLLATING SEQUENCE clause is not
present, the character associated with
HIGH-VALUE is the character represented by
octal 177. If the program contains a PROGRAM
COLLATING SEQUENCE clause in the
OBJECT-COMPUTER paragraph, the actual ASCII
character associated with HIGH-VALUE depends
upon the collating sequence specified by that
clause. If the alphabet-name specified is
EBCDIC, that character is represented by
octal 377. If the alphabet-name is
user-defined, that value corresponds to the
position of the highest explicitly or
implicitly specified character in the
alphabet specified.

LOW-VALUE /LOW-VALUES

Represents one or more of the character that has
the lowest ordinal position in the program collating
sequence.

If a PROGRAM COLLATING SEQUENCE clause is not
present, the character associated with
LOW-VALUE 1is the character represented by
octal 000. If the program contains a PROGRAM
COLLATING SEQUENCE clause in the
OBJECT-COMPUTER paragraph, the octal ASCII
character associated with LOW-VALUE depends
upon the collating sequence specified by that
clause. If the alphabet-name specified is
EBCDIC, that character 1is represented by
octal 000. If the alphabet-name is
user-defined, that value corresponds to the
position of the lowest explicitly or
implicitly specified character in the
alphabet specified.

QUOTE /QUOTES

ALL literal

Represents one or more of the quotation mark character
(™). The word QUOTE or QUOTES cannot be used in
place of a quotation mark in a source program to
delimit a nonnumeric 1literal. For example, the
phrase QUOTE ABD QUOTE is incorrect as a method of
stating the nonnumeric literal "ABD",

Represents one or more characters of the string of
characters that make up the literal. The literal
must be either a nonnumeric literal or a figurative
constant other than ALL literal. When a figurative
constant is used, the word ALL is redundant and is
included in the source program only for readability.

When a figurative constant represents a string of one or more characters,
the length of the string is determined by the compiler from context according to

the following rules:

1. When a figurative constant is associated with another data item, such
as when the figurative constant is moved to or compared with another
data item, the string of characters specified by the figurative constant
1s repeated character by character on the right until the size-of the

2-10 ASU44-02

resultant string is equal to the size in characters of the associated
data item. This is accomplished prior to and independent of the
application of any JUSTIFIED clause that may be associated with the
data item.

2. When a figurative constant is not associated with another data item,
such as when the figurative constant appears in a DISPLAY, STRING,
STOP, or UNSTRING statement, the length of the string is one character.

A figurative constant may be used wherever a literal appears in a format,
except that whenever the literal is restricted to numeric characters, the only
figurative constant permitted is ZERO (ZEROS, ZEROES).

Each reserved word used to reference a figurative constant value is a distinct
character-string with the exception of the construction 'ALL literal' which is
composed of two distinct character-strings.

PICTURE CHARACTER-STRINGS

A PICTURE character-string consists of certain combinations of characters
in the COBOL character set used as symbols.

Any punctuation character that appears as part of the specification of a
PICTURE character-string is not considered as a punctuation character, but rather
as a symbol used in the specification of that PICTURE character-string. (Refer
to "PICTURE Clause" in Section 6 for a discussion of the PICTURE character-string
and for the rules governing its use.)

COMMENT-ENTRIES

A comment-entry is an entry in the Identification Division that may be any
combination of characters. A comment-entry has no effect on the operation of a
COBOL program. -

COMPUTER INDEPENDENT DATA DESCRIPTION

To make data as computer-independent as possible, the characteristics or
properties of the data are described in relation to a standard data format
rather than to an equipment-oriented format. This standard data format is oriented
to general data processing applications and uses the decimal system to represent
numbers and the remaining characters in the COBOL character set to describe
nonnumeric data. items.

Logical Records and Files

The approach taken in defining file information is to distinguish between
physical aspects of the file and conceptual characteristics of data contained
within the file.

2-11 AS44-02

PHYSICAL ASPECTS OF A FILE

The physical aspects of a file describe data as it appears on the input or
output device and include such features as:

) The grouping of logical records within the physical limitations of the
file medium

o The means by which the file can be identified

CONCEPTUAL CHARACTERISTICS OF A FILE

The conceptual characteristics of a file are the explicit definitions of
each logical entity within the file itself. 1In a COBOL program, input and
output statements refer to one logical record. A logical record is a group of
related information, uniquely identifiable, and treated as a unit. A physical
record is a physical unit of information whose size and recording mode are
convenient to a particular input or output device for the storage of data.

Several source language methods are available for describing the relationship
of logical records and physical records. When a permissible relationship has
been established, control of the accessibility of logical records as related to
the physical unit must be provided by the interaction of the object program on
the hardware and/or software system. In this manual, references to records mean
to logical records, unless physical record is specifically stated.

The concept of a logical record is carried over into the definition of
working storage. Thus, working storage may be grouped into logical records and
defined by a series of record description entries.

RECORD CONCEPTS

The record description consists of a set of data description entries that
describe characteristics of a particular record. Each data description entry
consists of a level-number followed by a data-name, if required, followed by a
series of independent clauses, as required.

Concept of Levels

A record may need to be subdivided for convenient data reference. The
smallest subdivision is called an elementary item. A record can consist of a
sequence of elementary items, or the record itself may be an elementary item.

In order to refer to a set of elementary items, the elementary items can be
combined into groups. Each group consists of a named sequence of one or more
elementary items. Groups, in turn, may be combined. Thus, an elementary item
may belong to more than one group.

A system of level-numbers indicates the organization of elementary items
and group items. Since records are the most inclusive data items, level-numbers
for records start at 01, Less inclusive d¢ata items are assigned higher (though
not necessarily successive) level-numbers not greater in value than 49. (Special
level-numbers 66, 77, and 88 are exceptions to this rule; see below.) Separate
entries are written in the source program for each level-number used. A group

2-12 AS44-02

includes all group and elementary items following it until a level-number 1less
than or equal to the level-number of that group is encountered. All items
immediately subordinate to a given group item must be described using identical
level-numbers greater than the level-number used to describe that group item.

Three types of entries have no true level:

Entries that specify elementary items or groups introduced by a RENAMES
clause. Entries that describe items using RENAMES clauses for the
purpose of regrouping data items have been assigned the special
level-number 66,

Entries that specify noncontiguous working-storage, constant, and linkage
data items. Entries that specify noncontiguous data items, which are
not subdivisions of other items and are not themselves subdivided,
have been assigned the special level-number T77.

Entries that specify condition-names. Entries that specify

condition-names, to be associated with particular values of a conditional
variable, have been assigned the special level-number 88.

2-13 ASH44-02

Classes of Data

The five categories of data items are grouped into three classes: alphabetic,
numeric, and alphanumeric. (Refer to "PICTURE Clause.") For alphabetic and numeric,
the classes and categories are synonymous. The alphanumeric class includes the
categories of alphanumeric edited, numeric edited, and alphanumeric (without
editing). Every elementary item except an index data item belongs to one of the
classes and also to one of the categories. The class of a group item at object
program execution is treated as alphanumeric, regardless of the class of elementary
items subordinate to that group item. Table 2-2 depicts the relationship of the
class and categories of data items.

Table 2-2., Data Item Classes and Categories

Level of Item Class Eategory

Alphabetic Alphabetic
Numer 1c Numer ic
Elementary Numeric Edited

Alphanumeric Alphanumeric Edited

Alphanumeric

Alphabetic
Numeric
Nonelementary Alphanumeric Numeric Edited

- (Group) : Alphanumeric Edited

Alphanumeric

l Selection of Character Representation and Radix

A data item can be represented internally in either character or binary
form, depending upon the usage of the item. (Refer to the "USAGE Clause" in
Section 6 and the "USAGE IS INDEX Clause"” in Section 8.)

The size of an elementary data item or a group item is the number of
characters in standard data format of the item. Synchronization and usage may
cause a difference between this size and the actual number of characters required
for the internal representation of data.

2-14 ‘ ASHH-02

Algebraic Signs

Algebraic signs fall into two categories: operational signs, which are
associated with signed numeric data items and signed numeric literals to indicate
their algebraic properties, and editing signs, which appear on edited reports to
identify the sign of the item.

The SIGN clause allows the location of the operational sign to be explicitly
stated in a numeric DISPLAY item. The clause is optional; if it is not used,
operational signs will be represented as defined by the USAGE clause of the Data
Division.

Editing signs are inserted into a data item by using the sign control
symbols of the PICTURE clause.

Standard Alignment Rules

Standard rules for positioning data within an elementary item depend on the
category of the receiving item. These rules are:

1. If the receiving data item is described as numeric:

a. The data is aligned by decimal point and is moved to the receiving
character positions with zero-fill or truncation on either end,
as required.

b. When an assumed decimal point is not explicitly specified, the
data item is treated as if it had an assumed decimal point immediately
following its rightmost character with zero-fill or truncation to
the left, as required.

2. If the receiving data item is a numeric edited data item, the data
moved to the edited data item is aligned by decimal point with zero-fill
or truncation at either end as required within the receiving character
positions of the data item, except where editing requirements cause
replacement of the leading zeros.

3. If the receiving data item is alphanumeric (other than a numeric edited
data item), alphanumeric edited, or alphabetic, the sending data is
moved to the receiving character positions and aligned at the leftmost
character position in the data item with space-fill or truncation to
the right, as required.

If the JUSTIFIED clause is specified for the receiving item, these standard
alignment rules are modified. (Refer to "JUSTIFIED Clause" in Section 6.)

Item Alignment for Increased Object Code Efficiency

Some computer memories are organized with natural addressing boundaries in
the computer memory (e.g., word boundaries, half-word boundaries, byte boundaries,
digit boundaries). The way in which data is stored is determined by the object
program and need not respect these natural boundaries.

Certain uses of data (e.g., in arithmetic operations or in subscripting)
may be facilitated if the data is stored so as to be aligned on these natural
boundaries. Additional machine instructions may be required for accessing and
storing data if it does not appear between those natural boundaries.

2-15 AS44-02

Data items which are aligned on their natural boundaries are said to be
synchronized. A synchronized data item is assumed to be introduced and carried
in that form; conversion to synchronized form occurs only during the execution
of a procedure (other than READ or WRITE) which stores data in the item,

Synchronization can be accomplished in two ways:
1. By use of the SYNCHRONIZED clause.

2. By recognizing the appropriate natural boundaries and organizing the
data suitably without the use of the SYNCHRONIZED clause. This technique
gives rise to data allocation rules which are specific to the implementor.

The data allocation rules used by Multics COBOL are the same as those used
by GCOS COBOL 74 and GCOS COBOL8X except where noted. An algorithm is defined
which may be applied to a level 01 or level 77 data item and which determines
the OFFSET and SIZE of every data sub-item contained within the data item.
Alignment is forced by inserting unused space (called FILLER SPACE) before or
after a data item.

Multics COBOL Data Allocation Rules

Major data items (i.e., level 01 or level 77 data items) are allocated
either on word or double-word boundaries.

The following four cases arise: elementary data items, group data items,
repeated group data items, and data items containing a REDEFINES clause.

CASE I

An elementary data item (EDI) is allocated according to the following rules:

1. The REQUIRED BOUNDARY for the EDI is determined using the table:

Data Type Boundary

DISPLAY 1 byte

COMP 1 byte (packed decimal)
COMP-5 1 byte (packed decimal)
COMP-6 4 word (long binary)
cCoMP-7 2 half-word (short binary)
COMP-8 0 digit (packed decimal)
INDEX 8 double-word

The SYNCHRONIZED clause applies only to COMP-7 and COMP-8 data. For
COMP-7 data, a full-word is allocated and the data occupies only the
rightmost 18 bits. This is similar to the PL/I data type fixed bin
aligned. For COMP-8 data, the data is allocated starting on a byte
boundary and occupies an integral number of bytes.

2. If the CURRENT OFFSET does not specify a bouﬁdary of the required type
then FILLER SPACE (called type 2 FILLER SPACE) is allocated up to the
next boundary of the required type.

2-16 AS 48 -02

CASE

CASE

3. The PICTURE, SIGN, and USAGE clauses are used to determine the size of
the EDI and the required space is allocated.

A repeated elementary data item is alldcated according to the rules:

1. A single instance of the EDI is allocated as described in the preceding
section.

2. The size of the EDI equals the size of a single instance of the EDI
times the number of occurrences specified.

II
A group data item is allocated according to the rules:
1. The group parameters are determined by:

a. The REQUIRED BOUNDARY for the GDI is "byte" or the REQUIRED BOUNDARY
of the first EDI contained within the GDI, whichever is larger.

b. The MAXIMUM REQUIRED BOUNDARY for the GDI is "byte" or the largest
REQUIRED BOUNDARY for the EDIs contained within the GDI, whichever
is larger.

2. If the CURRENT OFFSET is not a multiple of the REQUIRED BOUNDARY, type
2 FILLER SPACE is added.

3. The members of the GDI are allocated in the order in which they appear
in the source program.

y, The OFFSET of the GDI equals the OFFSET of the first EDI contained
within the GDI.

Note: In Multics COBOL the OFFSET of the GDI is the CURRENT I
OFFSET. The SIZE of the GDI includes any type 2 FILLER
SPACE which precedes the first EDI contained within the
GDI.

5. The SIZE of the GDI equals the sum of the sizes of its members plus
any FILLER SPACE inserted between its members. If the size of the GDI
is not an integral number of bytes, then FILLER SPACE (called type 3
FILLER SPACE) is added.

III
A repeated group data item is allocated according to the rules:

1. The OFFSET and SIZE of an instance of the GDI are determined as described
in case II.

2-17 ASU4-02

CASE IV

If the size of the instance of the GDI is not a multiple of its

MAXIMUM REQUIRED BOUNDARY, FILLER SPACE (called type 1 FILLER SPACE)
is added. -

The OFFSET of the repeated GDI equals the OFFSET of the first instance
of the repeated GDI.

The SIZE of the repeated GDI is equal to the size of an instance of
the GDI times the number of occurrences specified.

Note: In Multics COBOL the SIZE of the repeated GDI does not
include the type 1 FILLER SPACE appended to the 1last
repetition of the GDI.

A data item which contains a REDEFINES clause is allocated according to the

rules:

1.

2.

3.

5.

An

The SAVED OFFSET is set equal to the CURRENT OFFSET.

The CURRENT OFFSET is set equal to the OFFSET of the OBJECT data item
(i.e., the data item which is being redefined).

The allocation of the data item takes place as previously defined.

If the CURRENT OFFSET exceeds the SAVED OFFSET, the SAVED OFFSET is
set equal to the CURRENT OFFSET.

If the next data item does not specify another redefinition of the
OBJECT data item, the CURRENT OFFSET is set equal to the SAVED OFFSET.

example using the allocation algorithm is:

01 a.
02 b pic x.
02 ¢ occurs 2 times.

03 d pic x.
03 e usage comp-6

02 f occurs 2 times.

03 g usage comp-8 pic s99.
02 h occurs 3 times comp-8 pic s99.
02 i comp-8 pic s99.

02 j pic x.

02 k occurs 2 times.

03 1 comp-6.

02 m pic x.

02 n pic x(8).

02 o redefines n comp-6.
02 p.

03 q comp-8 pic s99.

03 r comp-8 pic s9.

02 s comp pic s9.

2-18 ASH44-02

The following table gives the offsets and sizes of the identifiers. An
offset is given as a six-digit octal word offset (starting at 000002), possibly
followed by a decimal bit offset (0,1,...), enclosed in parentheses. :

Identifier Offset Usage/Class Size
a 000002 GROUP alphanum X(53)
b 000002 DSPLY alphanum X(1)
c 000002(9) GROUP alphanum X(7T)
d 000002(9) DSPLY alphanum X(1)
e 000003 COMP6 numeric S9(11) bin(35)
£ 000006 GROUP alphanum X(2)
g 000006 COMP8 numeric S9(2)
h 000007 COMP8 numeric S9(2)
i 000010(5) COMP8 numeric S$9(2)
J 000010(18) DSPLY alphanum X(1)
k 000010(27) GROUP alphanum X(5)
1 000011 COMP6 numeric S9(11) bin(35)
m 000014 DSPLY alphanum X(1)
n 000014(9) DSPLY alphanum X(8)
o 000015 COMP6 numeric S9(11) bin(35)
p 000016(9) GROUP alphanum X(3)
q 000016(9) COMP8 numeric $9(2)
r 000016(23) COMP8 numeric S9(1)
s 000017 COMP5 numeric S9(1)

Uniqueness of Reference

QUALIFICATION

Every user-specified name that defines an element in a COBOL source program
must be unique. The name can be considered unique because no other name has
identical spelling and hyphenation or because references to the name can be made
unique by mentioning one or more of the higher levels of the hierarchy in which
the name exists. The higher 1levels are called qualifiers, and the process that
specifies wuniqueness 1is called qualification. Enough qualification must be
mentioned to make the name unique; however, it may not be necessary to mention
all levels of the hierarchy. Within the Data Division, all data-names used for
qualification must be associated with a level indicator or a level-number. Two
identical data-names must not appear as entries subordinate to a group item
unless they can be made unique through qualification. In the Procedure Division,
two identical paragraph-names must not appear in the same section, if they are
explicitly referenced.

In the hierarchy of qualification, names associated with a level indicator
are the most significant, then those names associated with level-number 01, then
names associated with level-number 02...49. A section-name is the highest (and
the only) qualifier available for a paragraph-name. Thus, the most significant
name in the hierarchy must be unique and cannot be qualified. Subscripted or
indexed data-names and conditional variables, as well as procedure-names and
data-names, may be made unique by qualification. The name of a conditional
variable can be used as a qualifier for any of its condition-names. Regardless
of the available qualification, no name can be both a data-name and a procedure-name.

Qualification is performed by following a data-name, a condition-name, a
paragraph-name, or a text-name by one or more phrases composed of a qualifier
preceded by IN or OF. (IN and OF are equivalent.)

The general formats for qualification are:

2-19 ASuy-02

Format 1:

{

Format 2:

Format 3:

Format 4:

condition-name

OF OF file-name
— » data-name-2 .o - cd-name
data-name-1 } IN _ N report-name

OF file-name
IN cd-name

OF
paragraph-name {—'} section-name

IN

OF
text-name {_ library-name
IN

OF
LINAGE-COUNTER {_‘ file-name
IN

Format 5:

{

PAGE-COUNTER OF
report-name
LINE-COUNTER IN

The rules for qualification are as follows:

Each qualifier must be of a successively higher level and within the
same hierarchy as the name it qualifies.

The same name must not appear twice in a qualified reference.

If a data-name or a condition-name is assigned to more than one data
item in a source program, the data-name or condition-name must be
qualified each time it is referred to in the Environment, Data, and
Procedure Divisions (except in a REDEFINES clause, where qualification

is unnecessary and must not be used).

A paragraph-name must not be duplicated within a section, if it 1is
explicitly referenced. When a paragraph-name is qualified by a
secticn-name, the word SECTION must not appear. A paragraph-name need
not be qualified when referred to from within the same section.

A data-name being used as a qualifier cannot be subscripted.
A name can be qualified even though it does not need qualification; if
more than one combination of qualifiers ensures uniqueness, any such

set can be used. The complete set of qualifiers for a data-name must
not be the same as any partial set of qualifiers for another data-name.

2-20 ASH4-02

~/

SUBSCRIPTING

Subscripts can be used only when reference is made to an individual element
within a 1ist or table of 1like elements that have not been assigned individual
data-names. (Refer to "OCCURS"™ Clause"™ and to "Table Handling" in Section 8.)

The subscript can be represented either by a numeric literal that is an
integer or by a data-name. The data-name must be a numeric elementary item that
represents an integer. When the subscript is represented by a data-name, the
data-name may be qualified but not subscripted. In the Report Section, neither
a sum counter nor the special registers LINE-COUNTER and PAGE-COUNTER can be
used as a subscript.

The subscript can be signed. If signed, it must be positive. The lowest
possible subscript value is 1. This value points to the first element of the
table. The next sequential elements of the table are pointed to by subscripts
whose values are 2, 3, etc. The highest permissible subscript value, in any
particular case, is the maximum number of occurrences of the item as specified
in the OCCURS clause.

The subscript, or set of subscripts, that identifies the table element is
delimited by the balanced pair of parentheses following the table element data-name.
The table element data-name appended with a subscript is called a subscripted
data-name or an identifier. When more than one subscript is required, they are
written in the order of successively less inclusive dimensions of the data
organization. :

One, two, or three subcript levels are allowed. The format is:
data-name (data-name]
condition-name literal)
INDEXING

References can be made to individual elements within a table of like elements
by specifying indexing for that reference. An index is assigned to that level
of the table by using the INDEXED BY phrase in the definition of a table. A
name given in the INDEXED BY phrase is known as an index-name and is used to
refer to the assigned index. The value of an index corresponds to the occurrence
number of an element in the associated table. An index-name must be initialized
before it is used as a table reference. An index-name can be given an initial
value by either a SET, a SEARCH ALL, or a Format 4 PERFORM statement.

Direct indexing is specified by using an index-name in the form of a subscript.
Relative indexing is specified when the index-name is followed by the operators
+ or -, followed by an unsigned integer numeric literal all delimited by the
balanced pair of separators left parenthesis and right parenthesis following the
table element data-name. The occurrence number resulting from relative indexing
is determined by incrementing (where the operator + is used) or decrementing
(when the operator - is used) by the value of the literal, the occurrence number
represented by the value of the index. When more than one index-name is required,
they are written in the order of successively less-inclusive dimensions of the
data organization.

When a statement that refers to an indexed table element is executed, the
value owntained in the index referenced by the index-name associated with the
table element must neither correspond to a value less than one (1) nor to a
value greater than the highest permissible occurrence number of an element of

2-21 ASl44-02

the associated table. This restriction also applies to the value resulting from
relative indexing. :

One, two, or three subscript levels are allowed. The general format for
indexing is:

{data-name } ({ index-name-1 [{ :} literal-Z] } J

condition-name literal-1

IDENTIF IER

An identifier is a term used to reflect that a data-name (if not unique in
a program) must be followed by a syntactically correct combination of qualifiers,
subscripts, or indexes necessary to ensure uniqueness.

The general formats for identifiers are:

Format 1:

data-name-1 OF data-name-2 ces OF file-name
{{Tﬂ'} } {Tﬂ'} cd-name }]]
- - report-name
[[{ data-name-3 ces]]
literal-1

Format 2:

e L)) (R e Y]
[[{ index-name-1 [{:} 1“"31'2] } e)]

literal-1

The restrictions on qualification, subscripting, and indexing follow:

L] A data-name must not be subscripted or indexed when it is being used
as an index, subscript, or qualifier.
Indexing is not permitted where subscripting is not permitted.
An index may be modified only by the SET, SEARCH, and PERFORM statements.
Data items described by the USAGE IS INDEX clause permit storage of
the values associated with index-names as data. Such data items are

called index data items.

) Literal-1 in the above format must be a positive numeric integer.
Literal-2 must be an unsigned numeric integer.

CONDITION-NAME

Each condition-name must be unique; it may be made unique through qualification
and/or indexing or through subscrioting.

2-22 AS43-02

If qualification is used to make a condition-name unique, the associated
conditional variable may be used as the first qualifier. If qualification is
used, the hierarchy of names associated with the conditional variable or the
conditional variable itself must be used to make the condition-name unique.

If references to a conditional variable require indexing or subscripting,
then references to any of its condition-names also require the same combination
of indexing or subscripting.

The format and restrictions on the combined use of qualification, subscripting,
and indexing of condition-names are the same as those for "identifier," except
that data-name-1 is replaced by condition-name-1,

In the general formats, condition-name refers to a condition-name qualified,
indexed, or subscripted, as necessary.

EXPLICIT AND IMPLICIT SPECIFICATIONS

Four types of explicit and implicit specifications occur in COBOL source
programs:
Explicit and implicit Procedure Division references
Explicit and implicit transfers of control
Explicit and implicit attributes

Explicit and implicit scope terminators

2-23 AS44-02

Procedure Division References

A COBOL source program can reference data items either explicitly or implicitly
in Procedure Division statements. An explicit reference occurs when the name of
the referenced item is written in a Procedure Division statement or when the
name of the referenced item is copied into the Procedure Division by the processing
of a COPY statement. An implicit reference occurs when the item is referenced
by a Procedure Division statement without the name of the referenced item being
written in the source statement. An implicit reference also occurs during the
execution of a PERFORM statement when the index or data item referenced by the
index-name or identifier specified in the VARYING, AFTER, or UNTIL phrase is
initialized, modified, or evaluated by the control mechanism associated with
that PERFORM statement. Such an implicit reference occurs only if the data item
contributes to the execution of the statement.

Transfers of Control

The mechanism that controls program flow transfers control from statement
to statement in the sequence in which they were written in the source program
unless an explicit transfer of control overrides this sequence or there is no
next executable statement to which control can be passed. The transfer of control
from statement to statement occurs without specifying an explicit Procedure Division
statement and, therefore, is an implicit transfer of control.

COBOL provides both explicit and implicit methods of altering the implicit
control transfer mechanism.

In addition to the implicit transfer of control between consecutive statements,
implicit transfer of control also occurs when the normal flow is altered without
the execution of a procedure branching statement. COBOL provides the following
types of implicit control flow alterations, which override the
statement-to-statement transfers of control:

L If a paragraph is being executed under control of another COBOL statement
(e.g., PERFORM, USE, SORT, or MERGE) and the paragraph is the 1last
paragraph in the range of the controlling statement, an implied transfer
of control occurs from the last statement in the paragraph to the
control mechanism of the 1last executed controlling statement. In
addition, if a paragraph is being executed under control of a PERFORM
statement that causes iterative execution and that paragraph is the
first paragraph in the range of that PERFORM statement, an implicit
transfer of control occurs between the control mechanism associated
with that PERFORM statement and the first statement in that paragraph
for each iterative execution of the paragraph.

[When execution of any COBOL statement results in the execution of a
declarative section, an implicit transfer of control to the declarative
section occurs. Another implicit transfer of control occurs after the
declarative section is executed, as described above.

@ When a SORT or a MERGE statement is executed, an implicit transfer of
control occurs to any associated input or output procedures.

2-24 AS44-02

An explicit transfer of control alters the implicit control transfer mechanism

and can be caused only by the execution of a procedure branching or conditional
statement. (Refer to "Categories of Statements" in Section 3.) Execution of
the procedure branching ALTER statement does.not in itself constitute an explicit
transfer of control, but affects the explicit transfer of control that occurs
when the associated GO TO statement is executed. The procedure branching EXIT
PROGRAM statement causes an explicit transfer of control when the statement is
executed in a called program.

In this manual, the term "next executable statement" refers to the next
COBOL statement to which control is transferred in accordance with the above
rules and the rules associated with each language element in the Procedure Division.

No executable statement follows the last statement either in a declarative
section or in a program when the paragraph in which it ‘appears is not being
executed under the control of some other COBOL statement.

Explicit and Implicit Attributes

Attributes may be specified either explicitly or implicitly. If an attribute
has not been specified explicitly, it assumes the default specification and is
considered as an implicit attribute. For example, the usage of a data item need
not be specified. In this case, the usage of the data item is DISPLAY.

2-25 ASly-02

Explicit and Implicit Scope Terminators

Scope terminators serve to delimit the scope of certain
statements. Scope terminators are of two types: explicit and
implicit,

The explicit scope terminators are:

END-ADD END-IF END-RETURN END-SUBTRACT
END-CALL END-MULTIPLY END-REWRITE END-UNSTRING
END-COMPUTE END-PERFORM END-SEARCH END-WRITE
END-DELETE END-READ END-START

END-DIVIDE END-RECEIVE END-STRING

The implicit scope terminators are:

1. At the end of any sentence, the separator period which
terminates the scope of all previous statements not yet
terminated.

2. Within any statement containing another statement, the next
phrase of the containing statement following the contained
statement, terminates the scope of any unterminated
contained statement (e.g., ELSE, THEN, etc.).

EXTERNAL SWITCH

An external switch is a software device which is used to indicate that one
of two alternate states exists. These alternate states are referred to as the
ON status and the OFF status of the associated external switch.

The status of an external switchmay be interrogated by testing condition-names
associated with that switch. The association of a condition-name with an external
switch and the association of a user-specified mnemonic-name with the external
switch is established in the SPECIAL NAMES paragraph of the Environment Division.

The user may establish a value for an external switch every time a program
is executed. (See the run_cobol command described in the Multics COBOL User's
Guide, (Order No. AS43)).

The status of certain external switches may be altered by the SET
statement (see the SET statement, Section 7).

2-26 ASly-02

SECTION 3

OVERALL OUTLINE OF THE COBOL DIVISIONS

GENERAL DESCRIPTION OF COBOL

COBOL is a programming language used throughout the world for programming
business data processing applications. The COBOL language was developed by a
group of computer users and manufacturers, and first documentation was distributed
in April 1960. Since then it has undergone many extensions and changes resulting
from manufacturer experience with COBOL implementation and user experience with
COBOL programming for computers of many sizes and configurations. The improvements
are embodied in this version of the language termed COBOL-TA4,

From a computer users standpoint, COBOL offers several advantages:

e It provides a quick means of program implementation.

[] It reduces costs of converting programs from one computer system to
another.

e It reduces time and effort required for training programmers.

L It guarantees a measure of standard documentation.

COBOL allows the user to instruct computers in a language similar to English.
Following conventions of a standard reference format, the user writes COBOL
statements in sentence and paragraph form to describe data to be processed and
to specify required procedures. The complete body of statements is called a
source program.

The source program is always in a Multics segment created by a text editor,
from punched cards, or from magnetic tape. The segment is submitted as input to
the computer under control of a special program, called a compiler. The compiler
produces an object program in a Multics segment that contains the actual sequence
of machine instructions required to accomplish the functions specified in the
source program. In addition, the compiler produces edited listings that include
a printout of the source program.

Another important function of the compiler is to analyze the source program
for correct COBOL syntax and to print error comments for any syntax errors that
are detected. The computer's operation under control of the compiler is called
compilation.

3-1 ASlUy-02

COBOL DIVISIONS

A Multics COBOL program comprises five divisions, each of which must be
constructed according to specific rules. (Refer to Section 4.) A COBOL division
is a set of zero, one, or more sections or paragraphs; together they constitute
the division body. Paragraphs are likewise formed and combined in accordance
with a specific set of rules.

The following divisions are used to form a COBOL program and must appear in
the program in the following order:

[Control Division (optional)
e Identification Division

L] Environment Division

e Data Division

@ Procedure Division

Control Division

The optional Control Division contains the Default Section. When
it is included in the source program, the Control Division must be the
first division in the program, preceding the Identification Division.
The Default Section allows compiler default conditions to be specified
if other than standard defaults are required.

General Format:

[CONTROL DIVISION.

[DEFAULT SECTION. [default clauses] cee o]]

Identification Division

The Identification Division must be included in every COBOL source program.
This division identifies the source program, the object program, and the resultant
output 1listing. The user may also include the date on which the program is
written, the date on which source program compilation is accomplished, and other
information as desired.

3-2 ASH¥-02

Paragraph headers identify the type of information contained in the paragraph.

The name of the program must be given in the first paragraph, the PROGRAM-ID
paragraph. The other paragraphs may be included at the discretion of the user.

General Format:

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name.
[AUTHOR. [comment-entry]]
: INSTALLATION. [comment-entry] ...]
| oaTE-WRITTEN. [comment-entry] ...]

| oATE-COMPILED. [comment-entry] ...]

| SECURITY. [comment-entry]]

Environment Division

The Environment Division must be included in every COBOL source program.
This division provides a standard method of expressing those aspects of a data
processing problem that depend upon the physical characteristics of a specific
computer. In this division, the compiling computer and the executing computer
are specified. 1In addition, information relating to input/output control, special
hardware or operating system characteristics, and control techniques can also be
presented.

The Environment Division is divided into the Configuration Section and the
Input-Output Section.

The Configuration and Input-Output Sections are optional in
Multics COBOL. -

The Configuration Section provides program documentation for the hardware
characteristics of the computer used for compilation and of the computer used to
execute the object program. Provisions are included in this section for relating
specific hardware and operating system features to user-specified mnemonic names.

The Configuration Section is subdivided into three paragraphs:
[SOURCE-COMPUTER paragraph, which identifies the computer on which the

source program is to be compiled

L OBJECT-COMPUTER paragraph, which identifies the computer on which the
object program produced by the compiler is to be executed

3-3 ASly-02

[) SPECIAL-NAMES paragraph, which associates hardware names and operating
system features with mnemonic-names used in the source program and

relates alphabet-names to character sets and/or collating sequences

The Input-Output Section is concerned with information needed to control
the transmission and handling of data between external devices and the object
program; it is subdivided into the following two paragraphs:

e FILE-CONTROL paragraph, which names all files used in the program and
associates them with internal file names, which are in turn associated
with I/0 switches by the operating system

L] I-0-CONTROL paragraph, which defines special control techniques to be
used in the object program

General Format:

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. source-computer-entry

OBJECT-COMPUTER. object-computer-entry

[SPECIAL-NAMES. special—names-entry]

[INPUT-OUTPUT SECTION.

FILE-CONTROL. {_' file-control-entry } ..

'[I-0-CONTROL . input-output-control-entry’]]

Data Division

The Data Division describes the data that the object program is to accept
as input, to manipulate, to create, or to produce as output. Data to be processed
falls into three categories:

@ That which is contained in files and enters or leaves the internal
memory of the computer from a specified area or areas

e That which is developed internally and placed into intermediate or
working-storage, or placed into a specific format for reporting output

L] Constants that are defined by the user

The Data Division is required in every COBOL program and is subdivided into
the File Section, the Working-Storage Section, the Constant Section, the Linkage
Section, the Communication Section, and the Report Section. :

3-4 ASUL-02

The File Section defines the structure of data files. Each file is defined
by a file description entry and one or more record descriptions. Recorddescriptions
are written immediately following the file description entry.

The Working-Storage Section describes records and noncontiguous data items
that are not part of external data files but are developed and processed internally.

The Constant Section describes data items whose values are
assigned in the source program and do not change during the execution
of the object program.

The Linkage Section appears in the called program and describes data items
that are to be referred to by the calling program and the called program. Its
structure is the same as that of the Working-Storage Section. (Refer to Section
14 for Interprogram Communication information.)

The Communication Section describes the data item in the source program
that serves as the interface between the COBOL Message Control System (CMCS) and
the program. (Refer to Section 15, "Communication Facility.")

The Report Section describes the content and format of Reports that are to
be generated.

General Format:

DATA DIVISION,.

[FILE SECTION.

{file-description-entry [record-description-entry] }] |

sort-file-description-entry [record-description-entry] oo

[WORKING-STORAGE SECTION.

T7-level-description-entry
record-description-entry o

[CONSTANT SECTION.

77-level-description-entry
record-description-entry o

3-5 ASH44-02

[LINKAGE SECTION.

{77-1evel-description-entry }] ~

record-description-entry

[COMMUNICATION SECTION.

[communication-description-entry [record-description-entry] oo] oo]

4

[REPORT SECTION.

[report-description-entry] .o]

Procedure Division

The Procedure Division contains the procedures required to solve a given
problem and must be included in every COBOL source program. This division may ‘'
contain declarative and nondeclarative procedures.

PROCEDURE DIVISION HEADER

The Procedure Division is identified by and must begin with the following
header: \J

PROCEDURE DIVISION [usmc {data-name}] .
PROCEDURE DIVISION BODY

The body of the Procedure Division must conform to one of the following
formats:

3-6 ASUK-02

Format 1:

DECLARATIVES.

{section-name SECTION [segment-—number] . declarative-sentence

[paragraph-name. tsentence]] }

END DECLARATIVES.

{section-name SECTION [segment-number] .

[paragraph-name. [sentence] e] e } o

Format 2:

{ paragraph-name. [sentence] e } .o

DECLARATIVES

Declarative sections must be grouped at the beginning of the Procedure
Division, preceded by the key word DECLARATIVES, and followed by the key words
END DECLARATIVES. (Refer to the USE statement applications in Section 9.)

PROCEDURES

A procedure is composed of a paragraph, or group of successive paragraphs,
or a section, or a group of successive sections within the Procedure Division.
If one paragraph is in a section, then all paragraphs must be in sections. A
procedure-name is a word used to refer to a paragraph or section in the source
program in which it occurs. It consists of a paragraph-name (which may be
qualified) or a section-name.

The end of the Procedure Division and the physical end of the program is
that physical position in a COBOL source program after which no further procedures
appear.

A section consists of a section header followed by =zero, one, or more
successive paragraphs. A section ends immediately before the next section or at
the end of the Procedure Division or, in the declarative portion of the Procedure
Division, at the key words END DECLARATIVES.

3-7 AS44-02

At

A paragraph consists of a paragraph-name followed by a period and a space
and by zero, one, or more successive sentences. A paragraph ends immediately
before the next paragraph-name or section-name or at the end of the Procedure
Division or, in the declarative portion of the Procedure Division, at the key
words END DECLARATIVES,

STATEMENTS AND SENTENCES

A sentence consists of one or more statements and is terminated by a period
followed by a space.

A statement is a syntactically valid combination of words and symbols beginning
with a COBOL verb.

Execution begins with the first statement of the Procedure Division excluding
declaratives. Statements are then executed in the order in which they are presented
for compilation, except where the rules indicate some other order.

There are four types of statements: imperative statements, conditional
statements. compiler-directing statements, and delimited-scope statements.

There are three types of sentences: imperative sentences, conditional
sentences, and compiler-directing sentences.

Conditional Statements and Sentences

A conditional sentence specifies that the truth value of a condition is to
be determined and that the subsequent action of the object program is dependent
on this truth value. A conditional statement is one of the following:

1. An IF, SEARCH, or RETURN statement.
2. A READ statement that specifies the AT END or INVALID KEY phrase,.
3. A WRITE statement that specifies the INVALID KEY or END-OF-PAGE phrase.

L, A START, REWRITE, or DELETE statement that specifies the INVALID KEY
phrase.

5. An arithmetic statement (ADD, COMPUTE, DIVIDE, MULTIPLY, SUBTRACT) that
specifies the SIZE ERROR phrase.

6. A RECEIVE statement that specifies the NO DATA phrase.
7. A STRING or UNSTRING statement that specifies the ON OVERFLOW phrase.

8. - A CALL statement that specifies the ON OVERFLOW phrase.

3-8 AS44-02

~/

A conditional sentence is a conditional statement, optionally preceded by l
an imperative statement, terminated by a separator period.

Compiler-Directing Statements and Sentences

A compiler-directing statement consists of a compiler-directing verb and
its operands. Compiler-directing verbs are COPY, REPLACE, and USE. A l
compiler-directing statement causes the compiler to take a specific action during
compilation.

A compiler-directing sentence is a single compiler-directing statement
terminated by a separator period.

Imperative Statements and Sentences
An imperative statement may assume two forms:

1. An imperative statement may begin with an imperative verb which specifies
an unconditional action to be taken by the object program.

2. An imperative statement may consist of a conditional statement
delimited by 1its explicit-scope termination (delimited-scope
statement).

An imperative statement may also consist of a sequence of imperative statements
each possibly separated from the next by a separator. The imperative verbs are:

ACCEPT GENERATE REWRITE (Note 2)
ADD (Note 1) GO TO SEND

ALTER INITIATE SET

CALL (Note 3) INSPECT SORT

CANCEL MERGE START (Note 2)
CLOSE MOVE STOP

COMPUTE (Note 1) MULTIPLY (Note 1) STRING (Note 3)
DELETE (Note 2) OPEN SUBTRACT (Note 1)
DISABLE PERFORM SUPPRESS

DISPLAY PURGE TERMINATE

DIVIDE (Note 1) READ (Note 4) UNSTRING (Note 3)
ENABLE RECEIVE (Note 5) WRITE (Note 6)
EXIT RELEASE

Notes: Without the optional SIZE ERROR phrase

1.
2. Without the optional INVALID KEY phrase

3. Without the optional ON OVERFLOW phrase

y, Without the optional AT END or INVALID KEY phrase

5. Without the optional NO DATA phrase

6. Without the optional INVALID KEY or END-OF -PAGE phrase '

When the term "imperative-statement" appears in the general format of
statements, it refers to that sequence of consecutive imperative statements that
must be ended by a period or any phrase associated with a statement containing
the "imperative statement.”

3-9 ASU4y-02

An imperative sentence is an imperative statement terminated by a period
followed by a space. :

Delimited Scope Statement

A delimited scope statement is any statement which includes its
explicit scope terminator (see "Explicit and Implicit Scope
Terminators").

Scope of Statements

Scope terminators delimit the scope of certain Procedure Division statements.
Statements which include their explicit scope terminators are termed delimited
scope statements. The scope of statements which are contained within statements
(nested) may also be implicitly terminated.

When statements are nested within other statements which allow optional
conditional phrases, any optional conditional phrase encountered is considered
to be the next phrase of the nearest preceding unterminated statement with which
that phrase is permitted to be associated, but with which no such phrase has
already been associated.

Categories of Statements

Verbs available in COBOL are listed below within their functional categories:

Category Verbs

ADD
COMPUTE
DIVIDE
Arithmetic INSPECT (TALLYING)
MULTIPLY
SUBTRACT

COPY
Compiler-Directing REPLACE
USE

" ADD (SIZE ERROR)

CALL (OVERFLOW)

COMPUTE (SIZE ERROR)

DELETE (INVALID KEY)

DIVIDE (SIZE ERROR)

IF

MULTIPLY (SIZE ERROR)

READ (AT END or INVALID KEY)
Conditional € RETURN

RECEIVE (NO DATA)

REWRITE (INVALID KEY)

SEARCH (AT END)

START (INVALID KEY)

STRING (OVERFLOW)

SUBTRACT (SIZE ERROR)
UNSTRING (OVERFLOW)

L WRITE (INVALID KEY or END-OF -PAGE)

3-10 ' AS44-02

Data Movement

Ending

Input/Output

Interprogram
Communication

Category

No operation

Ordering

Procedure Branching

Report Writer

ACCEPT (DATE, DAY, or TIME)
ACCEPT (MESSAGE COUNT)
INSPECT (REPLACING)

MOVE '

STRING

UNSTRING

STOP

ACCEPT (identifier)
CLOSE

DELETE

DISABLE
DISPLAY
ENABLE

OPEN

¢ PURGE

READ

RECEIVE
REWRITE

SEND

START

STOP (literal)
| WRITE

CALL
CANCEL

MER GE
RELEASE
RETURN
[SORT

" ALTER

CALL

¢ EXIT PROGRAM
GO TO

| PERFORM

GENERATE
INITIATE
TERMINATE
SUPPRESS

AS44-02

" ADD (END-ADD)

CALL (END-CALL)

COMPUTE (END-COMPUTE)
DELETE (END-DEDETE)
DIVIDE (END-DIVIDE)

IF (END-IF)

MULTIPLY (END-MULTIPLY)
PERFORM (END-PERFORM)
Scope Delimiting } READ (END-READ)

RECEIVE (END-RECEIVE)
RETURN (END-RETURN)
REWRITE (END-REWRITE)
SEARCH (END-SEARCH)
START (END-START)
STRING (END-STRING)
SUBTRACT (END-SUBTRACT)
UNSTRING (END-UNSTRING)
. WRITE (END-WRITE)

SEARCH
Table Handling SET

Specific Statement Formats

The.specific §tatement formats, together with a detailed discussion of the
restrictlons and limitations associated with each, appear in alphabetic sequence
in the appropriate sections of this manual. (Refer to the index.)

3-12 AS44-02

SECTION 4

REFERENCE FORMAT

The reference format provides a standard method for describing COBOL source
programs; it is defined in terms of character positions in a line. The COBOL
compiler accepts source programs written in reference format and produces an
output listing of the source program in reference format. Refer to the Multics
COBOL Users' Guide for an alternate reference format for terminals.

The rules for spacing given in the discussion of the reference format take
precedence over all other rules for spacing.

The divisions of a source program must be ordered as follows; the Control-
Division (optional), the Identification Division, then the Environment Division,
then the Data Division, and then the Procedure Division. Each division must be
written according to the rules specified for the reference format.

REFERENCE FORMAT REPRESENTATION

The reference format for a line (character position, not print position) is
represented as follows:

Margin Margin Margin Margin Margin
L C A B R
1 | 2 | 3 | y | 5 | 6 7 8.| 9 |1O |11 12 |13 | N
Sequence Number Area Area A Area B
Indicator
Area

Margin L is immediately to the left of the leftmost character position of a
line.

Margin C is between character positions 6 and 7.
Margin A is between character positions 7 and 8.

Margin B is between character positions 11 and 12,

Margin R is immediately to the right of character position 256.

4-1 AS44-02

rz

The sequence number area occupies six character positions (1-6) and is
between margin L and margin C.

The indicator area is character position 7 of a line.

Area A occupies character positions 8, 9, 10, and 11 and is between margin
A and margin B.

Area B begins immediately to the right of margin B and terminates immediately
to the left of margin R.

Sequence Numbers

The sequence number can be used to label a source program line. The contents
of the sequence number area are user-defined and can consist of any character in
the host computer's character set.

Sequence numbers are for documentation purposes only.

Continuation of Lines

Whenever a sentence, entry, phrase, or clause requires more than one line,
it can be continued by starting subsequent lines in Area B. These subsequent
lines are called continuation lines. The 1line being continued is called the
continued line. Any word, literal, or PICTURE character-string can be broken in
such a way that part of it appears on a continuation line.

A hyphen in the indicator area of a line indicates that the first nonblank
character in area B of the current line is the successor of the last nonblank
character of the preceding line, excluding intervening comment 1lines, with no
intervening space. However, if the continued line contains a nonnumeric literal
without a closing quotation mark, the first nonblank character in area B on the
continuation line must be a quotation mark, and the continuation starts with the
character immediately after that quotation mark. All spaces at the end of the
continued line are considered part of the literal. Area A of a continuation
line must be blank.

If the indicator area of a continuation line contains no hyphen, the 1last
character in the preceding line is assumed to be followed by a space.

Blank Lines

A blank line is one that is blank from margin C to margin R. A blank line
can appear anywhere in the source program, except immediately before a continuation
line. (Refer to "Continuation of Lines" above.)

8-2 ' ASHN-02

DIVISION, SECTION, AND PARAGRAPH FORMATS

The division header must start in area A.

The section header must start in area A. A section consists of paragraphs in
the Environment and Procedure Divisions, Control Division entries in the Control
Division, and Data Division entries in the Data Division.

A paragraph consists of a paragraph-name followed by a period and a space
and by zero, one, or more sentences, or a paragraph header followed by one or
more entries. Comment lines may be included within a paragraph. The paragraph
header or paragraph-name starts in area A of any line following the first line
of a division or a section. The first sentence or entry in a paragraph begins
either on the same line as the paragraph header or paragraph-name or in area B
of the next nonblank line that is not a comment line. Successive sentences or
entries begin either in area B of the same line as the preceding sentence or
entry or in area B of the next nonblank line that is not a comment line. When
the sentences or entries of a paragraph require more than one line, they may be
continued as described in "Continuation of Lines" above.

DATA DIVISION ENTRIES

Each Data Division entry begins with a 1level indicator or 1level-number
followed by a space, followed by its. associated name, followed by a sequence of
independent descriptive clauses. Each clause, except the last clause of an
entry, may be terminated by either the separator semicolon or the separator
comma. The last clause is always terminated by a period followed by a space.
There are two types of Data Division entries: those that begin with a level
indicator and those that begin with a level-number.

Level indicators are FD, SD, RD, and CD. In Data Division entries that
begin with a level indicator, the level indicator begins in area A followed by a
space and followed in area B with its associated name and appropriate descriptive
information.

The associated name may also begin in area A.

Data Division entries that begin with a level-number are called data description
entries. A level-number has a value taken from the set of values 1 through 49,
66, 77, and 88. Level-numbers in the range 1 through 9 can be written either as
a single digit or as a zero followed by a significant digit. At least one space
must separate a level-number from the word following the level-number.

In data description entries that begin with level-number 01 or 77, the
level-number begins in area A followed by a space and followed in area B by its
associated record-name or item-name and appropriate descriptive information.

The associated record-name or item-name may also begin in area A.

Successive data description entries may have the same format as the first
or may be indented according to level-number. Entries in the output listing are

4-3 ASly-02

indented only if the input is indented. Indentation does not affect the magnitude
of a level-number.

When level-numbers are to be indented, each new level-number may begin any
number of spaces to the right of margin A. The extent of indentation to the
right is limited only by the length of a line.

DECLARATIVES

The key words DECLARATIVES and END DECLARATIVES precede and follow, respectively,
the declarative portion of the Procedure Division. Each term must appear as the
only entries on a line, must begin in area A, and must be followed by a period
and a space.

COMMENT LINES

A comment line is any line with an asterisk in the continuation indicator
area of the line. A comment line can appear as any line in a source program
after the Identification Division header. Any combination of characters from
the ASCII character set may be included in area A and area B of that line. The
asterisk and the characters in area A and area B will be produced on the output
listing but serve as documentation only.

A special form of comment line represented by a stroke (/) in the
indicator area of the line causes page ejection prior to printing the
comment.

Successive comment lines are allowed.

There may be comment 1lines between a continued line and the
related continuation line.

UPPERCASE /LOWERCASE OUTPUT

Uppercase and lowercase letters do not affect the source listing.
The user receives the source information exactly as written. However,
in the cross-reference 1listing all user-words are translated to
lowercase letters.

4-y AS4Y-02

SOURCE INPUT SEGMENT

The source input to the compiler is from a Multics source
segment. The segment is created by standard Multics facilities (the
text editor edm or qedx commands, or from a card deck). It must have
a name in the form name.cobol.

Each 1line has a maximum 1length of 256 characters and is
terminated by a newline character.

A newline character is invalid in a literal. If detected in a
literal, it is treated as an end of 1line, and the next line must be a
continuation line.

4-5 AS44-02

SECTION 5

CONTROL DIVISION

DESCRIPTION OF THE CONTROL DIVISION

The Control Division is optional and consists of the Default
Section. When it is included in the source program, the Control
Division must be the first division in the program, preceding the
Identification Division.

The Control Division consists of a single section, the Default
Section. The Default Section allows the specification of certain
defaults other than the standard compiler defaults.

STRUCTURE OF THE CONTROL DIVISION

The general format of the sections and clauses in the Control Division and
their order of presentation in the source program is given below.

General Format:

[CONTROL DIVISION.

[DEFAULT SECTION. [default clauses]]]

The Default Section is optional and is included only if the standard
compiler default values require changing.

5=-1 ASlly-02

DISPLAY SIGN DISPLAY SIGN

DISPLAY SIGN Clause

The DISPLAY SIGN clause specifies the representation and position
of the sign on each DISPLAY data item without requiring the explicit use
of a SIGN clause.

General Format:

[DEFAULT F‘OR] {DISPLAY SIGN IS {

Syntax Rules:

LEADING

} [SEPARATE CHARACTER]}

TRAILING

1. The DISPLAY SIGN clause applies only to numeric data
description entries whose PICTURE contains an 'S' and whose
usage is DISPLAY, explicitly or implicitly.

2. The DISPLAY SIGN clause is not applicable to a numeric data
description entry that has an implicit (at the group entry) or
explicit SIGN clause associated with it.

General Rules:

1. The DISPLAY SIGN clause specifies the default sign convention
for signed numeric DISPLAY data items to which no SIGN clause
applies.

2. If this clause is present, all rules specified under the SIGN
clause in the Data Division apply to the explicit or implicit
default option.

3. If this clause is not specified, the sign is trailing and not
separate.

5-2 AS44-02

SECTION 6
NUCLEUS OF MULTICS COBOL
The nucleus of Multics COBOL provides the basic language capability for the
internal processing of data. This section describes the Identification,

Environment, and Data Divisions in the nucleus. The Procedure Division in the
nucleus is contained in Section 7.

IDENTIFICATION DIVISION FOR THE NUCLEUS

The Identification Division must be included in every COBOL source program.
This division identifies both the source program and the resultant output listing.

Paragraph headers identify the type of information contained in the paragraph.
The program-name must be given in the PROGRAM-ID paragraph. The other paragraphs
are optional and may be included at the discretion of the user, in the order of
presentation shown in the general format.

Structure of the Identification Division

The general format of paragraphs in the Identification Division and their
order of presentation in the source program are. given below.

General Format:

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name.
| AUTHOR. [}omment-entri] cee]
| InsTaLLaTION. [comment-entry]]

| DATE-WRITTEN. [}omment-entri] cee]

| DATE-COMPILED. [comment-entry] ...]

[szcunn‘y. [comment-entry] ...]

6-1 AS4y4-02

———— e ——— .

PROGRAM-ID . PROGRAM-ID

PROGRAM-ID Paragraph

The PROGRAM-ID paragraph gives the name by which a program is identified.

General Format:

PROGRAM-ID. program-name.

Syntax Rules:

1. The program-name must conform to the rules for formation of auser-defined
word. (Refer to "User-Defined Words" in Section 2.)

General Rules:

1. The PROGRAM-ID paragraph must contain the name of the program and must
be present in every program. -

2. The program-name identifies the listings and the object program.

3. In Multics COBOL, program-name is an entry name. When referenced
in a CALL or when invoked from a terminal, the program is
referenced as object-name$program-name, where object-name is
identical to the name of the source segment without the suffix
".cobol." If object-name and program-name are identical, the
reference may be abbreviated to program-name; if they are
different, the reference must include both names. For example, if
the name of the source segment is Joe.cobol and the program-name is
Sam, the program must referenced by the name Joe$Sam.

6-2 ASH4y-02

DATE-COMPILED DATE-COMPILED

DATE-COMPILED Paragraph

The DATE-COMPILED paragraph provides the compilation date in the Identification
Division source program listing.

General Format:

DATE-COMPILED. [}omment-entri] oo

Syntax Rules:

1. The comment-entry can be any combination of characters from the computer's
character set. The comment-entry may be contained on multiple lines;
however, use of a hyphen in the indicator area to indicate continuation
of the comment-entry is not permitted.

General Rules:

1. The paragraph-name DATE-COMPILED causes the current date to be inserted
during program compilation. If a DATE-COMPILED paragraph is included
in the source program, it is replaced during compilation with a paragraph
of the form:

DATE-COMPILED. mm/dd/yy
where: mm represents the month

dd represents the day of the month

yy represents the year

6-3 ASHY-02

ENVIRONMENT DIVISION FOR THE NUCLEUS

The Environment Division provides a standard means for expressing those
aspects of a data processing problem that depend upon the physical characteristics
of a specific computer. This division must be included in every COBOL source
program to specify the compiling and executing computers, must follow the
Identification Division, and must begin with the reserved words ENVIRONMENT DIVISION
followed by a period and a space.

The Configuration Section in the Nucleus describes source and object computer
characteristics and is subdivided into three paragraphs:

L SOURCE-COMPUTER paragraph, which identifies the computer on which the
source program is to be compiled.

) OBJECT-COMPUTER paragraph, which identifies the computer on which the
object program produced by the compiler is to be executed.

[] SPECIAL-NAMES paragraph, which associates hardware names and operating
system features with the mnemonic-names used in the source program.

The Environment Division and the sections and paragraphs within the
Environment Division are optional.

Structure of the Environment Division

The general format of sections and paragraphs in the Environment Division
and their order of presentation in the source program are given below.

General Format:

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE~COMPUTER. source-computer-entry

OBJECT-COMPUTER. object-computer-entry

[SPECIAL-NAMES. special-names-entry]

Configuration Section

The Configuration Section provides program documentation for the hardware
characteristics of the computer used for compilation and of the computer used to
execute the object program. Provisions are included in this section for relating
specific hardware and operating system features to user-specified mnemonic-names.

6-4 ASH44-02

~/

Syntax Rules:

1. The Configuration Section must be included, must follow the Environment
Division header, and must begin with the section-name CONF IGURATION

SECTION followed by a period and a space.

6-5 ASUY4-02

SOURCE ~COMPUTER SOURCE -COMPUTER

SOURCE-COMPUTER PARAGRAPH

The SOURCE-COMPUTER paragraph in the Configuration Section identifies the
computer upon which the program is to be compiled.

General Format:

MULTICS
LEVEL-68 § [wITh DEBUGGING MODE]

SOURCE-COMPUTER . [ﬁls-ssalas-sﬁ]

Syntax Rules:

1. The SOURCE-COMPUTER paragraph must begin with the paragraph-name
SOURCE-COMPUTER followed by a period and a space.

General Rules:

1. This paragraph provides program deocumentation only and has no effect
on compilation.

2. Refer to Section 13 for a description of the WITH DEBUGGING MODE clause.

§-6 AS48.02

OBJECT-COMPUTER OBJECT-COMPUTER

OBJECT-COMPUTER PARAGRAPH

The OBJECT-COMPUTER paragraph in the Configuration Section identifies the
computer on which the program is to be executed, and specifies the collating
sequence of the object program.

General Format:

MULTICS
OBJECT -COMPUTER . [HIS-SERIEIS-60] LEVEL-68

WORDS
MEMORY SIZE integer CHARACTERS
MODULES

[ProGRAM COLLATING SEQUENCE 1S alphabet-name]

Syntax Rules:
1. The OBJECT-COMPUTER paragraph must begin with the paragraph-name
OBJECT-COMPUTER followed by a period and a space.
2. If the alphabet-name option of the PROGRAM COLLATING SEQUENCE phrase

is specified, alphhabet-name must be defined in the SPECIAL-NAMES
paragraph.

6-7 ASuly-02

OBJECT-COMPUTER OBJECT-COMPUTER

General Rules:

1. The MEMORY SIZE phrase is used for program documentation only and has
no effect on the object program.

2. If the PROGRAM COLLATING SEQUENCE phrase is specified, the collating
sequence associated with alphabet-name is used to determine the truth
value of any nonnumeric comparisons explicitly specified in relation
conditions or in condition-name conditions, and the value of the figurative
constants HIGH-VALUE and LOW-VALUE.

3. If the PROGRAM COLLATING SEQUENCE phrase is not specified, the native
(ASCII) collating sequence is used.

4, If the PROGRAM COLLATING SEQUENCE phrase is specified, the collating
sequence 1is that collating sequence associated with alphabet-name
specified in that phrase.

5. The PROGRAM COLLATING SEQUENCE phrase is also applied to any nonnumeric
sort or merge keys unless the COLLATING SEQUENCE phrase of the SORT or
MERGE statement is specified.

6. The PROGRAM COLLATING SEQUENCE phrase applies only to the program in
which it is specified.

6-8 ASUy-02

SPECIAL-NAMES SPECIAL-NAMES

SPECIAL-NAMES PARAGRAPH

The SPECIAL-NAMES paragraph in the Configuration Section provides a means

of relating specific hardware and operating system features to user-specified
mnemonic-names and of relating alphabet-names to character sets and/or collating
sequences.

General Format:

SPECIAL-NAMES.

[SYSIN IS mnemonic-name-1] [SYSOUT IS mnemonic-name-2]
CONSOLE IS mnemonic-name-3] [HOF IS mnemonic-name-4]

CHANNEL-m IS mnemonic-name-S]

[
[

ON STATUS IS condition-name-1
IS mnemonic-name-6
OFF STATUS IS condition-name-2

ON STATUS IS condition-name-1
OFF STATUS IS condition-name-2

alphabet-name IS

STANDARD-1
NATIVE
ASCIT
EBCDIC o

THROUGH| literal-2
literal-1 THRU

ALSO literal-3 [ALSO literal-l&]...

6-9 AsSly-02

SPECIAL-NAMES SPECIAL-NAMES

i

Syntax

CURRENCY SIGN IS literal-5 | [OBJECT SIGN IS 1iteral-6]]

COMMA COMMA
DECIMAL-POINT IS OBJECT IS
DECIMAL-POINT I ~ |DECIMAL-POINT

Rules:

Literals specified in the literal phrase of the alphabet-name clause:

a. If numeric, must be unsigned integers and must be have a value
within the range 1 through 128, the maximum number of characters
in the ASCII character set.

b. If nonnumeric and associated with a THROUGH or ALSO phrase, must
each be one character in length.

If the 1literal phrase of the alphabet-name clause is specified, a

given character must not be specified more than once in an alphabet-name

clause.

The words THROUGH and THRU are equivalent.

Literal-5 must be a one-character nonnumeric literal.

Literal-6 must be a nonnumeric literal 1less than four characters
in length.

In SWITCH-n, the value n must be in the range and must be 1 through 8.

In CHANNEL-m, the value m must be in the range and must be 1 through
16.

6-10 ASH44-02

SPECIAL-NAMES SPECIAL-NAMES

General Rules:

Mnemonic-name-1, associated with SYSIN, can be used only in an ACCEPT
statement, in which case it specifies that data is to be accepted
(read) from the I/0 switch user_input, usually attached to the user's
terminal.

Mnemonic-name-2, associated with SYSOUT, can be used only in a DISPLAY
statement, in which case it specifies that data is to be displayed
(written) on the I/0 switch user_output, usually attached to the user's
terminal.

Mnemonic-name-3, associated with CONSOLE, can be used only in an ACCEPT
or DISPLAY statement, in which case it specifies that data is either
to be accepted (read) from the I/0 switch user_input or displayed
(written) to the I/O switch error_output; both switches are usually
attached to the user's terminal.

Mnemonic-name-4, associated with HOF, and mnemonic-name-5, associated
with CHANNEL-m, can be used only in a WRITE or SEND statement within
the BEFORE or AFTER phrase. CHANNEL-m indicates one of the printer
control channels, where m may be a value from 1 to 16. The meaning of
the various channels is site defined.

The external switches are represented by the specification of SWITCH-n,
where n may be a value from 1 to 8. If SWITCH-n 1is specified, at
least one condition-name must be associated with it. The status of
the switch is specified by condition-names and interrogated by testing
the condition-names. (Refer to "Switch-Status Condition" in Section
7.)

Mnemonic-name-6 is associated with the name of an external switch (not
the condition of that switch). It can be set only by the SET statement.
(Refer to "SET Statement" in Section 7.)

The alphabet-name clause provides a means for relating a name to a
specified character code set and/or collating sequence. When
alphabet-name is referenced in the PROGRAM COLLATING SEQUENCE clause
(refer to "OBJECT-COMPUTER Paragraph" in this section) or the COLLATING
SEQUENCE phrase of a SORT statement (refer to Section 10), the
alphabet-name clause specifies a collating sequence. When alphabet-name
is referenced in a CODE-SET clause in a file description entry (refer
to "File Description - Complete Entry Skeleton" in Section 9), the
alphabet-name clause specifies a character code set.

a. If the STANDARD-1 phrase is specified, the character code set or
collating sequence identified is that defined in American National
Standard X3.4-1968, Code for Information Interchange.

b. NATIVE and ASCII are synonymous with STANDARD-1.

c. If the EBCDIC phrase is specified, the character code set or
collating sequence identified is that defined by EBCDIC.

6-11 AS44-02

SPECIAL-NAMES SPECIAL-NAMES

d. If the literal phrase is specified, the alphabet-name may not be
referenced in the CODE-SET clause. (Refer to "CODE-SET Clause"
in Section 9.) The collating sequence identified is that defined
according to the following rules:

1) The value of each literal specifies:

e The ordinal number of a character within the ASCII
character set, if the literal is numeric. This value
must not exceed 128, the value of the number of printable
ASCII characters.

e The actual character within the ASCII character set, if
the literal is nonnumeric. If the value of the nonnumeric
literal contains multiple characters, each character in
the literal, starting with the leftmost character, is
assigned successive ascending positions in the collating
sequence being specified.

2) The order in which the literals appear in the alphabet-name
clause specifies, in ascending sequence, the ordinal number
of the character within the collating sequence being specified.

3) Any characters within the ASCII collating sequence, which
are not explicitly specified in the literal phrase, assume a
position, in the collating sequence being specified, greater
than any of the explicitly specified characters. The relative
order within the set of these unspecified characters is
unchanged from the ASCII collating sequence.

4) If the THROUGH phrase is specified, the set of contiguous
characters in the ASCII character set beginning with the
character specified by the value of 1literal-1, and ending
with the character specified by the value of 1literal-2, is
assigned a successive ascending position in the collating
sequence being specified. In addition, the set of contiguous
characters specified by a given THROUGH phrase may specify
characters of the ASCII character set in either ascending or
descending sequence.

5) If the ALSO phrase is specified, the characters of the native
character set specified by the value of literal-1, literal-3,
literal-4, etec. are assigned to the same position in the
collating sequence being specified.

The character that has the highest ordinal position in the program
collating sequence specified is associated with the figurative constant
HIGH-VALUE. If more than one character has the highest position in
the program collating sequence, the last character specified is associated
with the figurative constant HIGH-VALUE.

The character that has the 1lowest ordinal position in the program
collating sequence specified is associated with the figurative constant
LOW-VALUE. If more than one character has the lowest position in the
program collating sequence, the first character specified is associated
with the figurative constant LOW-VALUE.

6-12 ASily-02

SPECIAL-NAMES SPECIAL-NAMES

10.

11.

Literal-5 which appears in the CURRENCY SIGN IS Literal clause is used
in the PICTURE clause to represent the currency symbol. The literal
is limited to a single character and must not be one of the following:

a. Digits O through 9

b. Alphabetic characters A, B, C, D, L, P, R, S, V, X, Z, a thru z,
or the space. The characters must be in uppercase, even though
corresponding characters in the picture can be in either uppercase
or lowercase.

c. Special characters ¥ + -, . ; ()" / or =

The DECIMAL-POINT IS COMMA clause indicates that the functions of the
comma and the period are exchanged in the character-string of the
PICTURE clause and in numeric literals. For example, the symbol used
for the decimal point is the comma; otherwise, the period is used.
(Refer to "Numeric Literals" in Section 2 and to "PICTURE Clause" in
this section for further information.)

12,

13.

14,

Literal-6 which appears in the OBJECT SIGN IS 1literal clause, is
used at object time, while -editing, to represent the currency
symbol. When the OBJECT SIGN clause is not present, literal-5 is
used instead of literal-6. If neither clause 1is present the
dollar sign ($) is used.

The clause DECIMAL-POINT IS DECIMAL-POINT means that the function
of the comma and period are those specified by default. This
clause is meaningful when the clause OBJECT IS COMMA is also used.

The clause OBJECT IS COMMA means that the comma 1is used at object
time, while editing, to represent the decimal point, and the period
to represent the fixed insertion comma. The clause OBJECT IS
DECIMAL-POINT means that the period is used at object time, while
editing, to represent the decimal point, and the comma to represent
the fixed insertion comma. When neither clause is used, the same
characters are used at object time as those specified in the
PICTURE clause.

6-13 AS4y-02

DATA DIVISION FOR THE NUCLEUS

The Data Division describes the data that the object program is to accept
as input, to manipulate, to create, or to produce as output.

The Working-Storage Section in the Nucleus describes records and noncontiguous
data items that are not part of external data files but are developed and processed
internally.

The Constant Section is used to describe data items whose values
are assigned 1in the source program and do not change during the
execution of the object program. '

Structure of the Data Division

The Data Division is prepared in accordance with the reference format described
in Section 4. The Data Division is identified by and must begin with the division
header DATA DIVISION followed by a period and a space. The general format of
the Data Division in the Nucleus is given below.

General Format:

DATA DIVISION.

WORKING-STORAGE SECTION.

" 77-Level-description-entry]

| record-description-entry

CONSTANT SECTION.

[77-1eve1-description-entry’]

record-description-entry

Working-Storage Section

The Working-Storage’ Section is composed of the section header, followed by
data description entries for noncontiguous data items or record description entries.
Each Working-Storage Section record-name and noncontiguous item name must be
unique since it cannot be qualified. Subordinate data-names need not be unique
if they can be made unique by qualification.

6-14 ASH44-02

~/

NONCONTIGUOUS WORKING-STORAGE

Items and constants in working-storage that bear no hierarchical relationship
to one another need not be grouped into records, provided they do not need to be
further subdivided. 1Instead, they are classified and defined as noncontiguous
elementary items. Each of these items is defined in a separate data description
entry wnich begins with the special level-number T77.

The following data clauses are required in each data description entry:

[] Level-number 77
L] Data-name

s The PICTURE clause or the USAGE IS INDEX, COMP-6 or COMP-T7 clause.

Other data description clauses are optional and can be used to complete the
description of the item, if necessary.

WORKING-STORAGE RECORDS

Data elements and constants in working-storage that bear a definite hierarchic
relationship to one another must be grouped into records according to the rules
for formation of record descriptions. All clauses which are used in record
descriptions in the File Section can be used in record descriptions in the
Working-Storage Section.

WORKING-STORAGE INITIAL VALUES

The initial value of any data item in the Working-Storage Section except an
index data item is specified by using the VALUE clause with the data item. The
initial value of any index data item is unpredictable.

Constant Section

The Constant Section 1is like the Working-Storage Section except

that in the Constant Section:

[) All data must have a VALUE clause.

NOTE: Because of the REDEFINES and RENAMES clauses, a VALUE
clause must be used with every data item, not with
every data description.

] The 1items can be referenced only where 1literals can be
referenced; that 1is, their contents cannot be altered during
program execution.

® The USAGE IS INDEX clause may not be used.

® The OCCURS clause may not be used.

6-15 AS44-02

DATA DESCRIPTION SKELETON DATA DESCRIPTION SKELETON

Data Description - Complete Entry Skeleton

A data description entry specifies the characteristics of a particular item
of data. A detailed data description consists of a set of entries and each
entry defines the characteristics of a particular unit of data. The general
formats of the detailed data description entry, syntax rules, and general rules
follow. The individual clauses are described later in this section.

Format 1:

data-name-1
level-number
FILLER

[REDEFINES data-name-2]

-t -
PICTURE
IS character-string
s PIC
" DISPLAY]
COMPUTATIONAL
CoMP

COMPUTATIONAL-5

ComP-5
[USAGE IS] { |covpuraTIoNaL-6] §

COMP—6
COMPUTATIONAL-7
ComP-T
COMPUTATIONAL -8
ConP-8

. - of o

LEADING

[SIGN IS] [SEPARATE CHARACTER]
TRAILING —_—
SYNCHRONIZE<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>