
MULTICS TECHNICAL BULLETIN MTS -234 pa':}e 1

To: Dis t r i bu t ion

From: Robert S. Coren

Date: 11 104 I 75

Subject: New Strategy for Conversion of Terminal Output

The parts of the ring zero typewriter DIM concerned with
character conversion i.e., the subroutines tty_read and
tty_write -- have remained Largely unchanged in design for a long
time. The process of character conversion on Multics is currently
very slow and inefficientl in particular taking no advantdde of
EIS. The problem is. especialLy acute with respect to output,
since there is in general about 8 times as much terminal output
as terminal input; accordingly tty_write is a major bottleneck in
ring zero. This MTB describes a proposed redesign of tty_write
which will speed it up considerably without any loss of function.
SimiLar changes are planned for tty_read at a later date.

In tty_write as currentLy implemented, each character of
user-supplied data is individually examined and looked up in
various tables to determine what should oe placed in output
Duffers to be sent to the 355 and thence to the terminal. Even in
urawo~' mode, where the user's data is passed on with no
conversion, each character is nonetheless copied individually,
with the count of characters being incrementeo one at d time.
When either the end of the user's data is reacned or the maximum
number of ring-zero buffers the user is allowed to have is
filLej, conversion stops and, it appropriate, the data so far
converted is shipped to the 355.

Tilis mechanism hdS the obvious advontage of simplicity: it
is ~articularly easy to keep track of how many of tne user's
characters have been transmi tted and how muc~ buffer space is
iJeing used. However, this aovantage is more than offset by the
Loss of efficiency in processing characters one at a time. In
addition, the tables used for the conversion are kept, by
terminal type, in a ring zero data base (tty_ctl), and pointers

Multics Project internal working documentation. Not to be
reproauced or distributed outside the Multics Project.

MULTICS TECHNICAL 8ULL~TIN MTS - 234 page 2

to t h em J red e r i v e d b y tty _ wr i t e eve r y t i me i tis cal led • In t his
setuo, no method is avai Lable for the user to substitute his/her
own trdnslation tables. StilL worse, the same table is used both
for determining whether a character is "special" (requires
escaping or the addition of delays) and for converting from ASCII
to some "foreign" code (such as EBCDIC); tn;s situation makes it
virtually impossibLe to avoid· looking up and doing something
about every character input to tty_write.

The new design is predicated on the assumption that the vast
majority of characters sent to the user's terminal are
"uninteresting" i. e., they are to be shipped as t hey are,
they dO not require delays, and each one advances the carriage by
one position. A block of such characters can clearly be copied
into tty_buf all at once with a single ElS instruction, or at
least in buffer-sized chunks. The only problem is identifying the
limits of such a block, and making the necessary additicns and
subst itutio:'ls when an "interesting" character is encountered.
Wholesale transLation (e. g., ASCII to EBCDIC) is a separate
issue, and can also be dealt with economicaLly using EIS.

The tuncti ons of tty_write can be logically divided into
four phases:

1. fteiimiaa[x_~Qa~~csi~o (specifically the translation of
of Lowercase Letters to uppercase tor a Teletype model 33
or terminaLs in "capo" mode;

2. fQ£wattiog, i.e., substitution of escape sequences,
insertion of new-line characters in long lines,
canonicalization and optimiziation of white space, etc.;

3. IcaosidtiQO' as from ASCII to EBCDIC;

4. ~~1i~[_~!lQ~iliQD_Jn~_'Q~~iD9 of characters into buffers
in tty_buf, whence they will be read by the 355.

In the current tty_write, these four phases are executed more or
less simultaneously on each character; in particular, phases 2
and 3 (formatting and translation) are not distinguished, dnd are
driven oy the same table. The new design executes each phase over
the entire input string (or as much of it as wilL be transmitted
at once) before passing on to the next phase. In most cases, of
course, either phase 1 or phase 3 or both can be omitted; in
H raw o~: mod e , tty _ w r i t e can and doe s pro C e e d d ire c t l y top has e 4 •

MULTICS TECHNICAL BULLETIN MTS - 234 page 3

Each phase is provided with dn "input pointer" to the
location where the previous phase left the data in its latest
form. Tnis pointer points either to the user's ori~inal input or
to either of two Duffers in tty_write's automatic star age, as
descrioed later.

The only serious disadvantage to this scheme is that the
deterrrination ':)f how many of the user1s characters are actually
to be shi~p@d must be made in advance of conversion, and this
determination must attempt to take into account the probab; li ty
that the final output will contain more characters than the user
supplied. There is no ideal solution to this problem, but one has
been developed which ensures that the program will behave
correctly in al l cases, and in]eneral will have the same effect
as today (in terms of the number of calls required to output a
given string, the pressure put on tty_buf, etc.). This solution
is jescriD~J later in this document.

Extensive use has been made in this design of three EIS
instructionj: move with translation (mvt), test character and
trans Late (tct), dnd scan with mask (scm). PLf! bui ttin functions
such as translate do not completely meet our requirements;
therefore an ALM subroutine, tty_util_, is supplied, containing
entry points to perform the necessary functions.

The remaining sections of this MTB contain the following:

1. A mor~ detailed description of
conversion mentioned above;

the four, phases of

2. A discussion of space allocation and charatter counting;

3. A description of the data structures used for conversion
and translation, as well as an indication of the proposed
method for allowing the user to substitute his own
versions of the relevant tables;

4. A module description of tty_util_.

Certain terminals require u~percase-only output; similarly,
a user can s;Jecify (bY entering "capo" mode) that all lowercase
Letters are to be converted to u~percase for output. These cases
dre treated identically by tty_write: an mvt (move with
translation) instruction is used to copy the user's data into an

MULTICS T~CHNICAL 8ULLETI~ MTG - 234 page 4

automatic buffer, using a translation table which substitutes
upp~rcase ASCII for lowercase. If the user is in "edited" mode,
this is all that needs to be done for this phase; if not,
however, each letter which was oriyinally uppercase must be
..,receded by an escape character ("\fI). Therefore, in "·"edited"
mode, the translation table also replaces each uppercase letter
with the same character with its high-order bit (the "400(8)"
bit) turned on. After the mvt is completed, an scm (scan with
mask) instruction is executed to find the first character with
the "40U" bit on; if one is found, all characters to the left of
it are copied to a second internal buffer, an escape is inserted
after the copied characters, and the high-order bit of the found
cnaracter is turned off. The scm is repeated on the remainder of
the characters in the first buffer until all characters have been
copiec to the second bufter with escapes inserted as neeced. If
no characters with the high-order bit on are found in the entire
string, no copyiny is done.

fQrm~l!i!lg

The search for, and cortect handling of, "interesting"
chdracters is the most crucial of ttt_write's functions, and the
one to which most of the time spent in tty_write is devoted. The
identification of "interesting" characters is facilitated by the
use of the tet (test character and translate) instruction under
control of a table containing zero entries fer all
"uninteresting" characters and various indicators identifying the
di fferent kinds of "interesting" ones: carriage movement
characters, ribbon shifts, and characters requiring the
suostitution of esca~e sequences.

1 tl e for mat tin 9 p has e 0 f tty _ w r i tee all s tty _ uti l _ $ fin d _ c h a r
to find the first "interestiny" character in the string;
tty_util_$find_char returns a tally of "uninteresting" characters
skipped over, the indicator value for the character it stopped
at, and an updated pointer to the character at which to start the
next scan. (See the module description of tty_util_ later in
this document.) tty_write copies the uninteresting characters
into an internal t)utfer (whichever one does not contain the
source string) anj examines the indicator. If it designates an
escape sequence, the sequence is inserted in the buffer. For a
new-line, ~ertical tab, or form-feed chardcter, d speciaL tabLe
is indexed to find the appropriate represe~tation of the
character, and another table is searched to find the correct
numb~r of delays to be inserted depending on column position,
termi:1al tyoe, and b3ud rate. For "white space" (horizontal tab,
nacks~ace, carriayF return, or two or more blanks) tty_write
simply caLculates and remembers what coLumn position to end up
in: this information will either be used to insert appropriate

MULTICS TECHNICAL BULLETIN MTd - 234 page 5,

carria~e motion characters before the next graphic to be
inserted, or discarded if the next character involves v~rtical

carriage motion. This process is repeated until all the source
characters are used up. If it happens that the first call to
tty_util_$find_char returns an indicator of zero and has used up
the entire source string, no characters are moved by this phase.

The subroutine tty_util_lfind_char uses a tct instruction to
find interesting characters, but it must do other things dS well.
In the first place, for the instruction to notice tnat a
character has either or both of its high-order bits on~ a table
of 512 entries would be needed, of which 384 would be identical;
secondly, a singLe blank between two printing graphics is not
interesting to tty_write, but two or more consecutive blanks are
considered "white space," as is any combination of blank and one
or more other carriage movement characters. To cover the first
Cdse, tty_util_$find_char fJerforms two scm instructions to find
the earliest character (if any) which does not fit in s~ven oits.
f~r the case of multiple blanks, it is clearly unaesirabLe to
nave a non-zerQ indicator in the tct table for blank, and thus
force the tct to stop on aLL blanks, test to see if the next
Character is a olank, and then proceed it it is not. Instead, the
tct is precedpd by an scd (scan character double) instruction
~hich looks for two successive blanks. The tally and pointer
returned to tty_write reflect the earliest point in the source
striny at which either the tct, the scd, or either of the two
scm's found anything interesting.

It will be seen from the module description of
tty_util_j)find_c·har later in this iVJTB that a "white space"
lncicator implies that the pointer points to the beginning of a
olock of white space, which tty_write then examines until it
finJs the end of the block. Therefore if the first interesting
character found by tty_util_$find_char is a carriage movement
character, it ~ust check to see if the immediately precediny
character is a blank, in which case it returns a pointer to the
blank rather than tne character following it.

Another responsioi lity of the formatting ~hase is the
counting of output lines and watching tor full pages. In the old
tty_write, page len~th is respected only for ARDS-like screen
terminals; wh~n the maximum line count is reached, tty_write
stops processing characters dnd sets a flay in the fixed control
block (fctl) associated with the terminal. This flag gets
transmitted to the 355, which then understands that, ~hen the
output is completed, it must not ask for more output for that
c han n e L un til i t r e c e i ve s a for m - fee d c h a r act era sin put. Tn e new
design extenos the concept of page lenyth to all terminals
capable of receiving or transmitting a form-feed, and removes all
knowledye of the end-at-page condition from the 355. In addition,

MULTICS TECHNICAL 8ULLETI~ MTb - 234 page 6

tty_write no longer stops processing characters when the line
count reaches maximum; instead, the formattinq phase inserts a
wdrniny strin~ (such as "EOP") and a sentinel character at the
end of the pa~e, and the copying phase (see below) later removes
edch sentinel and turns on a flag in the butter that ends the
page. When dn355 (the program that actually sends the buffers to
the 355) sees this flag, it ceases transmission, and OQW sets the
flag in the fctl block. When it receives input for a channel with
the end-of-page flag on, it scans this input for a form-feed; if
it findS one, it replaces it ~ith a PAD character (177(8», turns
off the fctL flag, and starts up output for the channeL again.
(1)

The translation phase is very similar tu tne preliminary
con v ,~ r s ion :) has e des c rib e d ear lie r. A n m v tin s t r lJ C t ion i sus edt 0

copy the entire string from wherever it was left by the preceding
phase to dn automatic buffer, translating it from ASCII to the
appropri~te output cOde in the process. (At present the ollly
output c0Jes other than ASCI1 known to Multics are EBCDIC and IBM
Correspondence.) This does not complete the process for a
terminal which requires case-shift characters (which currently
includes all terminals for which translation is done); the
insertion of case-shift characters is done in a similar manner to
the insertion of escapes before capital letters as described
un d e r "p r eli rn ina r y C c n ve r S ion. ft The t ran S l at ion tab l e c a use s the
high-order bit of each uppercase character to be turned on (in
tnis context the term uppercase refers not only to capital
LEtters but to all characters for which the shift key must be
depresspd whi le typing) and ttle "200(8)" bit of each lowercase
character to be turned on; characters which may be in either case
(such as space) contain no extra bits. After translation, an scm
is done to fino the first character in the opposite case to the
one in which the termlnal was at the start of the output; alL
characters to tne left of it are copied, an appropriate shift
character is inserted after the copied chdrdcters, and another
scm is useJ to find the next Change of case. If all the output
characters are in the same case, no copying is done. Note that it
is not necessary to turn off the high-order bits of the uppercase
characters, since these 8its wilt be ignored by the remainder of
the tty D I ~'I a n j u L t i In ate L y t h row n a way b y the 3 5 5 •

(1) A mode may be added in future which would allow a user to
specify that when a page is full tne tty DIM should automatically
output n form-feed rather than waiting for one to be input. On a
harJ-copy terminal, this mode would probably make more sense than
the current method.

1>'1 U L TIC S TEe H N I CAL 8 U L L E r I N i-' T 8 - 2 3 4 paye 7

The final phase of tty_write consists of allocating buffers
in tty_buf and copying the final output into these buffers. A
buffer in tty_ouf is 10 words long, of which the first contains a
forward pointer, flags, and a tally; each buffer therefore holds
up to 60 characters. Thus one buffer is allocated by tty_write
for every 60 characters of final cutput, and the characters are
copied in 60-character chunks. If an end-of-page sentinel is
encountered, the end-of-page flag is turned on in the current
buffer, and the buffer is not filled past the sentinel. If output
already processea for the particular channel has not yet been
sent, a chain of buffers for that channel will already exist; if
the last buffer in this chain is not tulll and does not have its
en d- ° f - p a ::1 e f lag 0 n, i t wi l L be f ill e d be for e fur the r b u f fer s are
allocated. The newly-aLlocated buffers will be threaded onto the
:i:: cr.ain. Finally, if the "send_output" flag in the fctl block
is on, indicatin~ that an355 and the 355 itself are preparea to
~anjle output for the channel, tty_write calls dn3551io_c~mmanc
to cause a mailbOX to be sent to. the 355 telling it that output
is on the way.

because the input string undergoes wholesale modification at
several points, it is necessary to decide how many of the user's
cnaracters to process oefore actually doing anything. Certain
C0~straints whicn exist in the present implementation will be
retained: no more than a certain fraction of available buffers in
tty_ouf are tobe assigned to a single channel at any time; and
no output chain of more than a certain number of buffers will be
Duilt. The particular numbers involved are, for the sake of
convenience and simplicity, preset system-wide constants. The
current values, which appear reasonable, are 1/4 and 16
respectively; i.e., no channel is ever assigned more than 1/4as
many buffers as are free at the time of dssignment, ana a maximum
of 16*6u = 900 characters wi II be processed by a single call to
tty_write.

The first determination made by tty_write,
maximum number of buffers the caller is allowed to
is:

then, i s the
have, which

The number of characters to process may then be expressed as

~ULTICS TECHNIC~L BULLETIN MTS - 234 page 8

It the terminal is in "rawo" mode, this is the number of
ch3racters that will actuallY be shipped, and nothing further
need be done. In general, however, the number of characters
actually output is somewhat larger than the number supplied;
meters Jone at various times show an average growth ratio of
about 6:5. Accordingly, fo'r non-:-raw output, tty_write wi II
multiply nchars as calculated above by 0.8 to allow for growth
<this actually allo~s for a growth ratio of 5:4, which gives us
some leeway). As a result, the size of the output string can
~row by as much as 25% without· reqtiiring more buffers than one
lin e is" sup p 0 sed" t 0 h a v- e ; . howe v e r , the res t ric t i on t 0 1 I 4 0 f
the avail~bLe buffers is a very conservative one, so if it
occasionaLly proves necessary to. allocate an "extra" butter the
overaLL effect on available buffer space should not be
noticeable.

An 3dditiondl consideration arises from the use of internal
buffers in tty_write. 8ecause of the possibility of more than one
intermediate copy, two such buffers are needed, and rather than
create two seyments so as to allow each buffer to grow
essentialLy without Limit, it ~as decided to set aside fixed-size
buffers in tty_write's stack frame •. The size chosen for each of
these buffers is the ffiaximum allowable output chain size, i. e.,
Q60 characters.

Clearly' growth ratios yr'eater ·than 5:4 can and wi II occur;
there are ~atholo~lcal cases such as an object or other non-ASCII
sedment Lein~ printeu on a 2741· terminal, which involves a ~ro..,th
ratio of mor~ than ~:1 «upper_shift> ~ <lower_shift> nna for
each input character, plus added new-Lines and 4c markers). Th~s

despi te precaut ions we must be prepared for the possibil ity that
in the course of transldtion or formatting we wi lL run out of
space in the internal buffer. When this happens, the number of
input characters to be hdndLed is cut in half, and character
~rocessin~ is started over from phase 1. This solution is
admittedly crude, but the alternative is to keep track at all
times of the number of the user's characters which have been
processed, which in some cases (particularly the transformation
of white ~pace) is non-trivial in the new scheme: it seems
inadvisaGle to incur thisove~head on every call to tty_write in
order to avoid ex~ense in a rare case. The problem will only
arise when attempting to prQ~ess:768 user characters of which an
unusually large numGer have to be escaped: considering that the
average out~ut message is around. 50 characters, the overall
expense of rlouble processing in such a case is not Likely to be
significant.

~ULTIC5 TECHNICAL BULLETIN MTS - 234 page 9

If space in tty_buf is unusually tight, then an abnormal
character string which is not large enough to overflow the
i n t ern a lou f fer spa c e mig h t nOll e the l e s s r e 4 u ire the all 0 cat ion 0 f
more buffers than a"re avai table. If tty_write finas that it is
about to allocate the last buffer, it lIIIill take the same action
as if it were about to overflow one of its internal ouffers, i.
e., divide the numoer of input characters in half and start over.
This circumstdnce is considered even less probable than the
overflowiny of an internal buffer; if it happens often it is
prObabLy an in~ication that tty_bufis too small.

we COUld, of course, reduce the frequency of overflow events
still further by decreasing the percentage of the theoretical
maximum number of characters that will actually be processed at
once; however, this would increase the probability that the
user's characters could not be handled in a single call, thereby
requi rin~ users to go blocked for output more of ten and
increasing the nu:nLer of calls to tty_write. The figures used in
this NTB are a preliminary estimate oased on what seems
reasonable; they can easily be adjusted if metering shows either
a high frequency of double processing or an excessive (i.e.,
~reatly increased) number of calls to tty_~rite.

This section describes the tables to be used by tty_write
for translation and formatting. Packed pointers to these tables
will oe kept in the control block (ctl) allocated for each line
when it dials up; the default tables are in tty_ctl on a
per-terminaL-type oasis as at present, and pointers to these
tables are copieJ from tty_ctl into the ctL block the first time
tty_write is called for anyone dialup.

In a future ~odification, control operations will be
provided to allow a user to substitute his/her own version of one
or more of these tables. Macros (1n mexp) may also be provided to
facilitate the construction of such taoles. This capability,
however, introduces problems as long as the Ariswering Service
does not use the secure (ring 1) message facility rath~r than
calling ncs_$tty_write directly. Write calls from the Ini tializer
for a terminal using user-supplied translation tables would
reference pointers in the user's address" space (not the
Initializer's), wnich at oest would result in garbage being
printed on the user's terminal. (A possible alternative to using
the me s sag e f ac i lit Y i s to h a vet he An s we r i n 4j S e r vic e caL l a
special entry which uses the default tables for the terminal type
~hether the user has suppLied tdbles or not; the outp~t mi9ht be
JarbLed, but at least the taoles would oe accessible to the

~ULTl(~ TECHNICAL BULLETIN MTS - 234 page 1 U

Initializer.)

T h:'?
type, of
contains
defau It
table is

header of tty_ctl contains an array, indexed by terminal
relative offsets of default tables. The default table
relative pointers to the conversion tables to be used by
for the given terminal type. The form~t of the default
as follows:

acl 1 device_defaults aligned based,

shifter

celay_char

lower case

tct offset

n, v t 0 f f set

2 flags unal,
3 shifter bit (1) unal,
3 upper_case_only bit (l) unal,
3 pad bit (7) unal,

2 delay_char char (1) unal,
2 upper_case char (1) unal,
2 lower _ cas e c h a r (1) un a l,
2 tct_offset fixed bin (18),
~ mvt_offset fixed bin (18),
2 special_offset fixed bin (18),
2 delay_offset (4) fixed bin (18);

is "'''b if the terminal
shift characters.

requires case

is "1"b if the terminal handles only
c ap ita l let t e r S •

is the ASCII form of the character used
for carriage movement delays.

is the uppercase Shift character.

is the lowercase shift character.

is the relative offset (in tty_ctl) of
the default table used by
tty_util_$find_chdr for identifying
"special" characters.

is the relative offset of the table used
by tty_util_$mvt for translation',or 0
if translation ;s not required for the
particular terminal type.

MULTICS TECHNICAL UULLETIN MT8 - 234

special_offset is the relative offset of the
version of the special_chars
describea below.

page 11

default
table

is on array of offsets of the
delay_tables (described below) to be
used for this terminal type at 110,150,
300, and 1200 bps respectively.

The special characters table is used by the formattiny phase
of tty_write. It has the followin9 format:

dell special_chars aliyned based,
2 cmt (6) aliyned,

3 count fixed bin (8) unal,
.3 chars (3) char (1) unal,

2 printer_on aLigned,
3 c ° un t fix e d bin (b) una l ,
3 chars (3) char (1) unal,

2 printer_off aligned,
3 count fixed oin (d) unal,
.5 chars (3) char (1) unal,

2 red_ribbon_shift aligned,
3 count fixed oin (6) unal,
3 cnars (3) char (1) unal,

2 olack_riboon_shift aliyned,
3 count fixed bin (~) unal,
3 ctldrs (3) char (1) unal,

2 end_of_page aligned,
3 count fixed bin (a) unal,
.s chars (3) char (1) unal,

2 escape_length fixed bin,
2 not_editea_escapes (1Q refer (escape_length»,

3 count fixed bin (8) unal,
3 chars (3) char (1) unal,

2 edited_escapes (10 refer (escape_length»,
3 count fixed bin (d) unal,
3 chars (3) char (1) unal;

Note: In each of the level 2 substructures in this structure
aeclaration, count, which has a value 0 <= count (= 3, indicates
the nUffioer of chdr~cters in the sequence; the first count
elements of the chars array ;s the sequ~nce itself. If count is
zero, there is no sequence for the character in question.

r·, U L T I (~ TEe fiN 1 CAL F3 U L LET I N ivl T tJ - 2 3 4 page 12

cmt

p r i n t e r _ on

printer_off

describes the character sequences to be
used for the six carriaye movement
characters, in this order: new-line,
carriage return, backspace, horizontal
tab, vertical tab, form-feed. If count
is zero, the carriage movement function
in Question is not available on the
terminal. In this case, the following
action is taken:

n e w- line

carriage ret4rn

backspace

hori zontal tao

vertical tab,
form-feed

<invalid>

substitute appropriate
number of backspaces

SUbstitute carriage
return and appropriate
number of blanks and/or
h 0 r i z on tal tab s

substitute appropriate
number of blanks

ignore character

The counts for carriage reurn and
backsoace may not both be zero.

is the Character sequence to be used to
impl'emeflt the "tJrinter_onfl control
operdtion.

is the character sequence to be
imp l e In e n t the "p r i n t e r _ 0 f f't
operation.

usea to
control

red_ribbon_snift is the character sequence to be

escape_lengtn

substituted for a
character.

is the character
substituted for a
c h a r a' c t e r •

red riboon-shift

sequence to be
bldck ribbon-shift

is the character sequenc~ to be printeo
to indicate that a page of output is
full.

is the number of output escape sequences
in each of the two escape arrays.

MULTICS TECHNICAL BULLETIN MTS - 234 page 13

not_edited_escapes is an array of escape sequences to be
substituted for particular Characters if
the terminal is in ""edited" mode. This
array is indexed according to ~ho

.. I',,",

indicator returned by
tty_util_$find_char.

is an array of escape sequences to be
used in "edited" mode. It is- indexed in
the same fashion as not'_edited_escapes.

The delay table provides the number of delays to be used in
conj~nction with carriage movement characters. It has the
f.Jllowing format:

del 1 delay based aliyned,
2 vert_nl fixed bin,
2 harz nl fixed bin,
2 const_tab fixed bin,
2 var_tab fixed bin,
2 backspace flxed bin,
2 vt_ff fixed bin;

is the number of aelay characters to be
output for all new-lines to allow for
the line-feed.

is a factor used to determine the nu~ber
of delays to be added for the carriage
return portion of a new-line, depending
on column position. Tne formula for
calculating the numoer of delay
characters to be output following a
new-line is:

ndeLays = vert_nL + (horz_nl*column)/512

is the constant portion of the number of
delays associated with any horizontal
tao character.

is a factor useu to det~rmine the number
of additional delays associated with a
horizontal tab depending on the number

MULTICS TECHNICAL BULLETIN MTd - 234 pa 9 e 14

l;ackspace

v t f T

of columns traversed. The formula for
calculating tne number of delays to be
output following a horizontal tab is:

ndelays = canst_tab + (var_tab*n_coLumns)/512

is the number of delays to be output
followiny a baCkspace character. If it
is negative, it is the compLement of the
numb~r of delays to be output with the
first backspace of a series only (or d
single backspace). This is for terminals
such as the TermiNet 300 which need
delays to allow for hammer recovery in
cas e 0< f 0 v e r s t r ike s, but don 0 t r e Qui r e
deldYs for the carriage motion
associated with the backspace itself.

is the number of delays to be output
following a vertical tab or form-feed.

MULTICS TECHNICAL 8ULLETIN MTS - 234 page 15

The entries in this module are used for translation and
formdtting of typewriter input and output. All of them run in
toe cdller's stack frame, and take as an argument a pointer to an
argument structure provided by the callero

This entry uses a tct (test character and translate)
instruction to searcn d 'diven string for "interestiny" characters
dS detlneJ oy d translation table supplied by the caller.

where argptr is a pointer to the structure described
below. (Input)

del 1 tct_ar9_structure based ali1ned,
2 stringp ptr,
2 stringl fixed bin,
2 tally fixed bin,
2 tablep ptr,
2 indicator fixed bin,
2 workspace (3) fixed bin;

stringp is a pointer to th~ string to be tested;
if indicator (see below) is 3 or 7, it
is updated to ~oint to the first
"interesting" character in the string;
otherwise, it is updated to point to the
character following the first
"interesting" character. (Input/Output)

stringl is the len~th in Characters of the
str;nJ tc oe tested. If stringl is
~reater than 20UO, only the first 2008

:·1 U L TIC S TEe H N I CAL B U L LET I N r~ T B-2 .3 4 page 16

tally

tablep

i fl U i c 3 tor

characters are tested. stringl is
decremented bY the same number of
characters as stringp is advanced. If
the entire string ; s searched and
inJicator is Q, stringl is set to O.
(Input/Output)

is the
characters
(Output)

number
passed

of
over

"uninte rest ing"
by the test.

is a pointer to an aligned packed array
of 123 fixed bin (8) values to be used
as a translation table. The elements
correspond to ASCII characters in the
normal collating sequence; the value of
each element is zero if the
correspondiny character is
uninteresting, or else the value of the
indicator to oe returnea if the
correspondiny character is encountered.
(Input)

is the result of the search. It may have
the following values:

o no special characters

new-line

2 carriage return

3 "white space," i. e., horllont3l
tab, two or more consecutive
blanks, or a combination of one or
more blanks and a tab or backspace
character. stringp is set to point
to the first "white space"
character.

4 backspace

5 vertical tab

6 form-feed

7 character requiring octal escape

8 red ribbon shift

9 black ribbon shift

~ULTICS TECHNICAL BULLETIN MTd - 234 page 17

~ .. o r k spa c e

other -- a character requiring a special
escape sequence. The indicator
value is the index into the
escape table of the sequence to
be used, pLus 16.

is to be used by tty_utiL_ for temporary
stora~e if necessary.

This entry is used to .translate a Character string using an
mvt (move with translation) instruction.

where

declare tty_util_$mvt entry (ptr);

is a pointer to the mvt_ar9_structure
described below. (Input)

dcl 1 mvt_arg_structure based aligned,
2 stringp ptr,

stringp

tablep

tar]etp

2 strinyl fixeJ bin,
2 pad fixed bin,
2 tablep ptr,
2 tar'Jetp ptr,
2 workspace (2) fixed oin;

is a pointer to the character string
be translated. (Input)

to

is the length in characters of the
string pointed to oy stringp. (Input)

is a pointer to an aligned character
striny of length 128 to be used as a
translation table. (Input)

i s a pointer to the place wh ere the
translated string i s to be placed; i t
mus t point to a character string of
length strinJl or greater. (Input)

1\1 U L TIC S TEe H N I CAL t3LJ L LET I N i'1 T li - 2 3 4 page 1~

workspace is as above.

Tnis entry is used to search a character string for a
character with one of its two high-order bits on, using an scm
(scan with mask) instruction.

where argptr points to the scm_arg_structure
described below. (In pu t)

dcl 1 scm_arg_structure based aligned,
2 stringlJ ptr,
2 stringl fixed bin,
2 tally fixed bin,
2 search_mask bit (2) aligned,
2 found_flag bit (1) aligned,
2 workspace (4) fixed bin;

strin'dP is a pointer to the
scanned. If the scan
updated to point to the
question. (Input/Output>

string to
succeeds, it

character

be
i s
i n

taL l y

is the Length of the string pointed to
oy stringp. It is decremented by as many
characters as stringp is advanced.
(Input/Output)

is the number of characters passed over
during the scan (i. e., the number of
characters to the left of the character
found, or the length of the string if no
character is found). (Output)

is "10"b if the 400(8)
searched for, or "01"b
is to be searched for.

bit is to be
if the 200(8) bit
(Input)

MULTICS TECHNICAL 8ULL~TIN MTS - 234 pa ge 1 9

workspace

is set to "1"b if a character with the
bit specified oy search_mask on is
found; otherwise it is set to "O"b~

{Output}

is as above.

