
SECTION V 

PAGE CONTROL OVERVIEW AND CONCEPTS 

Page control is that subsystem of the Multics supervisor that is 
responsible for the multiplexing of main memory, the bulk store subsystem, and 
disk storage. A large part of that responsibility is.~he transferring of pages 
of segments between all of these media and the management of the page tables of 
segments. Page control is also responsible for reporting the status and file 
maps of segments to segment control (see Section IV, "VTOCE Updating"), and the 
filling of page tables to make segments addressable by the Multics processor. 

Page control has traditionally been regarded as extremely complex and 
esoteric; this attitude derives in part from the fact that it is largely coded 
in Multics Assembler Language (ALM), and part from the fact that it is highly 
asynchronous, maintaining the maximum possible degree of concurrency. in all 1/0 
operations. While these concurrency policies will be fully explained, it is 
assumed that the reader has some familiarity with Multics Assembler Language in 
order to follow the program listings. A basic familiarity with the appending 
unit operations (segmentatioL and paging) of the Multics processor will also be 
assumed. ' 

The discussion of page control is divided into seven sections in this 
manual: 

Section V. 

Section VI. 

Section VII. 

Overview and Concepts, the current section, explaining basic 
concepts and goals of page control. 

Data bases, breaking down the fundamental data objects of 
page control, the PTW, the CME, the PDME, the PDMAP header, 
and the free store maps in the PVTE/FSDCT. 

The address management 
accidental disclosure 
arid crashes. 

policy used by Multics to avoid 
of data by virtue of inconsistencies 

Section VIII. The fundamental mechanisms and protocols used within page 
control to support the services provided. 

Section IX. 

Section X. 

Section XI. 

The services provided by page control to Multics, explained 
in terms of the mechanisms and data bases described in 
Sections VI, VII, and VIII. 

Peripheral services of page control. 

Quota management. 

The goal of Sections V through VIII is to lead up to the descriptions of 
the page control services in Section IX. However, these cannot be explained in 
reasonable terms without comprehension of the information in the preceding 
sections. 
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BA~lC GUALS AND SEHVICES OF PAGE CONTROL 

The most visible and crucial service of page control is to handle page 
faults. A ~ fault is the fault taken by the 6b/80 processor when an attempt 
is made to append through a page table word that indicates its page is not in 
main memory. In terms of the Multics virtual memory, a page fault Dccurs when a 
reference is made to a page of the virtual memory, a page of some segment, that 

. is not in main memory. It is the duty of page control to allocate a ~ frame 
(1024-wDrd block) of main memory, initiate the reading-in or creation of that 
page of the segment into this page frame, c?use the faulting process to wait for 
the completion of that reading, and notify it so that it might retry the control 
unit cycle (that sub-portion of an instruction that can be retried with no side 
effect or regression) when that read has completed. 

As part of the mechanism of allocating a main-memory page frame, it is 
usually necessary to evict some page of some (possibly different) segment from 
main memory, in order to acquire an unused page. Eviction of a page consists of 
taking whatever action is required to make a process that might reference that 
page take a page fault and start these proceedings over again for that page. 
The choice of which page to evict, or replace, is a critical 
performance-oriented algorithm of the system. The subject of ~ Replacement 
Algorithms (ERAs) is one covered extensively in the literature, and of great 
interest to those interested in performance~ The Multics page replacement 
algorithm is described fully under "Main Memory Replacement Algorithm" in this 
section. 

The bulk store subsystem is an optional feature of Multics that allows 
configurations having relatively small main memories to gain some of the 
performance benefits of having a large main memory. Under Multics, the bulk 
store is used as an intermediate-level page storage known as the paging device. 
Since the average access time (time to access and transfer a page) from the bulk 
store subsystem is on the order of half a millisecond, as opposed to the tens of 
milliseconds for the average access time for a page on disk, it is advantageous 
to the system to keep copies of heavily-used pages on the paging device instead 
of on the disk. The same is true of main memory; it is advantageous to keep the 
most heavily-used pages in main memory as opposed to anywhere else. The average 
access time for pages, over the whole system, is the sum of the products of the 
access time for each device multiplied by the relative probability of accessing 
that device. Thus, it is to the system's advantage to keep copies of the most 
heavily-used pages in main memory, the next-most-heavily-used on the paging 
device, with all others being accessible only from secondary storage (the disk). 
Hence, an arrangement known in the literature as a multilevel storage hierarchy 
exists, where three different media of progressively increasing size, increasing 
access time, and decreasing cost per bit transfer pages around dynamically in 
order to optimize the system's average access time for a page. The strategies 
f~r managing the paging device, i.e., the replacement decisions, are part of the 
paging-device management strategy known as f.e.gg Multileyel (PML) in Multics, 
described later in this section. 

A less visible service of page control is the assignment and deassignment 
of disk records. A disk record is a page-size block of secondary storage, which 
does not cross a cylinder boundary, existing on a given physical volume (pack), 
and described by its record· address on that' pack, the zero-indexed integer 
describing its position in the array of records on that pack. Record addresses 
(i.e.~ disk records) are assigned to pages of segments the first time a page of 
a segment is referenced. They are unassigned at the time that VTDC entries are 
updated, which occurs most often when segments are deactivated (see Section VII, 
and the glossary). Record addresses may be nulled or ~ at any time, while in 
use in page control, describing whether the record on disk contains data from 
the page of the segment, or the page of the segment is supposed to. contain 
zeros. The motivation behind these strategies, and their implementation, is a 
very important part of page control, and is described fully in Section VII, 
"Address Management Policy." This particular issue also ~nteracts strongly with 
segment control; (see "VTDCE Updating" in Section IV). 
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In addition to the transferring of pages between the levels of the storage 
hierarchy (not to be confused with the storage system hierarchy), page control 
is responsible for the maintenance of active segments. An active segment, as 
fully described in Section II, is one which has a page-table in main memory. 
Page control is responsible for maintaining the current length, record usage, 
quota information, and most important, file maps, of all active segments. The 
file map is the mapping between pages of a segment and disk records or pages of 
zeros. Not only does this include dealing with segments activated and 
maintained by segment control, but includes segments that have neither VTOCEs 
nor branches, created by initialization, process creation, etc., and various 
levels of abs-segs (page tables and ASTEs used for addressing secondary storage 
explicitly) used allover the system. In the usual case, page control is 
responsible for filling ASTEs and page tables at the time that a segment is 
activated by segment control (see "VTOCE Updating," in Section IV). 

Page control performs a large and complex set of auxiliary services on 
behalf of the rest of the supervisor. In part, the need for many of these stems 
from the fact that a process which takes a page fault may lose the processor 
while waiting for it. Hence, any code that uses a per-processor resource, such 
as the per-processor stack used at interrupt time, may not take page faults. 
Furthermore, any code that is executed under the protection of a lock that has 
been locked by looping until it becomes unlocked may not lose the processor on 
which it is executing, lest another process try to lock that lock, and loop I 
potentially forever on a one-processor system, or for an indefinite time 
dependent on the vagaries of the scheduler in a multiprocessor system. Thus, 
many diverse portions of the supervisor have a need to avoid taking page faults 
while they run. Code and data bases that are not subject to partial removing 
from main memory are said to be wired, and the act of making a set of pages 
wired is known as wiring, the inverse of this is known as unwiring. All of page 
control is wired, to avoid taking page faults while processing page faults. 
There is one special case of a page fault being taken during a page-fault, the 
so-called "recursive FSDCT page fault." This is explained fully in Section 
VIII. Thus many subsystems of the supervisor call page control to wire their 
procedures, stacks, linkage sections, and data bases to perform this class of 
manipulations. Such wiring is called temp w1r1ng. More fully, temp-wiring is 
the wiring of a segment or part of a segment by reading in its pages and making 
them nonremovable by the page replacement algorithm, by covenant with page 
control. For some segments, like wired deciduous segments (see the glossary, 
e.g., pI1_operators_) this "temp" wiring is for the life of the bootload. 
Temp-wiring is as opposed to "perm wiring," which is the act of creating an 
unpaged segment, i.e., one that does not have a page table, is contiguous in 
main memory, and whose main memory location and extent are directly described by 
SDWs that describe the segment. Such segments are made only by system 
initialization. 

One of the implications of the fact that page control itself is mostly 
wired (perm-wired, as a matter of fact), is that the descriptor segment of any 
process that uses page control must itself be wired, as were this not the case, 
page control would take a descriptor segment ~ fault on the descriptor 
segment it attempted to run on, hanging up the 68/80 processor in a "trouble 
fault" loop. Furthermore, the per-process data base in which page control 
stores each process' page-fault machine conditions must be wired as well. This 
data base is the PDS, or Process ~ Segment, of the process. This versatile 
data base not only contains page control variables, but all process definition 
variables, a stack for unrestarted user-ring faults, a pathname associative 
memory, and entire per-process ring-O stack. (See "PDS and KST Management" in 
Section IV for details of segment-control special-casing of this segment.) In 
order to minimize the amount of this segment which must be wired, therefore, as 
wiring reduces the total main memory resource available to all users, page 
control and traffic control, restrict themselves to using only variables and 
data areas in the first ~ of the PDS of a process. Similarly, all of the 
SDWs needed by these two subsystems, and the supervisor as a whole, in fact, are 
in the first page of the descriptor' segment. Thus, the first pages of the 
descriptor segment and the PDS are called the two critical process pages of each 
process. Since no process can run unless its two critical pages are wired, a 

,~ number of pages equal to twice the number of processes that can run must be 
wired at all times. Since this can be a large number of pages, performance 
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constants require only a subset of all processes eligible to run at any time. 
The traffic controller gives processes eligibility and takes it away depending 
on scneduling decisions; a process that is eligible cannot run until it is 
lo~. This loading consists of wiring its two critical pages. Similarly. 
when eligibility is taken away, a process is unloaded. The loading of processes 
is initiated immediately at the time the traffic controller makes them eligible. 
T~e service of loading and unloading processes for the traffic controller is an 
important auxiliary service of page control. 

Page control also provides services to dynamic reconfiguration; when a 
syst,m contr'cller is removed from the Multics configuration, all pages in page 
~rames in that system controller must be evicted. This can even include wired 
pages, which involves some machination. Single page frames can be deconfigured 
via the operator "delmain" command (see the Multica Operators' Handbook, Order 
No. AMbl and the r=tultics Reconfiguratiog PLM, Order No. AN71). Page control 
must evict their contents, and avoid future use of these frames. Similarly, 
page control must make available main memory frames that become usable as 
controllers or individual page frames are added back to the configuration. 

The Input/Output Multiplexer (10M) has a feature whereby a limited form of 
protection may be used, if the I/O requests for a given channel are constrained 
~o a given region of main memory. The 10M, when performing data transfers and 
control word transfers for that channel, will not only relocate all addresses 
found therein with respect to a per-channel "Base Register," but check these 
(relative) addresses against a per-channel "Limit ijegister." These 10M features 
allow the Multics I/O Interfacer to allow users to construct 10M control word 
lists, and perform data transfers directly to and from user segments. This 
ability implies that these segments, or portions of them, must be placed 
contiguously in main memory, not only being wired, but not movable for memory 
reconfiguration. Such pages are called ~-wired. They may not be moved 
because the 10M will have absolute addresses of regions in these pages in its 
internal registers, which are not subject to manipulation by page control. The 
service of abs-wiring parts of segments, also used by the FNP6600 Communications 
Processor boatload software is another auxiliary service provided by page 
control. 

Another service of page control is the so-called "post-purging" feature 
invoked by the traffic controller. When a process loses eligibility, this 
function is invoked to bias the page replacement algorithm toward claiming pages 
deemed "intrinsic" to that process. 

Page control also manages record (or~) quota. Maintained in active 
segments' ASTEs and nonactive segments' VTOCEs, quota must be checked, and 
quota-used totals adjusted whenever pages are created or destroyed. This 
mechartism is solely for storage system hierarchy segments; supervisor segments 
have no quota checking. 

BASIC QRGANIZATION OF PAGE CONTROL 

Page control is said to consist of three major sides, or invoking 
environments, and a few lesser ones. All actions and mechanisms in all parts of 
page control must take into account the actions of all of the "sides." This 
organization is also somewhat conducive to the understanding of the organization 
of the actual modules. The three major sides are: 

1. The ~ fault ~: the software invoked in response to a page fault 
in a Multics process, and all software invoked by it. 

2. The £all~: entries invoked by segment control. reconfiguration, 
initialization, I/O management, etc., to perform all services required 
by them of page control. 
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3. The interrupt side, or done side, named after a routine in the module 
page_fault. This side is called by the storage system device routines 
(the disk DIM, disk_control, and the bulk store DIM, 
bulk_store_control) to notify page control of 1/0 operations upon 
pages that have completed. This side is peculiar in that it may be 
invoked by the storage system DIMs while other parts of page control 
have called these DIMs. 

The minor sides of page control are those entries called by the traffic 
controller; those which perform the loading, unloading and post-purging 
services. These entries are fundamentally different from the others in that 
they run on behalf of the traffic controller as opposed to on behalf of the 
process executing them; thus very special techniques for waiting on events, 
which are not used elsewhere in page control, are used. 

Page control may also be divided into the divisions "ALM page control" and 
"PL/I page control." Rather than simply indicating the language in which the 
particular modules are coded, this division emphasizes a fundamental division of 
functional responsibility. ALM page control is the heart of the entire 
mechanism. It consists of the entire path taken by a process that takes a page 
fault, other than the disk DIM and those parts of the traffic controller that 
are invoked. This includes not only the actual page fault handler, but the 
fundamental internal primitives that organize the reading and writing and 
eviction of pages, and the implementations of the page and paging device 
replacement algorithms. It also includes thft logic to allocate disk records. 
The programs in ALM page control are: page, page_fault, pd_util, free_store, 
device_control, post_purge, page_error, evict_page, and (by some standards) 
bulk_store_control, which is the bulk store DIM. ALM page control is sometimes 
called the page control kernel. 

PL/I page control consists of all of the call-side functions: entries 
invoked by segment control, including those for mass deposition (deallocation) 
of disk records. It includes the entries called by reconfiguration, 
initialization, 1/0 management, and traffic control (other than post-purging, 

'~ which is in ALM page control). All of the programs in PL/I page control rely 
upon the fundamental primitives in ALM page control to do actual deeds; most of 
the logic in PL/I page control consists of determining which things have to be 
done, and invoking entries in ALM page control to do them. PL/I page control 
accesses ALM page control exclusively through the transfer-vector "page," which I 
is there to localize this interface. The most important program in PL/I page 
control is the program "pc", which, among other functions, contains the entry 
points that implement all of the services provided to segment control. The I 
other programs in PL/I page control are pc_wired, pc_abs, pc_contig, wired_plm, 
and by some standards, disk_control which is the disk DIM. There is also 
"quotaw", which handles quota cells of active segments. 

Another important distinction between PL/I page control and ALM page 
control is that ALM page control works on pages; the individual entries each 
manipulate one page. The PL/I page control entries deal with entire segments or 
regions thereof, calling ALM page control to perform operations on each page. 
Other than the page-fault handler, ALM page control never gives up the 
processor, or waits; PL/I page control decides on what to wait based upon a 
series of calls to ALM page control, and if necessary waits. The protocols 
involved in this waiting, the conventions used, and the manner of its 
implementation are all described in Section VIII, "Mechanisms." 

There are a set of peripheral services provided by an amorphous area of the 
system, which could be considered part of page control. For instance, the 
procedure wire_proc, which causes parts of procedures and their linkage sections 
to be wired, simply by calling pc_wired, and free core , which so wires itself in 
order to make main memory frames available for use as they are added to the 
system, either during initialization or reconfiguration. These will be dealt 

_ with in Section X. 
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PAGE lAbLt;. LOCI\. 

There exists a lock in the SST (System Segment Table) segment, that 
protects all of the actions of page control, other than the unloading of 
processes and activation of segments. This lock is called the "Page Table . 
LOCk," or the "Global Page Table Lock." A process that has succeeded in locking-J 
this lock to itself is said to "hold the page table lock," "have the page table 
lock locked," or, often, loosely, "to have the page tables locked" (although the 
implication that this is solely a lock on page tables is incorrect) or even more 
loosely, "to have the page table locked." This lock lives in the variable 
sst.ptl, in the SST segment. It is of the class of locks to which a process 
that has it locked may not give up the processor until it has unlocked it. This 
precludes taking page faults. Because certain interrupts try to lock the page 
table lock, or locks which are locked while it is locked, neither maya process 
take interrupts while it has the page tables locked. No page faults may be 
taken with the page table lock locked, and segment faults are out of the 
question. As a matter of fact, any fault other than a connect or timer runout 
fault taken by a process while it holds the page table lock will cause the 
system to crash. This is because page control is not coded so as to be 
interruptable at any point and salvaged or restarted. Such a recoding is a 
future possibility. 

All sides of page control lock the global lock. Other than on the fault 
Side, this is accomplished by looping on it until it becomes unlocked. The 
fault side has a special protocol with the traffic controller so that a process 
which, upon taking a page fault, finds the page table lock locked, can xa11 via 
the traffic controller wait/notify mechanism for the lock to become unlocked. 
This mechanism is explained in Section VIII. A process looping on the page 
table lock, as it is said to be doing when looping waiting for it to unlock, 
must be masked so that it may not receive interrupts, or else, as soon ~s it had 
it locked, it would potentially take an interrupt with the global lock lo~ked. 

It is not necessary to have the global lock locked when activating a 
segment; since the AST is locked, and before the AST was locked, the segment was 
not active, no process other than the one performing the activation is aware 
that the segment is active or being activated. Thus, no process can take page 
faults or request that a~xiliary services be performed upon that segment until 
the activation is complete. Unloading similarly does not require locking the 
lock, for as will be described, it involves only the turning-off of two bits 
that would not otherwise be turned off. 

OUTLINE OF THE DATA BASES OF PAGE CONTROL 

There are six basic data bases with which page control concerns itself. 
One of these, the AST entry, is a data object, per active segment, in which 
information about the segment is kept. A detailed breakdown of the AST entry is 
given in Section II. Most of the fields in the AST entry are used by segment 
control; many are used by page control. Those fields are so marked in the 
description in Section II. 

The ~ table of a segment is that hardware-recognized arraY, pointed to 
by th~ SDW of a paged segment, which converts any reference to that segment to 
either a reference to main memory, or a page fault. The page table of a segment 
is physically and logically associated with the AST entry. The page table 
consists of ~ Table Words, or PTWs. Each PTW describes the status of one 
1024-word page of the segment. If the "4,dl" bit is on, (ptw.df), the upper 
fourteen bits describe the upper fourteen bits of the main memory address where 
a reference to that page is to be resolved, the low ten bits coming from the 
computed address of the 68/80 Control Unit for that reference. If ptw.df is 
off the processor takes a fault when an attempt is made to use that PTW. There 
are' also two regions (zones) of the PTW (7000,dl and 100,dl) into which the 
proc~3sor stores l-bits when that PTW is used, or a reference is made via that 
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PTW which modifies the contents of the main memory frame it describes. These 
bits (ptw.phu for used, ptw.phm for modified) are used to determine whether 
evicting a given page will entail writing it out (if ptw.phm is zero, a good 
copy exists elsewhere, and to control the page replacement algorithm. The 
processor associative memory is used to help avoid storing these bits each time 
such a reference is made, the copies of PTWs in the associative memory contain 
copies of the ptw.phm bits, and the appearance of the PTW in the associative 
memory is ~ facto evidence that the "used" bit (ptw.phu) need not be updated. 

Page control uses the other fields of the PTW, as well as the "address" 
field at times when the "fault" bit (ptw.df) is Qff. (signifying ~ a fault, llil 
access) to store control information. In particular, the bulk store or 
secondary storage address of a page not in main memory is stored in the PTW in 
this fashion; when in main memory, this information is transferred to other 
places, namely, the CME (Core Map Entry). 

The core map, so-called from the days before MOS technology became 
prevalent for main memory), is an array of four-word ~, or 'core map entries. 
Each entry describes the status of one page frame of main memory, including all 
page control information. There is a core map entry for each page frame in the 
configuration from address zero to the highest address in the configuration, 
whether or not a physical controller or memory exists that contains the implied 
page frame, and whether or not this page frame is available for page control's 
use (for instance, it may be in the middle ofaperm-wired segment). Thus, the 
core map is an array indexed strictly by main memory address. The core map is 
in the "SST" segment. 

The core map entries are kept in a double-threaded circular list; the 
(SST-relative) pointer sst.u8edp describes the "head" of the list. The list is 
the basis of the implementation of the main memory page replacement algorithm, 
which is described later in this section. Entries for main memory frames that 
have I/O going on are threaded out of the list, as are entries that correspond 
to main memory not used for paging. Entries that correspond to main memory that 
does not exist, be it deconfigured or simply not present in the configuration, 
are threaded out with a thread word of "777777777777"b3. The last word of a 
core map entry is currently not used. 

The paging device map resides in the SST as well, in configurations with a 
paging device, directly after the core map. It consists of four word paging 
deyi.qe .m.a:Q. entries, or PPMEs. It, too, is an array, indexed by record that 
describes paging device record zero; if only some upper portion of the bulk 
store is in use as a paging device, this pointer points below the start of the 
paging device map, and possibly below the origin of the SST. This is to ensure 
that this pointer always points to the virtual origin of the array. The entries 
of the paging device map are similarly kept in a double-threaded circular list, 
as befits the parallel problem of management of the paging device already 
alluded to. Those which have been deconfigured, either by operator "delpage" 
command, or the automatic deconfiguratlon performed by the interrupt side on 
detection of bulk store error, are threaded out with a thread word of 
n777777777777 nb3. 

The first few records of the bulk store are not used as part of the paging 
device; rather, the paging device map is written out from main memory to as many 
of th~se first few records as need be to contain it, eyery second. This is done 
as a hedge against fatal (no ESP) crashing. Should the system crash 
unrecoverably, the next bootload can read the contents of the first few records 
of the bulk store, and obtain the old paging device map, accurate to within a 
second. As physical volumes are accepted (see Section XII) by that next 
bootload, pages of segments on that volume are repatriated from the old paging 
device contents as their VTOCEs are processed by the physical volume salvager. 
A Unique IP and page number are put in each paging device map entry to 
facilitate repatriation; because of these two quantities, the second inaccuracy 
of the paging device map need not be a cause for concern. Thus, the paging 
device map has potentially a cross-bootload longevity. To facilitate 
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interpretation of its contents, the PDMAP (as the paging device map is sometimes 
called, not to be confused with sst.pdmap, which stands for Qaging Qevice map 
array Qointer) has a four-word header, the pdmap header, describing the extents 
and time of initialization (called the PDMAP time) of the paging device map. 
This PDMAP time is marked in the volume labels of all physical volumes which ~c.) 
were part of the configuration during which that PDMAP was used; this is the key -/ 
to the mechanism (explained fully in Section VIII, under "Post-Crash PD Flush") 
by which pages are repatriated as volumes are accepted. Because the first 
record of the bulk store contains the first page of the PDMAP, the first PDME of 
a PDMAP is not used, but contains the PDMAP header. All PDMEs that describe 
records similarly used by the PDMAP image other than the first are not used at 
all, and contain all zeros. 

The FSDCT is a data base used by volume management (see Section XIII) to 
record certain key global parameters of volume management. These all reside in 
the FSDCT header. The remainder of the FSDCT is divided into regions, one for 
each configured storage system drive. These regions contain the bit-map of free 
disk records for the packs mounted on their respective drives. The parameters 
governing the interpretation of that bit-map are in the physical volume table 
entry for that drive. The physical volume table entry, or PVTE, is an entry in 
a wired table, the PVT, which describes all parameters for a given drive and the 
pack on it, used by the storage system. (The PVT and PVT entry are described 
fully in Section XIII.) Among these parameters is a relative pointer into the 
FSDCT of the bit-map for that drive, and its extent, number of records still 
free, etc. Needless to say, many of these parameters, including the entire 
contents of the bit map, change as packs are mounted and demounted on that 
drive. The algorithms used to manage this map and allocate free storage are 
described in Section VIII, "Mechanisms." Some critical points relating to the 
assignment and deassignment of addresses are given in Section VII "Address 
Management Policy." 

The letters "FSDCT" stand for "File System Device Configuration Table." In 
light of the current storage system, this term no longer has any valid 
connotations relative to its meaning. If anything, the PVT deserves that title; 
it is strictly historical, for in older versions of the storage system, the 
single large bit-map describing the entire mounted storage system was kept here. 
The format of the FSDCT bit-map regions and the relevant variables to free 
storage allocation are given in the detailed data base breakdowns in Section VI. 

The FSDCT is n21 a wired data base. In a system with many drives, it can 
grow quite large, and would constitute a substantial drain upon the main memory 
resources of the system were it all wired. Therefore, it is used subject to 
vagaries of. its own dynamic paging behavior. However, one of the critical 
usages of this,segment is the allocation of disk addresses, which is performed 
during page-fault handling. Since the page-fault handler may not take page 
faults, there is an intrinsic difficulty in accessing this segment at that time. 
A very special and intricate mechanism exists to allow the page fault handler to 
simulate "recursive" page faults on the FSDCT. This mechanism is explained in 
Section VIII under the heading "FSDCT Paging." Other programs with a need to 
reference the FSDCT, such as the activation-time check for unprotected addresses 
(those illegally marked as "free" in the FSDCT) simply reference the FSDCT like 
any other paged segment. 

Other than the FSDCT and PVT, all of the data bases of page control reside 
in the segment "sst", with the alternate name "sst_seg." This segment, also 
known as "the SST", for System Segment Table, is an unpaged (perm-wired) 
segment, in which all AST entries, with their page tables, the core map, and the 
paging device map reside. All of the page control data objects describe each 
other via relative, 1a-bit pointers, called "reI-pointers," or "SST-relative 
pointers." The only exceptions to this rule are main memory and paging device 
addresses, which are effectively indices into the core map and PDMAP arrays: 

The 
pointers. 

SST also contains a large number of meters, list heads, and array 
Much global page control data is stored there. 
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· ZERO PAGES 

Multics defines all segments as containing a full segment's worth of binary 
zeros when created. Rather than allocating a couple of hundred disk records and 
zero them each time a segment is created, Multics defines a class of record 
address called a null address which says that the page that has that address is 
supposed to contain zeros. That is to say, if such a page is faulted on, page 
control creates a page of zeros in main memory. Real disk addresses and paging 
device addresses are assigned at various times after that, as dictated by the 
address management policy (see Section VII). 

In order to keep this strategy consistent, Multics never stores pages of 
zeros on disk or on the paging device. Whenever a page is to be written out of 
main memory, a check is made to see if it contains all zeros. If so, the disk 
address which the page has is nulled, creating a nulled or semikilled address in 
the page control data bases. Like a null address, the next attempt to fault on 
this page causes a page of zeros to be created in main memory. If the page is 
modified to be nonzero, the address is resurrected, (made not nulled), which 
causes a real read to happen when the page is faulted on. 

The terms null and nulled are not to be confused, although both logically 
represent pages of zeros, the null address relates to no disk record; the nulled 
address represents a disk record, but the contents of the page are zero, not the 
contents of the disk record. Nulled address appears only in page control, never 
in VTOCs or other segment control data objects. 

This checking for zero pages is suppressed for segments with the "dnzp" 
(Don't Null Zero Pages) attribute set table via segment control, and always true 
for supervisor segments. This is used, in general, to enforce the requirements 
of the address management policies described in Section VII. 

Nulled 
ultimately 
once it is 
any VTOCE. 

addresses which result from the discoveries of pages being zeros 
get returned to the free storage pool for their volume; this is done 
ensured that the un-nulled address from which it came is no longer in 

(See Section IV and Section VII.) 

MAIN MEMORY REPLACEMENT ALGORITHM 

Of fundamental importance to any algorithm that controls the movement of 
pages, and of prime interest in the description of any paging system, is the 
main memory replacement algorithm, known in the literature as the "Page 
Replacement Algorithm," or PRA. The Multics PRA was one of the first to ever be 
implemented; the version as it exists today is a direct descendant of Corbat6's 
original algorithm (see the references at the end of the next section). 

Pages are kept in a circular list, the core used list, implemented by the 
double thread of CMEs. A logical pointer is kept to a selected point on the 
list, this being implemented by the SST-relative pOinter sst.usedp. A direction 
called forward or ahead is arbitrarily defined as the direction on the list I 
followed by chasing the sst-relative pointers cme.fp. 
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sst.usedp 

most recently used 
Itail of used list) 

,,~ 

Figure 5-1. 

"'------Ieast recently used 
(head of used list) 

The Clock Algorithm 

The basis of the algorithm is that the pointer moves forward on demand for 
page frames. It tries to approximate the "Least Recently Used," or LRU 
algorithm, where the least recently used ~ (not page frame) is the one which 
will be evicted to free its page frame. The page frame right ahead of the 
pointer (the one pointed to) contains the supposedly least-recently-used page. 
Going further and further down the list produces pages more and more recently 
used, until the page right behind the pointer is the most recently used. Since 
pages are referenced by every instruction that runs, it is impossible to thread 
them to represent true recencl of use. Therefore, we translate "recently used" 
into "recently noticed as used." When we notice that a page has been used, we 
turn off the bit ptw.phu, in the PTW for that page, ,the bit via which the 
hardware communicates the fact that a page has been used. Thus, this bit being 
on in a given PTW indicates that the page has been used since this observation 
was last made. 

Therefore, when a demand is made for a frame (via a call to find_core, in 
page_fault), the page at the head of the used list is inspected to see if it has 
indeed been used since last inspection. If so, it is now, clearly, the page 
most "recently noticed as used." Thus, the pOinter moves forward, putting this 
page at the tail of the used list by so doing, in keeping with its newfound 
status as "most recently noticed as used." The "used" bit is turned off, 
pending the next inspection, and the next page is considered, until one is found 
whose used bit is Qff. Such a page is clearly the one which was seen most 
recently as used the furthest time in the past. This page is evicted from its 
main memory frame, and the latter is now free. 

The algorithm just described is known in the literature as the "clock" 
algorithm, as the motion of the pointer around the used list is similar to the 
motion of a hand of a clock about the face of the clock. 
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There are several complications to this algorithm. Most important, if a 
page is found whose used bit is Qff (this would be evicted, according to the 
above description) by the scan of the pOinter, this eviction would require an 
I/O operation to perform, namely a write to disk or paging device. If the page 
has been stored into (modified) since it was brought into that page frame, as 
the information in its correct form exists only in main memory, and nowhere 
else. Thus, a modified ~ whose ~ Qi1 is off, takes more work to evict 
than one that is not modified. Specifically, the I/O may take an indefinite 
time to complete, and the main memory request on hand must be satisfied 
immediately. Therefore, the pointer skips over pages that are modified, even 
though they are not used--theywill be dealt with shortly. The pOinter only 
stops when a page that is neither modified nor used is found--only this kind can 
be evicted with no I/O. The page multilevel algorithm also complicates matters 
some here,there are pages that are neither used nor modified which require I/O 
to evict, if the page multilevel algorithm wishes to migrate them to the paging 
device at this time; these pages are called "not-yet-on-paging-device," 
(ptw.nypd signifies this state). This will be dealt with in the next section. 

Therefore, the pointer does not stop until it finds a page that is neither 
used (since last turning-off of the used bit), modified (since last writing), or 
not-yet-on-paging-device. Some pages are routinely skipped, such as those that 
are wired or abs-wired. Pages on which I/O is going on are not even in the 
list, and are thus not an issue. When such a page is found, it is evicted, and 
the frame which it had occupied returned to the, caller of find_core. 

In passing over modified and not-yet-on-paging-device pages, the pointer 
implicitly left work behind to be done. These pages should be evicted from main 
memory, but this could not be done on the spot, as the process that needed a 
page frame could be satisfied immediately with some other frame, not much worse, 
and could not wait for the inleterminate completion of these writes. Therefore, 
a procedure called claim_mod_core,in page_fault, exists to do the work which 
the replacement algorithm decided not to do, in order to satisfy its real-time 
constraint of producing a usable page-frame on the spot. It runs either at a 
later time than find_core, or is called by find_core when the latter encounters 
certain limit situations (see Section VIII). The procedure claim_mod_core 
maintains a second pOinter into the used list, which is sst.wusedp (for 
"writing" used-pointer). Generally, it is pointing to the same place as the 
regular "usedp" clock-hand of the find_core command. However, when a demand is 
made for a page-frame of main memory, find_core advances the "usedp" hand until 
a freeable, evictable frame is found. Thus, the distance between the "wusedp" 
hand and the "usedp" is the "cleanup" work that must be processed by 
clai'lILmod_core. The procedure claim_mod_core is invoked during page-fault 
processing at a time to overlap its operation, which may involve substantial 
computation inside the disk DIM, with the reading-in of the page necessary to 
satisfy the page fault. Note that this reading could not begin until a 
page-frame into which to read the page had been found, by find_core. 
Claim_mod_core processes all page-frames between wusedp and usedp; those that 
are not used, but modified, have writes started for them, which removes their 
CMEs from the used list. In order for claim_mod_core to be able to distinguish 
the used-and-modified ones from the not-used-but-modified ones, find_core avoids 
turning off the used bits, leaving this for claim_mod_core. Pages 
"not-yet-on-paging-device" are migrated to the paging device, as appropriate, 
until wusedp and usedp again coincide. Note that these writes are started while 
no particular process is waiting for these writes to complete for any 
reason--when these writes are complete, the interrupt side will place these page 
frames at the ~ of the used list, making them excellent candidates for 
eviction if ~ ~ if they have not been used while or after being written. 

The interaction of find_core, the replacer, and claim_mod_core, the 
purifier, may be stated as this: the replacement ~lgorithm claims only pure 
(unmodified) pages. Those that are found impure, but would have been claimed, 
are left fo~ the purifier to purify. When the purification is complete, these 
pages are again candidates for replacement. 
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There are a large number of call-side actions, such as deactivation and 
truncation, and some ALM actions, such as the discovery of zeros by the 
page-writing primitive (write_page in page_fault) that cause page-frames to 
become explicitly free; these actions all aid the replacement algorithm and 
simplify its task by putting these page frames at the head of the used list, 
wherever it currently is, making these frames immediately claimable by 
find_core. 

The successful completion of any read operation places the CME for the 
frame into which the reading was done- at the 1ail of the used list, as 
presumedly, the reason that this read occurred is that someone wanted the page, 
and thus, it is "most recently noticed as used" at the time of the completion of 
the read. 

PAGING DEVICE MANAGEMENT ALGORITHM (PAGE MULTILEVEL) 

The management of the paging device, like the management of main memory, 
involves both a strategy, and a replacement algorithm. In the case of main 
memory, other than the replacement policy, the strategy is straightforward. 
Pages are brought in on demand in response to page faults and call-side reads,_ 
evicting other pages at the discretion of the replacement algorithm, which also 
chooses when to write out pages that have been modified. 

The use of an intermediate level of storage device as a paging device, 
however, involves many more complex decisions. The design and history of the 
decisions, with respect to the Multics Page Multilevel Policy, are given in the 
paper by Greenberg and Webber cited at the end of this section. The pol~cies 
are given as they stand. 

The paging device is what is technically called a "nonwrite through 
buffer." This to say, there are copies of pages on it which are different from 
the copies of the same pages on secondary storage. As a matter of fact, there 
can be copies of pages on the paging device which have llQ copy in secondary 
storage (although there will always be a secondary storage address assigned to 
such pages). This allows pages to be written from main memory to the paging 
device without simultaneously writing a copy to ~econdary storage. (The option 
to write these pages to secondary storage in this way exists, and is called 
"double writing," and is controlled by the "DBLW" parameter on the PARM CONFIG 
card.) If the paging device is operating in double-write mode, or were designed 
as a "write-through buffer," there would be no damage caused by loss of the 
paging device during a running system or a crash; pages on secondary storage 
would always contain the same information, although at a higher cost to access. 
The fact that modified pages exist (modified with respect to secondary storage, 
that is), while avoiding the substantial expense of double-writing each page of 
main memory, but causes a substantial problem of updating secondary storage, 
both during normal operation and the page repatriation operation of a post-crash 
bootload. 

The paging device replacement algorithm is a critical part of the 
management policy. It is designed to resemble the "clock" algorithm used in 
main memory management. However, a unique interaction with the main memory 
algorithm presents itself; while the eviction of pages from the paging device 
that are llQ1 modified with respect to main memory presents no special problems 
(page control data bases, namely the PTW, are updated to indicate that the page 
must be fetched from paging device instead of secondary storage), the eviction 
of modified pages is difficult. In order to evict modified pages, they must be 
written back to the disk. This is accomplished by finding a usable page-frame 
of main memory, reading the page in from the paging device, and writing it out 
to the disk. 
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This two-part sequence is called a Read-Write Sequence, or RWS. Were the paging 
device operated double-writing all the time (write-:~rough buffer), there would 
be no need for RwSs. However, the fact that the main memory replacement 
algorithm demands pages of paging deVice, and the paging device replacement 
algorithm demands pages of main memory, in order to perform RWSs, presents some 
difficulty. The solution to this problem, which basically involves "punting" 
paging device migration when recursion would be created, is explained in Section 
VIII. 

The paging device replacement algorithm maintains a circular used list, as 
the main memory replacement algorithm does. It is of PDMAP entries (PDMEs), and 
the head of the list (best candidate for replacement) is deSignated by the 
sst-relative pointer sst.pdusedp in the SST. PDMEs that are undergoing RWS are 

-threaded out of the list. Before we discuss how pages are migrated Lc2m the 
paging device, however, it is appropriate to discuss how pages are migrated ~ 
the paging device. This has no parallel in main memory management, as pages are 
"migrated to main memory" as page faults are taken; there is no choice. 

Pages are migrated to the paging device as they are evicted from main 
memory. "Migration" implies that the page does not already have a copy on the 
paging device. The assumption and design is that the pages that are in main 
memory, going into it, and going out of it, are the most recently used and thus 
most likely to be used in the near future, of all of the pages in secondary 
storage. Therefore, any page just evicted from-main memory is more likely to be 
referenced in the near future than some page less recently evicted from main 
memory, and it should be allocated a record of paging device, and written to it. 
Note that this implies writing of pages from main memory that are QQt different, 
i.e., not modified, with respect to their copies on disk; these are the 
so-called "nypd" (not-yet-on-paging-device) pages mentioned in the previous 
section. The need to do this writing biases find_core against these pages, 
leaVing claim_mod_core to initiate the paging device -update. The routine 
allocate_pd in page_fault is charged with the responsibility of deciding when a 
page should be migrated to the paging device or-have its "nypd" bit turned on to 
postpone this action. 

Some subset of the pages of the paging device are always (nearly always) 
going to be in main memory. Pages are migrated at main memory eviction time 
instead of reading time because there is no need to read them back, hence 
"waste" paging device on them, until they are evicted. It is an assumption of 
the algorithm that the paging device is substantially larger than main memory; 
all of the below assumptions fail if-this is not true. A paging device smaller 
than main memory can also cause the paging device replacement algorithm to hang, 
as will be seen below. 

The subset of the paging device, so to speak, which is in main memory, is 
considered to be the "most recently used" subset. Since the paging device is 
much larger than main memory, any page found in main memory by the paging device 
replacement algorithm is promoted to a "recently used," i.e., favored status, 
similar to that given to pages found with their used-bits on by find_core. No 
page in main memory is ever evicted from the paging device by find_core, 
although deactivation or truncation of the containing segment will indeed 
perform this. 

The paging device replacement algorithm is invoked at the beginning of page 
fault proceSSing, every page fault. It tries to ensure that a small, fixed 
number (10) of paging device records are always free or in the process of being 
freed (RWS in progress). Since it does this at the beginning of a page fault, 
when it is finished, probably some paging device records will have been freed, 
some already free, some started RWSs, and some finished RWSs from some previous 
time (made free by the interrupt side). Thus, it is probabilistically very 
likely that some records will be free during the processing of that page fault 
(during which claim_mod_core may attempt to migrate pages to the paging device). 
The replacement algorithm moves down the PD used list, evicting all pages not 
requiring RWS, and starting RWSs for all pages modified with respect to 
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secondary storage. PD records found to contain pages that are also in main 
memory are rethreaded in the list so that they acquire the favored "recently 
seen to be used" status. This action continues until ten records are free or in 
RWS. There is no problem of obtaining "RWS buffer" pages here, a call being 
made to find core as each such buffer is needed. Note that find_core will DQi '~ 
cause PD records to become allocated in so doing; find_core does not initiate 
writes. Only claim_mod_core does that. 

Thus, by the time claim_mod core runs, very probably a few records will be 
available into which to migrate pages, on the paging device. Now it is possible 
that the page-writing primitive will find that no free records of the paging 
device are available for migration. Specifically, it looks at the head of the 
list, checking for the availability of this record. If this record is not 
available, which will only be the case if no records could be made free by the 
last run of the replacement algorithm, or there were none when it ran, an action 
called a fQ desperation occurs. The paging device allocator (allocate_pd in 
page_fault) calls the PD Desparator, (force_get_pd in pd_util) to run QQHn the 
PD used list up to twenty steps until a claimable PD record (evictable without 
RWS) is found. If this strategy fails, which it rarely does, the attempt to 
migrate a ~ to the paging device, which was an optimization of sorts to begin 
with, is abandoned, and the system continues normal operation. An RWS cannot be 
initiated at this time to free up paging device; it would take an indefinite 
time to complete, and waiting for it in any way would cancel whatever 
optimization could be gained by migrating the page. 

Pages of active segments only (or nonstorage system segments, which are 
always active) are kept on the paging device. This implies the need to start 
RWSs at deactivation time, but metering has shown that the number of pages of 
segments being deactivated which appear on the paging device, and require RWS 
are few. This scheme avoids the need for repatriation of paging device pages 
every time a segment is activated. This system was used in earlier versions of 
Multics, involving the "PD Hash Table" now gone. 

One type of event of note in paging device management is the so-called "RWS 
abort." This occurs when a process takes a page fault on a page that happens to 
be undergoing RWS. To the process taking the page fault, this is just another 
page fault. Page control, however, sets a bit in the PDME (pdme.abort), 
informing the interrupt side not to free the main memory frame and paging device 
record, but rather to keep both around, and re-establish the residency of the 
page in both main memory and on the paging device. (Until the occurrence of an 
RWS abort, pages transiting through main memory in order to perform an RWS are 
nQi considered by the rest of page control to be in main memory.) 

Papers about the Multics Page Replacement Algorithm: 

Corbat6, F. J. 
"A Paging Experiment with the Multics System," in Ingard, In. Honor 
Q( P.M. Morse, M.I.T. Press, Cambridge, Mass., (1969), pp. 217-228 

Greenberg, 

Greenberg, 
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B. S., 
"An Experimental Analysis of Program 
Multics Virtual Memory," M.I.T. Project 
M.I.T. Dept. of Electrical Engineering, 

Reference Patterns in the 
MAC Technical Report TR-127, 
May, 1974 

B.S., and Webber, S.H., 
"The Multics Multilevel 
~ ~ Intercop, 
Engineers, N.Y., 1975 

Paging Hierarchy," in Proceedings.2f. ~ 
Institute of Electrical and Electronic 
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SECTION VI 

PAGE CONTROL DATA BASES 

In this section are discussed, bit by bit and field by field the 
fundamental data objects mariipulated by page control: 

1. The Page Table Word (PTW) 
2. The Core Map Entry (CME) 
3. The PDMAP Entry (PDME) 
4. The PDMAP Header (PDMAP Header) 
5. The FSDCT bit maps, and relevant PVTE fields. 

Also presented is a list of selected fields of the SST data base, with some 
explanation of their relevancy to page control, and function. 

The various data objects are interrelated via 18-bit pointers and radices 
when in use by page control. Figures 6-1 to 6-5 at the end of the section 
present the interrelationship graphically for the more important states of those 
objects. 

PAGE CONTROL DEVICE ADDRESS (devadd) 

One quantity that crops up in PTWs, CMEs, and PDMEs is the general device 
address. A device address designates a frame of main memory, a record of paging 
device, or a record of disk. A device address, or devadd, has two subfields, 
the address, or record address, - as befits which of the above aases is 
appropriate, and the address ~. The bits of the address type are exclusive, 
i.e., no combinations of more than one bit are valid, and the last bit is 
reserved. Such devadds appearing in a PTW can designate main memory, a record 
of paging device, or a record of disk. A devadd appearing in a PDMAP entry must 
designate a record of disk. A devadd appearing in a core map entry can 
designate either a record of dis~ or a record of paging device. 

Format of a "main memory address" devadd, valid only in a PTW 

o 

MMMMMMMMMMMMMMMMMOOOO 

top 18 bits of main memory address, "add type," in this case add_type.core. 

The main memory address designates 
upper fourteen bits (MMM ... MM) of that 
address within the page frame. The 
address. 

a page frame of main memory. It is the 
address, the remaining ten bits being an 
"1" in bit 18 signifies a main ~emory 

Format of a "paging device" devadd, valid in a PTW or CME: 

6-1 - AN61 



o 
o 
oooooooppppppppppp 

PPP = paging device record number. 

here add_type.pd 

The paging device record number specifies a record of paging device. The 
"1" in bit 20 signifies a paging device address. 

Format of a "disk" or "secondary storage" devadd, valid in aCME, PTW, or 
PDME: 

o 
1 
DDDDDDDDDDDDDDDDD 

DDD = Disk record number. 

_type," here add_type.disk 

The record number DDDDD is the record address of a disk record, on some 
physical volume. That physical volume is identified by the PVT index in the AST 
entry associated with the page table to which the PTW in which this devadd is 
found belongs. If this devadd is found in a CME or PDME, the volume is 
identifLed by the PVT index in the AST entry associated with the page table 
designated by either of these objects. If this devadd appears in a PDMAP erttry 
in a post-crash PDMAP entry matches the field label. last pvtx on some physical 
volume whose field label.pd time matches the "PDMAP time"-of the PDMAP in which 
this PDMAP entry appears. To that volume this page will be repatriated. (This 
will be explained in more detail in Section IX.) 

The bit "N" above is of prime importance. In this disk "devadd" is the bit 
"N" (for nulled) being on indicates that although this devadd is assigned to the 
page in whose data bases this devadd appears, the logical contents of the page 
are to be considered zeros. Either this page has never been written out or 
RWSed to that device address, or was truncated, and this page awaits deposition 
by the VTOCE update function. An address with this bit on is called a nulled or 
semikilled address; it may never be reported to segment control for a file map, 
but may only be deposited or resurrected (see Section VII, "Address Management 
Policy"). These nulled addresses are not to be confused with the null addresses 
used by segment control in file maps, and below. A disk address that is not 
nulled is said to be live, meaning it definitely contains the contents of the 
page to which it is assigned. Nulled addresses appear only on page control. 
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There exists one more type of devadd, the so-called "null" device address, 
or "null" address, not to be confused with the "nulled address" explained above. 
It represents a page of zeros, as does a nulled address, but designates no page 
of disk. Its format is as follows: 

Format of a ~ control null address; valid only in PTWs: 

o 1 1 2 
o 7 8 1 

IOBBBBBBBBBBBBBBBBBBBBIOOOO: 
I I 
, I 

"add_type," here "null" 

BBB = debugging code. 

The code BBB ... B is a code placed in this devadd by the program that 
generated it, describing how it became null. These codes are described in 
null_addresses.incl.pll and null_addresses.incl.alm, which has some in their 
"page control representation" as above, and some in their "segment control 
representation," as below. 

Null addresses enter page control from the activation of segments, as well 
as by other means. Null addresses are also reported to file maps for the VTOCE 
update function. When in file maps, coming into or out of page control via 
pc$fill_page_table or pc$get_file_map, page control null addresses are converted 
(from or to, respectively), the format in which they appear in file maps: 

Format of a segment control, or file map null address, never valid in page 
control, only valid in file maps in VTOCEs: 

o 
o 7 

IlBBBBBBBBBBBBBBBBBI 
I 
I 

where BBB ... B is the debugging code of above. 

Note that devadds in VTOCEs have QQ add_type: the add_type is strictly a 
page control concept. Any address in a VTOCE that is not a null address as 
above, i.e., has bit zero equal to zero, is a live secondary storage 
address-with the contents of the associated page out on it for a fact. That is 
the end result of the address management policy explained in Section VII. Such 
~ddresses have the format: 

Format of a segment control device address, appearing only in a VTOCE file 
map: 

o 1 
o 7 

IODDDDDDDDDDDDDDDDDDDDI 

where DDD ... D is a disk record address on the physical volume on which the VTOCE 
in which this address appears is found. See Section II for more information 
about addresses in VTOCEs. 
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PAGING DATA OBJECTS 

Having described the critical concept of a devadd, we now describe the 
three paging data objects: 

The PTW, representing a £!i! of a segment, also being the hardware 
descriptor for that page. 

2. The core map entry (CME), representing a page-frame of main memory and 
describing its association, if any, with any page of any segment. 

3. The PDMAP entry, orPDME, describing a record of paging dey.ice, and 
its association, if any, with any page of any segment. 

All of these data objects reside in the SST. All of them contain devadds 
as substructures. Many of these structures have fields that have different 
uses, and names, depending upon other bits and their meaning. The multiple 
names (e.g., cme.ptwp and cme.pdmep refer to the same storage) are used in the 
ALM include file. However, since this is impossible to describe in PL/I, the 
PL/I include files describe structures called "mpdme," "mptw," "mcme" to 
re-describe the structures for the alternate field names. In the descriptions 
below, we give the "alternate" PL/I names for the alternate fields, pointing it 
out when we do so with the warning "(Alternate for cme.xxx)". We give octal 
masks to help those interpreting dumps. . 

PTW, OR PAGE TABLE WORD 

dcl 1 ptw based (ptp) aligned, 

(2 add bit (18), 
2 add type bit (4), 
2 first bit (1), 
2 processed bit (1), 
2 pad 1 bi t (1), 
2 unusablel bit (1), 
2 phu bit (1), 
2 unusable2 bit (1), 
2 nypd bit (1), 
2 phm bi t (1), 
2 phu 1 bi t (1), 
2 wired bit (1), 
2 os bit (1), 
2 df bit (1), 
2 df no bit (2» unaligned; 

dcl 1 mptw based (ptp) aligned, 
2 devadd bit (22) unaligned, 
2 pad bit (14) unaligned; 

o 1 1 2 2 
0 :r 8 i 2 

add add_type f 
1 
r 

2 
4 

s e 
t rOO 

devadd 

6-4 

2 2 2 3 3 3 3 3 3 
6 7 9Jl12~4 5 

W 
n i 

p v p p r 0 d df no 
h p h h e s f 
u 0 d m u d 

1 
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ptw.add 
(777777,du) 

ptw.add_type 
(740000,dl) 

When this PTW describes main memory, ptw.add is the upper 18 bits of 
the 24-bit main memory address of the main-memory page frame it 
designates. This can be the case whether or not ptw.df is on; only 
in the latter case is this PTW a valid hardware descriptor for the 
page; all other cases cause a process to take a page fault if it 
attempts to use this PTW as a hardware descriptor. 

Defines which type of devadd is contained in this PTW; when it is 
add_type.core, 400000,dl, the field ptw.add is valid as above. Any 
type of page control devadd can appear here. 

mptw.devadd 
(177177740000) 

ptw.first 
(200000,dl) 

(Alternate for ptw.add and ptw.add_type). Describes, if this page 
is in main memory, its main memory address, as a "main memory" type 
devadd. If this page is lli2.t. in main memory, but is on the paging 
device, then this is a paging-device type devadd. If this page is 
neither in main memory nor the paging device, but has a disk record 
associated with it, this is a diSk_type devadd as above, including a 
"nulled" bit on or off with the meaning explained. Otherwise, this 
is a true "null" page, and this is a null devadd as above. In all 
cases, this devadd designates the storage device or lack thereof 
from which the page will be read in or created if faulted on. A 
null address or a nulled address causes the creation of a page of 
zeros. 

If the global switch sst.ptw_first is on, which it normally is ~ot, 
pc$fill_page_table turns this bit on in all PTWs of segments being 
activated. This bit is turned off whenever this page is evicted 
from main memory. This bit being on tells the paging device 
allocator n2i to allocate a paging device record for this page when 
an attempt is made to evict it. Thus, if sst.ptw_first is Qn, 
paging device management is effectively changed so that pages get 
one chance to be referenced, in any given activation, and evicted, 
before being migrated to the paging device. This is desirable for 
random-access applications, to avoid suboptimal use of the paging 
device. An experimental feature, the flag sst.ptw_first may be set 
on only by highly privile~ed patching. 

ptw.er, 
ptw.processed 
( 100000, dl) 

Used for two purposes. The interrupt side, when posting (telling 
the rest of page control about) the completion of a page read 
operation that was unsuccessful due to a device error, sets this 
bit, and notifies the faulting process. The restarted process takes 
the page fault over again, as the PTW has n21 baen made to describe 
main memory (made valid aa a hardware descriptor), notices this bit, 
turns it off so that the next process can retry this operation, and 
signals "page_fault_error" in that process. The post_purge service 
of page control uses this bit;o mark all PTWs found in the PDS 
trace list (see Post Purge, in "Services of Page Control"). If any 
attempt is made to mark any PTW that has this bit on already, the 
implication is that the process has faulted on that page at least 
twice during its last eligibility and this is considered to be 
"thrashing"; the counter sst. thrashing is incremented. This bit is 
also used by online SST analysis tools (e.g., check_sst) to perform 
various marking operations on images of the SST. 
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ptw.phu 
(001000,dl) 

ptw.nypd 
(000200,dl) 

ptw.phm 
(000100,dl) 

ptw.phul 
(000040,dl) 

ptw.wired 
(000020, dl) 

ptw.os 
(000010,dl) 

9178 

This bit is set to "l"b when the processor appending unit fetches 
this PTW, and places it into its associative memory. This page may 
be used repeatedly, but this bit will not be set again until that 
PTW leaves the processor's associative memory, either by .~ 
replacement, or the execution of a CAMP instruction (clear PTW 
associati ve memory) . The page replacement algorithm, in 
claim_mod_core, when noticing this bit and turning it off, does n2l 
clear the system's associative memories; it counts on the fact that 
some page eviction in the near future will. Clearing the 
associative memories of the system disturbs all processes and 
processors; the page replacement algorithm's approximations are not 
worth that much. 

(Not yet on paging device.) This bit indicates that the page has 
been paged in from secondary storage, and has not yet migrated to 
the paging device. Thus, the main memory replacement algorithm is 
wary of evicting such pages, because it takes work (paging device 
writes) to do so. This bit is only meaningful when ptw.phm (see 
below) is zero for when the page has been modified in main memory, 
this alone is an indication to the main memory replacement algorithm 
that the page takes work to evict. Note that this bit shares a zone 
with ptw.phm; it does not matter that the appending unit modifies 
this zone when setting ptw.phm, as ptw.phm being on makes ptw.nypd 
meaningless. 

Page-has-been-modified bit. Set by the appending unit to "l"b when 
a reference is made to the page described by this PTW which stores 
into that page, and no PTW with the ptw.phm bit corresponding to 
this PTW appears in the associative memory. Therefore, when this 
bit is turned off by page control, the associative memories of the 
system processors must be cleared or future modifications may not be 
seen (see "write_page" in the "mechanisms" chapter). Such a store 
also turns on the ptw.phm bit in the PTW associative memory of the 
processor. Note that setting ptw.phm may affect ptw.nypd; this is a 
feature (see ptw.nypd above). 

"Used in quantum bit." This bit is used only as input to the 
post-purge algorithm, which describes what to do with what pages, 
for performance reasons alone, at the end of a process' eligibility. 
This bit is turned on by the main memory replacement algorithm 
(claim_mod_core) every time ptw.phu is turned off, and is turned off 
by the post-purge algorithm under certain conditions. (See 
"Post-Purge" in Section IX.) 

Tells the main memory page replacement algorithm that this page may 
not be evicted under any circumstances, as some procedure is using 
it, or will use it, which may not take page faults. Such a page is 
said to be wired. Nevertheless, this page may be moved around main 
memory during reconfiguration operations, as long as it constantly 
remains accessible. (See "Eviction" in Section VIII), which is !l.Q.t 
true for an abs_wired page. All abs_wired pages are wired. 

For "out of service." When Qll, an liD operation is in progress on 
this page. Does QQi in general, mean that the page is inaccessible, 
or unusable in any way (pages are fully accessible during writes). 
When this bit is on, the "devadd" of the PTW must be a main-memory 
type devadd, describing a main memory address. 
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ptw.df 
(000004, dl) 

"directed fault" bit used by the hardware. When on, indicates that 
this PTW is a valid hardware descriptor, mapping references to some 
page of its segment into references to main memory. In this case, 
the "devadd" in the PTW must be a main-memory address, as ptw.add 
will be interpreted by the hardware as such. When off, a process 
attempting to use this PTW via the hardware will take a page fault. 
Note that processes will observe the fact that this bit has been 
turned off only if any copies of this PTW in their associative 
memories are cleared out; thus, all associative memories of the 
system are cleared when a page is evicted. 

ptw.df_no 
(000003,dl) 

The contents of this field tell the hardware what type of directed 
fault to take when ptw.df indicates that it should take a fault. In 
Multics, this field is always set to "01"b, and thus, a directed 
fault 1 is interpreted as a Multics page fault. Note that zeros in 
a PTW, or an attempt to use zeros as a page table will not cause the 
page fault handler to be invoked, but rather the segment fault 
handler, for directed fault zero is interpreted as a segment fault 
(as uninitialized SDWs, which are in unused (zero) regions of 
descriptor segments, contain all zeros, specifically in sdw.df and 
sdw.df_no). This generally causes the segment fault handler to 
repeatedly issue the message "seg-fault: illegal segfault on CPU A" 
when it finds that the SDW contains no segment-fault condition at 
all. 

CORE MAP 

The Core Map is an array of Core Map Entries (CMEs), one for each page 
frame of configurable main memory. It is indexed by main memory address. The 
pointer sst.cmp points to the array, i.e., the CME for the frame at location O. 
It is in the SST. 

CORE MAP ENTRY (CME) 

dcl 1 cme based (cmep) aligned, 
2 fp bit (18) unaligned, 
2 bp bit (18) unaligned, 

2 devadd bit (22) unaligned, 
2 padding bit (2) unaligned, 
2 io bit (1) unaligned, 
2 rws bit (1) unaligned, 
2 er bit (1) unaligned, 
2 removing bit (1) unaligned, 
2 abs_w bit (1) unaligned, 
2 abs_usable bit (1) unaligned, 
2 notify_requested bit (1) unaligned, 
2 spare bit (2) unaligned, 
2 contr bit (3) unaligned, 

2 ptwp bit (18) unaligned, 
2 astep bit (18) unaligned, 
2 dblw_devadd bit (22) unaligned, 
2 padding1 bit (14) unaligned; 

dcl 1 mcme based (cmep) aligned, 
2 pad bit (36) unaligned, 
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2 record_no bit (18) unaligned, 
2 add_type bit (4) unaligned; 
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Word 3 reserved 

cme.fp 
(777777000000,word 0) 

Forward pointer along with cme.bp, defines the position of the CME 
in the core map used list, used by the main-memory page replacement 
algorithm to maintain pseudo-LRU order. The reI-pointer cme.fp is 
the relative offset into the SST of that CME which describes the 
page frame containing the page supposedly slightly more recently 
seen as used. Its field cme.bp describes this CME. (See "Main 
Memory Replacement Algorithm" in Section V.) When a page-frame is 
undergoing either an I/O operation, reading or writing a page, or 
an RWS (cme.rws on), both cme.fp and cme.bp are zero, and no other 
CME, or either of the used-list pointers, sst.usedp and sst.wusedp, 
designate this CME. The fields cme.fp and cme.bp are both 
"777777"b3 in CMEs that designate pages that are not configured, or 
are deconfigured. CMEs not part of the paging pool, but still 
corresponding to real main memory, are all zeros. 

cme.bp 
(000000777777,word 0) 

Back pointer. See cme.fp above. 

cme.devadd 
(777777740000,word 1) 

A devadd as described in the beginning of this section. Valid Qllly 
~ cme.ptwp (~ mcme.pdmep) ~ nonzero. May only validly be a 
paging device address, or nulled or live disk address. If cme.rws 
is off, then this is that address to which the page whose PTW is 
described by cme.ptwp will be written when evicted; a paging device 
devadd if this page has one, otherwise a disk address. If cme.rws 
is Qll, i.e., an RWS is in progress in this main memory frame, the 
contents of cme.devadd depend upon cme.io, which tells whether the 
read or write half of the RWS is under way, and the paging device or 
disk address resides here respectively. 

cme.flags 
(000000037770) 

Various state flags, detailed below. 
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cme.io 
(004000,dl) 

cme.rws 
(002000,dl) 

cme.er 
(001000,dl) 

Valid only if cm~.ptwp (or mcme.pdmep) is nonzero. Tells the 
direction of 1/0 if any is Koing on in this frame, off being read, 
on being write. Valid as above, and at that, only if: 

If cme.rws is ~, tells whether a Read or Write cycle of an RWS 1s 
in progress here. 

If cme.rws is ~, then the PTW designated by cme.ptwp must have 
ptw.os ~ if cme.io is meaningful, in which case that page is being 
read or written from this main memory frame, and cme.io tells which. 
Basically tells the interrupt side what to do. 

Valid ~ when mcme.pdmep is nonzero (if cme.ptwp describes a PTW, 
page control is in a severe error situation. This bit being on, 
:itWm mcme.pdmep is nonzero, means that an RWS is going on in this 
main memory frame. The flag cme.io tells which half of the RWSj 
mcme.pdmep contains the relative offset into the SST of the PDMAP 
entry for the paging device record undergoing RWS. It must have 
pdme.rws on, and be out of the PDMAP used lit. This CME must be out 
of the used list. 

is NOT USED. 

cme.removing 
(000400,dl) 

cme.abs_w 
(000200,dl) 

is turned on b:" pc_abs on the call side when the main memory page 
frame described by this CME is being deconfigured. It makes 
find_core skip over this page, ensuring that any eviction from this 
page frame is permanent until the page frame is threaded out of the 
used list, making it totally inaccessible. (See "Main Memory 
Deconfiguration Service" under "Services" in Secti~n IX.) 

Defines a page frame containing an nabs-wired" page, or a page frame 
in the process of receiving such a page. Such a page will also be 
marked as "wired" in its" PTW. Keeps find_core from trying to evict 
the contents of this page, or handing it to any caller of find_core 
during interim states (such as possible FSDCT pagings) during the 
wiring of this page when the page frame might otherwise appear to be 
free. Also informs the main memory configuration service that the 
controller containing this page frame cannot be deleted. Also 
informs the allocator of abs-wired main memory that this page frame 
is already abs-wired, and its contents cannot be moved to make. room 
for abs-wired pages. (See "Abs Wiring Service" in Section IX.) 

cme.abs_usable 
(000100,dl) 

Says that this page frame may, if not already used so, be used for 
abs-wiring, if this page frame is usable (appears in the used list 
or is actually in use) at all. All page frames with cme.abs_w on 
must have cme.abs_usable on. This quality of being abs-usable is a 
static function of a page frame throughout a bootload. See the 
Multics Beconfiguration f1J1,. Order No. AN71. 

cme.notify_requested 
(000040,dl) 

Valid only if cme.rws is ~, and cme.ptwp describes a CME with 
ptw.os ~ (in which case this CME is threaded out of the used list, 
as a page 1/0 is in progress). Tells the interrupt side thet SOQe 
process is waiting, via the traffic controller wait/notify mechanism 
for I/O completion on this page. This bit is turned on when any 
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process goes to wait for paging 1/0, either on the fault side (see 
"Page Fault Handling" in "Services,") the call side, via the 
call-side wait coordinator, device_control$pwait (see "Wait 
Protocols" in "Mechanisms"), or the special wait mechanism of the 
process-loading mechanism (see "Process Loading" in "Services"). It 
tells the interrupt side to invoke the traffic controller to perform ~ 
a "notify" on the event associated with this page (see "Wait 
Protocols" in Section VIII) when the 1/0 on this page is complete. 
If not on, no traffic control notify is performed when this 1/0 
completes. 

cme.pd upflag 
(000020,dl) 

cme.contr 

(000007,dl) 

Causes the interrupt side to rethread this CME to most recently used 
position on the completion of a page write from--rhis frame, as 
opposed to the least recently used position as it normally does. 

Not currently used. (Controller) is the port tag of the system 
controller that controls the main memory described by this CME. 
(See the Multics Reconfiguration PLM, Order No. AN71.) 

cme.ptwp 
(777777000000,word 2) 

PTW pointer. Only valid when cme.rws is off. When nonzero, states 
that some page of some segment is associated with this page frame. 
The field cme.ptwp is the relative offset into the SST of the PTW 
for that page. The page mayor may not be undergoing 1/0 as ptw.os 
of that PTW is on or off. The page is not, however, undergoing RWS. 
It is guaranteed that the "devadd" file-oT the PTW has a main-memory 
type devadd describing the main memory page frame of this CME. 

mcme.pdmep 
(777777000000,word 2) 

(Alternate for cme.ptwp). Only valid when cme.rws is on, which is .~ 
when there is an RWS going on in this main memory frame. In this 
case, mcme.pdmep is the relative offset into the SST of the PDMAP 
entry of the PD record undergoing this RWS. In this case, the field 
mpdme.cmep of that PDME would be the relative offset into the SST of 
this CME. 

cme.astep 
(000000777777,word 2) 

Only valid under the conditions under 
nonzero. The field cme.astep will then 
into the SST of the AST entry for the 
this main memory frame belongs. 

which cme.ptwp is valid and 
contain the relative address 
segment to which the page in 

Word 3 of the core map entry is reserved for future expansion. It is no 
longer used as "cme.dblw devadd." 

PAGING DEVICE MAP 

The Paging device map is an array of Paging device map entries (PDMEs), one 
for each configurable record in the Paging device. It contains PDMEs for all PD 
records to be used by the current bootload, as specified by the PAGE CONFIG 
card. The pointer sst.pdmap located the PDME for record 0 of the paging device. 
It is in the SST. 
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PAGING DEVICE MAP ENTRY (PDME) 

del 1 pdme based (pdmep) aligned, 
2 fp bit (18) unaligned, 
2 bp bit (18) unaligned, 

2 devadd bit (22) unaligned, 
2 pad2 bit (2) unaligned, 
2 modified bit (1) unaligned, 
2 inc ore bit (1) unaligned, 
2 rws bit (1) unaligned, 
2 used bit (1) unaligned, 
2 abort bit (1) unaligned, 
2 pad3 bit (1) unaligned, 
2 flushing bit (1) unaligned, 
2 notify~requested bit (1) unaligned, 
2 update_only bit (1) unaligned, 
2 removing bit (1) unaligned, 
2 double_writing bit (1) unaligned, 
2 pad bit (1) unaligned, 

2 ptwp bit (18) unaligned, 
2 pageno fixed bin (8) unal, 
2 pvtx fixed bin (8) unal, 

2 uid bit (36) aligned; 

del 1 mpdme based (pdmep) aligned, 
2 save_old_pvtx fixed bin (17) unaligned, 
2 emep bit (18) unaligned, 
2 record no bit (18) unaligned, 
2 add_type bit (4) unaligned; 
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Word 3 uid 

pdme.fp 
(777777000000,word 0) 

Forward pointer in the PD used list. Has the relative address into 
the SST of the PDME used supposedly slightly more recently than this 
one. PDMEs describing records that are undergoing RWS are threaded 
out: pdme.fp is zero, and pdme.bp is reused as mpdme.cmep. PDMEs 
that have been deconfigured have pdme.fp and pdme.bp both equal to 
"777777"b3. Paging device map entries in PDMAPs representing 
"unflushed" paging devices, on the next boot load after one in which 
ESD failed, have all entries either threaded out or deconfigured. 
This field shares storage with mpdme.save_old_pvtx. 

mpdme.save_old_pvtx 
(377777,du,word 0) 

9/78 

(Alternate for pdme.fp.) During a post-crash PD flush, the value of 
pdme.pvtx is saved here. This is so that should the system crash 
during the post-crash PD flush, the next bootload can put that PVT 
index back in pdme.pvtx to retry the flUSh. The field pdme.pvtx is 
set, during the post-crash flush, to the PVT index of the drive 
where the volume to which the pages are being repatriated in this 
bootload. The QlQ value is necessary to identify the pack, where it 
was recorded in the label at the time the volume was accepted (see 
"Post-Crash PD Flush" under "Services," and Section IX.) 
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pdme.bp 
(000000777777,word 0) 

Backward pOinter in 
the POME, in the 
shares storage with 

the PO Used list. Has the relative offset of 
SST, whose pdme.fp describes this pdme. Also 

mpdme.cmep. Valid only when pdme.rws is ~fL. 

mpdme.cmep 
(000000777777,word 0) 

(Alternate for pdme.bp.) Valid only when pdme.rws is 2n, in which 
case pdme.fp should be zero and no other PDME or the PD used list 
used pointer sst.pdusedp should describe this PDME. In this case, 
an RWS is being undergone by the PD record described by this PDHE, 
and mpdme.cmep contains the relative address in the SST of the CHE 
that. describes the page frame in which this RWS is taking place. 
The rield mcme.pdmep should point back to this PDHE. Used by the 
abort code in the interrupt side to locate the CHE when the PDHE has 
been found from the PTW. See Figure 6-5. 

pdme.devadd 
(111711140000,word 1) 

Is the disk address, as a standard page control devadd, which is 
associated with the page contained on the PD record described by 
this PDHE (valid only when pdme.used is 2n). Hust be a disk-type 
devadd, can be nulled or live. Pages created in main memory, 
written to the paging device, but never yet written to the disk 
record which they were assigned will have a nulled devadd here (see 
"Address Hanagement," Section VII). 

pdme.flags 
(031111,dl,word 1) 

pdme.mod 
(004000,dl) 

pdme.incore 
(002000,dl) 

pdme.rws 
(001000,dl) 

pdme.used 
(000400,dl) 

pdme.abort 
(000200,dl) 

Are the pdme control flags, detailed below.· 

Hodified with respect to disk. Indicates that the page in the PD 
record described by this PDME is difrerent from the copy of the j 

page, if any, on disk, and an RWS will be necessary to free this -' 
PDHE. 

Is OBSOLETE. PTWs are inspected directly by the paging device 
replacement algorithm. 

If 2n, the record of paging device described by thiS PDME is 
undergoing RWS. The CHE designated by mpme.cmep contains additional 
information. See the description of that field above. 

Indicates, .when on, that this pdme is not free, i.e., that the PD 
record it describes contains some page of some segment. All fields 
other than the thread word of a PDME are zeros when it is freed, 
unlike. CHEs. The bit pdme.used being ~ in a nonzero PDHE should 
not validly occur. 

Turned on by the .fault side when this function discovers that an RWS 
is in progress on the PD record that contains the page it is trying 
to read in. This tells the interrupt side, upon completion of the 
RWS, to connect the PTW to the main memory frame in which the RWS 
was performed, thus effectively paging the page in "by virtue of 
RWS," and not to free either the page frame or the PD record. It 
also causes the interrupt side to notify the RWS completion event 
(see "Wait Protocols" in Section VIII) to restart the faulting 
process. 
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pd:ne. fluShirli~: I 
(OOOC40,dl) I 

Is iused by the post-crash software when repatriating a page at 
vOltme-salVage time, after an unsuccessful shutdown. Turned on when 
the RWS for this page is initiated. Function is to tell the 
interrupt side that this is not an ordinary RWS, and the PDME should 

- not be freed upon compl~tlon, but left intact so that the post-crash 
repatriator (pc$flush_seK-old_pd) can determine the relative success 
of the RWS by inspecting the PDME. (See "Post-Crash PD Flush" in 
Section IX.) 

pdme.notify_requested 
(000020,dl) 

Parallel in function to cme.notify_requested. Turned on by the 
call-side wait coordinator, device_control$pwait,when the call side 
wants to wait for the completion of an RWS. Tells the interrupt 
side to perform a traffic control "notify" on the RWS event for this 
PDME. Note that this is always done for an RWS abort completion, 
which is when the same thing happens on the fault side. 

pdme.update_only 
(0~0010,dl) 

Is OBSOLETE. 

pdme.removing 
(000004,dl) 

Is used during deconfiguration of the entire, or partial paging 
device, by the operator "delpage" command. Useful only during an 
RWS, it tells the interrupt side, on completion of the RWS, not to 
free the PDME, but to deconfigure (delete) it. Also used internally 
by the interrupt-side automatic deconfiguration code which responds 
to paging device p.rrors (see "Error Handling" in "Mechanisms"). 

pdme.double_writing 
(000002, dl) 

Used when the paging device is being used iri any of the double-write 
(write-through) modes specifiable by the PARM DBLW parameter in the 
CONFIG deck. This bit is turned on by the interrupt side upon the 
completion of a paging device write if it is decided that a 
double-write to disk will be performed. This decision is made based 
upon the number following the word DBLW on the PARM card, and the 
properties of the page just written. It is .2ll while the 
double-write (to disk) is going on. It tells the interrupt side, 
upon completion of th~ write, that the page has been successfully 
written to disk, and therefore, that the disk address in the PDME 
(pdme.devadd) should be resurrected. (See "Address Management," in 
Section VII.) 

pdme.ptwp 
(777777000000,word 2) 

pdme.pageno 
(377000,dl) 

Is a pointer, relative to the SST, of the PTW for the page that 
resides on the PD record described by this PDME. In the case where 
the contents of the paging device are left over from a previous 
bootload, which did not shut down successfully, pdme.ptwp is zero, 
until the paging device is reinitialized when it is successfully 
flushed. The fact that this field is always nonzero during normal 
operation is a reflection of the policy that only pages of active 
segments are allowed on the paging dev~ce. 

Along with pdme.pvtx and pdme.uid, this field is there principally 
for the post-crash PD flush done by the next bootload after a crash 
in which ESD did not succeed. The field pdme.pageno is the page 
number, relative to zero, within its segment, of the page on this 
record of paging device. 
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pdme.pvtx 
(000377,dl) 

The index in the physical volume table of the drive which contains 
that pack, on which the page in the PD record described by this PDME 
resides. This field is used by the interrupt side, at the mid-point 
of an RWS, to identify the drive to which the RWS buffer must be 
written for the write cycle of the RWS. (See "Post-Crash PD Flush," 
Section IX.) 

pdme.uid 
(whole word 3) 

Is the unique segment ID of the segment containing the page that 
resides in the PD record described by this PDME. This is placed 
here by the PD allocator, allocate_pd in page_fault, solely so that 
this PDME can be "found" during physical volume salvaging of the 
pack containing that page, so that this page might be repatriated at 
that time. 

PDMAP HEADER 

The PDMAP header occupies that region of the paging device map which would 
otherwise be the PDME for the first record used. Since this record is always 
guaranteed to contain a copy of the first page of the PDMAP, the space is used 
for the PDMAP header. (See "Post-Crash PD Flush" in Section IX for motivation 
for the PDMAP header.) Other than pdmap_header.time_of_bootload, the PDMAP 
header contains copies of similarly-named information in the SST. 

dcl 1 pdmap_header based (pdmhp) aligned, 
2 pd_first fixed bin (17) unal, 
2 pd_using fixed bin (17) unal, 
2 nrecs_pdmap fixed bin (17) unal, 
2 pdme_no fixed bin (17) unal, 
2 time_of_bootload fixed bin (71); 

pdmap_header.pd_first 
Copy of sst.pd_first. The 
record being used by this 
containing the first record 

paging device record number or the first 
bootload; this first record is the one 
of the PDMAP. 

pdmap_header.pd_using 
Copy of sst.pd_using. The number of records of the paging device 
usable as a paging device--includes all those in use or free. Does 
n2i include those deconfigured or used to store the PDMAP. 

pdmap_header.nrecs_pdmap 
Copy of sst.nrecs_pdmap. The number of pages (1024-word lengths) in 
the length of the PDMAP itself; the number of bulk store records 
devoted to storing the map itself. 

pdmap_header.pdme_no 

9178 

Copy of sst.pdme_no. The number of elements in the PDMAP array, 
including those corresponding to records in which the copy of the 
PDMAP is stored on the bulk store. 
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pdmap_header.time_of_bootload 
The value of fsdct.time_of_bootload (always set to the clock during 
collection 1 initialization) from that Multics bootload during which 
this instance of the paging device map was initialized. This 
quantity will not change during successive bootloads after a crash 
in which ESD fails, until all pages on the paging device have been 
repatriated, at which time the PD map will be reinitialized. This 
quantity is written to the labels of all physical volumes 
(label.pd_time) accepted during a boot load in which this PDMAP was 
actively in use; this allows the post_crash PD flush to identify 
those volumes to which pages need to be repatriated. 

fYTE YARIABLES FOR fAGE CONTROL 

The PVT, or physical volume table, is basically a data base of volume 
management. However, it contains in its PVTEs (PVT entries) all of the 
per-drive and per-mount ed-pack data used by the system, specifically the 
information used by the disk DIM to describe a drive, and the information used 
by the disk record allocator/deallocator (free_store) of page control. All of 
the following parameters are used by the disk record allocator/deallocator; the 
other parameters in the PVTE are described in Section XIII. These parameters 
describe the status of the bit-map of free records for that volume. 
Historically, these parameters had lived in the FSDCT, in a region directly 
preceding the bit-map, and were known as fsmap parameters. (See "Disk Record 
Allocation/Deallocation" in "Mechanisms.") 

pvte.fsmap_rel 

pvte.curwd 

pvt.wdinc 

pvte.temp 

pvte.baseadd 

pvte.tablen 

a relative pointer, relative to the base of the FSDCT, to the bit 
map for this drive. 

a relative pointer, relative to the base of the bit map for this 
drive, of the next word to be inspected for free records. 

a number by which pvte.curwd is to be incremented to "roll it 
around" to the beginning when it passes the end of the bit-map. 

is a temporary variable used as such by free_store. This highly 
unlikely place for a work variable is historical in origin. 

is the record address represented by the first bit of the bit-map 
for this drive. Each word represents 32 addresses, starting at that 
record address. The first bit of each word is not used, nor are the 
last three bits. This is to facilitate assembler-language 
manipulation of this table. 

is the number of valid words, for the pack currently mounted on this 
drive, of the bit-map. 

pvte.t~blen_allocation 

pvtw.nleft 

is the number of words in the FSDCT re2ion allocated for this drive. 
This is a function of the drive, not the pack on it. 

is the number of bits on at any time in the bit-map for this drive, 
i.e., the number of records left unallocated. When zero, an "out of 
physical volume" (OOPV) situation has occurred. 
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pvte.relct 

pvte.totrec 

is a counter of the number of deposits (freeings) performed since 
last reset. When this number reaches 100, it is reset, and 
pvte.curwd reset to the beginning of the free store map. 

is the number of record~ described by the bit-map for this pack. 

~YNOPSIS OF RELEVANT SST VARIABLES 

The SST header, the first 512 words of the SST, contains a large number of 
global variables of interest to the storage system in all its sUbsystems. 
However, the large number of them which directly control every action of page 
control make it mandatory to list these variables, and give their 
interpretations. 

sst.space 
first eight words of SST. Set to "777777777777l1b3 by init_sst. 
Used to watch for page control bugs which might accidentally use 
zero reI-pointers, and thus store data ititended for somewhere else 
into the first few words of the SST. 

sst.post_purge_time 
a cumulative total of CPU time spent in the post-purge function. 
Reported by post_purge_meters. 

sst.post_in_core 
a count of pages found in main memory by the post-purge function at 
post-purge time. Indicative of working-set behavior. 

sst. thrashing 
a count of pages found twice in a per-process page-trace list by the 
post-purge function. Indicates that a process could not even keep 
its working set in main memory during its eligibility. 

sst.npfs_misses 

sst.salv 

sst.ptl 

sst.nused 

sst.ptwbase 

is OBSOLETE. 

is OBSOLETE. 

is the actual global page table lock. 

is the number of page-frames of main memory in 
they wired, out of service, free, or whatever. 
not corresponding to real memory, or containing 
segments are n21 counted. Critical for the 
memory-sharing computations. 

use by paging, be 
Pages deconfigured, 

parts of perm-wired 
traffic controller's 

is the absolute address of the base of the 
convert SST-relative page-table pointers 
suitable for use in SDWs, and vice-versa. 

SST segment. Used to 
into absolute addresses 

sst.bulk_pvtx 

sst.astsize 

is the PVT index of the bulk store. The bulk store has a PVT entry, 
and is therefore, in some contexts, considered a rather peculiar 
type of disk. Specifically, it is that "disk" on which the 
"pdmap_seg,1I the segment that is used to access and update the PDMAP 
image on the bulk store, resides. 

is 12 decimal, the size oT an AST entry. 
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sst.cmesize 

sst.cmp 

sst.usedp 

sst.wtct 

sst.startp 

sst.removep 

is 4, the size of aCME. 

is an ITS pointer to the base of the core map array, which is always 
the CME for address zero. 

is a relative pointer to the CME which is the best candidate for 
replacement. This field is the "clock-hand" of the main memory page 
replacement algorithm. 

is a count of all outstanding writes initiated by page control. 
When this number reaches a certain threshold (a "ceiling" is then 
said to have occurred) the DIMs are interrogated for completions 
until this number goes down. (This is called "running the devices," 
see "Mechanisms.") 

is OBSOLETE. 

is OBSOLETE. 

sst.double_write 
is the parameter that appears on the PARM DBLW CONFIG card field, if 
there is one, otherwise zero. It tells the paging device interrupt 
side when, if at all, to perform double-writes, based upon its 
value: 

o Never double write, the default. 
1 Double write every time a PD write is done, but not process 

directory pages. 
2 Double write only directory pages. 
3 Double write anything which has never been double-written, i.e., 

needs resurrection. 

sst.temp_w_event 
is "200000000000"b, used by wire_proc to lock the "temp-wiring" 
tables. (See Section X.) 

sst.root_pvtx 
is the PVT index of the RPV 
the supervisor resides, 
initialization. 

(Root Physical Volume), on which all of 
and the whole system runs during 

sst.ptw_first 

sst.nolock 

if patched on, modifies paging device behavior to give all pages a 
chance to be used and evicted QQQg before migrating them to the 
paging device. (See the description of ptw.first, earlier.) 

is OBSOLETE. 

is OBSOLETE. 

sst.pdir_page_faults 
is a meter of page faults on per-process segments. 
file_system_me~ers. 

sst.level_1_page_faults 

Reported by 

is a member of page faults on directories and segments off of the 
root. Reported by file_system_meters. 

sst.dir_page_faults 
is a meter of page faults on directories. 
meters. 
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sst.ring_O_page_faults 

sst.rqover 

is a meter of page 
file_system_meters. 

faults taken in ring zero. Reported by 

is the value of error_table_$rqover, the error code for record quota 
overflow. Put here so that the page-fault handler can use it, as it 
cannot reference error_table_, the latter not being wired. 

sst.pc_io_waits 

sst.steps 

sst.needc 

sst. ceiling 

sst.ctwait 

sst.wired 

sst.laps 

sst.skipw 

sst.skipu 

sst.skipm 

sst.skipos 

sst.skipspd 

sst.reads 

sst.writes 

9178 

is OBSOLETE. 

is the number of times the main memory page 
(see the earlier description) passed a 
file_system_meters. 

replacement algorithm 
CME. Reported by 

is the number of times the main memory page replacement algorithm 
was invoked, i.e., a page frame was needed. Reported by 
file_system_meters. 

is the number of times the page replacement algorithm had to "run 
the devices" because of an excess of writes queued. (See "sst.wtct" 
above.) Reported by file_system_met~rs. 

is OBSOLETE. 

is a count of the number of pages temp-wired or abs-wired. 

is OBSOLETE. File_system_meters computes "laps" as "steps" divided 
by "nused." 

is the number of times 
containing abs-wired 
file_system_meters. 

the main memory 
or temp-wired 

PRA skipped page frames 
pages. Reported by 

is the number of times that the main memory page replacement 
algorithm passed over a page because it was recently used, and 
turned off its "used" bit. Reported by file_system_meters. 

is the number of times that the main memory page replacement 
algorithm skipped a page because it was modified, and needed writing 
out. Reported by file_system_meters. 

is OBSOLETE. 

is OBSOLETE. 

is an array by device type, metering read requests dispatched by 
device_control$dev_read for each type of device. 

is an array, by device type, metering write requests dispatched by 
device_control$dev_write, for each type of device. 
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sst.short_pf_count 
is a count of the number of times that a page fault had already been 
satisfied (usually by some other process) by the time it 
successfully locked the page table lock. 

sst.loop_locks 
is a count of attempts to lock the page table lock. 

sst.loop_lock_time 
is a cumulative total of CPU time spent looping on the page table 
lock. It is reported by total_time_meters. 

sst.pre_page_size 
is OBSOLETE. 

sst.post_list_size 
is a count of all page trace entries processed by the post-purge 
function (see Section IX). When divided by sst.post_purge_calls, it 
is the average size of the post-purge list. 

sst.post_purgings 
is a count of all page writes started by the post-purge function, 
which is an option currently not selected (see Section IX). 

sst.post_purge_calls 
is a count of invocations of the post-purge function. 

sst.pre_page_calls 
sst.pre_page_Iist_size 
sst.pre_page_misses 
sst.pre_pagings 

all are OBSOLETE. 

sst.wire_proc_data 
is used solely by the procedure wire_proc (see Section X, 
"Peripheral Services of Page Control") to keep track of temp-wiring 
requests. 

sst.abs_wired count 
is a count of all page frames containing abs-wired pages. 

sst.wired_copies 

sst.recopies 

is OBSOLETE. 

is a count of the number of times that evict_page had to recopy a 
page because it was modified while being copied. (See "Demand 
Eviction" in Section VIII.) 

sst.first_core block 
is zero. 

sst.last_core block 
is the index in the core map of the highest-addressed page frame in 
the configuration. Used by reconfiguration (see the Multics I 
Reconfiguration PLM, Order No. AN71). 

sst.tree_count 
is an array of sixty-four cells, corresponding to the sixty-four 
possible page-states which the post-purge function can see. It 
counts how many times each was encountered. (See Section IX, "Post 
Purging.") 

sst.pp_meters 
is OBSOLETE. 
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sst.wusedp 
is the "write" usedp, used by claim_mad_core to 
migrations until it is equal to sst.usedp. 
Replacement Algorithm" in Section V.) 

I ... w. 

do writes and PD 
(See "Main Memory 

sst.write_hunts 
is the number of times that claim_mod_core was invoked to do work..,...,,; 
postponed by find_core. 

sst.claim_skip_cme 
is the number of times that claim_mod_core attempted to process a 
CME which was unprocessable, i.e., was abs-wired. 

sst.claim_skip_free 
is the number of times that claim_mod_core passed over a CME which 
was free. As the region of the list being processed by 
claim~mod_core is directly behind usedp, this is not a good state of 
affairs; that CMEs should be at the other end of the list. 

sst.claim_notmod 
is a meter on the number of times that claim_mod_core passed a page 
that was not modified or "nypd," and thus not even interesting. 

sst.claim_passed_used 
is a count of times that claim_mod_core passed pages whose "used" 
bits were on, turning them off on behalf of find_core. 

sst.claim_skip_ptw 
is a meter on the number of times that claim_mod_core passed a page 
and skipped it because of the state of its PTWj usually, this means 
that the page was wired. 

sst.claim_writes 
is a count of calls made by claim_mod_core to write out pages (if 
full of zeros, the pages will not actually be written). 

sst.claim_steps 
is a count of core map entries processed by claim_mod_core. 

sst.rws_reads_os 
is a count of outstanding RWS "read" cycles (paging device read) in 
progress. The RWS initiator of the paging device replacement 
algorithm initiates all of the RWSs it is going to at once, and 
waits for sst.rws_reads_os to become zero via "running" the bulk 
store DIM. While allowing the full queueing facility of the bulk 
store to be used, this ensures that the page table is not unlocked 
during RWS read cycles, as page control is not prepared to handle 
aborts during the read side. 

sst.pd_updates 
is a count of done-time PD writes started, part of the feature 
described under sst.pd_writeahead. 

sst.pre_seeks_failed 
is a count of the number of times that find_core could not find an 
acceptable (not used, not modified, not "nypd," not wired) CME in 
fifteen steps, and called claim_mod_core as a result to cause more 
processing, to cause completions to be noticed and zero pages to be 
discovered. 

sst.pd_desperation_steps 
is a count of steps made by the PD desperator, which is invoked when 
the PD allocator finds that the PDME at the head of the PD used list 
is not claimable. The counter of failures of the PD desperator is 
sst.pd_no_free. . 

sst.pd_desperations 
is a meter of the number of times the PD desperator was invoked 
(reported by page-:multilevel_meters). 
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sst.skips_nypd 
is a meter of times 
skipped a page frame 
status. 

that the main memory replacement algorithm 
because of its "not-yet-on-paging-device" 

sst.pd_writeahead 
is a flag used to enable an unsuccessful experiment which caused the 
paging device to be updated at disk-read completion time. This flag 
causes the PO allocator to inform the interrupt side to start a PO 
write, as opposed to turning on ptw.nypd, which is its normal action 
in this circumstance. 

sst.pd_desperations_not_mod 
is a count of the number of .times that the PO desperator was invoked 
on behalf of a ~ page, i.e., one which is an identical copy of a 
page on disk. Reported as a percentage of desperations by 
page_multilevel_meters. 

sst.resurrections 
is a count of the number of times that a disk devadd was 
resurrected, i.e., made non-nulled and thus reportable to segment 
control, by virtue of a disk write from main memory. (See Section 
VII, "Address Management Policy.") 

sst.fsdct_oocore 

sst.oopv 

is a count of "re~ursive" simulated pagings of the FSOCT. done by the 
page fault handler to satisfy a need of allocating a disk record for 
the page being faulted on. (See "FSOCT Paging," Section VIII.) 

(Out of Physical Volume) is the number of times that page control, 
when invoked to allocate a disk record by the page fault handler, 
could not, because there were no more available. The only 
permissible circumstance is for a hierarchy segment, in which case, 
the SOW for the segment is faulted, provoking a segment move (see 
"Segment Moving" in Section IV). 

sst.fsdct_ptp 
is an ITS pointer to 
the "recursive" page 
a page fault. (See 

the page table of the FSOCT. This is needed by 
fault simulator used to access the FSOCT during 
"FSOCT Paging," Section VIII.) 

sst.pd_resurrections 
is a count of the number of times that a disk devadd was resurrected 
(see sst.resurrections above) by virtue of the successful completion 
of an RWS. 

sst.dblw_resurrection 
is a count o~ the number of times that a disk devadd was 
by virtue of the completion of a write-through from 
device. (See sst.double_write.) 

resurrected 
the paging 

sst.pdflush_replaces 

sst.pd~ap 

sst.pdhtp 

is a count of 
actually changed 
repatriation. 

the number of times that the post-crash PO flush 
a disk address in a file map by virtue of this 

is a pointer to the virtual or~g~n of the paging device map array, 
null if there is no paging device. Note that this n21 the first 
record being used, but rather, record zeros POME, even if the place 
where that would be below the base of the SST. 

is OBSOLETE. 
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sst.pdsize 

sst.pdusedp 

is the PVT index of the device (the bulk store) which is the paging 
device. It is zero if there is no paging device (this is llQ1 the 
case when there is an unflushed paging device). (See "Post-Crash PD 
Flush," Section IX.) 

is 4, the size of a PDME in words. 

is the number of elements in the PDMAP, i.e., the number of records 
in the region being used, including those being used to hold the 
copy of the PDMAP itself. 

is the "clock hand" of the PD replacement algorithm. Contains 
SST-relative address of the PDME at the "best candidate 
replacement" (head) end of the PD used list. If there are any 
PDMEs, they are right there. 

the 
for 

free 

is the PD record 
paging device being 
This record number 
the PDMAP. 

number of the first record in the region of the 
used, the first number on the PAGE CONFIG card. 
will be the one used to hold the first record of 

sst.pd_map_addr 
is the absolute main memory address of the base of the PDMAP in the 
SST segment. This is used by the function in 
check_pd_free_and_update in pd_util which invokes the bulk store DIM 
every second to write out the PDMAP to the first records of the bulk 
store. 

sst.nrecs_pdmap 

sst.pd_using 

is the number of records on bulk store occupied to hold the paging 
device map image. 

is the number of PD records either free or undergoing RWSj used by 
the PD replacement algorithm to free more or start more RWSs when 
this number sinks below 10. 

is the number or PD records either usable or being used to contain 
pages, i.e., not those which are deconfigured or contain the PDMAP 
image. When zero, this cell is an indication to all of page control 
that the paging device is not enabled (may be all deconfigured, or 
unflushed), and no PD migrations can or will be performed. 

is the total number of RWSs outstanding. The paging device 
replacement algorithm will not let this number get above thirtyj if 
this threshold is reached, it loops "running" the DIMs until pd_wtct 
goes down. (See "DIM Interface," Section VIII.) 

sst.pd_writes 
a counter of the number of RWSs ever initiated. Reported by 
page_multilevel_meters. 

sst.pd_ceiling 
the number of times sst.pd_wtct hit thirty, and the paging device 
replacement algorithm had to loop. 

sst.pd_skips_incore 
total number of times that the paging device replacement algorithm 
skipped over a PDME, rethreading it to "recently used" because it 
contained a page that was also in main memory at the time. (See 
"Paging Device Management Algorithm" earlier.) 

AN61 



sst.pd_skips_rws 
is OBSOLETE. 

sst.mod_during_write 
is a counter of the number of times that a page 
was found to have been used while being written. 
replacement algorithm made a poor choice. 

being written out 
Indicates that the 

sst.pd_write_aborts 
is a count of RWS aborts performed, i.e., times when a page fault 
occurred on a page that was undergoing RWS. (See "Paging Device 
Management Algorithm" earlier.) 

sst.pd_rws_active 
is OBSOLETE. 

sst.pd_no_free 
is a count of times that 
"sst.pd_desperations" above.) 

the PD Desperator failed. (See 

sst.pd_read_truncates 
is OBSOLETE. 

sst.pd_write_truncates 
is OBSOLETE. 

sst.pd_htsize 
is OBSOLETE. 

sst.pd_hash_mask 
is OBSOLETE. 

sst.pdmap_astep 
is an ITS pointer to the AST entry of the hardcore segment 
"pdmap_seg," which is used by the call side to perform explicit 
readings and writings of the PDMAP image areas on the bulk store. 

sst.zero_pages 
is a count of the times that write_page, the page-writing primitive, 
found a page all full of zeros, and thus nulled its disk address 
instead of writing it out. 

sst.pd_zero_pages 
is a count of times that write_page performed the above service (see 
sst.zero_pages), and a copy of the page existed on t~e paging 
device, which caused the PD record to be freed. 

sst.trace_sw.pc_trace 
enabled via the hardcore trace facility, and switch 34 on the 
processor, causes page control to print out a large amount of 
debugging information as it proceeds, mostly obsolete. 

sst.rws_time_temp 
is a temporary used by the RWS initiator and the interrupt side to 
meter CPU time overhead of page multilevel. 

sst.rws_time_start 
a cumulation of CPU time spent in the RWS initiator. 
page_multilevel_meters. 

sst.rws_time done 

Printed out by I 

a cumulation of CPU time spent in the interrupt side processing 
RWSs. Printed out by page_multilevel_meters. 

sst.pd_time_counts . 
is OBSOLETE. 

sst.pd_time_values 
is OBSOLETE. 
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sst.pd_no_free_gtpd 
is a meter of the number of times that the PD allocator did not 
migrate a page to the paging device because it belonged to a segment 
with the "Global Transparent Paging Device" attribute defined in 
Section II. Note that the PD allocator is invoked both at read-done 
time and at page-write time. 

sst.pd_page_faults 
is a count of page faults from the paging device. 
percentage by page_multilevel_meters. 

Reported as a 

sst.pd_no_free_first 
is a count of times that the PD allocator refused to migrate a page 
to the paging device because ptw.first was on, i.e., the feature 
described under "sst.ptw_first" thought that the page should not be 
so migr"a ted. 

sst.update_index 
is used by the periodic PDMAP writer in pd_util to keep track of 
which· page of the PDMAP it is writing out. 

sst. last_update 
is the clock time at which the PDMAP was last written out. If the 
current time, at the beginning of any page fault, is more than a 
second past this time, it is written out again. 

sst.count_pdmes 
when set to 1 by patching, enables an experimental meter which 
meters, into sst.buckets, the depth of PDMEs in the PDME used list, 
at the time that they are rethreaded to the head. For the use and 
significance of this type of meter, see the paper by Greenberg cited 
in Section V. This meter is referred to there as the "Experiment of 
webber and Snyder." Enabling this meter engenders substantial 
overhead in the page-fault path, and should not be done frivolously. 

sst. bucket_overflow 

sst.buckets 

is a count of times that the meter described under 
"sst.count_pdmes," above metered a rethreading so deep that it could 
not be metered in sst.buckets. 

(See sst.count_pdmes.> 
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SECTION VII 

ADDRESS MANAGEMENT POLICY 

INTRODUCTION AND NULLED APDRESS 

The address management policy of Multics is that set of designs and their 
implementations which manage when record addresses are assigned to pages) the 
state of the relationship between the contents of each page and the contents of 
any secondary storage record which may be assigned to it, and the deassignment 
of secondary storage addresses from pages. . 

Some address management policy must exist, as this service is a necessary 
one of page control, a service to its own internal workings. The goals of the 
Multics address management policies are these: 

1. No record address shall ever appear in a VTOCE unless it is known with 
certainty at the time it is put there that the data in the associated 
disk record is tta data from the page of the segment which has that 
address as its record address. 

2. No record address shall ever be made available, by placing it in the 
free pool of records on its physical.volume, until it is known with 
certainty at the time it is so made available, that it has been purged 
from the VTOCE on disk in which it resided. 

3. The observance of points 
wit, no record address 
given physical volume at 
or inconsistent states. 

1 and 2 can be shown to imply pOint 3, to 
shall ever appear in more than one VTOCE of a 
the same time, not even during any transitory 
Such states shall not be allowed to exist. 

4. No page of data will be allowed to be created unless a disk record is 
available to be assigned to it at the time it is created (by being 
faulted in). 

5. The supervisor, when running in any process, shall never encounter a 
condition where a supervisor data base, stack, or procedure, cannot be 
grown because of lack of space on its physical volume. 

6. The system must be capable of being bootloaded without any knowledge 
of which addresses are available for assignment. These maps can only 
be constructed by running software to construct them. This software 
consists of paged segments, and these segments must reside somewhere. 

7. The system shall not deplete its available space on any volume simply 
as a result of being bootloaded, i.e., shut down and brought up 
repetitively, or just running an extended or arbitrary period of time. 
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The address management policy takes cognizance of the fact that the system 
can crash at any time. A total power failure can cause this. When the system 
has crashed in such a way that the contents of main memory are lost, or in 
general, emergency shutdown does not succeed, the next bootload must make the 
best of what is in the storage system hierarchy as it encounters it. Thus, it 
is one of the highest goals of address management to make sure the the .~ 
instantaneous state of secondary storage, at any instant, is never such that the 
next boot load will give away data by accident or place data in the wrong place. 

To understand this more fully, an example must 
management policy failure in the pre-4.0 storage system. 
is impossible under the current storage system. 

be given of address 
The following scenario 

1. Segment A contains a PL/I program. Its owner deletes it, freeing its 
record addresses, but leaving the data in those pages. The directory 
file map (predecessor of the VTOCE) is freed. 

2. Segment B gets created. Someone types a sensitive letter into it. A 
record of disk gets allocated for a page of this segment, and is 
written out. It is a page that used to belong to segment A. 

3. The directory page which had A's branch has not yet been written out, 
as this directory is heavily used, and thus not evicted from main 
memory. 

4. The page of the personal letter gets written out. 

5. The system crashes unrecoverably. 

6. The next 
directory 
one page 
letter. 

bootload finds segment A still there, as 
containing the branch never got out to disk. 
of this PL/I program now contains a page 

the page of the 
What is worse, 

of the personal 

This situation is known as a reused address; due to asynchrony in the 
updating of pages to disk, two segments claim the same record address. What is 
worse, the data from the new one is in the page that is described by the file 
map of the old one. It is the principal goal of the release 4.0 and later 
address management policy to categorically avoid this and a whole class of 
similar problems. 

It can be seen that if points 1, 2, and 3 above are followed rigorously, 
the scenario above can never happen. These rules serialize the deallocation and 
reallocation of addresses so that any trace of any given record is completely 

.gone from one segment before it is freed, and thus made available for use in any 
other segment. 

Point 1 specifically, makes it necessary to make finer distinctions between 
the states of "there is no disk address associated with a page" and "there is a 
disk address associated with a page". These finer distinctions did not exist in 
pre-4.0 versions of the storage system. Consider the case of a page of a 
segment that has never been written to disk. Now surely, one must allocate a 
rec~rd and associate it logically with that page before writing it, so there 
must be a finite time between those two operations. There is also the entire 
time during which the request to write is in the disk DIM queues, when it has 
not yet been written. Consider the case of a request to "Update the VTOCE" of 
the segment during this time. Should the address be reported to the VTOCE or 
not? If it is, and the system crashes before the page gets out, then an address 
appears in a VTOCE which denotes a record of disk with the left-over residue of 
some other segment, a security problem. If not, then some finer distinction 
must be made about the nature of assignment to tell when to update addresses and 
when not. 
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This is precisely where the concept of the nulled, or semi~killed device 
address enters. Point 4 above implies the association of record addresses with 
pages at the time that null pages are faulted into main memory_ A ~ page is 
one that is in no way associated with any record of disk, and whose contents are 
logically zero. The association of this disk record with the page is now in 
that state given in the precious paragraph, where it is known that it does nQ1 
contain data from that segment, and may n21 be reported to segment control. An 
address in this state is called a nylled or semi-killed address. It is a ~ 
address. It is assigned to a page, but the contents of the page are zero, and 
the contents of the disk record are residue from some other segment, the 
nulledness of a nulled address is encoded intrinsically in its representation. 

The opposite of a nulled address is a ~ address. A live address may be 
reported to the VTOCE, via pc$get_file_map, at any time. Its state of being 
live implies that that record of disk is known to contained data from the page 
of the segment which has this live disk address as its disk record address. 

The act of converting a nulled address into a live address is called 
resurrection. Since an address being live means that it is known that a given 
page has been written there, resurrection happens at the successful completioD 
of any of various disk-writing operations, namely: 

1. Any page write from main memory to disk. 

2. A read-write sequence (RWS) from paging device to disk. 

3. A double-write, when the paging device is being used in write-through 
mode (see sst.double_write in Section VI). 

4. 

Live 
addresses. 

A post-crash repatriation RWS. 
Flush"). 

(See Section IX, "Post Crash PD 

addresses can also be dynamically nulled, converting them into nulled 
This happens in two cases: 

1. When the page is destroyed, via truncate, which includes all cases of 
segment deletion. 

2. When the page is discovered· to contain zeros (See "Zero· Pages" in 
Section V.) 

When a live address is so nulled, again, zeros become logically associated with 
the page, and the address is not reportable to a file map. In this case, the 
page of disk contains a residue again, in specific, the residue of an older 
version of that page of that segment. 

The force of the above policies is that addresses in a VTOCE, as described 
in the introductory sections of this manual, have only two possible meanings: 

1. A NYll address: This page of this segment logically contains zeros. 

2. A Record address: This page of the segment is contained in the disk 
record designated. 
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Therefore, at the time that a VTOCE is updated, the many fine divisions of 

state of the page and its address must be mapped into one of these two states 
for the file map being updated, depending on what action is intended for the 
next boot load should the system crash irrecoverably the next instant. Thus, all 
states involving nulled addresses are reported to the VTOCE as in case 1 above, 
via the reporting of a null address to the file map. Now the reporting of a 
null address to a VTOCE where perhaps previously there had been a live address, 
is the sole precondition, acceptable to point 2 at the beginning of this 
section, for depositing (freeing) a record. Thus, at the time that a file map 
is reported to segment control, a list called the deposit ~ is also reported: 
it consists of all of the nulled addresses found in the segment, for pages which 
were not in main memory or on the paging device (in these cases, it would 
violate point 4 to deposit their addresses). Page control's association betwe.n 
the page and the disk record is broken at this time by placing a nYl1 address in 
the PTW devadd field and reporting it to the file map, the logical contents of 
the page remain zero, but no page of disk is associated with the segment. 

Segment control holds on to this deposit list. It updates the VTOCE, 
causing the addresses being deposited to be replaced by the null address gotten 
above. When and only when this VTOCE write has been determined to be 
successfully completed, are these addresses (the deposit list) handed in to 
pc$deposit_list to actually be marked as usable by some other segment. The 
special entry in the VTOC manager, vtoc_man$await_vtoce, exists solely for the 
purpose of waiting for successful completion of VTOCE 1/0 for this reason. The 
same action is taken when freeing a VTOCE is used as a means of invalidating its 
contents, when addresses are involved. This is also done by the segment mover. 
See the descriptions of "VTOCE Updating" and "Segment Truncation" for the impact 
of these policies on segment control. 

IMPLICATIONS OF FINITE PACKS 

Each disk pack in the current technology has a finite capacity on the order 
of tens of thousands of Multics records. Each device address used by page 
control and segment control is relative to some particular pack: thus the size 
of these various fields limits, and is limited by, the amount of storage 
available on one pack. 

Each segment resides 
the interpretation of the 
they are only meaningful 
the ASTE of the segment 
that segments can and do 

on one and only one pack: this fact is intrinsic to 
device addresses designating records on that pack, as 
with respect to a pack designated by the PVT index in 

in whose data bases they are found. (Note, however, 
migrate automatically between packs: See Section II). 

Since all pages of all segments are assumed to be zero until otherwise 
"known, record addresses are not actually assigned until pages are actually used. 
In older versions of the storage system, address assignment happened when a page 
was first evicted from main memory, and was found not to be zero. Since all 
addresses were withdrawn from the same single large pool, this operation could 
only fail if the entire system were out of disk, i.e., there was not one more 
record available anywhere. However, since each pack now has its own pool of 
free storage, the case of a segment not being able to be evicted because there 
is no place to write it is a serious one. Such a page would tend to become 
"stuck" in main memory until some (presumedly complex) action would be taken to 
recover. An arbitrary number of such pages would tie up an arbitrary amount of 
main memory. What is more, if the system chose to take a brute-force approach 
to evict the page, it would have to destroy the user's data, with no particular 
reason or even good method of telling him or her. 
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Thus, point 4 above is made. No page of data is allowed to be created 
(implicitly always as zeros) in main memory, which is the only place pages get 
created, unless a record is available ai that ~ for assignment. Since it 
will probably have to be written out later, it is better to find out now if no 
disk is available. The unsatisfied page fault can be used to make the entire 
segment-moving mechanism handle the problem transparently if this is done. What 
is more, the nulled address concept precisely expresses the relation between the 
page of the segment and the record address so assigned at this time. This 
unsatisfied page fault is also critical to the implementation of the mechanism 
that allows page faults on the FSDCT to be simulated by the page fault handler. 

It is, of course, always possible that the user process might only 
reference that page, or never store anything into it but zeros. We cannot rely 
on that. There is a potential here for interaction with access control to 
ensure this, but this is not exploited at the current time. 

NON SEGMENT-MOVABILITY OF THE SUPERVISOR 

The supervisor may not run out of physical volume space at any time. That 
is to say, if it is necessary to create a page of the supervisor's stack, and 
there is not a singl~ record available on the volume on which it resides, the 
system is in an unrecoverable situation. Any software which did any action at 
all would have to run on that stack, and it cannot be used. Thus, all 
supervisor data bases, in particular, the ring 0 stack (PDS) of each process, 
must be assigned addresses at the time it is created as a normal segment, before 
it is used as a ring-O stack. This implies a cooperation of page control and 
segment control. (See "PDS and KST Management", in "Services of Segment 
Control" in Section IV). Addresses are assigned to the PDS of the process being 
created by touching every page of it. This causes nulled addresses t6 be 
assigned. However, since this segment is part of the storage system hierarchy, 
the periodic VTOCE update of the AST Trickle (See "AST Trickle" in Section II) 
would tend to deposit these addresses, as the above paragraphs have stated is 
the fate of nulled addresses at VTOCE update time. In order to suppress this 
depositing, the AST bit aste.dnzp, which normally suppresses nulling of the 
addresses, of zero pages, or checking for them, is viewed in conjunction with 
the bit aste.ehs, the "entry hold switch" making these ASTE's semi-permanently 
activated, by pc$get_file_map, to suppress reporting and making-null of these 
nulled addresses. 

This action of pre-assigning addresses is called prewithdrawing. All of 
the supervisor data bases, such as the stack used at shutd9wn time, the FSDCT, 
the' dirlockt_seg, the lock segment, etc., are all prewitharawn at the time they 
are created by Initialization so that the supervisor does not run out of disk in 
an embarrassing place. There is another reason for prewithdrawing these 
segments at the time that they are created: it is a consequence of points 6 and 
7, which are now discussed. 

GUARANTEED BOOTABILITY OF THE SUPERVISOR 

The segments that compose the hardcore supervisor, including all data 
bases, and all parts of all salvagers, must, if paged, have disk addresses 
assigned. By virtue of the policies given above, these pages, as all other 
pages managed by page control, must have addresses assigned at the time that 
they are created. 
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If the system has crashed without a successful ESD, then the volume map of 
any volume present during that boot load will not be valid. (The volume map. is 
the disk copy of the FSDCT bit map for that volume, c~pied into the FSDCT when 
the volume is accepted and written out when demounted). The supervisor must 
have some place to allocate its own pages during the next bootload. Since no 
volume map may be believed, the supervisor must in effect be booted on a volume 
not present during the last bootload. 

Rather than inflict this difficult operational restriction, a "special 
volume" called the hardcore partition is defined on the root physical volume 
(RPV) of a given hierarchy. In effect, every time the system is booted, the 
supervisor is booted "cold" into the pseudo-volume of the hardcore partition. 
This is ~o say that the volume map of the hard core partition is defined to be 
entirely full of "free" markings for its pages. Therefore, the supervisor may 
construct the FSDCT bit-map for the hardcore partition out of "ones" for the 
length of the hardcore partition. The supervisor may thus allocate pages 
anywhere in the hardcore partition. (Since the bit-map is wholly fabricated, 
there is in fact no volume map on disk for this region). The location and 
extent of the hardcore partition are stated in the volume label of the RPV, and 
are not subject to change during running of Multics (See Section XIV). 

It is a corollary of the definition of the hardcore partition as a region 
totally free upon bootload that all of the contents of pages in that region, of 
that bootload, will be undefined (as the records are being reused) during the 
next bootload. Now only two classes of segments will have pages in the hardcore 
partition: supervisor segments (without branches or VTOCEs) of that bootload, 
and de~iduous segments (essentially supervisor segments with branches and 
VTOCEs). The non-deciduous supervisor segment will not be accessible during a 
subsequent bootload; all information about them was cont~ined in their ASTEs, 
and is gone. The resources consumed by them in the hardcore partition are 
reused by virtue of the above definition. The deciduous segments, on the other 
hand, will have pages allover them being reused by new segments. Therefore, 
deciduous segments can not be used from one bootload to the next; an attempt to 
activate a deciduous segment of a previous boot load causes a connection failure. 
when deciduous segments are deleted, by the next bootload, their pages are not 
deposited; the records in the hardcore partition are reused by the current 
bootload by virtue of the definition of the hardcore partition. 

All supervisor segments, deciduous and otherwise, are totally prewithdrawn 
against the hardcore partition with very few exceptions- see below). This means 
that a given hardcore partition must be capable of holding the supervisor in its 
entirety, or the system will crash with an out-of-physical-volume condition 
during initialization. Thus, deciduous segments' record addresses are totally 
in the hardcore partition, and all of their pages become invalid during the next 
bootload. This property has been likened to the perennial defloration of flora: 
that is why deciduous segments are so called. 

The bit-map of the hardcore partition is used as the only free storage map 
for the root physical volume, onto which the system is booted, until the middle 
of collection 2, when the program accept_fs_disk$rpv runs (See Section XIV). If 
the system crashed in the prior bootload, the physical volume salvager will have 
been invoked before this point in the boot load to reconstruct the volume map of 
the RPV, in addition to other functions. Thus, at this point in the bootload, 
the real volume map of the RPV replaces the map constructed for the hardcore 
partition. (No addresses in the hardcore partition should ever be deposited 
after this point). Thus, all requests for new record addresses on the RPV, will 
cause records to be withdrawn from the real volume map of the RPV. 
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The fact that the real volume map of the RPV replaces that of the hard core 
partition means that any page withdrawn against that map by the supervisor must 
ultimately be deposited, or the system will run out of disk on the RPV by virtue 
of continued operation, a situation explicitly disallowed by point 7 at the 
beginning of this section. Thus, if supervisor data bases grow, i.e., acquire 
disk records, after the point mentioned above in initialization (the "acceptance 
of the RPV volume map", the supervisdr must, in order to perform a successful 
shutdown, truncate these data bases and deposit these addresses to keep pOint 7 
true. Not only is this difficult because of the need to differentiate the 
hardcore-partition addresses from the ones withdrawn against the real RPV volume 
map, but this systematic self-destruction of the supervisor causes any problem 
in shutdown to be hard to diagnose, as the supervisor has willfully partly 
destroyed itself at that time. It is also difficult to organize a supervisor 
shutdown which proceeds by destroying itself. (In fact, pre-4.0 versions of the 
supervisor destroyed themself in just this way, and continually had problems in 
locating every last record that had to be deposited, and doing it in the right 
order). Thus, the entire supervisor, with the exceptions noted below, is 
prewithdrawn against the hardcore partition at the time it is created, for this 
second reason. 

There exists a small set of segments, called "delete_at_shutdown" segments 
that are managed in complete violation of points 5 and 7. These segments are 
part of the supervisor. They are data segments that are: 

1. Large, and may not even be used for their full length. 

2. Non-critical were the supervisor to run out of disk on the RPV were 
these segments to encounter an OOPV condition. 

These segments are managed this way simply to avoid having to make the hardcore 
partition large enough (an issue of a few hundred records) to contain them were 
they prewithdrawn against it. Thus, these segments are truncated during a 
successful shutdown, contain both hardcore-partition and real-RPV-volume map 
addresses, and may encounter out-of-disk conditions. 

The bit slte.delete_at_shutdown, set from the MST generator 
"delete_at_shutdown" keyword makes a segment so. Such segments are kept in the 
"hardcore" ASTE list, to facilitate the truncation at shutdown time. 

RPV PARASITE SEGMENTS 

There are some segments, such as the descriptor segments of all processes 
except the initializer, and the PRDS of all processors other than the Bootload 
Processor, which reside on the RPV, but do not have VTOCEs or branches. Thus, 
page creations for these segments withdraw against the real RPV volume map. In 
the case of a normal shutdown, orderly process destruction and deconfiguration 
frees these pages, assuring that the system does not run out of disk by virtue 
of continued operation (point 7). However, in the case of a crash, with or 
without a successful emergency shutdown, these orderly destructions do not 
occur, as all of the relevant processes may be in inconsistent states. Since 
these "RPV parasite" segments have no VTOCEs, the deletion of process 
directories performed by system answering service startup does not free their 
pages. Thus, a volume salvage of the root physical volume (so-called "short 
RPVS") is performed automatically after every crash. This salvage collects all 
space not described by VTOCEs, making it available for reuse. This includes all 
space used by RPV parasite segments. 
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abs-segs (EXPLICIT ADDRESS MANAGEMENT) 

Many "segments" in the supervisor are not segments at all, but rather 
segment numbers, and possible ASTE/page tables, used for addressing main memory, 
bulk store, or disk. Such "segments" are known as abs_segs. There are two 
"levels" of abs-seg, the SDW-leyel abs-seg and the PTW-leyel abs-seg. An 
SDW-level abs-seg is used by placing an SDW describing a region of main memory 
(as a segment) in a position in the descriptor segment, or an SDW describing a 
page table (as the page table for a segment). The extent of main memory, or the 
segment described by the page-table "become" the "segment" whose segment number 
was that of the position in the descriptor segment into which the SDW was 
placed. 

For a PTW-level abs-seg, the SDW always describes the same page table. The 
PTWs of this page table are filled in with the disk addresses of a region of 
disk or bulk store (the PVT index of that drive or the bulk store (see 
sst.bulk_pvtx in Section VI) is placed in the field aste.pvtx), and all 
references to that segment "become" references to that e~tent of disk or bulk 
store, i.e., the segment number's segment "becomes" that region of disk or bulk 
store. 

If this reminds the astute reader of the method used to access every single 
segment in the Multics storage system hierarchy, that is because indeed it is. 
The difference is solely one in orientation. For an abs-seg, the segmentation 
and paging mechanism, and the "implicit services of page control, are being used 
as a technique to read and/or write disk. For a hierarchy segment, segmentation 
and paging and the implicit services of page control and segment control are 
used to make a collection of disk records "behave" like a segment. There is no 
physical difference to the two techniques. 
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SECTION VIII 

MECHANISMS 

The mechanisms of page control are those policies, protocols, and programs 
that compose the internal organization, and support the services thereof. This 
section details those policies, protocols, and programs. Some policies, such as 
the address management policy, and the main memory and paging device 
replacement algorithms, are not manifestations of internal organization, but 
rather artifacts of the services page control is called upon to perform. Such 
policies have already been explained. 

Those policies already described are the externally visible policies. Some 
of them have become documented in the literature, and thus acquired some measure 
of fame. Yet it is the policies and mechanisms explained in this section that 
are little-known, but necessary to the debugging of problems, interpretation of 
crash dumps, and contemplations of functional or organizational improvements to 
the whole of page control 

The section is divided ihto three parts: 

1. Policies, protocols, and organizations. 
2. Individual mechanisms. 
3. J Internal interfaces. 

The first part describes strategies and principles in effect throughout 
page control, and critical to its external interface. The second describes 
particular mechanisms, that are ostensibly divorced from the explicit services, 
such as the method of waiting for page faults, the "recursive" FSDCT paging, 
etc. The third part describes interfaces that are in effect the services of 
page control for page control, such as most of the entries to the 
transfer-vector "page." 

POLICIES, PROTOCOLS, AND ORGANIZATIONS 

Global Page Lock 

All manipulations of page control data bases, with the exceptions noted 
below, must be performed under the protection of the global page table lock. No 
process that has the global lock locked may give away or accidentally lose the 
processor on which it runs. Thus, any process that has the global lock locked 
must be ~asked to "sys_level", and have its stack, linkages, and procedures 
wired, not referencing any non-wired parameters, code, or data bases. 
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There is no general mechanism for multiprogram-waiting on the page-table 
lock. Except for processes taking page faults, all attempts to lock the page 
table lock are performed by looping on it. Internal to ALM page control, this 
is performed by executing: 

tsx7 
or tsx7 

<page_fault> : llock_ptl ] 
<page_fault>:llock_ptl_no_lpJ 

depending on whether or not the caller has set up a stack frame. This procedure 
may be generally accessed as page$lock_ptl from PL/I code, yet this is rarely 
done (only the loading function, wired_plm, does this), as all other PL/I 
procedures that lock the global lock also wish to wire their stack frames and 
mask to sys_level; this compound function, which includes calling 
page$lock_ptl, is performed by the very common call: 

The two parameters are used in the corresponding unlock call: 

call pmut$unlock_ptl (sa ve-1llask, sa ve_ptp') 

to identify the PTWs wired by the first call, and the old mask. This mask 
variable has the old wired bits of the PTWs embedded in it, and is intended for 
use only by pmut$unlock_ptl. 

There exist calls to unlock the page table lock, these involve interac'tion 
with the traffic controller in order to support the page table lock 
multiprogramming feature described in the second part of this section. This 
call is: 

tsx7 <page_fault>:Cunlock_ptl] 

in ALM page control, with the transfer vector page$unlock_ptl and 
pmut$unlock_ptl having the same relation as the corresponding lock entries 
(pmut, however, does not - use page$unlock_ptl, but rather 
page_fault$pmut_unlock_ptl, a side door to the unlock mechanism which avoids 
pushing extra stack frames). 

The page-fault handler, the fault side of page control, has a mechanism for 
waiting, via the traffic controller, for the page table lock to unlock. The 
lock_ptl routine in page_fault takes special action when invoked by the fault 
side; this mechanism is explained in the second part of this section. 

There are two large classes of page control manipulations that may be 
performed without having the global lock locked: 

r. The tUrning on/off of wired bits of the PTWs of supervisor or 
semi-permanently activated segments. 

2. The construction or destruction of the page tables of inaccessible 
segments. 
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In the first case, the bit ptw.wired, used by the main memory replacement 
algorithm to avoid eviction of a page, may be turned on or off at any time by 
any process that is keeping track of what it is doing. Page control, operating 
under the page-table lock, never turns wired bits on or off except in two cases: 

1. Loading of processes' critical pages. 

2. Abs-wiring of liD buffers 

Thus, processes may turn on "wired" bits of PTWs for segments such as the 
ring-zero stack (pmut$lock_ptl does just this) without fear that page control 
might be trying to turn them off. The ~estrictions on this type of activity is 
that one must choose the segment with care: its AST entry must not be removable, 
lest these PTWs vanish while being dealt with, or before having their wired bits 
turned off. Thus, only supervisor segments and semi-permanently activated 
segments (including PDSs of other processes than the initializer) are eligible 
for such treatment. Furthermore, this mechanism is not shareable; unless some 
external means is used to organize such wiring requests (such as wire_proc, see 
Section X, or the 1/0 Buffer Manager iobm, only segments known to be essentially 
unshared may be so dealt with (limiting this almost exclusively to ring-zero 
stacks (PDSs). Once wired bits are so turned on, simply touching the page whose 
PTW was manipulated, bringing it into main memory, will "wire" it, since it now 
may not be evicted. 

Unwiring of pages so wired may be done by simply turning off the wired 
bits; it was guaranteed by the preconditions of the last paragraph that the PTWs 
cannot have disappeared,·and no other process could have turned off the wired 
bits, or worse yet, wante~ them kept on. This is the method used to "unload" 
processes, i.e., unwire their critical pages, without the protection of the page 

'table lock. In fact, an extension of this mechanism is used by the 1/0 bUffer 
manager to turn off the !labs_wired" bit (cme.abs_w) in the core map entry 
wi thout the protection of the lock, for the definition of abs-wiring is that, the 
page, and hence, the core map entry it is associated with, may not be moved. 

The other broad class of manipulations performable without the page table 
lock locked is that concerning itself with segments that are inaccessible. A 
segment being activated by definition has no SDWs describing it, and has no 
pages in main memory or on the paging device. Thus, any manipulations on its 
PTWs or AST entry can have no effect on any of the data bases of page control, 
since no CMEs or PDMEs describe t"hese PTWs or ASTE. A segment that has been 
"finalized" by pc$cleanup (see "Services," Section IX) again has no pages in 
main memory or on the paging device; since making the segment inaccessible is a 
precondition for calling pc$cleanup, such a segment is in the same state, and 
its PTWs may be dealt with as fitting. 

There are two smaller classes of manipulations performable without the page 
table lock being locked: 

1. The validation of page control events by the traffic controller. 

2. The depositing of addresses. 

The traffic controller interacts in a close fashion with page control,to 
perform Process Loading (see "Process Loading" in "Services"). Among the 
quantities returned by page control to the traffic controller, when this service 
is performed, is a wait event. The validity of this wait event is verified 
under the traffic control lock by the traffic controller, under whose lock all 
notifications must be performed. This validation is performed by checking 
out-of-service bits, the particular location of which may be inferred from the 
value of the "wait event" (see "Wait Protocols" below). If these bits are not 
on, it is a certainty that the event in question has already happened; if it had 
not, these bits would still be on, regardless of any lock anywhere, and the 
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traffic controller effectively proceeds with the loading operation, which is, in 
effect a conservative action for the traffic controller. (The worst possible 
result of such a mistake would be to retry the loading an extra time.) On the 
other hand, if the bits are QU, the traffic controller assumes that the event 
has QQ1 happened. This is not fully correct; it may have happened already, and 
a new similar event started. If any such event is in progress, a "notify" will 
be forthcoming if and only if the "notify requested" bit in an appropriate PDME 
or CME is QU. In the case of the legitimate event being waited for, it always 
is. In this peculiar case above, it mayor may not be. The traffic controller 
assumes, if the out-of-service (or RWS, as appropriate) bits are on, that a 
notify will be forthcoming, and sets the process being loaded waiting on that 
event. The worst possible outcome of a mistake (highly unlikely) in this 
decision would be a gO-second "notify timeout," and retry. 

The depositing of addresses, i.e., the marking of bits in FSDCT bit-maps as 
~ is performed outside of the page table lock. Withdrawing is performed 
under the protection of the page table lock. The latter is necessary, as were 
there no lock protecting this withdrawing, two processes might "succeed" in 
withdrawing the same address simultaneously, resulting in not onl~ a "reused 
address," but an inconsistent FSDCT and PVT. Thus, withdrawing is performed 
under the lock. Depositing need not be, because no two processes can be trying 
to deposit the same address at the same time, because there are no reused 
addresses in the system. Each address appears at most in one place at one time. 
Furthermore, no process is specifically trying to withdraw any given address. 
Depositing consists of turning on a bit and incrementing the free-record count, 
both of which operations can be done without the protection of a lock. If the 
address being freed was already free ("unprotected address," a cause for crash) 
it will be free whether or not the lock is lOCked. If it is not, no other 
process is trying to free it. One implication of the fact that depositing is 
not performed under the page table lock is that the depositing procedure 
(free_store, called only by pc) takes ~ faults in the· normal fashion on the 
paged, non-wired FSDCT, while other processes are so doing rul.d. the "recurs'i ve" 

. page fault simulator is accomplishing "withdraws" on perhaps the same pages. 

The page table lock is lower in the locking hierarchy than the traffic 
controller lock. It is lower than any of the locks used by the storage system 
DIMs to control their data bases, and thus lower than any locks used by the 10M 
manager. 

It is higher than the lock used by the I/O buffer manager, and thus higher 
than. any locks used by the I/O interfacer. 

It is a "wired" (per-processor) lock, and thus higher than any non-wired 
(per-process) lock, such as all directory locks and the AST lock. 

Wait Events Used by Page Control 

Page control uses two "waiting" type mechanisms: 

1. Looping and retrying until some asynchronous event happens; 
wait for the completion of bulk store I/O, the clearing of 
table lock (by other than the fault side), or the dying-down 
queue traffic ("running the disk DIM"). 

2. The wait/notify mechanism of the traffic controller. 

8~4 . 
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The first method is used where g~v~ng 
impossible, including several "worst-case" 
mechanism of the traffic controller is used 
events: 

away the processor is impractical or 
type situations. The wait/notify 
to wait for precisely three types of 

1. The completion of any disk paging I/O, i.e., disk read or writes of 
pages to and from main memory for any other reason than a read/write 
sequence (RWS). 

2. The completion of read-write sequences (RWSs). 

3. The unlocking of the global page table lock, awaited only by the fault 
side. 

There is also the temp-wiring table used by wire_proc, among the peripheral 
services of page control, but it is far removed from the internal organization 
of anything else in page control. (See Section X for more on this.) 

Each event for which page control waits has a 36-bit "Event ID," as must be 
true of all events waited for via the traffic controller. Part of the protocols 
of using the traffic controller wait/notify mechanism is that event IDs need not 
be unique over the system, and thus notifies can occur spuriously as event IDs 
clash. However, event IDs generated by page control ~ unique within page 
control. Page control, when looking at an event ID it generated can determine 
with certainty what event is associated with that event ID, and whether or not 
it has happened. There are three classes of event IDs corresponding to the 
three types of events above: 

1. A binary number in the right-hand half of a word, whose left haIr is 
zeros, this number being bigger than the offset in the SST of the 
first ASTE (the word offset of the pointer sst.astap), is the offset 
of a fIK in the~. Such an event ID is associated with the event of 
the completion of non-RWS disk I/O for that page. 

2. A binary number in the right-hand half of a word, whose left half is 
zeros, smaller than the offset in the SST of the first ASTE (the word 
portion of the pointer sst.astap), is the offset of a paging device 
map entry (PDME). Such an event ID is associated with the event of 
the completion of an RWS for that PD record. 

3. The octal constant "160164153152"b3, being the ASCII for "ptlk", is 
associated with the event of the unlocking of the global page table 
lock. 

A "PTW event" (Case 1) may be tested for having completed by the being~on 
of the bit ptw.os. A "RWS event" (Case 2) may be tested for completion by the 
being~on of the bit pdme.rws in the PDME designated by the numerical valu~ of 
the event ID. These checks ~ be made under the page table lock, via an 
organized methodology explained below ("Wait Protocols").- The "PTL event" (Case 
3) may be tested for having completed by inspecting the contents of the pa;ge 
table lock J sst. ptl. -, 

PTW events are also used to express the event associated with the 
oompletion of non-RWS bulk store I/O. However, these events neVer leave page 
control and thus are never waited for via the traffic controller. Page control 
"waits" for PTW events corresponding to bulk store I/Os by means of calling the 
b~l~ store DIM "run" entry until the event has occurred. 



Wait Protocols of Page Control 

Part 1 Waiting for a given single event - other than the PTL event 
(Simplex Wait Protocol) 

The methodology used in page control to wait for an event is strongl'y 
dependent on which side of page control is doing the waiting. For a start, the 
interrupt ~ never waits, or has to wait, for any event (unless loop-locking 
the global lock is considered waiting for an event). Thus, the interrupt side 
may not run the replacement algorithm, which would "wait" for disk I/O to die 
down by looping. 

One must 
"side" of page 
given process, 
called by that 

consider the code of the process-loading function a separate 
control here; it is the only function that acts on behalf of some 
including causing that process to wait, but is never actually 
process. 

The page control wait mechanism is not used so that page control may wait; 
rather, it is used so that processes on behalf of whom page control is 
performing services may be made to wait, when awaiting page control events is 
necessary to the fulfilling of that service. This is to say, that when the main 
memory or paging device replacement algorithms start a write or RWS 
respectively, page control has no need, in general, to wait for its completion. 
On the other hand, some process that is trying to drive all pages of a segment 
out of main memory and paging device may well have to wait for the completion of 
such a write or RWS, whether it had started it or it had already been in 
progress. Similarly, a process taking a page fault must be made to wait fora 
disk I/O completion if a disk read was involved ih resolving that page f~ult. 
Thus, the procedures that implement the services of page control may often have 
to wait for I/O completions in order to carry out these services as specified; 
the mechanisms of page control never wait. 

The completion of all page control events is detected and determined by 
page control. No external agencies in the system wait upon or notify page 
control events. What is more, the "notify" operation for all page control 
events is performed under the page table lock, usually by the interrupt side of 
page control. The occurrence of a PTW event consists of the turning off of the 
PTW out-of-service (I/O in progress) bit. The occurrence of an RWS event 
consists of the turning off of the PDME RWS (pdme.rws) bit. These events can 
only 'happen 'under the page table lock. Page control does llQ1 perform a 
traffic-control notify every time a PTW event or RWS event occurs. PTW events 
are notified only if the bit cme.notify requested in the CME of the main memory 
frame in which the I/O was taking place is QU. These notify operations take 
place in the traffic controller, but under ~ ~ table lock. These 
notify-requested bits are turned on when and only when page control has made the 
decision that a process must wait for such an event, at such time, the 
associated notify_requested bit will be turned on (all under the page table 
lock) . 

The decision to make a process wait happens in three different ways, 
depending on whether the decision is performed by the fault side, the call side 
(other than the loading function), or the loading function. In the first two 
cases, the process executing the code will be the one that waits; in the third 
case it will not. 
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The fault side makes the decision to wait at the end of page fault 
processing, all under the page table lock. The read in of the page faulted on, 
if nonnull has already been initiated (see "Services" Secticn IX, "Page Fault 
Handling"). The PTW of the page faulted on is inspected. Tf the PTW indicates 
that the page has already been read in (or created, in the case of zero pages), 
the page fault machine conditions, and thus the faulting Control Unit cycle, and 
thus the instruction, and the program that took the page fault, are restarted 
(after unlocking the page table lock). If, on the other hand, the PTW indicates 
that the page has not been (completely) read in, there is waiting to be done. 
Since this process has the page table lock locked, and notices that the page is 
not in, it does not matter whether or not the page has actually come in, i.e., 
the disk data transfer has been performed. The interrupt side, which is the 
only agency that can turn off that bit ptw.os or pdme.rws, (cause the PTW or RWS 
event to occur), cannot be invoked unt'l this process rel~ases the page table 
lock, or itself invokes the interrupt side under the page table lock. In the 
case where there is waiting to be done, the subroutine read_page, invoked by the 
page-fault handler, has returned the event ID of the event that must be waited 
for. If the page being read in is undergoing an RWS, this is an RWS event. 
Otherwise, it is a PTW event. If the page requires an allocation of a record, 
and the appropriate page of the FSDCT is not in main memory, it may be an RWS 
event or a PTW event for a page of the FSDCT (see "FSDCT paging" later on). 

The fault side waits for the event so given to it by read_page in the 
following way: 

If this event is an RWS event, identify the PDME 
event, and turn on the abort bit. This causes an RWS 
that RWS event at the time the RWS completes. 
(pxss$page_wait in the traffic controller) to wait 
unlock the global lock. 

designated by the RWS 
abort and a notify of 

A branch is executed 
for that event and 

If this event is a PTW event, determine whether it is for a bulk store 
transfer or a disk transfer. If the devadd in the CME for the page frame 
denoted by the PTW is a "paging device devadd," it is a bulk store 
transfer. Otherwise, it is a disk transfer unless the segment is the 
"pdmap_seg," abs-seg, an abs-seg used to read th~ bulk store as though it 
were a disk. Then it is a bulk store transfer. If it is a disk transfer, 
turn on cme.notify_requested in that CME, and go to pxss$page_wait to wait 
for the PTW event. This bit will cause a notify of that PTW event when the 
1/0 completes. If this is a bulk store transfer, call the "run" entry of 

. the bulk store DIM, and check whether or not the PTW out-of-service bit has 
gone off and call the "run" entry of the bulk store DIM in a loop, until 
this bit has gone off. The "run" entry of the bulk store DIM will 
interrogate the hardware status of the bulk store, and call the interrupt 
side of page control, potentially causing the PTW event to occur, as its 
function. Then restart the machine conditions. 

Bulk store transfers are not awaited via the traffic control mechanism 
because the transfer time of the bulk store is comparable to the overhead time 
spent going through the traffic controller. 

Thus, a process taking a page fault either restarts the machine conditions 
at the end of a page fault, or goes to the traffic controller to wait for either 
an RWS event or a PTW event corresponding to a disk 1/0. In either case of 
going to the traffic controller to wait, a bit will have been turned .on 
(pdme.abort or cme.notify_requested) which tells the interrupt side to notify 
via the traffic controller. 
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When a process waits on behalf of the fault side of page control, (this 
includes waiting for the lock, see "Traffic Controller Interface" below) no 
other information is recorded about the state of that process other than the 
machine conditions from the page fault that was taken, and the fact that it is 
indeed waiting on behalf of the fault side of page control. When that event is 
notified, the traffic controller branches to page_fault$wait_return, which does 
not lock the page table lock, modify, or even inspect page control data bases in 
any way, but only restarts the machine conditions of the fault. If indeed th~ 
PTW was made to describe main memory as the interrupt side noticed an I/O 
completion, and the page has not been evicted in the interim, the interrupted 
machine cycle will be retried and completed. If not, another page fault will be 
taken, which will again try to lock the page table lock, perhaps retry page 
allocation because the FSDCT has now been paged in, or re-read the page if it 
was evicted in the interim between the time the process received the notify and 
the time it received the processor. The design is not to determine why the 
process went to wait; the hardware (by not taking a page fault) or the changed 
state of page control will do that on their own. 

The call side (other than the process loading function) makes the decision 
to wait when it notices some page with I/O going on, or some PD record with an 
RWS going on, in a way that interferes with the contract of the entry being 
called. For instance, if the entry pc$cleanup is called to ensure that no pages 
of a segment are on the paging device in main memory (the caller having made the 
segment inaccessible), this surely cannot be true if there are pages being 
transferred into or out of main memory or the paging device; waiting for this 
I/O to complete is intrinsic in the contract of this entry. Similarly, the 
truncate function cannot destroy pages on which I/O is being performed, for the 
interrupt side at the completion of the I/O would have no way of telling what 
had happened. Leaving some kind of mark to tell it amounts to waiting for the 
I/O to complete. 

The call side waits by calling page$pwait, with the page tables locked, 
passing the event ID being waited for as a parameter. Ultimately, if page$pwait 
so decides, this process will be made to wait. The entry page$pwait,also known 
as the £a!l ~ ~ coordinator, (its code is in the module device_control) 
has the following contract: 

Given a page control event ID, with the page tables locked, return when the 
event has occurred, with the page tables locked. 

The call side wait coordinator can always decode the event ID, and by 
looking at a PTW or PDME, determine if the event has happened. This is the 
first thing it does (sees if ptw.os or pdme.rws, as befits the event, is off), 
and if the event has occurred, it simply returns with the page table locked, 
having fulfilled its contract. (It is sometimes the case that page$pwait will 
be called with the event ID of an event that has already happened; (see 
"Multiplex Wait Protocol" below.) 

If the event of interest has n21 occurred, page$pwait decides how to wait 
for it in the same way as the fault side; if a PTW event for either paging 
device I/O or pdmap_seg, the bulk store DIM "run" entry is called in a loop 
until the PTW "out-of-service" bit is turned off by the bulk-store DIM's calling 
the interrupt side. If this is the case, the page table lock is unlocked, and 
page$pwait returns with it locked, having fulfilled its contract. If the event 
is an RWS event or a disk PTW event, the bits pdme.notify_requested or 
cme.notify_requested are tUrned on as appropriate, and control is transferred to 
px·ss$waitp in the traffic controller. This entry unlocks the page table lock 
and waits for the event. When the event occurs, pxss$waitp branches to 
device_control$pwait_return, which relocks the page table lock 
«page_fault>: [lock_ptl_no_lp]), and returns to the caller of page$pwait. 

i 
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It is part of the protocol of using page$pwait that upon its return, the 
event might have happened, but the page is out of service ~, or that it 
might have been fraudulently notified. All callers of page$pwait use it as part 
of the multiplex wait strategy outlined below; implicit in this strategy is the 
knowledge that these callers will retry all their operations again upon return 
from page$pwait. Thus, fraudulent notifications are not a difficulty. This 
situation is exactly parallel to that in which the restart of a page fault upon 
return of the traffic controller when invoked by the fault side simply retries 
the faulting machine cycle. No guarantee is made that it will succeed. It is 
the responsibility of the page control service using page$pwait to ensure that 
at most a finite number of retries will be necessary (see "Page State 
Transitions" in this section. 

It is necessary that the entries used by the traffic controller to wait for 
page control events on behalf of the fault side and call side (other than 
process loading) unlock the page table lock ~ the traffic controller has 
locked its own lock. This is necessary to prevent a "lost notify" problem. 
Were the page table lock unlocked before the traffic contrOller lock were 
locked, the interrupt side could run in some other process, between this 
unlocking and this locking in real time, and the event for which the original 
process is going to wait will occur and be notified. Then the first process 
will go to the traffic controller to wait for an event that has already 
occurred. However, since it is necessary to have QQ1h the traffic controller 
and page table locks locked to perform a notify of a page control event, there 
is no time at which this notify might come through before the process is set 
waiting and the traffic control lock unlocked. 

The process loading func~ion, as stated before, causes some other process 
to wait than the one in which it is running. The traffic controller has a 
special mechanism for this, which will be explained under "Services" in Section 
IX. The upshot of it is as follows; traffic control will call page control -to 
load a process. Since the process loading function cannot wait, it will either 
return an event ID, or, by returning zero, indicate that the process is 
successfully loaded. If not successfully loaded, traffic control will set the 
process being loaded "waiting" on the event ID returned by page control. When 
this process is notified, it will not be £Yil, since it is not loaded, but 
rather, traffic control will call page control to load the process. Page 
control will either return an event ID, or the fact that the process has been 
successfully loaded, etc., until the process is loaded. 

The process loading function calls page$pread (described in part 3 of this 
section) to read in the process' two critical pages. This entry calls the bulk 
store control "run" entry in a loop to wait out any bulk store 1/0 that it 
starts. Otherwise, this entry returns a PTW event for disk 1/0 that it starts, 
or an RWS event if one is in progress on the page. The process-loading program, 
wired_plm, (which is in bound_tc_wired, unlike all else in page control) sets 
the CME or PDME notify requested bits for each event so received from 
page$pread, or any PTW among those for the process critical pages that were 
already (or §1ill) being read in at this call. Such a wait event is returned to 
the traffic controller with the assurance that a notify will be performed when 
that happens (this is actually using a form of the multiplex wait strategy; see 
that title below). 

Since page control unlocks its global lock before traffic control relocks 
its own lock, when the process-loading function returns to the traffic 
controller, there is a window for I a lost notify (see above). This is 
particularly likely on three-or-more processor configurations, where a second 
processor is likely to hold up the acquisition of the traffic controller lock 
after a third has just acquired the page table lock. There are also some 
lost-notify windows because the process~loading function is not in a position to 
apply the multiplex wait protocol prope~ly. 

i 
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It is certain, however, that if page control indicates that a process has 
successfully been loaded, then indeed it has. To rectify this, the traffic 
controller itself "validates" the nonzero event returned by wired_plm, checking 
the PTW out-of-service or PDME RWS bit indicated by the wait event, as required. 
If indeed, a notify was lost, the traffic controller puts that process in the 
state where yet another pass through wired_plm will be necessary to determine 
whether or not the process is loaded, and if not, continue the loading. 

Part 2 - Multiplex Wait Protocol 

As stated before, the call side of page control does not deal with 
individual pages at its external interface level. Calls are made to process 
entire segments, or deconfigure extents of main memory or bulk store, etc. All 
of the call-side page control entries (in PL/I page control) perform services 
for the rest of the system on selected groups of pages, records, or main memory 
page frames. Many of these functions, as noted in the above section, must 
initiate and/or await the completion of I/O on these various entities. The call 
side wait coordinator, page$pwait, is provided for this purpose. 

All of these functions try to achieve a maximal degree of I/O parallelism 
(simultaneous I/O operations in progress). This is accomplished by processing 
all pages, records, or frames in the set being iterated over without performing 
any waiting. During this iteration, alII/Os or RWSs which need be started are 
started. As each page or record is processed, a check is made to see if an I/O 
or RWS is in progress for that page, whether or not it was just started. If 
this pass completes with no I/Os or RWSs found, then all of the pages or records 
were processed, and there is no waiting to be done, so the particular function 
being performed has successfully been completed. If, on the other hand, some 
I/O was found to be in progress, whether or not this loop had started it, the 
call-side wait coordinator is called with the event ID of the last such 
operation notified, and upon return, the entire loop retried, until successfully 
repeated with no I/Os or RWSs found. This technique is summarized by the 
following "typical" program excerpt (see any program in PL/I page control for 
real examples): 

1 rt: event = 0; 
2 do i = 0 to 255; 
3 if ptw (i) meets-some-criterion then; 
4 else do; 
5 call page$typical (astep, i, tmp_event) 
6 if tmp_event -=0 then event = tmp_event; 
7 end; 
ti end; 
9 if event -=0 then do; 

10 call page$pwait (event); 
11 go to rt; 
12 end; 

The variable which is here called "event" is most often called "ind." It 
is often set to -1 to indicate that no code of the form of line 6 above has ever 
set it. The calIon line 5 above performs some manipulation on a page such as 
starting an I/O, or continuing an eviction, etc. Such entries, all in ALM page 
control, perform ~ transitions upon pages, moving them closer and closer to 
the particular criterion (such as the one on line 3) which the PL/I program is 
trying to force to be true. Such criteria are: "No page on this PD record" (for 
PD record deconfiguration) or "Page not in main memory or on paging device" (for 
deactivation-time service) or "A good copy of the page exists on paging device 
or disk" (directory-unlock-time flush service, or shutdown-time main memory 
flush service). Such entries into ALM page control usually return the event ID 
of any I/O they start and do not complete, (such as page$pread, which starts 
page reads). A better set yet, such as page.evict and the "typical" entry 
above, not only return an event ID for any I/O or RWS they start, but for any 
they find in progress for that page at the time that they are invoked. Most do 
not. Some (e.g., page$pwrite) never return an event ID. 
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We use the term 
class of events, any 
might be concerned 
semantics of what is 

"any 1/0 or RWS" very loosely. Rather than being a generic 
particular PL/I service (and the ALM entries it calls) 
about either one or both, depending completely upon the 

intended to be accomplished. 

The sort of ALM entries described above, which move pages closer to a given 
condition, all need some kind of prerequisite condition to ensure that no 
process or operation will be simultaneously trying to counteract the transitions 
that the ALM entry is performing. For example, the function that abs-wires 
portions of segments, pc_abs$wire_abs, calls page$wire_abs on each pair of 
segment page and main memory frame being abs-wired together, until page$wire_abs 
reports completion. Before ever calling page$wire_abs, however, pc_abs turns on 
the bit cme.abs_w, (for abs_wired) for each main memory frame in the region. 
The replacement algorithm will never evict a page from a frame with this bit on. 
No process can deactivate the segment, for only supervisor or semi-permanently 
activated segments are eligible for abs-wiring. Similarly, the 
deactivation-time service, pc$cleanup, has as part of its contract that its 
caller must have made the segment being processed inaccessible; thus the 
transitions performed by page$pwrite, called by pc$cleanup, will not be 
counteracted. 

The PL/I loops using the "multiplex wait protocol" choose one event at 
random, if any have to be waited for, usually the last one encountered, and to 
retry the entire iteration, for at least the page associated with this event has 
changed states noticeably, whether or not other pages have changed state (they 
usually will have). Similarly, the PL/I function could not possibly be complete 
until that single event has happened, so it is worth waiting for it. Thus, the 
choice of event for which to wait is completely arbitrary. If, in fact, an 
earlier event were chosen, but some later call to ALM page control caused the 
interrupt side to be invok(d and cause the occurrence of this event (~ the 
event), the fact that this event is now invalid is of no issue, as the call 'side 
wait coordinator would discover this and return immediately, causing the loop to 
be redone. (No waste occurs in having the loop redone, for indeed, some 1/0 
which was passed as "in progress" will now be finished, by hypothesis). 

As stated above, the process-loading function attempts to use the multiplex 
wait strategy. However, instead of calling the call-side wait coordinator, 
which it cannot, and branching to its head, it returns an event ID to the 
traffic controller, expecting to be called at its entry pOint when that event 
has happened. The fact that this arrangement is not an adequate substitute for 
the complete service provided by the wait coordinator is obvious from the fact 
that events so returned must be revalidated by the traffic controller. 

The various states of pages with respect to the 
state transitions, are illustrated in the section 
along with the names of the ALM entries or the process 
transitions to occur. 

DIM Interface and "Running" 

ALM entries that cause 
"Page State Transitions," 
actions that cause these 

Page control uses the services of two DIMs, or Device Interface Modules, to 
manage the 1/0 operations upon the bulk store and the disks. These are 
bulk_store_control, the bulk store DIM, and disk_control, the disk DIM. 

Page control requires that these DIMs 
interface. The semantics of this interface are 
mechanisms of page control. These DIMs are known 
to differentiate them from printer or card 
user~ring disk DIM, rdisk_. 

8~11' 

present a uniform functional 
one of the fundamental internal 
as the "Storage System DIMs," 
punch DIMs, etc., or from the 
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Page control requires the storage system DIMs to have three entries, ~d, 
write, and run. The read and write entries are invoked to request the 
initiation of read and write operations. The run entry is used to request the 
DIM to interrogate its hardware status, and call the page control interrupt side 
if any operations have been completed. 

The read and write entries are given three parameters; a device recor~ 
address, a main memory address, and a word of two flags. The disk DIM read and 
write entries are also given a PVT index to identify the drive to which the 
device record address is relevant. The device address and main memory address 
are those to engage in the data transfer. The word of flags contains two flags, 
called the interrupt and priority flags. The interrupt flag tells the DIM that 
it is to call the page control interrupt side when the operation is completed. 
The priority flag may optionally be used by the DIM to sort the requests 
received by page control into priorities. 

The Disk DIM ignores the interrupt flag, always calling the page control 
interrupt side. The bulk store DIM does not, however. This feature is used to 
write out the paging device map to the bulk store every second; as this is not 
really paging I/O (no PTWs or CMEs are involved), page control does llQ1 want the 
interrupt side to be called upon its completion. 

The DIM that receives a read or write request may perform that request in 
any order it chooses with respect to other requests. A storage system DIM is 
allowed to call the page control interrupt side while processing the call to 
start a read or write. Specifically, it is allowed to post the completion of 
the very request that it was called to perform, should this actually happen. 
This implies that page control, on return from a call to a storage system DIM to 
start an operation, must be prepared to find that an arbitrary number of actions 
have been taken by the interrupt side during that call, including the completion 
of ~ operation. 

The bulk store DIM operates entirely under the page table lock. Except 
when called by the Interrupt Interceptor (ii) on account of a bulk store 
interrupt, it is always called with the page table locked. Bulk store 
interrupts, however, happen only in the case of a bulk store error, in the 
current DIM, and the DIM itself calls to lock the page tables in each case. 

The disk DIM, however, is called-with the page table lock 
times, such as when called at the entries defined above, but 
when called by the 10M manager to process a disk interrrupt. 
the call to the interrupt side of page control (via page$done) 
the global lock itself. 

locked at some 
not at others, as 
At these times, 
locks and unlocks 

Any storage system DIM may call the interrupt side of page control when the 
DIM has been invoked by an interrupt. When such an interrupt-time call is made, 
the DIM must itself (or via page$done) lock the page table lock, and unlock it. 

The interrupt side ot page control is called by the storage system DIMs 
with two parameters, a main memory address and a status code. The main memory 
address is used by the interrupt side to locate a core map entry, from which all 
other "information (such as cme.rws, for example) may be derived. The status 
code indicates the degree of success of the I/O operation. The low bits of the 
status code indicate to page control the DIMs determination of whether the 
problem causing the error is an error in the device~ the data path to the 
device, the record of the device, or the page frame of main memory involved in 
the attempted transfer. Page control uses this for error recovery (see "Error 
Strategy" below). 
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A DIM may retry an operation it has been asked to perform any number of 
times; page control is only interested in the final outcome. What is more, a 
storage system DIM can write some page to any number of different records or 
devices, as it sees fit, and when asked to read it back, read it from any (or 
all) of them. It is guaranteed by page control that all such copies will be 
"good." If page control detects that the page was modified when an attempt at 
eviction is next made, ~ of them are good; if not, they all are. What is 
more, a storage system DIM can use the main memory frame into which it is being 
asked to read for any intermediate buffering, diagnostic results, etc., as long 
as it contains what was asked for when the operation is posted. Page control 
makes nd assumptions about the contents of page frames that are out of service 
on reads. 

If a storage system DIM given a request to perform, finds that it has no 
queue space, it is allowed to loop internally awaiting the real-time completion 
of I/O requests on its devices, possibly calling the interrupt side of page 
control, if that is necessary to free queue space. 

A DIM is allowed to perform services for other parts of the system, as the 
disk DIM does for the VTOC manager, possibly calling the page control interrupt 
side when so doing. In such cases, this call must be treated like one on behalf 
of an actual interrupt. 

A DIM must provide a "run" entry, called only by page control 
page-table lock locked, which checks the devices being managed for 
that have completed, and calls the interrupt side of page control for 
have. Such an entry must have two properties: 

with the 
operations 

any that 

1. It must physically interrogate the hardware status (perhaps stored) of 
its device; it cannot depend upon actual interrupts having happened to 
take cognizance of I/O completions. 

2. If called in a loop, I/O operations will be posted one by one via 
calling the interrupt side of page control, until the DIMs queues hold 
no more uncompleted requests. 

For one example of the use of a "run" entry, see the previous section, 
where the page fault handler calls the run entry of the bulk store DIM until it 
finds that the I/O on the faulting page has completed. 

The RWS initiator (rws_ in pd_util) "runs" all of the 
"run" entries, one by one, for all two of them) in a loop when 
RWSs are awaiting completion. Thus, it is guaranteed 
arbitrarily long will cause an arbitrary number to complete. 

DIMs (calls their 
more than thirty 
that doing this 

The paging device replacement algorithm runs the bulk store DIM to make 
sure that all read cycles are finished before it is exited, and the page table 
lock potentially unlocked. 

The main memory replacement algorithm runs the DIMs in a loop if an excess 
(currently 30) of uncompleted page-write I/O requests are outstanding. (The 
tool file_system_meters reports occurrences of this event.) 

The traffic controller "polls page control" every 15 seconds, which 
consists of calling page$run, which locks the page table lock, runs all the 
DIMS, and un10cks the lock. This, as all run calls and all other calls, may be 
used by the DIMS to perform timing-out functions and housekeeping. 
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Other than calling the bulk store run entry as a substitute for traffic 
control waits, no page control module other than the ALM program device_control 
ever calls the storage system DIMs directly. Rather, the entries 
device_control$dev_read, device_control$run and device_control$dev_write are 
called. These entries, called only from the ALM page control environment (PL/I 
page control never deals at this Iowa level), use variables in the ALM page 
control environment to determine which DIM to call. This is the function, and 
the origin of the name, of device control. The call-side wait coordinator also 
resides here, as well as the page control code called as "page$run" which runs 
the DIMs on behalf of the traffic controller polling code. 

ALM Page Control Enyironment 

All of the ALM programs in page control, including the bulk store DIM, 
share a common environment of register usage, and all share the same stack frame 
while in the same invocation of page control. That stack frame is laid out in 
pxss_page_stack.incl. aIm. As can be inferred from the name, the traffic 
controller shares the same stack layout, which is meant to optimize the case 
where page control calls or transfers to the traffic controller; in this case, 
the actual stack frame is shared. 

Almost all subroutines in the ALM page control environment invoke each 
other via the TSX7 instruction; there are a set of "small" subroutines that are 
invoked with a TSX6 instruction. A subroutine is "small," if it calls no other 
subroutines. 

Any subroutine that calls any subroutine except a "small" Tsx6 subroutine 
must do a "savex"; this operation, performed by the "small" TSX6 subroutirte of 
that name saves index register seven in a stack of saved values in the stack 
frame. This stack is initialized by the routine init_savex. A subroutine that 
has not done a "savex" returns via TRA 0,7. One that has returns by branching 
to the code "unsavex," which pops the stack and returns. 

All code in ALM page control, other than the bulk store DIM, runs with 
pointer register 3 set to point to the base of the SST. Any code that exits the 
ALM page control environment must restore it. 

All external entries to the ALM environment, such as the page fault 
handler, and the entries called by PL/I code (through the transfer vector 
"page") are responsible for setting up this environment, i.e., initializing the 
index register save stack and pointer register 3. 

Other than these general conventions, there are conventions of dealing with 
specific data objects. When any ASTE, PDME, PTW, or CME is being dealt with in 
any way, all routines expect the following index and pointer register 
assignments to hold: 

Object Register Symbolic Name 

PTW Index 2 .ptw 
and 

Pointer Reg 2 ptw 
CME Index 4 .cme 
ASTE Index 3 .aste 
PDME !ndex 1 .pdme 
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The values in the index registers, are all offsets relative to the base of 
the SST (pointed to by pOinter register 3, symbolically "sst"). These symbolic 
names are used by most code in the ALM environment to reference these registers. 
POinter register 3 also has the names "cme" and Hast" and "pdm" to allow 
references of the following form to be made: 

Ida astlaste.uid,.aste 

These symbolic register names may be 
page_info.incl.alm and page_regs.incl.alm. 

found in the include files 

The use of the stack variables in the ALM page control stack frame is not 
systematized in any way. No person attempting to modify or maintain page 
control should change any routine to use any variable that it had not previously 
used unless they are familiar with every single use of that variable in ALM page 
control. No attempt is made to document the usage conventions of these 
variables. This can only be learned via extensive experience with ALM page 
control. The only variables of any general interest are those named "devadd," 
"coreadd," "did," "errcode," and "inter." The variables "devadd," "coreadd," 
"did," and "inter," are the record address, PVT index, and Flag wbrd, 
respectively, passed to the storage system DIMs. Bulk store control, sharing 
the same stack frame, uses them in place. The variables "coreadd" and "errcode" 
are used by the interrupt side to receive the descriptions of completed 
operations. Again, the bulk store DIM uses them in place. It is also worth 
mentioning the array "arg," which is used by QQ1h page control and traffic 
control to prepare argument lists and descriptors for any external (PL/I) call 
that must be made from the ALM page control environment. 

Error Strategy 

By "error," we refer to any of the following three types of abnormal 
circumstances: 

1. Those resulting from user behavior (e.g., record quota overflow). 
2. Those resulting from I/O device error. 
3. Those resulting from internal software, or processor error. 

The first class of error situation can hardly be considered an error 
situation at all. The only "errors" in this class are physical volume overflow 
and record quota overflow. Both of these errors are detected on the fault side; 
supervisor segments are quota-inhibited (aste.nqsw is on) and prewithdrawn, 
making these classes of problems impossible. Should they occur on a supervisor 
or semi-permanently active segment, the system software is malfunctioning, and a 
class 3 error results. Record quota is checked by the fault handler before any 
quota cells are incremented; availability of physical records is similarly 
checked by the record allocation function (free_store) before any data bases are 
modified. Thus, recovery from either of these circumstances involves no 
"backup." Record quota overflow is signalled by the fault side on the stack on 
which the faulting process was running. This is done by moving the page fault 
machine conditions to pds$signal_data, abandoning the masked/wired environment, 
and transferring control to "signaller," the procedure responsible for effecting 
such signalling. 
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This causes the stack history on that stack to be such that a return to the 
signaller's frame causes the page fault to be retried. (This is the standard 
fault-signalling, the only difference here from the common case being that a 
masked, wired environment, with a stack frame on the PRDS (wired stack segment) 
was abandoned.) Physical volume overflow is handled by the fault side by 
marking the ASTE of the segment (aste.pack_ovfl) for which a record cannot be 
allocated, setting a segment fault in the SDW for the segment implicated by the 
page fault machine conditions, and restarting the fault. This causes a segm~nt 
fault to be taken. The segment fault handler locates the ASTE, sees the bit, 
and invokes the segment mover, presumedly resolving the physical volume overflow 
situation (see "Segment Moving" in Sections II and IV). 

The class of errors produced by detected 1/0 device failure is that one in 
which page control policy has the greatest effect upon system behavior. Errors 
are reported by the storage system DIMs (see "DIM Interface," earlier) to the 
interrupt side of page control. This severely limits the actions that can be 
taken at that time. Specifically, no operation that involves waiting can be 
performed. Furthermore, since the interrupt side can be activated by the call 
side whenever a DIM is invoked, no action that involves allocating main memory 
or paging device frames is permissible, since that would involve all of this 
software recursively. This class of errors may be further subdivided into 
errors in reading and errors in writing. 

Errors in reading are simpler to handle, because there is always some 
process waiting for the completion of that read. Taking whatever action is 
necessary and notifying an appropriate event will cause that process to retry 
that read, either via the fault side retry mechanism or the call side multiplex 
wait protocol. The response to disk read errors is to turn on the bit ptw.er in 
the relevant PTW, and return the PTW (otherwise) to its original state before 
the read was started. Subsequent notification of the associated event causes 
the fault side to retry, notice the bit, signal an error (condition 
page_fault_error) (via the same fault-side signalling mechanism as is used for 
record quota overflow), turning off this bit while so doing. The next retry of 
that page fault causes another attempt to be made at the disk read. 

Errors in reading the paging device (on other than RWS read cycles) are 
much the same. However, the paging device record involved is dynamically 
deleted by the interrupt side, because of the fact that an error was encountered 
in reading it. A syserr message accompanies this action. The disk address 
(possibly nulled) which was in the PDMAP entry (pdme.devadd) replaces the PD 
record addre~s (nptw.devadd) in the PTW, causing the next retry of this page 
fault after the one that signals error to obtain the copy of the page on disk 
(or zeros if the address in the PDME was nulled). 

Errors in reading the paging device for the read cycle of an RWS are 
somewhat like paging device errors above, although a different error message is 
printed by syserr. The paging device record is dynamically deleted, and the 
(possibly nulled) disk address in the PDME replaces that in the PTW. Since, by 
implication, the RWS has been declared over on account of that error, and the 
data on disk is thus considered implicitly "valid," the main memory frame of the 
RWS is freed, and there is no write cycle. No resurrection of disk addresses is 
performed in this case. Errors during RWS on behalf of the post-crash PD flush 
are discussed in the consideration of that mechanism in Section IX. 

Errors on writing are difficult to handle. While the optimal policy would 
be to allocate a new disk or PD record, this requires manipulation of the paged 
segment FSDCT, which is impossible at interrupt time. For the case of write 
errors to the paging device, the solution is simple; the relevant paging device 
record is deleted, and the (possibly nulled) disk address from the PDME replaces 
the PD address in the associated core map entry (CME). This has the effect of 
forcing the replacement algorithm, or the call side, on behalf of whatever 
agency is trying to see the completion of this writing, to retry writing, 
accomplishing a write to disk instead. In effect, the page has been migrated 
off the paging device. 

8-16 AN61 



E~rors on writing to disk are problematic in the ways stated. The action 
at this time is to replace the disk address associated with the page with a DYll 
address (page_bad_null, see null_addresses.incl.alm), freeing the main memory 
frame, causing the contents of the page to become zeros. Errors on writing disk 
on behalf of the write cycle of an RWS are similar; the null address 
page_bad_pd_null replaces the PD address in the PTW, and hence, ultimately in 
the file map. No resurrection, clearly, is performed. Again, special action is 
taken for the post-crash PD flush. 

The third class of errors dealt with in page control is that class of 
errors indicating software malfunction. In every case, it is dangerous or 
impossible to continue system operation, since further damage and wrongly 
disclosed data would probably result. Included among such errors are errors 
found in locking, errors in expected states of data bases, errors in threading, 
and so-called "re-used addresses" (records marked as free that are known to be 
in use, or being freed). Such errors can result only from Qlldetected processor, 
or main memory malfunction, or undiscovered bugs. The effect is to crash the 
system in every case. In PL/I page control, this is accomplished by calling' 
syserr explicitly. In the ALM environment, the routine page_error is 
responsible for constructing and executing all syserr calls. There are some 
entries to this routine (including those used by the bulk store DIM) that report 
specific errors (such as the non-fatal read and write errors, and paging device 
record deletions discussed earlier). These routines are knowledgeable about 
stack variables in the ALM environment, and variable information is printed out 
in their messages. There are also some entries that crash the system with a 
specific message j ~uch as that which is invoked upon discovery of a reused 
address. However, the most commonly used entry is that invoked from the routine 
page_fault_error in the program page_fault. This routine is invoked from the 
ALM page control environment via a TSX5 to page_fault_error. It crashes the 
system with the error "fat~l page fault error at location xxxx" where xxxx is 
the address (in bound_page_cc~_crol) of the TSX5 instruction executed. In every 
case, this type of crash is the result of software malfunction, possibly induced 
by undetected hardware failure. (There is also one case of this type of crash 

·induced by detected hardware (processor) failure; that in which no appending 
unit cycle bits are on in the page fault machine conditions, indicating 
appending unit failure.) 

There is also a "nonfatal page fault error" facility, which is very 
sparsely used. 

Calls to crash the system via the program page_error call the PL/I routine 
syserr via a standard call, setting up their argument lists in the array "arg" 
in the page control stack frame. Part of that PL/I call is the storing of all 
of the index registers and the AQ at location 40 (octal) in the stack frame of 
the ALM environment; useful information about the data objects invoked in such a 
crash can always be gleaned from this data. 

The crash for a re-used address is peculiar insofar as the code that 
invokes it turns on the bit pvte.vol_trouble before crashing. This action 
causes the physical volume whose volume map was involved to be volume-salvaged 
the next time it is accepted for storage system use. 

Other than these errors, there are no possible errors in page control. No 
call ·side entries, or entries to ALM page control return a status code of any 
kind. No nonfatal failure is possible in the current design. However, in some 
cases, such as RWS failure due to I/O error on behalf of the post-crash PD 
flush, status information is conveyed back via the live/nulled/null status of 
the address left in the PDME by the RWS interrupt side. (See the description of 
this service in Section IX.) 
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Stack Management and Interface with the Traffic Controller 

Page control uses 
controller fairly heavily. 
been discussed. 

the wait/notify facility of the Multics traffic 
The conventions for such waiting and notifying have 

Page control does not notify any event unless some process is waiting for 
it, in order to avoid the overhead of traffic control. The bits 
pdme. notify_requested , cme.notify_requested, and pdme.abort fulfill the function 
of specifying whether or not such notification is to be performed. All 
notification is done by the interrupt side, in ALM page control (save for one 
highly esoteric case during boundsfault processing; see Section IX). All 
waiting is also performed by ALM page control; the primitive page$pwait serves 
to perform such waiting on behalf of PL/I page control. The mechanism used by 
process loading to wait has already been discussed. 

The interface between page control and traffic control is streamlined to 
facilitate these operations. Since the traffic controller and ALM page control 
share the same stack frame layout, with variables in it allocated to each, the 
interrupt side transfers directly to a special side-door entry to the traffic 
controller (pxss$page_notify or pxss$rws_notify) to perform all such 
notifications. The traffic controller returns to the side-door entries to the 
procedure page_fault (page_fault$notify_return and page_fault$rws_notify_return) 
after notifying. The event ID to be notified is passed by page control in the 
cell pds$arg_l. The quantity seen in the listings as being passed in pds$arg_2 
is an obsolete remnant of an old device-metering mechanism. The traffic 
controller operates completely in page control's stack frame in these cases. 

The wait interface is more involved. The interface used by' the 
process-loading function is not discussed here; this has already been treated. 
The traffic control interface for waiting is always invoked by ALM page control 
via a direct TRA, from either code in the end of the page fault handler, for 
(invoking pxss$page wait) causing a process to wait on behalf of the fault side, 
or from page$pwait, the call-side wait coordinator (invoking pxss$waitp). There 
is also a third entry, pxss$ptl_wait, used explicitly by the fault-side 
mechanism that allows multiprogramming to wait for the page table lock. Other 
than this third mechanism, these entries are entered with the page table locked 
in every case, being unlocked by the traffic controller after its own lock has 
been unlocked (see "Wait Protocols" earlier, for the reason this is done). 

The interface invoked by the fault side, pxss$page_wait, shares a stack 
frame from the PRDS with the fault side, which invoked it. The fault-side stack 
frame becomes a traffic controller stack frame, on the PRDS, and is managed by 
the traffic controller from that point on as a traffic controller PRDS stack 
frame, as it is passed around from process to process. Entry to the traffic 
controller via pxss$page_wait implies that the entire state of the invoking 
process is encoded in the page fault machine conditions in pds$page_fault_data 
in that process; this is to say that there is nQ page control stack history of 
any kind in that process. Thus, when a process waiting via this mechanism is 
notified, and subsequently allowed to run, the traffic controller transfers to 
page_fault$wait_return, which does nothing more than restart those machine 
conditions (including process/processor mask). Specifically, the page table 
lock is not locked, nor are any page control data bases at all inspected or 
modified in any way. This causes the faulting machine cycle to be restarted, 
either completing successfully (if the page fault has been resolved) or taking 
another page fault. 
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When the traffic controller is invoked to wait on behalf of the call-side 
wait coordinator, a transfer to the entry pxss$waitp is effected. Again, 
pds$arg_1 contains the event on which it is desired to wait, and the page table 
lock is locked, to be unlocked by the traffic controller. When a process waits 
via this mechanism, PL/I page control has a stack history on the PDS of the 
waiting process; the stack frame that was the current stack fra~e of that 
process contains the return pointer to the place in the PL/I program that called 
page$pwait; that point must be returned to when the waiting has been finished. 
There are no machine conditions; action upon return from the traffic controller 
consists of transferring to that place in the PL/I program. Thus, the traffic 
controller, upon completion of such waiting, transfers to the side-door into the 
wait coordinator, device_control$pwait_return. Since the page table lock has 
been unlocked, this entry relocks it via a call to the ALM page control locking 
interface (page_fault$lock_ptl_no_lp), and returns to the PL/I program at the 
instruction after the call to the wait coordinator. In order for this policy to 
succeed, the stack frame pointer register (Pointer Register 6) must be restarted 
at the time device_control$pwait gains control, to its value at the time that 
pxss$waitp gained control. Therefore, the traffic controller saves this value. 
in the cell pds$last_sp, which is often useful in debugging problems in this 
area. 

The traffic controller differentiates between the two cases above (fault 
side wait, no stack history, and call side wait, PL/I PDS stack history) via the 
variable pds$pc_call, zero for the first case and a positive nonzero number for 
the second. The value of this variable tells it whether the state of a process 
waiting for a page control event is embedded in the machine conditions in 
pds$page_fault_data, or in its PDS stack history, as defined by the value of 
pds$last_sp. This implicitly tells it whether it should transfer to 
page_fault$wait_return or device_control$pwait_return. 

The mechanism used to wait for the page table lock on the fault side 'uses 
exactly the same mechanism as used by the fault side to wait for other events. 
A special entry to the traffic controller is used in this case (pxss$ptl_wait), 
which performs certain manipulations as described under "Page Table Lock 
Waiting" later in this section. However, this special code soon transfers to 
the code used by the rault-side to wait for all other events. Thus, it is to be 
noted that the action performed upon notification of the page table lock event 
is simply to retry the page fault, just like any other fault-side wait. 

The variables, pds$last_sp and pds$pc_call, are used by the traffic 
controller for other mechanisms chan page control waiting. SpeCifically, 
pds$last_sp is used for all calls to the traffic controller for waiting (other 
than those just described). The cell pds$pc_call is also used by the traffic 
controller's preinitialization and .shutdown wait mechanism (pi_wait) to 
differentiate other wait calls than page control's from the two kinds of page 
control wait already discussed; in this case, pds$pc_call is set to a negative 
value. 

See Figure 8-1 for a synopsis of this mechanism. 

In all cases of invocation by ALM page control, the traffic controller is 
aware that the process/processor are masked to "sys_Ievel," and all relevant 
parameters are in wired storage. Thus, the traffic controller never pushes its 
"extrA" PDS frame in these cases, because it is used only to store old masks. 

8~19 AN61 



wait for 
PTL 

pds or 
outer 
ring 
stack 

PTL 

TC takes over 
page _ fault's 
prds frame 
here 

THE TRAFFIC 
CONTROLLER 

(pxss) 

~ 
pds or 
outer 
ring 
stack 

page_fault 
(fau It side) 
wait for pag~ 

PTL is 
locked 

page fault$wait return 
RESTART MACHINE 
CONDITIONS, UNMASK 

I (empty) I 
prds 

Mood. I~' ctl I (call side wait coord) , 
(device _ control$pwait) 

/'~ 
wait for page 

pxss$waitp 

prds 

I (empty) I 
prds 

device_control$pwait return 

LOCK PTL and RETURN 
TO THIS FRAME 

'_ ~age ctl_ J 
I (empty) I 

prds 
pds ' 

Figure 8-1. Traffic Controller Interface Stack Management 
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The external entry to page control to lock the page table lock does not 
need a stack frame; it does not push one (page$lock_ptl, using lock_ptl_no_lp in 
page_fault). The external entry to unlock the page table lock, however, does, 
because the traffic controller may be invoked to notify the page table lock 
event. It pushes its frame, and does a full return (page$unlock_ptl, invoking 
unlock_ptl, in page_fault). A special side-door is used by 
privileged_mode_ut$unlock_ptl, however, to avoid pushing a frame. This 
side-entry page_fault$pmut_lock_ptl, pushes a frame, and explicitly pops it in 
line before transferring privileged_mode_ut$unwire_unmask to finish the job. 

Note that all side doors to page control go directly to individual ALM 
programs, and not through the transfer-vector "page." 

Page States 

One instructive perception of page control is that of a set of finite-state 
automata; one for each page, one for each main memory frame, one for each paging 
device record, and one for each secondary storage record. The basic operations 
of page control, specifically the actions performed by ALM page control, consist 
of performing state transitions upon these objects. PL/I page control, via 
iteration and the multiplex wait protocol, effects many state transitions at 
once. 

A series of diagrams (Figures 8-1 to 8-7) presenting the various states of 
these automata is presented here. The entry points, code sequences, or actions 
that affect each transition are identified. The flags and fields that define 
each state are identified. 

In almost all cases, state transition is performed under the global page 
table lock. Almost all states of these pages and records are valid when the 
page table lock is not locked. A notable exception is the read cycle of a 
paging device read-write sequence (RWS) that is only seen under the protection 
of the page table lock. 

Refer to the discussions of the page table lock strategy and the multiplex 
wait protocol for more illumination on the motivations for these sequences. 

Special mention must be made of the illustrations, Figures 8-2 and 8-3 
which show the state transitions of the page of a segment. To avoid 
over-complication of the diagram, transitions involving paging device 
deconfiguration (manual and automatic) have been omitted. Also omitted are the 
data base bit states that denote these page-states as well as program names; 
again, to avoid over-complication of the diagram. The state of all bits may be 
inferred from the three previous diagrams. All of the transitions marked 
"modification" in these diagrams represent not the action of any sequence of 
code, but rather, that of the user of a given page, in modifying the contents of 
that page. The transitions and states relating to the use of a page, only of 
interest to the main memory replacement algorithm, have not been shown in 
Figures 8-2 and 8-3. 

Figure 8-2 is divided into two regions, states of a page that have,no 
associated paging device record, and those which do. The later region is 
further divided into two regions, those in which the paging de.ice page copy is 
identical to the disk copy ("PD Notmod") and those in which it differs ("PD 
Mod"). 
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Two recurring patterns can be seen in each of these regions, the 
"read-evict" cycle, in which a page is paged in from main memory, used without 
modification, and evicted; and the "write-mod" cycle, in which a page in main 
memory is modified by use, written out to "purify" it, and brought t~us back to 
the in-main-memory state of the "read-evict" cycle. When such cycles are 
isolated, Figure 8-3 is the result, showing the states of a page with respect to 
main memory and the paging device in terms of these cycles. An entire set of 
such cycles is shown in Figure 8-4, in91uding the "used" states of interest ~o 
the main memory page replacement algorithm. 

It should be noted that there are no states in any of these diagrams 
corresponding to the sematics of the bits cme.abs_wired, ptw.wired, 
pdme.removing, cme.removing, and pdme.flushing. These bits do not represent 
states ~ ~, but rather instructions to all of the routines that perform the 
various state transitions as to a desired "goal state." For instance, the flag 
ptw.wired inhibits eviction, i.e., transition out of those page states where the 
page is in main memory. The flag cme.abs_wired not only prevents eviction via 
the replacement algorithm, but any subsequent assignment of the main memory 
frame to any use (transitions out of the "free" state in Figure 8-5) by any code 
except that of the abs-wiring function. Thus, the PTW "wired" bit is turned on 
at any time (see earlier discussions of the page table lock), with the knowledge 
that any subsequent read-in of the page will cause it move to the 
"in-main-memory" state and stay there. For the case of wiring a page, the 
transition to the in-main-memory state is easy to force simply by touching 
(i.e., faulting upon) the page. In other cases, such as demand eviction on 
behalf of memory deconfiguration, this is substantially more complicated. Thus, 
primitives such as evict_page (in ALM page control) exist which, given the 
appropriate data objects (in this case, a core map entry representing a main 
memory frame), with such bits already turned QU, perform whatever transitions 
are necessary to achieve the desired state (in this case "free"). If the 
transition is to or from a state where 1/0 is performed, a wait event ID is 
returned, otherwise the complete transition is made, and no event TD is 
returned. The greater part of call-side services such as the abs-wiring and 
main memory deconfiguration services is to turn on such bits, and call such 
primitives on each subject page and lor main memory frame repeatedly, 
multiplexing indicated waits via the multiplex wait protocol. 
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Tracing Mechanisms 

There are two tracing mechanisms in page control, both of which have not 
been maintained in recent years. 

The "page control trace" mechanism is part of the hardcore system trace 
facility. It is enab~ed by switch 34 on the Processor Maintenance Panel switch 
register. This switch register is read and stored in sst.trace_sw on every page 
fault. When enabled, this trace facility causes tracing messages to be printed 
or written to tape, as selected by the system trace facility Various callside 
routines (mainly to the program "pc") inspect this switch, and call "trace," the 
system trace routine, with arguments describing the action being performed, and 
the location and contents of the AST entry upon which they are being called to 
operate. Many actions in ALM page control are traced as well; they can be 
located via the calls to "pc_trace" in ALM page control. 

The program pc_trace is part of ALM page control. It is invoked at its 
various entries, each of which traces one type of event, via a TSX7 instruction 
f~om within bound_page_control. This program issues no messages; rather, it 
sets up argument lists for the program pc_trace_pll which does. These argument 
lists are functions of the individual entries. The actual arguments are 
particul~r stack variables and index register values from the invoking ALM page 
control environment. The program pc_trace_pll contains nothing but the PL/I 
calls to the system trace facility, referencing the arguments passed by 
pc_trace. 

The second trace facility in page control is that referred to internally as 
"disk_meters." This facilit~ is the remains of an experiment described in the 
MVT Project MAC Technical Rep0rt cited in Section V, which accumulated traces of 
paging device allocations and evictions in order to achieve performance 
predictions for extended paging devices and main memories. This facility is 
enabled and disabled via the program "get_disk_meters," which wires and unwires 
the tracking buffer, "disk:....traffic_data." The t-race entries are accumulated by 
the program "meter_disk," invoked from ALM page control via a TSXO instruction. 
All entries to this procedure start with an XEC instruction; when this facility 
is not enabled, the target of this instruction is a TRA 0,0, which returns at 
minimal cost. This facility has not been functional since release 4.0; 
furthermore, there are no installed tools to retrieve or interpret its output. 

INDIVIDUAL MECHANISMS 

Waiting for the Page Table LOQk 

The fault side of page control has the ability to utilize the 
traffic-controller wait/notify mechanism to wait for the page table lock to be 
unlocked. This ability depends upon the fact that the fault side has not 
modified any data bases or changed the state of its process at the time that it 
encounters the page table lQdk l6cked. Thus, if that process is made to wait 
for the unlocking of the lock, via the traffic controller, the return from that 
wait ~ay simply restart the machine conditions of the page fault, probably 
taking the page fault over again and retrying the operation. Thus, it may be 
seen in Figure 8-1 "Traffic Controller Interface Stack Management" that the 
entry to the traffic controller to await a page from the fault side 
(pxss$page_wait) ultimately merges with that which awaits the page table lock's 
unlocking (pxss$ptl_wait), both returning to page_fault$wait_return to restart 
the fault. . 
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Since processes may be waiting for the unlocking of the page table lock, it 
is potentially necessary to notify the "PTL event" (the page table lock event 
ID, "160164153152"b3) every time the page table lock is unlocked. Since there 
is a substantial overhead involved in calling the traffic controller notify 
primitive to do this (it may involve looping on the traffic controller lock), 
there is a means to avoid this notify call when in fact no process is waiting 
for the unlocking of the page table lock. This means is implemented by the cell 
sst.ptl_wait_ct. This cell is zeroed only by the notify code in the traffic 
controller when it notifies the PTL event, protected by the traffic controller 
lock. All code that unlocks the page table lock inspects this cell after 
unlocking it; if nonzero, it notifies the PTL event. 

Any process that finds the page table lock locked on the fault side 
transfers to pxss$ptl_wait. This entry, once it locks the traffic controller 
lock, increments the cell sst.ptl_wait_ct. From this point on, any process that 
unlocks the page table lock ~ call the traffic controller to notify the PTL 
eVent. The page table lock is then inspected, under the protection of the 
traffic controller lock, to see if it has been unlocked since the fault side 
found it locked. If so, the process is made to wait for the PTL event, since it 
is guaranteed that sst.ptl_wait_ct is nonzero (as it is only zeroed under 
protection of the traffic controller lock, now held by this process), and thus, 
that the PTL event will be notified, even if the page table lock has been 
unlocked since the last check, for the process that unlocked it checks 
afterwards the contents of sst.ptl_wait_ct. On the other hand, if the page 
table lock is found to be unlocked at ',this second check, the cell 
sst.ptl_wait_ct is decremented by one, as this process will not wait, but retry. 
Thus, in this case, the process returns out of the traffic controller as if the 
PTL event had been notified, causing the page,fault to be retried. 

There are two code sequences in the system that unlock the page table lock. 
One is the subroutine unlock_ptl in page fault, and the other is the code in'the 
traffic controller page control wait entries that unlocks the page table lock 
once the traffic controller lock is locked. The unlock_ptl subroutine checks 
sst.ptl_wait_ct and calls the traffic controller page-control event notification 
routine, via the stack-sharing mechanism described earlier in this section. 
Normally, this routine is only called from the interrupt side "done" code of 
page control; this is the point to which the traffic controller returns. The 
value of the event ID (the PTL event), which in this case can only be notified 
from the unlock_ptl code, causes the interrupt side routine to return to the 
unlock_ptl code. The return address, being the value of index register 7, is 
saved in pds$arg_3 during this call. 

The code sequence in the traffic controller that unlocks the page table 
lock calls an internal traffic controller notification primitive ("n3") to 
notify the PTL event if sst.ptl_wait_ct was not zero after the page-table lock 
was unlocked. 

FSDCT Pa~ing 

The segment FSDCT in ring zero contains all of the free-storage bit maps 
for all mounted physical volumes. This can grow to be quite large, and thus, 
this segment is a pageable segment, subject to demand paging behavior for its 
entire extent. The information in the header of this segment is used by volume 
management, where the pageability of this segment presents no problems. 
Similarly, all deposition of addresses (freeing of disk ,records by turning on 
bits in this segment) are done by segment control (the update_vtoce and 
truncate_vtoce functions), and some of the peripheral services of page control 
(e.g., pc$truncate_deposit_all). Again, pageability is no problem. The 
withdrawing of addresses, however, is performed by the page-reading function in 
ALM page control, invoked from the fault side and various functions on the call 
side (such as abs-wiring for I/O buffer usage). 
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The ALM page control kernel may not itself take page faults. However, a 
mechanism exists to allow the page-reading function to achieve paging-in of the 
FSDCT without taking a page fault. This mechanism relies on the multiplex wait 
protocol and the fault-side retry mechanism. More precisely, either the fault 
side or the call side, when made to wait for an event via the traffic 
controller, will retry the operation that caused them to wait for that event. 
In the case of the fault side, this means taking the original page fault over 
again. In the case of the call side, this means re-evaluating PTW states, and 
calling ALM entries to perform state transitions based upon these decis~ons. 
The essence of the mechanism is to initiate the read-in of the needed FSDCT page 
(when allocation is required) instead of the requested page, and causing the 
faulting process or the call side to wait for the event associated with ~ 
paging-in instead. When this read-in is finished (the event is notified), the 
page-read function will probably find the needed FSDCT page in main memory, and 
thus be able to proceed as though it were there to start with. 

It is not ensured in any way that the FSDCT page paged in in such a manner 
will still be in main memory when the page-read function inspects it again. In 
this case, another read will be started for it, and the operation repeated. 
This is as deterministic as an ordinary page fault; it is not necessary that 
this operation complete in any given number of retries, but simply optimal to 
the behavior of the affected process. Similarly, the disk-record allocation 
function (free_store$withdraw) may progress through several pages of the FSDCT 
to find the necessary allocation. This will cause these pages to be paged in 
successively, with the faulting process or the call side being made to wait for 
each one in succession. Between the time that these processes are made to wait 
and the time that they retry the search through the actual FSDCT for a free 
record, other processes can deposit pages (paging in the FSDCT via normal 
paging) and withdraw record addresses (via the same mechanism). There is no 
interlock against this, or any need for one. The state of a given bi-map is 
recorded in the PVTE for that volume, and is not dependent upon any allocation 
that might be in progress. 

The necessity of the read-page function to have the necessary pages of the 
FSDCT in main memory to complete its task is very much akin to the necessity of 
having a set of pages in main memory to initiate execution of multi-operand EIS 
instructions; nothing ensures that all the required pages will ever come into 
main memory, although every retry attempt tries to bring them there. Once they 
are all there, the operation proceeds. The process is effectively roadblocked 
until all these pages can actually be found in main memory at once; how long 
this is depends solely on system paging load. 

The interface to the disk-record allocation function involves two error 
exits; one for the out-of-physical volume condition (no more records to 
allocate) and another for a needed page of FSDCT not being in main memory. In 
the latter case, the AST entry pointer and PTW pointer for the needed page are 
returned in the AQ register to the page-read function, which now redefines its 
task to be the reading-in of ~ page, including the allocation of a main 
memory frame and all other actions normally associated with the page-read 
function (see "Page Reading" later in this section). The last step of this 
function is to return a wait event to the caller. In this case, it will be that 
wait event associated with the FSDCT page. 
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Per-Process Trace List 

(page trace) 

Page control- 'mai-ntai.ns-Trftne'P'DS~ of e-ach'-process a circular trace buffer 
of page readings, being mostly page-faults. The primary use of this trace is to 
drive the post-purge function at eligibility loss time (see "Post Purge" under 
"Services"). A secondary use is for the user commands "page_trace" and 
"cumulative_page_trace, " which display and interpret this information. To the 
latter end, various other mechanisms in the system make entries in this trace 
list corresponding to such events as linkage faults, segment faults, and 
schedulings. The trace region is at the symbol pds$trace, in the wired part of 
the PDS. The format of this region is given in the include file 
page_trace.incl.p11, as well as the format of the trace entries. 

This trace list is maintained by the subroutines "page_util_enter" and 
"enter" in page_fault. 

Disk Record Allocation/Deallocation 

A bit map of unallocated records on every physical volume is kept in the 
segment FSDCT. The parameters that describe each bit map, including the offset 
of the bit map in the FSDCT itself and the state variables of the 
allocation/deallocation mechanism for that volume, are kept in the PVT entry 
for the volume concerned (see "Data Bases," Section VI). 

--
The basic allocation strategy maintains a pOinter into each map 

(pvte.curwd), that points to the last word in the map in which free records were 
found. Each word of map describes 32 records. When a request is made for a 
record, that word is scanned for another one-bit. Successfully finding a 
one-bit on causes the record defined by that bit to be returned (allocated), the 
bit being then turned off. The result of the floating-point normalization is 
checked by testing that the bit it claimed to be on is actually on; far-lure 
produces a "unprotected or reused address It crash.' . 

Before 'any'word of the FSDCTis -inspected, a check is made (by inspecting 
the FSDCT's page table) that the necessary page of FSDCT is in main memory (see 
"FSDCT paging" earlier). Before any allocation is attempted, a check is made to 
see if there are any free records on the specific volume at all; if not, an 
error return is taken causing the ultimate invocation of the segment mover. 

As each word is depleted of free storage bits, the next word in the bit map 
is moved to. The code that accomplishes this (in "withdraw" in free_store) 
contains the remains of an algorithm which used to interlace assignment over 
dri ves, prior to the_~d_Y.~Il,~ . .oJ.. pJ~ysical voLumes .'" The- effect· of this in every 
case' is' to"lno've'~()ri "word:':' by-word up the bi t map, and come around again to the 
beginning when the end has been reached. Thus, the pointer pvte.curwd cycles 
through the bit map for each drive. 

Whenever one hundred deposits are made against a given drive, the deposit 
code resets this· counter (pvte.relct) and resets the "curwd" pOinter to zero. 
This has the effect of packing records tighter on each pack; whenever one 
hundred records have been deposited, the scan for the next free address is thus 
reset to the lowest address in the paging region of a pack. 
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The code for depositing (freeing) an address is 
corresponding to that address is turned on. If already 
error has occurred,. indicating page control malfunction, 
crashed. 

trivial; the bit 
on, a reused-address 
and the system is 

Any reused address detected by the program free_store caused the 
"vol_trouble" bit in the PYT entry for that volume to be turned on; this causes 
a volume salvage the next time that volume is accepted, even if ESD succeeds. 

INTERNAL INTERFACES 

This section explains the structure and function of the basic page-state 
manipulating subroutines of ALM page control. Some are externally accessible 
from PL/I page control via the transfer vector "page." Many are not; it is the 
functions provided by these interfaces in terms of which the Page Control 
Services of Section IX will be described. Figure 8-8 shows the call flow of 
most of these routines. Utility subroutines are described in the section 
following this. 
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Main Memory Frame Allocation 

Perhaps the most fundamental interface of all is that which finds a free 
main memory frame entry into which a page is read, including that performed on 
behalf of a page fault. This is the routine find_core, in the program 
page_fault. This routine is invoked by ALM page control whenever a frame of 
main memory is needed, other than some specific frame (abs-wiring). 

The basic mechanism of allocating a main memory frame is the running of the 
main memory replacement algorithm, which runs exactly as described in Section V. 
If there are free frames available, the program that freed them moved them to 
the head of the "used list," and the pointer sst.usedp points to a free frame. 
If none are free, the used list is searched for a frame that contains a page 
that can be evicted without any 1/0, that has not been recently used. Frames 
that do not meet these criteria are moved to behind the pointer. Wired and 
abs-wired frames are skipped too. If fifteen frames are ,passed over because of 
the fact that they would need 1/0 to evict their pages, claim_mod_core, the 
purifier of pages, is invoked, which starts those IIOs, and the scan continues. 
It may be so that claim_mod_core found some pages of zeros, or caused the DIMs 
to call the interrupt side, in either case putting claimable pages ahead of the 
used-list pointer. If a tremendous number of frames are rejected, the system is 
crashed with the message "out of core" (main memory). 

When a frame is found which meets the criteria, an attempt is made to evict 
it. This attempt consists ~'f turning off the bit ptw.df, which allows the 
hardware to use the page, clearlng the associative memories of the system, and 
testing to see if the page was modified any time in the interval between the 
original decision that it was not modified (hence no 1/0 was necessary to evict 
it) and this clear of the associative memories. If it indeed was modified in 
this window, the eviction has failed, the access bit (ptw.df) is restored, and 
the search for an acceptable page continues. If it was not, the eviction is 
successful, and cleanup_page (see "Eviction Cleanup," below) is invoked to 
complete the eviction. The core map entry is left behind the used poi~ter (most 
recently used frame), with the field cme.ptwp being zero, this indicating the 
fact that it is free. The core map entry representing the frame made available 
is designated by the value of index register 4, on the return from find_core. 
Since find_core inspects many PTWs, and may call claim_mod_core, which may 
involve many PDMEs and CMEs and PTWs, no index registers are pres~rved by 
find_core. 

The reader should note that pages that ~equire updating to the paging 
device, even though they are not modified, require 1/0 to be evicted, and are 
thus not acceptable to find_core. 

Replacement Algorithm Writebehind 
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The main memory frame allocation function avoids frames containing pages 
that require 1/0 for their eviction so that it can return a usable page frame to 
its caller in minimal real time, allowing the read operation that the caller is 
sure to initiate to be started as soon as possible. This allows all writing on 
behalf of the replacement algorithm to be initiated while the read is in 
progress. This starting of writes is performed by the subroutine claim_mod_core 
in page_fault. This subroutine is invoked at the end of every page fault. When 
the main memory frame allocation function is invoked on behalf of some other 
action than a page fault, it is not invoked. In this case, the next page fault 
simply causes claim_mod_core to consider a larger set of pages than otherwise. 
The subroutine claim_mod_core is also invoked by find_core when fifteen frames 
have been skipped because of the need to perform liD to accomplish their 
evictions. 

Three functions are performed by claim_mod_core; any page frame skipped by 
find_core because of the need to do liD to effect its eviction (whether actually 
modified or simply not yet on the paging device (nypd» has such I/O started 
upon it. This is done via a call to write_page, the page writing/purifying 
function. Pages with their used bits on have them turned off; this is normally 
a function of the replacement algorithm, but the latter (find_core) must leave 
these bits on so that claim_mod_core will not initiate writes on pages that 
ought not to be evicted in the near future. A check is made to determine that 
no more than thirty writes are outstanding (page control disk writes only, not 
VTOCE writes), and the DIMs are "run" (see "DIM Interface and 'Running'" 
earlier) until this is so. This third function ensures that find_core is not 
processing vast numbers of frames because a very large number of writes have not 
completed. 

The routine claim_mod_core processes all frames from the point it last left 
off (indicated by sst.wusedp) to the tail of the used list (where find_core is 
now, indicated by sst. usedp) . Since calls to claim_mod_core might call' the 
page-write function to start writes, and this might involve calling DIMs, which 
might call the interrupt side, the state of the pointer sst.usedp and the 
position of individual frames in the list maybe affected by invoking 
claim_mod_core. Also, claim_mod_core preserves no index registers. 

Page Writing/Purification 

The contract of the page writing/purification function (the routine 
write_page in page_fault) is to start only I/O necessary to ensure that there is 
a good copy of a page outside of main memory (excepting the case where the page 
becomes modified after invocation of this routine). If some function, such as 
the deactivation-time service (pc$cleanup) wishes to purify the main memory page 
unconditionally, it must take steps that no process can reference the page 
(i.e., setfaulting all of the SOWs, as the deactivation function of segment 
control does). Purification consists of making the copy in main memory "pure," 
i.e., not modified with respect to secondary storage or paging device (whichever 
is appropriate). 

The basic task of write-page is to initiate an I/O operation, writing the 
page out. The peripheral tasks consist of making all of the state transitions 
upon the PTW and CME of the page and page frame to set them 'out-of-service' 
(meaning "I/O in progress," D.21 unusable ), checking for all zeros, and checking 
whether allocation of a paging device record is in order. 
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The routine write_page is also used to cause the writing of unmodified 
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The routine write_page is normally invoked from ALM page control, on behalf 
of claim_mod_core, with the registers set as above. However, it may also be 
invoked as page$pwrite from call-side PL/I code. In this case, the interface 
routine page_fault$pwrite is invoked, which establishes the ALM page control 
environment, and the necessary pointers and index registers, and calls the 
routine pwrite. 

Page Reading 

(paging-in) function - (read_page and read_page_abs in page_fault) 

The basic task of the reading function is to bring a page of a segment into 
main memory; if null or nulled, a page of zeros will be created. Generally, a 
read of disk or paging device will be required, and the page-reading function 
will initiate this read. The page reading function indicates to its caller 
whether or not waiting will be required by this caller. 

It is part of the· task of the page-reading function to check that both 
adequate record quota and adequate disk storage space are available to 
accommodate the page. Quota must be checked each time a page with a null or 
nulled address must be paged in for it is at that time quota is charged. 
Physical device allocation must be checked each time a page with a null address 
is paged in. If either of these operations cannot be successfully performed, 
i.e., adequate allocations do not exist, action can be taken before the page is 
created in main memory. It is only legal for the fault side to encounter 
out-of-qu6ta or out-of-physical volume situations; all segments treated by the 
call side should be quota-inhibited and prewithdrawn. 

The page-reading function has two entries, read_page and read_page_abs, in 
the module "page_fault." The usual entry is read_page, which, as part of its 
task, locates a main memory frame into which to read the requested page, via a 
call to the main memory frame allocation function find_core. The other entry, 
used only by the abs_wiring function, is supplied the identity of a specific 
main memory frame into which the paging-in is to be done. Either entry expects 
to be called, via TSX7 instruction, with index register 2 set to the relative 
address of the PTW of the page to be read in, and index 3 to the relative 
address of its AST entry in the SST. The routines return with not only these 
registers set, but index 4 set to the relative address of the core map entry of 
the main memory frame into which the paging-in was done. The routines return to 
the location past the TSX7 instruction if they started 1/0 that has not been 
completed, in which case the upper A register has the event ID to wait for. 
Otherwise, if no incomplete 1/0 exists, or none was started at all, a return to 
the location two locations beyond the TSX7 is executed. 

If the page-reading function encounters a page on which a read-write 
sequence (RWS) is in progress, the caller is returned the event ID of that RWS. 
This will cause the call side to ultimately set a notify-requested bit in the 
affected PDME. The fault side will initiate an RWS abort (turning on 
pdme.abort) in this case. 

Other actions of the page-reading function include maintaining the 
current-length and records-used ASTE parameters of the segment in the case where 
a page is created (zero page paged in), and performing the CME and PTW state 
transitions associated with setting a page out of service in other cases. When 
the page being paged in is on the paging device, the associated PDME is 
rethreaded to the tail of the PD used list, in keeping with the policy that all 
pages in main memory are among the most recently used on the paging device. As 
is the case with the page-writing function, the actual call to device_control 
(in this case device_control$read), the DIM dispatcher, must be the last action 
taken, for the page may not even be out of service on return from this call. 
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A major consideration of the page-reading function ~s to loop, redefining 
its arguments, when the call to the disk-record allocator (free_store$withdraw) 
indicates that a page of the FSDCT must be paged in to perform the allocation. 
As explained under "FSDCT Paging" earlier, the page reading function must 
redirect itself to page in a page of the FSDCT instead of the page passed as an 
argument, when paging in that page involves allocating a disk record, and that 
allocation requires paging in the FSDCT. In this case, whatever wait event or 
lack thereof results from such activity will be returned to the caller of 
read_page (or read_page_abs) to wait on. 

The page-reading function is normally invoked at the read_page entry point, 
via the routine "readin" in the page-fault handler (see "Page Fault Handling" in 
Section IX). However, it may also be invoked from page$pread from call-side 
PL/I code, such as the process-loading function. In this case, the interface 
routine page_fault$pread is invoked, which establishes the ALM page control 
environment, and calls read_page. This interface routine conveys the wait-event 
ID returned by read_page to its caller, returning zero if there was none. 
However, in the case of bulk store liD, the interface routine page_fault$pread 
"runs" the bulk store DIM in a loop to await the completion of the liD. This is 
to obviate the need for a separate bulk store waiting mechanism for the 
process-loading function. Thus, only disk liD or RWS events are returned to the 
caller of page$pread. 

Paging Device Record Allocator 

The paging device record allocator is invoked at two times; at the 
completion of a disk read, and during the page-writing function. Its task is to 
determine whether a page is or should be on the paging device. If the latter is 
the case, either the bit ptw.nypd is set (if invoked on behalf of a disk-read 
completion) or the page is actually migrated to the paging device (if invoked 
from the page-writing function). 

Migrating a page to the paging device consists of finding a free paging 
device record, and updating the CME and PTW associated with the page being 
migrated, as well as the PDME for the free record found, to indicate that they 
are all associated with the same- page. The routine allocate_pd performs an 
alternate return depending on whether or not it migrated the page to the paging 
device as a result of this invocation. 

The decision as to whether a page should go on the paging device involves 
the decisions as to whether it is already there, whether the segment to which it 
belongs has the "global transparent to paging device (gtpd)" attribute, 
explicitly inhibiting this action, whether or not there is actually an enabled 
paging device in use, and the consideration of the ptw.first usage-optimizing 
feature (see the description of this bit in the PTW breakdown in Section VI. 

When invoked on behalf of the completion of a disk interrupt, the page is 
not actually ,migrated to the paging device unless the "pd_writeahead" switch is 
set in the SST (sst.pd_writehead; see the description of this field in the SST 
breakdown in Section VI. This feature is not currently operative.) Rather, the 
bit ptw.nypd in the PTW is turned on. This bit tells the main-memory 
replacement algorithm that the page-writing function must be invoked to evict 
this page, allowing it to skip that page in a search for the "most available" 
page to evict. When the page-writing function is called for this page, on 
account of this bit, it will cause the paging device record allocator to be 
invoked once more at which time the page will actually be migrated to the paging 
device. 
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When the paging device record allocator actually decides to migrate a p~ge 
to the paging device, there should be free records available on the paglng 
device. The paging device management algorithm attempts to keep a free pool by 
ensuring the existence of a small fixed number free or· being freed at the 
beginning of the processing of each page fault. Thus, the free paging device 
record at the head of the paging device used list is normally allocated to the 
page on behalf of which the paging device record allocator is being invoked. If 
the record at the head of the paging device used list is not free, an action 
known as a "PD Desperation" is performed. This action, performed by the PD 
Desperator, pd_util$force_get_pd, consists of walking down the PD used list no 
more than fifteen steps to find a paging device record whose page is evictable 
without a read-write sequence, or an eviction from main memory. A read-write 
sequence (RWS) may not be performed at this time; the call history of the paging 
device record allocator may well include the main memory frame allocation 
function, which is necessary to initiate an RWS, and is llQ1 recursive. 
Furthermore, the completion of the RWS could not be awaited at this time; ALM 
page control does not wait, but indicates wait events to its caller. 

If a PD desperation fails, the paging device record allocator fails (see 
the SST breakdown in Section VI for the names and meanings of meters of this 
event), and the page is not migrated to the paging device. This causes the 
page-writing function to turn off an~ "nypd" PTW bit which may be on, causing 
all attempts to migrate the page to the paging device for this activation to be 
abandoned. 

The paging device record allocator expects to be called via a TSX7 with 
pointer register 2 and index register 2 describing the PTW of a page for which 
paging device allocation must be checked and/or performed. Index register 3 
must point to the AST entry of the segment containing the page. The page must 
be in main memory, and not out of service or undergoing a read-write sequence 
(RWS), and index register 4 must describe the core map entry (CME) for the main 
memory frame it occupies. The stack variables "devadd" and "did" must contain 
the record address (in the format described at the beginning of Section VI) and 
the PVT index for the page. 

The paging device record allocator returns to the location beyond the TSX7 
if it did nQ1 allocate the page to the paging device as a result of this 
invocation, and two locations beyond if it did. If it migrated the page to the 
paging device, the stack variables "devadd" and "did" will be modified to 
reflect the paging device record address of the page, as well as the core map 
entry of the page. 

RWS Initiator 

The RWS initiator is supplied the identification of a paging device record 
(as a relative pointer to its PDME) and is responsible for starting a read-write 
sequence (RWS) on that PD record. It invokes the main-memory frame allocator 
(find_core in page-fault) to allocate a frame for the RWS, and the DIM 
dispatcher device_control$read to start the read cycle of the RWS. It threads 
the CME of the main memory frame and the PDME of the paging device record out of 
the main memory and paging device used lists, respectively, and performs the 
necessary state transitions upon all of these objects to indicate that the read 
cycle of an RWS is under way. The RWS initiator neither awaits completion of 
the read cycle nor initiates the write cycle; the former is done by either the 
PD replacement function or the interface routine pd_util$pd_flush, the latter is 
done by the interrupt side. 

The RWS initiator never allows more than thirty RWSs to be outstanding; 
when it has initiated the thirty-first RWS, it "runs" the DIMs until one of them 
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has competed (Le., the count sst.pd_wtct has gone down). 

As with the page-reading and page-writing functions, the call to 
device_control to actually start the reading 1/0 is the last action performed by 
the" RWS initiator, as the RWS it initiates could be over (especi~lly on account 
of error) by time the return from this call is complete. 

The RWS initiator is called via a TSX7 instruction from ALM page control. 
It expects index register 1 to point to the PDME for the PD record to undergo 
RWS. It saves no registers, it has no alternate returns. It destroys the 
contents of the stack variable "ptp_astep," used by the page-reading function, 
among others. 

The RWS initiator is used by the PD replacement function and a large number 
of call-side functions, such as the deactivation-time service and the PD 
reconfiguration function. In these latter cases it is called as page$pd_flush 
from PL/I code, which invokes the interfac~ routine pd_util$pd_flush. This 
interface routine establishes the ALM page control environment, and invokes the 
RWS initiator upon the PDME located by the PL/I pointer argument to this 
routine. The interface routine also awaits the completion of the read cycle of 
the RWS initiated, by "running" the bulk store DIM. This maintains the 
convention that no RWS read cycles may be in progress at the time the page table 
lock is unlocked. 

Paging Deyice Housekeeping anq Replacement 

This function serves to keep a small pool of free paging device records 
available for the paging device record allocator at all times. The paging 
device record allocator cannot free records on demand except in certain special 
cases. The paging device housekeeping function als~ serves to write out the 
paging device map to the first few records of the bulk store every second. This 
copy is maintained for the use of the post-crash PD flush (see description of 
that in Section IX). 

The paging device housekeeping function is invoked at the beginning of the 
processing of every page fault, from the page-fault handler. It initiates the 
writing of the paging device map if that has not been done within the last 
second; this map writing is done with the "no_interrupt" flag to the DIM set 
QIl. The interrupt side of page control does lli2.1 want to be informed when this 
1/0 has completed. 

The PD housekeeping function implements the paging device replacement 
algorithm outlined in Section V. The paging device used list is scanned from 
least-recently-seen-used to most-recently-seen-used end until ten records are 
free or in the process of undergoing RWS. An RWS is initiated for each PD 
record passed which is modified with respect to disk; the RWS initiator just 
described is used. Each record inspected that is not modified with respect to 
disk is freed; its page contents are migrated off the paging device by 
modifying the PTW of that page. This PTW currently describes this PD record. 
It is made to describe the disk record currently described in the PDME. Pages 
that are found, by inspection of the PTW designated by the PDME field pdme.ptwp, 
to be in main memory, cause their PDMEs not to be claimed, but rather, made to 
be "recently seen as used" by rethreading them to the tail of the PD used list. 
This is in keeping with the policy that those PD records seen in main memory are 
to be considered among the most recently used. 
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The final action of PD housekeeping is to check that no RWS read cycles are 
in progress. RWS read cycles may not be in progress when the page table lock is 
unlocked, and it is the responsibility of whichever agency invokes. the RWS 
initiator to see that they complete before it exists. The strategy of waiting 
for the (bulk store) reads to complete all at once allows the RWS initiator to 
start all of these reads in parallel. This overlap optimizes performance via 
the queueing facility of the bulk store DIM. The PD housekeeping function 
"runs" the DIMs in a loop until no more RWS read cycl'es (counted by 
sst.rws_reads_os) are outstanding. During this looping, the bulk store DIM will 
invoke the interrupt side to initiate the RWS write cycles. 

The PD housekeeping function is invoked via a TSX7 instruction from ALM 
page control. It preserves no registers, and has no alternate returns. 

Eviction Cleanup 

(cleanup_page in page fault, and code in pc$cleanup and pc$truncate) 

The eviction cleanup function consists of modifying all page control data 
bases necessary to indicate that a page has been evicted from main memory. This 
function does not include the actual turning-off of the PTW access bit, ptw.df. 
The latter involves associative-memory and cache clearing, and turning it back 
on if the page was found to be modified after the clear had taken effect. It is 
the responsibility of the eviction cleanup function to modify all other data 
objects once access to a page has successfully been turned off. In ALM page 
control, this function is performed by the subroutine cleanup_page in 
page_fault. This routine is invoked by the main-memory replacement algorithm, 
when it evicts a page, and by the demand-eviction and abs.wiring functions' (see 
description later in this section) when evictions are performed. 

The call side also evicts pages, 
behalf of the segment control deactivation 
function. PL/I code in these routines 
cleanup_page. This work is much simpler in 

in the routine pc$cleanup 
function, and in the 
performs work similar 

the case of truncation. 

invoked on 
truncation 
to that of 

Eviction cleanup consists of maintaining the AST entry of the segment and 
freeing the main memory page from which the page was evicted. The number of 
pages in main memory is updated. If the page evicted contained zeros (i.e., its 
address is now nulled, the "number of records used" of the segment must be 
adjusted, as well as the record quota account against which the segment's pages 
are charged. If no more pages of the segment are in main memory after this 
eviction, the ASTE· "init" bit (used by the AST replacement algorithm) must be 
turned on. If the highest-addressed page of the segment which is nonnulled/null 
or was in main memory was evicted, the current length of the segment is 
adjusted. The disk or PD address from the core map entry of the frame from 
which the eviction is being performed is placed back in the PTW for the page. 
The PTW "first" bit (for the optimizing algorithm described under the 
description of sst.ptw_first in Section VI is turned off, indicating that the 
page has been evicted at least once from main memory since activation. 

The routine cleanup_page is invoked via a TSX7 instruction from ALM page 
control. It expects pointer register 2 and index register 2 to describe the PTW 
of the page being evicted, and index 4 to describe the CME of the main memory 
frame from which it is being evicted. It will preserve these registers, as well 
as set index 3 to the ASTE. There are no alternate returns. . 
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Per-Page Cache Management 

The general strategies for managing the Multics Processor caches are 
described under "Encacheability Control" in Section II. These strategies cover 
modification of main memory by several processors, and by all I/O devices except 
I/O devices used for paging. The per-page cache management strategy covers 
these latter casesj when a page is read in from paging device or disk, the 
contents of main memory locations which may be in processor caches will be 
modified without changing the contents of'these cache locations. The avoidance 
of this situation is the goal of the per-page cache management strategy. 

Paging I/O has the unique property that a main memory frame into which a 
page of a segment is being read is guaranteed to contain no information that any 
processor (or process) can access. Therefore, if it could be ensured that no 
words of that page appeared in any processor's cache at the time the read was 
begun, there would be no chance that the reading in of data by the 10M could 
contradict any data in a processor cache. Thus, it would be adequate to clear 
the caches of all processors at the time a page of a segment was evicted from 
main memory, i.e., made inaccessible to the processors of the system. 

The Multics processor cache includes a feature known as "selective clear," 
a hardware mechanism for iterating through all the columns and blocks of the 
cache, and invalidating the contents of any block that contains information from 
a given page. This mechanism is available via the CAMP instruction, with the 
"4,du" bit on in its effectivf (internal) address. The frame is identified by 
the upper bits of this address. This instruction also clears all processor PTW 
associative memories, which is desired at page eviction time. Thus, at 'page 
eviction time, all system processors are forced to execute an instance of this 
instruction to clear all words of the page being evicted out of their caches, 
and all PTWs out of their PTW associative memories. The instance of this 
instruction so constructed is stored in scs$cam_pairj the general CAM/connect 
strategy is described in the Multics Reconfiguration E1M, Order No. AN71. 

The function available to ALM page control as the "cam_cache" routine is 
also available to PL/I code as page$cam_cache, which invokes the interface 
routine cam_cache_ext in page_fault. However, most PL/I code calls page$cam 
before unlocking the page table lock, which clears all system caches and 
associative memories totally. 

It is critical to this strategy that the abs_segs used by page control to 
check page frames for zeros not be encacheable. 

Demand Eyiction 

The demand page eviction function is one called by the main-memory 
deconfiguration function (see Section IX), on behalf of the system 
reconfiguration software, and on behalf of the I/O buffer abs-wiring function. 
In the latter case, it is used to evict the previous resident of a main-memory 
frame into which a page of an I/O buffer· segment is going to be abs-wired. It 
is also the responsibility of the demand eviction function to inform its caller 
of any RWS or page transfer I/O in progress in the main memory frame being 
vacated (having a page evicted from it). 
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The demand page eviction function is called as page$evict_page from PL/I 
code only. It is called with a PL/I pointer to the core map entry representing 
the main memory frame from which it is to be vacated. It returns a wait event 
IV; if that is zero, it has successfully vacated the frame, if not, the caller 
must await that event (via the multiplex wait protocol and the call-side 
wait-coordinator) and call evict_page again when the event has happened. The 
demand page eviction function is an excellent example of those functions that 
perform successive state transitions upon page control objects, which must be 
constrained from retrogression via the setting of control bits. In this case, 
the caller of the demand-eviction function must have set either of the CME bits 
cme.removing or cme.abs_w, to ensure the success of the vacating (prevent the 
main memory frame allocator from allocating the frame). 

The demand page eviction function begins by checking that no RWS or 
ordinary page-transfer (ptw.os on) I/O is in progress in the frame being 
vacated; if so, the caller is returned the event ID corresponding to the 
operation in progress. If, via the multiplex wait protocol, the caller chooses 
to wait for this event via the call-side wait coordinator page$pwait, the latter 
will turn on the appropriate notify-requested bits to cause the interrupt side 
to notify 'the completion of these events. If there is no I/O going on in that 
frame, the demand page eviction function will successfully complete in this 
call, i.e., there will be no waiting. 

If the page in the main memory frame is wired (but may nQ1 be abs_wired), 
it must be moved to another main memory frame, in such a way that it is never 
made inaccessible to the system processors. Since the page may be being 
modified by the system processors there i& no way to move the page while other 
processors are accessing it. Furthermore, it is not desirable to change the 
contents of the PTW, which will be necessary, while other processors are using 
it. Thus, a mechanism is provided to halt all of the system processors except 
the one executing this code, until this processor releases them. This service 
is provided by the CAM/connect mechanism, which sets appropriate flags in the 
SCS segment when this is the case. First, the main memory fr,ame allocator 
(find_core) is invoked to obtain a page frame into which to move the wired page. 
The state of the "modified" bit (ptw.phm) of the page being moved is saved, and 
it is turned off. This must be done in one unitary (key-line) operation, lest a 
modification between the inspection and the turning-off be lost. All of the 
system processors, except the one executing, are then stopped, and all PTW 
associative memories cleared, via a call to cam_with_wait in page_fault. This 
routine also causes all words of the old frame to be selectively cleared out of 
all the aaches of the system processors. The contents of the old frame are then 
moved to the new frame via the use of-two non-encacheable abs-segs. If, after 
so doing, the PTW "modified" bit (ptw.phm) has not come on (since it was turned 
off) the contents of the old frame and new frame are the same. If not, the 
contents are moved once again (this is metered by sst.recopies). The contents 
cannot now possibly change, since all proce~sors are halted. The possible 
modification just noted is then "orled" into the PTW "modified" bit (ptw.phm), 
and the PTW main memory address (ptw.add) is changed to describe the new frame. 
The system processors are then released via zeroing the cell scs$cam_wait, on 
which they all are looping. The CME for the old frame is made to be free 
(although it has one of the bits cme.abs_w or cme.removing protecting against 
its accidental claiming), and the CME for the new frame is made to describe- the 
page moved, which had been described by the CME for the old frame. 

If the page in the frame being vacated is not wired, then the task is 
vastly simplified, as it is permissible to make the page inaccessibl~. This is 
precisely what is done. The PTW access bit, ptw~df, is turned off, and the 
system PTW associative memories are cleared, and the caches selectively cleared, 
as for any eviction. ,If the modified bit is not on after this clear, (it could 
not have been on before access was removed, or it would still be on), then a 
successful eviction has just been performed. The eviction cleanup function 
(page_fault$cleanup_page) is invoked to complete the details of the eviction, 
and the frame has been successfully vacated. If, on the other hand, the page 
was modified, either before access was turned off or after, we must move its 
contents to another frame, which is cheaper and faster than starting an I/O and 
causing the caller to wait for it. It is also deterministic; there is no 
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telling how many times the page could be modified while the caller waited for 
it, while moving the page avoids the entire issue. Thus, the main memory frame 
allocation function (find_core) is invoked to obtain a frame, and the page is 
moved. System processors do DQ1 have to be halted, as opposed to the wired 
case, as the page was just made inaccessible, and the associative-memory clear 
mechanism ensures that no processors are left accessing it. The contents of the 
PTW address field (ptw.add) is changed to describe the new frame. The CME for 
the old frame is made free (although it is protected by cme.removing or 
cme.abs_w) and the CME for the new frame is made to describe the page moved. 
The access in the PTW is restored, i.e., ptw.phm is turned back on, and 
processors continue to use the page in its new location (although, however, if 
they attempt to access it before this, but atter the time that access was 
revoked, such processors caused their processes to take a page fault, and wait 
for the page table lock, now held by this process). Again, the eviction is 
complete with no waiting. 

Page abs-wiring 

The page abs-wiring function is used only by the segment abs-wiring service 
(in pc_contig, described in Section IX. It is invoked from PL/I page control 
only, given a page (as an ASTE pointer and page number), and a free CME (usually 
vacated via the demand-eviction function just described) into which to abs-wire 
the page. It assumes that the caller has set the bit cme.abs_w in the CME for 
the frame participating in the abs-wiring, to prevent any page other than the 
one being processed from coming into that frame. If the "wired" bit of the PTW 
for that page is not on, the ~bs-wiring function turns it on, indicating that 
the page, wherever it might be now, or wherever it may come, may not be evicted. 

The abs-wiring function is among that class of ALM page control functions 
that either complete their task when called, or return a wait event on which the 
caller must wait, and call that primitive back when the event has happened. The 
abs-wiring function thus returns a zero wait event ID if it has unsuccessfully 
placed the page in the frame into which it is to be abs-wired, or an event ID on 
which to wait. 

The first check made by the abs-wiring function is that the page is not 
already involved in I/O (ptw.os on). If so, the caller is made to wait for the 
completion of that 1/0. Since ptw.wired has been turned on, a page out of 
service on a read will not be evicted once it comes in, and a page out of 
service on a write will be selected for no further writes by the main memory 
replacement algorithm. 

If there is no I/O on the page in progress, two different cases occur for 
the cases of the page being in main memory already (may even be in the required 
frame already, via previous calls), or not in main memory. If it is in main 
memory, and in the required frame, the task is complete, and a zero event ID is 
returned to the caller. If not, the page must be moved from its current frame 
to the new frame. The task is identically that of the code in the demand 
page-eviction function which moves wired pages, as this page is now wired. This 
code is used, the page is moved (including halting all processors, etc.), and 
the abs-wiring is complete. If the page is not in main memory, the page-reading 
function (read-page-abs) is invoked to read the page in. As described under the 
description of page reading function (earlier) the caller of that function (and 
thus, in this case, the caller of the abs-wiring function) is made to wait for 
the completion of FSDCT paging 1/0, RWS completion, or page-reading, whatever 
may be the caze, and retrying through repeated calls. Thus, this path through 
the abs-wiring function uses the multiplex wait protocol of the caller to drive 
the FSDCT paging mechanism and await RWS completion transparently to the 
mechanism of the abs-wiring function. 
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Note that the version of the page-reading function used by the abs-wiring 
function (read_page_abs) does not allocate a main memory frame, but uses the 
specific main memory frame supplied by the caller, in this case, 
evict_page$wire_abs. 

I/O Posting 

(the Interrupt Side) (page_fault$done_) 

The function of posting (processing the completion) of paging I/O 
operations is one of the most critical in page control. It includes performing 
all of the state transitions out of I/O or RWS states of page control data 
objects, all error processing, and the initiation of RWS write cycles and 
double-writes, and calling the traffic controller notify primitive. 

The I/O posting function is implemented in the routine done in the module 
page-fault. It is invoked solely from the storage system DIMs when they notice 
I/O completions. It is accessed directly via TSX7 from the bulk store DIM, and 
via the interface page$done, which leads to the interface routine 
page_fault$done, by the disk DIM. The routine done_ is invoked in the ALM page 
control environment with the page table lock locked. Its parameters are the 
stack variables "core_add" and "errcode," containing the main memory address and 
status of the I/O operation which was completed. 

dne critical function of the interrupt side is to resurrect disk addresses 
upon tha successful completion of RWSs, double writes, or other disk writes. As 
described in Section VII, this resurrection signifies just this successful disk 
writing, indicating that the address may safely be reported by pc$get_file_map 
to a VTOCE. 

The interrupt side begins its task by looking at the core map entry 
indicated by the main memory address passed to it. It must either indicate an 
RWS in progress, or designate a PTW which has its out-of-service (ptw.os) bit 
on. It may designate a free main memory frame. We consider first the case of 
normal paging (non-RWS) I/O completion. 

If a page read completes, a check is made to see if it completed 
unsuccessfully (with an error). The error actions, here as elsewhere, are 
described in "Error Strategy" earlier in this section. Assuming there was no 
error, the CME for the page frame of main memory is threaded back into the used 
list, as "most recently used." The out-of-service bit is turned off. The 
paging device record allocator is invoked to cause the 
"not-yet-on-paging-device" bit to be set if necessary. If the notify-requested 
flag was on in the CME, the special traffic controller interface 
pxss$page_notify (see "Traffic Controller Interface" earlier in this section) is 
invoked to notify the completion of the read. 

In the case of a page write completion, with no error, the CME is threaded 
ba6k into the used list as "least recently used" (best candidate for eviction), 
and the out-of-service bit in the PTW (ptw.os) turned off. If the write was for 
a page not on the paging device, the disk address is resurrected (made live, not 
nulled), and the bit aste.fmchanged turned on to trigger a VTOCE update. If it 
was a write for a page on the paging device, the PDME is inspected 
(pdme.double_writing) to see if it was a double-write (write to disk for a page 
on the paging device). Otherwise, it was a write to the paging device. If it 
was a write to the paging device, a check is made to see if a double-write 
should be initiated, based upon the properties of the page, the segment, and the 
double-writing control switch (sst.double_write) in the SST. (See the 
description of that switch in Section VI for the various decisions and 
interpretations.) if a double- write is to be started, the page is put back 

8-46 AN61 



I 

out-of-service, the threading-in of the core map entry avoided, and a call made 
to the DIM dispatcher device_control$write to start the I/O. The bit 
pdme.double_writing is put on before this call is made to indicate to the 
interrupt side what action should be taken at the completion of 1ha1 I/O. If 
double-writing is not to be started, the CME is threaded as stated, and the 
traffic controller called to notify the write-completion if required. If a 
double_write's completion was noted, the double_writing PDME flag 
(pdme.double_writing) is turned off, the disk address resurrected, and the PDME 
marked as not modified with respect to disk. Again, an optional notify follows. 
These actions, as the rest of the interrupt side posting logic (other than error 
handling) are shown in Figures 8-9 and 8-10. 

The actions taken for the completion of RWS I/O depend on whether it is a 
read or write cycle that has completed. When a read cycle has completed (cme.io 
tells which), the write cycle is started by setting the bit cme.io, and starting 
the I/O for the write cycle. The CME and PDME involved remain out of their 
respective lists, and no notifications are performed. 

The completion of the write cycle is more complex, as it implies the 
completion of the entire RWS. At the start, notification of the RWS event is 
performed via the special traffic controller entry pxss$rws_notify if any of the 
bits pdme.notify_requested, pdme.removing, or pdme.abort are set; any of these 
bits implies that some process is waiting for the RWS event. Assuming no error, 
(see "Error Strategy" for discussion of the error path here), the disk address 
in the PDME is resurrected, indicating successful transfer of the data to disk. 
If no abort (page fault by a process while the RWS was in progress) was observed 
(pdme.abort would have been set on by the fault side), the PTW for the page 
which underwent RWS is located from the PDME, and changed to contain the disk 
address from the PDME (it now contains a paging device address). The PDME is 
zeroed, and marked as free, being put into the PD used list. The main memory 
frame is similarly freed, bei~g put into the main memory used list. If how~ver, 
a post-crash PD flush was responsible for initiating the RWS (pdme.flushing on), 
the PTW (none exists) is not adjusted, nor is the PDME cleared or freed. 
Rather, the PDME flushing, RWS, and modified flags are turned off. This leaves 
the PDME intact for the call side to inspect, so that an error during the RWS 
can be determined to have happened or not by inspecting the nulled/live status 
of the disk address (pdme.devadd) in the PDME. 

If an RWS abort was noticed, the main memory frame in which the RWS 
occurred is converted into a normal page-holding frame. The ASTE of the 
relevant segment is adjusted to indicate the proper number of pages in main 
memory, etc.; and the CME pointers are set to describe the PTW and ASTE. The 
RWS flags in the CME and the PDME are turned off. The "modified" status of the 
PDME, which has never been turned off, remains in effect. The PDME is put back 
in the PD used list. The CME is put back in the main memory used list, in 
most-recently-used position. The process which had turned on the abort bit, 
causing the abort, has already been notified, and is now either "ready" or 
waiting for the page table lock. 
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Figure 8-10. Page control Interrupt Side, RWS posting 

Utility Subroutines 

This discussion provides brief descriptions of the utility subroutines in 
ALM page control. All of these subroutines are in the modules page_fault and 
pd_util. A utility subroutine, by this definition, is a routine that does not 
affect the state of page control objects; PTWs, CMEs, PDMEs, other than perhaps 
rethreading them. Any routine that performs state transitions is among the 
critical agents described under "Internal Interfaces" earlier in this section. 
The name, function, and calling sequence of each of these routines, with 
whatever comments are appropriate, is given. 

8-49· 



savex 

unsavex 

Called by TSX6, sets up page control index-seven save stack. Used 
to establish the ALM page control environment. 

Called. by TSX6, saves index 7 in the index-seven save stack. Any 
routine that saves index 7 via this routine transfers to "unsavex" 
to return. 

Invoked via TRA, returns from a routine which called "savex" at its 
start. Pops the index-seven save stack. 

thread_to_lru 
Invoked via TSX7, with index 4 pointing at a core map entry. Given 
a CME in the used list, rethreads it to the head (least recently 
used) position, adjusting whatever global page control pointers are 
necessary. 

Invoked via TSX7, with index 4 pointing at a core map entry in the 
used list. Threads it out of the used list, zeroing its thread 
word, and changing whatever global page control pointers are 
necessary. 

Invoked via TSX7, with index 4 pointing at a core map entry .D..2.k in 
the us.ed list.. Threads it into the used list, and the head 
(least-recently used), updating global page control pointers. 

thread_in_lilru 
Invoked via TSX7, identical to thread_in, but the CME is placed at 
the S&il (most-recently-used) end of the main memory used list~ 

thread_lru_ext 
Is a PL/I callable interface to thread_to_lru. 

set_up_abs_seg 

clear_ core 

Called via TSX6, with the main memory address of a page frame of 
main memory in the stack variable "core_add." Places a 
non-encacheable SDW for· that page frame in the SDW slot for the 
segment "abs_seg1," and makes pointer register 0 (ap) point to it. 
Thi. is used for checking for zeros and zeroing main memory frames 
on behalf of the page-writing and page-reading functions, 
respectively. 

called via TSX7, with the main memory address of a page frame of 
main memory in the stack variable "core_add." Fills the frame with 
zeros, on behalf of the page-reading function. 

check_for_zero 

callLQache 

Called via TSX7, with the main memory address of a page frame of 
main memory in the stack variable "core_add." Sets the "zero" 
indicator register to indicate whether or not that frame of main 
memory contains all zeros, on behalf of the 
page-writing/purification function (see. "Page Writing Function" 
earlier). . 

Called via TSX7, with the main memory address of a page frame o~ 
main memory in the stack variable "core_add," Clears the PTW 
associative memories of all processors, and selectively clears the 
words of that main memory page out of their caches. Destroys index 
registers 0 and 1. Available to PL/I code as page'cam_cache. 
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cam 

Called via TSX7, clears the PTW associative memories of all 
processors. Destroys index registers a and 1. 

Called via TSX7, clears PTW and SDW associative memories and all 
caches of all processors. Destroys index registers a and 1. 
Available to PL/I code as page$cam. 

cam_with_wait 
Called via TSX7 with the main memory address of a page frame of main 
memory in the stack variable "core_add." Clears the PTW associative 
memories of all processors, 'and selectively clears their caches of 
all words of that main memory frame. Furthermore, all processors 
except the executing processor are made to halt until the variable 
scs$cam_wait is zeroed by the executing processor. Destroys index 
registers a and 1. 

reset_mode_reg 
Called via TSX7 by the page fault handler, restarts the history 
registers and re-enables the cache after a (page) fault. 

Called via TSX7, with index register 3 pointing to an ASTE. 
Extracts the PVT index for that segment out of its ASTE, placing it 
in the stack variable "did" and in the accumulator. 

get_astep_given_pdmep 
Called via TSX6, with index 1 pOinting at a paging device map entry 
(PDME). Determines the AST entry offset of the segment to which the 
page in the PD record described by the PDME belongs. Places it in 
index register 3, conventional register for ASTEs. May not be used 
during post-crash PD flush. 

Called via TSX7, with index 2 and pointer register 2 describing a 
PTW, and index 3 its ASTE, by the page-reading function. Returns if 
the page that is to be read in is not null and not nulled, or there 
exists a record of quota to support its being read in. Otherwise, 
transfers to "errquit" in the page fault handler to signal record 
quota overflow. 

Called via TSX7, with index 3 pointing at the ASTE of a segment for 
which a page is being destroyed. Used by eviction cleanup to 
decrement "records used" for the quota account of some segment. The 
entry quotaw$cu_for_pc performs the same function for PL/I code in 
the program pc. 

Called via TSX7 with index 3 pointing at the ASTE of a segment 
against which another page of record quota will be charged. Called 
by the page-reading function once it has determined that sufficient 
quota and disk space exist to create the page. 

type_terminal_quota 
~ Called via TSX6 from check_quota, bump_quota, and reset_quota, 

determines whether directory or segment page quota is involved, and 
whether the segment involved has quota checking suppressed 
(aste.nqsw on). 

Called via TSX7 when a page is found to be zero by the page-writing 
function. Recomputes the current length of the segment in the ASTE 
(aste.csl) by scanning the page table backwards. 
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Called via TSX7j with index 1 pointing at a POME, in the used 
The POME is cleared and threaded to the head of the PO used 
It is assumed that the caller has evicted whatever page was in 
record. 

list. 
list. 
that 

Called· via TSX7, with index 1 pOinting at a POME. Creates a 
standard-format (see beginning of Section VI) paging-device record 
address for the PO record described by that POME, returning it in 
the accumulator and the stack variable "devadd." 

Called via TSX7, with pointer register 2 describing a PTW. If this 
PTW describes a page that has a pag1ng device record as~ociated with 
it, returns two locations after the TSX7, with the relative offset 
of the POME for the associated PO record in index 1 (conventional 
fbr POMEs) and the upper half of the stack variable "pdmep." If 
not, returns indirectly (TRA 0,7*) through the first location after 
the TSX7, with index 1 and the upper half of the variable "pdmep" 
containing a ~1. 

Called via TSX7, with index 1 pointing to a POME in the PO used 
list. Threads that POME to the tail (most recently used) position 
of the used list. If the switch sst.count_pdmes is on (see its 
description in Section VI), an esoteric form of ~etering is 
performed, recording in a histogram its distance down the list 
before rethreading. 

Called via TSX7, with index 1 pointing at a POME n21 in the PO used 
list. Threads it into the PO used list, at the tail (most rec&ntly 
used) position. 
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