HONEYWELL

MULTICS

SUBROUTINES AND
/O MODULES

SOFTWARE ‘

MULTICS SUBROUTINES AND IO MODULES

SUBJECT

Description of Multics Subroutines and I/O Modules

SPECIAL INSTRUCTIONS

This publication supersedes the previous edition of the manual, Order No.

AG93-04, dated February 1983, and its addendum AG93-04A, dated December
1983.

Change bars in the margins indicate technical changes to existing material. See
“Significant Changes” in the Preface for a list of new subroutines and I/O mod-
ules. New subroutines and I/O modules are not identified by change bars.

SOFTWARE SUPPORTED
Multics Software Release 11.0

ORDER NUMBER

AG93-05 Feburary 1985

Honeywell

PREFACE

This document contains a description of Subroutines and I/0 Modules provided
as part of the standard Multics system. The subroutines can be called from PL/I
programs to perform system-provided applications and supervisory functions. The 1/0
modules can be invoked by calling the iox_ subroutine to interface directly with the
Multics I/0 System when performing 1/0 operations.

The information is organized into three sections. Section 1 contains a list of the
subroutine repertoire, arranged functionally. Section 2 contains descriptions of the

Multics subroutines arranged in alphabetical order. Section 3 contains the descriptions
of the I/0 modules, also arranged in alphabetical order.

Significant Changes in AG93-05A

The following subroutines are new and do not contain change bars:

condition_ ocu_

datebin_ pascal_util_
enter_abs_request_ print_data_

find_bit_ Icp_

find_char_ reversion_
heap_manager_ translate_bytes_to_hex9_

The following subroutines have been complete rewritten to document additional
capabilities; therefore, they contain no change bars:

check_star_name_
match_star_name_

The following subroutine was affected by the C software:

cu

The following entry points have been moved from the obsolete section to the active
section:

cu_%$decode_entry_value

The information and specifications in this document are subject to change without notice. Consult
your Honeywell Marketing Representative for product or service availability.

11/86
©Honeywell Information Systems Inc., 1987 File No.: 1L13,1U13 AG93-05A

The following entry points have been moved from the active section to the obsolete
section:

ipc_$create_ev_chn
ipc_8%decl_event_call_chn

The following entry points were accidentally left out of the manual for MR11.0:

sort_items_3$char
sort_items_$fixed_bin
sort_items_$float_bin
sort_items_$general -
sort_items_$varying_char

Extensive information was accidentally left out from the folliowing I/0O modules for
MRI11.0:

tape_ansi_
tape_ibm_

11/86 iii AG93-05A

11/86

Section 1

Section 2 Subroutine Descriptions
abbrev_
absolute_pathname_
active_fnc_err_
add_bit_offset_
add_char_offset_

add_epilogue_handler_ .

adjust_bit_count_
adjust_bit_count_
aim_check_
aim_util_
archive_
area_info_
arithmetic_to_ascii_
ascii_to_bed_
ascii_to_ebcdic_

before_journal _manager_
bit_offset_
cb_menu_
cb_window_

change_wdir_
char_offset_
char_to_numeric_
check_gate access_
check_star_name_
clock_

comerr_

command_query_
component_info_

compute_common_aim_ceiling_

condition_

continue_to_signal_

convert_access_audit_flags_
convert_access_class_ . .

convert_date_to_binary_

convert_dial_message_ .
convert_status_code_ . .

copy_
copy_acl_

iv

Introduction to Standard Subroutines

......
.........
« o e
.....
.....

DR Y

e e
« o s e
.......
.........
.........

........
« e e

.....
...........

..........

change_default._;vc'lil"_.

LR

condition_interpreter_ .

...........

CONTENTS

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

.............

...............

...............

AG93-05A

copy_dir_ e . 2-127

cpu_time_and_paging_ 2-131
create_data_segment_0.0.. 2-131
create_ips_ mask_, 2-135
CTOSS_TiNG_10_ . . . v v v i v e e e et e e e e n 2-136
o 2-136
CV_bin_ ... e e e e e e, 2-161
OV _deC_ e e e e e e e e e e 2-162
cv.dec_checkt t... 2-163
cv_dirmode_t 2-165
(o3 /= ¢ 15 '/ 2-166
cv_error_ subroutine 2-168
cv_float_ it e e e e 2-168
cv_float_ double_ 2-169
cv_fstime_ 2-170
CV_heX _ ... e e e e e e e e 2-171
cv_hex_check_, 2-171
cv_mode_ e e e e e e e e e 2-172
o 2 o T2 S - 2-173
cv_oct_check_ e 2-173
o2 2 1 5 2-174
cv_rcp_attributes_ L. ... 2-176.1
CV_USerid_ i i i e e e e e 2-182
date_time_t 2-182
datebin_ 2-208
decode_definition_ 2-208.8
decode_descriptor_ v v it it .. 2-214
define_area_ccuo.... 2-215
delete_ 2-218
dial_manager_0.00000u... 2-220
display_access_class_0 .. 2-229
display_file_value_ 2-231
di_handler_ 0.... 2-231
dprint_ e e e e 2-233
dump_segment_0n.... 2-240
ebedic_to_ascii_ 2-243
enter_abs_request_ 2-244.1
execute_epilogue_ 2-245
expand_pathname_ 2-245
exponent_control_ 2-249
filemanager_ 2-250
find_bit_ 2-274
find_char_00 ..., 2-276
find_condition_frame_ 2-284
find_condition_info_ 2-285
find_include_file_ 2-287
find_partition_ 2-288
find_source_file_ 2-289
format_document_0.... 2-290.1
fs_util_ e e e e 2-290.10
ft_menu_ e, 2-316
ft_menu_$initl 2-322
ft_menu $init2 2-322
ftwindow_ e e 2-328

11/86 v AG93-05A

generic_math_ 2-341

get_bound_seg_info_ 2-351
get_default_wdir_ 2-352
get_definition_ 2-353
gEL_EC_VErSiON_ v v v vt i it e 2-353
get_entryv_arg descs_ 2-354
get_entry_name_ 0.t 2-358
get_entry_point_del_ 2-359
get_equal name_ 2-362
get_external_variable_ 2-366
getgroup_id_ 2-366
get_initial_ring_ 2-367
get_line length_ 2-368
get lock id_ 2-369
getpdir_ 2-369
get_privileges_, 2-370
get_process_access_class_ 2-371
get_process_authorization_ 2-372
get_process_id_ 2-372
get_process_max_authorization_ 2-372
gelTing_ 2-373
get_shortest_path_ 2-373
get_system_aim_attributes_ 2-374
get_system_free_area_ 2-376
get_temp_segment_ ¢c.0.... 2-376
get_lemp_segments_ vt i v e . 2-3717
get_wdir_ e e 2-378
hash_ 2-379
hash_index_ 2-383
hes_%$add_acl _entries 2-384
hes_$add_dir_acl_entries 2-386
hes_$add_dir_inacl_entries -, 2-388
hcs_$add_inacl_entries 2-390
hes_$append_branch 2-392
nes_$append_branchx L. 2-393
hes_$append_link 2-395
hes_$change bc 2-395
hes_$change_be_seg 2-39¢6
hes_$chname_file 2-397
hes_$chname_seg 2-399
hes_$create_branch_ 2-400
hcs_$delete_acl _entries 2-403
hes_S$delete_dir_acl_entries 2-404
hes_S$delete_dir_inacl_entries 2-405
hes_$delete_inacl entries 2-406
hes_S$force write 2-407
hes_$fs_get_access_modes 2-408
hes_$fs get mode, 2-409
hes_$fs_get_path_ name 2-410
hes_$fs get_ref name 2-411
hes_$fs get_seg ptr 2-411
hes_$fs_move_file 2-412
hes_$fs_move_seg 2-414
hcs_$get_access_class, 2-414

11/86 vi AG93-05A

hes_$get_access_class_seg 2-415

hes_$get_access_info 2-416
hes_$get_access_info_seg 2-416.2
hes_$get_author 2-416.4
hes_$get_be_author, 2-417
hes_$get_dir_ring brackets 2-417
hes_$get_exponent_control 2-418
hes_$get_initial_ring 2-419
hes_$get ips mask 2-419
hes_$get_link target 2-420
hes_$get_max_length 2-421
hes_S$get_max_length_seg 2-422
hes_$get_page trace 2-422
hes_$get_process_uUsageo e i i et .. 2-424
hes_$get_ring_brackets 2-427
hes_$get_ring_brackets_seg 2-427
hes_$get_safety_ sw 2-428
hes_$get_safety_ sw_seg 2-428.1
hes_$get_search_rules 2-429
hes_$get_system_search_rules 2~-430
hes_$get_uid file 2-431
hes_$get_ uid_seg 2-432
hes_$get_user_access_modes 2-432
hes_$get_user_access_modes_ptr 2-433
hes_$get_user_effmode 2-435
hes_$high_low_seg count 2-436
hes_Shistory_regs_getot oo 2-436.1
hes_S$history_regs set 2-437
hes_$initiate o oo 2-437
hes_$initiate_count 2-439
hes_S$initiate_search_rules 2-440
hes_Slist_acl 2-442
hes_$list_dir_acl 2-443
hes_$list dir_inacl 2~-444
hes_$list_inacl 2-446
hes_$lv_attached 2-447
hes_$make_entry, 2-448
hes_$make_ptr o oo 2-449
hes $make seg 2-450
hes_$quota_move 2-450.1
hes_$quota_read 2-451
hes_$release_segment_numbers 2-452
hes_Sreplace_acl oL L., 2-453
hes_$replace_dir_acl 2-454
hes_S$replace_dir_inacl 2-456
hes_$replace_dnacl 2-457
hcs_S$reserve_segment_numbers 2-458
hes_S$reset_ips_mask 2-458
hes_$set_256K _switch 2-459
hes $set_bc o ... 2-460
hes_$set_dir_ring brackets 2-461
hes_$set dnzp sw 2-462
hes_$set_dnzp_sw_seg 2-462.1
hes_$set_entry_bound 2-462.1

11/86 vii AG93-05A

hes_$set_entry_bound_seg 2-463

hcs_$set_exponent_control 2-464
hes_$set_ips mask 2-465
hes_$set_max_length 2-466
hes_$set_max_length_seg 2-467
hes_$set_ring brackets 2-468
hes_$set_safety sw 2-469
hes_$set_safety_sw_seg 2-470
hes_$star_ L. 2-471
hes_$star_dir_list_ 2-474
hes_$star_list 2-479
hes_$status_ 2-480
hes_$status_long 2-484
hes_$status_minf 2-488
hes_S$status_mins 2-489
hes_S$truncate_file 2-490
hes_$validate_processid 2-491
hes_$wakeup L Lo oL 2-491
heap_manager_ o' v i ... 2-492
help_ e 2-495
hphes_8ips_wakeup 2-507
hphes_$read_partition 2-507
hphes_$write_partition 2-509
initiate_file_ 2-510
interpret_resource_desc_ 2-514
103 ... e e e e e e 2-518
jod_info_ 2-529
(- 2-532
PO o i e e e e e e e e e 2-556
lex_error_ e 2-565
lex_string_00t 2-569
list_dir_info_ 2-581
match_star_name_ v v v vt et 2-583
mde_ ... e e e e 2-584
531 oL 2-585
metering_util_ 2-599
meter_gate_ v v v v vt e e e e 2-603
mhes_ e e e 2-604
171§ G 2-606
mode_String._ ittt 2-607
mrl_ ... e e, 2-614
msf_manager_ 2-615
MVE . . . e e e e e e e e e e e e 2-624
nd_handler_00 2-625
numeric_to_ascii_ 2-627
numeric_to_ascii_base_ 2-628
object_info_, .. 2-630
0T 2-636
parse_file_, 2-642.7
parse_io_channel_name_ 2-642.12
pascal_util_ 2-642.13
pathname 2-64216
phes_$read_disk_label 2-645
2] o T 2-646

11/86 viii AG93-05A

11/86

prepare_mc_restart_ . .
print_cobol_error_ . . .
print_data_
gedx_
random_
1 (<7«
read_allowed_
read_password_
read_write_allowed_ . .
rehash_
release_area_

release_temp_segment_
release_temp_segments_

request_id_
requote_string_
resource_control_
resource_info_
reversion_
ring0_get_
ring_zero_peek_
TUD_ . . v e v e e e

runt—ime_symbol__inf o_

sct_manager_
search_paths_
send_as_request_
send_mail_
send_message_
set_bit_offset_
set_char_offset_
set_ext_variable_
set_ lock_
shcs_$set_force_write_limi
signal_
sort_items_
sort_items_indirect_ . . .

spg_util_
spg_ring O_info_
ssu_ subroutine
Stu_ . .. e
sub_err_
suffixed_name_
sus_signal_handler_ . . .
sweep_disk_
system_info_
teco_get_macro_
term_
terminate_file_
terminate_process_ . . .
timed_io_S$get_chars . . .
timer_manager_
transaction_manager_ . .

translate_aim_attributes_
translate_bytes_to_hex9_

ix

...............

...............

aaaaaaaaaaaaaaa

...............

...............

...............

ooooooooooooooo

...............

...............

...............

...............

ooooooooooooooo

...............

.............

...............

...............

...............

...............

...............

AG93-05A

11/86

Section 3

translator_info_
translator_temp_
533
total_ cpu_time_
ttt_info_o
unique_bits_ e
unique_chars_,
unwinder_ e e e e
user_info_,
valid_decimal_
;115 (.
viile_status_
video_data_
video_utils_,
virtual_cpu_time_
wWindow_ e e e .
write_allowed_

System Input/Output Modules
ansi_tape_10_0 e
audit. e e e
bisync_ e
CTOSS_TiNE_ . . & v v v v vt i e e et s s et e enns
discard
Bl1S .. e e e e e e
hasp_host_
hasp_workstation_
ibm_pc_io_
ibm_tape_io_
ibm2780_ e
ibm3270_ e e
ibm3780_

record_stream_o
TEMOte_input_t i it e
remote_printer_
remote_punch_
remote_teleprinter_,
signal_io_ e

13928
ty_printer_ i it
viile_ . . . e e e e e e e
window_ic_,
XMOGEM_10_ v v i et e e e e e e e e

AG93-05A

11/86

Appendix A

Index

Obsolete Functions i i v v v i it v v v v A-1
decode_clock_value_ A-2
encode_clock_value_ A-5
hes_$del dir tree oo ... A-9
hes_S$delentry_file, A-10
hes_$delentry_seg A-11
hes_SQinitiate 0 oo A-11
hes_Sinitiate_count A-13
hes Sset b seg L L e e A-14
hes_$terminate_file A-16
hes_$terminate_ name, A-17
hes_S$terminate_noname0 e A-18
hes_Sterminate_sego oo A-19
hes $truncate_seg e e e . A-19
Hnk_unsnap_, A-20

.................................. i-1

xi

AG93-05A

SECTION 1
INTRODUCTION TO STANDARD SUBROUTINES

The subroutines described in this document are the basic set inciuded in the standard
Multics system. Many of the functions described here are also provided as runtime
features of Multics—supported programming languages. The user is encouraged to use
language-related facilities wherever possible.

This section presents the subroutine repertoire, organized by function into the
following categories:

Storage System, Pathname Manipulation
Storage System, Access Control and Rings of Protection
Storage System, Segment Manipulation
Storage System, Directory Manipulation
Storage System, Links and Search Facility
Storage System, Multisegment Files (MSFS)
Area Management

Clock and Timer Procedures

Command Environment Utility Procedures
Subsystem Environment Utility Procedures
Input/Qutput System Procedures

Error Handling Procedures

Data Type Conversion Procedures
Condition Mechanism

Object Segment Manipulation

Process Synchronization

Resource Control Package (RCP)

Run Units

Data Management

System Metering

Miscellaneous Procedures

Storage System, Pathname Manipulation

absolute_pathname_
converts a relative or absolute pathname into an absolute pathname.
change_default_wdir_
changes the user’s current default working directory.
change_wdir_
changes the user’s current working directory.
check_star_name_
verifies formation of entrynames according to star name rules.
expand_pathname_
converts a relative or absolute pathname into a directory name and
entryname.
find_include_file_
locates an include file via system include file search files.

1-1 AG9I3-05

find_source_file_
finds a file given a pathname and an optional suffix.
get_default_wdir_
returns pathname of user’s current default working directory.
get_equal_name_
constructs target name by substituting from entryname into equal name.
get_pdir_
returns pathname of process directory.
get_shortest_path_
shortens pathnames by replacing each directory level with the shortest
name on the directory.
get_wdir_
returns pathname of current working directory.
hes_$get_link_target
returns the target pathname of a link.
hes_$fs_get_path_name
returns pathname for a segment specified by segment number.
hes_$star_
teturns storage system type and all names that match entryname
according to star name rules.
match_star_name_
compares entryname with starname.
nd_handler_
resolves name duplication,
pathname_
constructs pathnames and archive component pathnames.
search_paths_
enables users to manipulate search lists and search segments, and (o
return directory names in which a specified entry can be found.
suffixed_name_
aids in processing suffixed names.

Storage System. Access Control and Rings of Protection

aim_check_
determines relationship between two access attributes.
aim_util_
manipulates AIM access classes and authorizations.
check_gate_access_
differentiates between not finding the gate and not having access.
compute_common_aim_ceiling_
computes the maximum athorization or access class which is in common
between two Multics systems given the definitions of their AIM
attributes.
convert_aim_atiributes_
converts representation of process’/segment's access authorization/class
into character string of defined form.
convert_authorization_
converts an authorization back and forth between its binary and
character-siring representation.
copy_acl_
copies the ACL from one segment, MSF, or directory to another.

1-2 AG93-05

cross_ring_io_%$allow_cross
aliows use of an 1/0 switch via cross_ring_ attachments from an outer
ring.
cu_Slevel_get
obtains current ring validation level.
cu_Slevel_set
sets current ring validation level
cv_dir_mode_
converts a character string containing access modes for directories into a
bit string used by the ACL entries.
cv_mode_
converts a character string containing access modes for segments into a
bit string used by the ACL entries.
cv_userid_
converts a character string containing an abbreviated User_id into one
containing all three components.
fs_util_$add_acl_entries
used to add to the Access Control List of an entry.
fs_util_$add_extended_acl_entries
used to add to the Extended Access Control List of standard entry.
fs_util_$delete_acl_entries
deletes a member of an entry’s Access Control List.
fs_util_$get_ring_brackets)
returns the ring brackets of an entry.
fs_util_$get_user_access_modes
returns the user’s effective access mode and extended access mode on an
entry.
fs_util_S$list_acl
list the components of an entry’s Access Control List.
fs_util_$list_extended_acl
returns the contents of the Extended Access Control List of a standard
entry.
fs_utii_$repiace_aci
used to replaced Access Control List components for an entry.
fs_util_$replace_extended_acl
used to replace Extended Access Control List components for a standard
entry.
fs_util_$set_ring_brackels
sets the ring brackets for an entry.
get_authorization_
returns authorization value of the process.
get_group_id_
returns access control name of current user.
get_initial_ring ’
obtains a process’ initial ring number.
get_max_authorization_
returns maximum authorization value of the process.
get_privileges_
Teturns process’ access privileges.
get_process_authorization_ |
returns the process’s current authorization. |
gel_ring_
returns number of current protection ring.

1-3 AG93-05

get_system_aim_attributes_

returns a structure describing the AIM attributes defined on the host

system.
hes_$add_acl_entries

adds or changes ACL entries on a segment.
hes_$add_dir_acl_entries

adds or changes ACL entries on a directory.
hes_$add_dir_inacl_entries

adds specified access modes to initial ACL for directories.
hes_$add_inacl_entries

adds specified access modes to initial ACL for segments.
hcs_$delete_acl_entries

deletes all or part of an ACL on a segment.
hes_$delete_dir_acl_entries

deletes all or part of an ACL on a directory.
hes_$delete_dir_inacl_entries

deletes specified entries from initial ACL for directories.
hes_%$delete_inacl_entries

deletes specified entries from initial ACL for segments.
hes_$fs_get_mode

returns access control mode for a given segment relative to the current

validation level.
hes_$get_access_class

returns access class for a directory.
hes_$get_access_class_seg

returns access class for a segment.
hes_$get_dir_ring_brackets

returns ring brackets for specified subdirectory.
hcs_$get_ring_brackets

returns ring brackets for specified segment.
hes_$get_user_effmode

returns a user’s effective access mode to a branch.
hes_$list_acl

returns all or part of an ACL on a segment.
fics_%list_dir_acl

returns all or part of an ACL on a directory.
hes_$list_dir_inacl

returns all or part of initial ACL for directories.
hes_$list_inacl

returns all or part of initial ACL for segments.
hes_S$replace_acl

replaces one ACL on a segment with another.
hcs_$replace_dir_acl

replaces one ACL on a directory with another.
hes_$replace_dir_inacl

replaces initial ACL with user—provided one for directories.
hes_$replace_inacl

replaces initial ACL with user—provided one for segments.
hes_$set_dir_ring_brackets

sets ring brackets for specified directory.
hes_$set_ring_brackets

sets ring brackets for specified segment.
msf_manager_%$acl_add

adds the specified access modes to the ACL of the muitisegment file.

1-4 AG93-05

msf_manager_$acl_delete
deletes ACL entries from the ACL of a multisegment file.
msf_manager_$acl_list
returns the access control list (ACL) of a multisegment file.
msf_manager_$acl_replace
replaces the ACL of a multisegment file.
read_allowed_
determines if AIM allows read operations on object given process’
authorization and object’s access class.
read_write_allowed_ .
determines if AIM allows read/write operations on object given process’
authorization and object’s access class.
ring0_get_
supplies name, segment number, and entry point information about ring
0 segments.
ring_zero_peek_
copies information out of an inner-ring segment.
translate_aim_attributes_
translates the AIM attributes in an authorizatin or access class from one
system’s definition to another system’s definition where possible.
write_allowed_
determines if AIM allows write operations on object given process’
authorization and object’s access class.

Storage System, Segment Manipulation

adjust_bit_count_

sets bit count of a segment to last nonzero character.
archive_

accesses, lists, or obtains information about archive components.
delete_

deietes segments.
di_handler_

issues queries for situations involving deletion.
dump_segment_

prints a dump formatted the same way as the dump_segment command.
find_include_file_

locates an include file via system include file search rules.
find_source_file_

finds a file given a pathname and an optional suffix.
fs_util_$chname_file

changes the name of an entry.
fs_util_$copy

used to copy an entry.
fs_util_$delentry_file

deletes the name of an entry.
fs_util_$get_bit_count

returns the number of useful bits in an entry.
fs_util_$get_max_length

returns the maximum length setting for an entry.
fs_util_$get_switch

returns the value of a storage system switch for an entry.
fs_util_S$get_type

returns the type of a specified entry.

1-5 AG93-05

fs_util_$list_switches
returns a list of switches supported by the entry type.
fs_util_$list_switches_for_type
returns a list of switches for a particular type of entry.
fs_util_$make_entry
constructs an entry variable to a specified suffix support subroutine
entry for a specified extended entry.
fs_util_$make_entry_for_type
constructs an entry variable to a specified suffix support subroutine
entry for a specified extened entry.
fs_util_$set_bit_count
sets the number of bits considered useful for an entry.
fs_util_$set_max_length .
sets the maximum length that a particular entry can be.
fs_util_$set_switch
sets the value of a storage system switch for an entry.
fs_util_$suffix_info
returns information about an entry’s type.
fs_util_$suffix_info_for_type
returns information about the characteristics of an entry that is of a
given type.
hes_$append_branch
creates a segment and initializes its ACL.
hes_$change_be
provides an indivisible method of changing the hitcount of a segment,
hcs_$change_be_seg
provides an indivisible method of changing the bitcount of a segment.
hes_$chname_file
changes the entryname on a specified entry.
hes_$chname_seg
changes the entryname on a segment, given a pointer to the segment.
hes_$create_branch_
creates a segment, sets a number of attributes.
hes_$fs_get_path_name
returns pathname for a segment specified by segment number.
hes_$fs_get_ref_name
returns a reference name for a segment specified by segment number.
hes_$fs_get_seg_ptr
returns a segment number for a segment specified by a reference name.
hes_$fs_move_file
moves contents of one segment to another, given pathnames of the
segments.
hes_$fs_move_seg
moves contents of one segment tc another, given pointers to the
segments.
hcs_$get_author
returns author of segment.
hes_$get_be_author
returns bit count author of a segment.
hes_S$get_max_length
returns maximum length of segment in words, given directory name and
entryname.
hes_$get_max_length_seg
returns maximum length of segment in words, given a pointer to a
segment.

1-6 AG93-05

hes_$get_safety_sw_seg
returns safety switch value of segment.
hes_$get_uid_file ‘
returns the unique identifier of a storage system entry.
hes_$get_uid_seg
returns the unique identifier associated with a segment.
hes_S$initiate
when given a pathname and a reference name, makes known the
segment defined by the pathname initiates the given reference name,
and increments the count of initiated reference names for the segment.
hes_$initiate_count
when given a pathname and a reference name, causes the segment
defined by the pathname to be made known and the given reference
name initiated.
hes_$make_entry
makes a segment known and returns the value of a specified entry
point.
hes_$make_ptr
makes a segment known and returns a pointer to a specified entry
point.
hes_$make_seg
creates a new segment, makes it known to the process and returns a
pointer.
hes_$set_be
sets the bit count and bit count author of a segment.
hes_$set_be_seg
sets the bit count and bit count author of a segment, given a pointer
to the segment.
hes_$set_entry_bound”
sets entry point bound of segment.
hes_$set_entry_bound_seg
sets entry point bound of segment.
hes_$set_max_length
sets maximum length of segment.
hes_$set_max_length_seg
sets maximum length of segment.
hes_§$set_safety_sw
sets safety switch of segment.
hes_$set_safety_sw_seg
sets safety switch of segment.
hes_$status_
returns various items of information about a specified directory entry.
hes_$status_long
returns most user—accessible information about an entry.
hes_$status_minf
returns the bit count and entry type, given the name of a directory and
an eniry.
hes_$status_mins
returns the bit count and entry type, given a pointer to the segment.
hes_$truncate_file
truncates a file or segment to a given length, given a pathname.
hes_$truncate_seg
truncates a file or segment to a given length, given a pointer.

1-7 AG93-05

initiate_file_
contains entry points for making a segment or archive component
known with a null reference name.
mhes_$get_seg_usage
returns the number of page faults taken on a segment since its creation.
nd_handler_
resolves name duplication.
| pascal_util_
| provides interfaces for establishing and removing an on unit for the
| current procedure.
qedx_
provides a subroutine interface to the Multics gedx Editor for use by
subsystems wishing to edit arbitrary strings of ASCII text.
sort_seg_
provides entry points for sorting segments and character strings.
term
removes a segment from the address space, unsnapping any subroutine
linkage to it.
terminate_file_
performs common operations often necessary after a program finishes
using a segment.
tssi_$clean_up_segment
is used by cleanup procedures in the translator.
tssi_S$finish_segment
makes a scgment unknown, sets bi
tssi_$get_segment
prepares a segment for use as output from the translator.

Storage System, Directory Manipulation

change_default_wdir_

changes the user’s current default working directory.
change_wdir_

changes user’s current working directory.
copy_dir_

copies a subtree from one point in the hierarchy to another.
delete_

deletes directories.
dl_handler_

issues queries for situations involving deletion.
fs_util_$chname_file

changes the name of an entry.
fs_util_$delentry_file

deletes the name of an entry.
fs_util_$get_bit_count

returns the number of useful bits in an entry.
fs_util_$get_switch

returns the value of a storage system switch for an entry.

11/86 1-8 AG93-05A

fs_util_S$get_type
returns the type of a specified entry.
fs_util_$list_switches
returns a list of switches supported by the entry type.
fs_util_$list_switches_for_type
returns a list of swiiches for a particular type of entry.
fs_util_$make_entry
constructs an entry variable to a specified suffix support subroutine
entry for a specified extended entry.

11/86 1-8.1 AG93-05A

This page intentionally left blank.

11/86 AG93-05A

fs_util_$make_entry_for_type

constructs an entry variable to a specified suffix support subroutine

entry for a specified extened entry.
fs_util_$set_bit_count

sets the number of bits considered useful for an entry.
fs_util_3$set_switch

sets the value of a storage system switch for an entry.
fs_util_S$suffix_info

returns information about an entry’s type.
fs_util_S$suffix_info_for_type

returns information about the characteristics of an entry that is of a

given type.
get_default_wdir_

returns pathname of user’s current default working directory.
get_pdir_

returns pathname of process directory.
get_wdir_

returns pathname of current working directory.
hes_$append_branchx

creates a directory and initializes its ACL.
hes_$append_link

creates a link to a directory.
hes_$chname_file

changes the entryname on a specified entry.
hcs_$create_branch_

creates a directory, sets a number of attributes.
hes_$get_author

returns author of a directory.
hes_$get_bc_author

returns bit count author of a directory.
hes_3$get_uid_file

returns the unique identifier of a storage system eniry.
hes_$get_safety_sw

returns safety switch value of directory.
hecs_$quota_move

moves all or part of quota between two directories.
hes_$quota_read

returns record quota and accounting information for directory.
hes_$set_be

sets multisegment fiie indicator for a directory.
hcs_$set_safety_sw

sets safety switch of directory.
hcs_$status_

returns various items of information about a specified directory entry.
hes_$status_long

returns most user-—accessible information about an entry.
hes_$status_minf

returns the bit count and entry type, given the name of a directory and

an entry.
list_dir_info_

lists the values in an entry in a directory information segment.

mdc_

provides entrypoints for master directory manipulation.
nd_handler_

resolves name duplication.

1-9 AG93-05

sweep_disk_
walks a given subroutine over a subtree of the directory heirarchy.

Storage System, Links and Search Facility

cv_entry_

converts a virtual entry to an entry value.
cv_ptr_

converts a virtual pointer to a pointer value.
delete_

unlinks links.
get_entry_name_
returns associated name of externally defined location or entry point in
segment.
get_external_variable_
obtains the location and size of an external variable.
hes_%$append_link
creates a link to a directory.
hes_$fs_get_refname
returns a reference name for a segment specified by segment number.
hes_$fs_get_seg ptr
returns a segment number for a segment specified by a reference name.
hes_$get_author
returns author of a link.
hcs_$get_search_rules
returns user’s current search rules.
hes_$get_system_search_rules
prints site-defined search rule keywords.
hes_$initiate_search_rules
allows user to specify search rules.
hes_$make_entry
makes a segment known and returns the value of a specified entry
point.
hes_$make_plr
makes a segment known and returns a pointer to a specified entry
point.
search_paths_
enables users to manipulate search lists and search segments, and 1o
return directory names in which a specified entry can be found.
set_ext_variable_
allows the caller to look up an external variable by name.

torage Systein, Multisegment Files (MSFs)

msf_manager_
provides the means for multisegment files to create, access, and delete
components, truncate the file and control access.
tssi_$clean_up_file
is used by cleanup procedures in the translator.
tssi_$finish_file
makes a MSF unknown, sets bit count and ACL.
tssi_$get_file
prepares a MSF for use as output from the translator.

1-10 AG93-05

Area Management

area_info_

returns information about an area.
cu_$grow_stack_frame

allows caller to allocate temporary storage.
cu_9%shrink_stack_frame

allows caller to deallocate temporary storage.
define_area_

initializes a region of siorage as an area.
gel_external_variable_

obtains the location and size of an external variable.
get_system_free_area_

returns pointer to system free area for calling ring.
get_temp_segment_

acquires a single temporary segment in the process directory.
get_temp_segments_

acquires temporary segments in the process directory.
release_area_

cleans up an area.
Telease_temp_segment_

returns the temporary segment acquired by get_temp_segment_ to the

free pool.
release_temp_segments_

returns temporary segments to the free pool.
set_ext_variable_

allows the caller to look up an external variable by name.
ssu_S$get_area

obtains an area for use by a subsystem invocation.
ssu_%get_temp_segment

obtains a temporary segment for use by a subsystem invocation.
ssu_$release_area

releases an area previously obtained by a caii to ssu_$get_area.
ssu_$release_temp_segment

releases a temporary segment previously acquired by a «call o

ssu_%get_temp_segment.
translator_temp_

provides a temporary storage management facility for translators.
value_

reads and maintains value segments containing name-value pairs across

process boundaries.

Clock and Timer Procedures

clock_
reads the system clock.
convert_date_to_binary_
converts an ASCII string to binary time.
cpu_time_and_paging_
returns virtual CPU time used and paging activity of the process.
cv_fstime_ |
returns a Multics clock value. |
date_time_
converts binary time to an ASCII string.

1-11 AG93-05

decode_clock_value_
converts a binary time value into an ASCII string.
encode_clock_value_
converts a month, day, year, hour, minute, second, microsecond, and
time zone into a system clock reading.
hes_$get_process_usage
retrieves system resource usage information.
request_id_
used by the absentee facility, 1/0O daemons, and other queue-driven
facilities.
timer_manager_
allows user process interruption after specified amount of CPU or
real-time passes.
total_cpu_time_
returns total CPU time used by this process.
virtual_cpu_time_
returns virtual CPU time used by this process.

Command Environment Utility Procedures

abbrev_

subroutine interface to the abbrev command.
ask

flexible terminal-input facility for numbers and strings.
command_query_

asks questions.
cu_%af_arg count

returns to caller number of arguments passed by its caller.
cu_$af_arg_count_rel

same as hcs_$af_arg _count but for any argument list.
cu_%af_arg_ptr

returns a poiniter to the character-string argument specified by the

argument number.
cu_%af_arg_pir_rel

permits referencing of arguments in any specified argument ISt
cu_%af_return_arg

makes available the return argument of an active function.
cu_%af_return_arg_rel

same as hcs_$af_return_arg but for any argument list.
cu_J%arg_count

returns number of arguments supplied to the called procedure.
cu_S%arg_list_ptr

returns a PL/I pointer to the argument list of its caller.
cu_%arg_ptr

returns- a pointer to a specified argument in current argument list.
cu_S%arg_ptr_rel

permits referencing of arguments in any specified argument list.
cu_$caller_ptr

allows a routine to obtain a pointer to its caller.
cu_%cp

calls the command processor to execute a command line.
cu_Jevaiuate_aciive_siring

expands an active string.

1-12 AG93-05

11/86

cu_$get_command_processor
returns entry value of procedure invoked by cu_Scp.
cu_3%get_evaluate_active_string

returns entry value of procedure currently being invoked by call to

cu_S%evaluate_active_string.
cu_%get_ready_mode

returns value of static ready mode.
cu_%get_ready_procedure

returns entry value of ready procedure.
cu_$ready_proc

used to call ready procedure.
cu_S$reset_command_processor

resets procedure invoked by calls to cu_$cp.
cu_S%reset_evaluate_active_string

resets procedure invoked by calls to cu_S$evaluate_active_string.

cu_$reset_ready_procedure
resets procedure invoked by calls to cu_$ready_proc.
cu_$set_command_processor

allows a subsystem developer to replace the standard command processor

with a different procedure.
cu_$set_evaluate_active_string

allows a subsystem developer to replace the standard active string

evaluator with a different procedure.
cu_3$set_ready_mode

returns value of internal static ready flags.
cu_$set_ready_procedure

allows user to change his ready procedure.
cu_$stack_frame

returns a pointer to the stack frame of its caller.
cu_9$stack_frame_size

returns the size in words of the stack frame of the caller.
decode_descriptor_

extracts information from argument descriptors.
find_bit_

performs common bit string search operations.
find_char_

performs the function of the PL/I search and verify builtin functions.

get_process_id_ v
returns identification of current process.
get_temp_segment_

acquires a single temporary segment in the process directory.

get_temp_segments_

acquires temporary segments in the process directory.
hes_$history_regs_get

returns current state of per—process history register switch.
hes_S$history_regs_set

controls state of per—process history register switch.
lex_string_

parses ASCII character strings.
read_password_

reads user’s password from the terminal.
release_temp_segment_

returns the temporary segment acquired by get_temp_segment_ to the

free pool

1-13

AG93-05A

release_temp_segments_
returns temporary segments to the free pool.
requote_string_
doubles all quotes within a character string and returns the result
enclosed in quotes.
search_paths_
enables users to manipulate search lists and search segments, and to
return directory names in which a specified entry can be found.
terminate_process_
terminates the process in which it is called.

Subsystem Environment Utility Procedures

gedx_
provides a subroutine interface to the Multics qedx Editor for use by
subsystems wishing to edit arbitrary strings of ASCII text.
search_paths_
enables users to manipulate search lists and search segments, and to
return directory names in which a specified entry can be found.
ssu_%$abort_line
prints an error message and aborts the ‘execution of the current
subsystem request line.
ssu_$abort_subsystem
aboris the current invocation of & subsystem, optionally printing
error message.
ssu_%$add_dir_info ’
adds a new directory to the list of info directories being searched by
this subsystem invocation.
ssu_%$add_request_table
adds a new request table to the list of request tables being searched by
this subsystem invocation.
ssu_S$apply_request_util
a utility procedure for implementing subsystem "apply" requests.
ssu_%arg_count
determines how many arguments a subsystem request received.
ssu_%arg_list_ptr
gets a pointer to a subsystem request’s argument list.
ssu_$arg_ptr
is used by a procedure implementing a subsystem request to access its
arguments.
ssu_$create_invocation
creates an invocation of a subsystem.
ssu_3%deiete_info_dir
deletes a directory from the list of info directories being searched.
ssu_$delete_request_table
deletes a request table from the list of tables being searched.
ssu_$destroy_invocation
destroys a subsystem invocation.
ssu_%$evaluate_active_string
interprets a single active request string in a subsystem.

9
B

11/86 1-14 AG93-05A

ssu_3%execute_line

interprets a single request line.
ssu_%execute_start_up

executes the current subsystem’s start_up exec_com.
ssu_J%execute_string

executes a request string, usually expressed as an in-line constant or
character string variable.

ssu_$get_area
obtains an area for use by a subsystem invocation.

11/86 1-14.1 AG93-05A

This page intentionally left blank.

11/86 AG93-05A

ssu_$get_debug_mode
gets the current state of subsystem debug mode.
ssu_%$get_default_procedure
gets the default value for a replaceable procedure value.
ssu_%$get_default_rp_options
returns the defauit request processor options for the current subsystem.
ssu_J%get_ec_search_list
returns the name of the search list currently being used to find
subsystem exec_com files.
ssu_%get_ec_subsystem_ptr
returns the pointer currently used to implement the "referencing_dir”
rule in the search list for subsystem exec_coms.
ssu_$get_ec_suffix
returns the suffix currently being used for subsystem exec_com files.
ssu_%$get_info_ptr
gets the info_ptr for this subsystem invocation.
ssu_9$get_invocation_count
determines the invocation index of the current subsystem invocation.
ssu_$get_level_n_sci_ptr '
examines the state of other invocations of the subsystem by returning
pointers for the other invocation.
ssu_$get_prev_sci_ptr
examines the state of other invocations of the subsystern by returning
pointers for the immediately previous invocation.
ssu_$get_procedure
gets the current value for a replaceable procedure value in the specified
subsystem invocation.
ssu_$get_prompt
gets the string currently being used as a prompt.
ssu_$get_prompt_mode
gets the current state of the prompting mode.
ssu_%$get_ready_mode
" determines the current state of Teady processing.
ssu_%get_request_name
determines the primary name of the subsystem request currently being
executed.
ssu_$get_reqeust_processor_options
returns the request processor options presently in effect for the current
subsystem.
ssu_%get_subsystem_and_request_name
acquires a string identifying the subsystem and the current request.
ssu_$get_subsystem_name :
determines the name of the subsysiem owning the specified invocation.
ssu_%get_subsystem_version
determines the version number of the subsystem.
ssu_9$gel_temp_segment
oblains a temporary segment for use by the current subsystem
invocation.
ssu_$list_info_dirs
lists the info directories currently in use by this subsystem invocation.
ssu_3%list_request_tables
lists the request tables currently in use by this subsystem invocation.
ssu_$listen
implements the subsystem listener.

1-15 AG93-05

ssu_$print_blast
prints a "blast" message announcing a new version of the subsystem.
ssu_$print_message
prints informational, warning, or nonfatal error messages.
ssu_$record_usage
makes an entry in the usage segment to record a use of the subsystem.
ssu_$release_area
releases an area previously obtained by a call to ssu_$get_area.
ssu_$release_temp_segment
releases a temporary segment previously obtained by a call to
ssu_$get_temp_segment.
ssu_S$reset_procedure
resets a replaceable procedure in the current subsystem to its default
value.
ssu_$reset_request_processor options
Tesets the request processor options presently in effect to their default
values.
ssu_S$return_arg
is used by a subsystem request procedure to determine whether it has
been invoked as an active request.
ssu_3%set_debug_mode
sets debug mode for the subsystem.
ssu_%set_ec_search_list)
sets the name of the search list used to find subsysiem exec_com files.
Ssu_Sset_ec_subsysiem_pir
sets the directory used to impiement the "referencing_dir” rule in the
search list for subsystem exec_coms.
ssu_%set_ec_suffix
sets the suffix for subsystem exec_com files.
ssu_$set_info_dirs
sets the list of info directories searched by this subsystem invocation.
ssu_%$set_info_ptr
sets the info_ptr for this subsystem invocation.
ssu_$set_procedure
sets the current value of 2 replaceable procedure in this subsystem
invocation.
ssu_$set_prompt
sets the prompt string for the subsystem.
ssu_$set_prompt_mode
sets the prompting mode for the subsystem.
ssu_$set_ready_mode
turns ready message processing in the subsystem listener on or off.
ssu_$set_request_processor_options
changes the request processor options presently in effect.
ssu_3$set_request_tables
sets the list of requést tables searched by the subsystem.
ssu_$standalone_invocation
creates a “standalone"” subsystem invocation for wuse by Multics
commands/active functions which can also be wused as subsystem
requests.
sort_seg_
provides eniry poinis for soriing segments and character strings.

1-16 AG93-05

Input/Output System Procedures

cb_menu_
allows a COBOL program to use the Multics menu facility (menu_).
cb_window_
is the basic video interface subroutine used by COBOL to
create/destroy/change windows.
convert_dial_message_
controls dialed terminals.
cross_ring_io_$aliow_cross
allows use of an 1/0 switch via cross_ring_ attachments from an outer
ring.
dial_manager_
interfaces to the answering service dial facility.
display_file_value_
outputs information about a file on a user—supplied switch.
dprint_
adds print, punch or plot requests to the specified queue.
find_partition_
obtains information about a disk partition located on some mounted
storage system disk.
format_document_
fills and adjusts text.
ft_menu_
allows a FORTRAN program to use the Multics menu facility (menu_).
ft_window_
is the basic video interface subroutine to be used by FORTRAN to
create/destroy/change windows.
get_line_length_
returns the line length of an I/0 switch.
hes_$force_write
writes pages from memory to disk.
hphes_$read_partition
reads words of data from a specified disk partition on some mounted
physical storage disk.
hphcs_$write_partition
writes words of data into a specified disk partition on some mounted
physical storage-system disk.
ioa_
produces formatted printed output.
iod_info_
extracts information from the 1/0 daemon tables for commands and
subroutines submitting 1/0 daemon requests.

iox_

interfaces with the Multics 1/0 system.
menu_

provides menu display and selection services,
mode_string_

manipulates mode strings; can parse, analyze, and create them.
phes_$read_disk_label

reads the label of a storage-system disk volume.
pll_io_

extracts information about PL/I files.
shes_$set_force_write_limit

fixes limit on number of pages to be written to disk.

1-17 AG93-05

11/86

timed_io_
performs 1/0 operations and returns an error code if it cannot
complete its operation within the time specified.

ttt_info
extracts information from the terminal type table (TTT).

vfile_status_
returns information about a storage system file supported by the vfile_
1/0 module.

video_data_

is a data segment containing information about the video system.
video_utils_
provides interfaces for activating and de-activating the video system.
window '

provides a terminal interface to video terminal operations.

Error Handling Procedures

active_fnc_err_

prints formatted error message and signals active_function_error condition.
com_err_

prints a standard status message for command errors.
command_query_

asks questions.
condition_

establishes a handler for a condition in the calling block activation.
convert_status_code_

returns short and long status messages for given status code.
cu_$%cl

teenters command level.
cu_S%$get_cl_intermediary

returns procedure invoked by cu_$cl.
cu_$reset_cl_intermediary

resets procedure invoked by calls to cu_$cl.
cu_J%set_cl_intermediary

sets procedure invoked by cu_$cl
CV_error_

converts an error name to an error code.
dl_handler_

issues queries for situations involving deletion.
find_bit_

performs common bit string search operations.
find_char_

performs the function of the PL/I search and verify builtin functions.
hcs_$get_page_trace

retrieves trace of process’ page faults from the supervisor.
lex_error_

generates compiler-style error messages.
nd_handler_

resolves name duplication.
print_cobol_error_

prints error messages produced by COBOL programs.
causes the handler currently established for the given condition in the
calling block activation to be disestablished.

1-18 AG93-05A

ssu_$abort_line
prints an error message and aborts the execution of the current
subsystem request line.

ssu_$abort_subsystem
aborts the current invocation of a subsystem, optionally printing an
error message.

sub_err_
reports errors detected by other subroutines.

Data Type Conversion Procedures

add_bit_offset_
returns pointer to bit relative to bit referenced by input pointer.
add_char_offset_
returns pointer to character relative to character referenced by input
pointer.
arithmetic_to_ascii_
formats any arithmetic value.
ascii_to_bed_
performs isomorphic (one-to~one reversible) conversion from ASCII to
BCD.
ascii_to_ebcdic_
performs conversion from ASCII to EBCDIC.
assign_
assigns specified source value to specified target performing required
conversion.
bed_to_ascii
performs isomorphic (one-to-one rteversible) conversion from BCD to
ASCIL
bit_offset_
returns bit offset of pointer.
char_offset
. returns character offset of pointer.
char_to_numeric._
converts user-supplied string to a numeric type.
convert_date_to_binary_
converts ASCII string to binary clock reading.
cv_bin_
converts binary representation of an integer to 12-character ASCII
string.
cv_dec_
converts an ASCII representation of a decimal integer to fixed bin(35).
cv_dec_check_
same as cv_dec_ except that a code is returned indicating the possibility
of a conversion error.
cv_dir_mode_
converts a character string containing access modes for directories into a -
bit string used by the ACL entries.
cv_mode_
converts a character string containing access modes for segments into a
bit string used by the ACL entries.
cv_entry_
converts a virtual entry to an entry value.

11/86 1-19 AG93-05A

11/86

cv_float_
converts an ASCII representation of a floating point number and returns
a single precision floating point representatio$
cv_float_double_
converts an ASCII representation of a floating point number and returns
a double precision floating point representation.
cv_hex_
converts an ASCII representation of a hexadecimal integer to fixed
binary (35).
cv_hex_check_
same as cv_hex_ except that a code is returned indicating the possibility
of a conversion error.
cv_oct_ '
converts an ASCII representation of an octal integer to fixed binary
(35) of an octal integer.
cv_oct_check_ .
same as cv_oct_ except that a code is returned indicating the possibility
of a conversion error.
cv_ptr_
converts a virtual pointer to a pointer value.
date_time_
converts a clock reading to an ASCII string.
decode_clock_value_
converts a binary time value into an ASCII siring.
ebedic_to_ascii_
performs conversion from EBCDIC to ASCIL
encode_clock_value_
converts a month, day, year, hour, minute, second, microsecond, and
time zone into a system clock reading.
find_bit_
performs common bit string search operations.
find_char_
performs the function of the PL/I search and verify builtin functions.
lex_string_
parses ASCII character strings.

mir_

moves a character string by copying the characters from left to right.
mrl

moves a character string by copying the characters from right to ieft.
mvt_

provides for translation of character strings using translations which are
not known at compile time.

numeric_to_ascii_
formats a real decimal floating-point number.

numeric_to_ascii_base_
formats a real decimal floating-point number based in any number
system from 2 to 16.

parse_channel_name_
parses a character string that is intended to be an IOM channel
number.

parse_file_
parses ASCII text into symbols and break characters.

prini_daia_
formats and prints the output of a PL/I put data statement.

1-20 AG93-05A

set_bit_offset_
returns pointer to specified bit in segment referenced by input pointer.
set_char_offset_
returns pointer to specified character in segment referenced by input
pointer.
sort_seg_
provides entry points for sorting segments and character sirings.
translate_bytes_to_hex9_ |
translates a bit string to a character string containing the hexadecimal |
representation of the bits. |
unique_bits_)
returns a unique bit string.
unique_chars_
converts a unique bit string to a unique character string.
valid_decimal_
checks decimal data for validity.

Condition Mechanism

add_epilogue_handler_
adds to the list of handlers called when a process or run unit is
terminated.
condition_ |
establishes a handler for a condition in the calling block activation. |
condition_interpreter_
prints formatted error message for most conditions.
continue_to_signal_
enables on unit that cannot completely handle condition to tell signalling
program to search stack for other on units for condition.
exponent_control_
provides control over system’s behavior in event of computational
overflow or underfiow.
find_condition_frame_
returns a pointer to the most recent condition frame.
find_condition_info_
returns information about condition when signal occurs.
hes_$get_exponent_control
returns flag settings that control handling of overflow and underflow
conditions.
hes_$set_exponent_control
changes flag settings that control handling of overflow and underflow
conditions.
heap_manager_$push_heap_level
creates a new heap level, allocates the heap header and chains the
previous heap to the current heap.
heap_manager_$pop_heap_level
resets the heap to the previous level freeing the old heap and any
variables allocated therein.
heap_manager_$get_heap_header
returns a pointer to the heap header for the specified execution level
heap_manager_$get_heap_level
returns the current execution level from the current heap header.
heap_manager_$get_heap_area
returns a pointer to the heap area for the specified level

11/86 1-21 AG93-05A

prepare_mc_restart_
checks machine conditions for restartability, and permits modifications to

them for user changes to process execution before condition handler
returns.

sct_manager_
manipulates the System Condition Table; can set a static handler, get a
pointer to one, and call one.
signal_
signals occurrence of given condition.
sus_signal_handler_
is the static condition handler for the sus_ condition.
unwinder_
performs nonlocal goto on Multics stack.

Object Segment Manipulation

component_info_

returns information about a component of a bound segment.
create_data_segment_

creates a standard object segment from PL/I data.
decode_definition__

returns information about a definition in the object segment.
get_bound_seg_info_

supplies structural information about a bound segment.
get_definition_

~ returns pointer to specified definition within an object segment.

get_entry_arg_descs_

returns information about the calling sequence of an entry point,
gel_entry_point_dcl_

returns attributes needed to construct a PL/I declare statement.

object_info_
prints structural and identifying information extracted from object
segment.

stu_

retrieves information from the runtime symbo! table secticn of an
object segment.
translator_info_

supplies source segment information for use by translators building
object segments.

tssi_
simplifies use of storage system by language translators.

Process Synchronization

create_ips_mask_

returns a bit string that can be used to disable specified ips interrupts.
get_lock_id_

returns a 36-bit unique identifier to be used in setting locks.
hes_$get_ips_mask

returns the value of the current ips mask.
hes_$reset_ips_mask

replaces the entire ips mask with a specified ips mask.

11/86 1-22 AG93-05A

11/86

hcs_$set_ips_mask
replaces the entire ips mask with a specified ips mask.
hes_$validate_processid

determines whether a 36-bit quantity is the unique identifier of a

process which is currently active on the system.
hcs_$wakeup

sends interprocess communication wakeup to blocked process over

specified event channel.
hphes_$ips_wakeup

sends a specified IPS signal to a specified process.
ipc_

user interface to Multics interprocess communication facility.
set_lock_

allows multiple processes to synchronize their use of shared data.

Resource Control Package (RCP)

cv_rcp_attributes_

manipulates RCP resource attribute specifications and descriptions.

interpret_resource_desc_

displays selected contents of RCP resource description.
resource_control_

provides interface to Multics resource control facility.
resource_info_

returns selected information about RCP resource types defined

system.

Run Units

add_epilogue_handler_
adds to the list of handlers called when a wprocess or ru
terminated.
execute_epilogue_
cleans up language I/0 buffers in conjunction with run units.
run_
sets up special environment for executing programs.
run_S$environment_info
returns information about run environment.

Data Management

before_journal_manager_

on the

provides the means to manipulate and obtain information about before

journals.
file_manager__

interface between the data storage and retrieval services of data

management and Multics file access and control mechanisms.
transaction_manager_

begins and ends transactions on behalf of users, returns information

about transactions, and recovers transactions after system failure.

1-23

AG93-05A

System Metering

meter_gate_
returns data about specific gate entries to the caller.

spg_util_ .
collects metering information from the Multics supervisor and subtracts
it from the previous sample taken.

spg_ring_0_info_
returns information about the virtual CPU time spend in the three main
gates into ring zero.

Miscellaneous Procedures

abbrev_
subroutine interface to the abbrev command.
gel_ec_version_
returns the version number of an exec_com.
hash_
maintains a hash table; contains entry points that initialize a hash table
and insert, delete, and search for entries in the table.
hash_index_
computes the value of a hash function.
help_
locates info segs.
qedx_
provides a subroutine interface to the Multics gedx Editor for use by
subsystems wishing to edit arbitrary strings of ASCII text.
random_
returns random numbers.
rehash_
reformats a hash table of the form maintained by hash_ into a
different size.
send_mail_
sends a message and an optional wakeup to a user.
send_ressage_
sends an interactive message to be received by the message facility.
set_ext_variable_
allows the caller to look up an external variable by name.
sOoTt_items_
provides a general sorting facility.
sort_items_indirect_
provides a facility for sorting a group of data items.
SOTt_seg_
provides entry points for sorting segments and character strings.
weep_disk_ .
walks a given subroutine over a subtree of the directory hierarchy.
system_info_
provides user with information on system parameters.

11/86 ' 1-24 AG93-05A

teco_get_macro_
called by teco to search for an external macro.
ttt_info_
extracts information from the terminal type table (TTT).
user_info_
returns miscellaneous information about the current user.
value_
reads and maintains value segments containing name-value pairs.

11/86 1-25 AG93-05A

SECTION 2
SUBROUTINE DESCRIPTIONS

This section contains descriptions of the Multics subroutines and functions, presented
in alphabetic order. The term "subroutine” in this section refers alike 1o subroutines
and functions, where the difference is not important. The individual descriptions
specify for each name whether it represents a subroutine or a function. Each
description contains the name of the subroutine, discusses the purpose of the
subroutine, lists the entry points, and describes the correct usage for each entry point.
Notes and examples are included when deemed necessary for clarity. The discussion
below briefly describes the context of the various divisions of the subroutine
descriptions.

NAME

The "Name" heading shows the acceptable name by which the subroutine is calied.
The name is usually followed by a discussion of the purpose and function of the
subroutine and the results that may be expected from calling it.

ENTRY

Each "Entry" heading lists an entry point of the subroutine call. This heading may or
may not appear in a subroutine description; its use is entirely dependent upon the
purpose and function of the individual subroutine.

USAGE

The “Usage" section contains a sample declare statement and a sample call (or asign)
statement expressed in PL/I notation. It is to be assumed, unless otherwise specified,
that arguments are required.

ARGUMENTS

Arguments described under the "Usage" heading are explained in this section.
Arguments that must be defined before calling the subroutine are identified as Input;
those arguments defined by the subroutine are identified as Qutput.

NOTES

Comments or clarifications that relate to the subroutine as a whole (or to an entry
point) are given under the "Notes" heading.

OTHER HEADINGS

Additional headings are used to introduce specific subject matter. Additional headings
used include "Examples” (for sample.code fragments) and "Structure" (used to define
the structure of an include file). :

2-1 AG93-05

STATUS CODES

The standard status codes returned by the subroutines are further identified, when
appropriate, as either storage system or I/0 system. Certain codes have been included
in the individual subroutine description if they have a special meaning in the context
of that subroutine; no attempt is made to show all of the possible error codes.

A list of system status codes and their meanings appears in the Programmer’s
Reference Manual. The reader should not assume that the code(s) given in a particular
subroutine description are the only ones that can be returned. Since a code of 0
means that the given operation was executed successfully, this value is omitted from
the list of possible codes under "code" in the "where" list.

TREATMENT OF LINKS

Generally, whenever the programmer references a link, the subroutine action is
performed on the entry pointed to by the link. If this is the case, the only way the
programmer can have the action performed on the link itself is if the subroutine has
a chase switch and he sets the chase switch to zero.

2-2 AG93-05

abbrev_ abbrev

Name: abbrev__

The abbrev_ subroutine provides a means of expanding abbreviations in command lines
and changing data in and extracting data from the profile segments used by the
abbrev command. All of the features of the command itself are available and a
simple expand entry point is provided for returning expanded command lines.

The main entry point is used to expand and execute a command line. The command
line can be an abbrev request line, as recognized by the abbrev command documented
in the Commands Manual. An abbrev request line can be used to add and delete
abbreviations and change the modes of operation of abbrev. The abbrev command
need not be invoked in the process before the abbrev_ subroutine can be called.

USAGE
declare abbrev_ entry (ptr, fixed bin(21), fixed bin(35));
call abbrev_ (line_ptr, line_len, code);
ARGUMENTS
line_ptr
is a pointer to a character string to be interpreted as a command line or an

abbrev request line. (Input)

line_len
is the number of characters in the input line. (Input)

code
is a standard status code returned by the command processor. (Output)
Entry: abbrev__$expanded__line

This entry point returns an expanded version of an input string. See the description
of the abbrev command for a discussion of abbrev expansion.

USAGE

declare abbrev_Sexpanded_line entry (ptr, fixed bin(21), ptr,
fixed bin(21), ptr, fixed bin(35));

call abbrev_Sexpanded_line (in_ptr, in_len, space_ptr, space_len,
out_ptr, out_len);

-3 AG93-05

abbrev_ abbrev_

ARGUMENTS

in_ptr
is a pointer to a character string to be expanded. (Input)

in_len
is the number of characters in the input string. (Input)

space_ptr
is a pointer to a work space where the expanded character string can be placed.
(Input)

space_len
is the number of characters available in the work space. (Input)

out_ptr
points to the expanded string. (Output)
out_len
is the number of characicrs in the expanded string. {(Qutput)

NOTES

If the length of the expanded string exceeds the length of the work space provided,
the expanded line is allocated in the system free area (see the get_system_free_area_
subroutine), It is the user’s responsibility to free this storage when it is no longer
needed.

The space_ptr pointer should not point to the same string as in_ptr since expansion is
done directly into the work space.

Entry: abbrev__$set__cp

This entry point sets up a different command processor to be called by the abbrev_
subroutine after a command line is expanded. Its argument is an entry. If the first
pointer in the entry is null, the command processor to be called is command_processor_.
USAGE

declare abbrev_S$set_cp entry (entry);

call abbrev_Sset_cp (cp_entry);

ARGUMENTS

cp_entry
is 2 command processor entry point.

2-4 AG93-05

abbrev_ abbrev_

EXAMPLES
The code:

chars = ¥.a abl ¥ || char_string;
call abbrev_ (addr (chars), length (chars), code);

sets up abl as an abbreviation for the character string stored in chars.
The code:

chars = ''delete foo; logout";
call abbrev_ (addr (chars), length (chars), code);

calls the command processor with the string arrived at by expanding the command
line:

delete foo; logout
That is, if foo is an abbreviation for #.pll, the command processor is given the line:
delete *.pll; logout
to be executed.
The code:
chars = some_string;
cp = addr (chars) ;
xcp = addr (xchars);

call abbrev_Sexpanded_line (cp, length (chars),
xcp, length (xchars), out_ptr, out_len);

copies some_string into chars and leaves the expanded version in xchars, unless the
length of the expanded version is greater than length(chars). In that case the expanded
version is in allocated storage. In either case, out_ptr points to the expanded version
and out_len is its length.

2-5 AG9I3-05

absolute_pathname_ absolute_pathname_

Name: absolute__pathname__

The absolute_pathname_ subroutine is used to convert a relative or absolute pathname
into a full absolute pathname. This entry does not accept the syntax for specifying
archive component pathnames; if one is supplied, an error code is returned. See the
information on naming conventions in the Programmer’s Reference Manual for details.

USAGE

dcl absolute_pathname_ entry (char (%), char (%), fixed bin (35));
call absolute_pathname_ (pathname, full_pathname, code) ;
ARGUMENTS

pathname
is the relative or absolute pathname to be expanded. (Input)

full_pathname
is the full, absolute pathname derived from the input pathname. (Qutput)

code
is a standard system error code. (Qutput) If an error has occurred, it can have
one of the following values:
error_table_$lesserr
too many less-than ("<") characters in pathname.
error_table_$badpath
invalid syntax in pathname.
error_table_$pathlong
the expanded pathname is longer than 168 characters.
error_table_$entlong
the entryname portion of the expanded pathname is longer than 32 characters.
error_table_$archive_pathname
the input pathname specified an archive component; this feature is only
supporied by the expand_pathname_$component and
expand_pathname_$component_add_suffix entrypoints.
error_table_$no_wdir
a relative pathname is specified, but no working directory is in force for the
process.

2-6 AG93-05

absolute_pathname_ active_fnc_err_

Entry: absolute__pathname__ $add__suffix

This entrypoint expands a relative or absolute pathname into a full, absolute pathname,
adding a suffix to the entryname if that suffix is not already present.

USAGE

dcl absolute_pathname_S$add_suffix entry (char (%), char (%), char (%),
fixed bin (35));

call absolute_pathname_S$add_suffix (pathname, suffix, full_pathname,
code) ;

ARGUMENTS

pathname
is the relative or absolute pathname to be expanded. (Input)

suffix
is the suffix to be added to the entryname portion of the pathname. (Input) The
period separating the entryname and the suffix must not be included. If a null
string is supplied, no suffix is added.

full_pathname
is the full, absolute pathname derived from the input pathname. (Output)

code
is a standard system error code. (Output) It can have the same values described
for absolute_pathname_.

Name: active__fnc__err__

The active_fnc_err_ subroutine is called by active functions when they detect unusual
status conditions. This subroutine formats an error message and then signals the
condition active_function_error. The default handler for this condition prints the error
message and then returns the user to command level. See the Programmer’s Reference
Manual for additional information on default handling.

Since this subroutine can be called with a varying number of argumenis, it is not
permissible to include a parameter attribute list in its declaration.

USAGE
declare active_fnc_err_ entry options (variable);

call active_fnc_err_ (code, caller, control_string, argl, ..., argN);

2-7 AG93-05

active_fnc_err_ active_fnc_err_

ARGUMENTS

code
is a standard status code (fixed bin(35)). (Input)

caller

is the name (char(¥)) of the calling procedure. It can be either varying or
nonvarying. (Input)

control_string

is an ioa_ subroutine control string (char(*)). This argument is optional. See
"Notes" below. (Input)

argi
are ioa_ subroutine arguments to be substituted into control_string. These
arguments are optional. However, they can only be used if the control_string
argument is given first. See "Notes" below. (Input)

NOTES

The error message prepared by the active_fnc_err_ subroutine has the format:

caller: system_message user_message
where:

caller

is the caller argument described above and should be the name of the procedure
detecting the error.

system_message
is a standard message from a standard status table corresponding to the value of
code. If code is equal to 0, no system_message is returned.

user_message
is constructed by the ioa_ subroutine from the control_string and argi arguments
described above. If the control_string and argi arguments are not given,
user_message is omitted.

2-8 AG93-05

active_fnc_err_ add_bit_offset_

Entry: active__fnc__err__Ssuppress__name

This entry point is functionally the same as active_fnc_err_, but it suppresses the
caller name and the colon at the beginning of the error message. The caller name is
nevertheless passed to the active_function_error handier.

USAGE

declare active_fnc_err_Ssuppress_name entry options (variable);

call active_fnc_err_Ssuppress_name (code, caller, control string,
argl,...argN);

where all arguments are the same as above.

Name: add__bit__offset__

This function returns a pointer to a bit relative to the bit referenced by the input
pointer. The displacement to the desired bit may be positive, negative, or zero.

USAGE

declare add_bit_offset_ entry (ptr, fixed bin (24)) returns {ptr)
reducible;

new_pointer_value = add_bit_offset_ (pointer_value, bit_displacement) ;
ARGUMENTS

pointer_value
is the original pointer to which the bit displacement is applied. (Input)

bit_displacement
is the displacement in bits to be applied to the above pointer. (Input)

new_pointer_value
is the result of this operation. (Output)

NOTES
If the result of applying the displacement would cause the pointer to reference outside

the legal boundaries of a segment (either a negative offset or an offset beyond 256K
words), the result of the call is not defined.

2-9 AG93-05

add_bit_offset_ add_char_offset_

EXAMPLES
The program fragment:
current_bit_ptr = add_bit_offset_ (current_bit_ptr, -1);

changes the value of current_bit_ptr to locate the previous bit in the segment.

Name: add__char__offset__

This function returns a pointer to a character relative to the character referenced by
the input pointer. The displacement to the desired character may be positive, negative,

or zero.

USAGE

declare add_char_offset_ entry [ptr, fixed bin (21)) returns {(ptr)
reducible;

new_pointer_value = add_char_offset_ (pointer_value, char_displacement) ;
ARGUMENTS

pointer_value
is the original pointer to which the character displacement is applied. (Input)

char_displacement
is the displacement in characters to be applied to the above pointer. (Input)

new_pointer_value
is the result of this operation. (Output)

NOTES
If the pointer supplied to add_char_offset_ does not point to a character boundary,
this operation is applied to a pointer value which references the character containing
the bit located by the input pointer.
Thus, the program fragment:
a_ptr = add_char_offset_ (a_ptr, 0);
may be used to insure that "a_ptr" points to a character boundary.
If the result of applying the displacement would cause the pointer to reference outside

the legal boundaries of a segment (either a negative offset or an offset beyond 256K
words), the resuit of the cail is not defined.

2-10 AG93-05

add_char_offset_ add_epilogue_handler_

EXAMPLES
The program fragment:
current_char_ptr = add_char_offset (current_char_ptr, -ij;

changes the value of current_char_ptr to locate the previous character in the segment.

Name: add__epilogue__handler__

The add_epilogue_handler_ subroutine is used to add an entry to the list of those
handiers called when a process or run unit is terminated. A program established as an
epilogue handler during a run unit is called when the run unit is terminated. If the
process continues after the run unit is terminated, the handler is discarded from the
list of those called when the process is terminated. Hence, epilogue handlers
established during a run unit are not retained beyond the life of the run unit

USAGE

declare add_epilogue_handlier_ entry (entry, fixed bin (35));
call add_epilogue_handier_ (ev, code);

ARGUMENTS

ev
is an entry value to be placed on the list of such values to be called when the
Tun unit or process is cleaned up. (Input)

code
is a standard status code. (Output)

NOTE

The add_epilogue_handler_ subroutine effectively manages two lists of epilogue
handlers: those for the run unit, if a run unit is active, and those for the process.
While a run unit is active, it is not possible to add entries to the list for the process.
There 1s no way to establish a process epilogue handler while a run unit is active.
The caller of execute_epilogue_ {logout, new_proc, etc.) must indicate whether all or
just the run unit handlers are to be invoked.

2-11 AG93-05

adjust_bit_count__ adjust_bit_count_

Name: adjust__bit__count__

The adjust_bit_count_ subroutine performs the basic work of the adjust_bit_count
command. It is called to find the last nonzero word or character of a segment or
multisegment file and set the bit count accordingly. In the case of a multisegment
file, empty trailing components are deleted and the returned bit count is the sum of
the bit counts of the nonzero components. Only the bit count of the last component
is altered.

USAGE

declare adjust_bit_count_ entry (char (168) aligned, char (32) aligned,
bit(1) aligned, fixed bin(35), fixed bin(35));

call adjust_bit_count_ (dir_name, entryname, char_sw, bit_count, code);
ARGUMENTS

dir_name

1ic tha nathnama Af tha ~na
iS5 Wi Pdudiiaillic O wiv V0L

entryname
is the entryname of the segment. (Input)

char_sw
is the character switch. (Input)
"0"b adjusts to last bit of last nonzero word.
"1"b adjusts to last bit of last nonzero character.

bit_count
is the computed bit count for the segment. (Output) If the value is less than 0,
it indicates that no attempt to compute the count was made (code is nonzero). If
the value is greater than or equal to 0, the computed value is correct, whether or
not the bit count could be set.

code
is a standard status code. (Output)

2-12 AG93-05

aim_check_ aim_check_

Name: aim__check__

The aim_check_ subroutine provides a number of entry points for determining the
relationship between two access attributes. An access attribute can be either an
authorization or an access class. See also the read_allowed_, read_write_allowed_, and
write_allowed_ subroutines in this document.

Entry: aim__check__Sequal

This entry point compares two access attributes to determine whether they satisfy the
equal relationship of the access isolation mechanism (AIM).

USAGE

declare aim_check_Sequal entry (bit(72) aligned, bit(72) aligned)
returns (bit(1) aligned);

returned_bit = aim_check_Sequal (acc_attl, acc_att2);
ARGUMENTS

acc_atti
are access attributes. (Input)

returned_ bit
is the result of the comparison. (Output)
"1 acc_attl equals acc_att2.
"0"b acc_attl does not equal acc_att2.

Entry: aim__check__$greater

This entry point compares two access attributes to determine whether they satisfy the
greater—than relationship of the AIM.

USAGE

declare aim_check_Sgreater entry (bit(72) aligned, bit(72) aligned)
returns (bit(1) aligned);

returned_bit = aim_check_Sgreater (acc_atti, acc_att2);

2-13 AG93-05

aim_check_ aim_check_

ARGUMENTS

acc_atti
are access attributes. (Input)

returned_bit
is the result of the comparison. (Output)
"1"b acc_attl is greater than acc_att2.
"0"b acc_attl is not greater than acc_att2.

Entry: aim__check__Sgreater__or__equal

This entry point compares two access attributes to determine whether they satisfy
either the greater—than or the equal relationships of the AIM.

USAGE

declare aim_check_Sgreater_or_equal entry (bit(72) aligned, bit(72)
aiigned) returns {(bit{i) aiigned);

returned_bit = aim_check_Sgreater_or_equal (acc_attl, acc_att2);
ARGUMENTS

acc_atti
are access attributes. (Input)

. returned_bit

is the result of the comparison. (Output)
"I"b acc_attl is greater than or equal to acc_att2.
"0"b acc_attl is not greater than or equal to acc_att2.

Entry: aim__check__$in__range

Returns a flag indicating whether a specified access attribute is within the specified
access attribute range.

USAGE

declare aim_check_S$in_range entry (bit(72) aligned, (2) bit(72) aligned)
returns (bit(1) aligned);

result = aim_check_Sin_range (test_acc_att, acc_att_range);
ARGUMENTS
test_acc_att

is the access attribute to be tested to see if it is within the range. (Input)

2-14 AG93-05

aim_check_ aim_util_

acc_att_range |
is an access attribute range. {Input) i

in_range |
will be "1"b if and only if acc_att_range (2) >= test_acc_att >= acc_att_range (1). |
(Output) |

Name: aim__util__

The aim_util_ subroutine contains entrypoints that manipulate AIM access classes and
authorizations.

Entry: aim__util__$get__access__class

This entry point extracts the access class from an authorization.

USAGE

declare aim_util_Sget_access_class entry (bit(72) aligned) returns
(bit(72) aligned);

access_class = aim_util_$get_access_6lass (authorization) ;
ARGUMENTS

authorization
is a standard AIM authorization marking. (Input)

access_class
is a standard AIM access class marking. (Output)
Entry: aim__util _$get__privileges
This entry point extracts the privileges from a standard AIM authorization.
USAGE

declare aim_util_Sget_privileges entry (bit(72) aligned) returns
(bit(36) aligned);

privileges = aim_util_Sget_privileges (authorization);

2-15 AG93-05

aim_util_ aim_util_

ARGUMENTS

authorization
is a standard AIM authorization marking. (Input)

privileges
is a standard AIM privilege string. (Output) See the include file aim_privileges.incl.pll
for the interpretation of this string.
Entry: aim__util__$get__level
This entry point extracts the sensitivity level from an access class or authorization.
USAGE
declare aim_util_Sget_level entry (bit(72) aligned) returns (fixed bin);
level = aim_util_Sget_level (access_class);

ARGUMENTS

access_class
is a standard AIM access class or authorization marking. (Input)

level
is a sensitivity level number. (Output) Levels range from 0 to 7. Level names are
available via system_info_$level names.

Entry: aim__util__$get__categories

This entry point extracts the categories from a standard AIM access class or
authorization.

USAGE

declare aim_util_Sget_categories entry (bit(72) aligned) returns
(bit{36) aiigned);

categories = aim_util_Sget_categories (access_class);

2-16 AG9I3-05

aim_util_ archive_

ARGUMENTS

access_class
is a standard AIM access class or authorization marking. (Input)

categories
is a bit string representing the category information contained in the access class.
(Output) If the i’th bit of the bit string is a 1, then the i’th category is included
in the - access class marking. Category names are available from
system_info_$category_names.

Entry: aim__util__$make__access__class

This entry point constructs an access class marking from a level and a set of
categories.

- USAGE

declare aim_util_Smake_access_class (fixed bin, bit(36) aligned, bit(72)
aligned) ;

call aim_util_Smake_access_class (level, categories, access_class);
ARGUMENTS

level
is a sensitivity level number, from 0 to 7. (Input)

categories
is a category bit string. (Input) See aim_util_$get_categories for the construction
of this string.

access_class
is a standard AIM access class marking. (Output)

Name: archive__

The archive_ subroutine is used to access individual components in archives, list the
components of an archive, and obtain information about archive components.

2-17 AG93-05

archive_ archive_

Entry: archive__$get__component

This entry, given a pointer to an archive and its bitcount, and the name of the
desired component in the archive, returns a pointer to the component and the bitcount
of the component. It is used when there is a specific component in the archive which
is to be referenced. For applications that wish to serially access all the components in
an archive, archive_$next_component is more appropriate. This entry only returns a
pointer and length for the component; if more information is desired, the
archive_$get_component_info entrypoint should be used.

USAGE

declare archive_Sget_component entry (pointer, fixed bin(2h), char (%),
pointer, fixed bin(24), fixed bin(35));

call archive_Sget_component (archive_ptr, archive_bc, component_name,
component_ptr, component_bc, code);

ARGUMENTS

archive_ptr
is a pointer to the archive segment to be searched. (Input) It need not point to
the base of a segment; it is converted to a segment base pointer by archive_, so
a pointer to anywhere in the segment may be given here.

archive_bc
is the bitcount of the archive segment. (Input)

component_name
is the name of the component to be searched for. (Input) It can be up to
characters long.

w
(3%]

component_ptr
is a pointer to the first word of the archive component if the specified
component was ‘found, or null otherwise. (Output) It is a pointer into the segment
pointed to by archive_ptr.

component_bc
is the bitcount of the archive component pointed to by component_ptr. {Output)
It describes a rtegion of the archive segment which contains the specified
component; if an attempt is made to reference past the end of this area, invalid
data may be referenced.

2-18 AG93-05

archive_ archive_

code

is a standard system status code, one of the following: (Output)

error_table_$no_component
indicates that the specified component was not found in the archive.

error_table_$not_archive
indicates that archive_pir points to a segment which does not appear to be a
properly formatied archive.

error_table_S$archive_fmt_err
indicates that, although the segment pointed to by archive_ptr does appear to
be a valid archive, it contains an incorrectly formatted archive header. The
archive should be repaired before further use either by extracting all the
still-accessible components and creating a new archive, or by manipulating it
with a text editor to access the apparent components.

Entry: archive__$get__component__info

This entry, given a pointer to an archive and its bitcount, and the name of the
desired component in the archive, fills in a caller-supplied structure with information
describing the archive component. Also see archive_$get_component and
archive_$next_component_info.

USAGE

declare archive_Sget_component_info entry (pointer, fixed bin(24),
char (%), pointer, fixed bin(35));

call archive_Sget_component_info (archive_ptr, archive_bc,
component_name, archive_component_info_ptr, code);

ARGUMENTS

archive_ptr
is a pointer to the archive segment to be searched. (Input) It need not point to
the base of a segment; it is converted to a segment base pointer by archive_, so
a pointer to anywhere in the segment can be given here.

archive_bc
is the bitcount of the archive segment. (Input)

component_name
is the name of the component io be searched for. (Input) It can be up to 32
characters long.

archive_component_info_ptr
is a pointer to a user—supplied archive_component_info structure, described below.
(Input) The caller must have previously set archive_component_info.version to the
appropriate version number, currently ARCHIVE_COMPONENT_INFO_VERSION_1.
The structure is filled in with information describing the selected archive
component if it can be found.

2-19 AG93-05

archive_ archive_

code
is a standard system status code. (Output) It can have any of the values which
can be returned by archive_$get_component, and can also have the following
value:
error_table_$unimplemented_version
indicates that the version number in the caller—supplied archive_component_info
structure is not correct.

STRUCTURE

The archive_component_info_ptr points to the following structure (described in the
archive_component_info.incl.pll include file):

dcl 1 archive_component_info aligned based (archive_component_info_ptr),
2 version fixed bin,
2 comp_bc fixed bin (24),
2 comp_ptr ptr,
2 name char (32) unaligned,
2 time_modified fixed bin (71),
2 time_updated fixed bin (1),
2 comp_lth fixed bin (19),
2 access bit (36) unaligned;

STRUCTURE ELEMENTS

version
must be set to ARCHIVE_COMPONENT_INFO_VERSION_1 by the caller. All
other structure elements are output.

comp_bc
is the bit_count of the archive component.

comp_ptr
is a pointer to the base of the component

name
is the name of the component.

time_modified
is a clock reading corresponding to the date/time contents modified of the
segment from which this component was most recently updated. This is the value
reported in the "modified” column by the "ac tI" command. It may be inaccurate
by several hours if the archive was updated in a different time zone than the
current time zone.

time_updated
is a clock reading corresponding to the date/time when this component was last
updated in the archive. This is the value reported in the "updated" column by
the "ac tI" command. It may be inaccurate by several hours if the archive was
updated in a different time zone than the current time zone.

2-20 AG93-05

archive_ archive_

comp_lth
is the size, in words, of the component. Both the size in words and the
bit_count are provided as a convenience to the caller. The size in words is
derived from the bit_count.

access
is the representation of the effective access mode recorded with the archive
component. The first bit is "r" access, the second is "e", and the third is "w".
Even if "a" access appears in the archive itself, it will be ignored.

Entry: archive__$list__components

This entry, given a pointer to an archive and its bitcount, and a pointer to an area,
allocates an array of archive_component_info structures in the area to describe all the
components in the archive, and returns a pointer to and the size of this array. This
entry is intended to be used in applications where it is more convenient to loop
through an array processing archive components than it is to step through the
components by using archive_$next_component_info. There is no corresponding list
interface which just returns name, pointer and bit_count; the complete
archive_component_info structure is always supplied.

USAGE

declare archive_$1list_components entry (pointer, fixed bin(24), fixed
bin, pointer, pointer, fixed bin, fixed bin{(35));

cail archive_S$iist_components {archive_ptr, archive_bc, info_version,
area_ptr, archive_component_info_array_ptr, n_components, code) ;

ARGUMENTS

archive_ptr
is a pointer to the archive segment to be searched. (Input) It need not point to
the base of a segment; it is converted to a segment base pointer by archive_, so
a pointer to anywhere in the segment can be given here.

archive_bc
is the bitcount of the archive segment. (Input)

info_version
is the version number for the archive_component_info structure array which will
be allocated and returned. (Input) The only supported version is
ARCHIVE_COMPONENT_INFO_VERSION_1.

area_ptr
is a pointer to a caller-supplied area in which the returned array of
archive_component_infos will be allocated. (Input) If area_ptr is null, no list will
be allocated, but n_components will still be set; this can be used when it is
desired to merely count the components in the archive.

2-21 AG93-05

archive_ archive_

archive_component_info_array_ptr
is a pointer returned which points to an array of archive_componeni_info
structures describing all the components in the archive. (Output) It should be
declared as follows:

dcl 1 archive_component_info_array (n_components) aligned
like archive_component_info based
(archive_component_info_array_ptr);

The version number in all the elements of this array will be the same as was
passed in the info_version argument. The archive_component_info_array_ptr will
be null if there are no components in the archive; n_components will be returned
as zero, and the code will be zero as well. It will also be null if a null area_ptr
was supplied.

n_components
is the number of components in the archive. (Output) This can be zero if the
archive is empty, and is still valid.

(o f

is a standard system status code, one of the following: (Output)

error_table_$not_archive
indicates that archive_pir points to a segment which does not appear
to be a properly formatted archive.

error_table_$archive_fmt_err
indicates that, although the segment pointed to by archive_ptr does appear to
be a valid archive, it contains an incorrectly formatted archive header. The
archive should be repaired before further use either by extracting all the
still-accessible components and creating a new archive, or by manipulating it
with a text editor to access the apparent components.

Entry: archive__$next__component

This entry, given a pointer to an archive and its bitcount, and a pointer to the base
of a component (or null), returns a pointer to the next component in the archive, its
name, and its bitcount. If there are no components remaining in the archive, the
pointer is returned null on output. The first time this is called for a particular
archive, the component pointer should be supplied as nuil. This entry is intended to
be used to step through all the components of an archive, one at a time. The archive
should not be modified while this is being done, or the results will be unpredictable.
See also archive_$get_component and archive_$next_component_info.

USAGE

declare archive_Snext_component entry (pointer, fixed bin(24), pointer,
fixed bin(2L4), char(®), fixed bin{35));

call archive_Snext_component (archive_ptr, archive_bc, component_ptr,
component_bc, component_name, code) ;

2-22 AG93-05

‘archive_ archive_

ARGUMENTS

archive_ptr
is a pointer to the archive segment to be searched. (Input) It need not point to
the base of a segment; it is converted to a segment base pointer by archive_, so
a pointer to anywhere in the segment can be given here.

archive_bc
is the bitcount of the archive segment. (Input)

component_ptr
on input, this is a pointer to the previous component in the archive, or null to
indicate that the next component should be the first component in the archive.
(Input/Output) On output, this is a pointer to the next component in the archive,
or null if there are no components remaining after the one it pointed to on
input.

component_bc
is the bitcount of the selected component. (Output)

component_name
is the name of the selected component. (Output)

code

is a standard system status code, one of the following: (Output)

error_table_$not_archive
indicates that archive_ptr points to a segment which does not appear
to be a properly formatted archive.

error_table_S$archive_fmt_err
indicates that, although the segment pointed to by archive_ptr does appear to
be a valid archive, it contains an incorrectly formatted archive header. The
archive should be repaired before further use either by extracting all the
still-accessible components and creating a new archive, or by manipulating it
with a text editor to access the apparent components.

Entry: archive__$next__component__info

This entry, given a pointer to an archive, the bitcount of the archive, and a pointer
to the base of a component (or null), returns a pointer to the next component in the
archive and fills in an archive_component_info structure to describe it. If there are
nc compoenents remaining in the archive, the pointer is returned null on output. The
first time this is called for a particular archive, the component pointer should be
supplied as null. See also archive_$get_component_info and archive_$next_component.

2-23 AG93-05

archive_ archive_

USAGE

declare archive_Snext_component_info entry (pointer, fixed bin(24),
pointer, pointer, fixed bin(35));

call archive_Snext_component_info (archive_ptr, archive_bc,
component_ptr, archive_component_info_ptr, code);

ARGUMENTS

archive_ptr
is a pointer to the archive segment to be searched. (Input) It need not point to
the base of a segment; it is converted to a segment base pointer by archive_, so
a pointer to anywhere in the segment may be given here.

archive_bc
is the bitcount of the archive segment. (Input)

component_ptr
on input, this is a peinter to the previous component in the archive, of null o
indicate that the next component should be the first component in the archive.
(Input/Qutput) On output, this is a pointer to the next component in the archive,
or null if there are no components remaining after the one it pointed to on

input.

archive_component_info_ptr
is a pointer to a user-supplied archive_component_info structure, described in the
description of the archive_$get_component_info entrypoint. (Input) The caller must
have previously set archive_component_info.version to the appropriate version
number. currently ARCHIVE_COMPONENT_INFO_VERSION_1. The structure is
filled in with information describing the selected archive component if component_ptr
is returned non-null.

code
is a standard system status code. (Output) It may have any of the values which
can be returned by archive_$next_component, and may also have the following
value:
error_table_$unimplemented_version
indicates that the version number in the calier—-supplied archive_componeni_info
structure is not correct.

2-24 AGI3-05

This page intentionally blank.

2-25 AG9Y3-05

This page intentionally blank.

2-26 AG93-05

This page intentionally blank.

2-27 AG93-05

area_info_ area_info_

Name: area__info__

The area_info_ subroutine returns information about an area.
USAGE

declare area_info_ entry (ptr, fixed bin (35));
call area_info_ (info_ptr, code);

ARGUMENTS

info_ptr
points to the structure described in "Notes” below. (Input)

code
is a system status code. (Output)

NOTES

The structure pointed to by info_ptr is described by the following PL/I declaration
(defined by the system include file, area_info.incl.pll):

dcl 1 area_info aligned based,

2 version fixed bin,

2 control,
3 extend bit (1) unatligned,
3 zero_on_alloc bit(1) unaligned,
3 zero_on_free bit (1) unaligned,
3 dont_free bit (1) unaligned,
3 no_freeing bit (1) unaligned,
3 system bit (1) unaligned,
3 mbz bit (30) unaligned,

2 owner char (32} unaligned,

2 n_components fixed bin,

2 size fixed bin(30),

2 version_of_area fixed bin,

2 areap ptr,

2 allocated_blocks fixed bin,

2 free_blocks fixed bin,

2 aiiocated_words fixed bin(30),

2 free_words fixed bin(30);

STRUCTURE ELEMENTS

version
is set by the caller and should be 1,

control
are control bits describing the format and type of the area.

2-28 AG93-05

area_info_ area_info_

extend
indicates whether the area is extensible.
"1"b yes
"0"b no

zero_on_alloc
indicates whether blocks are cleared (set to all zeros) at allocation time.
"1"b yes
"0"b no

zero_on_free :
indicates whether blocks are cleared (set to all zeros) at free time.
"1"b yes
"O'Ib no

dont_free
indicates whether free requests are disabled (for debugging).
'Yl‘!b yes
"0"b no

no_freeing
indicates whether the allocation method assumes no freeing will be done.
"1“b yes
"Oi'b no

system
causes the use of hcs_$make_seg instead of get_temp_segments to create the first |
component. It assumes that the original area is all zeroes, rather than explicitly |
zeroing it i
"l"b yes
"0"b no

mbz
is not used and must be zeros.

owner
is the name of the program that created the area if the area is extensible.

n_components
is the number of components in the area.

size
is the total number of words in the area.

version_of_area
is 0 for (old) buddy system areas and 1 for standard areas.

areap
is filled in by the caller and can point to any component of the area.

11/86 2-29 AG93-05A

area_info_ area_info

allocated_blocks
is the number of allocated blocks in the area.

free_blocks
is the number of free blocks in the area (not including virgin storage within
components, i.e., storage after the last allocated block).

allocated_words
is the number of allocated words in the area.

free_words :
is the number of free words in the area not counting virgin storage.

No information is returned about version (areas except the version number.

If the no_freeing bit is on ("1"b), the counts of free and allocated blocks are
returned as (.

Entry: area__info__$get__block__data__info

This entrypoint returns a pointer and length for the first block or next biock in an
area, and whether or not it is free. This allows a program to step through an area
looking at each block in turn. Extensible areas are handled correctly.

USAGE

declare area_info_Sget_block_data_info entry (ptr, bit (1), ptr, ptr,
ptr, fixed bin (18), bit (1), fixed bin (35));

call area_info_Sget_block_data_info (area_ptr, next_ptr_flag,
block_data_ptr, output_area_ptr, next_data_ptr, data_size,
block_allocated_flag, code);

ARGUMENTS

area_ptr
is a pointer to the area in which the data block will be found. (Input)

next_ptr_flag
if "1"b, then return information about the block after the one pointed to by a
lock_data_ptr. {Input)

block_data_ptr
pointer to a data block in the area. If it is null then it will be internally
initialized to the first block in the area. (Input)

11/86 2-30 AG93-05A

area_info_ arithmetic_to_ascii_

output_area_ptr
is a pointer to the area which actually contains the block about which information
is returned. it will be equal to area_ptr unless the area is extensible and the
returned block information required going to the next segment in the area. When
stepping through the blocks in an area, this pointer should be used as input (i.e.
area_ptr) for the next call. (Output)

next_data_ptr
is a pointer to the block in which information is returned. It will be equal to
block_data_ptr unless next_ptr_flag was set, in which case it will point to the
block after the one pointed to by block_data_ptr. (Output)

data_size
is the size, in words, of the returned data block. (Output)

block_allocated_flag
If "1"b, then the block is allocated. If "0"b, then the block is free. {Output)

code
is a standard system status code. it is returned as error_table_$end_of_info if the
block about which information is requested is in virgin storage in the area (i.e.
the end of the area has been reached). (Output)

Name: arithmetic__to__ascii__

The arithmetic_to_ascii_ subroutine formats any arithmetic value into a compact ascii
form. An integer, fractional, or exponential format can be used, depending on the
number to be converted. Fixed—point numbers are truncated during the formatting
process; floating—point numbers are rounded.

USAGE

declare arithmetic_to_ascii_ entry (ptr, fixed bin, bit(1) aligned,
fixed bin, fixed bin, char {132) varying):

call arithmetic_to_ascii_ (v_ptr, type, packed, precision, scale,
result); :

11/86 2-31 AG93-05A

arithmetic_to_ascii_ ascii_to_bed_

ARGUMENTS

v_ptr
is a pointer to the value to be converted. (Input) It can be any arithmetic data
type (real or complex, fixed or float, binary or decimal, single or double
precision).

type
is a standard Multics descriptor type. (Input) See the Programmer’s Reference
Manual for a list of standard Multics data types.

packed
indicates whether the value is packed or unpacked. (Input)
"0"b value is unpacked.
"1"b value is packed.

precision
is the precision of the value to be converted. (Input)

scale
is the scale factor of the value to be converted. (Input)

result

is the character-string representation of the value to be converted; it contains no
blanks. (Output)

NOTES

If the value is complex, the real and imaginary parts are formatted by correcting them
to float decimal(59) and converting each part separately. The result returned by the
arithmetic_to_ascii_ subroutine is the concatenation of the real and imaginary converted
parts, with a leading sign and trailing "i" supplied for the imaginary part.

Name: ascii__to__bed__

The ascii_to_bcd subroutine performs isomorphic (one-to-one reversible) conversion
from ASCII to BCD.

USAGE
dcl ascii_to_bcd_ entry (char(¥), bit(%));

call ascii_to_becd_ (ascii_in, becd_out);

11/86 2-32 AG93-05A

ascii_to_bed_ ascii_to_ebcedic_

ARGUMENTS

ascii_in
is the ascii input characters tro convert to BCD. (Input)

bed_out

is the BCD equivalent of the input string. (Output) Note that both upper and
lower case ASCII characters are converted to the single case BCD characters.
ASCII characters that do not have a match in BCD will be converted to a
question mark (?). For more information see "Notes" below.

NOTES

The ASCII question mark (?) and any ASCII characters (other than lowercase letters) |
will be mapped into a BCD question mark (?). The valid BCD characters are as
follows:

0123456789 [@:7ABCDEFGHI&.] (<\AJKLMNOPQR-$+);’; /STUVWXYZ_,%= # <space>

BCD must be aligned on a 6-bit BCD character boundary.

Name: ascii__to__ebecdic__

The ascii_to_ebcdic_ subroutine performs isomorphic (one-to—one reversible) conversion
from ASCII to EBCDIC. The input data is a string of valid ASCII characters. A
valid ASCII character is defined as a 9-bit byte with an octal value in the range
0 <= octal_value <= 177.

This entry point accepts an ASCII character string and generates an EBCDIC character
string of equal length.

USAGE

declare ascii_to_ebcdic_ entry (char (%), char(%));
call ascii_to_ebedic_ (ascii_in, ebcdic_out);
ARGUMENTS

ascii_in
is a string of ASCII characters to be converted. {(Input)

ebcdic_out
is the EBCDIC equivalent of the input string. (Output)

11/86 2-32.1 AG93-05A

ascii_to_ebedic_ ascii_to_ebcdic_

Entry: ascii__to__ebcdic__$ae__table

This entry point defines the 128-character translation table used to perform conversion
from ASCII to EBCDIC. The mappings implemented by the ascii_to_ebcdic_ and
ebcdic_to_ascii_ subroutines are isomorphic; i.e., every valid character has a unique
mapping, and mappings are reversible. (See the ebcdic_to_ascii_ subroutine.) The result

of an attempt to convert a character that is not in the ASCII character set is
undefined.

USAGE

declare ascii_to_ebcdic_Sae_table char (128) external static;

11/86 2-32.2 AG93-05A

ascii_to_ebcdic_

ISOMORPHIC ASCII/EBCDIC CONVERSION TABLE

ASCII

GRAPHIC OCTAL HEXADECIMAL GRAPHIC
NUL 000 00 NUL
SOH 001 01 SOH
STX 002 02 STX
ETX 003 03 ETX
EQT 004 37 EOT
ENQ 005 2D ENQ
ACK 006 2E ACK
BEL 007 2F BEL
BS 010 16 BS
HT 011 05 HT
LF 012 25 NL
vT 013 0B vT
FF o1l ocC NP
CR 015 oD CR
SO 016 OE SO
S 017 OF Sl
DLE 020 10 DLE
DC1 021 11 DC1
DC2 022 12 DC2
DC3 023 13 ™
DC4 024 3C DCh
NAK 025 3D NAK
SYN 026 32 SYN
ETB 027 26 ETB
CAN 030 18 CAN
EM 031 19 EM
SUB 032 3F SuB
ESC 033 27 ESC
FS 034 1C IFS
GS 035 1D IGS
RS 036 1E IRS
us 037 1F 1uUS
space 040 Lo space
! oL 5A !
i 01*2 7F il
043 78
) oLk 5B s
% 045 6C 2
& okLé 50 &
! 0L7 7D !
(050 4D (
) 051 5D)
% 052 5C %
+ 053 LE +

2-33

ascii_to_ebcdic_

AG93-05

ascii_to_ebcedic_

ASCII
GRAPHIC OCTAL HEXADECIMAL GRAPHIC
. 054 68 ’
- 055 60 -
. 056 LB .
/ 057 61 /
0 060 FO 0
1 061 F1 1
2 062 F2 2
3 063 F3 3
L 064 Fh L
5 065 F5 5
6 066 F6 6
1 067 F7 7
8 070 F8 8
9 071 F9 9
: 072 74 :
H 073 5E ;
< 074 LC <
= 075 JE =
> 076 6E >
? 077 6F ?
@ 100 7C e
A 101 (o A
B 102 Cc2 B
c 103 Cc3 C
D 104 Ch4 D
E 105 C5 E
F 106 cé6 F
G 107 C7 G
H 110 c8 H
] 1RR] c9 1
J 112 D1 J
K 113 D2 K
L 114 B3 L
M 115 DL M
N 116 D5 N
0 117 D6 0
P 120 D7 P
Q 121 D8 Q
R 122 D9 R
S 123 E2 S
T 124 E3 T
U 125 EL U
Y 126 E5 \
W 127 E6 W
X 130 E7 X

2-34

ascii_to_ebedic_

AG93-05

ascii_to_ebcedic_

ASCII

GRAPHIC OCTAL HEXADECIMAL GRAPHIC
y 13] E8 Y

Z 132 EQ z

[133 AD [(see '"Notes')
\ 134 EO \

] 135 BD 1 (see "Notes')
~ 136 5F logical NOT
N 137 6D _

grave accent 140 79 grave accent

a 141 81 a

b 142 82 b

c 143 83 c

d 144 8L d

e 145 85 e

f 146 86 f

g 147 87 g

h 150 88 h

i 151 89 i

J 152 91 J

k 153 92 k

) 154 93]

m 155 94 m

n 156 a5 n

o 157 96 o

p 160 87 p

q 161 98 q

r 162 99 r

s 163 A2 s

t 164 A3 t

u 165 AL u

v 166 A5 v

w 167 A6 W

X 170 A7 X

y 171 A8 y

2 172 A9 2

{ 173 co {

| 174 LF solid bar

3 175 0o }

tilde 176 Al tilde

DEL 177 07 DEL

2-35

ascii_to_ebcdic_

AG93-05

ascii_to_ebcdic_ ascii_to_ebcdic_

NOTES

The graphics ([and]) do not appear in (or map into any graphics that appear in)
the standard EBCDIC character set. They have been assigned to otherwise "illegal”
EBCDIC code values in conformance with the bit patterns used by the TN text
printing train.

Calling the ascii_to_ebcdic_ subroutine is as efficient as using the PL/I translate
builtin. since conversion is performed by a single MVT instruction and the procedure
runs in the stack frame of its caller.

This mapping differs from the ASCI] to EBCDIC punched card code mapping as

discussed in the Programmer’s Reference Manual. The characters that differ when
mapped are: [] \ and NL (newline).

2-36 AGY3-05

ask_

ask_

Name: ask__
The ask_ subroutine provides a flexible terminal input facility for whole lines, strings
delimited by blanks. or fixed-point and floating-point numbers. Special attention is
given to prompling the terminal user.
The main entrv point returns the next string of characters delimited by blanks or tabs
from the line typed bv the user. If the line buffer is empty. the ask_ subroutine
formats and types out a prompting message and reads a line from the user_input 1/0
switch.
USAGE
declare ask_ entry options (variable);
call ask_ (ctl, ans, ioa_args);
ARGUMENTS
ctl

is an ioa_ control string (char(x)) in the same format as that used by the ioa_

subroutine. (Input)

ans
is the return value (char(x)). (Output)

10a_args
are any number of arguments 10 be converted according to ctl. {Input)

2-37 AG93-05

ask

ask.

Entry: ask__$ask__c

This entry point tests to determine if there is anything left on the line. If so, it
returns the next symbol, as in the ask_$ask_ entry point, and sets a flag to 1.
Otherwise, it sets the flag to 0 and returns.

USAGE

declare ask_Sask_c entry (char (%), fixed bin);

call ask_Sask_c (ans, flag);

ARGUMENTS

ans
is the next symbol, if any. (Output)

flag
is the symbol flag. (Output). Its value can be:
1 if the symbol is returned.

0 if there is no symbol.
Entry: ask__$ask__cint
This entry point is a conditional entry for integers. If an integer is available on the
line, it is returned and the flag is set to 1. If the line is empty, the flag is set to 0.
If there is a symbol on the line, but it is not a number, it is left on the line and
the flag is set to -1.
USAGE
declare ask_Sask_cint entry (fixed bin, fixed bin);
call ask_Sask_cint (int, flag);

ARGUMENTS

int
is the returned value, if any. (Output)

flag
is the int flag. (Output). Its value can be:
1 if int is returned.
0 if the line is empty.
-1 if there is no number.

2-38 AG93-05

ask_

ask_

Entry: ask__Sask__cflo

This entry point works like the ask_$ask_cint entry point but returns a floating value, |
if an integer is available. |

USAGE

declare ask_Sask_cflo entry (float bin, fixed bin);
call ask_Sask_cflo (flo, flag);

ARGUMENTS

flo
the returned value, if any. (Output)

flag
is the flow flag. (Output). Its value can be:
0 if the line is empty.

1 if the value is returned.
-1 if it is not a number.

Entry: ask_ $ask__cline

This entry point returns any part of the line that remains. A flag is set if the rest
of the line is empty.

USAGE

declare ask_Sask_cline entry (char (%), fixed bin);
call ask_Sask_cline (line, flag);

ARGUMENTS

line
is the returned line, if any. (Output)

flag
is the line flag. (Output). Its value can be:
1 if the line is returned.
0 if the line is empty.

2-39 AG93-05

ask

Entry: ask__$ask_ cir

This entry point clears the internal line buffer, Because the buffer is internal static,
the input of one program can accidentally be passed to another unless the second
begins with a call to this entry point. If a value typed by the user is incorrect and
if the program wishes to ask for the line to be retyped, the ask_$ask_cir entry point
can also be called.

USAGE

declare ask_$ask_clr entry;

call ask_Sask_clr;

Entry: ask_ $ask__cnf

This entry point works like the ask_$ask_cint entry point except that it returns a
value of "on" or "off" if an integer is available.

USAGE

declare ask_Sask_cnf entry (char (%), fixed bin);
call ask_Sask_cnf (ans, flag);

ARGUMENTS

ans
is a value of "on" or "off" if such a value is present. (Output)

flag
is the yn flag. (Output). Its value can be:
1 if a "on" or "off" value is returned.
0 if the line is empty.
-1 if the next value on the line is not "on" or "off"

Entry: ask__$ask__cyn

This entry point works like the ask_S$ask_cint entry point except that it returns a
value of yes (or y) or no (or n) if an integer is available.

ask

2-40 AG93-05

ask__

USAGE

declare ask_Sask_cyn (char (%), fixed bin);

ans
call ask_Sask_cyn (ans, flag);

ARGUMENTS

ans
is a value of yes (or y) or no (or n) if such a value is present. (Output)

flag
is the yn flag. (Output). Its value can be:
1 if a yes (or y) or no (or n) value is returned. |
0 if the line is empty.
~1 if the next value on the line is not yes (or y) or no (or n). |
Entry: ask__$ask__int
This entry point works the same as the ask_$ask_ entry point except that the next
item on the line must be a number. An integer value is returned. Numbers can be
fixed point or floating point, positive or negative. A leading dollar sign or a comma
is ignored. If the value typed is not a number, the program types:
“string” nonnumeric. Please retype:
and waits for the user to retype the line.
USAGE
declare ask_Sask_int entry options (variable);
call ask_Sask_int (ctl, int, ioa_args);

ARGUMENTS

ctl
is an ioa_ control string (char(*)) in the same format as that used by the ioa_
subroutine. {Input). If a period is typed, zero is returned.

int
is the return value (fixed bin). (Output)

ioa_args
are any number of arguments to be converted according to ctl. (Input)

2-41 AG93-05

ask

ask

Entry: ask__Sask__flo

This entry point works like the ask_$ask_int entry point except that it returns a
floating value.

USAGE

declare ask_Sask_flo entry options (variable);
call ask_Sask_flo (ctl, flo, ioa_args);
ARGUMENTS

ctl
is an ioa_ control string (char(+*)) in the same format as that used by the ioa_
subroutine. (Input). If a period is typed, zero is returned.

flo
is the return value (float bin). (Output)

ioa_args
are any number of arguments to be converted according to ctl. (Input)
Entry: ask__$ask__line
This entry returns the remainder of the line typed by the user. Leading blanks are
removed. If there is nothing left on the line, the program prompts and reads a new
line.
USAGE
declare ask_Sask_line entry options (variable);
call ask_Sask_line (ctl, line, ioa_args);
ARGUMENTS
ctl
is an ioa_ contro]l string {(char(#*)) in the same format as that used by the ioa_
subroutine. (Input). If a period is typed, zero is returned.

line
is the return value (char(#)). (Output)

i0a_args

are anv numhber o
Qi &aiy vwa

Aieeara

"
w
2
3
o
3
=

2-42 AG93-05

ask_

Entry: ask__$Sask__n

ask

This entry point scans the line and returns the next symbol without changing the line

pointer. A call to the ask_ entry point later returns the same value.
USAGE

declare ask_Sask_n entry (char (%), fixed bin);

call ask_Sask_n (ans, flag);

ARGUMENTS

ans
is the returned symbol, if any. (Qutput)

flag
is the ans flag. (Output). Its value can be:
0 if the line is empty.
1 if the symbol is returned.

Entry: ask__$ask__nf

This entry point works like ask_$ask_yn except that it returns a value of "on" or |

"off".

110 AT
UIATL

declare ask_Sask_nf entry options (variable);
call ask_Sask_nf (ctl, line, ioa_args);
ARGUMENTS

ctl

is an ioa_ control string (char(*)) in the same format as that used by the ioa_

subroutine. (Input) If a period is typed, zero is returned.

line
is the return value (char(*)). (Output)

ioa_args

are any number of arguments to be converted according to ctl. (Input)

2-43

AG93-05

ask.

Entry: ask__$ask__nflo

This entry point scans the line for floating point numbers.
USAGE

declare ask_Sask_nflo entry (float bin, fixed bin);
call ask_Sask_nflo (flo, flag);

ARGUMENTS

flo
is the returned value, if any. (Output)

flag
is the flow flag. (Output). Its value can be:
0 if the line is empty.
1 if the value is returned.
-1

i it e At a manalae
11 1L 1> 1IVL a dulluvel.

Entry: ask__$ask__nint

ask_

This entry point scans the line for integers. The second argument is returned as -1 if
there is a symbol on the line but it is not a number, 1 if successful, and 0 if the

line is empty.

USAGE

declare ask_Sask_nint entry (fixed bin, fixed bin);
call ask_Sask_nint (int, flag);

ARGUMENTS

int
is the returned value, if any. (Output)

flag
is the int flag. (Output). Its value can be:
1 if int is returned.
0 if the line is empty.
-1 if there is no number.

AG93-05

ask

Entry: ask__$ask__nline

This entry point initiates a scan of the rest of the line.
USAGE

declare ask_Sask_nline entry (char (%), fixed bin);
call ask_Sask_nline (line, flag);

ARGUMENTS

line
is the returned line, if any. (Output)
flag
is the line flag. (Output). Its value can be:

1 if the line is returned.
0 if the line is empty.

Entry: ask__$ask__nnf

ask__

This entry point returns the next symbol, if it is an "on" or "off" value, without |

changing the line pointer.

USAGE

declare ask_Sask_nnf entry (char (%), fixed bin);
call ask_Sask_nnf (ans, flag);

ARGUMENTS

ans

is a value of "on" or "off" if such a value is present. (Output)

flag
is the yn flag. (Output). Its value can be:
1 if a "on" or "off" value is returned.
0 if the line is empty.

-1 if the next value on the line is not "on" or "off.”

2-45

AG93-05

ask

ask_

Entry: ask__$ask__nyn

This entry point returns the next symbol, if it is a yes (or y) or no (n) value,
without changing the line pointer. The arguments are the same as those used with the
ask_$ask_cint entry point.

USAGE

declare ask_$ask_nyn entry (char (%), fixed bin);

call ask_Sask_nyn (ans, flag);

ARGUMENTS

ans
is a value of yes (or y) or no (or n) if such a value is present. (Output)

flag
is the yn flag. (Output). Its value can be:

1 if a wvee (Aar v A A (A Y wvaly
i i a2 YS WO Y, &F 08 Of o, Yau

0 if the line is empty.
-1 if the next value on the line is not yes (or y) or no {(or n)

Entry: ask__$ask__prompt

This entry point deletes the current contents of the internal line buffer and prompts
for a new line. The line is read in and the entry returns.

USAGE

declare ask_Sask_prompt entry options (variable);
call ask_Sask_prompt (ctl, ioa_args);
ARGUMENTS

ctl
is a control siring (char(*)) similar to that typed by the ioa_ subroutine. (Input)

ioa_args
are any number of arguments to be converted according to ctl. (Input)

2-46 AG93-05

ask_

Entry: ask__$ask__setline

ask.

This entry point sets the internal static buffer for the ask_ subroutine to the given

input line so that the line can be scanned.
USAGE

declare ask_Sask_setline entry (char (%));
call ask_Sask_setline (line);

ARGUMENTS

line

is the line to be placed in the ask_ buffer. (Input). Trailing blanks are removed

from line. A carriage return is optional at the end of line.

Entry: ask__Sask__yn

This entry point works like the ask_$ask_int entry point except that it returns a value
of yes (or y) or no (or n). Its arguments are the same as those used with the |

ask_S$ask_int entry point.

USAGE

declare ask_Sask_yn entry options (variable);
call ask_Sask_yn (ctl, ans, ioa_args);
ARGUMENTS

ctl

is an ioa_ control string (char(*)) in the same format as that used by the ioa_

subroutine. (Input). If a period is typed, zero is returned.

ans
is a value of yes (or y) or no (or n) if such a value was present. (Input)

ioa_args
are any number of arguments to be converted according to ctl. (Input)

2-47

AG93-05

assign_ assign_

Name: assign__

The assign_ subroutine assigns a specified source value to a specified target. This
subroutine handles the following data types: 1-12, 19-22, 33, 34, 41-46. Any other
type will produce an error. This subroutine uses rounding in the conversion when the
target is floating point or when the source is floating and the target is character, and
uses truncation in all other cases.

USAGE

declare assign_ entry (ptr, fixed bin, fixed bin(35), ptr, fixed bin,
fixed bin(35));

call assign_ (target_ptr, target_type, target_length, source_ptr,
source_type, source_length);

ARGUMENTS

target_pir
noinfs to th

target_type
specifies the type of the target; its value is 2*M+P where M 1is the Multics
standard data type code (see the Programmer’s Reference Manual) and P is 0 if
the target is unpacked and 1 if the target is packed. (Input)

target_length
is the string length or arithmetic scale and precision of the target. If the target
is arithmetic, the target_length word consists of two adjacent unaligned halfwords.
The left halfword is a fixed bin(17) representing the signed scale and the right
halfword is a fixed bin(18) unsigned integer representing the precision. (Input)
The include file encoded_precision.incl.pll declares this as:

dcl 1 encoded_precision based aligned,
2 scale fixed bin(17) unaligned,
2 prec fixed bin(18) unsigned unaligned;

source_ptr
points at the source of the assignment; it can contain a bit offset. (Input)

source_type
specifies the source type using the same format as target_type. (Input)

source_length

is the string length or arithmetic scale and precision of the source using the same
format as target_length. (Input)

2-48 AG93-05

assign_

assign_

Entry: assign__$computational__

The assign_$computational_ entry assigns a specified source value to a specified target.
It can handle any computational Muitics data type. This inciudes all PL/I
computational data and all COBOL and FORTRAN data types. This entry uses the
same rules for rounding and truncation as assign_.

USAGE

declare assign_Scomputational_ entry (ptr, ptr, fixed bin(35));
call assign_Scomputational_ (tar_str_ptr, src_str_ptr, code);
ARGUMENTS

tar_str_ptr
is a pointer to a structure which defines the address and attributes of the target.
The format of this structure is defined below. (Input)

src_str_ptr
is a pointer to a structure giving the attributes of the source. This structure has
the same format as the one used for the target. (Input)

code
is a standard system code. It will be zero if the conversion was sucessful, or
error_table_$bad_conversion if either data type was not computational. It is also
possible that the conversion condition will be signalled, if the source data can not
be converted to the requested target type. (Qutput)

NOTES

The format of the structures used to describe the source and target data is given by
computational_data.incl.pll. It is:

dcl 1 computational_data aligned based,
2 address ptr aligned,
2 data_type fixed bin{(i7),
2 flags aligned,
3 packed bit(1) unal,
3 pad bit(35) unal,
2 prec_or_length fixed bin(24),
2 scale fixed bin(35),
2 picture_image_ptr ptr aligned;

STRUCTURE ELEMENTS

address
is a pointer to the data where the data is (source) or where it is to go (target).
It is the responsibility of the caller to ensure that there is sufficient room for
the target.

2-49 AG93-05

assign_ bed_to_ascii_

data_type
is a standard Multics data type. A list of all Multics data types appears in the

Programmer’s Reference Manual. The include file std_descriptor_types.incl.pll
defines symbolic names for these types.

packed
is "1"b if the data is packed.

pad
is reserved for expansion and must be all "0"b.

prec_or_length
is the arithmetic precision or string length of the data, as appropriate.

scale
is the arithmetic scale factor of the data, or zero if the data is not arithmetic.

picture_image_ptr
for picture data, is a pointer to the picture image block for the picture, otherwise
it is ignored. A picture image block is a structure in the runtime symbol table.
Only PL/I and the Multics debuggers know how 1o access it, so user programs
should not iry to convert t0 or from pictures using ilis eniry.

Entry: assign__$assign__round__

This entry assigns a source value to a target value, but always rounds. Otherwise it is

identical to assign_.

Entry: assign__$assign__truncate__

This entry is identical to assign_ except that it always truncates.

Name: bed__to__ascii__

The bed_to_ascii_ subroutine performs isomorphic (one-to-one reversible) conversion
from BCD to ASCIIL

USAGE
dcl bed_to_ascii_ entry (bit (%), char(%));

| call bed_to_ascii_ (bed_in, ascii_out);

11/86 2-50 AG93-05A

bed_to_ascii_ before_journal_manager_

ARGUMENTS

bed_in
is a bit string that represents the BCD characters to convert. (Input)

ascii_out .
is the lower case ASCII equivalent of the input string. (Output)

NOTES

BCD must be aligned on a 6-bit BCD character boundary.

Name: before__journal__manager__

The before_journal_manager_ subroutine provides the means to manipulate, and obtain
information about, before journals. Before journals are used to store before images of
protected data management (DM) files, for the purpose of rolling back modifications
to these files in the event of failure.

See the section entitled "Multics Data Management” in the Programmer’s Reference
Manual/, Order No. AGY91, for a complete description of before journals and their
use.

Entry: before__journal__manager__$close__bj

This entry point closes the specified before journal, making it unavailable to the
current process. A journal can be opened more than once in a process, in which case
the same opening id is returned for each open request. In that case, the close
operation merely decreases by one the number of journal openings in the process. If
a close_bj request is issued by a process on a journal while the process still has an
active transaction in that journal, the journal cannot be closed and an error code is
returned to the caller. If the journal to be closed was the default before journal for
the process, the before journal which was last opened in the process {(if any) becomes
the default before journal (see "Notes" under the set_default_bj entry).

USAGE

declare before_journal_manager_Sclose_bj entry (bit(36) aligned, fixed

bin(35));
call before_journal_manager_Sclose_bj (bj_opening_id, code);
ARGUMENTS

bj_opening_id
is the opening identifier of the before journal. (Input)

11/86 2-51 AG93-05A

before_journal_manager_ before_journal_manager_

code
is a standard system error code. {(Output)

Entry: before__journal _manager_ Screate__bj

This entry point creates a before journal file as specified by the input arguments.

USAGE

declare before_journal_manager_Screate_bj entry (char (%), char (%), fixed
bin, fixed bin, fixed bin(35));

call before_journal_manager_Screate_bj (dir_name, entry_name,
n_control_intervals, control_interval_size, code);

ARGUMENTS

dir_name
is the pathname of the directory in which the before journal is to be created.
(Input)

entry_name
is the entry name of the before journal to be created. The .bj suffix must be
included. (Input)

n_control_intervals

is the size of the journal expressed in the number of control intervals. (Input) A
before journal is a circular file; when information is no longer useful (i.e., before
images for committed or aborted transactions), it will be overwritten, allowing the
space to be reused. In estimating the size of a journal, you should consider the
number of transactions to be using the journal simultaneously, as well as their
profiles, i.e.,, their length in time and the rate at which they modify data, to
optimize performance.

control_interval_size

is the size of the before journal control interval in number of bytes. (Input) The
size is currently fixed at 4096.

11/86 2-52 AG93-05A

before_journal_manager_ before_journal_manager_

code
is a standard system error code. (Qutput)

Entry: before__journal__manager__Sget__bj _path__from__oid

This entry point returns the directory pathname and the entry name of the specified
before journal. For this operation to be successful, the before journal must be open
in the current process.

If a zero code is returned, the operation is successful and the dir_name and
eniry_name arguments are set to the proper values. If a nonzero code is returned, the
operation did not succeed and the values of dir_name and entry_name are left
unchanged.

USAGE

declare before_journal_manager_Sget_bj_path_from_oid entry (bit(36)
aligned, char (*), char (%), fixed bin{(35));

call before_journal_manager_Sget_bj_path (bj_oid, dir_name, entry_name,
code) ;

ARGUMENTS

bj_oid
is the opening identifier of the before journal for which the pathname is
requested. (Input)

dir_name
is the pathname of the directory in which the before journal resides. (Output)

entry_name
is the entry name of the before journal. (Output)

code
is a standard system error code. (Output)

Entry: before__journal__manager__S$get__default__bj

This entry point returns the opening identifier of the before journal to be used as the
default in those cases where a before journal specification is expected but not
supplied. The rules for determining this default before journal are described in
"Notes” under the set_default_bj entry point. If the journal which is to serve as the
default before journal is not open at the time of this call, it is opened automatically.

2-53 AG93-05

before_journal_manager_ . before_journal_manager_

USAGE

declare before_journal_manager_Sget_default_bj entry (bit(36) aligned,
fixed bin(35));

call before_journal_manager_Sget_default_bj (bj_oid, code);
ARGUMENTS

bj_oid
is the opening identifier of the current default before journal. (Output)

code
is a standard system error code. (Output)

Entry: before__journal__manager__$open__bj

This entry point makes the before journal specified by the pathname, ready for use by
any iransacition of the current process. A process may have several before journals
open at the same time, and may also have the same journal opened more than one
time. When a transaction is started, one of the open journals must be associated with
the transaction, if the transaction needs a before journal. One can expect that in most
cases, a process will open only one before journal, which will be used by all its
transactions.

This entry may also change the default before journal for the process to the newly
opened journal (see "Notes" under set_default_bj).

USAGE

declare before_journal_manager_Sopen_bj entry (char (%), char (%), bit(36)
aligned, fixed bin(35));

call before_journal_manager_Sopen_bj (dir_name, entry_name,
bj_opening_id, code);

ARGUMENTS

dir_name
is the pathname of the directory in which the before journal to be opened
resides. (Input) '

entry_name

is the entry name of the before journal to be opened. The .bj suffix must be
included (Input)

bj_opening_id

is the opening identifier of the journal. (Output) This specifier must be used
subsequently by the current process to identify this journal.

2-54 AG93-05

before_journal_manager_ before_journal_manager_

code
is a standard system error code. (Output)

NOTES

When a before journal is opened, it is remembered in a per system table containing
the pathnames and unique identifiers of all before journals opened in the system. This
table is used after a system crash to determine which journals must be reopened and
examined in order to perform a rollback operation. To preserve the integrity of this
table, it is written out to disk automatically each time it is updated with a newly
opened journal.

If a process opens the same before journal more than one time, the opening identifier
received from the open_bj will be the same for each call. The process must close a
before journal the same number of times it opens it, to render the journal inaccessible
through the same opening identifier.

Entry: before__journal__manager__$set__default__bj

This entry point causes the specified before journal to become the default before
journal. When no before journal is explicitly specified by the user at the beginning of
a transaction, the default before journal for the process will be assigned to the
transaction. The default before journal must be one of the before journals open in
the process.

USAGE

declare before_journal_manager_Sset_default_bj entry (bit(36) aligned,
fixed bin(35));

call before_journal_manager_Sset_default_bj (bj_opening_id, code);
ARGUMENTS

bj_opening_id
is the opening identifier of the before journal. (Input)

code
is a standard system error code. (Output)

2-55 AG93-05

before_journal_manager_ before_journal_manager_

NOTES
Several before_journal_manager_ entries expect an opening id to specify which before
journal to use. If bj_opening id is null, the following default assignments are
attempted, in the order in which they are mentioned below, until one of them
succeeds:

e The current default before journal in this process, if there is one; otherwise,

e The most recently open before journal among those that are still open, if there
is one; otherwise,

e The system before journal. If the system before journal has not been opened
yet in the current process, it is automatically opened.
Entry: before__journal__manager__S$set__transaction__storage__limit
This entry point sets the maximum number of bytes a single transaction may use.
USAGE

declare before_journal_manager_S$set_transaction_storage_limit entry
(char (%), char (%), fixed bin (35), fixed bin (35));

call before_journal_manager_Sset_transaction_storage_limit (dir_name,
entryname, storage_limit, code);

ARGUMENTS

dir_name
is the pathname of the containing directory. (Input)

entryname
is the entryname of the before journal. (Input)

storage_limit
is the maximum number of bytes a single transaction may use in the before
journal. (input)

code
is a storage system status code. (Output)

2-56 AG93-05

bit_offset_ cb_menu_

Name: bit__offset__

The bit_offset_ subroutine returns the bit offset (relative to the base of the segment)
of the bit located by the supplied pointer value.

USAGE

declare bit_offset_ entry (ptr) returns (fixed bin (24)) reducible;
bit_offset = bit_offset_ (pointer_value);

ARGUMENTS

pointer_value
is a pointer whose bit offset is to be determined. (Input)

bit_offset
is the bit offset of the supplied pointer. (Qutput)

NOTES

The first bit in a segment has a bit offset of zero.

Name: cb__menu__

The cb_menu_ subroutine allows a COBOL program to use the Multics menu facility
(menu_). Through cb_menu_ a COBOL program may create a menu object, display the
menu, and get a user—entered selection from a menu. Once a menu object has been
created, the COBOL program can use this menu object by referencing it via a
menu-id returned to the caller when the menu object was created or when a stored
menu object was retrieved.

The functionality available is provided through the various entry points described
below.

Entry: cb__menu__S$create

Utilized to create a menu-object. Returns a menu-id which may be subsequently used
by other entry points.

2-57 AG93-05

¢b_menu_ c¢b_menu_

USAGE
declarations:

01 choices-table.

02 choices PIC X(n1) OCCURS (ml1) TIMES.
01 headers-table.
02 headers PIC X(n2) OCCURS (m2) TIMES.

01 trailers-table.

02 trailers PIC X{n3) OCCURS (m3) TIMES.
01 keys-table.

02 keys PIC X{(1) OCCURS (mk) TIMES.

01 menu-format.
02 menu_version USAGE IS COMP-6
02 constraints USAGE IS COMP-6
03 max-width.
03 max-height.
02 no-of-columns USAGE 1S COMP-6.
02 flags.
03 center-headers PIC 9(1).
03 center-trailers PIC 9(1).

02 pad-char PIC X(1).

01 menu-needs USAGE |S COMP-6.
02 lines-needed.
02 width-needed.
02 no-of-options.

77 menu-id USAGE 1S COMP-6.
77 ret-code USAGE IS COMP-6.

call "cb_menu_Screate" USING choices-table, headers-table,
trailers-table, menu-format, keys-table, menu-needs,
menu-id, ret-code.

STRUCTURE ELEMENTS

choices-table
is a table of elementary data items which are the text of the options that the
user wishes to display in the menu. nl is the length, in characters, of the longest
character string comprising the text of an option. ml is the extent of the tabie,
i.e., the number of options in the menu being described. This table must be at
least of extent 1.

2-58 AG93-05

cb_menu_

headers—-table

c¢b_menu_

is a table of elementary data items to be displayed at the top of the menu
(Input) n2 is the length, in characters, of the longest header specified. m2 is the
extent of the table, ie., the number of headers (lines) desired. At least one
header must be specified (if the first header is set to space(s), no headers will be

used).

trailers—table

is an table of trailers (displayed immediately below the menu). (Input) n3, m3,
are analogous to n2, m2 respectively.

menu-format

is a group item defining the format of the menu being created. (Input)

In the COBOL program the caller
elementary data items:

menu-version
max-width
max-height
no-of-columns
center-headers

center-trailers

keys—-table

the version number of the menu facility.
(only version 1 is currently defined)
maximum width of the window on which the
menu is to be displayed.

maximum height of window on which the
menu is to be displayed.

number of columns to be used to display
the options.

Oor 1I; 0 =no, 1 = yes.

0 or 1 (same as center-headers)

is responsible for setting the following

is a table (maximum value of m4 is 61) that identifies the keystroke to be

associated with each choice.

menu-needs

(Input) This table must be at least as long as the
number of choices in the menu. Each element in the table must be unique.

a group item that contains menu related information on successful execution of

call. (Output)

Returned information:

lines-needed
width-needed

no-of -options

the number of lines required
to display the menu.

the number of columns needed
to display the menu.

the number of options defined
in the menu.

2-59

AG93-05

¢b_menu_ cb_menu_

menu-id
the menu-object identifier (i.e., it is the menu object "pointer".) (Output) It must
not be altered in any way by the application program.

ret-code
return code. (Output) (See Appendix B.)

Entry: cb__menu__S$delete

Deletes a menu object from a given value segment.
USAGE

declarations:

77 dir-name PIC X(168).
77 entry-name PIC X(32).
77 name-of-menu PIC X (32).
iy

ratea~cadas HHCARE 1€ raMD_L
- MONUE 9 VUil U

LR SR Saa e o] LS

call "cb_menu_Sdelete'" USING dir-name, entry-name, name-of-menu,
ret-code.

STRUCTURE ELEMENTS
dir-name
pathname of the directory containing the menn object. (Input)
entry-name
entry name of value segment containing the menu object. (Input) The suffix

"value" need not be specified.

name-of -menu
name used to identify the menu object when the menu object was stored. (Input)

ret—code
return code. (Output) (See Appendix B.)

2-60 AG93-05

cb_menu_

Entry: cb__menu__S$describe

cb_menu__

Returns information about a menu object. It returns the number of options in the
menu, the number of lines and number of columns required to display the menu. It
is primarily used to determine if the menu can be displayed in a given window.

USAGE

declarations:

01 menu-needs USAGE IS COMP-6.

02 lines-needed.
02 width-needed.
02 no-of-options.

77 menu-id USAGE IS COMP-6.
77 ret-code USAGE IS COMP-6.

call "cb_menu_Sdescribe'" USING menu-id, menu-needs, ret-code.

STRUCTURE ELEMENTS

menu-id e

the menu identifier returned by cb_menu $create (or cb_menu $retr1eve in cases

where the menu object has been stored). (Input)

menu-needs

a group item that contains menu related information on successful execution of

call. (Output)

Returned information:

lines-needed the number of 1lines needed to

display the menu.

width-needed the number of columns needed

to display the menu.

no-of-option the number of options defined

ret-code

in the menu.

return code. (Output) (See Appendix B.)

2-61 AG93-05

cb_menu_ cb_menu_

Entry: cb__menu__$destroy

Used to free storage of a menu (not to be confused with cb_menu_$delete, which is
used to delete the menu object from a value segment). Destroying the menu has no
effect on the screen contents.

USAGE

declarations:

77 menu-id USAGE IS COMP-6.
77 ret-code USAGE IS COMP-6.

call "cb_menu_Sdestroy'" USING menu-id, ret-code.

STRUCTURE ELEMENTS

menu-id
menu identifier returned by cb_menu_§$create or cb_menu_$retrieve. (Input/Output)
(If usage-mode is 0 (see cb_menu_$init2) this operand will be ignored.) Set to an
invalid value on return to prevent the old menu-id from being accidentally used.

ret—-code
return code. {(Output) (See Appendix B.)
Entry: cb__menu__$display
Invoked to display a menu in a given window.
USAGE
declarations:
77 window-id USAGE IS COMP-6.
77 menu-id USAGE IS COMP-6.
77 ret-code USAGE 1S COMP-6.

call "cb_menu_Sdisplay" USING window-id, menu-id, ret-code.
STRUCTURE ELEMENTS

window—id
a window identifier returned by cb_window_§$create entry point. (Input) If
usage-mode = 0 this operand will be ignored (see cb_menu_$init2).

2-62 AG93-05

cb_menu_

menu-id

c¢b_menu_

menu identifier returned when the menu object was created or retrieved. (Input)

ret—code

return code. (Output) (See Appendix B.)

Entry: cb__menu__$get__choice

Returns the choice made by the user, i.e., a number representing either the menu item
chosen or the function key (or its equivalent escape sequence) entered.

USAGE

declarations:

77 function-key-info PIC X(nl).

77 window-id USAGE IS COMP-6.

77 menu-id USAGE IS COMP-6.

77 fkeys USAGE 1S COMP-6.

77 selection USAGE IS COMP-6.

77 ret-code USAGE IS COMP-6.

call "cb_menu_Sget_choice" USING window-id, menu-id,

function-key-info, fkeys, selection, ret-code.

STRUCTURE ELEMENTS

window-id

a window identifier returned by the cb_window_$create entry point. (Input) If
usage-mode = 0 this operand will be ignored (see cb_menu_S$init2).

menu-id

menu identifier returned by cb_menu_$create or cb_menu_$retrive. (Input)

2-63 AG93-05

cb_menu_ cb_menu_

function-key-info

a character elementary data item (nl as required) used to specify the role of
function keys (if they exist for the terminal being used) or an equivalent set of
escape sequences if the terminal does not have function keys or not the function
keys required by the application. (Input) The objective is to let the application
use the terminal’s function keys if possible, else specify key sequences to be used
to simulate function keys. Each character in the string corresponds to one
function key. If the character is a space, then it is not relevant if the
corresponding function key exists or not. If the character is not a space, that
character will be used to simulate a function key if the terminal does not have
function keys. If the terminal does not have a function key for every non-space

| character in the string, then function keys will be simulated. Thus, the string "

| 7p q" means that the caller does not care whether the terminal has function key
0 or 3, but the caller does wish to use function keys 1,2, and 4. If any of these
3 function keys is not present on the terminal, then esc-? will substitute for FI,
esc-p will substitute for F2, and esc—q will substitute for F4.

fkeys
fkeys = 1 user entered a function key or escape sequence fkeys = O user selected
an option (Output)

selection
is a number representing the choice made by the user. (Output) If the user has
chosen an option, it is a number between 1 and the highest defined option. If
the user has entered a function key, or escape sequence simulating a function key,
it is the number associated with the function key.

ret—code
return code. (Output) (See Appendix B.)

| Entries: cb__menu__S$initl, cb__menu__$init2

These must be the first calls made to the menu manager. They set up the necessary
| environment for the menu application and return information concerning the user I1/0
| window.

USAGE

declarations:

inter code
integer usage-mode

call cb_menu_Sinitl

call cb_menu_Sinit2 (usage-mode, user-window-1lines,
user-window-columns, user-window-id. ret-code)

2-64 AG93-05

cb_menu_ cb_menu_

STRUCTURE ELEMENTS

usage-mode

usage-mode = 0 means that the caller does not wish to do any explicit window
management. (Input) When he/she wishes to display a menu, the window required
will be automatically created. This means that the application will operate in a
two window mode, the window containing the menu, and the user_ioc window.
Both windows will be managed automatically for the user. If the user specifies
this mode, all calls to the cb_window_ subroutine will be ignored and will return
an appropriate error code. See Error Code Handling, below. All calls to the
cb_menu_ subroutine that require a window identifier will ignore the user
provided window—id.

usage-mode = 1 means that the wuser wishes to define the number and
characteristics of the windows to be used in the application. Thus, calls to
cb_window_ will be supported and, for the entry points of cb_menu_ that require
a window identifier, the caller must use a legal window—-id (returned by
cb_window_S$create).

user-window-lines
the number of physical lines (rows) of the user i/o window when cb_menu_S$init
is called (which must be the first cb_menu_ call in the application.) Undefined if
usage-mode = 0. (Output)

user—-window-columns
the number of columns of the user i/¢ window at time that cb_menu S$init is

called (see immediately above). (Output) Undefined if usage-mode = 0.

user-window—id
window identifier of the user i/o window. (Output) Undefined if usage-mode
0.

ret—-code
return code. (Output) (See Appendix B.)

Entry: cb__menu__$list

Used to list the menu object(s), stored in value segment. The menu objects selected
are those that match the string input by the caller.

2-65 AG93-05

cb_menu_ cb_menu_

USAGE
declarations:

01 matched-names.
02 no-of-matches USAGE 1S COMP-6.

02 menu-names PIC X(32) OCCURS (ml1) TIMES.
77 dir-name PIC X (168).
77 entry-name PIC X(32).
77 match-string PIC X(32).
77 ret-code USAGE IS COMP-6.
call "cb_menu_Slist" USING dir-name, entry-name, match-string,

matched-names, ret-code.

STRUCTURE ELEMENTS

dir-name
pathname of directory containing the menu object. (Input)

entry-name

eniry name of value segment containing the menu object. (Input) The suffix
"value" need not be specified.

match-string
a character elementary data item that is to be used as the selection criteria for
determining what menu object, if any, is contained in the specified value segment
that match {or contain) this siring. (Input)

no-of -matches
the number of matches found. (Output) If none, then it is 0.

menu—-names
On return, contains the names of all menu objects, in the specified value segment,
that match the character string match-string. (Output) Note, if ml is not large
enough to contain all the names, only ml names will be returned.

ret-code
return code. (Output) (See Appendix B.)

2-66 AG93-05

c¢b_menu_ cb_menu_

Entry: cb_menu_ Sretrieve
Used to retrieve a menu object previously stored via the cb_menu_$store subroutine.
USAGE

declarations:

77 dir-name PIC X(168).
77 entry-name PIC X(32).
77 name-of-menu PIC X(32).
77 menu-id USAGE IS COMP-6.
77 ret-code USAGE 1S COMP-6.

call '"cb_menu_Sretrieve" USING dir-name, entry-name, name-of-menu,
menu-id, ret-code.

STRUCTURE ELEMENTS
dir-name
pathname of the directory containing the menu object. (Input)
entry-name
entry name of value segment containing menu object. (Input) The suffix "value”

need not be specified.

name—of —-menu
name of the menu object used when the object was stored. (Input)

menu-id
is the menu id returned by the call. (Output)

ret—code
return code. (Output) (See Appendix B.)

Entry: cb_menu__$store

Used to store a menu object in a specified value segment.

2-67 AG93-05

cb_menu__ cb_menu_

USAGE

declarations:

77 dir-name PIC X(168).

77 entry-name PIC X(32).

77 name-of-menu PIC X (32).

77 create-seg USAGE IS COMP-6.

77 menu-id USAGE 1S COMP-6.
77 ret-code USAGE IS COMP-6.
call "cb_menu_Sstore' USING dir-name, entry-name, name-of-menu,

create-seg, menu-id, ret-code.

STRUCTURE ELEMENTS

dir-name
pathname of directory into which the menu object is to be placed. (Input)

entry—name

entry name of value segment into which menu object is to be placed. (Input) The
suffix "value” need not be specified.

name-of -menu
is the name to be assigned to the stored menu object. (Input)

Create-seg
create-seg = 0 means do not store if value segment identified by entry-name does
not already exist. (Input) create-seg = 1 means create value segment, if it does
not already exist, and store menu object in it.

menu-id
is the menu object identifier returned by cb_menu_$create or cb_menu_S$retrieve.
(Input)

ret—-code
return code. (Qutput) (See Appendix B.)

2-68 AG93-05

c¢b_menu_ cb_window_

Entry: cb__menu__Sterminate

Must be the last call to the menu manager in the menu application.
USAGE

declarations: none

call "cb_menu_Sterminate'.

STRUCTURE ELEMENTS

There are no arguments.

Name: cb__window__

This is the basic video interface subroutine to be used by COBOL to create/destroy/change
windows. (If usage-mode = 0 (see cb_menu_3%$init2) this subroutine should not be
called.)

Its facilities are available through the following entry points.

Entry: cb__window__$change

[¢]

This entry points provides a facility for changing the size of an existing window. The
size of a window can always be "shrunk”, however it can be increased only it does
not overlap with another defined window. (If usage-mode = 0 (see cb_menu_$init2)
this entry point should not be called.)

USAGE
declarations:

77 window-id USAGE 1S COMP-6.
77 first-line USAGE 1S COMP-6.
77 height USAGE |S COMP-6.
77 ret-code USAGE IS COMP-6.

call "cb_window_Schange' USING window-id, first-line, height,
ret-code.

2-69 AG93-05

cb_window_ cb_window_

STRUCTURE ELEMENTS
window-id
window identifier returned by cb_window_$create. (Input)

first-line
new first line number for the window being changed. (Input) A positive value.

height
new height for the window being changed. (Input) A positive value.

ret-code
return code. (Output) (See Appendix B.)
Entry: cb__window__$clear__window
Used to clear a specified window.
USAGE

declarations:

77 window-id USAGE IS COMP-6.
77 ret-code USAGE 1S COMP-6.
call "cb_window_Sclear_window'" USING window-id, ret-code.

STRUCTURE ELEMENTS

window-id
the window identifier (returned by cb_window_$create) of the window to be
cleared. (Input)

ret—code
return code. (Output) (See Appendix B.)

2-70 AG93-05

cb_window_ c¢b_window_

Entry: cb__window__$create

This entry is used to create a new window on the terminal screen. (If usage-mode =
0 (see cb_menu_$init2) this entry point should not be called.)

USAGE
declarations:

77 switch-name PIC X(32).

77 first-line USAGE IS COMP-6.
77 height USAGE 1S COMP-6.
77 window-id USAGE IS COMP-6.
77 ret-code USAGE 1S COMP-6.
call "cb_window_Screate' USING first-line, height, switch-name,

window-id, ret-code.
STRUCTURE ELEMENTS
first-line
is the line number where the window is to start. (Input)

height
the number of lines used by the window, i.e., its height. (Input)

switch-name
the name that the caller wishes to associate with the switch. (Input)

window-id
the returned id of the window just created. (Output) It must not be altered in
any way by the application program.

ret-code
return code. (Output) (See Appendix B.)

Entry: cb_window__$destroy

Used to destroy a previously created window. (If usage-mode = 0 (see cb_menu_$init2)
this entry point should not be called.)

2-1 AG93-05

cb_window_ c¢b_window_

USAGE
declarations:

77 window-id USAGE 1S COMP-6.
77 ret-code USAGE IS COMP-6.

call "cb_window_Sdestroy" USING window-id, ret-code.

STRUCTURE ELEMENTS

window-id
window identifier (returned by the cb_window_$create). (Input/Output) It is reset
to an illegal value by this call.

ret—code
return code. (Output) (See Appendix B.)

COBOL MENU APPLICATION EXAMPLES

In the following two COBOL examples, a "Message” menu application is created that
allows you to display, print, discard, or forward messages. Example 1 is a simple
COBOL program that interfaces with the Multics menu manager via the cb_menu_
routine. Note in example 1 that window management functions are called automatically
through arguments in the ft_menu_$init2 subroutine.

Example 2 is a COBOL program that interfaces with the Multics menu manager
through the c¢b_menu routine; in example 2, however, window management functions
are performed by the cb_window_ routine.

EXAMPLE 1:

In this example, all window management is done automatically.

[RxFRdd kR kd kR fhdkdodihdhhkhiokdkdd ek hdkdddot Rkl dk ki d kR d etk
* A simple COBOL program interfacing with the Multics

* menu manager via the cb_menu_ routine.
ER T IR IR R R RP e P P R R P R R R R R L T R F I S

b

CONTROL DIVISION.
DEFAULT GENERATE AGGREGATE DESCRIPTORS.
IDENTIFICATION DIVISION.

PROGRAM-I1D.
cbtestl.

AUTHOR.
R. I.

2-712 AGS93-05

cb_window_
ENVIRONMENT DiVISIiON.
CONF IGURATION SECTION.
SOURCE-COMPUTER.
Multics.
OBJECT-COMPUTER.
Multics.

02

02

02
02

02
02

02
02
02

VAR T TR PRt PR R P e R R e e e 3 e s R SR TR T 2R TP

DATA DIVISION.

WORKING-STORAGE SECTION.

01 choices-table.

02 choices PIC X(15) OCCURS 6

headers-table.

02 headers PIC X(14) OCCURS 1
01 trailers-table.

trailers PIC X(32) OCCURS 1 TIMES.
01 keys-table.

keys PIC X (1)

o1

OCCURS 6 TIMES.

01 menu-format.
menu-version USAGE IS COMP-6 VALUE
constraints USAGE S COMP-6.

03 max-width VALUE 79.

03 max-height VALUE 10.

no-of-columns USAGE 1S COMP-6 VALUE

flags.

03 center-headers

03 center-trailer
02 padder

PIC 9(1) VALUE
PIC 9(1) VALUE
PIC X (1) VALUE "-",
01 menu-needs USAGE S COMP-6.
lines-needed.
width-needed.
no-of-options.

77 dir-name PIC X(168)
77 entry-name PIC X(32).
77 menu-name PIC X(32).

77 function-key-info

TIMES.

TIMES.

PIC X (1) VALUE "g".

77 me PIC X(7) VALUE “cbtestl1".
77 menu-id
USAGE 1S COMP-6.
77 ret-code USAGE IS COMP-6.
77 window-id USAGE IS COMP-6.

2-73

¢b_window_

AG93-05

cb_window_ cb_window_

77 fkeys USAGE IS COMP-6.
77 option USAGE 1S COMP-6.
77 easy-mode USAGE 1S COMP-6 VALUE zero.

77 user-window-1ines USAGE 1S COMP-6.
77 user-window-columns USAGE IS COMP-6.

77 user-window-id USAGE IS COMP-6.
77 create-seg USAGE 1S COMP-6.
77 keys-not-unique USAGE IS COMP-6.
77 too-few-keys USAGE IS COMP-6.
77 bad-arg USAGE IS COMP-6.

VAR T T T T T T e P T T S S R R R R S R R R L
PROCEDURE DIVISION.

* The call to the cv_error_Sname are used to collect the code for
certain error messages that are of interest this application.

% Once these codes are retrieved the occurrence of that error can
% be easily tested for.

CALL "cb_menu_Sinitl".
CALL "“cb_menu_Sinit2" USING easy-mode, user-window-lines,
- user-window-columns, user-window-id, ret-code.

* The calls to cb_menu_Sinitl & 2 MUST be the first calls to cb_menu_.
* They set up the appropriate environment for the menu application.

a2,

IF ret-code EQUAL TO zero GO TO NEXT-ERR-CODE.
CALL "com_err_" USING ret-code, me, "Internal error.
Could not set up appropriate environment.'.
GO TO STOP-IT. :

CALL "ev_error_Sname'" USING "menu_et_Skeys_not_unique',
- keys-not-unique, ret-code.

call "ioa_" USING "Error code for keys-not-unigque = ~d", keys-not-unique.
IF ret-code EQUAL TO zero GO TO NEXT-ERR-CODE.
CALL “com_err_" USING ret-code, me, " (calling cv_error_Sname)''.

GO TO STOP-IT.
NEXT-ERR-CODE.
CALL "cv_error_Sname'" USING "error_table_Sbad_arg", bad-arg, ret-code.
IF ret-code EQUAL TO zero GO TO LAST-ERR-CODE.
CALL "com_err_" USING ret-code, me , " (calling cv_error_$name)'.
GO TO STOP-IT.
LAST-ERR-CODE.
CALL "cv_error_Sname'" USING "menu_et_Stoo_few_keys', too-few-keys,

- ret-code.
iF ret-code EQUAL TO zero GO TO SET-UP.
CALL “com_err_" USING ret-code, me, " (calling cv_error_S$name)'.
GO TO STOP-IT.

SET-UP.

2-74 AG93-05

cb_window_ cb_window_

MOVE 1 TO menu-version.
MOVE "Display Message'" TO choices(1).
MOVE "Print Message" TO choices(2).
MOVE "Discard Message" TO choices(3).
MOVE "Forward Message" TO choices {4).
MOVE "Reply Message" TO choices (5).

MOVE '"List Messages' TO choices(6).
MOVE " MULTICS MAIL " TO headers(1).
MOVE "Press F1 or enter esc-q to quit" TO trailers(1).
MOVE "1" TO keys (1).
MOVE "'2" TO keys(2).
MOVE "3" TO keys(3).
MOVE "4" TO keys(h).
MOVE "5'" TO keys (5).
MOVE "6" TO keys (6) .

MENU-CREATE.
DISPLAY choices-table.
DISPLAY menu-version.
CALL "cb_menu_Screate'" USING choices-table, headers-table,
- trailers-table, menu-format, keys-table, menu-needs,
- menu-id, ret-code.

* This call creates a menu object and return the menu object
% identifier. This menu object is referenced as "menu-id".
iF ret-code EQUAL 70 zero GO TO STORE-MENU.
CALL "com_err_" USING ret-code, me, " (calling cb_menu_Screate)'.
GO TO STOP-IT.
STORE-MENU.
MOVE '">udd>m>ri'" TO dir-name.
MOVE 'menus_seg" TO entry-name.
MOVE "cb_read_mail_menu" TO menu-name.
MOVE 1 TO create-seg.
CALL "cb_menu_S$store' USING dir-name, entry-name, menu-name,
- create-seg, menu-id, ret-code.
IF ret-code EQUAL TO zero GO TO DISPLAY-MENU.
CALL "com_err_'" USING ret-code, me, "(calling cb_menu_Sstore)".
GO TO STOP-IT.
DISPLAY-MENU.
CALL "cb_menu_Sdisplay" USING window-id, menu-id, ret-code,

This call displays the menu in its own window at top of screen.
Since the usage-mode was set to O, the program does not have to
create the window before calling cb_menu_Sdisplay.

The window-id argument is ignored.

% % %

%

IF ret-code EQUAL TO zero GO TO GET-CHOICE.
CALL “com_err_" USING ret-code, me, "Internal error.

2-75 AG93-05

cb_window_ cb_window_

Menu could not be displayed."
GO TO STOP-IT.

GET-CHOICE.

* Defines the function key requirements, i.e.,
% if the terminal has function key 1 (F1) then F1 will be used
* to "quit", otherwise "esc q" will be used to "quit".

CALL "cb_menu_Sget_choice' USING window-id, menu-id,
- function-key-info, fkeys, option, ret-code.
IF ret-code EQUAL TO zero GO TO TEST-FKEY.
CALL "com_err_" USING ret-code, me, "Internal error. While getting
user's choice.".
GO TO STOP-IT.
TEST-FKEY.
IF fkeys EQUAL TO 1
CALL "ioa_" USING "Exiting at your request."
GO TO STOP-IT
ELSE
CALL "ioa_" USING "You chose option ~d.", option
GO TO GET-CHOICE.

STOP-IT.
CALL "cb_menu_Sterminate".
* cb_menu_Sterminate MUST be the last call to cb_menu_ in the
* application. It terminates the environment set up cb_menu_Sinit.

EXIT PROGRAM.

EXAMPLE 2:

In this example, COBOL interfaces with the Multics menu manager and the Multics
window manager via the cb_menu_ and cb_window_ subroutines. fif

[fdfededfefede oo hdofe ek doh e R d kR fu kR ditdkfefedt R ek etk
% A simple COBOL program interfacing with the Multics *

* menu manager and window manager via the cb_menu_ and *

%* cb_window_ routines. respectively. *
Fdfdhhdddfddhddfd Rt Rk kRl ddd kil dd Rt kil d Rk d kit dkd Rk d ki dndh ki

CONTROL DIVISION.
DEFAULT GENERATE AGGREGATE DESCRIPTORS.
IDENTIFICATION DIVISION.

PROGRAM-ID.
cbtest2.
AUTHOR.
R. |I.

2-76 AG93-05

cb_window_ cb_window_

ENVIRONMENT DIVISION.

CONF IGURATION SECTION.

SOURCE~-COMPUTER.
Multics.

0BJECT-COMPUTER.
Multics.

/*******k*************************************k***%**********k*
DATA DIVISION.
WORKING-STORAGE SECTION.

01 choices-tablel.
02 choicesl PIC X(9) OCCURS 2 TIMES.
01 choices-table2.
02 choices2 PIC X(15) OCCURS 6 TIMES.
01 choices-table3.
02 choices3 PIC X(21) OCCURS 4 TIMES.
01 headers-table.
02 headers PIC X{23) OCCURS 1 TIMES.
01 trailers-table. 02 trailers PIC X(52) OCCURS 1 TIMES.
01 keys-table. 02 keys PIC X (1) OCCURS 6 TIMES.

01 menu-format. 02 menu-version USAGE IS COMP-6 VALUE 1. 02
constraints USAGE 1S COMP-6.
03 max-width VALUE 80. _
03 max-height VALUE 1C0. 02 no-of-columns USAGE 15 COMP-6 VALUE 2.
02 flags.
03 center-headers PIC 9(1) VALUE 1.
03 center-trailer PIC 9(1) VALUE 1.

02 padder PIC X (1) VALUE "-".

01 menu-needs USAGE 1S COMP-6. 02 lines-neededl. 02
width-neededl. 02 no-of-optionsi.

01 menu-needs? USAGE IS COMP-6. 02 lines-needed?. 02
width-needed2. 02 no-of-options2.

01 menu-needs3 USAGE IS COMP-6. 02 lines-needed3.

2-71 : AG93-05

cb._window_

cb_window_

02 width-needed3.
02 no-of-options3.

77
77
77
77
77
77

77
77

77
77
77
77
77
77
77
77
77
77
77
17
77
77
77
77
77

77
77
77

dir-name PIC X (168).

entry-name PIC X(32).

menu-name PIC X(32).

function-key-info PIC X(2) VALUE "qf".
me PIC X(7) VALUE "“cbtest2".
switch-name PIC X(32).

lines-needed USAGE IS COMP-6.
first-line USAGE IS COMP-6.

height USAGE IS COMP-6.

menu-id USAGE IS COMP-6.

menu-idl USAGE 1S COMP-6.

menu-id2 USAGE 1S COMP-6.

menu-id3 USAGE IS COMP-6.

ret-code USAGE IS COMP-6.
curr-window-id USAGFE IS COMP-6.
window-id USAGE IS COMP-6.
window-idl USAGE 1S COMP-6.
window-id2 USAGE |S COMP-6.

fkeys USAGE IS COMP-6.

option USAGE IS COMP-6.
do-it-yourself USAGE IS COMP-6 VALUE 1.
user-window-1lines USAGE IS COMP-6.
user-window-columns USAGE 1S COMP-6.
user-window-id USAGE !|S COMP-6.
create-seg USAGE IS COMP-6.

bad-window-id USAGE IS COMP-6.
nonexistent-window USAGE 1S COMP-6.
insuff-room-for-window USAGE 1S COMP-6.

/**#**********

PROCEDURE DIVISION.

e % %

The call to the cv_error_Sname are used to collect the code for
certain error messages that are of interest this application. _
Once these codes are retrieved the occurrence of that error can
be easily tested for.

START-IT.
CALL "ecv_error_Sname" USING 'video_et_Sbad_window_id",
- bad-window-id, ret-code.

if ret-code EQUAL TO zero GO TO NtAl- ERR-CODE
CALL "com_err_" USING ret-code, me, " (callin

g cv_error_Sname)".

GO TO STOP-IT.

2-78

AG93-05

cb_window_ cb_window_

NEXT-ERR-CODE.)
CALL “"ev_error_Sname" USING 'video_et_Snonexistent_window",
- nonexistent-window, ret-code.
IF ret-code EQUAL TO zero GO TO LAST-ERR-CODE.
CALL "com_err_" USING ret-code, me , ' (calling cv_error_Sname)".
GO TO STOP-IT.
LAST-ERR-CODE.
CALL "cv_error_Sname" USING '"video_et $|nsuff room_for_window",
- insuff-room- for-window, ret- code.
IF ret-code EQUAL TO zero GO TO SET-UP.
CALL "com_err_'" USING ret-code, me, " (calling cv_error_Sname)".
GO TO STOP-IT.
SET-UP.
MOVE "Read Mail" TO choicesl(l).
MOVE "Send Mail" TO choices1(2).

MOVE '"Display Message' TO choices2(1).
MOVE "“Print Message" TO choices2(2).
MOVE "Discard Message" TO choices2(3).
MOVE '"Forward Message' TO choices2 (4).
MOVE "Reply Message" TO choices2(5).
MOVE 'List Messages'" TO choices2(6).

MOVE '"Send New Message" TO choices3(1).

MOVE "Send Deferred Message' TO choices3(2).
MOVE "Print Sent Message' TO choices3(3).
MOVE "Save Sent Message'' TO choices3(4).

MOVE "1" TO keys(1).

MOVE 2" TO keys(2).
MOVE "3" TO keys(3).

MOVE "4" TO keys(h).
MOVE "5'" T0 keys (5).
MOVE '6" TO keys (6).

CALL "cb_menu_Sinitl",
CALL "cb_menu_Sinit2" USING do-it-yourself, user-window-1ines,
- user-window-columns, user-window-id, ret-code.

The call to cb_menu_Sinitl & 2 MUST be the first call to cb_menu_.
It sets up the appropriate environment for the menu application.
The application must do the window management, since
"do-it-youself" is set to 1.

e % % %

IF ret-code EQUAL TO zero GO TO CREATE-FIRST-MENU.

CALL "com_err_" USING ret-code, me, '"Internal error. Could not set up
appropriate environment.".

GO TO STOP-IT.

2-79 AGY3-05

cb_window_ cb_window_

CREATE-FIRST-MENU.
% Create first menu object.

MOVE "F1 (or esc-q) = quit" TO trailers(l).

MOVE "MULTICS MAIL" TO headers(1).

CALL "cb_menu_Screate'" USING choices-tablel, headers-table,
- trailers-table, menu-format, keys-table, menu-needsi,
- menu-idl, ret-code.

IF ret-code EQUAL TO zero GO TO CREATE-SECOND-MENU.
CALL "com_err_" USING ret-code, me, " (calling cb_menu_Screate)".
GO TO STOP-IT.

CREATE-SECOND-MENU.

% Create second menu object.

MOVE "F1 (or esc-q) = quit; F2 (or esc-f) = first menu" TO trailers(1).
MOVE "READ MAIL" TO headers(1).
CALL “cb_menu_Screate" USING choices-tabieZ, headers-tiabie,
- trailers-table, menu-format, keys-table, menu-needs2,
- menu-id2, ret-code.
IF ret-code EQUAL TO zero GO TO CREATE-THIRD-MENU.
CALL "com_err_" USING ret-code, me, " (calling cb_menu_Screate)".
GO TO STOP-IT.

CREATE-THIRD-MENU.
* Create third menu object.

MOVE "SEND MAIL" TO headers (1) .
CALL "cb_menu_Screate'" USING choices-table3, headers-table,
- trailers-table, menu-format, keys-table, menu-needs3,
- menu-id3, ret-code.
IF ret-code EQUAL TO zero GO TO STORE-MENU.
CALL "com_err_" USING ret-code, me, " (calling cb_menu_Screate)'.
GO TO STOP-IT.

STORE-MENU.
MOVE ">udd>m>ri* TO dir-name.
MOVE "menu_seg' TO entry-name.
MOVE "cb_test_menu_'" TO menu-name.
MOVE 1 TO create-seg.
CALL "cb_menu_Sstore' USING dir-name, entry-name, menu-name,
- create-seg, menu-idl, ret-code.
IF ret-code EQUAL TO zero GO TO DISPLAY-IT.
CALL "com_err_" USING ret-code, me, " (calling cb_menu_S$store)".
GG TO STOP-iT.
DISPLAY-IT.
MOVE -1 TO curr-window-id.

2-80 AG93-05

cb_window_ cb_window_

% Setting curr-wind-id to '"-1" means that there is no current window
% defined.

MOVE menu-idl TO menu-id.

MOVE lines-needed! TQ lines-needed.

DISPLAY-FIRST-MENU.

PERFORM CHANGE-MENU THRU GOBACK.
* The user i/o window has been '"shrunk', the window for the first
menu
* has been created, and the first menu has been displayed.
MOVE window-id TO window-idl.
IF ret-code EQUAL TO zero GO TO GET-IT.
CALL "com_err_'" USING ret-code, me, '"Internal error.
Menu could not be displayed."
GO TO STOP-IT.
GET-IT.
PERFORM GET-CHOICE.
* Get the user input. Two values are returned. (1) fkey. |If fkey
=]’
* then the user entered a function key (or its equivalent escape
% sequence). |f fkey = 0 then the user has selected an option. (2)
option.
% |If fkey = 1 then option is the function key number entered. (F1 =
1,
* F2 = 2, etc.). |If fkey = 0, then option is the option number
selected,
% option = 1 means option 1 selected, etc.

IF ret-code EQUAL TO zero GO TO TEST-FKEY.
CALL "com_err_" USING ret-code, me, '"Internal error.
While getting user's choice.".
GO TO STOP-IT.
TEST-FKEY.
|F fkeys EQUAL TO 1
IF option EQUAL TO 1
CALL "joa_" USING "Exiting at your request."
GO TO STOP-IT
ELSE
GO TO GET-IT
ELSE
IF option EQUAL TO 1
MOVE menu-id2 TO menu-id
MOVE lines-needed2 TO 1ines—-needed
PERFORM CHANGE-MENU THRU GOBACK
ELSE
MOVE menu-id3 TO menu-id
MOVE lines-needed3 TO 1ines-needed
PERFORM CHANGE-MENU THRU GOBACK.
IF ret-code NOT EQUAL TO zero

2-81 AG93-05

cb_window_ cb_window_

CALL "com_err_" USING ret-code, me, "Internal error.
While trying to display menu."
GO TO STOP-IT
ELSE
MOVE window-id TO window-id2.
NEXT-GET-IT.
PERFORM GET-CHOICE.
IF fkeys EQUAL TO zero GO TO CHOSE-OPTION.
IF option EQUAL TO 1
CALL "ioa_'" USING "Exiting at your request."
GO TO STOP-IT
ELSE
IF option GREATER 2
GO TO NEXT-GET-IT
ELSE

MOVE menu-idl TO menu-id

MOVE lines-needed]l TO 1ines-needed

GO TO DISPLAY-FIRST-MENU.

CHOSE-OPTION.
CALL "ioa_" USING "You chose option "d.", option.
GO TO NEXT-GET-IT.

GET-CHOICE.

CALL "cb_menu_Sget_choice" USING window-id, menu-id,
- function-key-info, fkeys, option, ret-code.

CHANGE-MENU.

% Destroy the current menu window.
IF (curr-window-id) EQUAL TO -1 GO TO CHANGE-USER-WIND.
CALL "cb_window_Sdestroy'" USING curr-window-id, ret-code.
IF ret-code EQUAL TO zero GO TO CHANGE-USER-WIND.
GO TO GOBACK.
CHANGE-USER-WIND.
COMPUTE first-line = lines-needed + 1.
COMPUTE height = user-window-lines - lines-needed.
CALL "cb_window_Schange'" USING user-window-id, first-line, height,
- ret-code.
IF ret-code EQUAL TO zero GO TO CREATE-NEW-WIND
ELSE GO TO GOBACK.
CREATE-NEW-WIND.
MOVE "menu-window" TO switch-name.
MOVE 1 TO first-line.
CALL "cb_window_Screate" USING first-line, lines-needed,
- switch-name, window-id, ret-code.
IF ret-code EQUAL TO zero GO TO DISPLAY-MENU
ELSE GO TO GOBACK.
DiSPLAY-MENU.
MOVE window-id TO curr-window-id.
CALL "cb_menu_Sdisplay' USING window-id, menu-id, ret-code.
CALL "cb_window_Sclear_window'" USING user-window-id, ret-code.

2-82 AG93-05

cb_window_ change default_wdir_

GOBACK.
EXIT.
STOP-IT.

CALL '"cb_menu_Sterminate'.
* cb_menu_Sterminate MUST be the last call to cb_menu_ in the
% application. |t terminates the environment set up cb_menu_Sinit.

EXIT PROGRAM.

Name: change__default__wdir__

The change_default_wdir_ subroutine changes the user’s current default working
directory to the directory specified.

USAGE
declare change_default_wdir_ entry (char (168), fixed bin(35));
call change_default_wdir_ (path, code);

ARGUMENTS

path
is the pathname of the directory that is to become the default working directory.
(Input)

code
is a storage system status code. (Qutput)

2-83 AG93-05

change_wdir_ char_offset_

Name: change__wdir__

The change_wdir_ subroutine changes the user’s current working directory to the
directory specified.

USAGE
declare change_wdir_ entry (char (168), fixed bin(35));
call change_wdir_ (path, code);

ARGUMENTS

path
is the absolute pathname of the directory that is to become the user’s working
directory. (Input)

code
is a storage system status code. (Output)

Name: char__offset__

This function returns the character offset (relative to the base of the segment) of the
character located by the supplied pointer value.

USAGE

dcl char_offset_ entry (ptr) returns (fixed bin (21)) reducible;
character_offset = char_offset_ (pointer_value);

ARGUMENTS

pointer_value
is a pointer whose character offset is to be determined. (Input)

character_offset
is the character offset of the supplied pointer. (Output)

NOTES

The first character in a segment has a character offset of zero.

If the pointer supplied to char_offset does not point to a character boundary, the

p815-3 % (3282558 vide
........... f

ot

the character coniaining ihe bit locaied by the poinier.

2-84 AG93-05

char_to_numeric_ char_to_numeric_

Name: char__to__numeric__

The char_to_numeric_ subroutine converts a user—supplied string to a numeric type, or
signals the conversion condition if it cannot be converted. The attributes of the
numeric data created are returned.

USAGE

declare char_to_numeric_ entry (ptr, fixed bin(35), fixed bin(35), ptr,
fixed bin(21));

call char_to_numeric_ (target_ptr, enc_type, enc_prec, source_ptr,
source_len) ;

ARGUMENTS

target_ptr
points to a buffer where the numeric data may be written. No check is made
that the buffer is large enough to hold the data. (Input)

enc_type
is the encoded type of the data created. Its value is 2*M+P, where M is a
standard Multics type code, and P is 1 if the data is packed, or 0 if it is not.
(P should always be 0.) The value of Multics type codes are defined in the
Programmer’s Reference Manual. (Qutput)

enc_prec
is the encoded precision of the data created. The format of an encoded precision
is given by encoded_precision.incl.pll. See the description of the assign_
subroutine. (Output)

source_ptr
points to the character string to convert to numeric. (Input)

source_len
is the number of characters in the input string. (Input)

2-85 AG93-05

check_gate_access_ check_gate_access_

Name: check__gate__access__

This subroutine will allow a caller to determine whether a user has access to a gate
before trying to call it. It will differentiate between not finding the gate and not
having access.

USAGE

dc1 check_gate_access_ entry (char (*), ptr, fixed bin (35));
call check_gate_access_ (gate_name, ref_ptr, code);
ARGUMENTS

gate_name
is the name of the gate. (e.g., "phcs_")

ref_ptr
is a pointer used to determine the desired referencing directory. {(Input) It can be
aull {, in which case the referencing_dir search rtule is not used, orf can be a
pointer to a procedure, usually the caller of check_gate_access_, whose containing
directory will be used as the referencing directory.

code
is a standard system status code. (Output) It’s value will be zero if the gate is
located using the search rules of the current ring and if the access to the gate
includes execute access. If the gate cannot be located, the error code returned is
error_table_$noentry. If the gate is located, but execute access is lacking, then
error_table_$moderr is returned.

NOTES

Programs which can take alternate paths based on the access of lack of access to a
gate should use this subroutine rather than trying to reference the gate explicitly and
generating an access violation audit message in the process.

2-86 AG93-05

check_star_name__ check_star_name_

Name: check__star__name__

The check_star_name_ subroutine analyzes a character string to be sure that it has
been formed according to the rules of the star convention, and optionally checks that
it ailso conforms to the rules for forming entrynames. It returns a starname type code
that indicates whether the string is a starname, and whether the starname matches
every possible name.

Entry: check__star__name__$check__star__name__

This entrypoint accepts a character string and a bit mask as its inputs, and analyzes
the character string according to the tests selected by the bit mask.

USAGE

declare check_star_name_ entry {char (%), bit(36) aligned, fixed bin(2),
fixed bin(35));

call check_star_name_ (starname, control_mask, type, code);
ARGUMENTS

starname

is the character string to be analyzed. Trailing spaces in the character string are
ignored. (Input)

controi_mask
is a bit string constructed from constants listed below. (Input)

type
is one of the starname type codes listed below. (Output)

code
is one of the standard status codes listed below. (Output)

LIST OF CONTROL_MASK CONSTANTS

These constants are defined in check_star_name.incl.pll, and can be combined in most
cases using a PL/I boolean or operator ().

CHECK_STAR_IGNORE_ARCHIVE
permit the archive component pathname delimiter, double colon (":") in the

starname, and treat it as a pair of nonspecial characters. By default, this would
be rejected.

CHECK_STAR_IGNORE_ENTRYPOINT
‘permit the entrypoint convention delimiters, dollar sign ("$") and vertical bar ("|")

in the starname, and treat them as nonspecial characters. By default, they would
be rejected.

11/86 2-87 AG93-05A

check_star_name_ check_star_name_

CHECK_STAR_IGNORE_EQUAL
permit the equal convention characters, equal sign ("=") and percent sign ("%") in
the starname, and treat them as nonspecial characters. By default, they would be
rejected.

CHECK_STAR_IGNORE_LENGTH
permit an entryname starname or a component name starname to be more than 32
characters long. By default, this is not permitted. The containing dir and
entrypoints of path are not checked for length.

CHECK_STAR_IGNORE_NONASCII
permit nonASCII characters in an entryname starname or a component name

starname, and treat them as nonspecial characters. By default, they would be
rejected.

CHECK_STAR_IGNORE_NULL
permit null components in the starname. By default, they would be rejected.

CHECK_STAR_IGNORE_PATH
permit the pathname delimiters, less than ("<") and greater than (">") in the

starname, and treat them as nonspecial characters. By default, they would be
rejected.

CHECK_STAR_PROCESS_ARCHIVE
if the archive component pathname delimiter is present, analyze the substring
preceding it and the substring following it separately. If either name is a
starname, indicate that the match procedure must be used. A second archive
delimiter will be rejected. If this is combined with
CHECK_STAR_PROCESS_ENTRYPOINT, an archive delimiter following the
entrypoint delimiter will be rejected.

CHECK_STAR_PROCESS_ENTRYPOINT
if one of the entrypoint convention delimiters is present, check the substring
preceding it and the substring following it separately. If either name is a
starname, indicate that the match procedure must be used. A second entrypoint
delimiter will be rejected. If it is combined with CHECK_STAR_PROCESS_ARCHIVE,
an entrypoint delimiter preceding the archive delimiter will be rejected.

CHECK_STAR_PROCESS_PATH
if pathname delimiters are present, analyze only the substring following the
rightmost pathname delimiter. If this string is of zero length, report that PL/I
comparison can be used, because the expanded pathname will end in the name of
a directory, and valid directory names can’t contain star convention characters.
(This is intended for names like "<". Names like ">udd>" may be rejected by
expand_pathname_, but are acceptable to check_star_name_.)

CHECK_STAR_REJECT_WILD

return error_table S$nostars if any star convention characters are present.

i [LA LA L) S § S

11/86 2-88 AG93-05A

check_star_name_ check_star_name_

error_table_$badequal

equal convention characters were found and the control_mask did not permit
them.

error_table_$badpath
the directory name contains a nonASCII character and
CHECK_STAR_PROCESS_PATH was specified but
CHECK_STAR_IGNORE_NONASCII was not.

error_table_$badstar
the string violates the rules for forming starnames.

error_table_S$entlong
The string was more than 32 characters long and the control_mask did not permit
it. If CHECK_STAR_PROCESS_PATH was specified, the entryname part of the
string was more than 32 characters long. If CHECK_STAR_PROCESS_ARCHIVE
was specified, either the entryname or the component name was more than 32
characters long.

error_table_$inconsistent
the control_mask was in error, specifying both CHECK_STAR_PROCESS and
CHECK_STAR_IGNORE the same test.

error_table_S$invalid_ascii
the entryname contains 2 nonASCII character and
CHECK_STAR_IGNORE_NONASCII was not specified.

error_table_$nostars
stars or question marks were found and CHECK_STAR_REJECT_WILD was
specified in the control_mask. Note that star_type will correctly reflect the
starname type for (his case.

error_table_$null_name_component
the string contains null components and the control_mask did not permit them.

NOTES

See the description of the hcs_$star_ entrypoint in hes_ to find how to list the
directory entries that match a given starname. See match_star_name_ to find how to
match a starname with an entryname. See starname.gi.info for the rules governing the
formation and interpretation of starnames. See entryname.gi.infc for the rules
governing the formation of entrynames.

11/86 2-88.2 AG93-05A

check_star_name_ check_star_name_

Entry: check__star__name__$entry
This entrypoint accepts the entryname to be analyzed as input.
USAGE
declare check_star_name_Sentry entry (char (%), fixed bin(35));
call check_star_name_Sentry (entryname, code);
ARGUMENTS
entryname
is the entryname to be validated. Trailing spaces in the entryname character string

are ignored. (Input)

code
is one of the nonstandard status codes listed below. (Output)

LIST OF STATUS CODES

0
the entryname is valid and is not a starname (does not contain asterisks or
question marks).

1
the entryname is valid and is a starname (does contain asterisks or question
marks).

2

the entryname is valid and is a starname that matches every entryname.

error_table_$badstar
the entryname is invalid. It violates the rules for forming starnames, or it violates
the rules for constructing entrynames.

NOTES

This entrypoint is obsolete. Use the check_star_name_ entrypoint for new applications.
The new entrypoint returns a variety of different standard error codes explaining a
rejection whereas this entrypoint can only return a single standard error code value
for compatability.

See the description of the hcs_$star_ entrypoint in hes_.info to find how to list the
directory entries that match a given starname. See match_star_name_.info to find how
to match a starname with an entryname. See starname.gi.info for the rules governing
the formation and interpretation of starnames. See entryname.gi.info for the rules
governing the formation of entrynames.

11/86 2-88.3 AG93-05A

check_star_name_ check_star_name_

Entry: check__star__name__$path

This entrypoint accepts a pathname as its input and analyzes the final entryname in
that pathname.

USAGE
declare check_star_name_Spath entry (char (%), fixed bin(35));
call check_star_name_$path (path, code);
ARGUMENTS
path
is the pathname whose final entryname is to be validated. Trailing spaces in the

pathname character string are ignored. (Input)

code
is one of the nonstandard status codes listed below. (Output)

L/IST OF STATUS CODES

0
the entryname is valid and is not a starname (does not contain asterisks or
question marks).

1
the entryname is valid and is a starname (does contain asterisks or question
marks).

2

the entryname is valid and is a starname that matches every entryname.

error_table_§$badstar
the entryname is invalid. It violates the rules for forming starnames, or it violates
the rules for forming pathnames.

NOTES

This entrypoint is obsolete. Use the check_star_name_ entrypoint for new applications.
The new entrypoint returns a variety of different standard error codes explaining a
rejection whereas this entrypoint can only return a single standard error code value
for compatibility.

See the description of the hcs_$star_ entrypoint in hes_ to find how to list the
directory entries that match a given starname. See match_star_name_ to find how to
match a starname with an entryname. See starname.gi.info for the rules governing the

formation and interpretation of starnames. See pathname.giinfo for the rules soverning

the formation of pathnames.

11/86 2-88.4 AG93-05A

clock_ clock_

Name: clock__

The clock_ function reads the system clock and returns a fixed binary number equal
to the number of microseconds since 0000 hours Greenwich mean time January 1,
1901. The returned time is suitable for input to the date_time_ or decode_clock_value
subroutines, which convert the clock reading to an ASCII representation, or decompose
it into its component parts, respectively.

USAGE
declare clock_ entry returns (fixed bin(71));
date_time = clock_ ();
ARGUMENTS
date_time
is the number of microseconds since January 1, 1901, 0000 hours Greenwich mean

time. (Output)

NOTES

The clock PL/I builtin function should be used in PL/I programs instead of this
subroutine, because it is more efficient.

11/86 2-88.5 AG93-05A

This page intentionally left blank.

11/86 AG93-05A

check_star_name_ check_star_name_

CHECK_STAR_IGNORE_ALL
combines 2ll the CHECK_STAR_IGNORE flags. This can be used to analyze a
starname to determine its type without applying any of the tests intended for
validating entrynames.

CHECK_STAR_ENTRY_DEFAULT
combines exactly the same tests used by the obsolete check star_name_S$entry
entrypoint, which is equivalent to combining CHECK_STAR_IGNORE_ENTRYPOINT
and CHECK_STAR_IGNORE_EQUAL.

CHECK_STAR_PATH_DEFAULT
combines exactly the same tests used by the obsolete check_star_name_$path
entrypoint, which is equivalent to combining CHECK_STAR_PROCESS_ARCHIVE,
CHECK_STAR_IGNORE_ENTRYPOINT, CHECK_STAR_IGNORE_EQUAL, and
CHECK_STAR_PROCESS_PATH.

LIST OF STARNAME TYPE CODES
These type constants are defined in check_star_name.incl.pll.

STAR_TYPE_MATCHES_EVERYTHING (2)
no comparison is necessary, since the starname matches all possible strings.

STAR_TYPE_USE_MATCH_PROCEDURE (1)
the procedure match_star_name_ must be used to compare the string to possible
matching strings, because it is a starname containing stars (asterisks) and question
marks.

STAR_TYPE_USE_PL1_COMPARE (0)
the string is not a starname and can be compared using PL/I comparison rules.

LIST OF STATUS CODES

0
the string passes all of the selected tests, and the starname type output indicates
whether the string is a starname.

error_table_$archive_pathname
the archive component pathname delimiter was found, and the control_mask did
not permit it.

error_table_$bad_arg
the control mask specified an unimplented ‘test.

error_table_$bad_file_name

the string violates the rules for forming entrynames and the control_mask did not
permit it.

11/86 2-88.1 AG93-05A

com_err_ com_e©rr_

Name: com__err__

The com_err_ subroutine is the principal subroutine used by commands for printing
error messages. It is usually called with a nonzero status code to report an unusual
status condition. It can also be called with a code of 0 to report an error which does
not have a status code associated with it. Status codes are described in the
Programmer’s Reference Manual.

See also the active_fnc_err_ subroutine which should be used by active functions for
printing error messages.

The com_err_ entry point formats an error message and then signals the command_error
condition. The default handler for this condition simply returns control to the
com_err_ subroutine, which then writes the error message on the error_output 1/0
switch.

USAGE

declare com_err_ entry options (variable);

call com_err_ (code, caller, control_string, argl, ..., argN);
ARGUMENTS

code
is a standard status code, which normally is fixed binary (35), but can be any
computational data type. (Input) If it is not already fixed binary (35), it will be
converted to fixed binary (35).

caller
is the name (char(*)) of the procedure calling the com_err_ subroutine. (Input) It
can be either varying or nonvarying.

control_string
is an ioa_ subroutine control string (char(*)). (Input) This argument is optional
(see "Notes" below).

argl
are ioa_ subroutine arguments to be substituted into the control_string argument.
(Input) These arguments are optional. They can only be used, however, if the
control_string argument is given first (see "Notes" below).

NOTES

The error message prepared by the com_err_ subroutine has the following format:

caller: system_message user_message

2-89 AG93-05

com_err_ com_err_

where:

caller
is the name of the program detecting the error.

system_message
is a standard message from the error table corresponding to the value of code. If
code is equal to 0, no system_message is printed.

user_message
is constructed by the ioa_ subroutine from the control_string and argl arguments.
If the control_string and argl arguments are omitted, no user_message is printed.

If code is error_table_$active_function, com_err_ will print a slightly different message
and signal the active_function_error condition to prevent the command from being
restarted. The message printed will be:

caller: This command cannot be invoked as an active function.
user_message

A Py LTy P -
Eeirioi: Altempt L0 invOoKE Commana <a

Framad T Aan
LRSI ioN My e i) Y

an mm asAd Tara
a9 Qi gGe LI ve

If the com_err_ subroutine is passed a nonzero code that does not correspond to a
standard format error table entry, the system_message is of the form:

Code ddd

where ddd is the decimal representation of code. The argument caller must not be
null or blank; if it is, the handlers for command_error cannot identify the signalling
procedure.

Entry: com__err__Ssuppress__name

This entry point should be used when the caller name and colon are not wanted. The
caller name is still passed to the command_error condition handler. Otherwise, this
entry point is the same as the com_err_ entry point.

USAGE

declare com_err_Ssuppress_name entry options (variable);

call com_err_Ssuppress_name (code, caller, control_string, argl, ...,
argN) ;

2-90 AG93-05

com_err_ command_query_

ARGUMENTS
All of the arguments are the same as in the com_err_ entry point.

Name: command__query__

The command_query_ subroutine is the standard system procedure invoked to ask the
user a question and to obtain an answer. It formats the question and then signals the
condition command_question. System conditions are described in the Programmer’s
Reference Manual. The default handler for this condition simply returns control to
the command_query_ subroutine, which writes the question on a specified 1/0 switch.
It then reads from another I/0 switch to obtain the answer. Several options have
been included in the commmand_query_ subroutine to support the use of a more
sophisticated handler for the command_question condition.

Since this procedure can be called with & varying number of arguments, it is not
permissible to include a parameter attribute list in the declaration.

USAGE
declare command_query_ entry options (variable);

call command_query_ (info_ptr, answer, caller, control_string,
argl, ..., argN);

ARGUMENTS

info_ptr
is a pointer to the query_info structure described in "Info Structure” below.
(Input)

answer
is the response (char(*) or char (*) varying) read from the I/O switch user_input. |
(Output) Leading and trailing blanks plus the newline character have been
removed.

caller

is the name (char(*)) of the calling procedure. (Input) It can be either varying or
nonvarying.

control_string

is an ioa_ subroutine control string (char(*)). (Input) This argument is optional.
See "Notes" below.

argi
are ioa_ subroutine arguments to be substituted into control_string. (Input) These
arguments are optional. They can only be used if the control_string argument is
given first. See "Notes" below.

2-91 AG93-05

command_query_

command_query_

INFO STRUCTURE

The following is the query_info structure (found in the include file query_info.incl.pll):

dcl

1 query_info aligned,
2 version fixed bin,
2 switches aligned,
3 yes_or_no_sw bit (1) unaligned,
3 suppress_name_sw bit (1) unaligned,
3 cp_escape_control bit(2) unaligned,
3 suppress_spacing bit (1) unaligned,
3 literal_sw bit (1) unaligned,
3 prompt_after explanation
bit (1) unaligned,
3 padding bit(29) unaligned,
2 status_code fixed bin(35),
2 query_code fixed bin{35),
2 question_iocbp ptr,
2 answer_iocbp ptr,
2 repeat_time fixed bin{71),
2 explanation_ptr ptr,
2 explanation_len fixed bin (21);

STRUCTURE ELEMENTS

version

is the version number of this structure. (Input) The version number must be set
by the caller and identifies the format of the structure. The current version is a
static variable named query_info_version_6 in query_info.incl.pll.

y€s_OT_no_SwW

indicates whether an answer of a particular form is expected. (Input)
"0"b accepts any answer.
"1"b accepts only a yes or no answer.

suppress_name_sw

controls whether the name of the calling procedure appears in the question.
(Input)

"0"d includes name and following colon.

"1"b omits name and colon.

cp_escape_control

controls whether the command_processor_ escape mechanism is enabled for this

call. (Input)

"00"b obeys the static default.

"01"b allows lines to begin with ".." but does not interpret them as
command_processor_ escapes.

"10"b disallows escape, ignores default.

"11"b allows escape, ignores default.

2-92 AG93-05

command_query_ command_query_

suppress_spacing
controls the insertion of a newline before the question and two spaces after it
{(Input)
"0"b inserts exira space.
"1"b omits extra space.

literal_sw

is "1"b to suppress any special interpretation of characters (for example, "..") and
suppress stripping of leading whitespace.

prompt_after_explanation
is "1"b to repeat the original question after printing any explanation indicated by
a non-null explanation argument.

padding
is unused space. (Input)

status_code
is either the standard status code that prompted the question or 0. (Input)

query_code
is additional arbitrary qualifying information passed by the caller of command_query_.
{Input) It is intended for use by specialized handlers for command_gquestion.

question_iocbp
is an iocb pointer for the I/O switch over which the caller wants the question to
be written. (Input) A null pointer indicates that the of the user_i/o switch is to
be used by default.

answer_iocbp
is an iocb pointer for the I/0 switch from which the caller wants the answer to
be read. (Input) A null pointer indicates that the user_input switch is to be used
by default.

repeat_time
is the number of seconds to wait for an answer before repeating the question on
the switch pointed to by question_iocbp. (Input) A value less than 30 indicates
that the question is not to be repeated.

explanation_ptr
is a pointer to a string to be printed if the user answers "?". (Input)

explanation_len
is the length of the expianation string. (Input)

2-93 AG93-05

command_query_ command_query_

NOTES

The question prepared by the command_query_ subroutine has the format:

caller: message

where the message is constructed by the ioa_ subroutine from the control_string and
argN arguments. If the control_string and argN arguments are not given, the message
portion of the question is omitted.

If the user answers with a single question mark (?), the explanation_ptr field is
examined. If it is non-null and explanation_len is greater than 0, the explanation
string pointed to is printed and the user is expected to answer again. Otherwise, the
string "Answer: " is printed and the user is expected to answer again.

| Case insensitive "yes", "y", and "n" are acceptable responses t0 a ves Or no question.

l In an absentee process with the yes_or_no_sw on, an answer other case insensitive
| "yes", "y", "no", "n", or "7" causes the absentee process to signal command_query_error.

If the answer to a question begins with "..", and the cp_escape feature is enabled for
the question, the rest of the answer following the ".." is passed to the command
processor. Control then returns to command_query_, which prompts with "Answer: "
after the command has been executed. The cp_escape feature is normally enabled in
the standard Multics environment; a subsystem, however, can elect to turn it off,
either globally or for a particular question. The prompt of "Answer: " is used rather
than repeating the question because the question may be quite long and take significant
time to print. If it is necessary to see the question again, answering "..repeat_query"
repeats it.

Entry: command__query__$set__cp__escape__enable

This entry sets the static default switch that allows or disallows the command
processor escape feature. It also returns the previous value for the switch. Since
escapes are disabled initially, it is necessary to call this entry to enable the feature.
This entry is called by process_overseer_, which sets it so that the escape is permitted
in a normal Multics environment.

USAGE

declare command_query_S$set_cp_escape_enable entry (bit(1) aligned,
bit(1) aligned);

call command_query_S$set_cp_escape_enable (new_value, old_value);

11/86 2-94 AG93-05A

command_query_ command_query_

ARGUMENTS

new_value
is the new value for the default. {Input)
"0"b feature is disabled by default.
"1"b feature is enabled by default.

old_value
is the old value of the default. (Output) If it has never been set, it is "0"b.

Entry: command__query__$yes__no

This entry asks the user for a yes or no answer.

USAGE

dcl command_query_Syes_no entry options (variable);

call command_query_Syes_no (yes_sw, query_code, caller, explanation,
question, argl, ..., argN):

ARGUMENTS

yes_sw
is a bit (1) return value, ON for "yes" or "y" and OFF for "no" or "n", case |
insensitive. (Output) Other answers are not accepted from the user. |

query_code

is a standard status code. (Input) If it is nonzero, the question is preceded by
the corresponding error message.

caller
is the character string name of the calling program. (Input)

explanation
is an explanation of the question, printed when the user answers "?". (Input) The
explanation is an ioa_ control string, in which parameters are replaced by the
values of the argN arguments. For a description of control strings, see the ioa_
subroutine.

question
is the question, also in the form of an ioa_ control string. (Input) Parameters are
replaced by the same argN arguments as for the explanation.

argN
are character string arguments to the ioa_ control strings specified by explanation
and question. (Input)

11/86 2-95 AG93-05A

command_query_ component_info_

NOTES

The same arguments are substituted in both explanation and question control strings.
Each control string can use As to skip particular arguments.

EXAMPLES

The following shows a use of the explanation argument:

call command_query_Syes_no (yes_sw, 0, ''delete_notifications",
""'Do you want to delete all messages that have been printed?",
"Delete?");

This call produces the following behavior when the user answers "™

delete_notifications: Delete? 7
Do you want to delete all messages that have been printed? vyes

The following explanation and question use parameter substitution and a nonzero
query_code argument:

call command aquery Sves no
(yes_sw, error_table_Snamedup, 'create_tff",
"Do you want to delete the old "~a "a before creating a new one?"

""Delete old "s™a?'", '"segment', pathname);

producing the following:

create_tff: Name duplication. Delete old >udd>d>c>h.tff? ?
Do you want to delete the old segment >udd>d>c>h.tff before
creating a new one? yes

Name: component__info__
This subroutine returns information about a component of a bound segment similar to

that returned by object_info_. The component may be specified either by name or by
of fset.

11/86 2-96 AG93-05A

component_info_ component_info_

Entry: component__info__$name
This entry point specifies the component by name.
USAGE

decliare component_info_Sname entry (ptr, char(32) aligned, ptr,
fixed bin(35));

call component__info_Sname (seg_ptr, comp_name, arg_ptr, code) ;

ARGUMENTS

seg_ptr
is a pointer to the bound segment.

comp_name
is the name of the component.

arg_ptr
is a pointer to a structure to be filled in (see "Notes" below).

code
is a standard status code. (Output)
Entry: component__info__S$offset
This entry point specifies the component by its offset.
USAGE

declare component_info_Soffset entry (ptr, fixed bin(18), ptr,
fixed bin(35));

call component_info_Soffset (seg_ptr, offset, arg_ptr, code);

ARGUMENTS

seg_ptr
is a pointer to the bound segment. (Input)

offset

is an offset into the bound segment corresponding to the texi, internal static or
symbol section of some component. (Input)

arg_ptr
is a pointer to a structure to be filled in (see "Notes” below).

code
is a standard status code. (Output)

11/86 2-97 AG93-05A

component_info_

11/86

NOTES

component_info_

The structure to be filled in (a declaration of which is found in component_info.incl.pl1)

is declared as follows:

decl 1

name

text_start
stat_start
symb_start

text_Ing
stat_Ing
symb_1ng
n_blocks
standard
compiler

user_id
cvers
2 offcet
3 length
2 comment
3 offset
3 length
2 source_map

MO NPDNDPDNNDNNNDMMNDRONDNDO

STRUCTURE ELEMENTS

dcl_version

dcl_version

defblock_ptr

compile_time

aligned,

fixed bin,

char (32) aligned,
ptr,

ptr,

ptr,

ptr,

fixed bin,

fixed bin,

fixed bin,

fixed bin,

bit (1) aligned,
char (8) aligned,
fixed bin(71),
char (32) aligned,
aligned,

bit(18) unaligned,
aligned,

bit(18) unaligned,
bit (18) unaligned,
fixed bin;

is the version number of this structure. It is set by the caller and must be 1.

name

is the name of the component, i.e., the name specified in a bindfile objectname

statement; also, the name of the component as archived.

text_start

is a pointer to the base of the component’s text section.

stat_start

is a pointer to the base of the component’s internal static.

symb_start

is a pointer to the base of the component’s symbol section.

defblock_ptr

is a pointer to the component’s definition block.

text_Ing

is the length, in words, of the component’s text section.

2-98

AG93-05A

component_info_ component_info_

11/86

stat_Ing
is the length, in words, of the component’s internal static.

symb_lIng
is the length, in words, of the component’s symbol section.

n_blocks
is the number of blocks in the component’s symbol section.

standard
is on if the component is in standard object format.

compiler
is the name of the component’s compiler.

compile_time
is a clock reading of the date/time the component was compiled.

user_id
is the standard Multics User_id of the component’s creator.

cvers.offset

is the offset of the printable version description of the component’s compiler, in
words, relative to symb_start.

cvers.length
is the length, in characters, of the component’s compiler version.

comment.offset
is the offset of the component’s compiler comment, in words, relative (o
symb_start.

comment.length
is the length, in characters, of the component’s comment.

source_map

is the offset of the component’s source map structure, in words, relative to
symb_start.

2-99 AG93-05A

compute_common_aim_ceiling_ compute_common_aim_ceiling_

11/86

Name: compute__common__aim__ceiling__

This subroutine computes the maximum authorization or access class which is in
common between two Multics systems given the definitions of their AIM attributes.

USAGE

declare compute_common_aim_ceiling_ entry (ptr, bit(72) aligned, ptr,
bit(72) aligned, fixed bin(35));

call compute_common_aim_ceiling_ (aim_attributes_1_ptr,
common_ceiling_1, aim_attributes_2_ptr, common_ceiling_2, code);

ARGUMENTS

aim_attributes_1_ptr
is a pointer to the aim_attributes structure defining the AIM attributes of the
first system. (Input) This structure is declared in aim_attributes.incl.pll.

common_ceiling_1
is set to the maximum authorization or access class in common between the two

~f e {MNteant)

mrrne oL o ATRA attmilaveban 13} £4
I ine AiM allfiouies or ine iirst system. Oulpuy)

sysiems in ierfms o
aim_attributes_2_ptr

is a pointer to the aim_attributes structure defining the AIM attributes of the

second system. (Input)

common_ceiling_2
is set to the maximum authorization or access class in common between the two
systems in terms of the AIM attributes of the second system. (Output)

code
is a standard system status code. (OQutput) It can be one of the following:
0
the common access ceiling was successfully computed.
error_table_$unimplemented_version
one of the aim_attributes structures supplied by the caller was of a version
not supported by this procedure.
error_table_%$ai_no_common_max
there is no set of AIM attributes in common between the two systems.

NOTES

See the description of the get_system_aim_attributes_ subroutine for a definition of
the aim_attributes structure.

See the Programmers’ Reference Manual for a definition of common access ceiling.

2-100 AG93-05A

condition__ condition_

Name: condition__

This subroutine establishes a handler for a condition in the calling block activation if
a handler for the specified condition is currently established in the calling block.

A description of the condition mechanism is given in the Mu/tics Programmer’s
Reference manual in the section entitled "The Multics Condition Mechanism".

USAGE

declare condition_ entry (char (%), entry);
call condition_ (name, handler);
ARGUMENTS

name
is the name of the condition for which the handler is to be established. (Input)

handler
is the handler to be invoked when the condition is raised. (Input)

NOTES

The condition name unclaimed_signal is an obsolete special condition name and should
not be used.

The PL/I on statement and the condition_ subroutine must not be- invoked during the
same block activation in order to establish a handler for the same condition.

In PL/I Version 2, when a call to condition_ appears within the scope of a begin
block or internal procedure of a procedure, the no_quick_blocks option must be
specified in the procedure statement of that procedure. The no_quick_blocks option is
a nonstandard feature of the Multics PL/I language and, therefore, programs using it
may not be transferable to other systems.

11/86 2-100.1 AG93-05A

This page intentionally left blank.

11/86 AG93-05A

condition_interpreter_ condition_interpreter_

Name: condition__interpreter__

The condition_interpreter_ subroutine can be used by subsystem condition handlers to
obtain a formatted error message for all conditions except quit, alrm, and cput. Some
conditions do not have messages and others cause special actions to be taken. These
are described in "Notes" below. (For more information on conditions, see the
Programmer’s Reference Manual.)

USAGE

declare condition_interpreter_ entry (ptr, ptr, fixed bin, fixed bin,
ptr, char (%), ptr, ptr);

call condition_interpreter_ (area_ptr, m_ptr, mlng, mode, mc_ptr,
cond_name, wc_ptr, info_ptr);

ARGUMENTS

area_ptr
is a pointer to the area in which the message is to be allocated, if the message is
to be returned. The area size should be at least 300 words. If null, the message
is printed on the error_output 1/0 switch. (Input)

m_ptr
points to the allocated message if area_ptr is not null; otherwise it is not set.
(Output) :

ming
is the length (in characters) of the allocated message if area_ptr is not null. If
area_ptr is null, the length is not set. Certain conditions (see "Notes" below) have
no messages; in these cases, ming is equal to 0. (Output)

mode
is the desired mode of the message to be printed or returned. (Input) It can
have the following values:
1 normal mode
2 brief mode
3 long mode

mc_ptr
if not null, points to machine conditions describing the state of the processor at
the time the condition was raised. (Input)

cond_name
is the name of the condition being raised. (Input)

we_ptr

is usually null; but when mc_ptr points to machine conditions from ring 0,
wc_ptr points to alternate machine conditions. (Input)

2-101 AG93-05

condition_interpreter_ continue_to_signal__

info_ptr
if not null, points to the information structure described in the Programmer’s
Reference Manual. (Input)

NOTES
The following conditions cause a return with no message:

command_error
command_question
finish

stringsize

Name: continue__to__signal__

The continue_to_signal_ subroutine enables an on unit that cannot completely handle a
condiiion io teli the signalling program, upon its return, to search the stack for other
on units for the condition. The search continues with the stack frame immediately
preceding the frame for the block containing the on unit. However, if a separate on
unit for the any_other condition is established in the same block activation as the
caller of the continue_to_signal_ subroutine, that on unit is invoked before the stack
is searched further.

USAGE

declare continue_to_signal_ entry (fixed bin(35));
call continue_to_signal_ (code);

ARGUMENTS

code

is a standard status code and is nonzero if continue_to_signal_ was called when
no condition was signalled. (Output)

2-102 AG93-05

convert_access_audit_flags_ convert_access_audit_flags_

Name: convert__access__audit__flags__

This subroutine is provided to convert a security audit flag back and forth between its
character siring representation and the internal binary representation.

Entry: convert__access__audit__flags_ $from__string

This entry point converts the textual representation to internal representation.

USAGE

dcl convert_access_audit_flags_Sfrom_string entry ({(char (%), bit (36)
aligned, fixed bin (35)):

call convert_access_audit_flags_Sfrom_string (flags_str, audit_flags,
code) ;

ARGUMENTS

flags_str
is the textual representation of the security audit flags. (Input)

audit_flags :
is the bit string internal representation of the flags. (Output)

code
is a standard system status code. (Ouiput)
Entry: convert__access__audit__flags__ $to__string
This entry point converts from internal representation to textual representation.
USAGE

dcl convert_access_audit_flags_Sto_string (entry (char (%), bit (36),
aligned, fixed bin (35));

call convert_access_audit_flags_Sto_string (flags_str, audit_flags,
code) ;

ARGUMENTS
flags_str is the textual representation of the security audit flags. (Output)

audit_flags
is the bit string internal representation of the flags. (Output)

2-103 AG93-05

convert_access_audit_flags_ convert_access_class_

code
is a standard system status code. (Output) It can have one of the following
values:

error_table_$badarg
audit_flags is illegally constructed

error_table_$smallarg
flags_str is too small for result

NOTES
The format of the flags string is as follows:

flag-string := flag-item [, flag—item]

flag-item := object~type—-keyword "grant=" audit-level-keyword

flag-item := object-type-keyword "—deny=" audit-level-keyword

flag-item := even-type~keyword

object-type-keyword := "fsobj" | “fsattr" | "rcp” | "admin" |
"special” | "other"

audit-level-keyword := "none" | "modify_access”" | "modify" | "read"

event—type—keyword := "admin_op" | "priv_op” | "fault" |

"cc_1_10" | "cc_10_100"
example:

fsobj—grant=modify,rcp—-deny=modify_access,other—grant=none, fault

| Name: convert__access__class__
| The convert_access_class_ subroutine is provided to convert an access atltribute in the
Multics access isolation mechanism (AIM) back and forth between its binary and
character-string representations. Additional entries provide the ability to encode an
| access attribute as a short character string for use in entrynames.
| Entry: convert__access__class__$decode
This entry point takes the character string produced by the convert_access_class_$encode
| entry point and returns the original access attribute. The null string and the string
| "system_low" are both converted to return the system_low access attribute.
USAGE
lare converi_access_ciass_3decode entry {(bit{72) aiigned, char (%));

i call convert_access_class_Sdecode (acc_att, decoded_string);

2-104 AG93-05

convert_access_class_ ' convert_access_class_

ARGUMENTS

acc_att
is the the decoded authorization. (Output)

decoded_string
is a short string (maximum of 15 characters) that uniquely represents the input |
access attribute. (Input) |
Entry: convert__access__class__$encede |
This entry point encodes an access attribute into a short character string, suitable for
inclusion in entrynames. If the input access attribute represents system_low, the |
returned string is "system_low".
USAGE
declare convert_access_class_Sencode (bit(72) aligned, char (%));
call convert_access_class Sencode (acc_att, encoded_string);

ARGUMENTS

acc_att |
is the input access attribute (Input) |

encoded_string
is a short string (maximum of 15 characters) that uniquely represents the input |
access attribute. {(Output) |
Entry: convert__access__class__$from__string |
This entry point converts the character string representation of an access attribute to
an encoded binary form suitable for storage in system tables and as input to the
various modules that accept the binary form.

USAGE

declare convert_access_class_Sfrom_string entry (bit(72) aligned,
char (%), fixed bin{(35));

call convert_access_class_Sfrom_string (acc_att, string, code);
ARGUMENTS

acc_att
is the binary representation of string. (Output)

2-105 AG93-05

convert_access_class_ convert_access_class_

string
is the character string to be converted (see "Notes” below). (Input)

code
is a standard status code. (Output) It can be one of the following:
error_table_$ai_invalid_string
one or more namei is misspelled (see "Notes" below).
error_table_$ai_above_allowed_max
| no error in conversion; but the resulting access atiribute is greater than the
| system_high access attribute.

NOTES

The string argument must be of the form:

namel,name2,...,nameN

where namei represents the mnemonic for a sensitivity level or access category. The
print_auth_names command can be used to obtain a list of acceptable mnenomics. If
the string argument is null or system_low, the resulting authorization is level 0 and no

categories. If the string is system_high, the system access_ceiling is returned (the
| maximum access attribute allowed).

| Entry: convert__access__class__$from__string _range

| This entry point converts a character string to the form of a binary access attribute
| range.

USAGE

declare convert_access_class_Sfrom_string_range entry (bit(72) aligned
dimension (2}, char (%), fixed bin(35));

| call convert_access_class_S$from_string_range (acc_att_range, string,
I code)

2-106 AG93-05

convert_access_class_ convert_access_class_

ARGUMENTS

acc_att_range
is the binary representation of string. (Output)

string
is the character string to be converted (see "Notes" below). (Input)

code
is a standard status code. (Output) It can be one of the following:
error_table_$ai_invalid_string
one or more namei are misspelled (see "Notes" below).
error_table_$ai_above_allowed_max
no error in conversion; but the resulting access attribute is greater than the l
system_high access attribute. |
error_table_$ai_invalid_range
no error in conversion; but acc_att_range (2) does not represent an access |
attribute greater than or equal to acc_att_range (1). |

NOTES

The string must be one of the two forms:

namel, name2, ...,nameN

namela,name2a, ...,nameNa:namelb,name2b, .. .nameNb

where namei represents the mnemonic for a sensitivity level or access category. If the
string is in the first form, both elements of acc_att_range will be set to equal values |
(similar to the operation of convert_access_class_$from_string). If string is in the |
second form, acc_att_range (1) will be returned as the binary representation of the |
part of string left of the colon, and acc_att_range (2) will be returned as the binary |
representation of the part of the string right of the colon.

Entry: convert__access__class__$minimum |

This entry point accepts an array of access attributes and a binary number indicating |
how many elements to process from the array. It returns an access attribute class |
whose category set is the intersection of all input category sets and whose sensitivity |
level is the minimum of all input sensitivity levels. The returned value need not equal i
any of the input vaiues. |

USAGE |

declare convert_access_class_Sminimum entry (dim(%) bit(72) aligned, |
fixed bin, bit(72) aligned); |

call convert_access_class_Sminimum (acc_att_array, n_elements, |
minimum_acc_att) !

2-107 AG93-05

convert_access_class_ convert_access_class_

ARGUMENTS

| acc_att_array
| are the input access attributes(Input)

n_elements
| is the number of elements to be processed in the acc_att_array argument. (Input)

| minimum_acc_att
is the result. (Output)

| Entry: convert__access__class__$to__string

| This entry point accepts a binary form of an access attribute and returns it as a
printable string. This output string is suitable for input to the
convert_access_class_$from_string entry point. Each level/category name has a maximum
length of 32 characters.

110 AT
vIAJL

declare convert_access_class_5Sto_string entry (bit(72) aligned, char (%),
fixed bin(35));

| call convert_access_class_Sto_string (acc_att, string, code);
| ARGUMENTS

acc_att
is the access attribute to be converted. (Input)

string
is the resultant character string (see "Notes" below). (Output)

code
is a standard status code. (Output) It can be one of the following:
error_table_$smallarg
string is too short to hold the converted result (see "Notes” below).
error tablie_3%ai_invalid binary
either the level number or category set is invalid; the resulting output is also
invalid.

| NOTES

When the error_table_$smallarg code is returned, as much of the resulting conversion
as fits in the output string is returned. However, since the results are not complete,
they should not be used as input o the converf_access_class_$irom_siring entry point.

2-108 AG93-05

convert_access_class_ convert_access_class_

If the access atiribute is equal to the site access ceiling as defined by the |
installation_parms and returned by system_info_S$access_ceiling, then "system_high" is |
returned in the string. |

Entry: convert__access__class__$to__string _range |

This entry point accepts a binary access attribute range pair and returns it as a |
printable string. This output string is suitable for input to the
convert_access_class_$from_string_range entry point. Each level/category name has a
maximum length of 32 characters.

USAGE

declare convert_access_class_Sto_string_range entry (bit (72) aligned
dimension (2), char (%), fixed bin (35));

call convert_access_class_Sto_string_range (acc_att_range, string,
code) ;

ARGUMENTS

acc_att_range
is the binary representation of an access attribute range to be converted. (Input)

string
is the resultant character string (see "Notes” below). (Output)

code
is a standard status code. (Output) It can be one of the following:
error_table_$smallarg
string is too short to hold the converted result (see "Notes" below).
error_table_$ai_invalid_binary
either the level number or category set is invalid; the resulting output is also
invalid.
error_table_$ai_invalid_range
no error in conversion; but acc_att_range (2) does not represent an access |
attribute greater than or equal to acc_att_range (1). |

NOTES

When the error_table $smallarg code is returned, as much of the resulting conversion
as fits in the output string is returned. However, since the results are not complete,
they should not be used as input to the convert_access_class_$from_string entry point.

If either of the access attributes is equal to the site access ceiling as defined by the l
installation_parms and returned by system_info_S$access_ceiling, then "system_high" is |
returned in the string for that attribute. |

2-109 AG93-05

convert_access_class_ convert_access_class_

| Entry: convert__access__class__$to__string_range__short

This entry point is identical to the convert_access_class_$to_string_range entry point
except that the short level/category names are returned. Each short name has a
maximum length of eight characters. This output is also suitable for input to the
convert_access_class_$from_string_range entry point.

USAGE

declare convert_access_class_Sto_string_range_short entry (bit(72)
aligned dimension (2) ,char (%), fixed bin(35);

call convert_access_class_Sto_string_range_short (acc_att_range, string,
code) ;

ARGUMENTS

acc_att_range

is the binary representation of an access attribute range range to be converted.
{(Tnnut)
A

Aisprany

string
is the resultant character string {see "Notes" below). (Output)

code
is a standard status code. (Output) It may be one of the following:
error_table_§$smallarg
string is too short to hold the converted result (see "Notes" below).
error_table_$ai_invalid_binary
either the level number or category set is invalid: the resulting output is also
invalid.
error_table_%$ai_invalid_range
[no error in conversion; but acc_att_range (2) does not represent an access
| attribute greater than or equal to acc_att_range (1).

| NOTES

If either of the access attributes is equal to the site access ceiling as defined by the
installation_parms and returned by system_info_%$access_ceiling, then "sysiem_high” is
returned in the string for that attribute.

2-110 AG93-05

convert_access_class_ convert_date_to_binary_

Entry: convert__access__class__$to__string__short |

This entry point is identical to the convert_access_class_$to_string entry point, except
that the short level/category names are returned. Each short name has a maximum
length of eight characters. This output is also suitable for input (o the
convert_access_class_$from_string entry point.

USAGE

declare convert_access_class_Sto_string_short entry (bit(72) aligned,
char (%), fixed bin{(35));

call convert_access_class_5Sto_string_short (acc_att, string, code);
ARGUMENTS

acc_att
is the binary representation of an access attribute to be converted. (Input) {

string
is the resultant character string. (Output)

code
is a standard status code. (Output) It can be one of the following:
error_table_$smallarg
string is too short to hold the converted result (see "Notes" below).
error_table_$ai_invalid_binary
either the ievel number or caiegory set is invalid; the resulting output is also
invalid. *

Name: convert__date__to__binary__

The convert_date_to_binary_ subroutine converts a character representation of a date
and time into a 72-bit clock reading. It accepts a wide variety of date and time
forms, including the output of the date_time_ subroutine.

USAGE

declare convert_date_to_binary_ entry (char (%), fixed bin(71), fixed

bin(35));

call convert_date_to_binary_ (time_string, clock, code);

2-111 AGI3-05

convert_date_to_binary_ convert_date_to_binary_

ARGUMENTS

time_string
the string to be converted. (Input) See Time String below for a description of
valid string values.

clock
the resulting clock value. (Output) Unchanged if an error occurs.

code
is a standard status code. (Output) It can have one of the following values:

error_table_$bad_conversion
a conversion condition occurred while trying to convert a value.

error_table_$dt_ambiguous_time
there is no language common to all words in the time string.

error_table_$dt_bad_fw
fiscal week < 1 or fiscal_week > year_max {(which is 52 or 53).

error_table_$dt_hour_gt_twelve
the hour given exceeds 12.

error_table_$dt_multiple_date_spec
more than one instance of a date has been given.

error_table_$dt_multiple_diw_spec
day of the week specified more than once.

error_table_$dt_multiple_meaning
the time string does not have the same meaning in all potential languages,

these being the intersection of all the languages possible for all words
present.

error_table_$dt_multiple_time_spec
more than one instance of a time has been given.

error_table_$dt_multiple_zone_spec
the zone may only be specified once.

error_table_$dt_time_conversion_error
For any of the following reasons:

a. General syntax error

b. Month without a day number.

¢. Midnight or noon preceded by an hour other than 12.
d. Improper use of comma or period.

e. Improper use of offset.

2-112 AG93-05

convert_date_to_binary_ convert_date_to_binary_

error_table_3$dt_size_error
the size condition occurred while converting the time string.

error_table_§$too_many_tokens
the time string contains more tokens than the routine is prepared to handle.

error_table_$dt_unknown_word
a word in a time string is not found in the time_info_ token list.

TIME STRING

The time string can have up to six parts —— adverbial offset, date, time, day of week,
signed offset, and time zone. Adverbial offsets, if present, must appear leftmost in
the string. Beyond that, all of the parts are optional and may be in any order. The
parts may be made up of alphabetic fields, numeric fields, and special characters.

An alphabetic field is made up of letters and must contain a whole word or an
abbreviation (usually made up of the first three letters of the word). No distinction is
made between uppercase and lowercase characters. Although this description gives
examples in English, each of the words is available in several languages. Any of these
languages may be used in time strings, but all words within a given string must be in
the same language. To see the languages defined on your site, type

display_time_info -lang

A numeric field consists of an optionally signed integer (or fraction) of one or more
decimal digits. The special characters that may be used in either alphabetic or numeric
fields are: the slash (/), the period (), the colon (), the plus (+), the minus (-), and
the comma (,). Blanks are not required between alphabetic and numeric fields in the
time strings; however, they are required between two numeric fields unless the second
field begins with a plus (+) or minus (-) sign. For example:

2dayshhours10minutes
1245.174+7hours
10/17/79%Wednesday

Underscores may be used in place of blanks in the time string. For example:

09/25/79__14L42.6_+5 hours

Usually when a user enters a time string, the time zone is omitted. Although the zone
is seldom seen, it is very important. The time zone determines the interpretation of
items given in the time string. Also, the zone is involved in supplying defaults for
missing items. All defaults are taken from the current absolute time, adjusted by a
working time zone. If a zone is given in the string, that becomes the working zone.
Otherwise, the process default time zone is used.

2-113 AG93-05

convert_date_to_binary_ convert_date_to_binary_

This means that whether you convert a string with an explicit zone, such as
"XXXX_ast" or set the process default to "ast" and then convert the string "XXXX",
you get the same absolute time. (Note that setting the process default will also
influence output conversion, while giving an explicit zone does not.) To display your
default zone, type:

print_time_defaults zone

Muiltics accepts dates from the year 0001 through 9999. The Julian calendar is used
for dates from 0001-01-01 through 1582-10-04. The Gregorian calendar is used for
dates from 1582-10-15 through 9999-12-31. (The dates from October 5, 1582 through
October 14, 1582 do not exist. They were dropped when the Gregorian calendar was
adopted. The leap day is always February 29. The lower limit on dates of January 1,
0001 AD was picked since it begins the era. The upper limit on dates of December
31, 9999 was chosen to limit year numbers to four digits. The time zones as now
defined are used regardless of the year. The Multics date/time system does not
account for "leap seconds” and, therefore, the difference between any two binary clock
values that are precisely an integral number of days (hours, minutes, seconds, etc.)
apart is guaranteed to be evenly divisible by the number of microseconds in a day

thanr minute cocand ete)
14 , mnule, secong,

ALV s AAXALE x wvwese

The six parts of the time string are described below. In these descriptions, whenever
an assumed value is mentioned, it refers to the date/time adjusted to the working
zone.

1 date
is the day of the year and may be specified only once. Dates may be
specified using normal date format, calendar date format, day of the week,
date keywords, fiscal week, request—id, or may be omitted entirely. If no date
is present, it is assumed to be the next occurrence of the time specified. For
example, "10A" gives the date on which 10:00 am next occurs. If no date and
no time are specified, the current date is used.

2-114 AG93-05

convert_date_to_binary_ convert_date_to_binary_

In normal date format, dates are specified as month (or month abbreviation),
day of month, and year; or as day of month, month, and year. The year is
optional and, if omitted, is assumed to be the year in which the date will
occur next. That is, if today is March 16, 1978, then March 20 is equivalent
to March 20, 1978; while March 12 is the same as March 12, 1979. There are
three forms of normal date, illustrated by the examples below:

16 March 16 March 1978
March 16 March 16 1978 March 16, 1978 (The comma is optional.)
3/16 3/16/78 3/16/1978

Calendar date format permits dates to be specified as a year, month, and day
of month, separated by minus signs. This is the International Standards
Organization (ISO) standard format. The year is required, and may be given as
a year of the century. The calendar date format is illustrated by the examples
below:

79-12-31 or 1979-12-31
(represents December 31, 1979)

The day of the week is a date specifier if present with no other form of
date. It then selects the first occurrence of the named day AFTER today.

The date keywords are "yesterday”, "today", and "tomorrow". For example,

6:35A today
yesterday +120days

The fiscal week is of the form FWyyyyww. "FW" is the fiscal indicator (in
English), "yyyy" is the year number, and "ww" is the week number. The fiscal
week begins on Monday and ends on Sunday. This form converts to the date
of the Monday, but another day within the week may be selected by adding a
day name. For example, "FW198413 m" gives "03/26/84 0000. Mon", while
"FW198413 m Wed" gives "03/28/84 0000. Wed". The fiscal indicator may be
separated from the number but the ordering must remain, i.e. "FW185425" or
"FW 183425" but not "185425 FW".

A request—id is a 19-character string used by several programs in the system,
such as list_output_request. It contains a complete date from year, in century
down thru microseconds in this form:

yymmddHHMMSS . SSSSSS

If no zone is specified, it is interpreted in GMT, not the process default. A
request—id specifies a time as well as a date, so no other time specification
may be given.

2-115 AG93-05

convert_date_to_binary_ convert_date_to_binary_

2. day of week
is the day of the week {e.g., Monday) and may be present only once. When
the day of the week is present along with one of the other forms of date
specification, that date must fall on the indicated day of the week.

3. time

is the time of day and may only be present once. If omitted, it is assumed to
be the current time. Time may be given as 24-hour format, 12-hour format,
or the time keyword "now". The 24-hour time format consists of a four—digit
number followed by a period. (hhmm., where hh represents hours, and mm
represents minutes). This number may be followed by an optional decimal
fraction-of-a—minute field (e.g., hhmm.m). Also acceptable are hours and
minutes fields separated by colons (hh:mm). This may be optionally followed
by either a fraction-of-a—minute field (hh:mm.m), or a seconds field (hh:mm:ss).
The seconds, in turn, may be include a fraction—of-second field (e.g.,
hh:mm:ss.s). Examples of 24-hour time are:

1545,
1545.715
15:45
15:45.715
15:45:42
15:45:42.08

The 12-hour time format must end with a meridiem designator (ie., A, P, am,
pm, noon, (or n), midnight (or m)). Midnight and noon can be indicated by
simply giving the meridiem designator. The designator may be preceded by
time expressed as hours, hours:minutes, or hours:minutes:seconds (including an
optional fraction of a second or fraction of a minute, as mentioned above).
Examples of 12-hour time are:

midnight

5 am

5: 454
3:59:59.000001pm
11:07:30.5pm

12 n

There is a set of illegal times, 24:00-24:59, which are handled anyway. These
are taken to mean 0:00—0:59 of the following day. Note that midnight is the
beginning of a day (00:00) not the end.

2-116 AG93-05

convert_date_to_binary_ convert_date_to_binary_

4 signed offset
is an adjustment to be made to the clock value specified by the other fields.
Offsets may be specified in any and all of the following units (i.e. singular,
plural, or abbreviation):

year years yr
month months mo
week weeks wk
day days da
hour hours hr
minute minutes min
second seconds sec

microsecond microseconds usec

Each unit may be present one or more times, each preceded by an optionally
signed fixed point number. If offset fields are the only thing present, the
offsets are added to the default values of date and time, as described above.

If the month offset results in a nonexistent date (e.g., "Jan 31 3 months"
would yield April 31), the last date of the resulting month is used (e.g., April
30).

Examples of offset fields are:

3 weeks -60 hours

(60 hours before 3 weeks after now)
1.5 hr 5min

{an hour and 35 minutes T
1 hour 5 minutes

{an hour and five minutes from now)

. o\
rom NOwW)

The order in which offset values are applied to the clock value can affect the
resultant clock value. Offset values are applied in the following order:

year, month, week, day, hour,
minute, second, microsecond

Assuming that today is September 25, 1979, then:

10/1 -1 day +1 month
results in a clock value for 10/31/79, rather than for 10/30/79.

"Monday 6 am 2 weeks" means "two weeks after the next occurrence of
Monday, at 6:00 am on that day".

2-117 AG93-05

convert_date_to_binary_ convert_date_to_binary_

NOTE: There is also a non-offset use of these words, available in combination with
the word "this", i.e. "this month". Some of these combinations can be used in
building date and time parts. For example, "this_month_1,_this_year” or
"this_hour:23" is valid, while just "this_day” is not. The exact form of this
combination will vary according to language. In some languages, the word for
"this" changes according to which unit it is applied to. In other languages,
there may be a single word which does the job. To list the word used as
"this" for each unit, type:

display_time_info_Soffset -language LANGUAGE_NM

5. adverbial offset
is a before/after kind of adjustment and may be used any number of times.
This offset is recognized by the presence of "before", "on", or "after"” in the
time string. If present, adverbial offsets must appear first. These are the
forms available:

DAY-NAME before
DAY-NAME on or befo
DAY-NAME before or on
DAY-NAME after
DAY-NAME on or after
DAY-NAME after or on
SIGNED-OFFSETs before
SIGNED-OFFSETs after

When adverbial offsets are present, they partition a string into a series of
adjustments followed by a base time. These sections are processed in a right to
left manner. Referring fo the first example below, there are 3 sections. First
"6:00 am 400sec” is handled, supplying all necessary defaults and making the
ordinary (400sec) offset adjustment. Then "Monday after" is applied to give a
new value. And finally "2 wk -5min after" is applied to this new value to
give the final value.

2 wk -5min after Monday after 6:00 am 400sec
20 minutes before now

2 days after today

2500 weeks after 1776-7-4

Tue after Mon on or after 11/1

This last item describes election day in the USA, i.e. the first Tuesday after
the first Monday in November.

2-118 AG93-05

convert_date_to_binary_ convert_date_to_binary_

6. zone

is the time zonme to be used in making the conversion to Greenwich mean
time, which is the internal form of all clock readings. It may be either a
zone differential, or any of the zone abbreviations known at the site. A Zzone
differential is a 5-character string, "sHHMM" ("s" is a sign, "HH" is a 2-digit
hour, and "MM" is a 2-digit minute). This may only be used immediately
following a time specification. "12:15-0330" says that 12:15 is the local time
and -0330 specifies that the local time was generated by subtracting 3.5 hours
from GMT. To list the zone abbreviations known at a site, type:

display_time_info -zones

If any defaults are needed, the current instant in time is broken down into
years, months, days, etc. with respect to a "working zone". This working zone
can make a great deal of difference, because, for example, at a given instant it
can be Tuesday in New York and Wednesday in Bankok, or it can be 22:07 in
London and 3:37 in Singapore. Thus, the zone is as important in applying
defaults to week days and years as it is to hours and minutes.

Many of the date/time commands allow a "-zone X" argument to specified. In
this case, X may be any of the zones known at the site. It may NOT be a
time differential.

Entry: convert__date__to__binary__S$relative

This entry point is similar to the convert_date_to_binary_ entry point, except that the
clock reading returned is computed relative to an input clock time rather than the
current clock time. Thus the clock reading returned for the string "March 26" is the
clock reading for the first March 26 following the input clock time, rather than the
clock reading for the first March 26 following the current clock time. Given a 72-bit
clock time to use, this entry point converts a character representation of a date and
time to the equivalent 72-bit clock reading.

USAGE

declare convert_date_to_binary_Srelative entry (char (%), fixed bin(71),
fixed bin(71), fixed bin(35));

call convert_date_to_binary_Srelative (string, clock, clock_in, code)
ARGUMENTS

string
is the character representation of the clock reading desired. (Input)

clock
is the computed clock value relative to the clock_in argument. (Output)

2-119 AGI3-05

convert_date_to_binary_ convert_dial_message_

clock_in
is the clock time used to compute the clock value. (Input)

code
is a standard status code. (Output)

Name: convert__dial__message__

The convert_dial_message subroutine is used in conjunction with the dial_manager_
subroutine to control dialed terminals. It converts an event message received from the
answering service over a dial control event channel into status information more easily
used by the user.

Entry: convert__dial__message__S$return__io__module

" This eniry pointi is used {0 process eveni messages from tihe answering service
regarding the status of a dialed terminal or an auto call line. In addition to returning
line status, this entry point also returns the device name and I/0 module name for
use in attaching the line through the iox_ subroutine. See the MPM Subroutines for
further description of the iox_ subroutine.

USAGE

declare convert_dial_message_Sreturn_io_module entry (fixed bin(71),
char (%), char (%), fixed bin, 1 aligned, 2 bit (1) unal, 2 bit(1)
unal, 2 bit(1) unal, 2 bit(33) unal, fixed bin(35));

call convert_dial_message_Sreturn_io_module (message, channel_name,
io_module, n_dialed, flags, code);

ARGUMENTS

message
is the event message to be decoded. (Input)

channel_name
is the name of the channel that has dialed up or hung up. (Output)

io_module
is the name of the iox_ I/O module to be used with the assigned device.
(Output)

n_dialed
is the number of terminals currently dialed to the process or -1. (Output)

2-120 AG93-05

convert_dial_message_ convert_dial_message_

fiags
is a bit string of the following structure: (Output)

del 1 flags aligned,
2 dialed_up bit(1) unal,
2 hung_up bit (1) unal,
2 control bit (1) unal,
2 pad bit (33) unal;

Only the first three bits have meaning, and only one can be on at a time. See
"Notes" below for complete details.

code
is a standard status code. (Output) See "Notes" below.

NOTES

The message may be either a control message or an informative message. Informative
messages have flags.control off ("0"b), n_dialed is set to -1, channel is set to the
name of the channel involved, io_module is set to the name of an I/O module, and
either flags.dialed_up or flags.hung up is on, indicating that the named channel has
either just dialed up or just hung up. The io_module name is provided as a
convenience; the caller is not required to use the name returned by this subroutine.

Control messages have flags.control on ("1"b), and n_dialed is set to the number of
dialed terminals or -1. The code is either 0 (request accepted) or one of the
following values:

error_table_$action_not_performed
the requested action was not performed; typically, this indicates an attempt to
manipulate a channel that the requesting process can not control.

error_table_%$ai_out_range
access to the requested channel is prohibited by AIM.

error_table_$bad_name
the channel_name does not conform to required syntax.

error_table $badcall
the dial message was -1. The dial_manager_ subroutine will set
dial_manager_arg.dial_message to -1 when an error occurs and there is no
answering service diai_message io return.

error_table_$bigarg
the dial_out_destination is too long.

error_table_$dial_active
the process is already serving a dial qualifier.

2-121 AG93-05

"convert_dial_message_ convert_status_code_

error_table_§dial_id_busy
the dial_qualifier is already being used by another process.

error_table_$insufficient_access
the running process does not have the access permission required to perform the
requested operation.

error_table_$invalid_resource_state
the channel is not configured to allow the requested operation.

error_table_$name_not_found
the dial_gqualifier is not registered.

error_table_$no_connection
it was not possible to complete the connection, e.g., dial-out failure.

error_table_$no_dialok
the requesting process does not have the dialok attribute.

error_tabie_3order_error
an error occurred while processing an order on this channel.

error_table_$request_not_recognized
indicates a software error.

error_table_$resource_not_free
the requested channel is already in use.

error_table_$resource_unavailable
nc channel could be found that satisfied required characteristics.

error_table_$resource_unknown
the channel specified does not exist.

error_table_$unable_to_check_access
typically indicates that the process does not have required access, but may indicate
an administrative error.

error_table_$unimplemented_version
the version of the dial manager_arg structure supplied is not supported by
dial_manager_. This error code may also indicate an internal software error.

Name: convert__status__code___
The convert_status_code_ subroutine returns the short and long status messages from

the standard status table containing the given status code. Status codes are described in
the Programmer’s Reference Manual.

2-122 AG93-05

convert_status_code_ copy_

USAGE

declare convert_status_code_ entry (fixed bin(35), char(8) aligned,
char (100) aligned);

call convert_status_code_ (code, shortinfo, longinfo);
ARGUMENTS

code
is a standard status code. (Input)

shortinfo
is a short status message corresponding to code. (Output)

longinfo
is a long status message correspondmg to code; the message is padded on the
right with blanks. (Output)

NOTES

If code does not correspond to a valid status code, shortinfo is "XXXXXXXX", and
longinfo is "Code ddd"”, where ddd is the decimal representation of code.

Name: copy__

This subroutine produces a copy of a Multics non—directory branch. Name duplication
is handled by nd_handler_.

USAGE

dcl copy_ external entry (ptr); call
copy_ (copy_options_ptr);
ARGUMENTS

copy_options_ptr
is the pointer to copy_options structure {(Input)

NOTES

All errors are handled via sub_err_. An attempt to copy a segment into itself is
tefused.

2-123 AG93-05

copy._ copy_

STRUCTURE

The copy_options structure is defined as follows:

1 copy_options aligned based (copy_options_ptr),

2 version char (8),

2 caller_name char (32) unal,

2 source_dir char (168) unal,

2 source_name char (32) unal,

2 target_dir char (168) unal,

2 target_name char (32) unal,

2 flags,
3 no_name_dup bit (1) unaligned,
3 raw bit (1) unaligned,
3 force bit (1) unaligned,
3 delete bit (1) unaligned,
3 target_err_switch bit (1) unaligned,
3 mbz bit (31) unaligned,

2 copy_items like copy_flags;

STRUCTURE ELEMENTS

version
is the current version of this structure and has the value of the named constant
COPY_OPTIONS_VERSION_1.

caller_name

is the name of the program calling copy_, required when querying the user about
duplicate names. See no_name_dup below.

source_dir
is the absolute pathname of the directory containing the entry to be copied.

source_name
is the name of the entry to be copied.

target_dir
is the absolute pathname of the directory into which a copy of the entry is to be
placed.

target_name
is the name of the entry created to hold the copy of the original entry.

no_name_dup
is set to "0"b if the user is to be queried in case of a duplication of the
target_name and "1"b if there is to be no query, in which case sub_err_ is
signalled.

2-124 AG93-05

copy_

raw

copy_

is set to "0"b if copy_ is to honor the extended type of the entry, and "1"b if it
is to regard it as a standard type entry.

force

is set to "1"b if access to the target is to be forced.

delete

is set to "1"b if the original is to be deleted after it is copied.

target_err_switch

is set if an error occurred referencing the target.

mbz

is reserved for future use and must be set to zero.

copy_items

is structured like the copy_flags structure, which is defined in the include file
copy_flags.incl.pll. The structure is defined as follows:

1 copy_flags aligned based,

MRONBNDNDNDNODNONNN

names bit (1) unaligned,

acl bit (1) unaligned,
ring_brackets bit (1) unaligned,
max_length bit (1) unaligned,
copy_switch bit (1) unaligned,
safety_switch bit (1) unaligned,
dumper_switches bit (1) unaligned,
entry_bound bit (1) unaligned,.
extend bit (i) unaligned,

update bit (1) unaligned,

mbz bit (26) unaligned;

When variables in the copy_flags structure have a value of "1"b, the
designated attribute are copied to the new entry (as long as the attribute is
supported for the type of entry). In the case of extend, the contents of the
original entry may be appended to the end of the target entry. In the case
of update, the contents of the original entry may replace the contents of the
target entry.

2-125 AG93-05

copy_acl_ copy_acl_

Name: copy__acl__

The copy_acl_ subroutine copies the access control list (ACL) from one file, segment,
multisegment file, or directory to another, replacing the current ACL if necessary.

USAGE

declare copy_acl_ entry(char (%), char (%), char (%), char (%), bit(1)
aligned, fixed bin(35));

call copy_acl_ (source_dir, source_ent, target_dir, target_ent,
target_error_sw, code);

ARGUMENTS

source_dir

is the pathname of the directory containing the source file or source directory
whose ACL is to be copied. (Input)

source_ent
is the entryname of the source file or source directory. (Input)

target_dir
is the -pathname of the directory containing the target file or target .directory
whose ACL is replaced. (Input)

target_ent
is the entryname of the target file or target directory. (Input)

target_error_sw
is "0"b il the siatus code refiects an error in lisung the ACL of the source file
or directory, and is "1"b if the code reflects an error in replacing the ACL of
the target file or directory. (Output)

code
is a standard status code. (Output)

NOTES
An attempt to copy the ACL from a source file to a target directory, or from a
source directory to a target file causes an error. Source and target must both be a

file, or both a directory.

Links are chased in the processing of the source and target pathnames.

2-126 AG93-05

copy_dir_ copy_dir_

Name: copy__dir__

Copies a subtree from one point in the hierarchy to another, and optionally deletes
the source subtree.

USAGE

dcl copy_dir_ entry(char (%), char (%), char (%), char (%), ptr, fixed

bin(35));

call copy_dir_ (caller, source_dir, source_ename, target_dir,
target_ename, pcopy_dir_options, code);

ARGUMENTS

caller
is the name of the calling procedure. (Input)

source_dir
is the pathname of the source directory. (Input)

source_ename
is the source entry name. (Input)

target_dir
is the pathname of the target directory. (Input)

target_ename
is the target entry name. (Input)

pecopy_dir_options
is a pointer to the copy_dir_options structure shown below under "Info Structure”.
(Input)

code
is a standard system status code. (Output)

2-127 AG93-05

copy_dir_ copy_dir_

INFO STRUCTURE

The following structure is declared in copy_dir_options.incl.pll:

dcl 1 copy_dir_options aligned based (pcopy_dir_options),

2 version fixed bin,

2 entry_control aligned,
3 1ink bit (1) unatl,
3 seg bit (1) unal,
3 dir bit (1) unal,
3 msf bit (1) unal,
3 nnlk bit (1) unal,
3 padl bit(31) unal,

2 operation_control aligned,
3 delete bit (1) unal,
3 brief bit (1) unal,
3 force bit (1) unal,
3 replace bit (1) unal,
3 update bit (1) unal,
3 aci pit (i) unai,
3 primary bit(1) unal,
3 link_translation bit (1) unal,
3 chase bit (1) unal,

| 3 parent_ac_sw bit (1) unal,
| 3 pad2 bit (26) unal;

dcl copy_dir_options_version_0 fixed bin init(0) int static options(constant);
dcl pcopy_dir_options ptr;

STRUCTURE ELEMENTS

version
is the version number of this structure, currently copy_dir_options_version_0.

link
if set to "1"b then links are copied.

seg
if set to "1"b then segments are copied.

dir
if set to "1"b then inferior directories are copied. If this is not set then the
subtree is not walked.

msf
if set to "1"b then multisegment—files are copied.

nnlk
if set to "1"b then non-null links are copied.

2-128 AG93-05

copy_dir_ copy_dir_

padl
1s unused and must be zero.

delete
if set to "1"b then the source_dir is deleted after the copying is complete.

brief
if set to "1"b suppresses the printing of warning messages such as "Bit count is

inconsistent with current length" and "Current length is not the same as records

force
if set to "1"b executes, when target_dir already exists, without asking the user. If
force is not set, the user is queried.

replace
if set to "1"b deletes the existing contents of target_dir before the copying begins.
If target_dir is non-existent or empty, this control argument has no effect. The
default is to append the contents of source_dir to the existing contents of
target_dir. Setting of replace conflicts with the setting of update, and
error_table_$inconsistent is returned.

update
if set to "1"b causes copying of only those entries in source_dir that have
comparable entries in target_dir. Setting of update conflicts with the setting of
replace, and error_table_S$inconsistent is returned.

acl
if set to "1"b gives the ACL on the source_dir entry to its copy in target_dir.
Although initial ACLs are still copied, they are not used in setting the ACL of
the new entries when not set.

primary
if set to "1"b only primary names are copied. If not set, all the names of the
selected entries are copied.

link_translation
if set to "1"b then links will be translated. If there are references to the source
directory in the link pathname of a link being copied, the link pathname is
changed to refer to the target directory.

chase

if set to "1"b copies the target of a link. Chasing links eliminates link
transiation.

2-129 AG93-05

copy_dir_ copy_dir_

parent_ac_sw
if set to "1"b when target directories need creating. The access class of the
target_dir is obtained from the target’s parent directory. Otherwise, the access
class is determined from the source_dir. This switch may be used by privileged
applications to make a downgraded copy of an upgraded hierarchy. The caller
must have previously set the seg and dir AIM oprivileges in order to read the
contents to the upgraded hierarchy.

pad?
is unused and must be zero.

ACCESS REQUIRED

Status permission is required for source_dir and all of the directories in its tree.
Status permission is required for the directory containing source_dir. Read access is
required on all files under source_dir. Append and modify permission are required for
the directory containing target_dir if target_dir does not exist. Modify and append
permission are required on target_dir if it already exists.

If acl is not specified, the system default ACLs are added, then the initial ACL for
the containing directory is applied (which may change the system supplied ACL).
Initial ACLs are always copied for the current ring of execution.

NOTES

If target_dir already exists and force is not specified, the user is so informed and
asked if processing should continue. If target_dir is contained in source_dir, an
appropriate error message is printed and the subroutine returns.

if name duplication occurs while appending the source_dir to the targel_dir and the
name duplication is between directories, the user is queried whether processing should
continue. If the user answers yes, the contents of the directory are copied (appended)
but none of the attributes of that directory are copied. If the answer is no, the
directory and its subtree is skipped. If name duplication should occur between
segments, the user is asked whether to delete the existing one in target_dir. -

If replace is specified or target_dir does not exist, name duplication does not occur.
If part of the tree is not copied (by specifying a storage system entry key). problems
with link translation may occur. If the link target in the source_dir itree was in the

part of the tree not copied, there may be no corresponding entry in the target_dir
tree. Hence, translation of the link causes the link to become null

2-130 AG93-05

cpu_time_and_paging_ create_data_segment_

Name: cpu__time__and__paging

The cpu_time_and_paging_ subroutine returns the virtual CPU time used by the calling
process since it was created as well as a measure of the paging activity of the process.

USAGE

declare cpu_time_and_paging_ entry (fixed bin, fixed bin(71), fixed
bin);

call cpu_time_and_paging_ (pf, time, pd_faults);
ARGUMENTS

pf
is the total number of page faults taken by the calling process. (Output)

time
is the virtual CPU time (in microseconds) used by the calling process. (Output)

pd_faults
was previously the total number of page faults from the paging device for the
calling process. This value is always returned as zero. (QOutput)

te__data_ segment

The create_data_segment_ subroutine is used in conjunction with the create_data_segment
command to create a standard object segment from PL/I data structures passed to it
as parameters. The create_data_segment_ subroutine is called from a PL/I program
that has defined in it either one or two specific PL/I structures, whose contents are
to be placed in the text and/or static sections of the object segment to be created.
The level-2 structure component names become entry point names for the object
segment, i.e., names that can be found by links so that other programs may reference
the data by name.

USAGE
declare create_data_segment_ entry (ptr, fixed bin(35));

call create_data_segment_ (cds_arg_ptr, code);

2-131 AG93-05

create_data_segment_ create_data_segment_

ARGUMENTS

cds_arg_ptr
is a pointer to a structure (see "Structure" below) containing information to be
passed to the create_data_segment_ subroutine, specifying the structures to be used
to create the object segment. (Input)

code
is a standard status code. (Output) It can be error_table_$translation_failed if no
object segment is created.

STRUCTURE

The structure that passes information to the create_data_segment_ subroutine can be
found in the library include file cds_args.incl.pil. It is declared as follows:

dcl 1 cds_args based aligned,
2 sections (2),
3p ptr,
3 len fixed bin (18},
3 struct_name character (32},
2 seg_name character (32),
2 num_exclude_names fixed bin,
2 exclude_array_ptr ptr,
2 switches,
3 defs_in_link bit (1) unal,
3 separate_static bit(1) unal,
3 have_text bit(1) unal,
3 have_static bit (1) unal,
3 pad bit(32) unal;

STRUCTURE ELEMENTS

sections
describe the PL/I structures in the calling program that are used to define the
text and static sections of the object segment; section (1) describes the structure
to be used for the text section, (if cds_args.switches.have_text is on), and section
(2) describes the structure to be wused for the static section (if
cds_args.switches.have_static is on).

3

is a pointer to a region of data, described by the appropriate structure, whose
contents are to be copied into the appropriate section of the object segment.

len

is the length, in words, of the region pointed to by p. It must be the same as
the word size of the appropriate structure.

2-132 AG93-05

create_data_segment_ create_data_segment_

struct_name
is the level-1 name of the structure in the calling process that is used to define
the entry point (segdef) names of the corresponding section of the object segment.

The structure must be known throughout the PL/I language scoping rules to the
block that contains the call to create_data_segment_.

This structure must not be an array at its outermost level. It can be of any
storage class and can contain arbitrary "like" attributes.

All level-2 names in this structure will become entry point (segdef) names in the
corresponding section of the object segment, unless excluded by the exclude array
(see below). The location of the entry point (segdef) will be at an offset in the
corresponding section of the object segment equal to the offset of the given
component in the supplied structure. Hence, only a name defining a field that
begins on a word boundary may be validly used.

seg_name
is the entryname of the object segment to be created in the working directory.
The seg _name must be the same as the entry name of their source segment |
without the suffix ".cds". |

num_exclude_names . .
is the number of names in the exclude array. It should be 0 if there is no
exclude array. (See below.) ‘

exclude_array_ptr
is a pointer to the exclude array, if one is provided. It may be null

The exclude array is an array of character(32) star names (see the match_star_names_
subroutine) that select those level-2 names in the supplied structures that should
not be made into entry point names. For instance, the names "pad*" and "mbz*"
would eliminate all names beginning with either mbz or pad.

If no exclude array is supplied. all level-2 names are made into entry point
names.

switches
control the options of the create_data_segment_ subroutine.

defs_in_link
controls placement of the definition section.
"1"b places definition section of the object segment in its linkage section; this
option creates a nonstandard object segment, and should not be used.
"0"b places definitions contiguous to the text section.

2-133 AG93-05

create_data_segment_ create_data_segment_

separate_static
controls whether the object segment has a separate static section.
"1"b separate static section
"0"b static resides in the linkage section

have_text
indicates whether or not there is a text section.
"1"b cds_args.sections(1) describes a structure to be used for defining the text
section of the object segment
"0"b there is no text section (zero length)

have_static
indicates whether or not there is a static section.
"1"b cds_args.sections(2) describes a structure to be used for defining the static
section of the object segment
"0"b there is no static section (zero length)

pad
is reserved, and must be all zeros.

NOTES

The brief translator name placed in object segments produced by the create_data_segment_
subroutine is cds.

If the defs_in_link switch is supplied as on ("1"b), then a nonrelocatable, nonstandard
object segment is produced.

All text and static-tesident information created is supplied with absolute relocation.
Hence, one must be wary of threads and pointers in one’s structures, as they are not
relocated if the object segment is bound.

The program that calls the create_data_segment_ subroutine must be in the PL/I

language. It must be compiled with the —table control argument. The create_data_segment
command provides for this.

It is essential that structures specified by cds_args.sections be at least referenced in the
calling program, or they are not described in the runtime symbol table.

The create_data_segment_ program, in its capacity as a translator, issues diagnostic
messages on the terminal, as opposed to returning detailed status codes.

All regions of the text and/or static sections not explicitly set by the calling program,

whether via "init" attributes or explicit code, may not be assumed to contain zero or
any other quantity.

2-134 AG93-05

create_ips_mask_ create_ips_mask_

Name: create__ips__mask__

The create_ips_mask_ subroutine returns a bit string that can be used to disable
specified ips (interprocess signal) interrupts (also known as ips signals).

USAGE

declare create_ips_mask_ entry (ptr, fixed bin, bit(36) aligned);
call create_ips_mask_ (array_ptr, Ing, mask);

ARGUMENTS

array_ptr
is a pointer to an array of ips names that are declared as char(32) aligned.
(Input)

Ing
is the number of elements in the array pointed to by array_ptr. (Input)

mask
is a mask that disables all of the ips signals named in the array. (See "Notes"
below.)

NOTES

If any of the names are not valid ips signal names, the condition create_ips_mask_err
is signalled. Currently, the allowed ips names are:

quit

cput

alrm

neti

sus_

trm_

wkp_

pst_ |
system_shutdown_scheduled_ |
dm_shutdown_scheduled_ |

If the first name in the array is -all, then a mask is returned that masks all
interrupts.

The returned mask contains a "0"b in the bit position corresponding to each ips name
in the array and a "1"b in all other bit positions. The bit positions are ordered as in
the above list. It should be noted that it is necessary to complement this mask (using
a statement of the form "mask = “mask™ in cases where the requirement is for a
mask with "1" bits corresponding to specified interrupts. An ips mask is used as an
argument to the hcs_S$reset_ips_mask and hcs_$set_ips_mask entry points.

2-135 AG93-05

cross_ring_io_ cu_

Name: cross__ring__io__

Entry: cross__ring__io__$allow__cross

The cross_ring_io_$allow_cross entry point must be called to allow use of an I/0
switch via cross-ring attachments from an outer ring. The call must be made in the
inner ring before the outer ring attempts to attach.

USAGE

declare cross_ring_io_Sallow_cross entry (char (%), fixed bin,
fixed bin(35));

call cross_ring_io_Sallow_cross (switch_name, ring, code);
ARGUMENTS

switch_name
is the inner ring switch name. (Input)

ring
is the highest validation level from which switch_name may be used. (Input)

code
is a standard status code. (Output)

NOTES

This entry may be called more than once with the same switch_name argument.
Subsequent calls are ignored.

Name: cu__

The cu_ subroutine contains a number of useful command utility programs that
provide functions not directly available in the PL/I language. Although the various
cu_ entry points are designed primarily for the use of command writers, many may
prove useful to Multics users and subsystem developers. The entry points can be
divided into four functional categories: argument processing, ready states, stack utility,
and miscellaneous.

2-136 AG93-05

cu

11/86

cu_
The following is a list of all the entry points in the cu_ subroutine, divided into the

four categories. A brief explanation of each category follows the list. The entry
points themselves are then described, in alphabetical order.

Argument Processing

cu_Saf_arg_count
cu_%af_arg_count_rel
cu_9%af _arg_ptr
cu_%af_arg_ptr_rel
cu_S%af_return_arg
cu_S%af_return_arg_rel
cu_S$arg_count
cu_Sarg_count_rel
cu_S%arg_list_ptr
cu_S%arg_ptr
cu_S%arg_ptr_rel
cu_S$generate_call

Ready States

cu_$get_ready_mode
cu_S%get_ready_procedure
cu_3$ready_proc
cu_Sreset_ready_procedure
cu_$set_ready_mode
cu_$%set_ready_procedure

Command Processor Escape

cu_%cp
cu_3$get_command_name
cu_9%get_command_name_rel
cu_$get_command_processor
cu_J%reset_command_processor
cu_9$set_command_processor

Stack Utility

cu_S$grow_stack_frame
cu_S$shrink_stack_frame
cu_3%stack_frame_ptr
cu_J%stack_frame_size

Active String Evaluation

cu_%evaluate_active_string
cu_%$get_evaluate_active_string
cu_$reset_evaluate_active_string
cu_9%set_evaluate_active_string

3\
Command Error Handlers
cu_Scl
cu_%$get_cl_intermediary
cu_$reset_cl_intermediary
cu_S$set_cl_intermediary

Ring Validation Level

cu_Slevel_get
cu_%level_set

Miscellaneous
cu_S$caller_ptr

cu_%$decode_entry_value
cu_%$make_entry_value

AIDS IN ARGUMENT PROCESSING

These entry points are designed to be used by such programs as commands and active
functions, which in turn may be invoked with a variable number of arguments. The
entry points are tools to be used in obtaining the number of arguments, or a pointer
to an argument or argument list, or to reference the return argument of an active
function. Knowledge of the details of implementation is not necessary.
READY STATES
These entry points enable the user to invoke a ready procedure, to determine the state
of a ready procedure or ready mode, or, if need be, to change it.
2-137 AG93-05A

cu

STACK UTILITY

These entry points enable the user to perform operations on his stack frame; in
general, they are for advanced applications.

ACTIVE STRING EVALUATION

These entry points enable the user to evalueate active strings within a closed subsystem
environment which are -a sequence of one or more active function invocations with
their arguments.

COVMMAND ERROR HANDLERS

These entry points enable the user to handle any error conditions that can be signalled
within a closed subsystem environment by passing control to the procedure entry point
currently defined as the standard error handler. A diagnostic message is printed and a
procedure is called to reenter command level.

COMMAND PROCESSOR ESCAPE

These entry points permit the user to escape from the closed subsystem environment

Avaniita t+1la mnAdAe hy eacoine tha svamsnita samsnact ta tha rewaent Arnard
I.U VAWV U LW ULJJUL VUILLLIIQIIUD UJ yaoauns I-ll\r WAV UL 1 V\-’.UWL w l-l.l\« vux dWwilbL _IJ‘I. UUWUI \r

entry point defined as the command processor.

RING VALIDATION LEVEL

These entry points enable the user to change the current protection ring validation
level for procedures that must distinguish the periods of time when it is acting in
behalf of itself (i.e, in its own ring) and when it is acting in behalf of another
procedure that can be in an outer (i.e., less privileged) protection ring.

MISCELLANEOUS

These entry points enable the user to perform a variety of tasks that do not fit any
of the above categories.

Entry: cu__$af__arg count

This entry point should be called by an active function. It returns to its caller the
number of arguments passed to the caller by its caller, not including the active
function return argument. If the caller has not been invoked as an active function, a
standard status code is returned, and, if the code is error_table_$not_act_fnc, nargs is
the number of arguments in the call (similar to the cu_$arg_count entry point
described below).

cu_

2-138 AG93-05

cu_

cu

USAGE

declare cu_Saf_arg_count entry (fixed bin, fixed bin(35));
call cu_Saf_arg_count (nargs, code);

ARGUMENTS

nargs
is the number of input arguments passed to the caller. (OQutput)

code
is a standard status code. (Output)
error_table_$nodescr
no argument descriptors were passed to the caller or an incorrect argument
list header was encountered.
error_table_$not_act_fnc
the caller was not invoked as an active function.

NOTES

This entry point and the five following entry points beginning with $af_ have been
provided so that active functions need not have knowledge of the mechanism for
returning arguments.

The entry points cu_%af_arg_count and cu_S%af_arg_count_rel are retained for historical
reasons; active function procedures should call cu_$af_return_arg and cu_$af_return_arg_rel
instead to obtain the location and maximum length of the return argument as well as
the arg_count. This information will be needed for the active function to return a
value. When the procedure is invoked as an active function, the value of arg_count
returned by cu_S$af_arg _count will be one less than the value returned by cu_S$arg_count,
otherwise they will be the same.

Entry: cu__$af__arg count__rel

This entry point is similar to cu_$af_arg_count, but instead of looking in the
argument list of its caller, it is given a pointer to the argument list.

USAGE
declare cu_Saf_arg_count_rel entry (fixed bin, ptr, fixed bin(35)); |

call cu_Saf_arg_count_rel (nargs, arg_list_ptr, code); |

2-139 AG93-05

cu

cu_

ARGUMENTS

nargs
is the number of input arguments passed to the caller. (Output)

arg_list_ptr
is a pointer to an argument list. (Input)

code
is a standard status code. (Output)
error_table_$nodescr
no argument descriptors were passed to the caller or an incorrect argument
list header was encountered
error_table_$not_act_fnc
the caller was not invoked as an active function

Entry: cu__$af__arg ptr

This entry point assumes it has been cailed by an active function. It operates in the
same fashion as cu_$arg ptr (described below), except that it verifies that the caller
was invoked as an active function, and does not allow the return argument to be
accessed. If the (i+1)st argument does not exist, the code error_table_$noarg is
returned. The return argument is always the last one; thus, use of this entry point
and cu_S$af_return_arg allows the active function to be independent of the position of
the return argument in the argument list (see "Notes" under cu_$af_arg count above).

USAGE

declare cu_S$af_arg_ptr entry (fixed bin, ptr, fixed bin{(21),
fixed bin(35));

call cu_Saf_arg_ptr (arg_no, arg_ptr, arg_len, code);
ARGUMENTS

arg_no
is the number of the desired argument. (Input)

arg_ptr
is a pointer to the unaligned character-string argument specified by arg_no.

(Output) It is set to the null value if any error is encountered.
arg_len

is the length (in characters) of the argument specified by arg_no. (Output) It is
set to 0 if any error is encountered.

2-140 AGI3-05

cu cu_

code

is a standard status code. (Output)

error_table_$nodescr
the argument list does not contain descriptors. In this case, arg_len is set |
to zero. i

error_table_$not_act_fnc
the caller was not invoked as an active function.

error_table_$noarg
the program does not have an arg_no’th argument. In this case, arg_ptr is [
set to null and arg_len is set to zero. |

Entry: cu_S$af__arg _ptr__rel

This entry point is similar to cu_$af_arg_ptr but instead of looking in the argument
list of its caller, it is given a pointer to the argument list.

USAGE

declare cu_Saf_arg_ptr_rel entry (fixed bin, ptr, fixed bin(21),
fixed bin(35), ptr);

call cu_Saf_arg_ptr_rel (arg_no, arg_ptr, arg_len, code, arg_list_ptr);
ARGUMENTS

arg_no
is the number of the desired argument. (Input)

arg_ptr
is a pointer to the unaligned character-string argument specified by arg_no.
(Output) It is set to the null value if any error is encountered.

arg_len
is the length (in characters) of the argument specified by arg_no. (Qutput) It is
set to 0 if any error is encountered.

arg_list_ptr
is a pointer to an argument list. (Input)

code

is a standard status code. {(Output)

error_table_$nodescr
the argument list does not contain descriptors. In this case, arg len is set l
to zero. ,

error_table_$not_act_fnc
the caller was not invoked as an active function.

error_table_$noarg
the program does not have an arg_no’th argument. In this case, arg_ptr is |
set to null and arg_len is set to zero. |

2-141 AG93-05

cu

cu

Entry: cu__$af_return__arg

This entry point assumes it has been called by an active function. It makes the active
function’s return argument available as described in "Notes" below. It is provided to
permit writing of active functions that accept an arbitrary number of arguments (see
"Notes" under cu_%$af_arg_count above).

USAGE

declare cu_Saf_return_arg entry (fixed bin, ptr, fixed bin(21),
fixed bin(35));

declare return_string char (max_length) varying based (rtn_string_ptr);
call cu_Saf_return_arg (nargs, rtn_string_ptr, max_length, code);
ARGUMENTS

nargs
1$ ifie number O

f input arguments passed to the caller. {(Cutput)
rin_string_ptr
is a pointer to the varying return argument of the active function. (Output)

max_length
is the maximum length of the varying string pointed to by rtn_string_ptr.
(Output)

code
is a standard status code (QOutput)
error_table_$nodescr
no argument descriptors were passed to the caller or an incorrect argument
list header was encountered.
error_table_$not_act_fnc
the caller was not invoked as an active function.

NOTES

An active function that takes an arbitrary number of arguments uses this entry point
to return a value. It calls the entry point 1o get a pointer to the return argument
and to get its maximum length. It declares the based varying string, return_string, as
described above. It then assigns its return value to return_string. Even if
error_table_$not_act_fnc is returned, nargs will be set to the proper value.

2-142 AG93-05

cu

cu_

Entry: cu_$af_return__arg rel

This entry point is similar to cu_%$af_return_arg, but instead of Ilooking in the
argument list of its caller, it is given a pointer to the argument list.

USAGE

declare cu_Saf_return_arg_rel entry (fixed bin, ptr, fixed bin(21),
fixed bin(35), ptr);

call cu_Saf_return_arg_rel (nargs, rtn_string_ptr, max_length, code,
arg_list_ptr);

ARGUMENTS

nargs
is the number of input arguments passed to the caller. (Output)

arg_list_ptr
is a pointer to an argument list. (Input)

rtn_string_ptr
is a pointer to the varying return argument of the active function. (Qutput)

max_len
is the maximum length of the varying string pointed to by rin_string_ptr.
(Output)

code
is a standard status code. (Output)
error_table_$nodescr
no argument descriptors were passed to the caller or an incorrect argument
list header was encountered.
error_table_$not_act_fnc
the caller was not invoked as an active function.

Entry: cu__S$arg count

The cu_S$arg_count entry point can be used by any procedure to determine the number
of arguments with which it was called.

USAGE
declare cu_Sarg_count entry (fixed bin, fixed bin (35));

call cu_Sarg_count (arg_count, code);

2-143 AG93-05

cu

ARGUMENTS

arg_count
is the number of arguments. (Output)

code
is a standard status code. (Output)
error_table_$nodescr
no argument descriptors were passed to the caller or an incorrect argument
list header was encountered.
error_table_S$active_function
the caller was invoked as an active function.

NOTES

Even if the code is nonzero, arg_count may still be valid. If error_table $active_function
is returned, the arg_count will be the total number of arguments, including the active
function return argument. This number may differ from that returned by

cu_%$af_return_arg, described below. This entry point is intended for use with
command procedures that may not be used as active functions,

For compatibility with old programs, the code argument may be omitted.

Entry: cu__Sarg__count__rel

This entry point returns the number of arguments in any specified argument list.
USAGE

declare cu_Sarg_count_rel entry (fixed bin, ptr, fixed bin (35));
call cu_Sarg_count_rel (arg_count, arg_list_ptr, code);
ARGUMENTS

arg_count
is the number of arguments. (Output)

arg_list_ptr
is a pointer to an argument list. (Input) This pointer can be obtained by calling
cu_%arg list_ptr, described below.

code
is a standard status code. (Qutput)
error_table_$nodescr
no argument descriptors were passed to the owner of the argument list or
an incorrect argument list header was encouniered.
error_table_$active_function
the owner of the argument list was invoked as an active function.

cu

2-144 - AG93-0S

cu_

cu_

Entry: cu__Sarg list__ptr

It is sometimes desirable to design a PL/I procedure to accept a variable number of
arguments of varying data types (e.g., the ioa_ subroutine). In these cases, the PL/I
procedure must be able to interrogate its argument Iist directly to determine the
number, type, and location of each argument. The cu_S$arg_list_ptr entry point is
designed for use in such cases and returns a pointer to the argument list of its caller.

USAGE
declare cu_Sarg_list_ptr entry (ptr);
call cu_Sarg_list_ptr (arg_list_ptr);
ARGUMENTS
arg_list_ptr

is a pointer to the argument list of the caller. (Output)
Entry: cu__$arg ptr
The cu_S$arg ptr entry point is' used by a command or subroutine that can be called
with a varying number of arguments, each of which is a variable-length unaligned
character string (i.e., declared char(*)). This entry point returns a pointer to the
character—string argument specified by the argument number and also returns the
length of the argument.

USAGE

declare cu_Sarg_ptr entry (fixed bin, ptr, fixed bin(21), fixed
bin(35));

call cu_Sarg_ptr (arg_no, arg_ptr, arg_len, code);
ARGUMENTS

arg_no
is an integer specifying the number of the desired argument. (Input)

arg_ptr
is a pointer to the unaligned character—string argument specified
(Output)

(e
£
2]
o
job]
(%]

arg_len
is the length (in characters) of (Lhe argum nt spemfle:f by arg_no (Output)

0’(\ ANV T € LavrL&vd (ars. 1Y

2-145 AG93-05

cu_

cu_

code

is a standard status code. (Output)

error_table_$nodescr
the argument list does not contain descriptors. In this case, argl_len set is
to zero.

error_table_$noarg
the program does not have an arg_no’th argument. In this case, arg ptr is
set to null and arg_len is set to zero.

NOTES

The command or subroutine that uses this entry point must be called with data
descriptors for its arguments. Otherwise, the returned value of arg_len is 0. If the
argument specified by arg_no is not a character string, arg_len is the value of the
"size" field of the descriptor (the rightmost 24 bits). This entry point must not be
called from an internal procedure that has its own stack frame or from within a
begin block (because cu_$arg_ptr does not check for a display pointer).

Some PL/I procedures may need to reference arguments passed to other procedures.
This entry point permits a procedure to reference arguments in any specified argument
list.

USAGE

declare cu_Sarg_ptr_rel entry (fixed bin, ptr, fixed bin(21),
fixed bin(35), ptr);

call cu_Sarg_ptr_rel (arg_no, arg_ptr, arg_len, code, arg_list_ptr);
ARGUMENTS

arg_no
is an integer specifying the number of the desired argument. (Input)

arg_ptr
is a pointer to the unaligned character-string argument specified by arg_no.
(Output)

arg_len
is the length (in characters) of the argument specified by arg no. (Output)

2-146 AG93-0S

cu_ cu_

code

is a standard status code. (Qutput)

error_table_$nodescr
the argument list does not contain descriptors. In this case, argl_len is set
to zero.

error_table_$noarg
the program does not have an arg _no’th argument. In this case, arg ptr is
set to null and arg_len is set to zero.

arg_list_ptr
is a pointer to the argument list from which this argument is being extracted.
(Input) This pointer can be determined by calling cu_$arg list_ptr in the
program whose argument list is to be processed and then passing it to the
program requesting reference to the argument list.

Entry: cu_$caller_ptr
This entry point allows a routine to obtain a pointer to its caller. The pointer that is
returned points to the instruction within the text section after the instruction that
called out.
USAGE
declare cu_Scaller_ptr entry (ptr);
call cu_Scaller_ptr (caller_ptr);
ARGUMENTS
caller_ptr
is a pointer into the text section of the caller. (Output) If null, the invoker of
the cu_ subroutine has no caller.
Entry: cu__$cl
The cu_%cl entry point is called by all standard error handlers after printing a
diagnostic message. This entry point passes control to the procedure specified by the
last call to cu_$set_cl_intermediary. It takes an optional argument which is passed
directly to that procedure. If no such procedure has been specified (the norm),

control is passed to the standard procedure, which establishes a new command level
(see Notes below).

2-147 AG93-05

cu_

USAGE

declare cu_Scl entry (1 aligned, 2 bit(1) unaligned, 2 bit(35)
unaligned) ;

del 1 flags aligned,
2 reset_sw bit (1) unaligned,
2 mbz bit (35) unaligned;

call cu_Scl (flags);
ARGUMENTS

flags.reset_sw
specifies whether the intermediary procedure should perform a "resetread" control
order on the standard "user_i/o" 1/0 switch. (Input)
"1"b do a "resetread” operation,
"0"b do not perform a "resetread" operation.
flags.mbz
is reserved for future use and must be "0"b. (Input)

NOTES

If no argument is given, cu_%$cl passes a static argument with flags.reset_sw set to
Y'l"b.

Establishing a new command level consists of saving the attachments of the standard
170 switches (user_input, user_output, and error_output), restoring these attachments to
their default state, and entering a new loop of reading and executing command lines.
If the "start” command is issued, the attachments of the standard I/0 swiiches are
restored to the state saved above and control is returned to the caller of cu_$cl to
continue from the interrupted exection. If the "release"” command is issued, the
interrupted execution is aborted, the I/0O switches are not restored, and control is
returned to the previous command level.

Entry: cu__$cp

The cu_$cp entry point, called when a Multics command line is recognized, passes the
command line to the currently defined command processor for processing. Some
standard Multics commands (e.g., qedx) permit the user to escape from them to
execute other commands. In this case, the escapable command passes the line to be
executed to the command processor. The cu_$cp entry point is called by any standard
command that recognizes other Multics command lines.

cu_

2-148 AG93-05

cu_

11/86

cu_
USAGE
declare cu_Scp entry (ptr, fixed bin(21), fixed bin{35));
call cu_Scp (line_ptr, line_len, code);
ARGUMENTS
line_ptr
is a pointer to the beginning of a character string containing a command line to
be processed. (Input)
line_len
is the length of the command line in characters. (Input)
code
is a standard status code or the nonstandard code 100. (Output) If an error has
been detected, the caller of the cu_$cp entry point is not expected to print a
diagnostic at this time since it can be expected that the command processor has
already done so. A returned code of 100 indicates that the command line is
blank and no ready message should be printed.
Entry: cu__$decode__entry__value
This entry point extracts the pointer components of a PL/I entry value.
USAGE
declare cu_Sdecode_entry_value entry (entry, ptr, ptr);
call cu_Sdecode_entry_value (entry_value, ep_ptr, env_ptr);
ARGUMENTS
entry_value
is the entry value to be decoded. {(Input)
ep_ptr
is the entry point pointer, i.e., a pointer to the actual executable code. (Output)
env_ptr
is the environment pointer. (Output)
NOTES
Using the codeptr and environmentptr PL/I built-in functions are preferable to using
the cu_3$decode_entry_value subroutine.
2-149 AGI93-05A

cu_

11/86

Entry: cu__S$evaluate__active__string

This entry point evaluates an active string. An active string consists of one or more
active function invocations and their arguments. Other entries are provided for
subsystem writers to specify the procedure toc be called by this entry.

USAGE

declare cu_Sevaluate_active_string entry (ptr, char (%), fixed bin,
char (*¥) varying, fixed bin (35));

call cu_Sevaluate_active_string (info_ptr, active_string, string_type,
return_value, code);

ARGUMENTS

info_ptr
is reserved for future expansion and must be null. (Input)

active_string
is the active string to be evaluated. (Input) It should not include the outermost

‘\Gnnbafc
Viawn

string_type
specifies the type of active string to be evaluated. (Input) Its possible values are:

NORMAL_ACTIVE_STRING
the active string return value should be rescanned for all command
processor constructs. ([...])

TOKENS_ONLY_ACTIVE_STRING
the active smns return value should be rescanned only for whitespace and
quotes. [...

ATOMIC_ACTIVE_STRING
the active string return value should not be rescanned. (||[...])

return_value
is the result of the evaluation. (Output)

code
is a standard system status code. (Output) If its value is
error_table_$command_line_overflow, the maximum length of the return_value
argument was not large enough to hold the result of the evaluation. In this case,
the result will be truncated.

NOTES

The consiants used above for string_type are defined in the cp_active_string_types.incl.pll
include file. The active string should not be enclosed in brackets.

cu.

2-150 AG93-05A

cu

11/86

cu

Entry: cu__Sgenerate__call

The cu_$generate_call entry point is used to generate a standard call to a specified
procedure with a specified argument list. This call is designed for cases in which a
PL/1 procedure has explicitly built an argument list from its input data. The principal
use of this entry is by command processors that call a command with an argument list
built from a command line input from a terminal. :

USAGE

declare cu_Sgenerate_call entry (entry, ptr);

call cu_Sgenerate_call (proc_entry, a_ptr);

ARGUMENTS

proc_entry
is the procedure entry point to be called. (Input)

a_ptr
is a pointer to the argument list to be passed to the called procedure. (Input)
Entry: cu__$get__cl__intermediary

This entry point returns to the caller the procedure entry currently being invoked by
a call to cu_Scl

USAGE

declare cu_Sget_cl_intermediary entry {entry);

call cu_Sget_cl_intermediary (proc_entry);

ARGUMENTS

proc_entry
is the procedure entry being called by the standard error handlers after printing a
diagnostic message. (Output)

Entry: cu__$get__command__name

This entrypoint allows a routine called via the command processor to obtain the name

used on the command line to invoke the procedure. The values returned are as
follows:

2-151 AG93-05A

cu_ cu

Name used on command line Returned Value

name name

path>name path>name
nameSentrypoint nameSentrypoint
path>name$entrypoint path>nameSentrypoint
USAGE

declare cu_S$get_command_name entry (ptr, fixed bin (21), fixed bin(35));

call cu_Sget_command_name (command_name_ptr, command_name_length,
error_code) ;

ARGUMENTS

command_name_ptr

Is a pointer to the command name of length command_name_length. If null, the
command name is unavailable for the current routine. (Output)

command_name_length

Is the length of the returned command name. If zero the command name is
unavailable for the current routine. (Output)

error_code
Is a standard status code. If the command name is unavailable its value is equal
to error_table_$no_command_name_available. (Output)

Entry: cu__S%get__command__name__rel

This entrypoint allows a routine called via the command processor to obtain the name
used on the command line to invoke the procedure. The values returned are as
follows:

11/86 2-152 AG93-05A

cu

11/86

Name used on command line Returned Value

name name

path>name path>name
nameSentrypoint nameSentrypoint
path>nameSentrypoint path>nameSentrypoint
USAGE

declare cu_Sget_command_name_rel entry (ptr, fixed bin (21),
fixed bin(35), ptr);

call cu_Sget_command_name_rel (command_name_ptr, command_name_length,
error_code, arglist_ptr);

ARGUMENTS

command_name_ptr
Is a pointer to the command name of length command_name_length. If null, the
command name is unavailable for the current routine. (Output)

command_name_length
Is the length of the returned command name. If zero the command name is
unavailable for the current routine. (Output)

error_code
Is a standard status code. If the command name is unavailable its value is equal
to error_table_$no_command_name_available. (Output)

arglist_ptr
Is a pointer to the argument list from which this argument is being extracted.
This pointer can be determined by calling cu_8$arg_list_ptr in the program whose
argument list is to be processed and then passing it to the program requesting
reference to the argument list. (Input)

Entry: cu__$get__command__processor

This entry point returns to the caller the entry value of the procedure currently being
invoked by a call to cu_$cp.

USAGE
declare cu_Sget_command_processor entry (entry);

call cu_Sget_command_processor (proc_entry);

cu_

2-152.1 AG93-05A

cu cu

ARGUMENTS

proc_entry
is the procedure entry point to which control is passed upon receiving a call to
cu_scp. (Output)

Entry: cu__$get__evaluate__active__string

This entry point returns to the caller the entry value of the procedure currently being
invoked by a call to cu_S$evaluate_active_string.

USAGE

declare cu_Sget_evaluate_active_string entry (entry);

call cu_Sget_evaluate_active_string (active_string_procedure) ;
ARGUMENTS

active_string_procedure
is the procedure entry point to which control is passed upon receiving a call to

cu_sevaluate_activé;'éifiné.- (Output)
Entry: cu__$get__ready__mode
This entry point returns the value of the internal static ready flags.
USAGE

declare cu_Sget_ready_mode entry (1 aligned, 2 bit{l) unaligned,
2 bit(35) unaligned);

dcl 1 mode aligned,
2 ready_sw bit (1) unaiigned,
2 mbz bit(35) unaligned;

call cu_Sget_ready_mode (mode)
ARGUMENTS

mode.ready_sw
is the current value of the static ready switch. (Output)
"1"b print ready message.
"0"b do not print ready message.

mode.mbz
is reserved for future use and must be "0"b. (Qutput)

11/86 2-152.2 AG93-05A

cu

cu_

Entry: cu__S$get__ready__procedure

This entry point returns the entry value of the current ready procedure of the
process.

USAGE

declare cu_Sget_ready_procedure entry (entry);
call cu_Sget_ready_procedure (ready_entry);
ARGUMENTS

ready_entry
is the current ready procedure. (Output)

Entry: cu_$grow__stack__frame

This entry point allows its caller to allocate temporary storage by extending the caller’s
current stack frame.

USAGE

declare cu_Sgrow_stack_frame entry (fixed bin, ptr, fixed bin{(35));
call cu_Sgrow_stack_frame (len, data_ptr, code);

ARGUMENTS

len
is the length (in words) by which the caller’s stack frame is to be extended.
(Input) The standard Multics call, push, and return discipline requires that stack
frames begin on mod 16 word boundaries. Therefore, if len is not a mod 16
number, the stack frame is grown by the next mod 16 quantity greater than len.

data_ptr
is a pointer to the first location of len words allocated in the caller’s stack
frame. (Output)

code
is a standard status code. (QOutput)

NOTES

The cu_$grow_stack_frame and cu_$shrink_stack_frame entry points are for advanced
subsystems writers only and should be used only when absolutely necessary. Most PL/I
programs can be written to use begin blocks to allocate exira storage in the current
stack frame. The entry points rely on internal workings of the PL/I compiler that are
not guaranteed to continue working forever.

2-153 AG93-05

cu_

cu_

Entry: cu__S$level__get

The cu_$level_get entry point is used to obtain the current ring validation level. This
entry point is normally used prior to a call to cu_$level_set to save the current
validation level.

USAGE

declare cu_Slevel_get entry (fixed bin);
call cu_Slevel_get (level);

ARGUMENTS

level
is the current ring validation level. (Output)

Entry: cu__S$level__set

The cu_$level_set entry point is used to change the current protection ring validation
level. This entry point is useful for procedures that must distinguish the periods of
time when the procedure is acting in behalf of itself (i.e., its own ring) and when it
is acting in behalf of another procedure that can be in an outer (i.e., less privileged)
protection ring.

USAGE
declare cu_Slevel_set entry (fixed bin);
call cu_Slevei_set (level});

ARGUMENTS

level
specifies the new protection validation level and must be greater than or equal to
the current ring number. (Input) The current ring number can be determined by
the get_ring_ subroutine.

2-154 AG93-05

cu

cu_

Entry: cu__$make__entry__value

The cu_$make_entry_value entry point constructs a PL/I entry value from a pointer
to an entry point. The environment pointer of the entry value will be null, so the
entry point pointer must point to an external procedure.

USAGE

declare cu_Smake_entry_value entry (pointer, entry);

call cu_Smake_entry value (ep_ptr, entry_value);

ARGUMENTS

ep_ptr
is the entry point pointer. (Input)

entry_value
is the entry value. (Output)
Entry: cu__S$ready__proc
The ready_proc entry point is used to call the current ready procedure of the process.
It takes an optional argument, which it passes to the ready procedure. The ready

procedure 1is automatically invoked by the listener after each command line 1is

message. The cu_$set_ready_procedure subroutine can be called to change the ready
procedure.

USAGE

declare cu_Sready_proc entry;
call cﬁ_Sready_proc 0;

or:

dcl cu_Sready_proc entry (1 aligned, 2 bit (1) unaligned,
2 bit(35) unaligned);

dcl 1 mode aligned,
2 ready_sw bit (1) unaligned,
2 mbz bit (35) unaligned;

call cu_Sready_proc (mode);

2-155 AGI3-05

cu_

ARGUMENTS

mode.ready_sw
specifies whether the ready procedure should print a ready message. (Input)
"1"b print ready message
"0"b do not print ready message

mode.mbz
is reserved for future use and must be "0"b. (Input)

NOTES

If no argument is given, a static ready switch is passed to the ready procedure. The
default value of the static ready switch is "1"b. The value of the static ready switch
can be obtained using the cu_$get_ready_mode entry point and changed using the
cu_9%set_ready_mode entry point. The listener invokes the cu_$ready_proc entry point
without an argument. The ready_off command turns off the static ready switch, the
ready_on command turns it on, and the ready command calls the cu_$ready_proc entry
point with an argument whose ready_sw component is "1"b. Thus, if a user—written

ready procedure honors ihe ready switch, its printing of the ready message can be
controlled by the standard ready, ready_on, and ready_off commands.
Entry: cu__$reset__cl__intermediary

This entry point resets the procedure invoked by calls to cu_$cl to the standard
system supplied procedure.

USAGE
declare cu_Sreset_cl_intermediary entry ();

call cu_Sreset_cl_intermediary {();

Entry: cu__$reset__command__processor

This entry point resets the procedure invoked by calls to cu_$cp to the standard
system supplied procedure.

USAGE
declare cu_Sreset_command_processor entry ();

call cu_Sreset_command_processor ();

2-156 AG93-05

cu_

Entry: cu__S$reset__evaluate__active__string

This entry point resets the procedure invoked by calls to cu_S$evaluate_active_string to
the standard system supplied procedure.

USAGE
declare cu_Sreset_evaluate_active_string entry ();

call cu_Sreset_evaluate_active_string ();

Entry: cu__$reset__ready__procedure

This entry point resets the procedure invoked by calls to cu_$ready_proc to the
standard system supplied procedure.

USAGE
declare cu_Sreset_ready_procedure entry ();

call cu_Sreset_ready_procedure ();

Entry: cu__$set__cl__intermediary

The Multics system provides a set of procedures to handle any error conditions that
can be signailed within a process {see the description of the signai_ subroutiinej. The
standard error handlers attempt to print an understandable diagnostic and call a
procedure to reenter command level. However, in order to allow use of the standard
error handling procedures in a closed subsystem environment, the error handlers do
not call the standard error handlers directly but call the cu_$cl entry point. This
entry point passes control to the procedure entry point currently defined by the last
call to cu_$set_cl_intermediary. If cu_$set_cl_intermediary has never been called in
the process, control is passed to the standard error handlers on a call to cu_$cl

USAGE

declare cu_Sset_cl_intermediary entry (entry);
call cu_Sset_cl_intermediary (proc_entry);
ARGUMENTS

proc_entry

is the procedure entry to be called by the standard error handlers after printing a
diagnostic message. (Input)

2-157

cu

Entry: cu__$set__command__processor

Some standard Multics commands permit the user to escape from them to execute
other commands. In this case, the escapable command passes the line to be executed
to the command processor. To allow use of these escapable standard commands in a
closed subsystem environment, instead of calling the command processor directly, the
cu_$cp entry point is called. The latter passes control to the procedure entry point
defined as the current command processor. The cu_$set_command_processor entry
point allows a subsystem developer to replace the standard command processor with a
different procedure. This mechanism can be used to ensure that the subsystem remains
in full control and still allow subsystem users the use of many standard commands.

USAGE

declare cu_Sset_command_processor entry (entry);
call cu_Sset_command_processor (proc_entry);
ARGUMENTS

proc_entry

is the procedure entry point to which control is passed upon receiving a call to
cu_$cp. (Input)

Entry: cu__$set__evaluate__active__string

Some standard Multics commands (e.g., compose and exec_com) permit the user to
evaluate active strings which are a sequence of one or more active function invocations
with their arguments, To allow the use of these commands in a closed subsystem,
instead of calling the command processor directly to evaluate the active string, the
cu_%evaluate_active_string entry is called. The latter passes control to the procedure
entry point defined as the current active string evaluator. The cu_$set_evaluate_active_string
entry point allows a subsystem developer to replace the standard active string evaluator
with a different procedure. This mechanism can be used to insure that the subsystem
remains in full control and still allow subsystem users the use of many standard
commands.

USAGE

declare cu_Sset_evaluate_active_string entry (entry);

call cu_Sset_evaluate_active_string (active_string_procedure) ;
ARGUMENTS

active_string_procedure

is the procedure entry point to which control is passed upon receiving a call to
cu_%evaluate_active_string. (Input)

cu

2-158 AG93-05

cu_

Entry: cu__$set__ready__mode

cu

This entry point allows the user to change the value of the static ready mode.

USAGE

declare cu_Sset_ready_mode entry (1 aligned, 2 bit(1) unaligned,

2 bit(35) unaligned);

dcl 1 mode aligned,
2 ready_sw bit(1) unaligned,
2 mbz bit (35) unaligned;

call cu_$set_ready_mode (mode);
ARGUMENTS
mode.ready_sw
is the new value of the static ready switch. (Input)
"1"b print ready message
"0"b do not print ready message
mode.mbz
is reserved for future use and must be "0"b. (Input)

Entry: cu__$set__ready__procedure

This entry point allows the user t