March 31, 1972

=o0o

Apple

Reference Manual

by Fred Krull
Michael Marcotty

Mary Pickett

James vThomas

Ronald Zeilinger

Computer Science Department

GM 'Research Laboratories
==} General Motors Corporation

APPLE REFERENCE MANUAL

31 MARCH 1972

-3

ABLE_OF _CONTENTS

PREFACE - - L}] - - . - . - ° . L . - . - . - L] L] - L3 - . 9

CHAPTER 1: PROGRAM ELBMENTS . 2 2 o o 2 o « « « o « =« « o 10
INTRODUCTION . ¢ o o 2 o 2 2 s o »a o « = » » =« = » « « 10
LANGUAGE CHARACTER SET &« o o o 2 2 = o« o 2 o« =« » o o« =« 10

Collating S@qUENCEe .+ o + » « s o 2 a s = = 2 s o = « 12
Length of Tdentifiers . v« ¢« 2 ¢« o o o o o « o o o = « 12
ReYWOTAS o o« o o« o o o 2 o s 2 o o o s s o s o « =« = 12
Statement Tdentifiers . « +« ¢ 2« o« o o 2 o o 2 & o o o 13
Attribute Keywords . « o o o« o o 2 o o o = s o o o » 13
Built-in Function NamesS . « « o « = o o o = » « « « » 13
Option KeywordsS ¢« o o « = 2 s o o o = o « = o o =« o « 13
ConditionNsS . o 4 o o o o 2 o 2 s o 2 s o = s o « o » 13
DELIMITERS 2 2 o + o 2 o o s o s s s s« s s s s s =« o « 14
Arithmetic OPEratorS . o« ¢ o o = o o o = » o o = « » 14
Relational OperatoOrS . « 2 2 o o o s s o o o o o o « 15
Bit-sString OperatorsS . « o2 « 2 2 2 = o = o« o o o« « « 15
String NOperator « « o« « « o o« o o o o o o o s o o o « 15
Parentheses . . . « &« « o
Separators and Other Delimiters . « « = « « « « » » .« 16
CCMMENTS & & o o o o o s s s 2 o o o s o« a o« o« o » = « 18
The Use of Blanks and Comments . « 2« o« « = « o » « o 16
FIEMENTARY PROGRAM STRUCTURE . o o o = 2 s o o o o o o 17
Simple Statements . « ¢« o « ¢ « o o 2 s s o o 2 o = o 17
Compound Statements . o « o o o o o o o = o = o = « « 17
PrefiXes .« o o o o o o o o o o o o o o o o« o o o o « 17

CHAPTER 2: PROGRAM STRIUCTURE . v o « o o o o o o « « » « 19

INTRODUCTION e o o o s o o o e o o s s s 2 s s = « = 219
STATIC PROGRAM STRUCTURE 4« o o o o o o« o« « =« o« =« » » » 19
GLOUDS o + o 2 o o o o o s o s a s a o o o« o o » « « 19
Block SLtTUCEULe . o o « o o« o s o o 2 s s = o o « o = 20
Use of the END Statement . ¢« o o o« o o o o o o o o o« 22
DYNAMIC PROGRAM STRUCTURE ©v o o o o o s o o s s s o » « 22
Procedure RefereNCesS .« o « o « s s 2 o a o s o o« » o 23
Subroutine REferencesS « « « o« « o 2 = o « = = = » = « 24

Function References ¢« « « « o o = =
Activation and Termination of Blocks . . « o « « . - 24
The Environment of a Block . o« o o o o « o« = o « « o 26

APPLE REFERENCE MANUAL

ARGUHMENT PASSING . o o o =
Paraneters . o« o o o o o =

Correspondence of Arquments and

Use of Dummy Arguments . .

Entry References as Arguments

Use of the ENTRY Attribute

CHAPTER 3: DATA ELEMENRTS . . .
INTRODUCTION .« o o o o = o =
DATA TYPES .« o o o o o

PROBLEM DATA .+ o o « o o o =
Arithmetic Data « « o« « = o
SCR1e 2 o c o o o o © o o
Precision . ¢ o o o o o = =
Arithmetic Constants . . .

String NData « o o o o » o
Character-String Data . . .
Character-String Constants
Bit-String Data « « « « « =
Bit~String Constants . . o
PROGRAM-CONTROL DATA
Label Data <« o o « = = = o«
Statement-Label Constants .
Statement-Label Variables .
Locator Data .« o <« « o =
Locator Qualification . . .
Tnterrupt Data o
FPile variable . .
Entry Data . . o
ORGANTIZATION . . o
Scalar Ttems . . o
Scalar Variables .
Data Aggregates . .
ATLAYS o « o o o o
Structures . . . o
Arrays of Structures . .
Attributes of Structures
NAMTIHG . & o o o © o o o o =
Simple NamesS . ¢ o o« = o @
Subscripted Names . . < o .

] - ® -

® e ° -

[] [) ®]

L] L] L] L] L]

Qualified Names and Ambiguous
Subscripted Qualified Names .

CHAPTER 4: DATA MANIPULATION .
INTRODUCTION . o ¢ ¢ o o o &

o

L] L] ° L] ° [

References

Paraneters

o © o o & &

L]

e o e 6 ¢ @

® 6 & ¢ ¢ & O o o o

¢ © o & & e ©6 © o6 e o &

3

[] 1] L[] [] [. .] [} L[] L] (] [] [L] L[] L] L[]

. . . [} L] L[] [] . [L[]

¢ 8 & o 8 ¢ 8 & @

s & o & e

e & & 0 b L]

31

o L[] . L[] ° . L[] L] . L] L] L[]

e o & & ¥

® o ¢ 0

MARCH 1972
e o o o 27
e o o o 28
- L d - L 29
- - » « 30
e .« o o N
e o o o 32
e « = « 33
e « o « 33
e o o o 33
® L d £l * 33
e o = o 34
« o o o« 34
e o o o 34
e o o o 36
e o » o 36
e s o o 37
e o - « 37
e o « » 38
- = « = 38
e o » o 38
e o o o 38
« o o o 38
e o« o <« 39
e « « « 39
e o o o U0
e e o« . W1
e o o o U1
e o o o U2
e o o o 43
e o o o 43
e = - o U3
e o o o U3
e o o o 43
e o o« o 484
e o o o U45
e o - o U6
e o o o U6
e o o o U6
e o o o U6
e o - o W7
«+ o = o« 50
e o o o 52
e s s o 52

APPLE REFERENCE MANUAL

31 MARCH 1972

EXPRESSTONS ¢ o o « o = = o » o s o o o s o s s o o« o & 52
Arithmetic operations .« « ¢ ¢ v ¢ o o o « = o o o « » 54
Descriptor ATithmetic ¢ . & ¢ o o o « o « =« o o« =« « « 55
Relational OperatioNS o « < o« « o o « o = o o« o o« « = 56
Bit-string Operations . . ¢ &« ¢ a4 &« & o o 2 « « « o« « 57
String Operations .« o o« ¢ o o o o s s = 2 o = o« = » « 58

EVALNATION OF FXPRESSIONS . 2 2 ¢ 2 o = s o = o = = s« = 59
Priority Of OperatorS ¢ « = « « « « « « o a o = o o« « 59
Use of ParentheSeS . « ¢ o o 2 2 2 = o o« 2 o« = =« » « 60
Examrle of Fxpression Evalunaticn . . ¢ o o o « « « « 60

ARRAY EXPRESSIONS ¢ & 4o o o o o o s o e o o s s o« « o B3
Operations between Arrays and Scalars e« o o s » o a 2 B3
Operations bhetween ATCAYS « + o o o o o o « o« o = o« » bU

DATA CONVERSION ¢ 2 2 o o o = o 2 s 2 s a s o » s o a o« b5

ARITHMETTC CONVERSION . 2 ¢ o o 5 o s s s o » o s = o« » 65
Results of Arithmetic Operations . . « ¢« « « « « « o« 66

TYPE CONVERSION ¢ v o o o = = 2 2 o o o a s s s » s o o« 67
1. Arithmetic Conversion . « o ¢ o o « « « =« = « o » 68
2. Character-string to Arithmetic . . « . . « 68
3., Conversions to Character-string . « « ¢« « « « » o 69
4, Bit-string to Arithmetic . . ¢« 2 o« o« 2 o o « « « » H9
5. Arithmetic to Bit-String . . . « ¢ o o =« = « « o « 69
6. Offset to POointer o« . o o o o o o o = = o o o o« o 69
7. Pointer to Offset . o 4 ¢ o o o o o 2 » s o« o o o 10
8. Descriptor to POInter . « « o o = 2 2 = o o « « « 10
9. Pointer to NescCriptor . . « ¢ « 2« o o o » » = = » 10
10. Offset t0 DesSCLiIptOr .+ ¢ « o« « o = = o = o =« « o 10
11. Descriptor to O0ffset . . . ¢ ¢ ¢ ¢ o e o o o « = 10
12. Arithmetic to Locator . e e e s = 2 s e s « e o 11
13. Character-string to Fntry Value+ « o« o« « o 711

CHAPTRER & —— DATA DESCRIPTION . . ¢« o o o s o o« = s o« o« « 12
INTRODUCTION & o o o o o = o o s o o o s s s s = o = « 12
DECLARATYONS e o s 3 e o s s s = e s e s s e s e a o o« 12
EXPLICIT DECLARATTIONS o o e o o = o o » s o =« o« s o« o« o 13

Label PrefixXesS .. o ¢ o s o« o s s s s s o o s o o o » 14
Parameters .« ¢ o« « » = s » s =«
CONTEXTUAL DECLARATIONS o 2 o « @
SCOPE OF DECLARATIONS . o o o s
DEFAULT ATTRIBUTES . o o o » = =
LIST OF ATTRIBUTES . & o o = o 2 s » o« = « s = s « o« = 80
AUTOMATIC, STATIC, REGISTER, and BASED . . . « . . . 81
BINARY and DECIMAL . o o o o « o o s o s =« o« » o o« « 88

- - L] - . o - - -] 7u

- - - . L3 - - - » ° 7“

75

o & & 0
(]
L]
[}
L]
L]
L}
.
.
L]
.

BIT and CHARACTER ® e ° - . . - - . - - - - o . £ - 89
BUIL‘?IN - -] . ® ° - L] - - - - - - - £ » - o - - . 90

APPLE REFERENCE MANUAL

31 MARCH 1972

CHARACTER . . s o = o 91

CONSTANT & & o o o o o o a © a » = o a s o s s a » » 91
CONDITION and EVENT ¢ o ¢ o « @ o = =2 o s s » » » o o 92
DECIMAL v o o o o o = o o o s s s o s s o s = s o » o 92
DESCRIPTOR ¢ ¢ o « o o = = o = o s s »a » s » = « » o 92
DimenNSioN « o « = o o« 2 o o s 2 o » s o o« s » » =« » « 93
ENTITY . o o » o o s » o = o s s s s s s« » = o » » « 94
FNTRY - L] - - * - o ® * - * - ® ® £] *® -] L] - L d - » ® 95
pvaT ® -] E] k-] - L] L] - - * - * L] * -» - E d - L] - 96
EXTERNAL and INTERN%L e e s e s s 8 s 8 s s e = o =« « 97
FILE -2 L] L] L] - - - - L] L] - L] *® - - - L] L] - - » - - £) 97
FILE_SET o o o o o o = o o s o a s o = s s« o o « « » 98
FIXED ANd FLOAT &+ o « o o o e s » =« s s s s s = o « « 99
INITIAL L o » [] *® o - - * L] L] L] E J - - L] - - - L * L] ® q9
LABEL 2 o o o o © 2 o s o s o o 2 o« =« » o « s s o 2102
LIKE &« o 2 o c o o @ e o o o o e s o o s = o = o <103
OFFSET, POINTER, and DESCRIPTOR e s s o o a s = o = <104
REFER - L] ® £] - - - - L] - - - ® L] - - - L] - * - L] - .105
RETURNS @ v v o « o o = o o o « = 2 « o « o « o o =« <106
SET v v o o o = o s s o a s =« » » s s s » » o » « = <107
VARIABLE E] L] 9 - £] L] L d L] » - * - - - - - L] - - - £ 4 .108
VARYING o o « o o o = o @ s s =« o o« s o s o« s =« = « <108
CHAPTER 6: FILE HANDLING .+ « o o © o o = « o« = « o « = o109
TNTRODUCTION o o « o o » o % o = o o o s s o » s = » =109
FILES 2 «o o o © o s o s s s s » » s« s = = a s s o =» o 2109
Sequential Files . . 2 o o 2 « o o = s =2 = = 2 o « =110
Structured PileS . v o « o o o = o s 5 s s o = = = =111
Pile VariablesS . o o ¢ o o o o © s s s o = o « = » o111
SEQUENTIAL FILE HANDLING . e s o 2 s o s o s s« = = =113
NNse of GET and POT Statements e o s s a s s s 2 = « 2113
Data Specification . o o 2 ¢ o o o = s « =« = o » « o114
Data LISES o 2 o o« o 2 o = 2 = « o « s « o » o =« » <115
Format LIStS o o o o o = s o o o o s s o o s = o s o116
Data FOrpat=TtemsS . » o « o = 2 « 2 o 2 « s « »« « o =118
Control Format=JItemS . v o s 2 © o o s o o » o s = 125
STRUCTURED FILE HANDLING =« o o o o o o = o « » s = s 127
Storage Managefent . . ¢ o o o o o o 2 o s & o = o 2127
FRtitieS o o o ¢ o o o o s o = s o o s s » o = « « =128
SEES & o o 6 e o e o2 o 4 + 8 s e o s o s = s s = o o129
Creating and Deleting Associations . . . « « « - . 131
Searching a Set o o o & o o o o o o o o« o« s « s o o« 2132
Associative Data Built-In Functions . « + « « « « « o133

CHAPTER 7 - INTERRUPT HANDLING . . ¢ + & o « o o o = « o134

31 MARCH 1972

INTRODUCTION

CONDITIONS
System Conditions . . . & ¢ o & o o« o &
Programner-Defined Conditions

EVENTS

APPLE

- - . - - - L - L3 - . L] - .

- - - . ° - L - . . - ® - L]

. . . - - - L] - - - - - . -

Event DeclarationNS . o« « o o s o s o
Fvent States . & ¢ ¢ ¢ o o o o o o o =
Completion State . . o ¢« o ¢ o o o o @
Delay State2 . . o o o« 2 o o o » s o o
Use of the ONPTR Built-in Function . .
USE OF INTERRUPT~-HANTCLING STATEMENTS . .

Use
OUse
Use
Use
Use

CHAPTER

The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The

of
of
of
of
of

8

the
the
the
the
the

ON Statement . . . <« « ¢ « &
REVERT Statement
SIGNAL Statement . . . « . &
WATIT Statement « o « « o «
LOCX and UNLOCK Statements .

STATEMENTS o o« ¢ o o o o o = o =
INTRODUCTION
CLASSIFICATION OF STATEMENTS .« o o o« o
ALLOCATE Statement . + « ¢ o o o o
Assignment Statement
BEGIN statement . &« o o o o o o o
CALL statement . . o ¢ ¢ o ¢ o o
CRFATE statement . « o o ¢ o o o o
DECLARE statement . . ¢ o o« o o o =«
DELETE statement . « o o o « o o o
DO statement . <« o ¢ ¢ ¢ o 2 o o o
END statement . o« ¢ « ¢ o ¢ o o o o
FNTRY statement . ¢« ¢ o o o o o = o«
FXTIT statement . o« o« o o o o o o @
FIND Statement . ¢ o 2« 2 o o = o =
FOR EACH statement e e o o s o o o
FREE statement . o o 4 o o o o = =«
GET Statement . . o« o ¢ = o o o = =
GO TO statement &« ¢ o« o 2 o o o = =«
IP statement . ¢ o ¢ o o o o = o o
INSERT statement . .« « o o o « o o
LET statement « ¢« o« o o o o o » « =
LOCK statement . . ¢ o o o ¢ o o @
nuall statement . ¢ ¢ o e o o @ = o
ON statement . . 2 o « o o o » o =
PROCEDURE statement . . o « « « « o«
PUOT statement <« ¢« ¢ o o o ¢ = o o o
REMOVE statement . o« o« o « o o o »

- - . . . L] - - . - ° - - -

REFERENCE

MANUAL

- <134
. <134
- 134
. 135
. <135
. <135
.« <1386
. 136
. <137
- 137
. <138
. -138
. <11
. <142
. <142
« «143

® 01““
. 1404
. <44
« <145
« 150
- <154
- .1Su
« <156
* .156
* .159
. »159
. <164
. <164
. <165
. +166
- 169
. < 1M
« <173
- 173
.« 175
. <177
- 178
. <179
. »180
. 180
. 182
. 183
. 183

APPLE REFERENCE MANUAL

31 MARCH 1972

The RETURN statement . 185

The REVERT statement . « « o o o o o o o « e« o « 2185
The SIGNAL statement . o o « o o o « o = o o = « = 186
The UNLOCK statement . ¢« « +« o o s o o = o « = » « 187
The WAIT statement . . « =« o o « = s » = » « » s » =188
APPENDIX 1 - BUILT-IN FUNCTIONS, PROCEDURES, AND

PSEGDO"VARI ABLES o ° - o ® » - ° » - o » ™ . - ®» @ . . .190
INTRODUCTION ¢ o o o o = s o« o = o o = o s« o s o o = 2190
ARITHMETTIC PUNCTIONS o ¢ o o o o 2 o o s« s o« o = o » =192
BBS(X) o o o o o o o o o o o o« s o o o s o s = s » 2192
CEIL(X) <« o o s 2 2 s & s 2 o 2 s s o s o o » @« =« = =192
FLOOR(X) = « o o o o = o o o o o o « o o o = o » « 2192
MOD (X, Q) ¢ o o o o o = o o = o o o o o o o o o « « 2192
ARRAY FUNCTIONS e ¢ o o 5 o = o o o » o o« o« » » o s o =192
DIM(3,) ¢ « o o o s o o« s s s o 2 s » s s s =« « = »192
HBOUND (a.' d) *» ° e ® ® e 3 = o e ® ® e 9 3 ° o & .192
1|BOUND (a, a) o o s & o = @ * o e e s o * e = e e s 193
ASSOCIATIVE DATA FUNCTIONS &+ o o o o s o o 2 o o « « 2193
ALL - [] * - * - » L d - - L] L] - . - * - - L] - - - L] * .193
APLESET (s) e o o s o o s s 8 s s @ ® s s o e« s s = o193
APLEVAR (s) e ° o s o ® @ e s s s = @ s s e s = s = 193
APLINDX (e, s, C) e ® s o ®» ® @ @ s s = s o s s = = <198
APLNUMB(Sy C) « o o « 2 o 2 o o o o o s o = « « =« = 194
APLOWNI (e, s, C) e © s s o s e = o s = = s s = e = 2194
APLOWRS (€, C;, Q) o o o o o o o 2 o o« o a2 s s s o « 194
APLSNAM({e, i, §) o o o o o o o « 2 o « o« a = =« « « «195
APLTYPEL{2) =« 2 o o o o o s o = o s s o o » o =« =« « =185
CONVERSTION FUNCTIONS . 2 o o 2 o e s e s o = « o « =« o195
BYTF(X[s, 11) o o o o o o 2 o 2 o « o« o« o« = « = o« « 2195
CHAR (VI F 13) ® o©o ® ®» o5 e » = » - s ° ® ® ®» o 3 @ © -196
ENTRY (C) - . s o e ® = = o . ° * @ . e e . o * e .196
FIXEDA(X[) P]) ¢ o o o o o 2 o o o o o o o« o« o s s o 2197
FLOAT (X[, P]) o o © o o = o =« o o o« o = o = o « « =197
HEX ([, [, 170) =« o o o « = o o o o s o o =« = o « 197
OFFSET(Py £) « o o o ¢ o s o s o o o« o = o » = =« =« =198
POINTER(O, £) o o o e o 2 o o o o s o a o« = » = » « 2198
INTERRUPT HAWDLING FPUNCTIONS &« o 2 o « s » = o« o =« o« =198
COMPLETION () « o o o s s = = = s = o« = o o« « « « « <198
DELAY (e} a © © 8 o » s s s ®w e e 3 s s = o e s = » =198
ONFILE &2 « 2 o 2 o 2 s o s s = = o« s s s s a o« o « =198
ONLOC 4 o o o o 2 s o o o o » = o« o s o s o« = = o « 199
ONPTR {e) e o = o e o ® o s o e » s o s s s s s e s =199
MATHEMATICAL PONCTIONS . & ¢ o « o s o« o » o« = o = « 2199
ATAN(X) <o ¢ o o = 2 o s s s o o » » o s s » s » » » 199

APPLE REFERENCE MANUAL

31 MARCH 1972

COS (x) .199

LOG (x) e © © o © = s 3 s @ = s s e s s s a s e e « 190
SIN{X) e « o o o o o= a » s » s a o« o o« o« s o « « » 199
SORT(X) o o o o » 2 o o © @ s o« a s s s s » s« « = « 2200
TAN (x) e« o o o o 8 v a s s s s s s s o s s s s s = #2200
STNRAGE MANAGEMENT FUNCTIONS . 2 o o o o o s o = o o 2200
ADDR(V) 2 o o o o 2 2 = s s 2 2 » » = s s o « « « « 200
DESCR(L, @) o 2 o o a s s o o &« a s a o o = o o« =« « 2200
PILE(G) o o o o o a o a o =« a s« o o s o« « =« o s « o« 200
NOULL & o o o o s o 2 a o o o » s o« s« » « s » » « = 2200
STRING HANDLING FUNCTIONS o o o o 2 o o« o o o » =« o« » 201
INDEX{Sy P} o o o 2 o o o s o s s s a « » s » = » » «201
LENGTH({S) « s o o a a o © = 2 s 2 a s s« « = s s 2 « 2201
RAL(D) = &« o o o o o o = 2 s o 2 o o 2 o« o o o « = 2201
SUBSTR(S, L[,) o « ¢ o 2 s o« o o o o « 2 o 2 = « 2201

MISCRLLANFOUS FUNCTTIONS o o o o « s o o ¢ s o o » o o 202
DATE & o o o © 2 o » » s s © = » s » s o« o« o« » o« o 2202
INLIN®(f, £, 5, tY, INLINE(f, g, X, @3, VY, b, 2, ©) .202
TIME & o o o o a 2 s o s a s s s« o s o o« « o = o = 2204

APPENDIX 2 - CONDITIONS . . .205

INTRODIHCTION . o o o o s » o » o = o = « o = o« o o« o 205
CONVERSION Condition o o o o o o s = s s s« = o » o« « 205
ENDFILE Condition o« o o o s o o s o = o s o o o o « » 2206
ERROR Condition o o o o o e« o 5 o« o o o s s o« =« » s o« <206
FIND Condition o o s o = s « o o a o s o o« s o a o « 2206
FINTSH Condition o o o 2 2 = a s ® » = s » o » o « = 2207
OVERFLOW Condition . 2 o o o o o o o o« o o = o « o o 207
Programmer-defined Condition . . ¢ o o o « 2 « & o = 2207
STORAGE Condition o ¢ o o o = © o © = s o o e . . .208

.208
208
.208%

UNDEFINEDFILE Condition o o o © o o o s o o =
UNDERPLOW Condition . o o o o o o o o o o o =
ZEFODIV]:DE COﬂdi tiﬂ“ ® ® - - o @ - ® ® L ° -

¢« o6 & &
L I]
s o

e o & o

APPENDIX 3 - KEYWORDS, ABBREVIATIONS AND SYNONYMS . . .210
KEYWORD ABBREVIATIONS ¢ o o o o o o » o o o o o =« =« » 2210
KRYWORD SYNONYMS . . 4 o o o o« = o o = o = o = « o = 2213

APPENDIX 4 ~ DATA CHARACTER SET o 2 o o o o « o o o o » 2214
APPENDIX 5 -~ COMPILE~TIMF CONTROLS =« o o o o o o s o « <217
APPENDIX 6 - NOTATION © o o« o o o = o = s » » o o o =« » 219

APPENDIX 7 = STRUCTURE HAPPING . < o = o = o o o o o =« 221

APPENDIX 8 == LITERBLLY ¢ o o = » o = = o » o 2 2 o =« o «223

APPLE REFERENCE MANUAL

31 MARCH 1972

APPLE REFERENCE MANUAL

31 MARCH 1972

PREFACE

This manual serves as a reference to the Apple Programming
Lancuage as implemented for the STAR computer system. The
Apple Lanquage itself is a dialect of PL/I; that 1is, Apple
is a superset of a subset of PL/I.

In drafting the specifications for Apple, the rules of PL/I
have been closely followed. The deviations from PL/I have
been in the main to disallow certain operations, statements,
data types, etc. The rules of precision have been changed
to take into account the architecture of the STAR computer.
Thus, as 1long as a program was written within the defined
subset of PL/I, it should compile correctly.

The supersetting of the language has been to provide support
for systems programming and to integrate the APL (Associa-
tive Programming Language) statements directly into the
lanquage. Programmers may declare and reference the new
storage class REGISTER and cause any STAR machine instruc-
tion to be emitted through use of the INLINE built-in
procedure. The associative data manipulation statements
FIND, FOR EACH, INSERT, REMOVE, and LET have been added to
the language (CREATE and DELETF are synonymous with ALLOCATE
and FREE). These statements may be used to manipulate two
new data constructs, ENTITY and SET.

The programmer who is preparing to use Apple should give
careful attention to the specifications contained in this
manual. Particular attention should bhe given to Chapters 3,
4, and 5, where the rules differ considerably from PL/I.

Preface 9

APPLE REFERENCE MANUAL

31 MARCH 1972

CHAPTER 1: PROGRAM ELEMENTS

INTRODUCTION

An Apple program can be regarded simply as a string of
characters. Chapter 1 defines the elements of the language
in terms of character elements and describes special signi-
ficance that has been assigned to particular characters or
combinations of characters.

LANGUAGE CHARACTER _SET

The Apple language is based on a 60-character set. The
character set is composed of alphabetic characters, digits,
and special characters. There are 29 alphabetic characters,
the letters A through Z and three additional characters that
are defined as and treated as alphabetic characters. These
characters and the graphics by which they are represented
are:

[o v K
; Nape l, Graphic E
] i 3
] Number symbol | ¥]
: At symbol ; @ ;
i Dollar symbol i $ i
L N '

There are ten digits. Decimal digits are the digits 0
through 9. A binary digit (bit) is either a 0 or a 1. The
hexadecimal digits include the ten decimal digits and the
alphabetic characters A through F. An alphameric character
is either an alphabetic character or a decimal digit. There
are 21 special characters. These characters and the gra-

10 Chapter 1 -- Program Elements

APPLE REFERENCE MANUAL

31 MARCH 1972

phics by which they are represented in this manual are:

Name

Blank

Equal or Assignment symbol
Plus

Minus

Asterisk or Multiply symbol
Slash or Divide symbol

Left Parenthesis

Right Parenthesis

Comma

Decimal Point or Period
Single guotation mark

"

Double gquotation mark

Semicolon

Colon

Not symbol

.

Or symbol

And symbol
Greater-than symbol
Less-than symbol
Break character

Percent symbol

[]
v icume ik - A o S —— W GNP . G e W — o s ——" - i — —— —— — — G —— W - — — —— s W v D — o o}

|
]
|
|
I
|
|
]
!
|
|
]
{
!
I
|
|
|
|
|
1
|
|
!
!
|
|
|
!
|
|
|
!
|
|
]
|
|
1
|
|
|
|
|
1

PO s e T i o h nay h AR i D Dty i — s il oty D) D dd S D vy O T — o V_— - o smad W —

Chapter 1 -- Programr Elements 11

APPLE REFERENCE MANUAL

31 MARCH 1972

Some keywords may be written in an abbreviated form; these
are listed in Appendix 3.

Statement Tdentifiers

A statement identifier is a sequence of one or more keywords
used to define the function of a statement (see "Simple
Statements" below).

Examples:
GO TO
DECLARE
ALLOCATE

Attribute Keyvwords

Attribute keywords are used for the specification of some
attributes.

Examples:

FLOAT
CHARACTER

Built-in Function Names

A built-in function name is a keyword that is the name of an

algorithm provided by the 1language and accessible to the

programnmer (see "Function References"™ in Chapter 2).
Examples:

LENGTH
DATE

Option_ Keywords

An option keyvword is used to influence the execution of a
statement.

Examples:

SET
REMOTE

Conditions

A condition is a keyword used in the ON, SIGNAL, and REVERT
statements. The programmer may specify special action on

Chapter 1 -- Program Elements 13

APPLE REFERENCE MANUAL

31 MARCH 1972

occurence of a condition (see Chapter 7).

Examples:
OVERFLOW
ZERODIVIDE
DELIMITERS

Certain single characters and certain combinations of chara-
cters are used as delimiters and fall into six classes:

arithmetic operators

relational operators

bit-string operators

string operators

parentheses

separators and other delimiters

Arithmetic_Operators

The arithmetic operators are:

+ denoting addition or prefix plus

- denoting subtraction or prefix minus
* denoting multiplication

/ denoting division

*% denoting exponentiation

14 Chapter 1 -- Program Elements

APPLE REFERENCE MANUAL

31 MARCH 1972

Relational Operator

The relational operators are:
> denoting greater than
-> denoting not greater than

>= denoting greater than or equal to

denoting equal to

-= denoting not equal to
<= denoting less than or equal to
< denoting less than

=< denoting not less than

Bit-string_Operators

The bit-string operators are:

- denoting not
& denoting and
! denoting or

String Operator

The string-operator is:

L denoting concatenation
Parentheses
Parentheses are used in expressions, for enclosing lists,
and for specifying information associated with various
keywords.

{ left parenthesis

) right parenthesis

Chapter 1 -- Program Elements 15

APPLE REFERENCE MANUAL

31 MARCH 1972

Separators_and Other Delimiters

Nape Graphic Use

comma 0 separates elements of a list
semicolon : terminates statements
assignment = used in assignment, DO, FIND,

LET, and FOR EACH statements

colon : used in label prefixes and in
bound specifications
blank used as a separator
period . separates items in qualified
names
arrow -> gualifies a reference to a
based variable
percent % designates compiler control
statements (see Appendix 5 for
description)
COMMENTS
General format:
comment :3= /% comment-string %/

where Ycomment-string” contains any of the characters of the
language character set except the combination ®"¥/*,

Comments are used for documentation only and do not parti-
cipate in the execution of a program.

The_Use of Blanks and_Comments

Identifiers, constants (except character-string constants),
and composite operators (e.g., !!) may not contain blanks.
Identifiers, constants, and keywords may not be immediately
adjacent. They must be separated by an operator, assignment
symbol, arrow, parenthesis, colon, semicolon, comma, period,
blank, or comment. Additional intervening blanks or com-
ments are always permitted. Blanks are optional between
keywords of the statement identifiers GO TO and FOR EACH.

16 Chapter 1 -- Program Elements

APPLE REFERENCE MANUAL

31 MARCH 1972

ELEMENTARY PROGRAM STRUCTURE

An Apple program is constructed from basic program elements
called statements. There are two types of statements,
simple and compound. Statements are grouped into larger
program elements, the gqroup and the block. These are
discussed in Chapter 2.

Simple Statements

General format:
simple-statement ::=[[statement-identifier] statement-body];

The "statement-identifier®, if it appears as a keyword,
characterizes the kind of statement. If it does not appear,
and the "statement-body" appears, then the statement 1is an
assignment__statement. If only the semicolon appears, the
statement is a null statement.

Compound Statements

A compound statement is a statement that contains other
progranm elements. There are two types of compound
statements:

The IF compound statement

The ON compound statement
The final statement contained in a compound statement is a
simple statement and thus has a terminal semicolon. Hence
the compound statement will automatically be +terminated by

this semicolon.

Each Apple statement is described in the alphabetic list of
statements in Chapter 8.

Prefixes

Statements may be labeled to permit reference to then
through the use of label prefixes.

General format:
label-prefix ::= identifier :
Label-prefix identifiers are called labels and may be used

to refer to the statement that they prefix. Labels appear-
ing before PROCEDURE and ENTRY statements are special cases

Chapter 1 -- Program Elements 17

APPLE REFERENCE MANUAL

31 MARCH 1972

and are known as entry names (see "Procedure References" in
Chapter 2). A1l other labels are called statement_ labels.
A name appearing before a statement is said to be explicitly
declared with the attribute of a label constant by virtue of
its appearance as a label prefix. Only one label prefix may
precede a single statement, and the label prefix may not be

subscripted.

18 Chapter 1 -- Program Flements

APPLE REFERENCE MANUAL

31 MARCH 1972

CHAPTER 2: PROGRAM STRUCTURE

INTRODUCTION

A program 1is composed of one or more separately compiled
procedures. At execute time, those procedures that are
required to solve a particular problem are dynamically
{i.e., at first reference) linked together. Thus, the
collection of procedures used to solve any problem may be
data dependent and may vary from one execution to the next.

This chapter describes the following:
1. The static_structure of a program as specified at

2. The dynamic_structure of a program that is estab-
lished at execute tinme.

3. The rules by which data may be passed between
procedures at execute time.

STATIC_PROGRAM STRUCTURE

A procedure is made up of basic elements called statements.
A statement may be either a simple statement or a compound
statement. Statements may be collected together at compile
time into larger units, called groups and blocks.
Groups
A group 1is a collection of one or more statements that may
be considered as a single statement for the purposes of
control.
General format:
group 3::=

[label:] group-statement [statement]... END [label];
group-statement ::= do-statement | for-each-statement
The 1label following the END is the label of the group-
statement (see "Use of the END statement™ in this chapter).

Chapter 2 -- Program Structure 19

APPLE REFERENCE MANUAL

31 MARCH 1972

The group-statement may specify iteration or selection (see
"The DO statement™ and "The FOR EACH statement™ in Chapter
8) .

Fach "statement" in the body of the group may be a
simple-statement, compound-statement, group, or begin-block.

Block Structure

A block is a <collection of statements that defines the
program region (or scope) throughout which an identifier is
established as a name with an associated set of attributes.
A block is also used for control purposes.

There are two kinds of blocks, begin blocks and procedure
blocks.

General formats:
begin-block ::=

[label:] begin-statement [statement]}... END [label];
procedure-block ::=

label: procedure-statement [statement]... END [labell];

Fach "statement" in the body of a begin-block or procedure-
block may be a simple-statement, compound-statement, group,
begin-block, or procedure-block.

The label following FND is the label of the corresponding
BEGIN statement or PROCEDURE statement. While the label of
the BEGIN statement is optional, the PROCEDURE statement
must have a label. The label required for the PROCEDURE
statement serves as the procedure_name. The procedure name
gives a means of activating the procedure at its primary
entry_point. Secondary entry points can also be defined for
a procedure by the use of the ENTRY statenment.

Although the begin block and the procedure have a physical
resemblance and play the same role in delimiting scope of
names (see "Scope of Declarations®™ in Chapter 5) and
defining allocation and freeing of storage {see "Activation
and Termination of Blocks" in this chapter), they differ in
an important functional respect. A begin block, like a
single statement, is activated by normal sequential flow
(except when used as an on-unit), and it can appear wherever
a single statement can appear. A procedure can only be
activated remotely by CALL statements or by function

20 Chapter 2 -- Program Structure

APPLE REFERENCE MANUAL

31 MARCH 1972

references. When a program containing a procedure is
executed, control passes around the procedure, from the
statement before the PROCEDURE statement to the statement
after the END statement of the procedure.

As the above definition of block implies, any block A can
include another block B, but partial overlap is not poss-
ible. Block B must be completely included in block A. Such
nesting may be specified to any depth. A procedure that is
not included 1in any other block 1is called an external
procedure. 1A procedure included 1in some other block is
called an internal procedure. Every begin block must bhe
included in some other block. Hence, the only external
blocks are external procedures. All of the text of a begin
block except the label of the BEGIN statement of the block
is said to be contained_in the block. All of the text of a
procedure except the entry names of the procedure is said to
be contained in the procedure. That part of the text of a
block B that is contained in block B, but not contained in
any other block contained in B, is said to be internal to
block B. The entry names of an external procedure are not
internal to any procedure and are called external nanmes.

Example:

As
PROCEDURE:
statement~1

B:

BEGIN; —————
statement-2 |
statement-3 |

END Bg ——eed

statement-4

Cs

PROCFEDURE: —_—
statement~5

X2

ENTRY;
D:
BEGIN; —

statement-6
statement-7
END Dg —
statement-8
END C; -
statement-9
END A

b e e e il —— - —— . Soonh
Bl o i A G D aune W S AN W D M D A} W —— v o

Chapter 2 -- Program Structure 21

APPLE REFERENCE HMANUAL

31 MARCH 1972

In this example, statements 1 through 9 are 1labeled or
unlabeled simple or compound statements or groups. As the
brackets on the right indicate, block A contains blocks B
and €, and block C contains block D. Block A is an external
procedure, The procedure name is A, which is an external
name and is the only entry name for the procedure. X is an
entry name corresponding to a secondary entry point for
procedure C. Blocks B and D are begin blocks. Block C is
an internal procedure.

Use of the END Statement

The END statement may contain an optional label. Tf the
optional label following END is not used, the END statement
terminates that unterminated dgroup or block headed by the
DO, FOR EACH, BEGIN, or PROCEDURE statement that physically
precedes, and appears closest to, the END statement. If a
label is used following an END statement, the action is
exactly the same except that a check 1is made that the
statement at the head of the block or group being terminated
is labeled with the same label as is specified with the END
statement. If a wmatch is not found, an error message is
generated.

DYNAMIC PROGRAM STRUCTURE

A begin block is said to be activated when control passes
through the BEGIN statement for the block. A procedure
block is said to be activated when the procedure is invoked
at any one of its entry points. A& block may be active
during certain time intervals of the execution of a program.
A block is active if it has beemn activated and 1is not yet
terminated, A procedure-block may be either ar internal
procedure or an external procedure. Internal procedure
references are resolved at compile time, wvhile external
procedure references are resolved at execute time. If an
internal procedure is referenced, it must be intermnal to a
block that is active at the time of isvocation.

Fach procedure invocation implies the activation of a new
block that is a descendent of a previous block. However,
the order or sequence of invocation is a function of the
problem and may dynamically change from one execution to the
next. At the invocation of a new block, gemerations of data
items may be created. These data items may be referenced in
descendent blocks subject to the rules of scope as described
in Chapter 5. Data items declared with the STATIC attribute
will be allocated and initialized once at the time the first
block in which they are declared is activated.

22 Chapter 2 -~ Program Structure

APPLE REFERENCE MANUAL

31 MARCH 1972

Procedure References

At any point 1in a program where an entry point of a given
procedure is known, either directly through its name or
indirectly through the use of an entry variable, and the
procedure is internal to an active block, the procedure may
be invoked. A reference to a procedure has the form:

entry-expression [(argument [, arqumentl...)]
vhere "entry-expression" may be:

1. an entry coanstant
2. an entry variable

Fach entry constant or variable must he declared, either
through its appearance as a label prefix in a PROCEDURE or
ENTRY statement or through the use of the ENTRY attribute in
a DECLARE statement (see "ENTRY" in Chapter 5). Either
declaration indicates the number (possibly =zero) and data
types of the parameters for the procedure. The number and
data types of the arquments in the procedure reference must
match the number and data types of the parameters indicated
in the declaration. The matching is checked at compile
time. When a procedure reference invokes a procedure, each
arqument specified in the reference is associated with its
corresponding parameter 1in the list for the denoted entry
point, and control 1is passed to the ©procedure at the
referenced entry point.

There are two distinct uses of procedures, determined by one
of two contexts in which a procedure reference may appear:

1. A procedure reference may appear following the
keyword CALL in a CALL statement. In this case,
the procedure 1is invoked as a subroutine_ proce-
dure, or simply a subroutine.

2. A procedure reference may appear as an operand in
an expression. In this case, the reference is
said to be a function reference, and the procedure
is invoked as a function.

Any procedure may be invoked as either a function or a
subroutine. However, the RETURN statement in a procedure
invoked as a function must specify a return value. If a
procedure is invoked as a subroutine, any value given in a
RETURN statement is ignored. (See "The RETURN Statement™ in
Chapter 8.)

Chapter 2 -- Program Structure 23

APPLE REFERENCE HANUAL

317 MARCH 1972

Subroutine References

A subroutine reference transfers control to an entry point
of a procedure and activates the procedure. Activation of
the subroutine may be terminated by execution of a RETURN
statement or by the END statement of the block.

A value is not returrned by a subroutine, but values obtained
in a subroutine may be made known in the invoking procedure
either by assigning a value to a variable known in the
invoking procedure or by assigning a value to a parameter
which has not hbeen passed as a dummy argument.

Function References

When a function reference appears in an expression, the
procedure is 1invoked. The result of the execution of the
procedure is the value of the function, which 1is passed
(with the return of control) back to the point of invoca-
tion. This returned value is then used to evaluate the
expression.

The procedure invoked by a function reference normally will
terminate execution with a statement of the form:

RETURN (expression);

It is the value of this expression that will be returned as
the function value.

Resides function references to procedures written by the
programmer, a function reference may invoke one of a set of
built-in functions. The set of built-in functions is an
intrinsic part of Apple. It includes commonly used arith-
metic functions, functions for manipulating strings and
arrays, and other functions related to special facilities
provided in the language. The identifiers corresponding to
the built-in function names are not reserved; any such
identifier can be used by the programmer for other purposes
subject to the rules of scope (see Chapter 5). The complete
list of these functions and their descrlptlans can be found
in Appendix 1.

Activation_and Termination of Blocks

Blocks can be activated in a variety of ways. A begin block
is activated by normal sequential flow of control. 1In all
cases, a begin block must be contained within an active
procedure block at the time of activation.

24 Chapter 2 -- Program Structure

APPLE REFERENCE MANUAL

31 MARCH 1972

Procedure blocks, on the other hand, can only be activated
by CALL statements or by function references. When a
procedure containing internal procedures is executed, con-
trol will pass around each 1internal procedure from the
PROCEDURE statement to the corresponding END statement.

There are a number of ways in which a block may be
terminated. A begin block is terminated when control passes
through the END statement for the block. A procedure block
is terminated on execution of a RETURN statement or an END
statement for the block. (In this case the FEND statement
implies a RETURN statement.) A block 1is terminated on
execution of a GO TO statement contained in the block that
transfers control to a point not contained in the block.
Any intervening blocks are also terminated.

If a block B is activated and control stays at points
internal to B until B is terminated, no other blocks can
have been activated while B was active. However, another
block, B1, may be activated from a point internal to block B
while B still remains active. This is possible only in the
following cases:

1. B1 is a procedure block immediately contained in B
{i.e., the label of B1 1is internal to B) and
reached through a procedure reference.

2. B1 1is a begin block internal to B and reached
through normal flow of control.

3. B1 is a procedure block not contained in B and
reached through a procedure reference. {81, in
this case, may be identical to B, i.e., a recur-
sive call. However, it 1is to be regarded as a
dynamically different block).

u, B1 is a begin block or a statement specified by an
ON statement (see "The ON Statement" in Chapter 8)
and reached because of an interrunpt. (For present
purposes, even if B1 is a statement, it <can be
regarded as a block; this case is dynamically
similar to case 1 or case 3 above.)

In any of the above cases, while B1 is active, it is said to
be an immediate_dynamic_ descendant of B. Block B1 may
itself have an immediate dynamic descendant B2, etc., sO
that a chain of blocks (B, B1, B2, ...) 1is created, vwhere,
by definition, all of the blocks are active. 1In this chain,
each of the blocks B1, B2, etc., is said to be a dynamic
descendant of B. When a block B is terminated, all of the

Chapter 2 -- Program Structure 25

APPLE REFERENCE MANUAL

31 MARCH 1972

dynamic descendants of B are also terminated. Storage for
all automatic variables declared in +these blocks will be
released at the time of termination. TIf a block B1 is a
dynamic descendant of a block B, then block B dynamically
encompasses block B1i.

The Environment of a_ Block

On activating a block, certain initial actions are per-
formed, e.g., allocation of storage for automatic variables.
These initial actions constitute the prologue. After the
prologue has executed, the following are available for
computations

1. Established generations of automatic and register
variables declared outside the block and known
within it.

2. Static variables known within the block, and
register and automatic variables declared in the
block.

3. Arguments passed to the block.

When several activations of B are in existence, as in
recursion, it is essential to know the activation of B that
helds the storage of data declared in B and known to
descendant blocks. If a block B1 is statically nested
within p containing blocks, +the particular activation of
each of the n blocks that hold the generations of data known
to B1 form the environment of the activation of B1.

When an entry name is assigned to an entry variable, the
environment to be used in subsequent invocations is deter-
mined and forms part of the entry value. This environment
is the activation of the block that contains <the procedure
vhose entry name is assigned. The environment of an on-unit
is provided by the the block containing the ON statement
establishing the on~unit.

A label constant designates a point within the text of a
block, B. During execution, there may be several activa-
tions of B; it is essential to know the particular activa-
tion of B which 1is referred to by a label reference. A
reference to a label constant L, made in some activation of
a block 81, is to L in the current environment of B1. When
a label constant is assigned to a 1label variable, this
environmental information is assigned as well. Subsequent
GO TO statements namring the label variable will re-establish
the environment assigned to the variable, and hence nmay

26 Chapter 2 -- Program Structure

APPLE REFERENCE MANUAL

31 MARCH 1972

cause blocks to be terminated. When a label variable is
assigned to another label variable, the environmental infor-
mation is assigned as well.

A generation, or allocation, of a variable 1is created
whenever storage 1is allocated for the variable. 1A genera-
tion consists of the storage for the generation together
with the evaluated set of attributes for the generation.
Associated with the generation is a pointer to the storage
allocation; this serves as a unique identification of the
generation. The evaluated set of attributes is established
when the generation is allocated and enables the contents of
the storage to be interpreted. 1In some cases, the attri-
butes may have to be re-evaluated upon each reference.

In the case of static and automatic generations, the pointer
to the generation can only be obtained by invoking the
built-in function ADDR using the variable as the argument.
For based variables, a locator variable is specified in the
ALLOCATFE statement used to create the based variable, and a
value is assigned to it so that it can be used to access the
generation that is created.

The storage for a generation contains the values of the
various fields in the variable, The evaluated set of
attributes of a generation comprises the structuring of the
variable, the data types of its components, and the bounds
of arrays and lengths of strings as evaluated at the time of
allocation., Offset variables may be used to identify the
position of a generation within a file. If the offset and
file reference are suoplied as arguments of the POINTER
built-in function, the result is a pointer identifying the
generation. Similarly, if the pointer and file reference
are supplied as arquments of the OFFSET built-in function,
the result 1is the offset of the generation from the
beginning of the file.

ABGUMENT PASSING

When a procedure is invoked, a relationship is established
between the arguments of the invoking statement and the
parameters of the invoked entry point. A procedure may pass
one of 1its parameters as an arqument to another procedure
(or even to itself in a recursive call).

The ENTRY attribute must be used to specify the attributes
of all arqguments of an external procedure. The correspon-
dence of parameters in a parameter list with the arguments
in an argument 1list is from 1left to right, with the

Chapter 2 -- Program Structure 27

APPLE REFERENCE MANUAL

31 MARCH 1972

left-most parameter corresponding with the left-most argu-
ment. The number of arguments and parameters nust be the
same. In addition, the attributes of each argument in a
procedure reference must match the attributes of the corres-
ponding parameter at +the invoked entry point. ¥hen an
argument is a subscripted variable, the subscripts are
evaluated before invocation. The specified element is then
passed as the arqument. Subsequent changes in the subscript
or the locator identifying the generation of the arqument
during the execution of the invoked procedure have no effect
upon the corresponding parameter.

Parameters

The PROCEDURE and ENTRY statements may specify a list_of
parapeters. Parameter lists for different entries to a

procedure need not be the same. A parameter may be a
scalar, array, or major structure name that 1is unqualified
and unsubscripted. A reference within the procedure to a

parameter produces an undefined result if the entry point at
which the procedure 1is 1invoked does not include that
parameter in its parameter list. Parameters are explicitly
declared by their appearance in a PROCEDURE or ENTRY
statement. Additional attributes must be supplied in a
DECLARE statement intermal to the procedure.

Parameters cannot be declared with the storage class attri-
butes STATIC, AUTOMATIC, or BASED, or with the BUILTIN or
INITIAL attributes. However, parameters may be declared
with the storage class attribute REGISTER. Scope attributes
cannot be declared for parameters; a parameter has internal
scope. Any bounds or lengths must be specified either by
asterisks or decimal integer constants which may be signed.
If a parameter is a structure, it must be a major structure.

Example:

SBPRIM: PROCEDURE(X, Y, Z):
DECLARE {(X,Y,A,B) FIXED,

% FLOAT:
A=X - 1:
B=Y + 1;

GO TO COMMON;
SBSEC: ENTRY(X, 2):

A =X - 2
B=X - 3;
COMMON: Z = A%%2 4+ A%B + B*x%x2;

END SBPRINM:

28 Chapter 2 -- Program Structure

APPLE REFERENCE MANUAL

31 MARCH 1972

In the above example, the procedure SBPRIM may be entered at
its primary entry point SBPRIM, where the parameter list is
(x, Y, Z), or at its secondary entry point SBSEC, where the
parameter list is (X, 2).

Correspondence of Arquments _and Parameters

The number and data types of the arguments in a procedure
reference must be the same as the number and data types of
the parameters in the corresponding parameter 1list (where
the parameter 1list is given in the PROCEDURE or ENTRY
statement for internal procedures and in the FENTRY declara-
tion for external procedures). This is true even if a dummy
argument is constructed. The only exception to this rule is
that the REGISTER attribute may bhe specified for an arqument
without being specified for the corresponding parameter, or
it may be specified for a parameter without being specified
for the corresponding argument. In the following exanmple,
dummy arquments will be constructed for the last two
argquments because the corresponding parameters have the
REGISTER attribute. {See "Use of Dummy Arguments" for
implications.)

P1: PRNCEDURE:
DECLARE (A, B) FIXED REGISTER,
{C, D) FIYED AUTOMATIC,
P2 ENTRY (FIXED,
PIXED,
FIXED REGISTER,
FIXED REGISTFR):
CALL P2(C, A, B, D)3

e o e

END P13

If a parameter of an invoked entry is a scalar, the argument
must be a scalar expression. The data attributes of the
argument or dummy argument must agree with the corresponding
attributes of the parameter. No data type conversion will
be performed. However, arithmetic conversions may be per-
formed in the invoking procedure if the scale and precision
of an expression do not match the attributes declared for
the referenced entry. If the bounds or lengths of parame-
ters are explicitly declared, then they must match those of
the corresponding arguments; however, if they are declared
with asterisks (see "Dimension” and "BIT and CHARACTER"™ in
Chapter 5), then they will automatically match. If the
argument has the VARYING attribute, then the parameter must
also be declared with this attribute.

Chapter 2 -- Program Structure 29

APPLE REFERENCE MANUAL

31 MARCH 1972

If a parameter of an invoked entry is an array, the argument
in general must be an array expression with identical bounds
and dimensionality. If constants are used to specify the
bounds of the parameter in the invoked procedure, the values
of the bounds of the array argument must agree with the
values of these constants.

If a parameter is a structure, the argument must be a
structure or substructure. The data attributes of the
elements of the arqument structure must match those of the
associated parameter as specified in the invoked procedure.
The relative structuring of the argument and the parameter
must be the same, although the level numbers need not be
identical. Contained strings and arrays ith 1lengths and
bounds specified by constants must agree. The REFER attri-
bute must not be used in a parameter declaration.

If a parameter is a scalar label variable, the argument must
be a scalar label expression. If a parameter 1is an array
label variable, the arqument must be an array label expres-
sion. A dummy argument 1is always constructed vwhen the
arqument is a label constant. This dummy arqument will also
contain 1identification of the <current invocation of the
block containing the label. Any reference to the parameter
is a reference to the statement label in that environment.

Tf a parameter 1is an entry parameter, the corresponding
argument must be an unparenthesized entry expression. The
names of built-in functions or procedures may not be passed
as entry constants.

Jse of Dummy Arguments

A constructed dummy argument containing the argument value
is passed to a procedure if the arqument is one of the
followings:

an expression involving operators

an expression in parentheses

a label constant

an entry constant

a function reference

a scalar which requires arithmetic conversion

A dummy argument is also constructed if the corresponding
parameter has the REGISTER attribute.

Tn all other cases the arqument as it appears is passed.

The parameter becomes identical with the passed argument, so
that changes to the parameter are also changes to the passed

30 Chapter 2 -- Program Structure

APPLE REFERENCE MANUAL

21 MARCH 1972

argument. However, if a dummy is created, changes to the
parameter are not reflected back in the original arqument.

Note that no dummy argument is created for an arithmetic or
string constant. Tf an attempt is made to modify such an
arqgqument, an execution-~time error will cccur.

Entrv References as Arquments

When an entry reference
11

£ is specified as an arqument to a
procedure, one of the fo i

owing applies:

1. If the name of the entry referred to in the
argument is M, then, if the reference specifies an
arqument list of 1its own, it is recognized as a
function reference:; M is invoked and the value
returned by M effectively replaces M and its
argument list in the containing argument list, If
the attributes of the returned value do not match
the declared attributes of the arqument, the
program is in error.

2. If the entry reference appears without an argument
list, but within an operational expression or
within parentheses, then it 1is taken to be a
function reference with no arguments.

3. Tf the entry reference argument appears without an
arqgument 1ist and not within an operational expre-
ssion or parentheses, the entry reference itself
is passed ¢to +the function or subroutine heing
invoked. Tn such cases, the entry reference 1is
not +taken to be a function reference, even if it
is the name of a function that does not require
arquments, In this circumstance, the entry
reference must not appear in parentheses, or it
will be treated as case 2 above.

Example:

A
PROCEDURE;
DECLARFY. B ENTRY RETURNS (FLOAT),
C ENTRY (FLOAT);
CALL C((B)}:

s @ e

END A;

Chapter 2 -- Program Structure 31

APPLE REFERENCE MANUAL

31 MARCH 1972

In the CALL statement in this example, the entry B is
invoked and the value returned by B is passed to C as an
arqument.

Mse of the ENTRY Attribute

If an ENTRY attribute without a parameter attribute list is
specified for an identifier, it 1indicates that the naned
entry does not require any argquments. 1In this case, it is
an error to supply arquments in a reference to the entry.
Tf an ENTRY attribute specification with a parameter attri-
bute list is supplied for an identifier, each reference to
the identifier that implies an invocation of the associated
procedure mpust supply an argument list whose elements are
identical 1in data type to those specified for the corres-
ponding parameter. If there is disagreement, a compile time
error message will be given. The asterisk notation may be
used in the TENTRY attribute to specify that the bounds of
arrays or strings are to be taken from the argument
attributes.

While no data type conversions will be performed as a result
of a procedure CALL or function reference, arithmetic
conversions will be performed when required. If the scale
or precision of an argument expression does not match the
attributes for the referenced entry, an arithmetic conver-
sion may take place. No conversions will be performed for
data aggregates.

32 Chapter 2 -- Program Structure

APPLE REFERENCE MANUAL

31 MARCH 1972

CHAPTER 3: _DATA_ ELEMENTS

INTRODUCTION

Information that is operated on during the execution of an
Apple object program is called data. TEach data item has a
definite type and representation., The discussion on data
elements presents:

1. the types of data availabhle in Apple,

2. the various organizations of data, and
3. the methods by which data can be referenced.

DATA TYPES

The types of data allowed by Apple can be categorized as
problem data and program-control data. Each category com-
prises both constants and variables.

A constant 1is a data item that denotes a value that cannot
change during the execution of a program. The attributes of
a constant are implied by the representation of the constant
itself. A signed constant is an arithmetic constant pre-
ceded by one of the prefix operators + or -. Wherever the
word "constant" appears alone, and refers to an arithmetic
constant, it is to be assumed to refer to an unsigned
constant.

A yvariable is a name given to a single data element (called
a scalar variable) or a collection of data elements (called
an array variable or a structure variable). The attributes

of a variable are:

1. explicitly declared,

2. declared by the context in which the variable
appears, or

3. assumed by default.

PROBLEM DATA

Problem data is any data that can be classified as type
arithmetic or type string.

Chapter 3 -- Data Elements 33

APPLE REFERENCE MANUAL

31 MARCH 1972

Arithmetic Data

An arithmetic data item is defined to have a numeric value
with attributes of scale and precision. Arithmetic data
items are real values and are represented internally in a
birary format. Arithmetic constants may be expressed in
decimal or hexadecimal but are internally represented as
binary values. The attributes of an arithmetic data item
are given by specifying scale (fixed or float) and precision
(expressing the minimum number of binary or decimal digits
to be maintained). These attributes determine the form of
the internal representation of the data.

Scale

Arithmetic data may be specified as having either fixed-
point or floating-point scale. Fixed-point data 1items are
restricted to integers and have no associated scale factor.
Floating-point data items are rational numbers consisting of
a fractional part and an exponent part. The exponent part
specifies the decimal or binary point location.

Precision

The precision of arithmetic data items is either short (23
bits of precision) or long (47 bits of precision). The
precision of arithmetic variables is specified through the
use of the precision (BINARY and DECIMAL) attributes in the
DECLARE statement. The general rules for the declared
precision versus the internal precision are as follows:

Declared Precision Resulting Precision

BINARY (1 to 23) short
BINARY (24 to 47) long
DECIMAL ({1 to §) short
DECIMAL (7 to 1&) long

o 0 s s iy o e
by i e wom s sdhe s i
e .-

34 Chapter 3 -- Data Elements

APPLE REFERENCE MANUAL

31 MARCH 1972

Example:
Resulting Precision
DECLARE A FIXED BINARY(15), short
B FIXED DECIMAL (5), short
C FIXED BINARY (31), long
D FLOAT DRCIMAL (7), long

Note that the number of binary or decimal digits must be
greater than zero. If the number of digits specified
exceeds the limit of precision stated above, the maximum is
assumed and a diagnostic message is produced.

The range of values that can be represented by arithmetic
data depends on the scale and precision of the data items:

Scale and Precision Range_of Values
FIXED short + 8,388,607
FIXED long + 140,737,488,355,327
FLOAT short + 10233
FLOAT long + 108630

Chapter 3 -- Data Elements 35

APPLE REFERENCE MANUAL

31 MARCH 1972

Arithmetic Constants

The general form of arithmetic constants is as follows:

arithmetic-constant ::= decimal-number |
hexadecimal-number

decimal-number ::= [sign] integer. [integer }J[exponent]]
{sign] integer]. integer [exponent]|
[sign] integer{ exponent]

integer ::= decimal-digit...
exponent ::= E [sign] integer
hexadecimal-number ::= "hexadecimal-digit ... "

Examples:
123
+45
"ABCN
123.4F+02
- 31
-42%+3

The scale and precision of hexadecimal constants are implied
by the number of hexadecimal digits represented:

No. of hex.digits Scale _and Precision

1 to 6 FIXYED short
7 to 8 , FLOAT short
9 to 12 FIXED 1long
13 to 16 FLOAT 1long

String Data

A string is a contigquous sequence of characters or binary
digits that <can be treated as a single data item. String
data can be classified as character-string or bit-string.
All strings have an associated length attribute which is
declared for string variables and implied for string con-
stants. The maximum length allowed for string data in the
Apple implementation is 65,535 bits or characters.

36 Chapter 3 -- Data Elements

APPLE REFERENCE MANUAL

31 MARCH 1972

Character-String Data

Character-string data consists of a string of zero or more
characters in the data character set. The string may be
fixed or varying in length. The actual number of characters
must be specified if it is of fixed length, and the maximum
length must be specified if it is of varying length.

Note: Until a varving-length character-string is assigned a
value, its length is undefined.

A comment will not be recognized within a character string,

but will be considered to be part of the character string
data including the comment delimiters (/* and */).

Character-String Constants

A simple character-string constant is zero or more charac-
ters in the data character set enclosed in single quotation
marks. If it is desired to represent a quotation mark, it
must be represented as two immediately adjacent single
quotation marks, although it is only counted as a single
character.

Fxamples:
1$123.45¢"
'"JOHN JONES?
ITPYIG
LN]

The last example, which is two single quotation marks with
no intervening blank, specifies the null character string.
In the Apple implementation, character-string data is main-
tained internally 1in ASCII character format, in which each
character occupies one byte of storage. (See Appendix 4 for
the Apple character set.) A simple character-string con-
stant may optionally be preceded by an unsigned decimal
integer constant in parentheses to specify repetition. If
the constant specifying repetition is zero, the result is
the null character string.

Example:

(3)'TOM_"' is exactly equivalent to *TONM_TOM_TOM_ '

Chapter 3 -- Data Elements 37

APPLE FEFERENCE MANUAL

31 MARCH 1972

Bit-String Data

Bit-string data consists of a string of zero or more binary
diqits (0 and 1). The bit-string must be fixed in length.

Bit-String Constants

A Dbit-string constant contains zero or more binary digits
enclosed in single quotation marks, followed by the letter
B. A bit-string constant may also be written as a string
composed of hexadecimal digits enclosed in single gquotation
marks and followed by the letter H. In this latter case,
each digit represents 4 bits. The repetition factor as
described for character-string constants may also precede
bit-string constants.

Fxampless

*11101°B
IR
*015BD7tH
is exactly equivalent to
*00000001010%101111010111° B

PROGRAM-CONTROL_ DATA

Program-control data is any data that can be classified as
label, locator, interrupt, file, or entry.

Label Data

Statement label data 1is used only in connection with
statement labels. Statement label data may be constants or
variables, and the variables may be elements of structures
or arrays.

Statement-lLabel Constants

A statement label constant is an nonsubscripted identifier
that precedes the statement with a colon separating the
statement and the statement label. It permits references to
be made tc statements.

38 Chapter 3 -- Data Elements

APPLE REFPERENCE MANUAL

31 MARCH 1972

Example:
ROUTINE1: IF X > 5 THEN
GO TO DONE;
GO TO ROUTINE1;

DONE: RETURN;

ROUTINE1 and DONE are statement-label constants.

Statement-Label Variables

A statement-label variable is a variable that has as values
statement-label constants. These variables can be grouped
into arrays, or they may be elements of structures.

Fxample:

DECLARE X LABEL VARIABLE;

X = POSROUTINE;
POSROUTINE: ...

X = NEGROUTINE;

GO TO X;

NEGEOUTINE: ...

* =

The label variable X may have the value of either POSROUTINE
or NEGROUTINE. In the above example, GO TO X; transfers
control to NEGROUTINE.,

Locator Data

A locator value identifies a specific generation of a based
variable. Since several generations of a based variable can
exist simultaneously, a reference to a based variable must
include, either explicitly or implicitly, a locator variable
whose value defines the actual generation being referenced.
lLocator data consists of pointer variables, offset variables
and descriptor variables.

A pointer yvariable identifies a generation of a based

variable within a program and is only valid while the
program is active.

Chapter 3 -- Data Elements 39

APPLE REFERENCE MANUAL

31 MARCH 1972

An offset variable identifies a gemeration of a based
variable relative to the origin of a file and thus preserves
its validity independent of the progranm.

Neither pointer nor offset variables contain any information
concerning the attributes of the based variable being
referenced other than location. Descriptor variables, in
addition to containing a pointer value, also contain the
length of the based variable identified. If the based
variable is a character or bit string, then the length is in
terms of characters or bits respectively. If the based
variable is a vector of arithmetic elements, then the length
is the number of elements in the vector.

Locator variables may have values set by the ALLOCATE, FIND,
and LET statements or by assignment £rom other locator
variables or from the ADDR, NULL, POINTER, APLEVAR, OFFSET,
and DESCR built-in functions. In addition, descriptor
variables may be used in arithmetic expressions. Pointer
and offset variables may not be used as operands in any
expression other than = and -= comparison.

Note: Descriptor variables have been added to the Apple
langquage to support systems programming and provide a
high-level language facility for utilizing the data-
streaming capabilities of the STAR computer.

Locator_Qualification

Locator qualification is used to associate one or mnmore
descriptor, pointer or offset values so as to identify a
particular generation of data. If a based variable is
referred to without a locator qualifier, the reference is
the same as a reference gualified by the 1locator variable
declared with the based variable in the BASED attribute
specification.

General format:
locator qualifier ::= scalar-locator-expression->
[based-locator-variable->]... based-variable
vhere "scalar-locator-expression” is an descriptor-variable,
a pointer-variable, an offset-variable, or a function

reference that returns a descriptor, pointer, or offset
value.

40 Chapter 3 -- Data FElements

APPLE REFERENCE MANUAL

31 MARCH 1972

General rules:

1. Locator qualification 1is used to identify the
generation of a based variable to which the
associated reference applies.

2. If an offset expression or an offset variable is
used as a locator qualifier, its value is impli-
citly converted to a pvointer value.

3. If more than one qualifier is used, they are
evaluated from left to right.

EFxamples:
P -> B:
P -> 0 -> B;

A
A
A = ADDR(X) ~-> B;

W

The first example causes assignment to A of the value of B
in the generation pointed to by P. The second example
‘specifies that the value of P is to be used to locate the
generation of 0 which locates the specific generaticn of B
to be assigned to A. In the third example, the generation
of B is derived from the location of the variable X.

Interrupt Data

An interrupt is an action which can discontinue normal
execution of a program. There are two types of interrupts,
conditions and events. A condition 1is raised by the
occurrence of an error as a result of an instruction
execution and may be thought of as internal to a ©progranm,
while an event 1is an external action that can occur on a
peripheral device. The execution of the SIGNAL statement
will also cause an interrupt. When an interrupt occurs, the
associated condition is raised or the event is completed.
See CONDITIONS and EVENTS in Chapter 7.

File Variable

A file is a collection of data that occupies memory and,
through the use of a MCTS file management function, may be
stored on a peripheral storage device. After a file has
been opened it may be referenced through a file-variable. A
file-variable may be wused in the GET/PUT or ALLOCATE/FREE
statements in order to reference a particular file. See
Chapter 6 for a description of file hamndling.

Chapter 3 -- Data Elements 41

APPLE REFERENCE MANUAL

Entry Data

Entry data
entry points
variables.
in a program
made at a
variable has

31 MARCH 1972

has values that permit references to be made to
of a program. FEntry data may be constants or
An entry constant is an identifier that appears
as an entry name. It permits references to be
fixed entry point of a procedure. An entry
entry constants as values. See "The ENTRY

Attribute" in Chapter 5.

42 Chapter 3 -- Data Elements

APPLE REFERENCE MANUAL

31 MARCH 1972

ORGANTZATION

Data may be organized as scalar items (i.e., single data
items) or aggregates of data items (i.e., arrays and
structures).

Scalar Items
A scalar item may be either a constant or the value of a

scalar variable. Coanstants and scalar variables are called
scalar data itenms.

Scalar Variables

A scalar variable is a single data item. Unlike a constant,
however, a variable may take on more than one value during
the execution of a progranm. The set of values that a
variable may take on 1is the range of the variatle. The
range of a variable is always restricted to one data type
and, if the type is arithmetic, to one scale and precision
-- see "Arithmetic Data" in this chapter.

Reference is made to a scalar variable by a name, which may

be a simple name, a subscripted name, a qualified name, or a
subscripted qualified name (see "Naming" in this chapter).

Data_ Aggqregates

In Apple, all classes of variable data items except ENTRY
and ENTITY may be grouped into arrays or structures. Rules
for this grouping are given below. For the method of
referring to an array or structure or a particular item of
an array or structure, see "Naming" in this chapter.

Arrays

An array is an multi-dimensional, ordered collection of
elements, all of which have identical data attributes. (If
arithmetic, all of the elements of the array must have the
same scale and precision. If character-string or bit-
string, all of the elements must have the same fixed length
or the same maximum length.) The number of dimensions of an
array, and the upper and lower bounds of each dimension, are
specified by the use of the dimension attribute. (See "The
Dimension Attribute” in Chapter 5.) The elements of an
array may be structures (see "Arrays of Structures" in this

Chapter 3 -- Data Elements 43

APPLE REFERENCE MANUAL

31 MARCH 1972

chapter).

Structures

A structure is a hierarchical <collection of scalar
variables, arrays and structures. These need not be of the
same data type nor have the same attributes.

The outermost structure is a major structure, and all
contained structures are minor structures.

A structure is specified by declaring the major structure
name and following it with the names of all contained minor
structures and base elements. F¥ach name is preceded by a
level number, which is an unsigned non-zero decimal integer
constant. 1A major structure is always at level one and all
minor structures and base elements contained in a structure
(at level n) have a level number that is numerically greater
than n, but they need not necessarily be at level 1+1, nor
need they all have the same level number.

A minor structure at level n contains all following items
declared with level numbers greater than n up to but not
including the next item with a level number less than or
equal to n. A major structure description is terminated by
the declaration of another item at level one, by the
declaration of an item having no level number, or by the end
of a DECLARE statement.

44 Chapter 3 -- Data Elements

APPLE REFERENCE MANUAL

31 MARCH 1972

Example:

DECLARE 1 PAYROLL,
2 NAME CHAR(8),
2 HOURS,
4 REGULAR FIXED,
3 OVERTIME FIXED,
2 JoBS,
3 NUMBER(2) FIXED,
3 DESCRIPTION(2) FIXED,
2 RATE FIXED;

In the above example PAYROLL is defined as the major
structure containing the scalar variables NAME and RATE
and the structures HCURS and JOBS. The structure HOURS
contains the scalar variables REGULAR and OVERTIME.
Note that REGULAR and OVERTIME are at the same level
although their 1level numbers differ. The structure
JOBS contains NOUMBER and DESCRIPTION which are both
one-dimensional arrays with two scalar variables.

Arrays_of Structures

An array of structures is specified by giving the dimension
attribute to a structure, thus forming replications of that
structure. Fach element of the array is one instance of the
declared structure. The elements within an array of struc-
tures must be referred to by subscripted names (see NAMING
in this Chapter).

Example:

DECLARE 1 CARDIN(3),
2 NAME CHAR(8),
2 WAGES,
3 NORMAL FIXED,
3 OVERTIME FIXED;

The name CARDIN represents an array structures of with
bounds 1:3. Note that each of the three structures
formed by CARDIN(3) has an element called NAME, WAGES.
NORMAL, and WAGES.OVERTIME. Each of these elenents
must have a subscript with the name to indicate which
structure is desired.

Chapter 3 -- Data Elements 45

APPLE REFERENCE MANUAL

31 MARCH 1972

Attributes_of Structures

Structures and arrays of structures are not given data
attributes. These can be given only to scalar variables or
arrays forming the elements of major or minor structures.

Major structure names may be declared with scope and storage
attributes. Items contained in structures may not be
declared with these attributes. When the same major struc-
ture name is declared with the EXTERNAL attribute in more
than one block, the attributes of the structure members must
be the same in each case, although the names of the
structure members need not be the same. A reference to a
member in one such block is effectively a reference to that
member in all blocks in which the external name is known,
regardless of the names of the members.

Since only the major structure may be given a storage-class
attribute, all items in the same structure are of the same
storage class. The storage class of the major structure
applies to all elements of the structure. If a structure
has the BASED attribute, only the major structure, not its
elements, may be allocated and freed.

=

MING
This section describes the rules for referring to a particu-
lar data item, groups of items, arrays, and structures. The
permitted types of data names are: simple, qualified,
subscripted, and subscripted qualified.

Simple Names

A simple name is an identifier (see "Identifiers" in Chapter
1) that refers to a scalar, an array, or a structure.

Subscripted Names

A subscripted name 1is used to refer to an element of an
array. It is a simple name that has been declared to be the
name of an array followed by a 1list of subscripts. The
subscripts are separated by commas and are enclosed in
parentheses. A subscript is an scalar arithmetic expression
converted to an integer before its use. The number of
subscripts must be equal to the number of dimensions of the

46 Chapter 3 -- Data Elements

APPLE REFERENCE MANUAL

31 MARCH 1972

array, and the value of a specified subscript must fall
within the bounds declared for that dimension of the array.

General formats:
subscripted-name ::=
identifier (subscript{, subscript]...)
subscript ::= scalar-expression
Fxamples:
A(3)
FIELD (B, C)

PRODUCT (SCOPE*UNIT*VALUE, PERIOD)
ALPHA (1, 2, 3, 4)

Qualified Names_and Ambiquous_References

A simple name usually refers uniquely to a scalar variable,
an array, or a structure. HYowever, it is possible for a
name to refer to more than one variable, array, or structure
if the identically named 4items are themselves parts of
different structures. In order to avoid any ambiguity in
referring to these similarly named items, it is necessary to
create a unique name; this is done by forming a gualified
pame. This means that the name common to more than one item
is preceded by the name of the structure in which it is
contained. This, in turn, can be preceded by the name of
its containing structure, and so on, until the qualified
name tefers uniquely to the required itenm.

Thus, the qualified name is a sequence of names, separated
by periods, specified left to rigqht in order of increasing
level numbers. The sequence of names need not include all
of the containing structures, but it must include sufficient
names to resolve any ambiguity. Any of the names may be
subscripted.

If the sequence of names includes the names of all the
structures containing the member with the rightmost nane,
then that name is said to be completely qualified.

If the sequence of names includes only some of the names of

the structures containing the member with the rightmost
name, then that name is said to be partly gqualified.

Chapter 3 -- Data Elements 47

APPLE REFERENCE MANUAL

31 MARCH 1972

A completely or partly qualified name wmust have the same
hierarchy of the structure names as the stracture to which
it is to reference. The qualified name, once composed, is
itself a name. Subsequently, in this publication, when the
terms scalar variable name, array name, or structure name
are used they should also be taken to include qualified
names.

General format:
qualified-name ::= identifier[.identifier]...

There are several rules that should be followed when using
qualified names. (In the following examples the attributes
have been eliminated for clarity.) These are as follows:

1. The qualified name will resolve to the innermost block
containing the declaration vhich has the same hierarchy
of the identifiers as the qualified name. That is, if
the name cannot be resolved in the block of its usage,
then the next outer block will be checked, etc. 1A
diagnostic message results if the qualified name cannot
be resolved.

Exanmple:
DECLARE 1 A,
2 C,
2D,
3 E;
BEGIN;
DECLARE 1 14,
2 B,
3 c,
3 B;

A.C refers to C in the inner block.
D.E refers to B in the outer block.
A.B.D is in error.

2. If there is more than one structure declaration in the
same block which contains the same qualified name then
only one of these declarations may contain the com-
pletely qualified nanme.

48 Chapter 3 -- Data Elements

APPLE REFERENCE MANUAL

31 MARCH 1972

3.

Example:

DECLARE 114,
2 B,
3 ¢C;
DECLARE 11,
2D,
3 B3

A.B refers to the first declaration

A.D.B refers to the second declaration

A reference to a structure member by means of an
unqualified name is ambiguous and therefore in error if
any other structure member name internal to the same
block has the same identifier.

The case where more than one declaration contains the
same gqualified name is illustrated in the following:

Example:

DECLARE 114,
3 Cs
DECLARE 114,
2D,
3 C;

A.C 1is ambiguous bhecause neither C 1is completely
qualified by this reference.

The case where a single declaration contains multiple

occurences of the same qualified name is illustrated in
the following:

Chapter 3 -- Data Elements 49

APPLE REFERENCE MANUAL

31 MARCH 1972

Example:

DECLARE 1%,
2 X,
31z,
2y,
3 a;

Y.Z is ambiguous and in error.
Y.Y¥.Z refers to the second Z.
Y.X.Z refers to the first Z.

4, If a level-1 name and a structure member name internal
to the same block have the same identifier, then the
unqualified use of that identifier is taken to refer to
the level-1 name. Reference to the structure member
can, in this case, be achieved only by means of a
suitably qualified name.

Example:
DECLARE 14,
3 A;
A refers to the first A.

A.A refers to the second A.
A.A.A refers to the third A.

Subscripted Qualified Names

The elements of an array contained in a structure and
requiring name qualification for identification are referred
to by subscripted qualified pames. A subscripted qualified
name is a sequence of names and subscripted names separated
by periods. The order of names 1is as given for any
gqualified name. The subscript 1list following each name
refers to the dimensions associated with the name if the
name is declared to be the name of an array in the structure
description.

As long as the order of the subscripts remains unchanged,
subscripts may be mnoved to the right or left (called
migration of subscripts) and attached to names at a lower or
higher level. The number of subscripts must match the
number of dimensions of the array.

50 Chapter 3 -- Data Elements

APPLE REFERENCE MANUAL

31 MARCH 1972

General format:
subscripted-qualified-name ::=
identifier((subscript[, subscriptl...)]

{.identifier((subscript{, subscriptl...)]J)...
If any subscripts are given in a reference to a qualified
name, all those subscripts which apply to dimensions of
containing structures must be given.
Example:

A is an array of structures with the following description:

DECLARFE 1

The following subscripted qualified names illustrate the
migration of subscripts referring to the same element, which
is the seventh element of C contained in the fifth element
of B contained in the tenth row and twelfth column of A:

@) (10,12) . B (5) . C (7)
(2) A (10) . B (12,5) . C (7)
(3) (10) . B (12) . C (5,7)
(4) A . B (10,12,5) . C (7)
(5 A . B (10,12) . C (5,7)

(6)
(7)

. B (10) . C (12,5,7)
. B.C (10,12,5,7)
(8) A (10,12) . B . C (5,7)
(9) (10) . B . C (12,5,7)
(10) A (10,12,5,7) . B . C

X e 3w o2e DY D 20

If structure B, but not structure A, is necessary for unique
identification of this use of C, any of forms (4), (5), (6).,
or (7) may be used without including the A.

If structure A, but not B, is necessary for identification
of ¢, forms (7), (8), (9), or (10) may be used without
including the B.

Chapter 3 -- Data Elements 51

APPLE REFERENCE MANUAL

31 MARCH 1972

INTRODUCTION

This chapter describes the two main areas of data
manipulation:

1. expression evaluation
2. data conversion

The first section describes the logical classes of expre-
ssions and the operations available in each <class. The
second section specifies the data conversion rules to be
used for data type conversion and arithmetic conversion.

EXPRESSIONS

An expression is a representation of a value or an algorithme
used for computing a value. Expressions are generally
classified according to the type and form of the data values
they represent. If an expression represents a single scalar
value, it is called a scalar expression. An array expres-
sion represents an array of values.

Problem data values are represented by arithmetic expre-
ssions and string expressions. Arithmetic expressions whose
value 1is fixed point are known as integer expressions.
Expressions representing program-control data values are
similarly defined. Thus, a pointer expression is an expres-
sion that represents a pointer value, vhereas a locator
expression may represent either a pointer, descriptor, or

- e

offset value.

In the syntactic descriptions used in this manual, the
unqualified term "expression" refers to an expression of any
type. Where the kind of expression is limited, the type of
restriction is explicitly noted; for example, "scalar expre-
ssion" 1indicates that only an expression that represents a
scalar value is permitted in the particular context.

52 Chapter 4 -- Data Manipulation

APPLE REFERENCE MANUAL

31 MARCH 1972

Expressions may also be classified by the operators that
they contain. An expression containing operators (either
prefix or infix operators or both) is referred to as an
operational expression. The class of an operational expres-
sion 1is determined by the class of operators it contains.
The four classes of operational expressions are:

Ll k] R h J
| CLASS | | DATA TYPES]
| of operational | OPERATORS | permitted i
1 expressions | | as operands 1
¢ + } 4
] | *x, prefix + and -, | FIXED]
| ARITHMETIC | * and /,] FLOAT l
! | infix + and - | I
i L i k]
¥ T ¥ k]
| DESCRIPTOR] 1 |
| ARITHMETIC i infix + and - 1 DESCRIPTOR i
| l | |
L] 1 ¥ |
L i k] 3
] }] FIXED, FLOAT]
] | Kgo&KyK=,=,0=,>=,>,~> | CHARACTER {
1 H i DESCRIPTOR |
] RELATIONAL S + 1
| i only 1 BIT, LABEL i
| } = and -=] POINTER, OFFSET |
| | i FILE, ENTRY]
i i 1 ¥ |
1 1 k] k]
|] -~ | BIT l
| BIT STRING ! g | Relational- |
1 i H { expressions]
F + + i
| | |)
| STRING ! 1 | CHARACTER, BIT |
| | |]
i 1 L J

An expression may be:

1. a constant

2. a reference to a variable

3. a function reference

4. an expression enclosed in parentheses

5. an expression preceded by a prefix operator

6. two expressions connected by an infix operator

There is no limit to the number of operators and level of
parentheses that may be combined in a single expression.
Generally, all of the operands contained in a single

Chapter 4 -- Data Manipulation 53

APPLE REFERENCE MANUAL

31 MARCH 1972

expression must be of the same type (FIXED and FLOAT are
considered to be the same type for this purpose) and all of
the operators within the expression must be of the same
class. No_implied data type conversion can occur during the
evaluation of an expression. If the operands are not of
matching data type, the necessary conversion may be expli-
citly specified by using the built-in functions for conver-
sion, for example, FIXED, FLOAT, CHAR, etc. These are
defined in Appendix 1.

Arithmetic operations

An elementary arithmetic operation has the following general
format:

{+ 1] -1 operand
operand {+ 1 - 1 % 1 /| %%} operand

The general format specifies the prefix operations of plas
and minus and the infix operations of addition, subtraction,
multiplication, division, and exponentiation.

Any result of the prefix operations has the same scale and
precision as the operand. If both operands of an infix
operation (¢+, -, or *) are FIXED, the scale of the result
is also fixed-point; otherwise, the operation 1is perfornmed
in floating-point and the result is FLOAT. The precision of
all infix operations is the greater of the precisions of the
two operands. Any necessary conversion of FIXED to FLOAT or
short to 1long precision 1is performed before the infix
operation is carried out. The details of arithmetic data
conversion are described later in this chapter.

An exception to the scale conversion rule occurs in the case
of exponentiation. If the scale of the first operand is
float and the exponent operand is a fixed expression, no
conversion is necessary. The result will bz floating-peint.

54 Chapter 4 -- Data Manipulation

APPLE REFERENCE MANUAL

31 MARCH 1972

An arithmetic expression of any complexity is composed of a
combination of elementary arithmetic operations defined
above. The evaluation of compound arithmetic expressions is
performed 1in the following order of decreasing operator
precedence (unless the order is modified by parentheses):

1. ** and prefix + operators are performed right to left
2. * and / operations are performed from left to right,

3. Infix + and - operations are performed left to_right.

Thus,
A+ B %k - C /D~ E

is performed as
(A + ((B ** (-C)) /D)) - E

The infix operators, + and *, are commutative, but not
necessarily associative, as low-order rounding errors will
depend on the order of evaluation of an expression. Thus,
A+ B + C is not necessarily equal to A + (B + C).

Prefix operators can precede and be associated with either
of the operands of an infix operation. For example, in the
expression A * - B, the minus sign preceding the variable B
indicates that the value of A is to be multiplied by the
negative value of B.

More than one prefix operator can precede and be associated
with a single variable. More than one positive prefix
operator will have no cumulative effect, but two consecutive
negative prefix operators will have the same result as a
single positive prefix operator.

Descriptor_ Arithmetic

Descriptor expressions have the following form:

+
descriptor-variable { } fixed-point-expression
*

The result of the expression will be a descriptor whose

length value is taken from the descriptor variable and whose
pointer value is the fixed-point result of the specified

Chapter 4 -- Data Manipulation 55

APPLE REFERENCE MANUAL

31 MARCH 1972

operation between the descriptor used as a fixed value and
the fixed-point-expression.

Relational Operations

Elementary relational operations have the general form:

A
N

operand operand

Won

vviyiuAalg

There are five kinds of relational comparison:

1.

Arithmetic involves the comparison of signed num-
eric values, possibly obtained by the evaluation
of expressions. If the operands differ in scale
or precision, they are converted before the com-
parison is made (see "Arithmetic Conversion" later
in this chapter).

Descriptor comparisons are made by comparing the
pointer values as fixed-point data. The length
values are ignored. Thus, two descriptors that
identify the same based variable but have dif-
ferent length values will compare equal., Descrip-
tors can be compared with fixed-point, descriptor,
or pointer expressions.

Character 1involves 1left-to-right, character-by-
character comparisons of characters according to
the collating sequence defined in Appendix 4. If
the operands are of different lengths, the shorter
string 1is extended to the right with blanks. Two

null character strings compare equal.

Bit involves the left-to-right comparison of
binary digits. If the strings are of different
lengths, the shorter string is extended on the
right with zeros. Only egqual and not-equal com-
parisons can be made between bit-string operands.
Two null bit strings compare equal.

56 Chapter 4 -- Data Manipulation

APPLE REFERENCE MANUAL

37 MARCH 1972

5. Program-control data involves the comparison of
two Adata values from one of the following data
tyres:

a. statement label
b. pointer

c. offset

d. file

e. entry

Only the operators = and -= may be used in this
context and both operands must be of the same type
as defined above. The comparison of two offset
values is performed independently of their asso-
ciated files. Por two statement labels to compare
equal, they must refer to the same statement
within the same environment (see "The Environment
of a Block" in Chapter 2).

The result of a relational operation 1is a true or false
value, commonly used 1in the IF statement to select a
conditional branch path. If necessary, the result of a
relational comparison will be converted to a bit-string of
length one; the value is '1'B if the relationship 1is true,
or '0'B if the relationship is false.

Compound_ _relational _expressicns are formed by combining
elementary relational expressions as operands with the
bit-string operators -, & and !. See the "Example of
Expression Evaluation™ later in this chapter.

Bit-string Operations

Rit-string operations have the following general forms:

- operand
operand & operand
operand ! operand

The "not" operator can be used as a prefix operator only.
The "and" and the Yor" operators can be used as infix
operators only. (These operators have the same function as
in boolean algebra).

Operands of a bit-string operation must be bit strings or
relational expressions that have been evaluated before the
operation is performed. If the operands of an infix
operation are of unequal length, the shorter is extended on
the right with =zeros to the 1length of the longer. The
result of a bit-string operation is a bit string equal in

Chapter 4 -- Data Manipulation 57

APPLE REFERENCE MARNUAL

31 MARCH 1972

length to the 1length of the operands. The operations are
performed from left to right on a bit-by-bit basis starting
with the 1left-most bit of each string. As a result of the
operations, each bit position has the value defined in the
following table:

r v T T T 2]
} A B} A §-~B | AEB}] A! B
i " 1 3 n 1
g T + 1 T 1
{1 11 0 0 | 1 { 1 |
1T 0 0 1 1 0 ! 1 l
rPo 1ty 1 | 0 1 0 | 1 |
1o o1 1 1 1 0] 0 |
L L " L 1 s

More than one bit-string operation can be combined in a
single expression that yields a bit-string value. There are
no varying-length bit strings.

String Operatioas
String operations have the following general form:
operand !! operand

The concatenation operator can be used as an infix operator
between two character string operands or between two bit-
string operands. It signifies that the operands are to be
joined in such a way that the last character or bit of the
first operand will immediately precede the first character
or bit of the second coperand. The length of the result |is
always the sum of the lengths of the operands. TIf either of
the operands of the concatenation operator is a character
string with the VARYING attribute, the result will also be a
varvying string. When varying strings are concatenated, the
intermediate string created has a length equal to the sum of
the maximum lengths, If the maximum lengths are known at
compile time and their sum exceeds 65535, then a truncated
intermediate string of 1length 65535 will be created and a
compile-time diagnostic message produced. If the maximum
length of either operand is not known at compile time and
their sum exceeds 65535, a truncated intermediate string of
length 65535 will be created but there will be no diagnostic
message.

58 Chapter 4 -- Data Manipulation

APPLE REFERENCE MANUAL

31 MARCH 1972

EVAIUATION OF EXPRESSIONS

An operational expression may contain arbitrarily many
different combinations of operands and operators provided
that no implicit data type conversions are required of any
operands or intermediate resnlts, Generally, all of the
operands will be of the same data type and the operators
will belong to the same class of operators (this classifica-
tion 1is shown in the table in the section "Expressions",
earlier in this chapter). There are two exceptions to this
rule:

1. Bit-string concatenation may be used with the
logical bit-string operations, e.qg.

BITA !! BITB & BITC

2. Compound relational expressions may contain rela-
tions that compare different data types, e.q.

IF (FIXED = 5) & (CHAR4 = 'THIS') THEN...
Each operation within the expression is evaluated according
to the rules for that kind of operation. Hovever, the order

in which the sub-expressions are evaluated depends upon the
priority of the operators specified in the expression.

Priority of Operators

The following table 1lists the seven levels of priority of
operators in descending order. REach line lists the opera-
tors of the same priority level.

Priority | Operators | order of evaluation
level | { within this level
+ +
| |
Highest 7 | -~,%**,prefix+,prefix- | Right-to-left
+ +
6 1 *,/ |
5 | infix+,infix-]
4 11 | Left-to-right
3] <<, K=yn=, =, >=,0,>)
2 & i
Lowest 1 1 ! |
l |

Chapter 4 —-- Data Manipulation 59

APPLE REFERENCE MANUAL

31 MARCH 1972

Operations within an expression are performed in the order
of decreasing priority. For example, in the expression
A+B**X, the exponentiation is performed before addition.

Use_of Parentheses

The order of evaluation of the sub-expressions of an
expression can be changed by the use of parentheses. If a
sub-expression is enclosed in parentheses, it indicates that
the sub-expression is to be treated as a single value in
relation to its adjoining operators. For example, in the
expression:

(A + B¥*3) / (C * (D - E))

A will be added to B*%*3, E is subtracted from D before
multiplying by C, and then the first of these results will
be divided by the second result. Thus, parentheses modify
the normal rules of priority.

The Apple implementation may evaluate subscripts, function
references, and 1locator qualifiers in any order subject to
the constraint that an operand will be fully evaluated
before its value is used in an operation.

Example_of Expression_Evaluation

The following example of a compound relational expression
illustrates hov many operators and data types may appear in
a single expression:

L1: IF A ** -B > C + D / COS(E)

-~ {(BIT4 1! BITX) = (BITX & "FW)
! LABEL_VARBL -~= L1

& CHARX = CHAR3 !! SUBSTR(CHARS, I+2, L/3)

THEN DO; ...
The expression contains four elementary relational expre-
ssions (shown on separate lines for clarity) whose operands
are themselves expressions. The first relational operation
compares two arithmetic expressions, the second one compares

two bit-strings, the next one tests a label variable and a
label constant for inequality, and the final one compares a

60 Chapter 4 -- Data Manipulation

APPLE REFERENCE MANUAL

31 MARCH 1972

character string with a character string expression. The
function references are evaluated before their values can be
used as an operand. The elementary relations within a
compound relational expression may be evaluated in amny
order. The following list of steps describes one possible
order of evaluation for this expression:

1. In the expression A ** -B, the minus sign is a
prefix operator and thus has the same precedence
as **, therefore the operations are evaluated in
right-to-left order. The result follows the nore-
al algebraic convention of raising A to the power
-B.

2. The second operand of the first relation,
C + D / COS(E)
is evaluated by computing the value of the cosine
of E, dividing D by this value and then adding the
result to C.

3. The result of step 1 1is then compared to the
result of step 2. If the first value is arithmet-
ically greater than the second one, the relation
is true and control will transfer to the DO
statement of the THEN clause since the entire
compound relational expression is true. Other-
wise, if the value of the first relational opera-
tion is false, evaluation continues with the next
step.

4, The value of -~ (BIT4 1! BITX) is formed by
concatenating the bit-strings BIT4 and BITX and
then complementing the result.

5. The expression (BITX & "F") is evaluated by
performing the & operation between the bit string
BITX and the constant gquantity #"FP®, with the
shorter string extended on the right with zeros.
Note that the parentheses are needed here since
the relational = operator has a higher priority
than the § operator.

6. The = comparison of the two bit-string results is
made after extending the shorter string with
zeros. If the relation is true, control will be
transferred to the THEN clause for the same reason
as 1in step 3. If this relational operation gives
the value false, evaluation continues.

7. The third relational operation compares the value

Chapter 4 -- Data Manipulation 61

31 MARCH 1972

of the 1label variable LABEL_VARBL with the 1label
constant L1. This comparison involves <checks of
whether the ¢two label values refer to the sanme
statement and vhether the environment indicator in
the label variable refers to the current environ-
ment. If both these comparisons are true then the
-~= relation is false and control will branch
around the THEN clause since the entire compound
relation is then false, Otherwise, the two label
values are unequal and the relation holds true and
evaluation continues.

8. Expressions within an argument list are evaluated
before the corresponding function reference can be
made; therefore, in the function reference

SUBSTR (CHARS, I+2, L/3)
I+2 and L/3 are computed before performing the
substring function.

9. The substring extracted from CHARS by the SUBSTR
function 1is concatenated to the right-hand end of
the character-string, CHAR3,

10. The resulting character-string is compared for
equality with the character-string CHARX after the
shorter string has been extended with tlanks. If
the relation is true, the THEN clause is executed.
Othervise, control is transferred around the do-
group of the THEN clause.

As the example vwas written above, the THEN clause will
be executed if any of the three conditions are
satisfied:

1. the first relation is true.

2. the first relation is false but the second
relation is true.

3. both the first and second relations are false
but both the third and fourth relations are
true.

62 Chapter 4 -- Data Manipulation

APPLE REFEREWCE MANUAL

31 MARCH 1972

ARRAY EXPRESSIONS

A single array variable or an expression that includes at
least one array operand is called an array_expression.
Array expressions may also include operators (both prefix
and infix), scalar variables and constants.

Fvaluation of an array expression yields an array result.
All operations performed on arrays are performed on an
element-by-element basis, ian row-major order. Therefore,
all arrays referred to in an array expressiorn must be of
identical bounds. Since the operations are performed on a
strict element-by-element basis, array operations do not
always produce the same result as the same operation in
conventional matrix algebra.

Array expressions can be used only on the right-hand side of
an assignment statement or as arguments. An array expres-
sion cannot appear in the relation of an IF statement. 1In
this context, only an element expression can be valid since
the IF statement tests a single true or false result.

Operations between Arrays ané Scalars

The result of an infix operation between an array and a
scalar element is an array with bounds identical to the
original array, each element of which is the result of the
operation being performed upon the corresponding element of
the original array and the single element. For example:

If A is the array rs 10 3

E}Z 11 8

then A*3 is the array 15 30 9
36 33 24

The element of an operation. hetween an element and an,array
can be an element of the same array. In this case, the
value used for the element throughout the operation is the
value of the element before the start of the operation. For
example, the expression A*A (1, 3)) would give the same result
in the case of the above array A, since the original value
of A(1, 3) was 3.

Chapter 4 =-- Data Manipulation 63

APPLE REFERENCE MANUAL

31 MARCH 1972

Operations between_ Arrays

If two arrays are connected by an infix operator, the two
arrays must have identical bounds. The result is an array
with bounds identical to those of the original arrays; the
operation is performed upon the corresponding elements of
the two arrays.

Note that the arrays must have identical bounds. They must
have the same number of dimensions; corresponding dimensions
must have identical lower and upper bounds. For example,
the bounds of an array declared X(10, 6) are not identical
to the bounds of an array declared Y(2:11, 3:8), although
the extents are the same for corresponding dimensions and
the number of elements is the same.

Example of an array infix expression:

- -
If A is the array 2 4 3
6 1 7

4 8 2

& =

and if B is the array - 1 5 7
8 3 4

f 3 L

then A*B is the array 2 20 21
48 3 28

24 24 2

64 Chapter 4 -- Data Manipulation

APPLE REFERENCE MANUAL

31 MARCH 1972

DATA CCNVERSION

This section is concerned primarily with the concepts of
data conversions, when they occur, and their results.
Implicit data conversion can occur under the following
circumstances:

1. Type conversion from one data type to another data
type may only occur across the assignment
operator.

2. Arithmetic conversions of precision or scale of
arithmetic values may occur within an expression
or across the assignment operator.

Data conversion can also occur when explicitly requested
through the use of a conversion built-in function.

The target of a conversion 1is the field to which the
converted value is assigned. In the case of a direct
assignment, such as A = B:, in which conversion must take
place, the variable to the left of the assignment operator
(in this case, A1) is the target.

A conversion always involves a source data item and a target
data item, that is, the original representation of the value
and the converted representation of the value. All of the
attributes of both the source data item and the target data
item are known, or assumed, at compile time.

ARITHMETIC CONVERSION

Arithmetic conversion consists of a change of scale or
precision and may occur under two conditions:

1. across an assignment operator

2. autowatically in an arithmetic or relational
expression.

Across the assignment operator, all arithmetic data conver-
sions are possible, that is, the scale may change between
FIXED and FLOAT or vice versa and the precision may change
between long and short or vice versa. When the result of a
conversion from PLOAT to FIXED exceeds the range of values
that can be represented by FIXED data, the result |is
undefined. '

Chapter 4 -- Data Manipulation 65

APPLE REFERENCE MANUAL

31 MARCH 1972

When the conversion takes place 1in the evaluation of an
expression, the conversion is in one direction, i.e., FIXED
to FLOAT and short to long. The results of conversion are
shown in the following table:

SOURCE

B ¥ ¥ q kR
TARGET|FIXED SHORT§ FIXFED LONG {FLOAT SHORT|FLOAT LONG
1 L

= 3

1 R]

truncation | truncationj
on i on 1
least] least i
significant|significant|
| 3

truncation
on
most
significant

FIXED
SHORT

no
change

-‘-_“-ﬂr-q
i — — — -)
'ﬁ-““h—dp

i]

i

|

i

]

{ $ §

i truncation | truncation]
{FIXED | no loss of | no] on i on i

]

§

\

|

|

|

§ LONG |significancej change least i least |
1 | | significant})significantj
t + + } {
] | { truncation] truncationj
JFLOAT | no loss of | on no i on |
| SHORT|significancej least change] least }
| | i significantj {significant]
1 i L L] i}
 J k] LI L] ¥

{FLOAT | no loss of | no loss of | no loss of { no

1

i

R

LONG |significancelsignificance{significance] change
i i A A

Results_of Arithmetic Operations

The following rules define the attributes of the results of
the arithmetic operations:

1. Scale: Prefix operations yield the same scale as
the operand. Infix +, -, and * operators produce a
PIXED result if both operands are FIXED. The scale
of all other infix operations is FLOAT.

2. Precision: The resulting precision of any arith-

metic operation is the largest precision of the
operands.

66 Chapter 4 -- Data Manipulation

APPLE REFERENCE MANUAL

31 MARCH 1972

Some special cases of the exponentiation operation are
defined as follows for the expression A*%B:

1. If A =0 and B >» 0, the result is 0.

2. If A =0 and B € 0, the ERROR condition is raised.
3. TIf A =0 and B = (0, the result is 1.

4L, TYf A <€ 0 and B is not fixed-point, the ERROR condi-

tion results.

TYPE _CONVERSION

Type conversion is the process of changing the attributes of
a data item (e.g., character string to bit string, ENTRY to
CHARACTER) from one data type to another. This process is
accomplished through the use of the assignment operation and
the built-in functions. The operand on the left-side of the
assignment operation is considered to be the target and the
expression of the right-side as the source. The attributes
of the target are determined from the declaration of the
target variable.

Chapter 4 =-- Data Manipulation 67

APPLE REFERENCE MANUAL

31 MARCH 1972

The following table defines all the permitted type conver-
sions in Apple. Where a conversion is permitted, a number
is shown referring to one of the notes following this table.
The "=" symbol indicates that the source and target data
types are equivalent and no type conversion is necessary.

SOURCE DATA TYPE

— T . Y T T 1 . v 1
] TARGET {Arith-jCharac-§y Bit |LabeljLocatori{File|Entry}
| DATA |[metic | ter | i i i i |
] TYPE | |string istring] 1 i | }
1 3 i N i i i kR i F |
g X T T T T 2] | L R |
{Arith- | | | [| | | I
Imetic { 1 1 2] U4 | i] [I
i + + + + + $ + : |
1Charac~-| | | i | | i l
{ ter | 3 = I3 | | 1 31 3 |
Istring | i i | | | { |
[g + + } + + + } §
1 Bi? | | { | | | [J
]string | 5 |] = i |] i 1
t $ $ $ + + { + |
| Label |] } I = 9 i I |
¢ + } ' } 4 t + . |
|Locator}] 12 | {] I 6 - 11} 1 i
g } + + % ' + + 4
| FPile | | i | I =1 i
F + } t + + + t 4
| Entry | | 13 14 | | i =
1 A E R i ' R i i] ¥]

1. _Arithmetic Conversion

See the previous section in this chapter.

2.__Character-string to Arithmetic

The conversion from character-string data items to arithmet-
ic data items is accomplished by means of the built-in
functions FIXED and FLOAT (See Appendix 1) or through the
use of the GET statement with the STRING option. This
conversion is not permitted across the assignment operator.

68 Chapter 4 -- Data Manipulation

APPLE REFERENCE MANUAL

31 MARCH 1972

3. _Conversions_to_Character-string

The conversion of arithmetic, bit-string, file, or entry
data items to a character string value may be accomplished
hy the CHAR built-in <function. This conversion is not
permitted across the assignment operator. The conversion of
bit strings produces the character 0 for every 0 bit and the
character 1 for every 1 bit to form a character string of
the same length as the source bit string. Arithmetic values
are converted to decimal arithmetic constants with possible
leading minus signs. File variables are converted to the
names of the corresponding files. Entry variables are
converted to the names of the corresponding entry points.

4., Bit-string to Arithmetic

This conversion may occur across the assignment operator or
when explicitly specified by the FIXED or FLOAT built-in
functions. If the source bit-string is less tham 48 bits
long, it is interpreted as an unsigned binary integer with a
precision equal to the length of the bit-string; the result
of this conversion is a positive fixed value that may
undergo further arithmetic conversion if required by the
target data type. If the length of the source bit-string is
longer than 47 bits, a diagnostic message is printed
indicating an illegal conversion. The results of bit-string
to arithmetic conversion are undefined if the length of the
hit-string is unknown at compile time (e.g., if the 1length
has been specified by the REFER option or as BIT (*) for a
parameter).

S.__Arithmetic to Bit-string

This conversion may occcur across the assignment operator.
The arithmetic data item 1is converted, if necessary, to
FIXED scale long precision as defined under Arithmetic
Conversions. This 1is treated as a bit-string of length 64
and assigned to the target bit-string in accordance with the
normal rules for bit-string assignment.

6. Offset to Pointer

An offset variable is converted to a pointer value across
the assignment operator or by the use of the POINTER

Chapter 4 -- Data Manipulation 69

APPLE REFERENCE HANUAL

31 MARCH 1972

built-in function. The relative offset value 1is combined
with the associated file origin to produce an absolute
pointer value.

7. _Pointer_to Offset

A pointer value is converted to an offset value across the
assignment operator or by the use of the OFFSET built-in
function. The resulting offset value represents the rela-
tive difference between the actual pointer value and the
associated file origin. The result is undefined if the
pointer does not identify a generation of data in the file
specified in the declaration of the offset.

8. _Descriptor to Pointer

This conversion occurs across the assignment operator. The
pointer value is extracted from the descriptor data itenm.
The length value of the descriptor is ignored.

9. _Pointer to Descriptor

When conversion occurs across the assignment operator, the
source pointer value 1is interpreted as a descriptor value
that indicates a length of zero. A length value may be
included by using the DESCR built-in function (see Appendix
.

10. Offset to Descriptor

An offset variable is converted to a descriptor value across
the assignment operator. The relative offset value is
combined with the associated file origin to form a descrip-
tor value that indicates a length of zero.

11. Descriptor_to Offset

A descriptor variable is converted to an offset value across
the assignment operator. The resulting offset value is the
relative difference between the pointer value in the descri-

70 Chapter 4 -- Data Manipulation

APPLE REFERENCE MANUAL

31 MARCH 1972

ptor and the associated file origin. The result is unde-
fined if the descriptor does not identify a generation of
data in the file specified in the declaration of the offset.

12, Arithmetic to Locator

Any attempt to assign or convert an arithmetic value to a
pointer or offset variable results in a diagnostic message
indicating 1illegal conversion. However, the descriptor
variable has dual attributes (both arithmetic and 1locator
data types) and <can be assigned arithmetic values with no
conversion required with the exception of arithmetic conver-
sion to long precision.

13. __Character-string to Entry Value

Conversion of a character string value to an entry value is
accomplished through the ENTRY built-in function (see Appen-
dix 1). The source character-string value must be a
legitimate name of an external procedure that 1is known to
the execution environment. If the procedure can be located,
the address of its entry point is returned by the ENTRY
function as the entry value.

Chapter 4 -- Data Manipulation 71

APPLE REFERENCE MANUAL

31 MARCH 1972

CHAPTER 5 -~ DATA_ DESCRIPTION

INTRODUCTION

An identifier appearing in an Apple program may refer to one
of many classes of objects. For, example, it may represent
a variable referring to a floating-point number; it may
refer to a file; it may be a variable referring to a pointer
or offset; etc.

The recognition of an identifier as a particular name is
established through the declaration of the name. The
declaration provides a means for associating properties with
a name. These properties and the scope of the name itself
together make up the data_attributes of an identifier.

When an identifier is used in a given context in a progranm,
attributes must be known in order to assign a unique meaning
to the occurrence of the identifier. Por example, if an
identifier 1is used to represent an arithmetic variable, the
scale, precision, and storage class must be known. Exanmples
of attributes are:

CHARACTER{50) -~ Association of this attribute with an
identifier defines the identifier as representing
a variable referring to a string of 50 characters.

FLOAT -- Association of this attribute with an identi-
fier defines the 1identifier as representing a
variable referring to arithmetic data.

EXTERNAL -- Association of this attribute with an

identifier defines the identifier as a name with a
global scope.

DECLARATIONS

A given 1identifier is established as a name which holds
throughout a certain scope in the program (see "Scope of
Declarations®™ in this chapter) and a set of attributes may

If a declaration is made in a block, then the name 1is said
to be internal +to that block and contained blocks unless
redeclared. However, a given identifier may be established

72 Chapter 5 -- Data Description

APPLE REFERENCE MANUAL

31 MARCH 1972

in different parts of a program as referring to separate
objects. For example, an identifier may represent an
arithmetic variable in one part of a program and a entry
constant in another part. These two parts cannot overlap.
Fach separate use of the identifier is established by means
of a separate DECLARE statement, The rules of scope
distinguish between references to different uses of the
identifier.

EXPLICIT DECLARATIONS

EFxplicit declarations are made through the use of the
DECLARE statement (see Chapter 8), 1label prefixes and
specification in a parameter list. By this means, an
identifier can be established as a name and can be given a
certain set of attributes.

Only one DECLARE statement can be used to establish an
internal nanme. However, 1in the <case of a parameter, a
complementary explicit declaration is required. The
appearance of the identifier in the parameter list specifies
that the identifier has the parameter attribute. This must
be combined with an explicit declaration in a DECLARE
statement to provide other data attributes. These multiple
declarations of the same name must be internal to the sanme
bl ock. This is known as a complementary _set of
declarations.

Two or more declarations of the same identifier, internal to
the same block, constitute a multiple _declaration of that
identifier only if they have identical gqualification
(including the case of two or more declarations of an
identifier at level 1, i.e., scalars or major structures).
Multiple declarations are in error.

Example:

DECLARE 1 A,
2
2
2 C,
2

B has a multiple declaration.

Chapter 5 -- Data Description 73

APPLE KHEFERENCE MANUAL

31 MARCH 1972

label Prefixes

The use of an identifier as a label prefix to a PROCEDURE or
ENTRY statement causes an explicit declaration of that
identifier as a name with the following attributes:

ENTRY with no returns attributes

EXTERNAL if the entry point belongs to an external
procedure

INTERNAL if the entry point belongs to an internal
procedure

If the PROCEDURE or ENTRY statement applies to the entry
point of an internal procedure, the declaration of the
identifier occurs in the block that immediately contains the
internal procedure. If the entry point belongs to an
external procedure, the declaration occurs in an 1imaginary
block of which the sole contents are the external procedure
concerned and the set of declarations generated for its
entry points.

A label acting as a prefix to any other statement is an
explicit declaration of the identifier as a statement 1label
constant. The declaration occurs within the block contain-
ing the prefix.

Parameters
An identifier that appears in a parameter 1list of an ENTRY
or PROCEDURE statement is explicitly declared as a name with

the attribute "parameter®, Further attributes must be
supplied by the programmer in a DECLARE statement.

CONTEXTUAL_ DECLARATIONS

The syntax of Apple allows the contextual declaration of
built-in functions. Such contextual declarations will not,
however, override any explicit declaration of the sanme
identifier whose scope includes the block containing a
statement that might otherwise cause contextual declaration.

74 Chapter 5 -- Data Description

APPLE REFERENCE MANUAL

31 MARCH 1972

An undeclared identifier is contextually declared with the
attribute BUILTIN if it appears in either of the contexts:

a. It appears anyvhere that it is 1leqgqal for a
function or pseudo-variable to appear and is
followed by an argument list.

b. It follows the keyword CALL in a CALL statement.

A contextual declaration is treated as if it had been made
in the external procedure, even if the reference is made in
an internal block. The scope of a contextually declared
name is the entire external procedure, except for any
internal blocks in which the same identifier is explicitly
declared. Explicit declarations have priority over contex-
tual declarations.

SCOPE_OF DECLARATIONS

When a declaration of an identifier is made in a block,
there is a certain well-defined region of the program (see
"Block Structure” in Chapter 2) over which the declaration
is applicable. This region is called the scope_ _of _the
declaration.

The scope of a declaration of an identifier is defined as
that block B to which the declaration 1is internal, but
excluding from the block B all contained blocks to which
another declaration of the same identifier 1is internal.
Block B may be the imaginary block that is considered to
contain the declaration of external entry constants, as
discussed under "Label Prefixes"” in this chapter.

A name 1is said to be known only within its scope. This
definition suggests a basic rule on the use of names:

All appearances of an identifier that are_intended
to_represent _a given name_in_a_ _program _must 1lie
within the scope of that_name.

The above rule has many implicatioms. One of the most
important is the limitation of transfer of control by the
statement GO TO A; where A is a statement label constant.

The statement GO TO A;, internal to a block B, can cause a
transfer of control to another statement internal to block B
or to a statement in a block containing B, and to no other
statement. In particular, it cannot transfer control to any
point within a block contained in B.

Chapter 5 -- Data Description 75

APPLE REFERENCE MANUAL

31 MARCH 1972

In general, distinct declarations of the same identifier
imply distinct names with distinct non-overlapping scopes.
It is possible, however, to establish the same name for
distinct declarations of the same identifier by means of the
EXTERNAL attribute. The EXTERNAL attribute is defined as
follovws:

A declaration of an identifier that specifies the
jdentifier as EXTERNAL is called an external
declaration _for _the _identifier. All external
declarations for the same identifier in a program
will be linked and considered as establishing the
same name. The scope of this name will be the
union of the scopes of all the extermal declara-
tions for this identifier.

In all of the external declarations for the same identifier,
the attributes declared must agree since all the declara-
tions involve a single name and refer to the same object.

The EXTERNAL attribute can be used to communicate between
different external procedures or to obtain non-continuous
scopes for a name within an external procedure.

An external name 1is a name that has the scope attribute
FXTERNAL. If a name is not external, it is said to be an
internal name and has the scope attribute INTERNAL.

The following examples illustrate scope of declarations.
The numbers on the left are for reference only and are not
part of the procedure.

76 Chapter S -- Data Description

APPLE REFERENCF MANUAL

31 MARCH 1972

Example 1.

1. A: PROCEDURE;
2. DECLARE (X, Z) FLOAT;:
3. B: PROCEDURE(Y);
4. DECLARE Y BIT(6);
5. C: BEGIN;
6. DECLARE (A, X) FIXED;
7. Y: RETURN;
END C;
FND B;
8. D: PROCEDURE;
a, DECLARE X CHARACTER (20)
EXTERNAL;
END D:

END A:

Since entry names of external procedures have the attribute
EXTERNAL, the scope of the entry name A and of the
character string X declared in line 9 above may include
parts of other external procedures of the program. The
following table gives an explanation of the scope and use
of each nanme:

T 1 R 1 ;
| | | !

jLine|Name| Ises I|Scope (by block name) !
1. i K} 3]
L L A k] 1
] 11 A | external entry name] all of A except C H
! 21 X) floating-point variable] all of A except C & D |
1 21 2) floating-point variable] all of A]
] 3% B] internal entry nane] all of A }
] 41 Y | bit string 1 all of B except C]
! 51 C { statement label i all of B |
] 6} A) fixed-point variable | all of C }
] 61 X | fixed-point variable ! all of C |
! 71 Y } statement label | all of C i
1] 81 D} interral entry name | all of A |
}] 9 1 X | character string] all of D i
4 L i 1]

Chapter 5 -- Data Description 77

APPLE REFERENCE MANUAL

31 MARCH 1972

Example 2.
As PROCEDURE;
1. DECLARE X EXTERNAL FLOAT;
B: PROCEDURE;
2. DECLARE X FIXED;
C: BEGIN;
3. DECLARE X EXTERNAL FLCAT;
END C;
END B;
END Aj
D: PROCEDURE;
4, DECLARE X FIXED;
E: PROCEDURE;
5. DECLARE X EXTERNAL FLOAT;
END E;
END D3

In examrple 2, there are five separate declarations
for the identifier X. Declaration 2 declares X as
a fixed-point variable name; its scope is all of
block B except block C. Declaration 4 declares X
as another fixed-point variable name, distinct
from that of declaration 2; its scope is all of
block D except block E.

Declarations 1, 3, and 5 all establish X as a

single external progranm. Declarations 2 and &
establish X as a FIXED scalar in blocks B and D.

78 Chapter 5 -- Data Description

APPLE REFERENCE MANUAL

31 MARCH 1972

DEFAULT_ATTRIBUTES

Some attributes are given to identifiers by explicit and
contextual declarations. Generally these do not constitute
the full set of attributes and *he rewmaining attritutes are

deduced according to the following set of default rules:

1. In the absence of contradictory specificiation,
the following attributes nmay be deduced from those
already specified:

] 1 |
] Specified | Defaults |
| !]
F u . |
] AUTOMATIC JINTERNAYL i
{BIT JVARIABLE]
JBUILTIN JCONSTANT, INTERWAL i
] BASED {ITNTERNAL |
jCHARACTER jfized-length |
{CONDITION {CONSTANT, INTERNAL I
| CONSTANT |STATIC, INTERWAL i
{ DESCRIPTOR JYARIABLE i
JENTITY |INTERNAL 1
{ ENTRY JEXTERNAL, COWSTANT }
|EVENT JINTERNAL, CONSTANT i
JEXTERNAL JSTATIC, VARIARL®E i
{FILE JINTERNAL i
{FILE_SET {INTERNAL |
| FIXED IBINARY {473, VARTIABLE !
| FLOAT |DECINAL{T14) , VARIABLE i
JINITIAL {VARIABLE |
JINTERNAL {ATITOMATIC H
| LABEL {VARTAEBLE l
| OFFSET JVARTABLE !
{ POINTER JYARIABLE I
] SET JINTERNAL i
| REGISTER JINTERNAL {
| STATIC JINTERNAL |
J VARIABLE JINTERNAL i
i 2 3

Chapter 5 -- Data Descriptiom 79

APELE REFERENCE MANUAL

31 MARCH 1972

2. For all identifiers that are scalars, elements of
a structure, or arrays of non-structured elements,
one of the following attributes must be specified
in a DECLARE statement:

BIT (length-specification)
BUILTIN

CHARACTER (length-specification)
CONDITION

DESCRIPTOR

ENTITY

ENTRY

EVENT

FILE

FILE_SET

FIXED

FLOAT

LABEL

OFFSET

POINTER

SET

LIST OF _ATTRIBUTES

Following 1is a detailed description of the attributes that
can appear in a DECLARE statement. Alternative attributes
are discussed together.

80 Chapter 5 -- Data Description

APPLE REFERENCE MANUAL

31 MARCH 1972

AUTOMATIC, STATIC, REGISTER, and BASED

The storage class attributes are used to specify the type of
storage allocation to be used for level one data variables.

AUTOMATIC specifies that storage is to be allocated upon
each entry to the block to which the storage declaration is
internal. The storage is released upon exit from the block.
A data value may be represented by an automatic variable
only as long as the block to which that variable is internal
remains active. The value is lost upon exit from the block.

STATIC specifies that storage is to be allocated when the
procedure containing the declaration is first invoked and is
not released until program execution has been completed.

REGISTER specifies that storage is to be allocated within
the STAR hardware registers whenever the declaring block is
activated in the same manner that automatic variables are
allocated. The storage is released and the values are lost
upon exit from the block. This storage class 1is the most
efficient from the point of view of access; however, it has
the most restricticns.

BASED specifies that full control of allocation will be
maintained by the programmer through the use of the ALLOCATE
and FREE statements. A variable with the BASED attribute is
allocated storage only upon the execution of an ALLOCATE
statement specifying that variable. This allocation remains
even after termination of the block in which it was
allocated. The storage will remain allocated for that
variable until the execution of a FREE statement which
specifies that variable. All current allocations of based
variables are available at any time. Unique reference to a
particular allocation is provided by a locator value quali-
fying the based reference. A based variable can also be
used to reference data of any storage class by associating
the based variable name with a locator qualifier that
identifies that data. Based storage is the most powerful of
the Apple storage classes, but it must be used carefully.
Many of the safequards against error that are provided for
other storage classes cannot be provided for based.

Chapter 5 -- Data Description 81

APPLE REFERENCE MANUAL

31 MARCH 1972

General format:
storage-class-attribute ::=

STATIC

AUTOMATIC

REGISTER [(register~-specification))
BASED [(locator-variable)]

General rules:

1. Automatic, register and based variables can have
internal scope only. Static variables may have
either internal or external scope.

2. Storage class attributes cannot be specified for
conditions, entities, entries, built-in functions,
events, or members of structures.

3. The storage class attributes STATIC, AUTOMATIC and
BASED cannot be specified for parameters.

4. Variables declared with adjustable array bounds or
string lengths may only have the BASED storage
class attribute.

5. For a structure variable, a storage class attri-
bute can be given only for the major structure
name. The attribute then applies to all elements
of the structure or to the entire array of
structures. Storage is always allocated for a
complete major structure. The contained items may
not be independently allocated or freed.

6. If, during the evaluation of an expression, a
based variable is allocated or freed, the result
of the expression is undefined if the variable is
used elsewhere in the statement.

7. The following rules govern the use of based
variables:

a. The locator variable named in the BASED
attribute must be an unsubscripted sca-
lar locator variable. This restriction
does not apply to explicit locator qua-
lifiers, which may be general 1locator
expressions.

82 Chapter 5 -- Data Description

31 MARCH 1972

C.

APPLE REFERENCE MANUAL

If no locator variable is named in the
BASED attribute, any reference to the
based variable must have an explicit
qualifier. This does not apply to a
based variable that is the object of a
REFER option or that is to be allocated
through the use of an ALLOCATE
statement.

A reference to a based variable without
an explicit locator qualifier is impli-
citly qualified by the locator variable
named in the BASED attribute specifica-
tion in the DECLARE statement for the
based variable. Identifiers in this
implicit gqualification are those known
in the declaring block.

Example:

DECLARE P POINTER,
B BASED (P);
BEGIN;
DECLARE P POINTER;

L: B X3
In the statement labelled L, the assign-
ment B = X; has the same effect as:

P->B = X3
where P is the name known in the outer
block, not the one declared in the begin
block.

For the results of a reference to be
defined:

i. The attributes of the based
variable must be the same as
those of the data identified
by the locator qualifier.

ii. The declared mpaximum length of
a string with the attributes
BASED VARYING must be equal to
the maximum length of the str-
ing identified by the locator
qualifier used in the
reference.

Chapter 5 -- Data Description 83

APPLE REFERENCE MANUAL

31 MARCH 1972

iii. The 1length of a fixed length
string with the attribute
BASED should be equal to the
length of the string identi-
fied by the locator qualifier
used in the reference.

iv. The aggregate type and data
type of all elements of the
structure must agree up to and
inciuding all of the level-2
items that contain the
referenced sub-item. A level-
2 item is an immediately con-
tained member of structure,
i.e., is not contained in any
other member,

Fhen a reference is made to a based
variable, the data attributes assunmed
are those of the based variable, while
the associated locator variable identi-
fies the generation of data. If the
reference is to a component of a based
structure, a second temporary locator
variable is created to determine the
location of the component in relation to
the beginning of the structure.

Array bounds and string lengths of iden-
tifiers declared with the BASED attri-
bute are evaluated dynamically with each
reference to the based variable. There-
fore, the asterisk notation for dimen-
sions and 1lengths is not permitted. A
reference to a component of a based
structure causes evaluation of suffi-
cient elements of the structure to
determine the position of the component.

Exanmple:

DECLARE P POINTER,
M FIXED,
N FIXED,
A(2%M, 2% (M+N)) FLOAT
BASED (P) 3

At every reference to an element of
A, variables M and N must contain

84 Chapter 5 -- Data Description

37 MARCH 1972

APPLE REFERENCE MANUAL

values that correspond to the
dimensions of the generation of A
being accessed.

When a based variable is allocated using
the ALLOCATE statement, expressions for
bounds and lengths are evaluated at the
time of allocation in the environment of
the declaration.

The REFER option can be used to create
structures that define their own adjust-
able bounds and lengths, i.e., self-
defining data. The REFER option may be
used in a DECLARE statement to define a
bound of an array or the 1length of a
string.

General format:
refer-option ::=
expression REFER (scalar-name)

where "scalar-name" is a reference, pos-
sibly qualified, but not subscripted or
locator qualified. The reference must
be to a scalar item preceding the EREFER
option in the structure.

The REFER option can not be used in the
declaration of a structure which is
named in the LIKE attribute for another
identifier. (See MLIKE" later in this
chapter for details.)

Chapter 5 -- Data Description 85

APPLE REFERENCE MANUAL

31 MARCH 1972

Example:

DECLARE P POINTER,
FIXED,
FIXED,

A BASED(P),

2 N1 FIXED,

2 N2 FIXED,

2 N3 FIXED,

2 B(M+3 REFER(N1),
2

2

- 2R

M*N REFER (N2)) FLOAT,
C CHAR (2*M*N REFER (N3)),
D FIXED;
M 53
N 103
ALLOCATE A;

W

This will cause space to be allocated
for A with the bounds of B, 8 and 50,
and the length of C, 100. N1, N2 and N3
will be set to 8, 50 and 100 respective-
ly. A reference to D will cause expre-
ssions involving N1, N2 and N3 to bhe
evaluated.

h. The INITIAL attribute may be specified
for a based variable. The values are
used only upon explicit allocation of
the based variable with an ALLOCATE
statement.

i. Whenever a based variable containing
arrays or strings is passed as an arqu-
ment, the bounds and lengths are deter-
mined at the time the argument is passed
and remain fixed throughout execution of
the invoked block.

8. The following rules govern the use of register
variables:

a. If a scalar arithmetic variable with the
REGISTER attribute is passed as an argu-
ment, its contents are passed by value
rather than by reference as is done for
all other storage classes (see "Corres-
pondence of Argqument and Parameters™ in
Chapter 2).

b. Although a variable with the REGISTER
attribute may be used as the argument to

86 Chapter 5 -~ Data Description

31 MARCH 1972

APPLE REFERENCE MANUAL

the ADDR built-in function, the pointer
value returned by the function is unde-
fined outside the block in which it was
evaluated.

The "register-specification" must be an
unsigned integer constant in the range 0
- 255, If a register specification is
given and the use of the register con-
flicts with the standard use of that
numbered register, the results of the
procedure are undefined. REGISTER
variables declared with a register-
specification will not have their values
preserved across calls.

If no register specification is given, a
register number will be assigned by the
compiler. These values will be pre-
served across calls.

Chapter 5 =-- Data Description 87

APPLE REFERENCE MANUAL

31 MARCH 1972

BINARY and DECIMAL

The precision attribute is used to specify the minimum
number of significant digits to be maintained for the
storage of arithmetic data variables. The precision attri-
bute can be specified in terms of either binary or decimal
digits as indicated by the BINARY or DECIMAL gualifier.

General format:
BINARY

precision-attribute ::= [(number-of-digits [,0]))]
DECIMAL

The "number-of-digits™ is an unsigned non-zero decimal
integer constant.

General rules:

1. The "number-of-digits™ specifies the minimum numb-
er of digits to be maintained for data iteams
assigned to the variable. The number of digits is
specified for both fixed-point and floating-point
variables.

2. An optional scale factor of zero may be specified
for fixed-point variables only.

3. The maximum precision that is supported is:

BINARY --- 47 bits
DECIMAL --- 14 decimal digits

If the "number-of-digits" specified exceeds these
limits the maximum value will be used.

4, The actual precision, p, that will be used is
determined from the "number-of-digits®, d4d, as
follows:

If the precision-attribute is BINARY then
if 1 < 4 £ 23 then p = 23.
if 24 € 4 € 47 then p = 47,

If the precision-attribute is DECIMAL then

if 1€ d £ 6 then p = 6.

if 7 € d € 14 then p = 14,

5. If the "number-of-digits" is omitted, the maximunm
precision is assumed.

88 Chapter 5 -- Data Description

APPLE REFERENCE MANUAL

31 MARCH 1972

BIT and_CHARACTER

The BIT and CHARACTER attributes are used to specify string
variables. The length of the string is defined in terms of
the number of elements to be maintained, where an element is
either a bit or character.

General format:

string-attribute ::=

General

1.

BIT
(length-specification)
CHARACTER [VARYING]

rules:

The VARYING attribute specifies that the maximunm
lenagth of the string has been specified by the
length-specification. The current length at any
time is the length of the current value of the
string. VARYING may only be applied to character
strings.

The declared attributes (including 1length and
VARYING) of a string with the attribute BASED must
match the attributes of the string identified by a
locator variable in a reference.

The length-specification must immediately follow
the CHARACTER or BIT attribute at the same factor-
ing level.

In the case of a parameter, the 1length may be
specified by an asterisk. This indicates that the
length of the string 1is determined from the
corresponding argument string being passed.

The length-specification of strings declared with
the AUTOMATIC or STATIC attributes must be an
unsigned integer constant.

The length-specification of a BASED variable str-
ing may be declared using the REFER option (see
the ALLOCATE statement).

The current length of an uninitialized varying-
length string is undefined before assignment.

Chapter 5 -~ Data Description 89

APPLE REFERENCE MANUAL

31 KARCH 1972

BUILTIN

The BUILTIN attribute specifies that any reference to the
associated name within the scope of the declaration is to be
interpreted as a reference to the built-in function or
pseudo-variable of +the same name. The built-in functions
and pseudo-variables of Apple are listed in Appendix 1.

General format:
built-in-attribute :2:= BUILTIN
General rules:
1. BUILTIN is used to refer to a built-in functiom or
pseudo-variable in a block within a containing

block in which the same identifer has been
declared to have another meaning.

Example:
As:
PROCEDURE;
DECLARE SQRT ENTRY (FLOATY
RETURNS (FLOAT) ;
X = SQRT(Y¥); /*This calls the external
procedure SQRT */
BEGIN:
DECLARE SORT BUILTIN;
¥ = SQRT(Y): /* This calls the
built-in function SQRT %/
END:
ENDg

2. If the BUILTIN attribute is declared for an entry
constant, there can be no other explicitly
declared attributes for the entry comstant except
INTERNAL,

3. The BUILTIN attribute cannot be declared for
paraneters.

4, The BUILTIN attribute must be specified for any
parameterless built-in functions or pseudo-
variables that are referenced by the progranm
{e.g., HNULL, TIME, ORFILE j.

90 Chapter 5 -- Data Description

APPLFE REFERENCE MANUAL

31 MARCH 1972

e < s >

See BIT and CHARACTER

CONSTANT

The CONSTANT attribute specifies that the associated identi-
fier is the name of a constant (a value which cannot change
during program execution).

General format:
constant-attribute ::= CONSTANT (value-list)

where the specification of "value-list" is given 1in the
section on the INITIAL attribute in this chapter.

General rules:

1. The CONSTANT attribute may only be specified for
level~-1 identifiers with arithmetic, string, loca-
tor, or LABEL attributes. It can not be specified
for parameters, structures, or any variables.

2. Only one constant value may be specified for a
scalar identifier. A 1list of values can be
specified for a constant array; however, the
number of values must match the number of elements
in the array.

3. The same rules apply to the "value-list" as apply
to the initial-value-list described in the section
on the INITIAL attribute with the execption that
the asterisk notation (used to skip or ignore
elements) is not permitted.

4, The only storage class attribute that may be
specified for an identifier with the CONSTANT
attribute is STATIC.

5. The only scope attribute that may be specified for
an identifier with the CONSTANT attribute is
INTERNAL.

6. The values of LABEL constants must be label
prefixes within the block of the declaration.

Chapter 5 -- Data Description 91

APPLE REFERENCE HMANUAL

CONDITION

31 MARCH 1972

and EVENT

The EVENT

or CONDITION attribute specifies that the identi-

fier refers to an interrupt.

General format:

| EYENT

interrupt-attribute ::=

{ CONDITION

General rules:

1.

See BINARY

DESCRIPETOR

See OFFSET

No attributes other than scope (INTERNAL or
EXTERNAL) can be specified for interrupt identi-
fiers. These identifiers can not be declared as
arrays or members of structures.

Only user defined <conditions can be declared.
System defined conditions (see Appendix 2) are

treated as keywords in the ON, REVERT, and SIGNAL
statements.

and DECTIMARL

s POINTER, and DESCRIPTOR.

92 Chapter 5 -- Data Description

APPLE REFERENCE MANUAL

31 MARCH 1972

Dimension

The dimension attribute specifies the number of dimensions
of an array and the bounds of each dimension. The dimension
attribute specifies the bounds (only the upper bound or both
the upper and lower bounds) or indicates, by the use of an
asterisk, that the actual bounds for the array are to be
taken from the passed parameter.

General format:
dimension-attribute ::= (bound [, bound] ...)
bound ::= { [lower-bound :] upper-bound } | *

where ‘"upper-bound" and "lower-bound" are fixed scalar
expressions.

General rules:

1. The number of "bounds" specified indicates the
number of dimensions in the array unless the
variable being declared is contained in an array
of structures. 1In this case, additional dimen-
sions are also inherited from the containing
structure.

2. The bound specification indicates the bounds as
follovws:

a. If only the nupper bound is given, the
lower bound is assumed to be 1,

b. The value of the fixed scalar expression
is evaluated on allocation of storage
and on reference; the value of the lower
bound must be less than or equal to the
value of the upper bound.

c. An asterisk used as a bound specifica-
tion indicates that the actual bounds of
an array parameter are to be the bounds
of its associated array argument.

3. Bounds that are expressions are known as adjust-
able bounds and are evaluated when storage is
allocated for the array and when the array is
referenced. For parameters, bounds can be only
asterisks or optionally signed integer constants.

Chapter 5 -- Data Description 93

APPLE REFERENCE MANUARL

31 MARCH 1972

4. The bounds of arrays Adeclared with the attributes
AUTOMATIC, REGISTER, or STATIC must be optionally
signed integer constants.

5. The dimension attribute must be the first attri-
bute to follow the array name (or parenthesized
list of names if the dimension attribute is being
factored) in the declaration. Intervening blanks
are optional.

6. The REFER option can be used to specify the bounds
of a BASED variable (see the ALLOCATE statement).

7. The total number of elements in an array ®say not
exceed 65535,

ENTITY

The ENTITY attribute specifies a variable that may be
manipulated by the INSERT, REMOVE, PFIND, and FOR EACH
statements.

General format:
entity-attribute :2:= ENTITY { (locator-variablej)
General rules:

1. Specification of the ENTITY attribute implies that
the named identifier is a structured based vari-
able. A system function will be provided to
record in a file the structure declaration for
each entity. At compile time this structure
declaration will replace the entity declaration.
It is intended that standard entity declaratioms
for a project will all be recorded in the same
file.

2. The ENTITY attribute may only be applied to a
level-1 identifier which may have no other
declared attributes.

3. The length of an identifier given the ENTITY
attribute can not erxceed 8 characters.

94 Chapter 5 -- Data Description

APPLE REFERENCE MANUAL

31 MARCH 1972

ENTRY

The ENTRY attribute specifies that the identifier is being
declared as an entry constant or entry variable. It is also
used to describe the attributes of the parameters of the
entry point.

General format:

entry-attribute ::= ENTRY [(parameter-attribute-list
{, parameter-attribute-list]...)]
T RETURNS(attribute-list)]

Rules for "parameter-attribute-lists®:

1. A parameter-attribute-list describes the attri-
butes of a single parameter; the parameter name is
not given.

2. The parameter-attribute-lists must appear 1in the
same order as the parameters they describe.

3. The attributes describing a scalar parameter may
appear in any order within the parameter-
attribute-list. The attributes within a list must
be separated by blanks; lists must be separated by
commas. For an array parameter, the dimension
attribute must be the first specified.

4, Array bounds and string 1lengths may only be
specified by decimal integer <constants or by
asterisks.

5. Parameter-attribute-lists may not «contain the
attributes STATIC, BASED, LIKE, AUTOMATIC, BUIL-
TIN, EXTERNAL, INTERNAL, CONSTANT, or INITTIAL.

General rules:
1. The ENTRY attribute may not be specified:
a. for an array or within a structure,
b. within a RETURNS attribute, or
c. with the BUILTIN attribute.
2. The factoring of attributes 1is not permitted

vithin the set of parameter-attribute-lists of an
ENTRY attribute specification.

Chapter 5 -- Data Description 95

APPLE REFERENCE MANUAL

EVENT

31 MARCH 1972

An external entry constant nust be given the
attribute ENTRY, otherwvise it is contextually
declared with the BUILTIN attribute and is treated
as the name of a built-in function.

All entry names which are invoked as functions in
the procedure must be declared with a RETURNS
attribute.

The appearance of an identifier as a label prefix
of either a PROCEDURE statement or an ENTRY
statement constitutes an explicit declaration of
that identifier as an entry constant, thus the
same identifier may not be declared in a DECLARE
statement in the same block.

The attribute TINITIAL may not be specified for
entry variables.

The attribute INTERNAL may not be specified for
entry constants.

An identifier declared with the ENTRY attribute is
assumed to be an entry constant, unless the
VARIABLE attribute is also specified.

See CONDITION and EVENT

96 Chapter 5 -- Data Description

APPLE REFERENCE MANUAL

31 MARCH 1972

EXTERNAL and INTERNAL

The EXTERNAL and INTERNAL attributes specify the scope of a
name. INTERNAL specifies that the name can be known only in
the declaring block and 1its contained blocks. EXTERNAL
specifies that the name may be known 1in other blocks
containing an external declaration of the same name.

General format:
EXTERNAL
scope-attribute ::=
INTERNAL
General rules:

1. The 1lengths of identifiers given the EXTERNAL
attribute cannot exceed 8 characters.

2. The lengths of identifiers given the TINTERNAL
attribute cannot exceed 31 characters.

3. The scope attributes can only be applied to
level-1 identifiers.

The FILE attribote specifies that the identifier being
declared is a file variable.

General format:
file-attribute ::= FILE VARIABLE
General rules:
1. Only the following attributes may be specified
with the file-attribute:
Scope attributes: INTERNAL
EXTERNAL
Storage class attributes: AUTOMATIC
STATIC
REGISTER

BASED
Dimension attribute

Chapter 5 -- Data Description 97

APPLE REFERENCE MANUAL

31 MARCH 1972

2. The RETURNS attribute in an entry declaration or
the RETURNS option in a PROCEDURE or ENTRY state-
ment may specify the FILE attribute if the corres-
ponding procedure returns a file value.

3. File variables may be used in the following
contexts:
a. as arguments to functions and procedures,
b. as arguments to an I/0 condition name in

SIGNAL, REVFRT, or ON statements,
c. as arguments to a FILE option in a GET or
PUT statement,

d. in the assignment of one file variable to
another file variable,
e. as operands of the = and += comparison

operators (two file-variables compare equ-
al only if they represent the same file
value),
£. in the declaration of an OFFSET variable,
o I8 in the INSERT, REMOVE, FIND, FOR EACH, and
LET statements.

4, On-units can be established for files whose iden-
tity is represented by a file-variable.

Example:
DECLARE F FILE VARIABLE,

G FILE VARIABLE:
/* Request that HCTS File System open a file

and set the file variable F */
G = F;
L1: ON ENDFILE(G) ;
L2: ON ENDFILE(F):
/* Statements labeled L1 and L2
have identical effect. */

98 Chapter 5 -- Data Description

APPLE REFERENCE MANUAL

31 MARCH 1972

FIXED and FLOAT

The FIXED and PLOAT attributes specify the scale of the
arithmetic variable being declared. FIXED specifies that
the variable is to represent fixed-point data items. FLOAT
specifes that the variable is to represent floating-point
data itenms.

General format:

scale-attribute ::=

General rule:
1. Fixed-point data items only represent integer
values., No fractional digits can be Trepresented
by a fixed-point variable.

Assumptions:

1. If only the scale attribute PIXED is specified,
the precision attribute BINARY (47} is assumed.

2. If only the scale attribute FLOAT is specified,
the precision attribute DECIMAL (14) is assumed.

INITIAL

The INITIAL attribute specifies an initial constant value to
be assigned to a data item whenever storage is allocated for
the variable.

Chapter 5 =-- Data Description 99

APPLE REFERENCE MANUAL

31 MARCH 1972

General format:

initial-attribute ::= INITIAL (value-list)

value-list ::= itenm[, item] ...

iten

constant
s *

iteration-specification

iteration-specification ::=

General

1.

(iteration-factor) constant
{(iteration-factor) *
(iteration-factor) (item{, item] ...)

rules:

The INITIAL attribute may only be assigned to
level-1 variables with arithmetic, string, loca-
tor, or label attributes; it cannot be given for
parameters, structures, entry variables, or file
variables.

In the following rules, the term "constant®
denotes one of the following:

arithmetic-constant
character-string-constant
bit-string-constant

statement-label constant

the value of the NULL built-in function

Only one constant value can be specified for a
scalar variable; a list of values can be specified
for an array variable.

Constant values specified for an array are
assigned to successive elements of the array in
row-major order (final subscript varying nmost
rapidly).

If too many constant values are specified for an
array, excess values are igmored; if not enough
are specified, the remainder of the array is not
initialized.

Bach 1item in the 1list can be a constant, an
asterisk denoting no initialization for a particu-
lar element, or an interation specification.

100 Chapter 5 -~ Data Description

31 MARCH

10.

1.

12.

APPLE REFERENCE MANUAL

1972

The "iteration-factor® specifies the number of
times the constant, item list, or asterisk is to
be repeated in the initialization of elements of
an array. If a constant follows the "iteration-
factor”™, then the specified number of elements are
to be initialized with that value., If a 1list of
items follows the ™iteration-factor”, then the
list is to be repeated the specified number of
times, with each item initializing an element of
the array. If an asterisk follows the "iteration-
factor"”, the specified number of elements are to
be skipped in the initialization operation.

The "iteration-factor"™ must be an unsigned decimal
integer constant.

A based array with adjustable bounds or a based
string variable with an adjustable length cannot
be initialized.

For the initialization of a string array, both an
"jteration-factor® and a "string-repetition-
factor™ may be wused. TIf only one parenthesized
integer preceeds the string constant, it is
assumed to be the "string-repetition-factor" of
the initial value for a single element of the
array. Consequently, to cause initialization of
more than one element of a string array, both the
iteration factor and the string repetition factor,
in that order, must be stated explicitly, even_if
the string repetition factor is (1).

Example:

{(2)tA?) is equivalent to ('AA") (for a
single =lement)

{(2) (1) *'A?) 1is equivalent to ('A', 'A?Y)
(for two elements)

Label constants given as initial values for 1label
variables must be contained within the block in
which the label variable declarations occur. The
INITIAL attribute may only be specified for label
variables of the AUTOMATIC storage class.

The only initial value that can be specified for a
locator variable is the value of the NULL built-in
function. This is the only function reference
that may appear in an iritialization list.

Chapter 5 -=- Data Description 101

APPLE REFERENCE MANUAL

317 MARCH 1972

LABEL

The LABEL attribute specifies that the identifer being
declared can have statement labels as values.

General format:
label-attribute 2:= LABEL
General rules:
1. If the label variable is a parameter, its value
can be any statement label variable or constant

passed as an arqument by the caller.

2. An entry name cannot be a value of a label
variable.

3. The INITIAL attribute cannot be specified for
label variables with the STATIC, REGISTER, or
BASED storage class.

4. The CONSTANT attribute may be declared for identi-
fiers with the LABEL attribute.

102 Chapter 5 -- Data Description

APPLE REFERENCE MANUAL

31 MARCH 1972

LIKE

The LIKE attribute specifies that the name being declared is
a structure variable with the same structuring as that for
the name following the attribute keyword LIKE. Substructure
names, element names, and attributes for substructure names
and element names are to be identical.

General format:
like-attribute ::= LIKE identifier
General rules:

1. The "identifier" must be the unsubscripted name of
a level-1 variable.

2. The "identifier™ must be known in the block
containing the LIKE attribute specification.
Neither the "identifier™ nor any of its substruc-
tures may be declared with the LIKE attribute or
the REFER attribute. (Appendix B shows a method
for declaring similar structures with the REFER
option.)

3. Attributes of the level-1 identifier itself do not
carry over to the created structure. For example,
storage class attributes do not carry over. If
the "identifier” following the keyword LIKE repre-
sents an array of structures, its dimension attri-
bute is not <carried over. The attributes of
substructure names and element names, however, are
carried over; if the attributes that are carried
over contain names, these names are interpreted in
the block containing the LIKE attribute.

4. If a direct application of the description to the
structure declared with the LIKE attribute would
cause an incorrect continuation of 1level numbers
(for example, if a minor structure at level 3 were
declared LIKE a major<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>