
"

(;e~rgia
nstltute
of

Technology SCHOOL OF INFORMATION AND COMPUTER SCIENCE / (-/04) 8<)4-J I 52 / ATLANTA, GEORGIA 30332

G T L

PROGRAMMERS REFERENCE MANUAL

FOR THE

BURROUGHS B 5500

August 1974

G T L

PROGRAMMERS REFERENCE MANUAL

FOR THE

BURROUGHS B· 5500

December 1971

ACKNOWLEDGMENTS

The GTL compiler almost c~+~ainly would not exist today if it were

not for the dedicated effort and genius of a single person, Martin

Alexander. His phenomenal talent was first recognized in the early 1960's

when he both designed and coded a LISP interpreter in machine language (not

assembly) for the Burroughs 220 computer in one weekend! Furthermore, he

was embarrasssed to admit that as many as about 5 or 10 instructions had to

be changed before it worked correctly~ This success was followed by a LISP

interpreter for the Burrougha B 5500, this time written in ALGOL, and

now---GTL.

Although Martin Alexander, who most unfortunately is no longer

employed at the Georgia Tech Compu~er Center, must be acknowledged as the

sole creator of GTL, it is felt that he would insist on giving credit to

the many people who have provided suggestions, advice, criticism, and

assistance in the effort. Particular credit is due Marie Courtney, who

implemented major portions of the double precision and complex arithmetic,

checked and corrected most of the machine language intrinsic functions,

and assisted in the design and implementation of many other features.

Credit is certainly due the Burroughs Corporation, whose excellent

Extended ALGOL compiler provided the starting point for GTL.

This manual was prepared by the staff of the Rich Electronic

Computer Center. The GTL Compiler is currently supported by the School

of Information and Computer Science.

ii

TABLE OF CONTENTS

I. INTRODUCTION •

II. MISCELLANEOUS EXTENSIONS OF ALGOL • •.••.•
2.1 SINGLE PRECISION STANDARD FUNCTIONS ..•.
2.2 CASE EXPRESSIONS .•..
2 .3 FOR STATEMENT . . . •. .••..•••
2.4 EXIT STATEMENT . • • • •
2.5 RETURN STATEMENT ..••.....
2.6 ERROR STATEMENT • . • • . .••.
2.7 MATRIX MANIPULATION • • • • • .••
2 • B POWERS OF TEN TABLE . • • • . . • • • • • • • • • • . • • •
2.9 SWAP STATEMENT ••.•••••
2.10 RANDOM NUMBER GENERATOR . • • •
2.11 STATEMENT LINE NUMBER DETERMINATION

III. DOUBLE PRECISION ARITHMETIC
3.1 INTRODUCTION ••••••
3.2 FORM FOR DOUBLE EXPRESSIONS
3.3 DOUBLE ARITHMETIC .OPERATORS •.••••••
3.4 DOUBLE RELATIONAL OPERATORS
3.5 DOUBLE STANDARD FUNCTIONS
3.6 RULES OF CONTEXT •••••••
3.7 DOUBLE PRECISION INPUT-OUTPUT
3.B RESTRICTIONS •.•
3.9 EXAMPLE PROGRAM

IV. COMPLEX ARITHMETIC ••.•••••
4.1 INTRODUCTION •.••••
4.2 FORM FOR COMPLEX EXPRESS IONS •
4.3 COMPLEX ARITHMETIC OPERATORS •
4.4 COMPLEX RELATIONAL OPERATORS •
4.5 COMPLEX STANDARD FUNCTIONS •
4.6 COMPLEX INPUT-OUTPUT . • • •
4.7 DOUBLE COMPLEX DECLARATOR
4. B RESTRICTIONS.. • • • •
4.9 EXAMPLE PROGRAM ••••••

V. STRING PROCESSING . . · 5.1 STRING VARIABLES . · · · · · · · · · 5.1.1 Simple String Variables and Arrays
5.1.2 Substring Variables · · · 5.1.3 Formal String Variables · · · · 5.2 STRING DESIGNATOR · · · · · 5.3 STRING EXPRESSIONS · · · · · · · 5.3.1 String Expression Forms · · • · 5.3.2 The Quoted String · · · · · · · · 5.3.3 String Designator · · · · · 5.3.4 String Assignment Statement · · · 5.3.5 String Function Designator · 5.3.6 SPACE Function . · · ·

iii

· · · · . . .

· . . . ·

·
· · · · · · · · · · · · · · ·

1-1

2-1
2-1
2-1
2-2
2-2
2-2
2-3
2-3
2-5
2-5
2-6
2-7

3-1
3-1
3-1
3-2
3-2
3-2
3-3
3-4
3-4
3-4

4-1
4-1
4-1
4-2
4-3
4-3
4-4
4-4
4-5
4-5

5-1
5-1
5-1
5-2
5-4
5-5
5-6
5-6
5-7
5-7
5-7
5-8
5-B

TABLE OF CONTENTS (Cont.)

5.3.7 The NIL Function · · · · · · · · · · · · · · 5-9
5.3.8 The String Skip Indicator · · · · 5-10
5.3.9 The QMARK Function • · · · · · · · · · · · 5-11
5.3.10 The Bit Expression · · · · · · · · · · · · 5-11
5.3.11 The Restricted Boolean Expression · · · · 5-11
5.3.12 The Restricted Arithmetic Expression · 5-12
5.3.13 The Restricted Symbol Expression · · · · · · · · · 5-12
5.3.14 The STRING Transfer Function · · · · · · · · · · 5-13
5.3.15 The SUBST Function • 5-14
5.3.16 The FILL Function · · · · · · · · · · · · • · 5-15
5.3.17 The OCTAL Function · · · · · · 5-16
5.3.18 The String Repeat Expression · 5-17
5.3.19 Parenthe.sized String Expression 5-17
5.4 THE STRING ASSIGNMENT STATEMENT 5-18
5.4.1 The Basic String Assignment Statement 5-18
5.4.2 String Assignment with SPACE · · · 5-18
5.4.3 String Assignment with NIL · · · · · · · · · · · 5-19
5.4.4 String Assignment with String Skip Indicator · 5-19
5.4.5 String Assignment Overlap: A Warning · · · · 5-20
5.4.6 String Assignment Statement Containing String Length

Assignment · · · · · · · · · · · · · · · · · · 5-21
5.4.7 The String FILL Statement · · · · · · · · · · · · · 5-22
5.4.8 The String Addition Assignment Statement · · · · · · 5-22
5.4.9 The String Subtraction Assignment Statement · · · · 5-23
5.5 STRING COMPARISON · · · · · · 5-23
5.5.1 String Relational Expression • · · · · · · · · · · · · 5-23
5.5.2 String Relation with SPACE · · · · · · · · 5-24
5.5.3 String Relation with NIL · · · · · 5-25
5.5.4 String Relation with String Skip Indicator · 5-25
5.5.5 String Pattern Matching · · · · · · · · · 5-26
5.5.6 The SEARCH Function · · · · 5-27
5.6 BIT EXPRESSIONS · · · · · · · · · 5-29
5.6.1 Bit Expression Form 5-29
5.6.2 Bit Primary · · · · · · · · · · · · · · · · 5-29
5.7 STRING ACTUAL PARAMETERS · · · · · · · · · · · · · · · · 5-30
5.7.1 Ca11-bY-Va1ue · · · · · · · · 5-30
5.7.2 Ca11-by-Name · · · · · · · · · 5-30
5.8 USING STRINGS IN OTHER TYPES OF EXPRESSIONS · · · · 5-31
5.8.1 Arithmetic Expressions · · · · · · · · · · · · · 5-31
5.8.2 Symbolic Expressions · · · · · · · · · · · · 5-33
5.9 USING AN ARRAY OR A STRING VARIABLE · · · · · 5-33
5.10 OPTIMALITY OF STRING EXPRESSIONS

~

· · · · · · 5-34
5.11 READING AND WRITING STRINGS · · · · · · · · 5-34
5.11.1 READ and WRITE Statements · · · · 5-34
5.11. 2 GTL Input-Output Functions · · · · · · 5-34

VI. LISP 2 · · · · · · · · · · · · 6-1
6.1 INTRODUCTION · · · · · · · · · · · · 6-1
6.2 S-EXPRESSION AND LISP RECORDS · · · · 6-1
6.2.1 Record and Field Designator · · · · · · ~ · · · 6-1
6.2.2 LISP Records · · · • · 6-2
6.2.3 LISP Lists · · · · · · · · · · · • · · · · 6-5

iv

6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6.3.6
6.3.7
6.3.8
6.4
6.4.1
6.4.2
6.4.3
6.4.4
6.4.5
6.4.6
6.5
6.5.1
6.5.2
6.5.3
6.5.4
6.5.5
6.5.6
6.6
6.7
6.8
6.8.1
6.8.2
6.8.3
6.9
6.9.1
6.9.2
6.10

TABLE OF CONTENTS (Cont.)

SYMBOL EXPRESSION • . .
Definition
Quoted S-expressions ••••.
Numbers and Arithmetic Expressions . • • .
LISP Variables . . • •
Assignment Statements • • •
The Field Designators • • •
Conditional Expressions • .
LISP Function Designator

LISP STANDARD FUNCTIONS
CONS
LIST
RANDOM
APPEND
NCONC ••
SPACE and QMARK •

BOOLEAN STANDARD FUNCTIONS
ATOM . • • • . • • •
ATSYM .
NUMBERP •
ALF . • •
NULL . • • • .
~}ffiER • • • • •• •• ••••

LISP RELATIONAL EXPRESSIONS ••
THE LISP ASSIGNMENT STATEMENT •
THE LISP ITERATIVE STATEMENT

The ON Statement
The IN Statement • • • • • • • • • • •
The WHILE Part •• • • • •

EXTENSIONS OF ARITHMETIC EXPRESSIONS • • • •
Arithmetic Expression Syntax Extension
The LENGTH Function • • • • • •

READING AND WRITING S-EXPRESSIONS
6.10.1 Output Functions
6.10.2 Input Functions .••••
6.11 THE SYMBOL MONITOR • • • •
6.12 ATOMIC SYMBOLS •••••
6.12.1 Types of Atomic Symbols •••••
6.12.2 Nonstandard Atomic Symbols
6.12.3 Uniqueness of Atomic Symbols
6.13 THE LISP OBJECT LIST
6.13.1 The LISP Symbol Table •••
6.13.2 The OBLIST Function •••
6.13.3 The REMOB Statement •••
6.14 STRINGS AND ATOMIC SYMBOLS
6.14.1 Creation of Atomic Symbols
6.14.2 The ATCON Function
6.14.3 The MKATOM Function •••••
6.14.4 The GENSYM Function •••••
6.15 LISP REFERENCE VALUE TRANSFER FUNCTIONS •
6.15.1 The CTSM Function.
6.15.2 The SMTA Function ••..••••••

v

6-6
6-6
6-7
6-7
6-7
6-8
6-8
6-9
6-9
6-10
6-10
6-10
6-10
6-11
6-11
6-12
6-12
6-12
6-12
6-13
6-13
6-13
6-14
6-14
6-15
6-17
6-17
6-18
6-18
6-19
6-19
6-19
6-20
6-20
6-22
6-24
6-26
6-26
6-27
6-28
6-29
6-29
6-30
6-31
6-31
6-31
6-32
6-32
6-33
6-34
6-34
6-34

TABLE OF CONTENTS (Cont.)

6.1S.3 The ATSM Function •••.
6.16 THE CTR FIELD • • • • • • • . . • • • • .
6.17 PREFIX AND DOT OPERATORS
6.17.1 Prefix Field Designators
6.17.2 Boolean Prefix Operators
6.17.3 The Dot Operator

. .

6.18 PROPERTY LIST OPERATORS •••••.•••.
6.18.1 The Property List. . . .
6.18.2 ADD PROP • • •••
6.18.3 PROP •.••
6.18.4 REMPROP .•
6.18.S The Numeric Property Record.
6.18.6 Reference Property Records ••..
6.19 THE SYMBOL DEFINE DECLARATION ••••••••••.•.••.
6.19.1 The Standard Declaration
6.19.2 CDR Field Initialization
6.19.3 The Asterisk Form •..•
6.20 STORAGE RECLAMATION •••••
6.20.1 Automatic Versus Programmed Storage Reclamation
6.20.2 Automatic Storage Reclamation •••••••••
6.20.3 Programmed Storage Reclamation •••••
6.21 AUTOMATIC STORAGE AND RETRIEVAL OF LISP LIST STRUCTURE
6.21.1 The LISP "Memory" • • • . • •••
6.21.2 The REMEMBER Statement •••••••••
6.21.3 The RECALL Statement ••••••••.•.••••
6.22 THE INTERNAL REPRESENTATION OF LISP RECORDS •
6.22.1 LISP Reference Values • • •••.•••••
6.22.2 Atomic Symbols •••••••
6.22.3 Atomic Number •••••
6.22.4 Dotted Pairs .••••

. . . .
6.22.S Other Types of Records •••••••••••.••••••
6.23 LISP SYSTEM CONTROL PARAMETERS
6.24 PROGRAMMED STORAGE RECLAMATION • • • •
6.2S LISP EXAMPLE PROGRAM

VII. RECORD PROCESSING • .
7.1 INTRODUCTION •••
7.2 BASIC CONCEPTS OF GTL RECORD PROCESSING.
7.2.1 Reference Expressions ••••••••
7.2.2 Field Designators •.••••••••••
7.2.3 The Reference Assignment Statement
7.2.4 The Field Declaration
7.2.S Indexed Fields •••••••

.

7.3 THE DISK SYSTEM • • • • • • • • • •••.•• • • • • • •
7.3.1 The Record Class Declaration ••••••••
7.3.2 The RECORD File Declaration.
7.3.3 The Record Designator •••••
7.3.4 Record Relational Expressions
7.3.5 Transfer Functions •••••

. . .
7.3.6 Storage Reclamation. • .. • • • • • • • •••
7.3.7 Saving and Restoring Heads of Master Lists in Non-LOCAL

Files ••• • • • •

vi

6-35
6-36
6-36
6-36
6-37
6-37
6-39
6-39
6-39
6-40
6-41
6-42
6-42
6-43
6-43
6-44
6-46
6-47
6-47
6-48
6-49
6-49
6-49
6-S0
6-S1
6-S2
6-S2
6-S3
6-S4
6-54
6-S4
6-54
6-S6
6-S8

7-1
7-1
7-2
7-2
7-4
7-S
7-S
7-7
7-7
7-7
7-9
7-10
7-11
7-12
7-12

7-13

7.3.8
7.4
7.4.1
7.4.2
7.4.3
7.4.4
7.4.5
7.4.6
7.5
7.6

TABLE OF CONTENTS (Cont.)

Printing Reference Values • • • . . • .
THE CORE STORAGE PLEX PRECESSING SYSTEM .

The Record Class Identifier
Field Designators • • •
Record Designator • • • • • • •
The SYMBOL PLEX Option
The ATSM Transfer Function
The RECALL and REMEMBER Statement •

RECOMMENDED PRACTICES • • • • •
EXAMPLE PROGRAM • • • • • • • • •

VIII. SYNTAX-DIRECTED PARSING
8.1 INTRODUCTION .••••

IX.

8.2 SYMBOL FORMAT EXPRESSIONS •
8.2.1 Terminal Symbols ••••
8.2.2 Nonterminal Symbols ••.••.
8.2.3 NIL.... • • • • •
8.2.4 Statements
8.2.5 Labels
8.2.6 RETURN
8.2.7 The SWITCH Option ••••
8.2.8 The Error Message Option ••••
8.2.9 Syntax and Semantics of SYMBOL FORMAT Expressions.
8.3 SYMBOL FORMAT DECLARATIONS •••••
8.4 SYMBOL FORMAT STATEMENTS ,. • • • •
8.5 SYMBOL FORMAT AUXILIARY DECLARATIONS • • • • • •
8.5.1 Syntactic Class Declaration ••
8.5.2 Class Variable Declaration
8.5.3 Getnext Procedure Declaration. • ••••
8.5.4 Error Procedure. • • • • • • • • • • • •••
8.5.5 The Trace Option ••••••
8.6 RECOMMENDED PRACTICES . • • • • • • • • •
8.7 BOOLEAN PROCEDURE EQUIVALENT OF SYMBOL FORMAT DECLARATION
8.8 EXAMPLE PROGRAM. • • • • • • • • • • • •

INPUT-OUTPUT FUNCTIONS • GTL
9.1
9.2
9.2.1
9.2.2
9.2.3
9.2.4
9.2.5
9.2.6
9.2.7
9.2.8
9.2.9
9.2.10
9.2.11
9.2.12
9.2.13
9.2.14

INTRODUCTION • • •• •• • •
THE OUTPUT FUNCTIONS • • • •

Extended WRITE Statement • • • •
The PRINT, PRIN, and TERPRI Statements ••••
The FORMAT Option • • • • • • • • • •
Literal String • • • • • • • • • • • • • • • •
String Values • • • • • • • • • ••••
Real and Integer Values • • • • • • • • • • • • • • .
Alpha Values •••• • •• • • • • • • • •
Boolean Values •• • •• ••••••••••
Double Precision Values • • • • • •
Complex and Double Precision Complex Values •
LISP Values • • • • • • • •
Reference Values
QMARK • • ••
SPACE • • • • • • . . .

vii

7-15
7-15
7-15
7-15
7-15
7-17
7-18
7-19
7-19
7-20

8-1
8-1
8-9
8-9
8-12
8-12
8-13
8-13
8-14
8-14
8-15
8-16
8-18
8-19
8-20
8-20
8-24
8-24
8-25
8-25
8-26
8-27
8-29

9-1
9-1
9-1
9-1
9-1
9-3
9-4
9-5
9-5
9-5
9-5
9-5
9-6
9-6
9-6
9-6
9-7

9.2.15
9.2.16
9.2.17
9.3
9.3.1
9.3.2
9.3.3
9.4
9.4.1
9.4.2
9.4.3
9.4.4
9.4.5
9.4.6
9.4.7
9.5
9.5.1
9.5.2
9.5.3
9.5.4
9.6
9.6.1
9.6.2
9.6.3
9.6.4
9.6.5
9.6.6
9.6.7
9.6.8
9.6.9
9.7
9.7.1
9.7.2
9.7.3
9.7.4
9.8
9.8.1
9.8.2
9.8.3
9.8.4

(""

TABLE OF CONTENTS (Cont.)

SKIP
The NTS Statement
Conditional PRINT Statement

THE OUTPUT STATEMENT .
The Standard Form
The Output Procedure .
Setting Left and Right Margins

THE READ FUNCTIONS . • .
Extended READ Statement • . • .
The GTL Read Mechanism •
The SCAN Function
The READCON Function •
The READN Function • . • • .
The READI Function • .
The READ Function

THE INPUT STATEMENT
The Standard Form
The Input Procedure
Setting Left and Right Margins
Sign-Number Separation • • •

REMOTE TERMINAL INPUT-OUTPUT •
The FILE REMOTE Declaration
FILE REMOTE Side-Effects • •
READ and WRITE Statements
READ TWX •.•
WRITE TWX
READN (TWX)
READN (TWXA)
TWXNUM .••
Conversational READ Statement . • • •

STANDARD VARIABLES AND SYSTEM CONTROL PARAMETERS
The Standard Variables • • •
The Standard Variable TAB
The Standard Variable COL
System Control Parameters

SAMPLE INPUT AND OUTPUT STATEMENTS • •
Card Reader
Line Printer • • • • • •
Remote Terminal Files
Listing of Input Cards •

APPENDIX A - EXAMPLES OF GTL PROGRAMS
String Processing Example
Lisp Processing Example
Lisp Processing Example
Syntax-Directed Parsing Example

APPEND IX B - REMOTE TERMINAL CHARACTER SET
APPENDIX C - CONVAL FUNCTION • • • • • •
APPENDIX D - GTL RUN TIME ERROR MESSAGES
APPENDIX E - REFERENCES • • • • • •• •

viii

9-7
9-8
9-9
9-10
9-10
9-11
9-12
9-14
9-14
9-14
9-15
9-16
9-17
9-17
9-17
9-18
9-18
9-19
9-20
9-21
9-23
9-23
9-26
9-27
9-28
9-28
9-29
9-30
9-30
9-30
9-32
90;-32
9-33
9-34
9-35
9-37
9-37
9-38
9-38
9-39

A-I
A-2
A-3
A-4
A-7
B-1
C-l
D-l
E-l

I. INTRODUCTION

Since the beginning of Newell, Simon, and Shaw's list processing

language, IPL, in 1954, the role of symbol manipulation languages in com­

puter applications has become increasingly important. In 1965, a LISP

interpreter was implemented on the Burroughs B 5500 here at Georgia Tech.

For several years, it was used quite successfully in classroom instruction

and in a few small scale symbol manipulation applications. Since the inter­

preter was too slow and too restrictive for any large scale applications, a

decision was made to implement a high level symbol manipulation language by

extending the existing, and excellent, B 5500 ALGOL compiler. The result

was GTL, an acronym for Qeorgia !ech 1anguage.

The GTL compiler is truly an extension of the Burroughs B 5500 ALGOL

compiler; hence, it contains all features of Burroughs Extended ALGOL. (As

used at Georgia Tech, STREAM PROCEDURES are prohibited.) Only one class of

exception exists. The addition of certain GTL constructs to the ALGOL

compiler has introduced new reserved words which cannot be used as defined

identifiers by the programmer. These words are CAR, CDR, COMPLEX, GTR, EQ,

FIELD, NEQL, NIL, RECORD, STRING, and SYMBOL.

In addition to its symbol manipulation capabilities, GTL also contains

significant extensions to B 5500 ALGOL for numeric computation. GTL contains

facilities for: double precision, complex, and double precision complex

arithmetic; string manipulation; list processing (a non-standard version of

LISP 2); record processing (linked disk records or "plex" processing);

syntax-directed parsing; extended input-output functions (including special

functions for remote terminal files); and other miscellaneous ALGOL

1-1

extensions (including additional intrinsic functions, the BASIC compiler

matrix functions, an efficient means of swapping the contents of two arrays,

a random number generator, and several other useful constructs).

Almost all of the major features of GTL were implemented prior to 1970.

Some of the miscellaneous extensions, some of the inevitable error correc-

tions, and updates to later versions of the ALGOL compiler have been accom-

plished since that time. All the features of GTL, as described in this

manual, are currently being used by a large number of Georgia Tech students,

faculty, and research workers. It is currently running under the Burroughs

Mark XII Data Communications and Time Sharing Master Control Programs.*

Most of the features of GTL were implemented and made operational in

successive stages. As each new feature was implemented it was described in

a separate publication. Altogether, ten of these preliminary draft manuals

were published between May 1968 and December 1969. The contents of these

ten preliminary drafts have been consolidated into this single manual with

a small amount of editing, rearrangement, and with the incorporation of

some new material. The preliminary drafts are now obsolete, and this manual

should be considered the official and complete documentation for GTL.

Comments, suggestions, or corrections to this manual or the GTL language

are welcomed and should be forwarded to the Director, Information and

Computer Science, Georgia Institute of Technology, Atlanta, Georgia 30332.

*As of November 1971, GTL is being updated to Mark XIII.O which provides
a new COMPLEX Polish statement. Since this conflicts with the more convenient
GTL COMPLEX construct, it is planned to omit this particular Mark XIII.O feature.
With this omission, GTL will no longer be a true extension of Burroughs ALGOL.

1-2

II. MISCELLANEOUS EXTENSIONS OF ALGOL

The GTL system contains a number of miscellaneous extensions of the

ALGOL framework in which it is embedded. Those are described in detail

below.

2.1 SINGLE PRECISION STANDARD FUNCTIONS

In addition to the sta.ndard (or "intrinsic") functions already provided

by the B 5500 ALGOL

standard functions:

Name

LOG

ARCSIN

ARCOS

TAN

COTAN

SINH

COSH

TANH

GAMMA

LNGAMMA

ERRORF

2.2 CASE EXPRESSION

compiler, GTL provides the following new single precision

Meaning

logarithm (base 10)

inverse sine

inverse cosine

tangent

cotangent

hyperbolic sine

hyperbolic cosine

hyperbolic tangent

gamma function

natural logarithm of gamma function

error function

The syntax of expressions of type REAL, BOOLEAN, DOUBLE, COMPLEX, DOUBLE

COMPLEX, SYMBOL, and "reference" (disk record address) has been extended by

the inclusion of the "CASE expression", an expression having the same form

2-1

as the CASE statement of Burroughs Extended ALGOL with the statements

replaced by expressions of the appropriate type. For example, if X, Y, and Z

are REAL variables, then

CASE J OF BEGIN X; Y; Z; END

is an expression of type REAL, the value of which is the value of X if J is 0,

Y if J is 1, or Z if J is 2, or an error termination otherwise.

2.3 FOR STATEMENT

The syntax of the FOR statemen~ has been extended by allowing a single

unsigned integer or simple variable to appear between the FOR and DO,

indicating that the controlled statement is to be executed the number of times

given by the value of the variable or integer. For example, if X is a real

variable which has a value of 100, then

FOR X DO ST~

FOR 100 DO STMT

both have the effect of causing STMT to be. executed 100 times.

2.4 EXIT STATEMENT

The word EXIT may be used in any block which is not a procedure body to

cause an immediate exit from that block. The EXIT statement may appear any­

where in the block and may appear any number of times.

2.5 RETURN STATEMENT

The RETURN statement may be used to cause an immediate exit from any

procedure in which it appears. If the procedure is typed, then the procedure

2-2

is given the value of the expression immediately following the word RETURN.

The RETURN statement may appear anywhere in the procedure declaration and may

appear any number of times (if the RETURN statement appears in a block, then

that block must constitute the procedure body). For example, the LISP func­

tion MEMBER (a GTL standard function) may be defined as

BOOLEAN PROCEDURE MEMBER(X,Y); VALUE X,Y; SYMBOL X,Y;

FOR Y IN Y DO IF X = Y THEN RETURN TRUE

2.6 ERROR STATEMENT

A convenient way of providing an immediate exit from any point in a

program in which an error condition is detected is the ERROR statement. An

execution of the ERROR statement will cause the value of its argument to be

printed in a 2 character alpha format, together with the segment and relative

address in the program of the ERROR statement. After the execution of the

ERROR statement the program is immediately terminated. For example, execution

of

ERROR ("E3")

will cause "E3" to be printed and the program to be terminated.

2.7 MATRIX MANIPULATION

GTL provides a limited amount of matrix manipulation (using the intrinsic

functions provided by Burroughs for the BASIC compiler). The matrix opera­

tions are addition, subtraction, mult~p1ication, inversion, transposition,

and assignment. There are 10 basic constructs which are illustrated below.

2-3

ARRAY A,B,C[0:10,0:10] sample declaration

1) A:= B + C

2) Ao- B - C

3) A:= B ® C

4) A:= 1 / B

5) A:= B *
6) A:= B ® primary

7) A:= B

8) Ao- IDN

9) A:= gER

10) A:= C0N

addition

subtraction

multiplication

matrix inversion

transpose

multiplication by a scalar

simple a~signment

identity matrix assignment

zero matrix assignment

unit matrix assignment

where primary is any arithmetic primary; e.g.,

A:= B ® 2

A:= B ® (SIN(X) + 1)

All arrays must be two dimensional and may never be specified as SAVE.

The lower bounds of the arrays must be declared to be 0; however, they are

treated as if they had lower bounds of 1; for example, the arrays declared

above are considered to be 1 by 10 matrices. The intrinsic functions use

the declared sizes of the arrays for their activities, not the amount of

information the programmer has p1aGed into the arrays, necessarily.

The last four modes of assignment are vastly more efficient than the

equivalent open GTL code and should be used whenever that type of assignment

is desired.

2-4

2.8 POWERS OF TEN TABLE

GTL provides access to a table containing powers of ten. It may be

referenced with a construct of the form

TEN[aexpJ

where aexp represents an arithmetic expression which, when integerized, will

have a value from zero to 69. The value of this subscript should be the

(integral) power of ten de~ired:

TEN[aexpJ is equivalent to 10 * (aexp)

l/TEN[aexpJ is equivalent to 10 * (-(aexp))

When used in a double precision context, it yields a double precision value;

in a single precision context, its value is the double precision value

truncated to a single word.

The use of this construct is encouraged since it provides a much more

efficient means of calculating a power of ten than do the alternate forms.

The object program uses the powers of ten table for 1/0 conversion, so its

use will not further increase core requirements.

2.9 SWAP STATEMENT

The fastest and easiest w~y to swap two two-dimensional arrays is by

the following construct:

SWAP(Al,A2)

where Al and A2 are two array identifiers. The effect is to swap the contents

and sizes of the two arrays. The actual implementation swaps only the

pointers to the arrays, rfther than the information in the arrays themselves.

2-5

2.10 RANDOM NUMBER GENERATOR

GTL contains a built-in random number generator which the programmer

may reference directly through the arithmetic primary

CONVAL(O)

Each calIon CONVAL(O) will generate a new random number between 0 and 1,

but never 1. The arithmetic primary

CONVAL(l)

will return the previously-generated random number and will not generate

a new one. If it is desired to change the stream of random numbers being

generated, an alternate form of CONVAL(O) may be used, involving the following

arithmetic primary

CONVAL(O,~)

Depending on the value of ~, a different seed for random number generation

will be used. In many applications, the following special form of CONVAL

is used once at the beginning of the program:

CONVAL(O ,TIME (4»

This presents the program with one of 64 different streams of random numbers,

usually different each time the program is used, dependent upon the machine

clock.

2-6

2.11 STATEMENT LINE NUMBER DETERMINATION

The line number of the current statement in a program may be accessed

through the arithmetic primary

LINENUMBER

This is convenient in many applications, especially for debugging. If the

programmer defines this identifier for his own use, it loses this meaning.

2-7

III. DOUBLE PRECISION ARITHMETIC

3.1 INTRODUCTION

In GTL, the declarator DOUBLE may be used in the same manner in which

the declarator REAL is used in an ALGOL program. For example:

DOUBLE X, Y, Z

DOUBLE ARRAY DR[a:99]

DOUBLE PROCEDURE DSINH (X); VALUE X; DOUBLE X;

BEGIN DOUBLE Y;

DSINH:~ «Y:= EXP(X)) - 1.a/Y) ® .5

E~

Calculations with such variables, elements of arrays, and procedure

values will automatically be done in double precision, subject to the

rules of context (Subsection 3.6) and the available double preciSion

operators and standard functions (Subsections 3.3, 3.4, 3.5). The Input-

Output mechanism (Section IX) facilitates reading and writing double values.

3.2 FORM FOR DOUBLE EXPRESSIONS

A double expression has the form of an ordinary ALGOL arithmetic

expression with double primaries andlor single precision primaries. A

double primary can be a double variable, a double function designator (a call

on a double-valued procedure or on a double standard function with its

actual parameters, if any), a double assignment statement, a double expression
/

within parentheses, READN in a double context (see Subsection 3.6 for con-

text rules and Section IX for READN), or a constant appearing in a double

context.

3-1

3.3 DOUBLE ARITHMETIC OPERATORS

The operators available for double precision arithmetic are +, -,~, I,

and MOD. DIV may be used between double primaries, but the calculation of

the result will always be done in single precision.

3.4 DOUBLE RELATIONAL OPERATORS

All the relational operators, =, ~, <, >, ~, ~, and their mnemonics,

are available for double precision comparison. A comparison is a double

precision comparison only when the expression on the left hand side of the

relational operator is a double variable, double procedure, or double

assignment statement. A double assignment statement is one in which the

leftmost variable is double.

3.5 DOUBLE STANDARD FUNCTIONS

The available standard (or "intrinsic") functions of double expressions

are as follows:

FUNCTION

COS

SIN

EXP

LN

LOG

SQRT

ARCTAN

LOPART

HIPART

MEANING

cosine

sine

e~ponential function

natural logarithm

common logarithm

square root

inverse tangent

least significant part of double value

most significant part of double value

3-2

The other functions available for single precision can be applied to

double expressions, but the calculation of the function value will always

be performed in single precision.

3.6 RULES OF CONTEXT

Whether single or double precision calculations are performed to

evaluate an arithmetic expression depends on whether the arithmetic expres­

sion is in a single or double context. If the context is single, the

calculations are done in single precision. If the context is double, all

the calculations are done in double precision except for the operator DIV

and intrinsic functions not avilable in double (which are done in single

precision). When a double va~iable or double procedure is used in a single

precision context, the double value is normalized and truncated to a single

precision value. When a single precision variable, procedure, or standard

function is used in a double context, it is converted to a double precision

operand by setting the least significant part of the double operand to zero.

An arithmetic expression is in a double context in anyone of the

following cases and is otherwise in a single context:

1) If the arithmetic expression is on the right hand side of

a := in an assignment statement, it is in a double context if, and only if,

the variable immediately to the left of the := is a double variable.

2) If the arithmetic expression is an argument of a procedure

for which the corresponding formal parameter is double, the arithmetic

expression is in double context.

3) If the arithmetic expression is the expression on the right hand

side of the relational operator of a double precision comparison (see Sub­

section 3.4).

3-3

3.7 DOUBLE PRECISION INPUT-OUTPUT

Ordinary ALGOL READ statements Can be used to read single precision

numbers to be used in double context, and ordinary ALGOL WRITE statements

can be used to write a double value in single precision. ALGOL READ and

WRITE statements cannot read and write double precision numbers. However,

the I/O facilities of GTL facilitate the reading of double numbers and the

writing of double numbers and editing phrases.

The GTL Input-Output system provides a very flexible and powerful means

of reading and writing many types of data using any of the files which can

be declared in normal ALGOL. The system is described in detail in Section IX

of this manual.

3.8 RESTRICTIONS

If a double formal parameter is call-by-name and the corresponding

actual parameter is a variable, this variable must be double.

If the actual procedure corresponding to a formal procedure is to

have a double parameter, then in the actual procedure, that parameter must

be double call-by-value, and the expression used as the corresponding para­

meter of the formal procedure must begin with a double variable. When the

formal procedure and its double arguments are compiled, the compiler will

print a warning message indicating the requisite type of the corresponding

actual parameter of the actual procedure.

3.9 EXAMPLE PROGRAM

The following example double precision program is not intended to

represent a practical program, but merely serves to illustrate some of

~he GTL double precision constructs. The GTL Input-Output system, which is

described in Section IX, is also included in the example.

3-4

AEGIN CCM~rNT FI~r nOU8LE PRFC1~In~ RCOTS Cr ~LACPATIC E'LATIC~S;
rILE l~ INCO (2,1C);
STRING CROCAO)J
rILE OUT PRINTER 16(2,15);
STRI~G LIN (120);
REAL J,K;
P R GeE D u R E Q II A r. s n L v E (A , Ij 1 C) J

VALliF A,A,Ci
nCUHlf A,R,el
tjF G PJ
nUUHI E 0;
PRINT A,8,C;
IF 0 := 8 * 2 - 4 ~ A x C < n THEN

pRI~T SPACE(lC) fCO~PLf1 GGors,
ELSE

I3EGIN
C := (n .= SQRT(n) + B~ I A := ;. x ~ :
B := (D - 8) I A ;
PRINT tREAL ROCT~I # 8, CJ
Ef<.Oi

END nr GUAOSOLVEJ
J~PUT(I~CD,CRD,eC);
CJurpl.lTCPRINTERllINI1(0)J
PRINT #GUAOSOLV[PROGRAM';
CO~~ENT READ IN NUMBER OF TRTPLrs TO Sf RFAC I~J
K := REAC"";
FUR J:=l STEP 1 U~TIL I(DO QIJAnsr:LVECFiF'AC",READt-.,J;EAljfl.);

END.

THE PROGRA~ HAD THE FDLLOwYN~ CARD INPLT:

5
1 2 3 .002 3.14 .42 .U01.1.1

AND THE OUTPUT lISTI~G ~ASt

QUAD SOLVE PROGRA~

1 2 3
CO~PLEX ROCTS

2~-3 3.14 .42

.01 .01 .01 .ee .C~ .C7

REAL HOOTS: 7.e4a66230640610~02244?@2 1.56ge6623CE4c61C5C2244~3
1~·3 .1 .1
REAL RorTS, 4.8ge97948556635~196394~1 9.a98~794e5;6~3561~6394~1
U-2 1~-2 t~"2

C(1MPLEX ROOTS
8@-2 6~-2 7€i-2

COMPLEX ROOTS

3-5

IV. COMPLEX ARITHMETIC

4.1 INTRODUCTION

In GTL, the declarator COMPLEX may be used in the same manner in which the

declarator REAL is used in an ALGOL program. For example,

COMPLEX Y

COMPLEX ARRAY A[O:5]

COMPLEX PROCEDURE ROOTl(A,B,C);

VALUE A,B,C;

REAL A,B,C;

ROOTI := (-B + SQRT(B*2 - 4~~»/(2~)

Such variables, elements of arrays, and procedure values will be automatically

treated as complex numbers and may be used in the same manner as reals.

The Input-Output mechanism (Section IX) facilitates reading and

writing complex values.

Complex arithmetic in double precision is also available (Subsection

4.7).

4.2 FORM FOR COMPLEX EXPRESSIONS

A complex expression has the form of an ordinary ALGOL arithmetic

expression with complex primaries, with the exception of exponentiation (*),

in which case the exponent must be real. (In other words, in A*B, A may be

complex but B must be real.)

A complex primary can be an ordinary real-valued primary, a complex

variable, a complex function designator (a calIon a complex-valued

procedure or on a complex standard (intrinsic) function with actual

4-1

parameters, if any), a complex assignment statement, a complex expression

within parentheses, or :comp1ex primary. The colon (:) in a complex primary

indicates multiplication by i; i.e., the is syntactically equivalent to

SQRT(-l)@. For example, if X is a complex variable and X :=3+:7, then

the real part of X is 3 and the imaginary part is 7. Since the colon means

"i times," it must be followed by a primary; 7:, for instance, has no

meaning.

Examples of complex expressions, where A and B are real variables and

X and Yare complex variables:

A+:B

X/Y

COS(X+A) + :SIN(:ARG(X»

::A - B (Le., -A-B)

X + : (A+B)

4.3 COMPLEX ARITHMETIC OPERATORS

The operators are +, -, @, /, * MOD, DIV. The meaning of the operators

is illustrated by the table of equivalent algebraic expressions given below,

where Zl and Z2 are complex numbers such that Zl ~ a + ib and Z2 = c + id

and a,b,c,d, and R are real numbers.

EXPRESSION DEFINITION

Zl+Z2 (a+c) + i(b+d)

Zl-Z2 (a-c) + i(b-d)

Zl@Z2 (ac-bd) + i (bc+ad)

Z1/Z2 {ac+bd2
(cz +dZ)

i {bc-ad2
+ (cz +d2)

4-2

Zl*R

Zl MOD Z2

Zl DIV Z2

4.4 COMPLEX RELATIONAL OPERATORS

IZllRei R arg(Zl)

(ac+bd)MOD (c2 +d2) + i «bc-ad)MOD (c2 +d2))

(ac+bd)DIV(c2 +d2) + i«bc-ad)DIV(c2 +d2))

Two relational operators, = and 1-, and their mnemonics, are available

for complex comparisons. Two complex expressions A and Bare = if and only

if the real part of A is equal to the real part of B and if the imaginary

part of A is equal to the imaginary part of B. Otherwise, the I- relation is

true. The left hand side of a complex relation must be a complex variable

(including complex array elements) or a complex assignment statement

(i.e., the leftmost variable must be a complex variable) and the right hand

side can be any complex expression (including rea1s). For example, if X

is complex and A is real, then X=A only if the real part of X equals A and

if the imaginary part of X is zero.

4.5 COMPLEX STANDARD FUNCTIONS

The available intrinsic functions of complex expressions are given

in the following chart. Assume X:= 1+:1 and Y:= 3+:4.

FUNCTION MEANING TYPE OF RESULT EXAMPLE

ABS absolute value real ABS(Y) = 5

ARG argument real ARG(X) = .78540

CONJ conjugate complex CONJ(X+Y) = 4-:5

SQRT principal complex SQRT(:20-21) = 2+:5

IMAGPART imaginary part real lMAGPART(Y) = 4

REALPART real part real REALPART(Y) = 3

4-3

FUNCTION MEANING TYPE OF RESULT EXAMPLE

SIN sine complex SIN (X) 1.2984 + :.63496

COS cosine complex COS (X) = .83373 :.98890

~P exponential function complex EXP(X) = 1.4687 + :2.2874

LN principal value of complex LN(X) = .34657 + :78540
natural logarithm

4.6 COMPL~ INPUT-OUTPUT

Ordinary ALGOL READ and WRITE statements can be used to read and write

complex numbers if the real parts and the imaginary parts of the numbers

are read and written separately as real numbers. However, the I/O facilities

of GTL facilitate the reading of complex numbers and the writing of complex

numbers and editing phrases.

The GTL Input-Output system provides a very flexible and powerful means

of reading and writing many types of data using any of the files which can

be declared in normal ALGOL. The system is described in detail in Section IX

of this manual.

4.7 DOUBLE COMPLEX DECLARATOR

In a GTL program, COMPLEX declarations may be replaced by DOUBLE COMPL~

declarations for complex arithmetic in double precision. The "Rules of

Context" described in Subsection 3.6 of this manual apply. The arithmetic

operators available for DOUBLE precision COMPL~ are +, -, ®, /, *, MOD;

the relational operators are = and I and their mnemonics,and the intrinsic

functions are REALPART, IMAGPART, ARG, ABS, CONJ. All the other operators

and functions available for complex can be applied to DOUBLE COMPLEX, but

the calculation will be done in single precision. When a DOUBLE COMPL~

variable, assignment statement, or typed procedure appears in the list of

a PRINT statement, the real and imaginary parts are printed in double precision.

4-4

4.8 RESTRICTIONS

If a complex parameter is call-by-name and the actual parameter

expression is a single variable, this variable must be complex.

If the actual procedure corresponding to a formal procedure is to

have a complex parameter, then in the actual procedure, that parameter

must be complex call-by-value and the expression used as the corresponding

parameter of the formal procedure must begin with a complex variable. When

the formal procedure and its complex arguments are compiled, the compiler

will print a warning message indicating the requisite type of the corres­

ponding actual parameter of the actual procedure.

4. 9 EXAMPLE PROGRAM

The following example program uses a simplified portion of Robert

Rodman's "Muller's Method for Finding Roots of an Arbitrary Function,"

(Algorithm 196, CACM, Vol. 6, August 1963), which finds real and complex

roots of an arbitrary function. Given the starting values PI, P2, and P3,

a limit MXM on the number of iterations, and convergence criteria EPI and

EP2, the procedure Muller listed below attempts to find a root to the func­

tion FUNCTION. This example also illustrates the GTL Input-Output system as

described in Section IX. A listing of the compilation of the complete

program and output is given. The card input was the following set of num­

bers, in order:

-1 0 1 30 @-8 @-8

The compilation listing is as follows:

4-5

tH.G!1'l
FIL~ iN INFILE (2'10);
FILt UUT LINE 1b(q'1~);
STHIN~ CRU(~O)'LI~(120);
CUM~LlX PHUCE~~HE Spr(A,~);

VALlJE A,~;

COMPLEX An;!i
dEGIN
A p= SQRJ(A)J
~lTlJRN IF A~S(~+A) < ABS(~·A) THE~ ~·A ELSE BtAj
ENO OF SPfi

PHUCEUURE MULLEH(P1,P2,PJ,MXM,EP1,EP2,FUNCTION);
VALUE P1,P2,P3,MXM'EP1,EP2J
HEAL P1,P~,P3,EP1,lP2;
INH.GER MXMi
COMPLEX PHO~EDUR~ FU~CTIONJ
~EGIN

INTEGER ITC;
COMPLEX Xl,X2,X3,fl,fXl,fX2,FX3,H,LAM,OEL,Gi
LAHEL M9,Ma,M6;
Xl 1= P1; x2:= P~i X3 1= P3J
txl 1= flJNC1ICN(Xl);
FX2 .= FlJNCIIONCX~);
FX3 .= FlJNCTICN(X3)J
H 1= X3 - x,d
LAM .= IF X~ EQL Xl THEN 1 ELSE H / (X2 • Xl)'
UtL l= LAM + 1J

M~I IF fX1 EQL fX2 ANU FX2 EQL FX3 TH£N
BEGIN LAM 1= 1i GO TO M8i END;

T1 1= 4 x Fx3 x DlL x LAM x (FXl x LA~ • FX2 ~ DEL t FX~)j
G 1= LAM x LAM x fXl • DEL x DEL x FX2 + fX3 x (LA~ + UEL)I
LAM 1= (-2 x FX3 x DEL) / SPfCG x G + Tl, G)i

Mdl ITC 1= ITt + 1;
xl 1= X2; Xi 1= Xl; fXl 1= FX2; FX~ 1= fX3J
H 1= LAM x 1'1;

M61 UEL 1= LAM + 1; X3 1= X2 + H; FX3 1= fW~CTICN(X3);
IF fX2 NEQ ~ THEN
If ABSCFXJ/tX2) GfH 10 THEN

8EGl~ LAM 1= LAM I 2; H 1= H I 2; GO TO ~ei ENU;
IF ABSCCXJ-X2)/X2) GTR EPl AND A8S<FXl) GTR Ep2 A~U ITe LS~ MXM

THEto; uO TO MIj;
~RI~T .THE kOGT fuUND IS" SPACECS), x3;
PRINT ,THE fU~cTIUN EVALUATED AT THIS poI~T IS#, SPACE(S), FXJ;
END OF tl,ULLI;.R;

CUMPLEx PROCEDUHE FCL);
VALUE Z;
COMPLEX l.;
HETURN Z~(LX(ZX(lx(Z~CZxCZx(l+1)+3)+2)+3)·1)+3)·2)+lJ
COMMENT END OF DECLARATIONS;
INPUTcINFILE,CRD,dO);

4-6

UUTpUT(LINE,LI~,l~U)J

"TSC·,ll)J
MULLEH(kEAO~'READ~'READN,HEAO~,REAU~'HEAC~,F)J

T~~ OUTPUT FHU~ THE PROGHAM LUUKS LI~E T~IS:

THl R~~l FOUN~ IS .67ge53150~6

THE F~j\;CTION EVALuATED AI THIS PO!NT IS

4-7

V. STRING PROCESSING

5.1 STRING VARIABLES

5.1.1 Simple String Variables and Arrays

In GTL, a string variable contains a string of characters; just as in

ALGOL a variable of type REAL coptains a number. String variables are

declared with declarator STRING in the same forms as REAL, INTEGER, and

BOOLEAN variables in ALGOL. The declaration of string variables which are

not formal parameters of a procedure must also contain a "size part" which

specifies the size of a string variable, i.e., the maximum number of

characters which a string variable can contain. The simplest form of the

size part is an unsigned i~teger enclosed in parentheses. The syntax of the

string variable declaration is illustrated by the following examples:

STRING STR(5)

STRING CARDl, CARD2(80), LINE(120)

OWN STRING TEMP(26)

STRING ARRAY SR[0:9] (lO)

STRING ARRAY SAl, SA2 [1:100J(8)

Thus the Simple string variable STR can contain at most 5 characters, CARDI

and CARD2 at most 80 characters, etc. The specification OWN in this context

has the same functional meaning as other types of OWN variables in ALGOL.

Similarly, each element of the string array SR can contain at most 10

characters.

The size of a string variable cannot exceed 8184 characters.

5-1

5.1.2 Substring Variables

The declaration of a string variable which is not a formal parameter

of a procedure may contain the declaration of a substring variable. A

substring variable is a string variable which references only a fixed part

of (a "substring" of) the string variable which is declared. The substring

variable identifier appears in the size part of the string declaration.

The size part of the string variable declaration may now be defined as a

list of one or more string length specifications enclosed in parentheses.

Each string length specification is either

1) an unsigned integer, or

2) a substring variable identifier followed by a size part.

Two or more string length specifications are separated by commas. The sum

of the unsigned integers in the si2:e part determines the length of the

string being declared. For example,

STRING A(9, B(14), 7)

means that A is a string variable which can contain at most 30 characters,

and B is a string variable which is a substring of A containing at most 14

characters. The sum of the string length specifications occurring before

the substring variable identifier determines the number of character posi­

tions to be skipped in the main string before reaching the starting character

position of the substring. The character positions of a string variable

may be illustrated graphically by a set of contiguous "boxes", each box

representing a single character position. Thus, the string variable A and

its substring B, may be displayed graphically as follows:

5-2

A (30 characters)

1
-'-([1 I~·I-'-I6-I'--[' fJ-'.'.m" 12 13 ill" " ,-b·I'·'TI" ".1_2'1"1" {' f"
_1 ___ ._ ..._ ___._ . __ _ J 1 j

"1'-'-0" ~I1~1
.J ____ I

I r

B (14 characters)

Note that the definition of the size part allows the declaration of

substring variables to be "nested"; Le., a substring variable may contain

a substring variable. For example,

STRING ST(STA(14),3,STB(2, STC(6),2, STD(3),1), 4)

may be displayed graphically as

ST (35 characters)

STB

When two or more string variables are associated with a size part

which contains substring variables, the main string with which a substring

identifier is to be associated in any particular instance must be given

explicitly. For example, with the string declaration,

STRING A, B, C(72, SEQ(8»

one of the following forms must be used when referring to SEQ:

5-3

SEQ IN A

SEQ IN B

SEQ IN C

This form of the substring variable may be used like any other string

variable. Ambiguously defined substrings of subscripted string variables

are handled in the same way. For example, with the following string array

declaration,

STRING ARRAY R, S [O:99](T(I),7)

if J represents a subscript expression for elements of the string arrays

Rand S, then one of the following forms must be used when referring to

the substring T:

T IN R [J]

T IN S [J]

This form of the subscripted string variable may be used like any other

string variable.

5.1.3 Formal String Variables

A formal string variable, i.e., a string variable which is a formal

parameter of a procedure, is declared without a size part. The maximum

number of characters that a formal string variable can contain will depend

on the size of the corresponding actual parameter of the function designator.

(See paragraphs 5.7.1 and 5.7.2.) In a procedure declaration which contains

a formal string variable, the size of the string variable may be determined

by the application of the GTL standard function LENGTH to the formal string

5-4

variable identifier, For example, if STR is a simple formal string

variable and STRA is a formal string array, the

LENGTH (STR)

and

LENGTH (STRA)

gives the sizes of these formal string variables.

5.2 STRING DESIGNATOR

In GTL, the string designator is a construct which allows the programmer

to refer to a string variable or any proper substring thereof. The defini­

tion of string designator inGludes the string variable, and has the three

following forms:

SV

SV(ael)

SV(ae2,ae2)

where SV represents a string variable, either simple or subscripted, and

ael and ae2 represent arithmetic expressions. The first form of the

string designator is simply the string variable itself. The second form of

the string deSignator is the substring of SV obtained by skipping over the

first ael characters in SV; the size of the substring is the number of

remaining characters. The third form of the string designator is the

substring of SV obtained by skipping over the first ael character positions

in SV and its size is specified by ae2. (If the values of ael and ae2

are not non-negative integers, then they are converted into this form.)

5-5

For example, given the string declaration,

STRING CARD (72, SEQ(8»

the string designator

CARD (72)

refers to the same substring of CARD as the substring variable SEQ. Given

the string declaration,

STRING A(9, B(14), 7)

the string designator,

A(9, 14)

refers to the same substring of A as the substring variable B. The string

designators A(2,4) and A(9,14) are illustrated graphically below.

A (30 characters)

A(2,4) A(9,14)

5.3 STRING EXPRESSIONS

5.3.1 String Expression Forms

In ALGOL, an arithmetic expression may be considered as a set of rules

which, when executed, generates a value which is a number; in GTL, a string

expression is a set of rules which produces a value which is a string of

characters.

5-6

A string expression is either a string primary, which has a string of

characters as its value, or two or more string primaries separated by

ampersands (& - the "concatenate operator"). The latter form has as its

value the string produced by "joining together" the values of the con­

stituent string primaries. The string primaries are described in para­

graphs 5.3.2 through 5.3.19.

5.3.2 The Quoted String

The quoted string has the same syntactical form as a string in

Burroughs Extended ALGOL, i.e., a string of characters enclosed in quotes (").

The quote mark itself may be quoted: ''''''. The value of the quoted string is

the string of characters appearing between the quote marks. The quoted

string may not exceed 420 characters in length.

Examples:

"A"

"THIS IS A QUOTED STRING"

"""

5.3.3 String Designator

When used as a string primary, the value of the string designator is

the string of characters in the string variable, or substring thereof,

referenced by the string designator.

5.3.4 String Assignment Statement

A string assignment statement, besides being used as a statement,

may be used in a string expression havi.ng as its value the value which is

5-7

assigned to the variables in the left part list. An extension of the

syntax of a string assignment statement is described in Subsection 5.4.

5.3.5 String Function Designator

A string function designator is a calIon a procedure which was

declared with the type STRING, its value being the value to which the

string procedure identifier is assigned in the string procedure declaration.

The value of a string function designator may not exceed 7 characters in

length. The formal parameters of the procedure, if any, may be of any

type, including the string formal parameters discussed in Subsection 5.7.

For example,

STRING PROCEDURE REVERSE(S); VALUE S; STRING S;

BEGIN REAL L;

REVERSE:::;;

IF (L:= LENGTH(S» = 1 THEN S ELSE

S(L-l,l) & REVERSE(S(O,L-l»;

END OF REVERSE

defines a procedure which has as its value the string of characters in the

string S in reverse order:

REVERSE("ABC") ::;; CBA

5.3.6 SPACE function

The SPACE function is used to generate a specified number of spaces in a

string expression. The SPACE function may be used in one of the following

forms:

5-8

n SPACE

where n is an unsigned int~~er, and

SPACE(~)

where ~ represents an arithmet~c expression. The SPACE function will

generate the number of ~pace~ specified by the value of n or ae. For

example, if J is a real variable having a value of 40 then,

40 SPACE

SPACE (40)

SPACE(J)

all have the effect of generating 40 spaces.

5.3.7 The NIL Function

The NIL function is used to generate a specified number of zeros

(the character "0") in a string expression. The NIL function may be used

in one of the two following forms:

n NIL

where n is an unsigned integer, and

NIL(~)

where ~ represents an arith~etic expression. The NIL function will

generate the number of zeros ~pecitied by the value of n or ae. For

example, if J is a real variable having the value of 40, then

40 NIL

NIL (40)

NIL(J)

all have the effect of generating 40 ~eros.

5.3.8 The String Skip Indicator

The string skip indicator ha.s the effect of creating a gap in the

string being generated by the string expression in which it appears. Its

actual effect depends on the context of the string expression: If it is

used in a string expression which is assigned to string variable in a

string assignment statement (see Sub~ection 5.4), it causes the indicated

number of character positions to be skipped over in the string variable

during the execution of the assignment statement (see paragraph 5.4.4).

If it appears in the string expression on the right hand side of a string

relational expression (see Subsection 5.5), it causes the indicated number

of characters in the string designator (on the left hand side) to be ignored

in the process of de,termining the Va,11,l8 of the string relational expression

(see paragraph 5.5.4).

The string skip indicator ma.y be used in one of the two following forms:

where n is an unsigned integer, and

where ~ represents an arithmetic expression; for example, if J is a real

variable having a value of 40, then

5-10

40 -k

,,;- (40)

-k (J)

all have the effect of causing 40 characters to be skipped over.

5.3.9 The QMARK Function

The QMARK function, used in the form,

QMARK

in a string expression will generate one question mark (?) or invalid

character. This function is provided since the question mark cannot be

quoted in a GTL program, and there would be no other simple way of

generating this character.

5.3.10 The Bit Expression

A bit expression is a string primary which generates a string of bits

(not the characters "1" and "O"~ but the actual bit components of

characters). If any characters are generated in the remainder of the string

expression, the first of these characters will start at a position equal to

the position of the last character generated before the bit expression plus

the smallest multiple of six bits containing the bit string (since a

character is six bits long). The syntax and semantics of the bit expression

are explained in Subsection 5.6.

5.3.11 The Restricted Boolean Expression

A restricted Boolean expression, i.e., a Boolean expression which does

not begin with any of the other preceding string primaries, may be used as

5-11

a string primary itself. The value of the Boolean expression in this

context will be a string of letters, "TRUE" or "FALSE", depending on the

value of the Boolean expression.

5.3.12 The Restricted Arithmetic Expression

A restricted arithmetic expression, i.e., an arithmetic expression

which does not begin with any of the other preceding string primaries, may

be used as a string primary itself. The value of the arithmetic expression

in this context will be an unsigned string of digits up to 7 characters in

length representing the value of the arithmetic expression. If the value

of the arithmetic expression cannot be represented in this way, then the

string value of the expression is undefined. For example, if R is a real

variable with a value of 25, then

R ® 10

when used as a string primary, will generate the string "250".

5.3.13 The Restricted Symbol Expression

A restricted symbol expression (Section VI), i.e., a symbol expression

which does not begin with any of the other preceding primaries, may be used

as a string primary itself. The value of the symbol expression in this

context must be an atomic symbol, which is converted into the string which

the atomic symbol represents. For example, if S is a symbol variable

having as its value the list (THIS IS A LIST), then

CAR(S)

will cause the string "THIS" to be generated.

5.3.14 The STRING Transfer Function

The STRING transfer function, when used in the form,

STRING(.!~)

where ~ represents an arithmetic expression, will generate the equivalent

alpha representation of the value of the arithmetic expression (up to 7

characters in length), left-justified. For example,if R is a real or alpha

variable, the value of which is the alpha string "AB", then

STRING(R)

will generate the string "AB". If the value of R is 250, then "3," will

be generated.

A string which is right-justified in a field of E characters may be

produced by the following variant of the STRING transfer function:

STRING(aexp,E)

where aexp is the arithmetic expression to be converted, and E is an unsigned

integer, ranging from 1 to 7, which specifies the size of the resulting

string. For example, if R is a real variable containing the ALPHA string

"AB", then the value of

STRING (R,4)

would be the string "OOAB". If R has a value of 250, then

STRING(R,l)

would generate the string "3,".

5-13

5.3.15 The SUBST Function

The string-valued function SUBS! allows the programmer to make charac­

ter-for-character substitutions in a string variable. The SUBST function

may be used in two forms, the first of which is

SUBST(string designator, substitution pair list)

where string designator must be a string variable, or designated substring

thereof, and substitution pair list is a list of one to 12 substitution pairs

of the form

matching character substitution character

where substitution character is the quoted character which is to replace

the quoted special character matching character. The matching character

cannot be the "blank" character. The length of the string designator must

not be greater than 126 characters, and if longer than 63 characters it

must be an even number; also, the string variable may not be a formal

parameter. The value of the SUBST function is the contents of the string

designator after the substitutions have been made. For example, if the

string CARD contains "AR[INDEX]", then

CARD:= SUBST(CARD(O,72),"[":"(","]":")")

will change this string to "AR(INDEX) " •

The second form of the SUBST function is

SUBST(string deSignator, substitution table)

where string designator has the same meaning as above, and substitution table

5-14

is a simple string variable containing substitution characters for all of

the 64 characters in the B 5500 character set. This "table" is indexed by

the REAL value equivalent of the character to be replaced; for example, the

replacement for the Jth character of the string CARD from the string TABLE

would be

TABLE(REAL(CARD(J,l»,l)

For example, if the first 10 characters of TABLE are "123456789A" and CARD

contains the string "539648", then

CARD:=SUBST(CARD(0,72) ,TABLE)

will change the string to "64A759". The substitution table must be at least

64 characters long.

5.3.16 The FILL Function

The FILL Function allows access to the B 5500 operator TBN (Transfer

Blanks for Non-numerics). It may be used in GTL string expressions in two

forms, the first of which is

FILL (aexp, n)

where aexp is an aFithmetic expression whose value should be an integer,

and n is an unsigned integer ranging from 1 to 8. The value of the arith­

metic expression is converted into a string which is right-justified in the

field of characters, whose length is specified by~. Characters to the left

of the left-most digit of the string are set to the blank character. For

example,

FILL(215,5)

generates the string" 215".

5-15

The second form of the FlLL function is

FILL n

where n is an unsigned integer ranging from 1 to 63. This string primary

is intended to be used in a string ass~gnment statement where it will

replace each zero digit or non-digit character in the "destination string"

by a blank until a non-zero~d~git is encountered. The number of characters

tested will be n minus one characters (so that if the last character is a

zero, it will not be replaced bya blank). For example, if the first 5

characters in the string CAR.D are "00215", then

CARD:=FILL 5

changes the string to" 215".

5.3.17 The OCTAL Function

The OCTAL function transforms a 48-bit B 5500 word into a 16-character

string containing the equivalent octal value. This function has the

following forms:

OCTAL (aexp)

OCTAL(string desigaator)

where aexp is any arithmetic expression and string deSignator is a string

variable, or substring thereof, beginning at a word boundary (multiple of

8 characters), which is 8 charact~rs long.

5.3.18 The String Repeat Expression

The string repeat expression, which has the form

where ~ represents an arithmetic expression, and ~ represents a string

expression, will cause the value of the string expression to be generated

repeatedly the number of times specified by the value of the arithmetic

expression. For example,

[3: "AB"]

will cause the string

ABABAB

to be generated. The value of the arithmetic expression must be an integer

less than 64.

5.3.19 Parenthesized String Expression

A string expression enctosed in parentheses may be used as a string

primary. For example, if A and B are string variables, then the following

are string primaries:

(A &: "_" &: B)

(A : =B &: liS ")

5-17

5.4 THE STRING ASSIGNMENT STATEMENT

5.4.1 The Basic Strin& Assignment Statement

The basic string assignment statement has the same form as an ordinary

ALGOL assignment statement. However, in addition to string variables,

string designators may also appear in the left part list of the assignment

statement. For example, if A is a string variable 30 characters in length

which contains only spaces at the time of execution of the assignment state­

ment, and B is a string variable, the first 5 characters of which is the

string "CARRY", then

A:=A(10):=B(0,4) & "IES"

will change the contents of A as indicated by the following graphic represen­

tation:

If this assignment statement is used as a primary in a string expression,

then its value would be the string "CARRIES". If the length of the string

generated by the string expression exceeds the number of character

positions available in any of the string designators appearing in the left

part list of the string assignment statement, then an error message will

be generated, and the program will be terminated.

5.4.2 String Assignment with SPAC~

The word SPACE (see paragraph 5.3.6) may be used at the end of a string

expression to indicate that all of the remaining character positions in the

string into which the string expression is aSSigned is to be filled with

5-18

spaces. For example, if A is a 30 character string, the assignment state­

ments

A:=B(O,S) & SPACE

A:=SPACE

are equivalent to the assignment statements

A:=B(O,S) & SPACE(2S)

A:=SPACE (30)

5.4.3 String Assignment with NIL

The word NIL (see paragraph 5.3.7) may be used in the same way as SPACE

in paragraph 5.4.2; for example,

A:=B(0,5) & NIL

is equivalent to

A:=B(O,S) & NIL(25)

5.4.4 String Assignment with String Skip Indicator

The string skip indicator as defined in paragraph 5.3.B may be used

in the string expression in a string assignment statement as a means of

effectively combining two or more assignment statements into one; for

example, if LINE is a 120 character string variable, and CARD is an BO

character string variable, then

LINE(B):=CARD(O,72) & *(B) & CARD(72,B)

5-19

is equivalent to the two assignment statements:

LINE(8):~CARD(0,72)

LINE(88):~CARD(72,8)

If there is more than one string designator in the left part list of the

assignment statement a gap caused by a string skip indicator is filled

in with characters from the right most string designator in the left part

list; for example, if A and B are string variables, the latter containing

the string "ABCDEFGH", then the assignment statement

A:=B:;::;"l23" &2 7(& "678"

will set the value of A(0,8) to the string "l23DE678".

5.4.5 String Assignment Overlap: A Warning

A string generated by a string expression in a string assignment state­

ment is not generated in its entirety before it is transferred into the

string designators in the left part list. Instead, as each character of

the string is generated from the string expression, it is transferred into

the rightmost string designator in the left part list. Then each character

in the string thus generated is transferred, one by one, into the preceding

string designator, and this process continues until the string has been

transferred into all of the string designators in the left part list. The

means by which string assignment statement is effected introduces a side

effect which may not be obvious. Whenever the string variable referenced

by the rightmost string designator in the left part list also appears as a

part of a string designator in the string expression of an assignment state­

ment, the characters to be referenced in the string expression may have

5-20

already been changed to new characters generated earlier in string

expression; for example, if A is a string variable containing the string

"12345678", then

A (2) : =A (1 , 3)

will change A(0,8) to "12222678"; on the other hand

A(2):=A(4,3)

will change A(0,8) to "12567678". This side effect may be used to advan­

tage; for example, the most efficient way to fill the 120 character string

variable LINE with asterisks is

5.4.6 String Assignment Statement Containing String Length Assignment

Sometimes it is not easy or convenient to determine the length of a

string generated by a string ~xpression. For this reason the following

option is provided for the string assignment statement: if a real

variable followed by a colon is inserted between the := and the

string expression in the string assignment statement, then the length of

the string generated by the string expression is assigned to this variable.

For example, if A is a string variable, R is a real variable, and S is a

symbol variable, the value of which is the atomic symbol "ATOMICSYMBOL",

then the execution of the string assignment statement

A:=R: S

will set the first 12 characters of the string variable A to the string

"ATOMICSYMBOL" and will set the value of R to 12.

5-21

5.4.7 The String FILL Sta~ement

~len filling a string variable with a very long literal string, the

string FILL statement may be used:

FILL stringid WITH STRING quoted string

where stringid is the name of a ~Lmple string variable, and quoted string

is a string of characters enclosed by quotes which may be as long as 1022

characters. For example,

STRING STR(2l6)

FILL STR WITH STRING "WHEN fILLING A STRING VARIABLE WITH A

VERY LONG LITERAL STRING, THE STRJ;NG FILL STATEMENT MAY BE USED."

5.4.B The String Addition Assignment Statement

The addition of a + between the := and the string expression of a

string assignment statement will cause the string generated by the string

assignment statement to be added to the contents of the rightmost string

designator in the left part list. For example, if CARD is an BO charac­

ter string variable such that the last B characters contain the string

"12345000" and INCR is an B character string variable containing the string

"00001000", then the string assignment statement

CARD(72,B):= + INCR

will cause the contents of CARP(72,B) to be changed to "12346000".

The value of the string e~pres~ion in this context should be a string

of digits not exceeding 63 characters in length. If there is an overflow

in the most significant character position, then this overflow will be lost.

,5-22

(This type of string assignment statement has the same effect as the

statement

DS:~N ADD

4
in a stream procedure of Burroughs Extended ALGOL .)

5.4.9 The String Subtraction Assignment Statement

The addition of a - between the := and the string expression of a

string assignment statement will cause the string generated by the string

assignment statement to be subtracted from the contents of the rightmost

string designator in the left part list. For example, if CARD is an 80

character string variable such that the last 8 characters contain the

string "12345000" and DCR is an 8 character string variable containing the

string "00001000", then the string assignment statement

CARD (72 ,8) : == - DCR

will cause the contents of CARD(72,8) to be changed to "12344000". The

value of the string expression in this context should be a string of digits

not exceeding 63 characters in length. (This type of string assignment

statement has the same effect as the statement

DS :==N SUB

4
in a stream procedure of Burroughs Extended ALGOL 0)

5.5 STRING COMPARISON

5.5.1 String Relational expression

The string relational expression may consist of a string designator

followed by a relational operator followed by any string expression. Any

5-23

of the relational operators, =, t, <, >, ~, ~, or their mnemonics, may

be used; comparisons are made on the basis of the ordering of the B 5500

. 4
co11at1ng sequence. For example, if A, B, CARD, and SEQ are string

variables, then

A(O,J) = B(0,J-2) & "LY"

CARD(72,8) > SEQ(0,8)

are examples of string relational expressions.

If the length of the field of characters specified by the string

designator is not equal to the length of the string generated by the

string expression, then the result of the comparison will depend on the

relational operator: if the string expression length is greater than the

string designator length, then the relation will be TRUE if the operator

is t, FALSE otherwise; if the string expression length is less than the

string designator length, then

(1) If the operator is =, then the relation will be FALSE.

(2) If the operator is t, then the relation will be TRUE, and;

(3) For any other op~rators, the value of the relation will

depend only on the result of the comparison of the string generated by

the string expression.

5.5.2 String Relation with SPACE

The word SPACE (see paragraph 5.3.6) may be used at the end of a

string expression to indicate that all of the remaining characters yet

to be compared in the string designator on the lefthand side of the string

relation are to be compared with the "blank" character. For example, if

5-24

A is a 30 character string, the string relations

A E(0,5) & SPACE

A SPACE

are equivalent to the relations

A B(0,5) & SPACE(25)

A = SPACE(30)

5.5.3 String Relation with NIL

The word NIL (see parag~aph 5.3.7) may be used in string relations in

the same way as SPACE in paragraph 5.5.2 above. For example,

A = B(0,5) & NIL

is equivalent to

A = B(0,5) & NIL(25)

when A is a 30 character string variable.

5.5.4 String Relation with String Skip Indicator

The string skip indicator, as defined in paragraph 5.3.8, may be used

in the string expression in a st~ing relational expression as a means of

effectively combining two or mo~e string relations into one; for example,

if LINE is a 120 character string variable, and CARD is an 80 character

string variable, then

LINE(8,88) = CARD(0,72) & *(8) & CARD(72,8)

is equivalent to the expression

LINE(8,72) = CARD(0,72) AND LINE(88,8) = CARD(72,8)

5-25

An asterisk by itself may be u~ed at the end of the string expression

on the righthand side of a string relation containing the relational

operator = to indicate that, in case the length of the string generated

by the preceding part of the string expression is less than the string

designator length, the value of the relation will depend only on the

result of the string comparison and not on the difference in length (which

would ordinarily make the relation FALSE; see paragraph 5.5.1). For

example, if A and Bare 30 character strings, and J is a real variable,

having a value of between land 30,

A B(O,J) & *

is equivalent to

A(O,J) = B(O,J)

5.5.5 String Pattern Matching

A limited amount of string pattern matching is made possible in GTL

by extending the number of primaries allowed in the string expression on

the righthand side of the string relational expression when the operators

are = and I. In addition to the string primaries described in Subsection 5.3,

a number of pattern matching primaries are allowed. These pattern

matching primaries have the following forms

n P

P@)

P

where P represents a "pattern element", !! represents an unsigned integer,

and ~ represents an arithmetic expression. The number of characters in

the string designator tested for a match is determined by !! or ~, and

5-26

must be less than 64. If the pattern element is given with neither ae

nor ~, then only one character from the string designator is tested. A

table of the pattern elements and the set of characters they match is

given below.

Pattern Element

ALF

LTR

DGT

VWL

AMONG ~

Characters matched

any alphanumeric character

any letter

any digit

any vowel (A, E, I, 0, or U)

any character in the quoted string
represented by ~ (which must be less
than 8 characters in length)

For example, if the string variable A contains the string "CARRIES", then

the following relation will be TRUE:

A(O,7) = 4 LTR & 2 VWL & "s"

Also, if the string variable A contains the string "AACBABB" , then the

following relation will be TRUE:

A (0,7) = 7 AMONG "ABC"

Note that the pattern element VWL is equivalent to AMONG "AEIOU".

5.5.6 The SEARCH Function

The SEARCH function converts a string relational expression into a

pattern searching function. It has the basic form:

SEARCH(string designator relop string expression)

where the string designator is the test string, relop is the relational

5-27

operator, and string expression generates the string which will be compared

to successive substrings of the string contained in the string designator.

The sequence of comparisons will continue until the relation is satisfied,

or until no more comparisons are possible. If the length of the string

contained in the string designator is denoted by Ll and the length of the

string generated by the string expression is denoted by L2 , then the

maximum number of comparisons which can be made is (Ll - L2 + 1); this

number is limited to 63. The value of the SEARCH function is the number

of character positions skipped in the string designator before a success­

ful match is made; if no substring of the string designator satisfies the

relation, then the value of SEARCH is (Ll - L2 + 1). For example, if STR

is a 7 character string, then

Contents of STR SEARCH Function Value of SEARCH

"ABCDEFG" SEARCH (STR :;: tIC ") 2

"ABCDEFG" SEARCH (STR :;: "G") 6

"ABCDEFG" SEARCH (STR :::: "X") 7

"ABCDEFG" SEARCH(STR :::: "CD") 2

"ABCDEFG" SEARGH(STR :::: "XYZ") 5

"AR(X) ; " SEARCH (STR :: AMONG" 0, ") 2

"ABC456." SEARCH(STR ;;::: "0") 3

" 1023" SEAR,CH(STR " " ") 3

There is also an additional form of the SEARCH function

SEARCH(strexp, ~)

where strexp is a string relational expression as defined above, and var

is a REAL or ALPHA variable. If the match of a single character

5 .. 28

succeeds, then this character is transferred into the last character

position of~. Otherwise, var retains its former value. For example,

given the 7-character string variable STR, and the REAL variable R

(initially zero),

Contents of STR SEARCH Function, R VALUE of SEARCH VALUE of

"ABX5Y " SEARCH (STR ::::: DGT,R) 3 "5 "

" 1023" SEARCH(STR -.t " ",R) 3 "1"

"AR(X) ; " SEARCH (STR = AMONG" 0 ," ,R) 2 "("

"ABCDEFG" SEARCH (STR ".",R) 7 "0"

5.6 BIT EXPRESSIONS

5.6.1 Bit Expression Form

A bit expression is an expression which generates a string of bits.

A bit string so generated may contain gaps, such as might be used for

masking purposes, analogous in effect to the string skip indicator (see

paragraph 5.3.8). Since a single character is six bits long, a bit

string ~ bits long, including gaps, is considered to contribute

«~ + 5) DIV 6) characters to the string expression in which bit expres-

R

sions appear. A bit expression may consist of one or more bit primaries.

Two or more bit primaries may be separated by + symbols.

5.6.2 Bit Primary

A bit primary may have one of the following forms:

n BITI

~ BITO

BITl(ael)

BITO (ael)

BITl(ae2, ael)

BITO(~, ill.)

BITI

BITO

BIT1 represents the bit "1" and BIIO represents the bit "0". The number

of bits to be generated is determined by the unsigned integer n or the

arithmetic expression ~ if given, or is 1 otherwise. If the arithmetic

expression ae2 is also given, it determines the number of bit positions to

be skipped before any bits are generated. If, for example, Cl, C2, C3, C4,

and C5 are real variables which have values of 1 and 0 only, J is a real

variable, and CODE is a string variable~ then

CODE(J,l) = BITl(l-Cl,Cl) + BITl(1-C2,C2) +

BITl(1-C3,C3) + BIT1(1-C4,C4) + BIT1(1-C5,C5)

will be TRUE only if the nth bit of CODE(J,l) is 1 for each Cn which is 1,

for n = 1, 2, ••• ,5. If, in the example given above, the string

relational expression were changed into a string assignment statement by

replacing the = with a :=, and COD~(J,l) initially contained the charac­

ter 0, then the execution of this assignment statement would place into

CODE(J,l) a bit pattern corresponding to the sequence of values of the

Cn's.

5.7 STRING ACTUAL PARAMETERS

5.7.1 Cal1-by-Value

When a formal string parameter is called by value, as in the example

given in paragraph 5.3.5, then the corresponding actual parameter may be

any string expression. However, the string generated by the string

expression may not be longer than 7 characters in length.

5.7.2 Ca1l-by-Name

When the formal parameter is a string array then the corresponding

actual parameter may only be a string array identifier or string array row.

5-30

However, when the formal parameter is a simple string variable (call-by­

name) then the actual pa~ameter may be either a string designator or

string assignment statement. The latter is not equivalent to calling a

string expression by name. Instead, the string assignment statement is

executed when the function designator is called, not when referenced

inside the procedure body. The name of the leftmost string designator in

the left part list of the st~ing assignment statement is given to the

string formal parameter. The length of the string formal parameter will

be the length of the string generated by the string expression in the

assignment statement.

Even though the actual pa~ameter may be a string designator which

refers to a substring of a string variable, the corresponding formal

string variable may be used in the procedure body as if it were the name

of an entire string variable, and itself may be used in a string designa­

tor; for example, consider the following procedure declaration:

PROCEDURE peR,S); VALUE S; STRING R,S;

R(l ,4) :=S & "X"

If A is a string variable containing the string "ABCDEFGH" then

P (A (1,6) , "RS ")

will change the value of A(O,8) to "ABRSXFGH".

5.8 USING STRINGS IN OTHER TYPES OF EXPRESSIONS

5.8.1 Arithmetic Expressions

If the contents of a string designator is a string of less than 8

digits, it may be used in an arithmetic expression in the same manner as

5-31

any other arithmetic primary. In this context, the digit string is

automatically converted into the integer which the string represents.

For example, if A is a real variable and S is a string variable con­

taining the string "125 11 , then the assignment statement

A::S(0,3) + 25

will set A to 150.

If A is an alpha or real variable, and S is a string variable con­

taining the string "ABC" in its first three character positions, then

A::S(O,3) + 25

will set A to 148, since tlABC" :::: "123" when zone bits are stripped.

If the string referenced by a string designator is less than 8 charac­

ters in length, then the transfer function REAL applied to that string

designator may be used in an arithmetic expression in the same manner as

any other arithmetic primary. In this context, the string is automatically

converted into the number which represents the string (in ALPHA format,

right justified). For example, if A is an alpha or real variable, and S

is a string variable containing the string "ABC" in its first three posi­

tions, then

A:=REAL(S (0,3))

has the same effect as

A:="ABC"

The transfer function REAL may not be applied to a Boolean expression

starting with a string designator because of the ambiguity with the con­

text described above.

5-32

5.S.2 Symbolic Expressions

If the string referenced by ~ string designator is less than 32

characters in length, then it may be used in a symbol expression in the

same manner as any other symbol primary. In this context, the string is

automatically converted into the atomic symbol which represents the string.

For example, if L is a symbol variab Ie, the value of which is the list

(IS A LIST), and S is a string variable containing the string "THIS",

then

L:=CONS(S(O,4),L)

will cause L to be set to the list (THIS IS A LIST).

5.9 USING AN ARRAY OR A STRING VARIABLE

A single-dimensional array identifier may be used in place of a

string variable in the left-part list of a string assignment statement, in

a string expression, or in a string relational expression. For example,

STRING CARD(SO); ARRAY AR[O:9]

CARD(72,8):=AR(72,8)

AR(7,8):=CARD(32,6) & SPACE

AR(3,5) > CARD(3,5)

Note that whenever an array identifier appears in the left-part list of

a string assignment statement, it is possible that the flag bit of one or

more array elements may be set, If an array element is accessed in an

arithmetic expression context and the flag bit is set, then a FLAG BIT

run time error will occur.

5.10 OPTIMALITY OF STRING EXPRESSIONS

In all string expressions for which the compiler can determine at

compile time exactly what actions are to be performed (all skip parts

and size parts in a string expression or assignment statement are

unsigned integers), then the code emitted is almost always more efficient

than an equivalent STREAM PROCEDURE. This is not necessarily true other­

wise.

5.11 READING AND WRITING STRINGS

5.11.1 READ and WRITE Statements

A string variable not a formal parameter and longer than 8 charac­

ters in length may appear in ALGOL READ and WRITE statements at any place

at which an array row is allowed. As with the array row forms, the

number of words to be read or written, rather than the number of charac­

ters, must be given since only multiples of 8 characters may be read or

written. For example, if CARD is an 80 character string, INFILE is an

input file, LINE is a 120 character string, and OUTFILE is an output file,

then the following READ and WRITE statements are allowed:

READ (INFILE, 10 ,CARD)

WRITE(OUTFILE,15,LINE)

5.11.2 GTL Input-Output Functions

In addition to the ALGOL READ and WRITE statements described above,

strings may be easily read from or written onto any file using the GTL Input­

Output functions described in Section IX.

VI. LISP 2

6.1 INTRODUCTION

Among the facilities for processing symbolic data, GTL contains a

1 non-standard version of LISP 2, a list processing language •

This section of the manual describes the list processing constructs

provided by the GTL language. Although enough information is provided

in this section to enable the user to write a LISP program, it is intended

to supplement, but not replace, the standard references on LISp2 ,3,8,6.

6.2 S-EXPRESSIONS AND LISP RECORDS

6.2.1 Record and Field Designator

The name S-expression (or "Symbolic expression") is given to the

symbolic (or "external") representations of LISP data. In order to

define the S-expression and relate it to the various LISP operations, the

concept of a linked record9 is introduced.

A record, like an array in ALGOL, is a set of values. In ALGOL, an

array is an ordered set of values all of the same type, each of which may

be referenced by an appropriate subscript. A record, on the other hand,

contains a set of fields, and each field contains a value, the type of

which corresponds to the type of field. A collection of records is said

to belong to the same record class if each record in the collection con-

tains the same corresponding fields. The value of a field in a record is

referenced by the application of the field name to a reference expression,

the value of which is a reference to the record. In GTL, this construct

is called a field designator, and has the form

FIELDNAME(re)

where FIELDNAME is the name of a field and re is a reference expression.

6-1

"

Certain classes of LISP records contain two fields which are directly

accessible to the programmer, the names of which are CAR and CDR. The

value of a CAR or CDR field is a reference to a LISP record. A LISP

reference expression; i.e., an expression the value of which is a refer-

ence to a LISP record, is called a s¥mbol expression. Thus,

CDR(se) --
is a reference to the LISP record which is referenced by the value of

the CDR field of the LISP record referenced by the symbol expression ~.

6.2.2 LISP Records

There are three primary classes of LISP records:

1) A record which represents a string of characters. This type

of record is called an atomic symbol, and contains a CDR field, but not a

CAR field.

2) A record which represents a number. This type of record is

called an atomic number, or simply number, and contains neither the CAR

nor the CDR field.

3) A record which contains only the CAR and CDR fields. It

represents a symbolic expression called a dotted pair, which is defined

below.

LISP records of types land 2, atomic symbols and atomic numbers,

are called atoms because they are the basic components from which the sym-

bolic representations of LISP data are constructed. Atoms are represented

symbolically simply by the strings and numbers which they represent.

A LISP record of type 3 is represented symbolically by a dotted pair

6-2

which has the form

(s1 • s2)

where sl and s2 are the symbolic representations of the LISP records

referred to by the values of the CAR and CDR fields, respectively, of

the LISP record. For example,

(DOTTED • PAIR)

is the symbolic representation of a LISP record for which the CAR field

refers to the atomic symbol DOTTED, and the CDR field refers to the

atomic symbol PAIR. Note that the definition of a dotted pair is recur­

sive. If the values of the CAR and CDR fields of a LISP record are non­

atomic, then the dotted pair representing the record will contain dotted

pairs; for example,

«DOTTED • PAIR) (POTTED DAIR))

LISP records which represent dotted pairs can be represented graphi­

cally by a rectangle divided in half, the left half representing the CAR

field and the right half representing the CDR field. Each half contains

an atom if the corresponding field is atomic, or an arrow pointing to

another rectangle if non-atomic. For example, the two dotted pairs given

above can be represented as shown below.

6-3

CAR CDR

DOTTED PAIR corresponds to (DOTTED . PAIR)

CAR CDR

POTTED DAIR

i...-+ DOTTED PAIR

corresponds to «DOTTED. PAIR) . (POTTED. DAIR»

It is possible to create LISP records which have a graphic

representation, but which have no corresponding symbolic representation

as a dotted pair; for example,

CAR CDR

A

B

J

6-4

6.2.3 LISP Lists

Atomic symbols, atomic numbers, and dotted pairs are all forms of

symbolic representations of LISP data called S-expressions. There is an

additional type of S-expression called a list. A LISP list can be defined

recursively as

1) a sequence of one or more S-expressions enclosed in paren-

theses, or

2) the empty list, ()

The non-empty list has the form

(sl s2 •••)

where sl, s2, ••• , are S~expre~sions. Two or more list items may be

separated by commas if desired.

Examples of LISP Lists:

(A 15 B)

(A,B,C)

(ONE)

«A • B) , (C • D) , (E • F))

(A (B C))

o

Lists are defined in terms of atoms and dotted pairs as follows.

The empty list is equivalent to the atom 0 (zero)*. A list with one

list item is equivalent to a dotted pair with the list item first and

the atom 0 (zero)* second. A list with two or more list items is

equivalent to a dotted pair with the first list item as the first

*In most LISP systems, the atomic symbol NIL is used instead of O.

6-5

component and a list containing all list items except the first as the

second component. Thus LISP lists may be defined in terms of dotted pairs

(but not vice versa).

Examples:

o == 0

(A) == (A 0)

(A B) == (A • (B • 0»

((C) D) "" « C • 0) • (D • 0»

«A B) (C) D) «A. (B • 0» • « C • 0) • (D • 0»)

LISP lists can be represented graphically in the same manner as

dotted pairs; for example, (A B C) may be represented as

CAR CDR

~_A __ ~ ____ ~~--~~~I B a

This kind of graphical representation is often useful for visualizing

what occurs when S-expressions are manipulated by altering the contents

of the CAR and CDR fields of the associated LISP records.

6.3 SYMBOL EXPRESSION

6.3.1 Definition

In ALGOL, an arithmetic expression may be considered as a set of

rules which, when executed, generates a value which is a number. In GTL,

a symbolic expression is a se.t of rules which produces a value which is

a reference to a LISP record. Some of the components from which symbolic

expressions are composed are described below.

6-6

6.3.2 Quoted S-expressions

The quoted S-expression is an S-expression enclosed in quotes which

has as its value a LISP record, the symbolic representation of which is

the S-expression. For example,

"(THIS IS A LIST)"

"ATOMICSYMBOL' ,

"(DOTTED. PAIR)"

"(3 5 7 11)"

6.3.3 Numbers and Arithmetic Expressions

Almost any class of arithmetic expression~ including those composed

of literal numbers, may be used in a symbol expression. Whenever an

arithmetic expression is used where a LISP reference value is expected,

its value is a reference to a LISP record which represents the number

which is the value of the arithmetic expression. The arithmetic primary

which cannot be used in this context is the string constant (of Burroughs

Extended ALGOL, in which GTL is embedded), since it may be identical in

form to a quoted atomic symbol representing the same string.

6.3.4 LISP Variables

Variables whose values are references to LISP records are declared

and used in the same forms as REAL, INTEGER, and BOOLEAN variables in

ALGOL. LISP variables are declared with the declarator SYMBOL; for

example,

SYMBOL X, Y, Z

SYMBOL ARRAY SR[O:20]

6-7

A variable of type SYMBOL may be used in a symbol expression to produce

its value, or, as in ALGOL, in the left part list of an assignment state­

ment to change its value.

6.3.5 Assignment Statement

An assignment statement, besides being. used as a statement, may be

used in a symbol expression having as its value the value which is

assigned to the variables in the left part list. An extension of the

syntax of the LISP assignment statement is described in Subsection 6.7.

6.3.6 The Field Designators

The CDR field name may be applied to any symbol expression the value

of which is a LISP record of type I or 3 (atomic symbol or dotted pair).

The CAR field name may be applied to any symbol expression the value of

which is a type 3 LISP record (dotted pair).

Examples

CAR("(A • B)")= A

CDR("(A • B)")= B

CAR("(A B C)")::::: A

CDR("(A B C)")= (B C)

Compositions of these field designators may be contracted to a form illus­

trated by the following examples:

CADR("(A B C)") = CAR(CDR("(A B C)")= B

CDAR("«A B) C)") :; CPR(CAR("«A B)C)"» = (B)

CAAAR("«(A»)")= CAR(CAR(CAR("«(A»)"»)= A

CADDR("(A B C)")= CAR(CDR(CDR("(A B C)"»)= C

The length of a composite field designator may not exceed 13 characters.

6-8

6.3.7 Conditional Expression

The LISP 2 conditional expression has the same form as any ALGOL

conditional expression. For example,

IF X 1 THEN CAR(S) ELSE CADR(S)

6.3.8 LISP Function Designator

A LISP function designator is simply a calIon a procedure which was

declared with the type SYMBOL, its value being the reference to the LISP

record defined by the SYMBOL procedure declaration. In GTL, the formal

parameters of the procedure, if any, may be of type SYMBOL; the conventions

of call-by-value and call-by-name of standard ALGOL also apply. For

example, the declaration

SYMBOL PROCEDURE ELN(N ,S); REAL N; SYMBOL S;

BEGIN

WHILE (N:=N - 1) > 0 DO S:=CDR(S);

ELN:=CAR(S)

END OF ELN

defines a procedure which has as its value the Nth element of the list S;

ELN(l, "(A B C D)")= A

ELN(3, "(A B C D)")= C

Note that the preceding definition is not intended to imply that procedures

of any other type (or untyped) may not have formal parameters of type

SYMBOL; see, for example, the procedure declaration given in paragraph 6.8.2.

6-9

6.4 LISP STANDARD FUNCTIONS

6.4.1 CONS

The LISP function CONS is a :;;tandard (or "intrinsic") function of two

arguments, both symbolic expressions. The value of CONS is a freshly­

created LISP record whose CAR field is set to the value of the first argu­

ment, and whose CDR field is set to the value of its second argument. For

example,

CONS ("A", "B"} =;; (A . B)

CONS ("A", CONS("L!ST",O» =;; (A LIST)

Note that the difference between CONS("A", "B") and "(A . B)" is that each

time the latter is evaluated, its value is a reference to the same LISP

record.

6.4.2 LIST

The LIST function is a standard function of one or more arguments,

the value of which is a set of link LISP records the symbolic represen­

tation of which is a LISP list. For example,

LIST("THIS", "IS", "(A LIST)") =;; (THIS IS (A LIST»

The use of the word LIST in this context does not interfere with its use

in the LIST declaration of Burroughs Extended ALGOL.

6.4.3 RANDOM

The standard function RANDOM is a function of one symbol expression

argument the value of which should be a list. The value of RANDOM is one

item chosen at random from the list.

Example:

RANDOM (" (CHOOSE ONE OF THESE AT RANDOM) ")

6-10

6.4.4 APPEND

The standard function APPEND is a function of two symbol expression

arguments whose values should be lists. Its value is a copy of the first

list with the CDR field of its last record modified to point to the second

list. Its effect is illustrated by the following procedure declaration:

SYMBOL PROCEDURE APPEND(X, Y); VALUE X, Y; SYMBOL X, Y;

APPEND:=IF NULL (X) THEN Y ELSE

CONS (CAR(X) , APPEND (CDR(X) , Y))

(The NULL function is TRUE if its argument is the empty list - see

paragraph 6.5.5).

Example:

APPEND("(A B C)","(D E F)") == (A BCD E F)

6.4.5 NCONC ---
The standard function NCONC is a function of two symbol expression

arguments whose values should be lists. Its value is its first argument

(if a non-empty list) with the CDR field of its last record altered to

point to the value of NCONC's second argument. If the first argument is

the empty list, then the value of NCONC is the value of its second argu-

ment. The effect of NCONC, illustrated by the procedure declaration given

below, is similar to that of APPEND except that its first argument is not

copied.

SYMBOL PROCEDURE NCONC(X,Y); VALUE X, Y; SYMBOL X, Y;

IF NULL(X) THEN NCONC:=Y ELSE

BEGIN

NCONC:::;;X;

WHILE NOT NULL(CDR(X») DO X:=CDR(X);

CDR(X):=Y;

END

The las tass ignment statement shown above means that the CDR fi.eld of the

record to which the value of X refers is changed to the value of Y. This

construct is further explicated in Subsection 6.7.

6.4.6 SPACE and QMARK

The standard functions SPACE and QMARK are functions of no arguments

whose values are atomic symbols which represent the blank and question

mark characters , respectively. Thes~e functions are provided since these

characters are not part of the syntax of S.-expressions which may be read

or quoted (see Subsection 6.10).

6.5 BOOLEAN STANDARD FUNCTIONS

6.5.1 ATOM

The Boolean standard function ATOM, when applied to a symbolic expres­

sion argument, yields a value of TRUE if the value of the symbolic expres­

sion is an atom, i.e., an atomic symbol or number, and is FALSE otherwise.

Examples:

6.5.2 ATSYM

ATOM("ATOMICSYMBOL") == TRUE

ATOM(X + 5) == TRUE

ATOM("(A • B)") == FALSE

The Boolean standard function ATSYM, when applied to a symbolic

expression argument, yields a value of TRUE if the value of the symbolic

expression is an atomic symbol, and is FALSE otherwise.

Examples:

ATSYM("ATOMICSYMBOL") ::; TRUE

ATSYM(125) == FALSE

ATSYM("(A • B)") = FALSE

6-12

6.5.3 NUMBERP

The Boolean standard function NUMBERP, when applied to a symbolic

expression argument, yields a value of TRUE if the value of the symbolic

expression is a reference to a LISP record which represents a number,

and is FALSE otherwise.

Examples:

6.5.4 ALF

NUMBERP ("ATOMICSYMaOL") = FALSE

NUMBERP(125) :::;; TRUE

NUMBERP (" (A . B) I') :::;; FALSE

The Boolean standard function ALF, when applied to a symbolic expres­

sion argument having an atomic symbol as its value, yields a value of

TRUE if the atomic symbol is an identifier, and is FALSE otherwise. If

the value of the symbolic expression argument is not an atomic symbol, the

value of ALF is undefined.

Examples:

ALF ("ATOMICSYMBOL") TRUE

ALF(":") :::;; FALSE

ALF("A") :::;; TRUE

In other words, ALF distinquishes between atomic symbols of types 1 and 2

as defined in paragraph 6.12.1.

6.5.5 NULL

The Boolean standard function NULL, when applied to a symbolic

expression argument, yields a value of TRUE if the value of the symbolic

6-13

expression is the atom 0 (zero), and is FALSE otherwise.

Examples:

6.5.6 MEMBER

NULL(O) "" TRUE

NULL (" 0 ") = TRUE

NULL("(ONE)") :;:: FALSE

NULL(CDR("(ONE)"» = TRUE

The Boolean standard function MEMBER, when applied to two symbolic

expression arguments, yields a value of TRUE if the value of the first

argument is a member of the list which is the value of the second argument.

Examples:

MEMBER("B", "(A B C)") = TRUE

MEMBER ("X" , "(A B C)") = FALSE

MEMBER("(C D)", "(A B (C D»") = TRUE

6.6 LISP RELATIONAL EXPRESSIONS

The definition of the relational expression of ALGOL is extended by

the includionof the LISP relational expression which has the form:

~EQ~

~ NEQL ~

where sv is a SYMBOL variable, LISP assignment statement, LISP function

designator, or a field designator; EQ, NEQL, =, and J are the LISP

relational operators; and ~ is a symbol expression. The relational

6-14

expression containing EQ is TRUE if, and only if, the values of ~ and se

are references to the same LISP record. The relational expression con­

taining = is TRUE if and only if the values of sv and se are references

to LISP records (not necessarily the same) which represent the same

S-expression. The relational expressions containing NEQL and I are the

negations of the relational expression containing EQ and =, respectively.

Note that, according to the definitions given above, a relational

expression of the form

CAR(S) 15

is syntactically correct, whereas

CAR(S) > 15

is not, since> is not a LISP relational operator. The above expression

could be written correctly as

15 < CAR(S)

in which case a run-time error would result if CAR(S) is not a number.

6.7 THE LISP ASSIGNMENT STATEMENT

The LISP assignment statement has the same form and operational

meaning as an ordinary ALGOL assignment statement. In addition to SYMBOL

variables, however, field designators (including the composite forms

shown in paragraph 6.3.6) may be used in place of any variable in a left

part list. For example, if X is a SYMBOL variable having the value

(ABC),then

CAR(X) :="D"

6-15

changes the CAR field of the LISP record referenced by the value of X to

the atomic symbol D, so that, after the execution of this assignment state-

ment, the value of X is (D B C).

Examples:

If the value of X before the statement is (A B C), then

the following occurs:

assignment statement

CADR (X) : ="D"

CDR (X) ::" (D E)"

CAR (X) :::::CDR(X) :::::"C"

CDDDR(X) :=X

value of X after
assignment statement

(A D C)

(A D E)

(C • C)

no S-expression
representation

The result of the last assignment statement given above is a "circular"

list and may be illustrated graphically as the following:

.1 BI

Note that NCONC (X, X) would have the same effect. It also changes X into

a circular list. Circular lists may not be read or printed by the normal

GTL Input-Output mechanism.

The assignment statement with the field designator in the left part

list is the only means of changing the CDR and CAR fields of LISP records

in LISP 2.

6-16

6.8 THE LISP ITERATIVE STATEMENT

6.8.1 The ON Statement

There are two types of LISP iterative statements which are similar in

form to the FOR-statement of ALGOL. The first type has the form:

where

FOR s ON e DO st

s is a simple SYMBOL variable

e is a symbol expression, and

st is any statement

It is equivalent to the following compound statement:

BEGIN

For example, consider the following procedure declaration:

SYMBOL PROCEDURE SUBST(X, Y, Z); VALUE X, Y, Z; SYMBOL X, Y, Z;

BEGIN

SYMBOL S;

SUBST:=Z;

FOR S ON Z DO IF X

END

CAReS) THEN CAR(S):=Y;

which has the effect of substituting Y for every occurrence of X in the

list Z.

SUBST("A", "R", "(A E A C)") = (R B R C)

6-17

6.S.2 The IN Statement

The second type of LISP iterative statement has the following form:

FOR s IN ~ DO st

where ~, ~, and st have the same meanings as in paragraph 6.S.l above. It

is equivalent to the block:

BEGIN

SYMBOL X;

FOR X ON ~ DO BEGIN ~:=CAR(X); st END

END

For example, a definition of the MEMBER standard function could be given

by the following procedure declaration:

BOOLEAN PROCEDURE MEMBER(X,Y); VALUE X, Y; SYMBOL X, Y;

BEGIN LABEL EXIT; SYMBOL S;

FOR S IN Y DO IF X ::: S THEN BEGIN MEMBER:=TRUE;

GO TO EXIT END;

MEMBER:=FALSE;

EXIT: END OF MEMBER

6.S.3 The WHILE Part

Both forms of the iterative statement may contain a WHILE part in the

form:

FOR .!!. { ;;: }.!!. WHILE be DO ~

where be is a Boolean expression. This means that the loop will continue

until be is FALSE or until the empty list is reached.

6-1S

6.9 EXTENSIONS OF ARITHMETIC EXPRESSIONS

6.9.1 Arithmetic Expression Syntax Extension

An arithmetic expression may contain any of the symbol expressions

described in Subsection 6.3; the value of the symbolic expression should

be a reference to a LISP record which represents a number. The value of

the symbol expression in this context will be this number. For example,

if X is a REAL variable and S is a SYMBOL variable,

X:=CDR(S) + X

is permitted if it is known that the value of CDR(S) is a number.

6.9.2 The LENGTH Function

There is a usefu1-integer-va1ued standard function called LENGTH

which has a symbolic expression as an argument. If the value of the sym­

bolic expression is a list, then the value of LENGTH is the number of items

on the list. If the value of the symbolic expression is an atomic symbol,

then the value of LENGTH is the number of characters in the string

represented by the atomic symbol; otherwise, the value of LENGTH is

undefined. For example,

LENGTHC'(A B)") = 2

LENGTH("«A B) (B C) (D E»") 3

LENGTH (" 0") = 0

LENGTH("0NE") = 3

LENGTH("ATOMICSYMBOL") = 12

6-19

6.10 READING AND WRITING S-EXPRESSIONS

6.10.1 Output Functions

The value of any GTL variable or function designator, including LISP

variables, procedures, and assignment statements--i.e., those declared

with type SYMBOL, and LISP field designators--may be printed by the PRINT

statement. The PRINT statement consists of the word PRINT followed by

one or more "printable items". (See paragraphs 9.2.2 through 9.2.17 on

the use of the PRINT statement.) For example, if S is a SYMBOL variable

having the atomic symbol X as its value, and Y is a REAL variable, the

value of which is 15, then

PRINT # THE VALUE OF # S # IS # Y

causes

THE VALUE OF X IS 15

to be printed on the output file. The output file is specified by the

OUTPUT statement. (See Subsection 9.3.)

If Sand R are SYMBOL variables with values (A B C) and CD E F),

respectively, then

PRINT S,R

causes

(A B C) (D E F)

to be printed.

6-20

If S is a SYMBOL PROCEDURE which returns as its value the S-expres­

sion (THIS IS A LIST), then

PRINT CDR(S)

causes

(IS A LIST)

to be printed.

The user need not be concerned about printing items for which the

character representation exceeds the size of a logical record of the out­

put file. The output system automatically edits the output string so

that it can be written on one or more logical records as needed.

If the GTL Output mechanism is used, then the following file and

output string declarations are suggested:

1) for the line printer:

FILE OUT OUTFILE 16(2,15)

and

STRING LINE (120)

2) for the remote terminal:

FILE OUT OUTFILE REMOTE (2,9)

a~

STRING LINE (72)

These declarations must appear in the outermost block of the program.

With these declarations, the following output statement should be executed

6-21

before using PRINT:

OUTPUT(OUTFILE,LINE,file length in characters)

where file length in characters would be an unsigned integer specifying

the file length in characters of the file. For the line printer and

remote terminal, this would be 120 and 72, respectively. For remote

terminals, the FILE REMOTE construct can be used (Subsection 9.6). (See

Section IX for complete details on GTL Input-Output.)

6.10.2 Input Functions

The functions READ and READ1 may be used in symbol expressions for

reading S-expressions from the input files. The function READl reads

single atomic symbols and numbers only, and READ reads S-expressions.

Dotted pairs and lists read by READ must be followed by $ (which serves

to indicate the end of an S-expression in case of a parenthesis mismatch);

the $ functions as a delimiter only and will not be read by a subsequent

READ or READ1. For example, if

(NUMBER. 125)$

appears in the input string, then the value of READ will be the dotted

pair (NUMBER. 125); if READ1 is executed six times (without an inter­

vening READ), then the values of READ1 will be six atoms:

(

NUMBER

125

)

$

6-22

Although the spacing between items read from an input file by READ or READl

is not important, an identifier or a digit string in a number cannot be

broken across the boundaries of an input record (for example, the characters

of an atomic symbol cannot begin on one card and continue on the following

card); S-expressions read by READ can otherwise be spread across more than

one input record. The value of READ or READI at end-of-file is the QMARK

atomic symbol.

If the GTL Input mechanism is used, the following file and input string

declarations are suggested for a card file:

FILE IN INFILE (2,10);

a~

STRING CARD (80)

For a remote terminal file, the following might be used:

FILE IN INFILE REMOTE (2,9);

and

STRING CARD (72)

These declarations must appear in the outermost block of the program. With

these declarations, the following INPUT statement should be executed before

using READ or READl:

INPUT (INFILE ,CARD ,file length in characters)

where file length in characters would be 80 and 72 for the card reader and

remote terminal, respectively. (See Subsection 9.5.) If the remote terminal

is being used for both Input and Output, then only one REMOTE file should be

declared and the file identifier associated with that file should be used

in both the INPUT and OUTPUT statements. If a listing of the input

string from the card file is desired, then the additional declarations

given in paragraph 9.8.4 can be used. For remote terminals

6-23

the FILE REMOTE construct can be used. (See Section IX for details of

GTL Input-Output.) Warning: If the FILE REMOTE declaration (Subsec-

tion 9.6) is used in lieu of the above, then care should be exercised

since a psuedo end-of-fi1e is normally returned after every other READ

or READ1; i.e., READ or READ1 will be equal to the QMARK (question mark)

atomic symbol on every other read. (See paragraph 9.6.2, especially

part 4.)

6.11 THE SYMBOL MONITOR

The values of SYMBOL variables and procedures can be monitored by the

LISP monitor system. The variables and procedures to be monitored are

specified by the declaration SYMBOL MONITOR followed by a list of SYMBOL

variables or procedure identifiers. For example, if the variables X and

SR and the procedure ELN (declared in paragraphs 6.3.4 and 6.3.8) are to

be monitored, then the delcaration

SYMBOL MONITOR X, SR, ELN

should be used (after the declarations of these items). The name of the

SYMBOL variable (plus values of subscripts if a subscripted variable) is

printed with its value whenever it appears in the left part list of an

assignment statement which is executed (a subscripted variable must be the

leftmost variable for it to be monitored). Whenever a monitored SYMBOL

procedure is evaluated, the procedure name, its arguments (if call by

value and type REAL, INTEGER, BOOLEAN, or SYMBOL) and its value are

printed. If a call on a SYMBOL procedure to be monitored appears before

the SYMBOL MONITOR declaration (such as would normally occur with recursive

procedure declarations), then that procedure call would not be monitored.

This restriction can be circumvented by either declaring the procedure

6-24

FORWARD and making the actual procedure declaration after the SYMBOL MONI­

TOR declaration or by making the SYMBOL MONITOR declaration inside the

procedure declaration itself (which would cause only recursive calls to be

monitored). The monitor file is specified by the output statement (para­

graph 6.10.1). A monitor declaration is effective only in the block in

which it appears.

For example, with the declarations

SYMBOL R;

SYMBOL PROCEDURE LISTOFATOMS(S);VALUE S; SYMBOL S; FORWARD;

SYMBOL MONITOR LIS TOFATOMS, R;

SYMBOL PROCEDURE LISTOFATOMS(S); VALUE S; SYMBOL S;

LISTOFATOMS:=IF NULL(S) THEN 0 ELSE

IF ATOM(CAR(S»THEN

CONS(CAR(S),LISTOFATOMS(CDR(S»)ELSE

NCONC(LISTOFATOMS(CAR(S»,LISTOFATOMS(CDR(S»)

the execution of the assignment statement

R:=LISTOFATOMS (" (A «B) C))")

will cause the following to be printed (names of variables and procedures

are truncated to 7 characters when necessary):

CALL LISTOFA

(A «B) C»

CALL LISTOFA

«(B) C»

CALL LISTOFA

«B) C)

6-25

CALL LISTOFA

(B)

CALL LISTOFA

o

LISTOFA 0

LISTOFA == (B)

CALL LISTOFA

(C)

CALL LISTOFA

o

LISTOFA 0

LISTOFA :;: (C)

LISTOFA :::: (B C)

CALL LISTOFA

o

LISTOFA ::: 0

LISTOFA == (B C)

LISTOFA :::: (A B C)

R ::: (A B C)

6.12 ATOMIC SYMBOLS

6.12.1 Types of Atomic Symbols

In the GTL LISP 2 system, there are three types of atomic symbols

(classified by the kinds of strings the atomic symbol represents):

1) Identifier, which is an ordinary ALGOL identifier (i.e., a

letter, which may be followed by one or more letters or digits),

6·26

2) Special character, which is any non-alphanumeric character

in the B 5500 character set except the blank character and the question

mark, and

3) Non-standard atomic symbol, which is any string of charac­

ters (which may include the blank character and question mark which is

neither an identifier nor a special character.

No atomic symbol of any type may exceed 31 characters in length.

Quoted atomic symbols appearing in symbol expressions (paragraph 6.3.2)

and atomic symbols read by READ1 may be any identifier or special charac­

ter. The atomic symbols appearing in quoted dotted pairs or lists, or

dotted pairs or lists read by READ, may be any identifier or special charac­

ter except the following special characters:

(

)

"

$

These special characters cannot be recognized as atomic symbols in this

context since they serve as delimiters of dotted pairs and lists (for

S-expressions which are quoted or read by READ).

6.12.2 Nonstandard Atomic Symbols

Any nonstandard atomic symbol may be created by the MKATOM function

which is described in paragraph 6.14.3. Also, the blank and question mark

atomic symbols may be created by using the SPACE and QMARK functions,

respectively, in symbolic expressions (paragraph 6.4.6).

6-27

6.12.3 Uniqueness of Atomic Symbols

Every atomic symbol created by the constructs described in this section

(i.e., those appearing in quoted S-expressions, or read by READ or READl)

is unique. A single type 1 LISP record represents all occurrences of

identical character strings in S-expressions which are read or quoted.

This uniqueness has an important consequence: Information contained in a

set of linked LISP records may be associated with the character string

represented by an atomic symbol via the CDR field of the atomic symbol.

For example, if one describes the syntax of simple arithmetic expressions

by the following BNF equations,

<e> == <p>I<p><op><p>I<p><op><e>

<P> == <v>I «e»
<v> == A I B I C

<op> :: == + I - I ® I /

their representation may be effected through the following assignment

statements:

CDR("E"):=="«P) (P OP P) (P OP E))"

CDR ("P") : =CONS (LIST (" (", "E", ") "), II «V)) ")

CDR("V"):=="«A) (B) (C»"

CDR("OPII) ::::" « +) (-) (®) (/»"

so that, when using the procedure GEN, as defined below,

PROCEDURE GEN(X); VALUE X; SYMBOL X;

IF NULL(CDR(X» THEN PRIN X SPACE ELSE

FOR X IN RANDOM(CDR(X» DO GEN(X)

6-28

calls on the pair of statements

GEN (liE "); TERPRI

would cause to be printed randomly generated expressions which may have

forms like those shown below:

A

A + B

A / (B - C)

(A + B ~ C) / A

6.13 THE LISP OBJECT LIST

6.13.1 The LISP Symbol Table

The uniqueness of atomic symbols described in paragraph 6.12.3 is

assured through the use of a symbol table created and maintained by the GTL

system. All single character atomic symbols are necessarily unique. The

numeric value of a character is internally converted directly into the

reference to the LISP record representing the character. However, all unique

multi-character atomic symbols are contained on a list called the object list.

Whenever a unique atomic symbol representing a string of characters is to

be created, the object list is consulted first to determine whether or not

an atomic symbol already exists which represents the string in question.

If the atomic symbol already exists, a reference to this atomic symbol is

returned. If the atomic symbol is not on the object list, it is created,

and placed on the object list. The object list itself is actually not a

single list but a collection of 125 lists. An arithmetic operation (MOD)

is performed on a part of the string to be tested, yielding a value between

6-29

o and 124. This value is then used as an index to an implicitly declared

SYMBOL array, each element of which references a possibly empty list of

atomic symbols. This procedure, called hashing, greatly reduces the amount

of time required to determine the existence of an atomic symbol representing

a multi-character identifier. The atomic symbols on an object list are not

actually members of a list but are linked together through the CTR field

of the atomic symbol. (The CTR field is described in Subsection 6.16.)

In this context, 1 is used as an end of list indicator instead of O. Therefore,

every atomic symbol on the object list has a non-NULL CTR field.

6.13.2 The OBLIST Function

The OBLIST function may be used to access all of the multi-character

atomic symbols on the LISP symbol table as described above. The OBLIST

function is used in the form:

OBLIST (aexp)

where aexp represents an arithmetic expression, the value of which must be

an integer between 0 and 124 (as explained above). For example, if S is

a SYMBOL variable and X is a REAL variable, then the following statements

could be used to print the contents of the object list:

FOR X:=O STEP 1 UNTIL 124 DO

IF NOT NULL(S:=OBLIST(X)) THEN

DO PRIN S SPACE UNTIL S:=CTR(S) = 1;

TERPRI

6-30

6.13.3 The REMOB Statement

One or more atomic symbols may be removed from the object list by the

REMOB function for the purpose of reclaiming storage used for atomic symbols

and/or making an atomic symbol unrecognizable. The REMOB statement may be

used in two forms:

REMOB

REMOB(~)

where ~ represents a symbol expression. The first form of the REMOB state­

ment will remove the entire object list. The second form will remove from

the object list the atomic symbol referenced by the value of the symbol

expression ~.

6.14 STRINGS AND ATOMIC SYMBOLS

6.14.1 Creation of Atomic Symbols

Any string of characters less than 32 characters in length can be

converted into an atomic symbol, and vice versa. Conversion of an atomic

symbol into the string of characters which it represents was discussed in

paragraph 5.3.13. Every multi-character atomic symbol created by the GTL

system is placed on the object list with the exception of those created by

the GENSYM function (paragraph 6.14.4) and the asterisk forms of the

MKATOM function (paragraph 6.14.3). The following two paragraphs describe

functions of string expressions (See Section V) which are useful in the

LISP portion of GTL. These functions are used implicitly by the READCON

function (Section IX).

6-31

6.14.2 The ATGON Function

The ATGON function is ~ Boolean standard function which indicates

whether or not a string is represented by an atomic symbol on the object

list. The ATGON function is used in the form:

ATGON(~)

where ~ is a string expression. The value of the string expression should

be less than 32 characters in length. The value of ATGON will be TRUE if

there is an atomic symbol on the object list which represents the string,

and FALSE otherwise. If ATCON is TRUE, then the atomic symbol which was

found may be accessed by the standard variable INSYM (see paragraph 9.7.1).

If the function ATGON is used by itself, without the string expression, the

string contained in the string designator

INSTR(O, LENGTH(INSTR»

will be tested (see paragraphs 9.4.3, 9.4.4, and 9.7.1).

6.14.3 The MKATOM Function

The MKATOM fUnction is used to create an atomic symbol from a string.

The value of MKATOM is the atomic symbol which is created. The MKATOM func­

tion may be used in the following forms:

MKATOM(~)

MKATOM(se)*

MKATOM

MKATOM*

where ~ represents a string expression. The value of the string expression

6-32

must be less than 32 characters in length. The first two forms of the

MKATOM function will return a reference to an atomic symbol which represents

the string generated by the string expression see The third and fourth forms

of the MKATOM function will return a reference to an atomic symbol which

represents the string contained in the string designator

INSTR(O ,LENGTH (INSTR))

(see paragraphs 9.4.3, 9.4.4, and 9.7.1). The first and third forms of the

MKATOM function will check the object list first to see if the atomic sym­

bol already exists (see Subsection 6.13); if so, a reference to this atomic

symbol is returned. If an atomic symbol does not already exist, then a

new one is created and placed on the object list. If the second and fourth

forms of the MKATOM function, the asterisk forms, are used, with multi­

character atomic symbols, they will create a new atomic symbol which is

not placed on the object list, regardless of whether or not there is an

atomic symbol on the object list representing the string. The asterisk

has no effect if the value of se is a single-character atomic symbol.

6.14.4 The GENSYM Function

The GENSYM function is a SYMBOL standard function of no arguments.

Each calIon the GENSYM function will create a new atomic symbol which is

not placed on the object list (and will not be recognized if read or

quoted, or tested by ATCON). Atomic symbols created by GENSYM represent

strings consisting of the letter "G" followed by a 3 digit number. For

example, the first 3 calls on GENSYM will create the atomic symbols

GOal

G002

G003

6-33

6.15 LISP REFERENCE VALUE TRANSFER FUNCTIONS

6.15.1 The CTSM Function

The CTSM function is a real-valued function used in the form:

CTSM(~)

where se represents a symbol expression. The value of CTSM is the con­

tents of the word referenced by the value of see For example, the value of

the ID field of a LISP record (see paragraph 6.22.1) is given by

CTSM(se). [1: 2J

In many cases, a REAL FIELD deSignator is more convenient than the CTSM

function (see paragraph 7.2.2).

6.15.2 The SMTA Function

The SMTA (~~ol !o ~rithmetic) function is a real-valued function

used in the form:

where se represents a symbol expression. The value of SMTA is the arith­

metic equivalent of the LISP reference value. For example, if

SMTA("THING") :;:: 167

then 167 is the actual (relative) address of the LISP record which is the

atomic symbol THING (see paragraph 6.22.1). Note that the relation

SMTA(~) ::;; 63

is true when the value of ~ is a single character atomic symbol or a

single digit number (see paragraphs 6.22.2 and 6.22.3).

6-34

6.15.3 The ATSM Function

The ATSM (~rithmetic !o §y~ol) function is a LISP reference-valued

function used in the form

ATSM(~)

where ~ represents an arithmetic expression. The ATSM function converts

the value of ~ into the equivalent LISP reference value. For example,

the following relations are always true:

SMTA(ATSM(~)) = ae

ATSM(SMTA(~)) = se

where ~ and ~ represent arithmetic and symbol expressions, respectively.

Since any arithmetic expression may be used as an argument of ATSM, the

user should be very careful to make certain that the value of ATSM is a

legitimate LISP reference value. This is especially important when auto­

matic reclamation is used, since the garbage collector will expect that all

SYMBOL valued items will be an address of a legitimate LISP record.

The ATSM transfer function may also be used to modify the address of

a LISP record when used in the following form

ATSM(aexp, sexp)

where aexp is an arithmetic expression, the value of which is added to the

value of the SYMBOL expression sexp. The value of aexp must be a non­

negative integer (see also paragraph 7.4.5). This expression is equivalent

to

ATSM(aexp + SMTA(sexp))

6-35

6.16 THE CTR FIELD

In addition to the CAR and CDR fields contained in LISP records which

represent dotted pairs, there is an additional field, in GTL, called the

eTR field. This additional field is provided since the internal machine

representation of a LISP record, a B 5500 word, is large enough to accom­

modate an additional reference-valued field. The eTR field is not a stan­

dard LISP field, and it is not found in most LISP systems. There is also

no corresponding symbolic representation of this field in LISP S-expres­

sions. A eTR field designator may be used in the same forms as the eAR

and eDR field designators, and may be used in composite field designators

(see paragraph 6.3.6). For example,

CTDR(X) = CTR(CDR(X»

The CTR field is useful for a variety of applications such as predecessor

links and for multi-linked list structures (see also Subsection 6.18).

A "dotted-pair" type LISP record with CTR field may be represented

graphically by

eTR eAR

6.17 PREFIX AND DOT OPERATORS

6.17.1 Prefix Field Designators

CDR

All of the LISP field designators described in paragraph 6.3.6 and

the CTR field designator described above, may be used in a prefix form.

The prefix form consists of the field name followed by a SYMBOL variable,

either simple or subscripted. For example, if S is a SYMBOL variable,

6-36

then,

CADR S := CAR S

is equivalent to

CADR(S) := CAR(S)

6.17.2 Boolean Prefix Operators

If an argument of any of the Boolean standard functions ATOM,

ATSYM, NUMBERP, ALF, or NULL (described in paragraphs 6.5.1 through

6.5.5) is a SYMBOL variable, then the Boolean function may be

used as a prefix operator (Without parentheses). For example, if S is a

SYMBOL variable,

ATOM S

NULL S

ATSYM S

NUMBERP S

ALF S

are valid GTL constructs.

6.17.3 The Dot Operator

The definition of symbolic expression given in Subsection 6.3 is

extended by the inclusion of the following construct:

se1 • se2

where se1 and se2 represent symbol expressions. It is equivalent to

CONS (se1, se2)

6-37

The period used in this context is called the dot operator. For example,

the value of

"A" • "B"

is the dotted pair (A • B). Since sel and se2, as defined above, may also

contain dot operators, symbol expressions may be parenthesized to limit

the scope of a dot operator. When two or more dot operators appear in a

symbol expression, the association is from the right; for example

"A" . "B" . "e" . "D"

is equivalent to

"A" • ("B" • ("e" . "D"))

the value of which is (A • (B . (e . D))). In the following additional

examples, it is assumed that S is a SYMBOL variable with a value of

(B e D).

symbol expressions

"A" • S

eAR S . "(A D)"

"A" • "B" • "e" . 0

("A" • "B") • ("e" . "D") • 0

value

(A BeD)

(B A D)

(A B e)

«A. B) (e . D))

When the symbol expression contains arithmetic operators, the dot operator

has the lowest precedence; for example, if the value of the SYMBOL variable

S is (3 4 5), then the value of

CAR S + CADR S • "(8 9)"

is the list (7 8 9).

6.18 PROPERTY LIST OPERATORS

6.18.1 The Property List

Most LISP systems use the CDR field of atomic symbols to reference

linked lists of some kind containing attribute-value pairs. Such lists

are called property lists of atomic symbols. Thus, with each atomic sym­

bol there may be associated one or more attributes (atomic symbols) and

each attribute of an atomic symbol has a corresponding value (an S-expres­

sion). In GTL, an economy of representation is achieved by using the CTR

field for the attribute, the CAR field for the value, and the CDR field

to reference the following attribute-value pairs (if any). The GTL

property list operations are described in the following paragraphs.

6.18.2 ADD PROP

ADDPROP is a statement which is used to add an attribute-value pair

to the property list of an atomic symbol. It is used in the form

ADD PROP (sym, attribute, value)

where sym, attribute, and value represent symbol expressions. The values

of sym and attribute should be atomic symbols. The effect of ADDPROP is

illustrated by the following procedure declaration:

PROCEDURE ADDPROP(S,A,V); VALUE S,A,V; SYMBOL S,A,V;

IF ATSYM(S) THEN

BEGIN CDR S : = V. CDR S;

CTDR S := A

END

6-39

For example, if the'CDR field of the atomic symbol "'!WO" is initially

empty, then the two statements

ADD PROP ("'!WO" , "VAL", 2)

ADD PROP ("'!WO", "TYPE", "NUM")

have the effect of changing the CDR field of "'!WO" as illustrated

graphically below.

CTR CAR CDR CTR CAR CDR

1~_TY __ p_E ____ NUM ________ ~~~_V_A_L ______ 2 _______ 0-J

6.18.3 ~

PROP is a symbol-valued function which may be used in any symbol

expression. It is used in the form

PROP (sym, attribute)

where sym and attribute represent symbol expressions whose values should

be atomic symbols. If the CDR field of sym is a property list containing

attribute, then the value of PROP is the LISP record containing attribute

in its CTR field and the value associated with the attribute in its CAR

field. Otherwise, the value of PROP is O. The effect of PROP is illus­

trated by the following procedure declaration:

SYMBOL PROCEDURE PROP (S, A); VALUE S, A; SYMBOL S, A;

IF ATSYM S THEN

IF NULL(S := CDR S) THEN PROP := 0 ELSE

FOR S ON S DO

IF CTR S EQ A THEN RETURN S

6-40

(Note that this declaration makes use of the RETURN statement described

in Subsection 2.5. Referring to the example given in paragraph 6.18.2

above,

CAR (PROP ("TWO", "TYPE")) = NUM

CAR(PROP("TWO","VAL")) = 2

PROP (l'lWO", "*") = 0

A list associated with a given attribute could be extended by a statement

like that given below.

IF NULL (S := PROP (R, "*")) THEN ADD PROP (R, ",.~II, L)

ELSE CAR S := APPEND (L, CAR S)

6.18.4 REMPROP

REMPROP is a statement which is used to remove an attribute-value

pair from the property list of an atomic symbol. It is used in the form

REMPROP(sym, attribute)

where sym and attribute represent symbol expressions. The effect of REMPROP

is illustrated by the following procedure declaration:

PROCEDURE REMPROP(S ,A); VALUE S, A; SYMBOL S, A;

IF ATSYM S THEN

BEGIN SYMBOL R;

END

WHILE NOT (NULL (R : = CDR S) OR

(CTR R)EQ A) DO S := R;

CDR S := CDR R

6-41

6.18.5 The Numeric Property Record

The property list of an atomic symbol may also contain a "numeric"

property record which contains a CDR field but neither the CTR nor CAR

fields. Instead of containing LISP reference values, the CTR and CAR

fields are combined into a single field which can contain an unsigned

integero The length of this field is 29 bits (its value may lie between

o and (229_ 1), inclusive). The numeric property record is added to and

removed from property lists of atomic symbols by the statements

ADD PROP (sym, -J(aexp)

REMPROP (sym, -J()

where sym represents a symbol expression and aexp represents an arithmetic

expression. The value of sym should be an atomic symbol and the value of

aexp should be an unsigned integer. A number placed on a property list in

this manner may be accessed by the arithmetic standard function NPROP used

in the form

NPROP(sym)

where sym has the same meaning as above. NPROP may be used in any arith­

metic expression. For example, after the execution of

ADDPROP("VALH ,*,215)
then

NPROP("VAL") = 215

6.18.6 Reference Property Records

References to records other than LISP records may be placed on

property lists of atomic symbols in LISP records called "reference property

records." Like the numeric property records described above, these records

have neither CAR nor CTR fields. These records and the property list

operations associated with them are described in Section 7.

6-42

6.19 THE SYMBOL DEFINE DECLARATION

6.19.1 The Standard Declaration

A SYMBOL DEFINE declaration is used to define an identifier which

represents an S-expression. It has the same form as an ordinary DEFINE

declaration of B 5500 Extended ALGOL except that the definition must be

a quoted S-expression without a # at the end. For example,

SYMBOL DEFINE DF ::: "(A B C)"

In this case, every occurrence of DF in symbol expressions, including

quoted S-expressions, is replaced by (A B C). Thus, with the declara­

tions,

SYMBOL DEFINE Al ::: n(A B C)",

A2 ::: "(D E F)",

A3 == "(G HI)",

Bl == "(AI A2 A3)"

every occurrence of Bl is replaced with the list

«A B C) (D E F) (G HI))

Each occurrence of the SYMBOL DEFINE identifier is replaced with the same

set of records representing the quoted S-expression. If an ordinary

DEFINE declaration were used; e.g.,

DEFINE D ::: "(A B C)"1f:

it would be replaced by a different set of records representing the same

S-expression(except in the case of atomic symbols, which are unique). In

addition, an ordinary defined identifier would not be replaced by its

definition in a quoted S-expression. Also, a SYMBOL defined identifier may

not be used in its own definition.

6-43

6.19.2 CDR Field Initialization

If the quoted S-expression appearing in a SYMBOL DEFINE declaration

is a quoted atomic symbol, then the CDR field of the atomic symbol can be

initialized at the time the declaration is made by the inclusion of a

"field initialization part" in the SYMBOL DEFINE declaration. There are

four forms of the "field initialization part," each of which must

immediately follow the quoted atomic symbol.

The first form of the field initialization part consists of a colon

followed by any quoted S-expression. The CDR field of the quoted atomic

symbol will reference the records representing the quoted S-expression.

For example, with

SYMBOL DEFINE DF "ABC"

the folloWing relations will be true:

DF = "ABC"

CDR(DF) = "(A B C)"

CDR("ABC") = "(A B C)"

"(A B C)"

The second form of the field initialization part is a colon followed

by an unsigned integer enclosed in brackets. The CDR field of the quoted

atomic symbol will reference a numeric property record representing the

unsigned integer (see paragraph 6.18.5). For example, with the declaration

SYMBOL DEFINE Al = "VALli [251J

the following relation will be true:

NPROP(Al) = 251

6-44

The third form of the field initialization part is a colon followed

by a parenthesized list of attribute-value pairs and/or bracketed

unsigned integers. Two or more list items are separated by commas, and

each attribute-value pair consists of an atomic symbol followed by a

colon followed by an S-expression. The CDR field of the atomic symbol is

initialized to a property list (see paragraph 6.18.1) consisting of

attribute-value pairs and/or numeric property records. For example,

SYMBOL DEFINE TW = "TWO" (TYPE:NUM, VAL:2)

has the same effect as the two examples of ADDPROP statements given in

paragraph 6.18.2. Also, with the declaration

SYMBOL DEFINE DV = "/" (TYPE:OP, [125J)

the following relations will be true:

CAR(PROP(DV,"TYPE")) = "OP"

NPROP(DV) = 125

The fourth form of the field initialization part consists of a colon

followed by an unsigned integer. The CDR field of the atomic symbol will

be initialized to the integer itself and not to a reference to a LISP

record. The value of the integer must be less than 32768 and must not

exceed 63 when automatic storage reclamation is used (see Subsection 6.20).

The CDR field of the quoted symbol appearing in this type of SYMBOL DEFINE

declaration must never be referenced in a symbol expression.

The CDR field of such an atomic symbol may be used in an arithmetic

expression when the CTSM transfer function is used (see paragraph 6.15.1).

6-45

For example, with the declaration

SYMBOL DEFINE D523 == "START" 523

the following relation will be true:

CTSM(D523).[33:l5] == 523

6.19.3 The Asterisk Form

When a SYMBOL DEFINE declaration is used for the sole purpose of

initializing the CDR field of an atomic symbol, the following form of

the definition part may be used: the defined identifier and the = may be

replaced with an asterisk. For example,

SYMBOL DEFINE ok "THE" "ARTICLE"

will initialize the CDR field of the atomic symbol THE to the atomic

symbol ARTICLE. With this form of SYMBOL DEFINE declaration, the fourth

form of the CDR field initialization part (as described above) is parti­

cularly useful for associating numbers with classes of key words; for

example,

SYMBOL DEFINE * "SIN" 1,

"/("COS" 2 ,

* "EXP" 3,

"/("LN" 4

might be used in conjunction with the CASE statement:

6-46

CASE CTSM(S:=READl).[33:l5] OF

BEGIN

E~

PRINT #UNDEFINED OPERATION#;

PRINT X:=SIN(X);

PRINT X:=COS(X);

PRINT X:=EXP(X);

PRINT X:=LN(X);

6.20 STORAGE RECLAMATION

6.20.1 Automatic Versus Programmed Storage Reclamation

In GTL, the user is given a choice between automatic and programmed

storage reclamation. When a relatively large amount of storage is used

and when keeping track of discarded list structure is difficult or

impossible, automatic storage reclamation should be used. On the other

hand, if it is relatively easy for the programmer to keep track of the

list structure which is to be discarded, then it would be more efficient

to use the RECLAIM statement described below. Also, if the amount of

storage used is relatively small, or if the amount of list structure in

use does not decrease, then the user may elect to use no storage reclama­

tion at all. In GTL, storage is allocated for LISP programs in 512 word

blocks. Each time four of the blocks have been used (2048 words), the

GTL system will check the available storage list, called the freelist,

to see if any words have been reclaimed. No new blocks of storage will be

allocated as long as there are a sufficient number of words remaining on

the freelist. Words are linked into the freelist either automatically, by

the automatic storage reclamation system, or programmatically by the

RECLAIM function.

6-47

6.20.2 Automatic Storage Reclamation

ffilen automatic storage reclamation is desired in a LISP program, the

words SYMBOL RECLAIM, followed by a semicolon, must appear directly after

the first BEGIN in the program; i.e.,

BEGIN SYMBOL RECLAIM;

This pseudo-declaration tells the compiler that the automatic storage

reclamation is to be used. The internal function used to perform the

storage reclamation is usually called the garbage collector. The gar-

bage collector goes to work when a block of allocated storage is

exhausted and the freelist is empty (see paragraph 6.20.1). The garbage

collector can also be forced into action by the RECLAIM function described

below. The GTL garbage collector uses an algorithm used by most other

LISP systems: a marking phase followed by a collection phase. In the

marking phase, every LISP record which can be accessed by a SYMBOL

variable or through the CDR field of an atomic symbol on the object list

is marked. In other words, all list structure in use by the program at

the time the garbage collector is called is marked. In the collection

phase, a linear scan of the blocks of storage allocated at that point is

made, unmarking the LISP records which are marked, and reclaiming the

initially unmarked records. The operation of the garbage collector can be

monitored through various GTL system control parameters which are made

available to users (see Appendix C). There are two restrictions which must

be observed when automatic reclamation is used. Non-local jumps--i.e.,

jumps to labels outside a procedure or b1ock--are not permitted, and the

values of SYMBOL variables and procedures and the contents of all CAR and

CDR fields must be legitimate LISP reference values (see paragraphs 6.19.3

and 6.15.3).

6-48

6.20.3 Programmed Storage Reclamation

When automatic storage reclamation is not used, LISP records to be

discarded may be linked into the freelist RECLAIM statement of the form

RECLAIM(se)

where se represents a symbol expression the value of which should be a

reference to the LISP record which is to be reclaimed. The RECLAIM func­

tion will reclaim single LISP records only. A collection of procedures

for reclaiming lists and atomic symbols is given in Subsection 6. 24. If

automatic storage reclamation is used, the statement RECLAIM may be used

to force the garbage collector to go into action. (Also see paragraph 7.4.4.)

6.21 AUTOMATIC STORAGE AND RETRIEVAL OF LISP LIST STRUCTURE

6.21.1 The LISP "Memory"

The GTL LISP system provides a mechanism by which all of the atomic

symbols on the object list, and all of the list structure referenced by

the CDR fields of these atomic symbols, can be dumped at some point in a

program, and later loaded at another point in the same or another program.

This is done by actually saving and retrieving the internal representation

of the LISP records, rather than by attempting to read and write the sym­

bolic representations of these records. If a program's "experiences" are

encoded, for example, in property lists of atomic symbols, then these

"experiences" could be saved and later recalled by the same program or by a

different program, giving the program a "memory". The fi Ie upon which the

LISP records are stored must be specified by the user, and must have the

following specifications: the file must be declared in the outermost block

of the program, each logical record in the file must be at least 512 words

long, and the file should be large enough to contain 80 logical records.

6-49

For example,

FILE REMEM DISK SERIAL [20:4J (1,540,SAVE 10); COMMENT DISK;

or

FILE REMEM 2 (1,5l2,SAVE 10); COMMENT TAPE;

Two functions which operate on the file, RECALL and REMEMBER, are described

below.

6.21.2 The REMEMBER Statement

The REMEMBER statement is used to store the contents of LISP records.

It is used in the form

REMEMBER (fileid)

where fileid is the name of the file described in paragraph 6.21.1 above.

To save the pointers of various SYMBOL variables and SYMBOL arrays, as well

as the LISP memory, the following extension of the REMEMBER statement may

be used:

REMEMBER(fileid,*,list)

where list is any explicit list of SYMBOL variables and SYMBOL arrays. The

syntax of this list is identical to an explicit ALGOL LIST used in an ALGOL

WRITE statement. For example,

REMEMBER(fi1eid,*,L,L1,L2,FOR 1:=1 STEP 1 UNTIL N DO S[IJ)

In fact, the REMEMBER statement may be considered identical to an ALGOL

WRITE statement with an explicit LIST, with the additional attribute of

writing out the LISP memory. The REMEMBER statement does not REWIND or

6-50

LOCK the file. Thus multiple REMEMBERs may be made to the same file. If

the SYMBOL RECLAIM option is being used (see Subsection 6.20), then the

garbage collector is called before the REMEMBER statement is executed.

The garbage collector collects all LISP records which are not on or

referenced through the object list, and places these records on the free

list. Therefore, in this case no LISP records may be referenced after the

REMEMBER statement is used.

6.21.3 The RECALL Statement

The RECALL statement will recall a LISP memory which was generated by

a program in which a REMEMBER statement was executed. It is used in the

form

RECALL (fileid)

where fileid is the name of the file described in paragraph 6.21.1 above.

To retain the pointers saved during a REMEMBER statement (see paragraph

6.21.2) as well as the LISP memory, the following extension of the RECALL

statement may be used:

RECALL(fileid,*,list)

where list is any explicit list of SYMBOL variables and SYMBOL arrays.

The syntax of this list is identical to an explicit ALGOL LIST used in an

ALGOL READ statement. For example,

RECALL(fileid,*,FOR 1:=1 STEP 1 UNTIL 3 DO S[IJ,L)

The RECALL may be considered analogous to an ALGOL READ statement with an

explicit list, with the additional attribute of reading in the LISP memory

from the file specified. The RECALL statement does not REWIND the file.

6-51

Thus multiple RECALLs may be made from the same file. Since a RECALL

statement initializes the LISP symbol table and all LISP records refer­

enced through the CDR fields of atomic symbols in the symbol table, all

references created by the compiler into the LISP memory may be invalid

after executing a RECALL statement. To avoid this problem, every quoted

S-expression appearing in the program must be a single character atom (a

single character atomic symbol or a digit). If the SYMBOL RECLAIM option

is used, then no operation which causes a LISP record to be generated may

be performed before the execution of the RECALL statement. These opera­

tions include the creation of lists, dotted pairs, atomic numbers (other

than single digits) and multi-character atomic symbols. Also every quoted

S-expression appearing in the program must be a single character atom (a

single-character atomic symbol, or a digit).

6.22 THE INTERNAL REPRESENTATION OF LISP RECORDS

6.22.1 LISP Reference Values

All LISP reference values in GTL are actually pointers or (relative)

addresses of words in core memory. A maximum of 32768 words are available,

addressed from ° to 32767. These words are, in effect, elements of an

array like that specified by the following declaration

ARRAY LINK[O:63,O:5l2]

If R represents a LISP reference value, then the contents of the word

referenced by R would be

LINK[R.[33:6],R.[39:9]]

A field which is common to all types of LISP records is the ID field.

6-52

The ID field is a 2 bit field, the value of which indicates the type of

LISP record. ID is not a GTL field name, but the contents of the ID field

can be referenced indirectly (see paragraph 6.1501). The locations of the

ID, CTR, CAR, and CDR fields are specified by the following partial word

field descriptions:

field name Eartial word field descriEtion

ID [1:2J

CTR [3:l5J

CAR [18:l5J

CDR [33:l5J

A description of the contents of these and other fields in LISP records

is given below.

6.22.2 Atomic Symbols

A LISP record is identified as an atomic symbol by an ID field value

of 2. The CTR field is used to link together atomic symbols which are on

the object list (see Subsection 6.13), and should never be changed by the

programmer. The CAR field of a single character will contain a 1, if a

letter, or a 2 otherwise. The CAR field of a multi-character atomic symbol

contains a pointer to a set of linked words containing the string of charac­

ters which the atomic symbol represents. A word representing a single

character atomic symbol does not contain a reference to its symbolic

representation; the address of the word will always be equal to the numeric

value of the character. The CAR field of an atomic symbol should not be

referenced.

6-53

6.22.3 Atomic Number

A LISP record is identified as an atomic number by an ID field

value of 3. A number which is a single digit is uniquely represented by

one word; the address of the word is the value of the digit. All other

numbers are represented by two words.

6.22.4 Dotted Pairs

A LISP record which represents a dotted pair is identified by an ID

field value of O. All three of the fields, CTR, CAR, and CDR, may be

referenced and changed by the programmer. Also, all three fields are con­

sidered to be valid LISP reference fields by the garbage collector.

6.22.5 Other Types of Records

Numeric property records and reference property records are identified

by an ID field value of 1. Only the CDR field of these words is considered

to be a valid LISP reference field.

6.23 LISP SYSTEM CONTROL PARAMETERS

The values of various control parameters used by the GTL system may be

accessed by a standard function called CONVAL. The CONVAL function is used

in the form

CONVAL(~)

where n represents an unsigned integer whose value designates the desired

control parameter. Some of the values of ~ which may be used and the

corresponding values of CONVAL(n) are listed in the table given below.

(See also APPENDIX C.)

6-54

n

o

1

5

6

7

8

9

10

29

30

31

36

37

value of CONVAL(n)

a newly-generated random number between 0 and 1
(used by the LISP RANDOM function)

value of current random number produced by
CONVAL(O)

total number of words collected by
garbage collector

number of times garbage collector
is called

time (in seconds) required by last call
on garbage collector

arithmetic value of the address of the
first word in the freelist (0 if empty)

first subscript of array described in
paragraph 6.22.1

second subscript of the array described
in paragraph 6.22.1

normally 0; will be set to 1 after REMEMBER
is executed, meaning that no LISP operation
may be performed that causes a new LISP
record to be generated when using automatic
garbage collection

initially 0; will be set to 1 after the
first LISP record is created by the program;
when set to 1, the RECALL statement cannot
be used when using automatic garbage collection

number of atomic symbols created by GENSYM

current index of table of LISP reference
values maintained by the garbage collector;
it is initially 125

two less than the number of initial blocks of
storage allocated before the garbage collector
is called (see paragraph 6.20.1)

6-55

Three expressions involving CONVAL which might be useful to the GTL

programmer are listed below.

expression

CONVAL(9) ® 512 + CONVAL(lO)

LENGTH(ATSM(CONVAL(8»)

ENTIER(CONVAL(O) ® N)

meaning

number of words in use by
the GTL system

length of free1ist

random integer between
o and N-1

The value of the first expression minus the second is the number of words

in use by the program.

6.24 PROGRAMMED STORAGE RECLAMATION

The following set of procedures may be used to reclaim storage when

the automatic storage system is not used.

PROCEDURE RECLAIMLIST(L); VALUE L; SYMBOL L;

BEGIN SYMBOL S;

IF NOT ATOM(L) THEN

DO BEGIN S := CDR L;

RECLAIM(L)

END UNTIL ATOM(L := S)

END OF RECLAIMLIST

PROCEDURE RECLAIMATOM(L); VALUE L; SYMBOL L;

BEGIN REAL R, N;

IF SMTA(S) > 63 THEN

IF R := CTSM(L) < 0 THEN COMMENT ATOM;

6-56

IF R.[1:2] = 3 THEN BEGIN COMMENT NUMBER;

RECLA 1M (L) ;

RECLAIM(ATSM(R))

END ELSE

BEGIN COMMENT ATOMIC SYMBOL;

END

IF R.[3:15] ~ 0 THEN REMOB(L);

RECLAIM(L) ;

N:= (R :=CTSM(L :=ATSM(R.[18:15]»).[1:5];

WHILE N > 7 DO BEGIN

RECLAIM(L)

RECLAIM(L) ;

N:=N-4;

R :=CTSM(L :=ATSM(R»;

END;

END OF RECLAIMATOM

PROCEDURE RECLAIMALL(S); VALUE S; SYMBOL S;

BEGIN LABEL START; REAL R;

START: IF R := CTSM(S) < 0 THEN RECLAIMATOM(S) ELSE

BEGIN RECLAIM(S)

END

IF R.[1:2] = 0 THEN BEGIN COMMENT DOTTED PAIR;

RECLAIMALL(ATSM(R.[3:15]»;

RECLAlMALL(ATSM(R.[18:15]»

S :=ATSM(R);

GO TO START

END;

END OF RECLAlMALL

6-57

The procedure RECLAIMLIST will reclaim a dotted pair on the top level

of a list; i.e., the records referenced by the CAR and CTR fields of the

top level records will not be reclaimed.

The procedure RECLAIMATOM will reclaim atomic symbols and atomic

numbers. If an atomic symbol to be reclaimed by RECLAIMATOM is on the

object list, it will first be removed from the object list.

The procedure RECLAIMALL, which uses RECLAIMATOM, wit1 reclaim atoms,

lists and dotted pairs. If RECLAIMALL is applied to a list or dotted

pair, it will reclaim everything in the list or dotted pair. If the

user wants to reclaim everything except atomic symbols, then RECLAIMATOM(S)

may be replaced by

BEGIN IF R.[1:2] = 3 THEN RECLAIMATOM(S) END

in the procedure RECLAlMALL.

Under no circumstances should RECLAIMLIST and RECLAlMALL be applied

to circular lists. This would generate an infinite loop in the program.
I

6.25 LISP EXAMPLE PROGRAM

The following example LISP program is not intended to represent a

practical program, but merely serves to illustrate some of the GTL LISP 2

constructs. The GTL Input-Output system, which is described in 6.10 and

in Section IX, is also included in the example.

6-58

HlGIN CUM~[NT THE SYM~OL PRUCEOURt LCS, UEFI~EC BELew, f'~C~ Iht
LU~bESl CWMMCN SEijM(Nf OF T~t T~C LISTS Ll A~u L~J

fIll IN INFILE (~'lU);
FILl LuT PRI~TEH 16(2'1~)j
SlkINb LIN[(120), CAkU(~0);

HUUL£~~ PHOCEOUkl IN~HO;

dEliIN
LAtiEL EU,I:.XITJ
HlAU(INFIL(,lC,CA~U)(I:.OF);
~hIJE(PRIN'I:.H,10,~ARC)J
IJO TO EXIT;

E~F: INPkO 1= TRUEJ
[xIII Ef'..lJ Of INI-'Rl.d
5YMtiOL Ll,L2;
LAi:l(L ::'lAHT;

COMMENT
~UMSfGL FINUS THE LE~6TH UF THE LONGEST I~lTIAL CL~~C~ Slb~I:.Nr
OF J~O LISTS, x A~U YJ

INrI:.Gl~ PROCEDURE CCMSEGL(X,Y)J
VALUE x,Y;
SYMI:jOL x,n
COMSEGL 1= iF NULLLX) OR NULL(Y) ON CAR(X) NE~ CAH(Y) THl~ 0

ELSE COMS£GLCCOR(X),CDR(y» + 1;
COMt-'iENT
CUMSEG rINDS THE LUNGlSl INlTIAL CUMMON SEG~ENT CF l~u LiSIS
X AND y;

SYM~OL PRUCEDURE CUMSEG(X,y);
VALUE X,YJ
SYMt!OL X,YJ
CUMSEG 1= IF NULL(X) OR NULLey) Ori CA~(X) ~EQ CAR(Y) TbE~ u

ELSE CONSCCAR(X),COMSEGeCCH(X),CGR(X»);
SYMuOL PROCEDURE LCSCL1,L2);

vALUE Ll,L2;

A :

SYM~OL Ll,Lt:J
tH .. G It-.
LABEL A;
HEAL K,~,LX'LYi
SYMt:10L X,y,I:lESTJ
Lx 1= LE~GTHeLl)J
FOR x ON Ll WhILE Lx GTR K uO

BEGIN
lY 1= LENGTH(L2)J
fOH y ON L2 ~HILE LV GTR K uO

I:!EGIN

ENOJ

N := CUMSEGLeX,Y)J
IF N LtQ K THEN GO TU A;
HEST := COMSEG(X,Y)J K ,= Nj

LY 1= LY • 1J
END;

6-59

LCS 1= IjE~Ti

ll\O OF LC5i
CLJM,.,[I\T
5TAHT Of tXtCLTA~Lt CUOEi
UUTPUT(PHl~IER,LIl\t,120)J

l~PLT(II\PkO,CAHU'dU)J
PRINT ,THl fOlLC~l~G IS A TEST OF T~t LCS FLNCTIC~~J

SIA"T;lF Ll:=RlAU E~ W~AHK UR Ll £Q "SrUP" THEI\ ExIT;
L2 := REALJJ

Ef'iIJ.

P~lNT LC5(Ll,L2);
GL TO STAkH

THl CARD I~Pul fO THE PROGHAM IS AS FCLlC~S;

(A tl C t3 C D E.H
(~ C U A ~ C U E.)~
STOr'

THE U~TPUl AS LISTEU ON THE PRr~TER IS:

THE FuLla~ING l~ A TEST OF THE LCS FUNCIICN
(A tl C beD EHi
(b ~ U A ~ C D l)~
(l:l C U l)
STOP

6 ... 60

VII. RECORD PROCESSING

7.1 INTRODUCTION

Among the facilities in GTL, there is a collection of interrelated

systems for creating and manipulating complex data structures. One of

these systems, the GTL version of LISP 2, is described in Section VI.

The purpose of this section is to describe the GTL record processing

system, which consists of two separate systems: a disk-storage-oriented

system and a core-storage-oriented system. The disk system is designed

for manipulating fixed length linked records on a random disk file.

The core system is an extension of the GTL LISP system for variable

length plex processing. (The term "plex", first used by D. T. Ross,

refers to a node, or linked record, which contains a variety of data

types. In this section the term "plex processing" will be used primarily

to refer to the core-storage record processing system ~ub5ection 7.4» .

Both of these systems use constructs which are based on the record processing

system described in Wirth and Hoare's "A Contribution to the Development

of ALGOL". 9

Familiarity with the GTL LISP system is required for understanding

the core-oriented plex processing system.

The remainder of this section is divided into three subsections:

a description of the constructs common to both record processing systems

(Subsection 7.2), and complete definitions of the disk and core systems

(Subsections 7.3 and 7.4).

7-1

7.2 BASIC CONCEPTS OF (;TL RECORD PROCESSING

7.2.1. Reference ~xpressions

A reference expression is simply an expression whose value is a

ref l'rC'nce to, or address of, :1 rt'conl (S('C' S:'ction 6.7, "Reference

Expressions", p. 426, Referencl' 9).

the following:

III GTL, reference expressions include

1) reference variable,

2) reference function designator,

3) reference-valued field designator,

4) reference assignment statement,

5) conditional reference expression,

6) record designator,

7) null reference, and

8) parenthesized reference expression

A reference variable is a reference-valued simple variable or

array element. In GTL, it is declared with a special class of declarators

called record class identifiers (p. 423, Reference 9). As the name

implies, a reference variable may only reference records contained in

the class of records associated with the record class identifier.

Reference variables are declared in the same form as variable declarations

of type REAL; for example,

rci A, B, C

rci ARRAY RCA[O:99]

where rci represents a record class identifier. Record class identifiers

are discussed further in Subsections 7.3 and 7.4.

7-2

R,'fcrvncL'-v;llued procedures and formal parilmenters (both nilme nnd

v<llUt,) arc dl'c lar('cI in the samt~ manner:

rci PROCEDURE P(X,Y); VALlJE X; rei X,Y; etc.

A reference-valued field designator is a construct which refers

to the value of a particulilr field within a record. The type of field

is determined by the declarator used to declare the field. Field

designators are discussed in paragraphs 7.2.2 and 7.2.4, below.

A reference assignment statement has the same form and operational

meaning as an ordinary REAL-valued assignment statement. All of the

variables, function designators, and field designators appearing in a

reference-valued assignment statement must be of the same type; i.e.,

they must have been declared with the same record class identifier.

Conditional reference expressions have the same form and operational

meaning as other types of conditional expressions:

IF bexp THEN rexpl ELSE rexp2

Where bexp represents a Boolean expression, and rexpl and rexp2 represent

reference expressions. If the value of the Boolean expression is TRUE,

then the value of the conditional expression is the value of rexpl;

otherwise, its value is the value or rexp2. Of course, rexpl and

rexp2 must have the same reference type; i.e., they must both be associated

with the same record class.

Record designator is the name given to the construct which is used

to generate new records in a given record class. This construct is

described in Subsection 7.3 and 7.4.

7-3

The nllll reference is represented by the word NIL, and is used to

indicate the absence of a reference to a record. It may be used, for

example, to indicate the end of a list of linked records. (Internally,

the villue of NIL is zero - the zeroth record is never accessed.) NIL

is the only reference expression which is associated with all record

classes.

7.2.2. Field Designators

As mentioned above, the field designator is a construct used to

access the value of a field within a record. It has the form

fieldid(rexp)

where fieldid represents a field identifier and rexp represents a

reference expression. The type of the field and its relative location

within the record referenced by rexp is determined by a field declaration,

which is described below. The programmer should be careful to ensure

that the value of the reference expression is never the null reference.

A field designator of any type may take the place of a variable of

the same type in the left-part list of an assignment statement. For

example,

AGE(JACK):=28

where AGE is a REAL-type field identifier and JACK is a reference

variable. In addition, a string field designator may take the place

of a string variable in a string designator; for example,

STRING CARD (80);

STRING FIELD CARDF [0:80J;

rci X

CARDF(X) (0,72):=CARD(0,72);

CARD(72,8):=CARDF(X)(72,8)

7-4

\"lll'rl' rc i rl'prL'scnts ;) record class identifier.

7.2.3. TIll' ReCCrCllCl' Assignment ~.)taLement

Tht' rt'il'rl'11CC assignmc11t stntl'mcnt (vJhcn lIS((: ilS a statement) h'-Is

tIll' same fonn and is subject to Lill' s,:m)(' restrictions as thc' rcfc'rencc­

V,)lU,'d ;lssignll1l'nt statement d('scribed ill p:lragrnph 7.2.1. For example,

X : NEXT (X);

NEXT (X) :N lL

,\lhere X is il rL'fcrencc variable and NEXT is a field identifier, both

of the same typc(i.e., both declared by the same record class identifier).

7.2.4. The Field Declaration

The field declaration is used to declare the type of a field

identifier and its relative location within a record. It has the

following forms

~ FIELD fieldid (loc) [skip:length]

~ FIELD fieldid (lac)

where ~ represents a declarator indicating the type of field, fieldid

represents the field identifier being declared, and lac, skip and length

represent unsigned integers. The relative position of the field within

a record is given by lac, which may range in value from 0 to 127. A

lac of 0 refers to the first word, 1 to the second word, etc. For a

non-STRING field, skip is the number of bits to be skipped from the

beginning of the word and length is the length of the field in bits, so

that this part of the field declaration has the same meaning as the

field description of the partial word designator of Extended ALGOL

(paragraph 3-10, Reference 4). If the field identifier is to refer

to the entire word, the partial word part of the declaration must be

omitted, as a partial word part of [0:48J is not permitted. In the

7-5

cast' of a STRING field, skip is the number of characters to be skipped

from the b<.'ginning of the word (from 0 to 7), and length is the length

of tlll' field in characters; skip and length must be included in all

STRING field declarations.

The peol1it ted field types are REAL, INTEGER, ALPHA, BOOLEAN, STR INC

and the record class identifiers (which includes SYMBOL).

Examples:

REAL FIELD AGE (0) [4l:7J

SYMBOL FIELD SYMF (3)

STRING FIELD NAME (4) [0:32J

rci FIELD NEXT (2) [33:15]

where rci represents a record class identifier, a reference-type field.

SYMBOL and other reference-type fields must be at least 15 bits long.

The GTL compiler makes no distinction between REAL and INTEGER FIELDs;

a full word INTEGER field may be assigned a REAL value.

Several simplifications of the field declaration are permitted:

a lac part of 0 may be omitted; if the ~ part is omitted, a REAL

'field is implied; and a collection of field declarations of the same

type may be combined into one declaration. For example,

Sample

STRING FIELD SF [0 :64J

FIELD RF

SYMBOL FIELD CARF[18:l5J,

CDRF[33 : 15 J

Equivalent

STRING FIELD SF (0) [0:64J

REAL FIELD RF (0)

SYMBOL FIELD CARF(0)[18:l5]

SYMBOL FIELD CDRF(0)[33:l5]

7-6

7.2.5. Indc'xcd Fields

Another form of field designator is the indexed field designator,

with till' form

fieldid l_indexJ (rexp)

where rexp and [ieldid represent a record expression and field identifier,

respectively, and index represents an arithmetic expression, the value of

which designates the relative location of the field in the record

referenced by rexp. The value of index must be within the bounds

specified in the indexed field declaration, which has the two forms

~ FIELD fieldid (£, ~) [skip:length]

~ FIELD fieldid (~, ~)

where ~, skip and length have the same meanings as above (except an

indexed STRING field is not allowed). The constants ~ and ~ specify

the first and last words in the record which may be referenced by the

indexed field designator. For example,

REAL FIELD RFX (0,9)

may be used to reference the first 10 words of a record. For example,

the sum of the first 10 words of the record referenced by the reference

variable X may be computed as follows:

FOR 1:=0 STEP I UNTIL 9 DO SUM:=RFX[I] (X) + SUM

7.3. THE DISK SYSTEM

7.3.1. The Record Class Declaration

A GTL program may contain up to 31 record class identifiers

associated with linked-record random disk files. A record class

identifier is declared by a record class declaration (Section 5.4,

"Record Class Declarations", p. 423, Reference 9); it has the form

RECORD !£i fileid (fieldlist)

7-7

wlll're rc i represents the record c lass identifier, fi leid is the name

nf the random disk file which is to contain records of the rci class,

and ficldlist is a list of one or more field identifiers. The size of

a logical record of the file fileid must be large enough to accommodate

all of the fields in the fieldlist. The field identifiers in the

fieldlist may be declared either before or after the record class

declaration, except for the rei-type fields which must be declared

afterwards. The compiler allows the specification of overlapping

fields in the record class declaration. In general, if the first

character of a word is part of a STRING field, then that word should

not also contain a non-STRING field; to do otherwise may result in a

FLAG BIT error termination.

Two or more rei's may be associated with a given disk file, and

a given field may be contained in two or more record classes; for

example,

RECORD DEALER RANFILE (NAME, ORDER, NEXT);

RECORD STOCK RANFILE (STOCKNO, PRICE, QUANTITY, DATE, NEXT,

NXT);

STRING FIELD NAME (1) [0:32J;

STOCK FIELD ORDER (5), NXT (5);

DEALER FIELD NEXT;

REAL FIELD STOGKNO (l)~

PRICE (2),

QUANTITY (3),

DATE (4)

7-8

Till' 1'0 llowi ngi s an example () [the constructs described in Subsection 7.2

t1sing the declarati.ons given ahove, and

DEALER nLH;

STOCK STK;

IU~AL SlTM

WHILE DLR f NIL DO

BEGIN

S TK : c=ORDER (DLR) ;

SUM:=O;

WHILE STK * NIL DO

BEGIN

SUM:=PRICE(STK) 0 QUANTITY (STK) + SUM;

STK:=NXT(STK)

END;

PRINT NAME(DLR) SKIP(40) SUM;

DLR:=NEXT(DLR)

END

The file fileid in a record class declaration must be declared by a

special random disk file declaration, which is described below.

7.3.2. The RECORD File Declaration

The RECORD file declaration has the same general form as ordinary

random disk file declarations (paragraph 9-39, Reference 4), with the

following exceptions:

7-9

1) "FILE" is replaced by "RECORD FILE",

2) the disk access technique ("RANDOM") is replaced

by the disk type ("LOCAL", "NEW", or "OLD"),

optionally followed by a constant, adr, and

3) the logical record size must be a constant.

A disk type of LOCAL means that the file is (a non-SAVE file) to be

created by the program in which it appears and will not exist after the

execution of the program; a non-LOCAL disk type indicates a new file to

be created (NEW), or a previously created file (OLD). The optional

constant, ~, indicates the (relative) address of the first record to

be created by the record processing system (for a LOCAL or NEW file);

if it does not appear, the starting address will be one. This allows

the programmer to use the disk records with smaller addresses for other

purposes (such as storing the heads of lists of linked records in non­

LOCAL files).

Examples:

RECORD FILE DISC DISK LOCAL [20:300J (1,10,30)

SAVE RECORD FILE NEWF DISK NEW 2 [5:300J (1,15,30,SAVE 30)

RECORD FILE RANFILE DISK OLD "DEALERS" (1,10,30)

7.3.3. The Record Designator

The record designator is the constuct used to generate recordso

It has the two forms

rci(expression list)

rci

were rci is a record class identifier, and expression list is a list

of expressions corresponding in type and position to the fields given

in the record class declaration (p.426, Reference 9). If the field

7-10

is nn indexed field, the corresponding expression should be a list of

expressions (corresponding in type to the type of field) enclosed in

brackets. If any of the fields in the record are not to be assigned

a value in the record designator, an asterisk may replace the corresponding

expression. If the rci is given v]ithout the expression list, a record

is generated with all of its words set to zeroo This means that a REAL

field is set to zero, a BOOLEAN field is set to FALSE, a STRING field

is set to all zero characters and reference fields are set to the null

reference, NIL.

Examples:

RECORD PART NO DF (STF,TYPE,NBR);

STOCK FIELD STF;

REAL FIELD TYPE (1,9)[18:15],NBR(I,9)[33:15];

PART NO X

X·=PARTNO(~'< "k [23 24 25 ~'< -{< ~'< 56 57 58 l)"
. "" """ J,

DLR: =DEALER (CARD (10,32) , ~'< ,DLR) ;

ORDER(DLR:=DEALER) := STK .- STOCK

7.3.4. Record Relational Expressions

In order to compare two addresses of records of the same type,

the following relation expression may be used in any Boolean expression:

recvar relop rexp

where recvar is a reference variable, relop is one of the relational

operators or their mnemonics, and rexp is a reference expression.

For example, given the record class identifier DEALER,

7-11

DEALER DLR,X

DLR X

DLR ::f. NIL

DLR NIL OR X ~ NIL

are Boolean expressions.

7.3.5. Transfer Functions

On occasion, it is convenient to be able to treat a reference value

as a number, and vice versa. This can be accomplished with the two

type transfer functions:

REAL (recvar)

!£i(aexp)

The first transforms the value of the reference variable recvar into

an arithmetic primary; the second transforms the value of the arithmetic

expression aexp into a reference value associated with the record class

of the record class identifier !£i. These transfer functions should be

used with caution since they allow errors which would otherwise be

prevented by syntactic restrictions.

7.3.6. Storage Reclamation

Disk records may be reclaimed by the RECLAIM statement:

RECLAIM (recvar)

where recvar is a reference variable. It is the programmer's responsi­

bility to ensure that the value of reference variable is not the null

reference and that the record to be reclaimed does not remain a member

of some active list, or is, in any other way, referenced at some later

time. Whenever a record is reclaimed, it is placed on a list of records

7-12

called the freclist. When a new record is to be generated and the free­

list is not empty, that record is obtained from the free list. A

separate free list is maintained for each RECORD file in the program;

two or more record classes associated with a given RECORD file use

this freelist in common.

7.3.7. Saving and Restoring Heads of Master Lists in Non-LOCAL Files

The heads of master lists of linked records contained in a non­

LOCAL RECORD file must be saved at the end of a program, and must be

restored at the beginning of the program if the RECORD file is of

type OLD. In addition, two other parameters associated with the RECORD

file must be saved and restored; these are the head of the freelist

(see above) and the location of the next available record. The values

of these parameters are accessed by the constructs

FREELIST(fileid)

NEXfAVL (fileid)

where fileid is the name of the RECORD file. These two constructs

may be used in the left-part list of assignment statements and in

arithmetic expressions as if they were REAL variables.

Normally, the heads of master lists, and the freelist and next

available record, are written onto, and read from, the first record

in the file (with disk address zero). This can be done without inter­

ference to the remainder of the system, since the record with disk

address a corresponds to the null reference, which is never accessed.

Simple reference variables, and the FREELIST and NEXTAVL constructs,

may be included in the lists of READ and WRITE statements as if they

were ordinary simple variables. For example, referring to the de­

clarations given in paragraphs 7.3.1 and 7.3.2

7-13

DEALEI{ DU; STOCK SH;

LIST SAVELIST (NEXTAVL(RANFILE) ,FREELlST (RANFILE), UH,SIl)

READ (RANFILE[O],-k ,SAVELIST)

WRITE (RANFILE[OJ, ~', ,SAVELIST)

The internal value of NEXTAVL(fileid) is actually the disk address

of the next available record minus one. The programmer should keep

this in mind if he attempts to use the NEXTAVL construct for any purpose

other than saving and restoring this parameter on a non-LOCAL file (e.g.,

the file might be used as a stack instead of using the RECLAIM statement).

Notice also that it allows the programmer to use a simple method of com­

bining the file creation program and the file manipulation program into

one program. For example, referring to the example given above, if

RANFILE[OJ is initially cleared to zero, then, the first time the program

is executed, the parameters in the list SAVELIST will be set to zero;

i.e., the heads of the master lists DR and SR, and the freelist, will

be set to the null reference, and the first record generated by the

program will have a disk address of one. The file itself could be

created by the following program:

BEGIN

FILE RANFILE DISK RANDOM [20:300J "DEALERS" (1,10,30, SAVE 90);

WRITE(RANFILE[O]);

LOCK (RANF ILE) ;

END.

A RECORD disk file created by one program may be updated in both form and

content by associating additional record class identifiers with the file.

7-14

7.3.8. Printing RC[0rence Values

If ;1 reference-valued variable or fi0ld designator appears in a

l'Rl.N or l'l{.lNT statcml'nt, then the' associated record class identifier

followed by the actual value of the disk address will be printed

(Sl'C paragraph 9.2.12. of Sl'ction IX).

7.4. THE CORE STORAGE PLEX PROCESSING SYSTEM

7.4.1. The Record Class Identifier

Since the core system is an extension of the GTL version of LISP,

the record class identifier in this case will be the LISP 2 declarator

SYMBOL. SYMBOL reference expressions are the SYMBOL expressions de­

fined in Section VI.

7.4.2. Field Designators

The LISP system contains the predefined field identifiers CAR,

CDR, and eTR, and their composite forms (e.g., CADR). In addition,

programmer defined fields may be defined as described in Subsection 7.2.

In the latter case, the SYMBOL expression to which the field identifier

may be applied is restricted to the following: a SYMBOL variable, a

SYMBOL standard function (e.g., APPEND, NCONC, etc), the transfer function

ATSM, the SYMBOL assignment statement, and the SYMBOL-valued field

designator.

7.4.3. Record Designator

The LISP record designator is the function CONS, which is normally

used to generate the one word record containing the fields CAR and CDR.

Another form of the CONS function used with the plex processing system

is

CONS[field-expression pair list]

where field-expression pair list is a list of one or more field-expression

pairs having the form

7-15

ficldid : cxprcssion

whcrc ficlJid reprcsents a field identifier, and expression represents

~111 L'xpn'ssion whose type corresponds to the type of the field identifier.

For example, given the declarations

SYMBOL X, Y

SYMBOL FIELD CARF [18: 15 J ,

CDRF [33:l5J

the following two expressions are equivalent:

CONS[CARF: X, CDRF: yJ

CONS(X, Y)

Since CONS can create only one word at a time, a multi-word record is

created by successive CONSes (assuming that the freelist is empty so

that successive CONSes would produce consecutively-addressed one-word

records). In addition, certain restrictions must be placed on the field

in this form of record designator:

1) STRING fields must not be extended beyond a word

boundary; in no case may the length of a string

field be longer than 8 characters,

2) only the first field identifier in a series of

field expression pairs may refer to an entire

word,

3) indexed fields are not allowed, and

4) all of the fields in the field-expression list must

refer to the same relative word location (within a

multi-word record).

Any portion of the word which is not initialized by a field-expression

pair is set to zero. In addition to the two forms of the CONS record

7-16

dl'signator described above, the word CONS, used by itself, will create

a one word record which is initialized to zero.

7.4.4. The SYMBOL PLEX Option

Since the user-defined field designator allows the specification

of the contents and meaning of arbitrary fields, the GTL automatic

storage reclamation system cannot be used. Another form of storage

reclamation available is the RECLAIM statement described in Section 6.

This form of storage reclamation is generally to be avoided however,

since, as mentioned in paragraph 7.4.3. a non-empty freelist would

make the creation of records consisting of consecutive words difficult

or impossible.

Another option available for the plex processing system is the

SYMBOL PLEX option which is specified at the beginning of the outer­

most block of the program by the pseudo-declaration "SYMBOLPLEX;":

BEGIN SYMBOL PLEX;

When this option is used, the value of the address of the next available

word (minus one) may be accessed by the construct

NEXTAVL(SYMBOL)

This construct may be used in the left-part list of an assignment

statement or in an arithmetic expression as if it were a REAL variable.

This feature allows the programmer to use the entire block of words

available for LISP records as a stack. (The variable NEXT INFO plays

a similar role with respect to the INFO array in the B 5500 ALGOL

compiler). The SYMBOL PLEX option was designed to be used with the

GTL translator writing system described in Section VIII. A sample

program using the SYMBOL PLEX option is given in Subsection 8.8.

7-17

Wi th til<.' SYMBOL PLEX option, the RECLAIM statement simply has the

t'("feet of rl'st,tting the NEXTAVL pa.rameter to the value of its argument.

The user should keep in mind that, before resetting NEXTAVL(SYMBOL)

to its previous va lue, any multi--character atomic symbols created

since its value was first saved will be linked into the object list. (See

Section 6.) Thus, these atomic symbols must be removed from the object

list by the REMOB statement before the words occupied by the atomic

symbols can be re-used; if this is not done the GTL symbol table

mechanism will not work. In the sample program given in Subsection

8.8, a list of newly created atomic symbols is maintained for this

purpose.

7.4.5. The ATSM Transfer Function

The !rithmetic 10 §y~ol transfer function, ATSM (paragraph 6.15.3)

may be used to modify the address of a LISP record when used in the

following form

ATSM(aexp, sexp)

where aexp is an arithmetic expression, the value of which is added to the

value of the SYMBOL expression sexp. The value of aexp must be a non­

negative integer. The following example illustrates a method of

printing the contents of a list of variable length records, each

record containing a sequence of whole word numbers. The first word is

the length of the remainder of the record.

SYMBOL R, S;

REAL I;

REAL FIELD WHOLE

7-18

FOR S IN R DO

BEGIN

N :=WHOLE (S);

FOR 1:=1 STEP 1 UNTIL N 1m

PRIN WHOLE (S: :ATSM (1 , S)) S PAC E;

TERPRI

END

It is assumed that the value of R is the list in question.

7.4.6. The RECALL and REMEMBER Statements

The RECALL and REMEMBER statements, as described in Subsection 6.21

may be used with the SYMBOL PLEX option. When the SYMBOL PLEX option is

used, there are no restrictions on the use of these statements; they may

be used at any point in the program as often as desired. This feature

might be used, for example, in the implementation of a self-extending

syntax-directed translator. The value of NEXTAVL(SYMBOL) must be set

before a REMEMBER to a point above the last element of the linked list

to be stored.

In general, a LISP memory file created by one program will not

be compatible with another program, since the addresses of quoted

atomic symbols (created at compile time) will almost always be different,

unless they are all single-character atomic symbols.

7.5 RECOMMENDED PRACTICES

If the RECLAIM statement is used to reclaim records then the following

program should be used to create the record file:

7-19

BEGIN

FILE FILENAME DISK [20:300J (1, 10,30,SAVE 90);

ARRAY A[O: 9J;

INTEGER I;

FOR 1:= 0 STEP 1 UNTIL 5999 DO WRITE (FILENAME,lO,A[''''J);

LOCK (FILENAME);

END.

If the programmer fails to use this type program and has reused all

reclaimed records and is creating a new record, he will have an error

termination. This is due to the way random files are handled by the MCP

and not by GTL.

7.6 EXAMPLE PROGRAM

The program listed on the following pages was designed to illustrate

the use of the disk-storage-oriented record processing system. The program

maintains a data base of students and possible courses they might take.

The data base can be updated and maintained from a terminal. The user

may inquire into the status of students in regard to required courses taken,

or needed to be taken, grade average, which students took a particular course,

etc. A simple example of the program's operation is given at the end of the

listing.

Attention should be given to the DELETESTUDENTS procedure which illus­

trates not only how to reclaim a record, but also how to reclaim all records

to which only the reclaimed record points.

This program should not be construed to represent a practical application

or to represent data base construction. The program merely illustrates the

creation and deletion of records in record processing.

7-20

In order to understand the operation of the program, the programmer

should be familiar with GTL string processing (Section V) and the Input­

Output system (Section IX). Knowledge of list processing (Section VI) is

helpful in understanding record class identifiers.

7-21

~t~l~
CU~ME~I

IhIS PHUGHAM MAI~TA'~S J ryp~S OF HECLRUS I~ C~l ~1LE.

THE FIRST RlCCHD, ~J~OE~T, CUNTAI~S A STLCE~T"S ~-'E, AUUHLSS,
SCCIAL SEC~hITY ~~M~EH, AND CULLEGE UlGHEE, PL~S
A FJfLD ~HI~H POI~IS TO A RECORU, CC~HSELISTI~G, ~MICH

HlCUROS THE HISTUHY OF CO~RSES TA~E~ ~Y T~E SJU~E~I. THt ~IHlk
~UINTlR pUl~TS TO lHE NEXT ST~DE~r"S ~ECC~D. If lHIS PUI~'£R
15 NUll THEN THEHt AHl NO MURE SIUDENI AECCRDS. THIS
IhDICATES E~O UF lHE LIST. THE STUDENT PCINTEk, ~p, PU1~IS fa
I~E FIRSl HECOAD IN THE LINKED LIST CF ST~CE~T RE~CRUS.

rhE CUUHSlUlSCHIP HfCuRO CONTAINS A UtSCRIPTICN Cf EVlHY rU~SI~Ll

COURSE THE STUUENT MAY TAKE. THIS CESCHIFTIO~ 1~~LUCE5
ThE OEPART~ENT ~H1CH CFFEHS THE CUURSE, l~E CCUkSt ~U~dEH' ~HlTHEh
THE CO~kSl IS HE~UlREo OR hOl, A~U THl TITLE cE5CHIFTIL~ Ut THE
CG~HSl. ~D~ PUI~T5 TU Th~ FIRST HECUriO 'CF ThIS LI~KEu L1SI,

IhE ThIRU RECORD, ~OuRSELISTI~G' CUhT~I~S 2 FIELC~. I~~ f!HSr
FIELD COhTAINS 3 lIE~SI THE QUAHTER I~E eCURSE ~AS TAK£~' A
POINTER TU lHl COUk5EUESCRlp REeOHO, ANO THE GHACE AEcElv£w. ThIS
FIELD OCCUH5 9 TIMES wITHl~ THE HECOHU, ~~ERE EAC~ FIlLU U~CUPIlS
1 wORD, lHl SlCC~U FIELO, ~HICH IS I~ l~E LAST ~CHC wF Ihl
hlCORO, PUI~TS TO ANOTHlR COUHSEDESCRIP IF (hE ~XI~TS. IHt NULL
vALUE OF ~OUHS[UESCHIp POINTER ENOS '~E LIST CF CC~RStS IAKEN,
WHEREAS A NuLL COUH5ES POINTER E~US T~E LINKEc LISr GF
CUUkStLISll~G HECLHDS.

THE PROGRAM ALLOwS THE USlR TO AUU COLRSES, Te Ace STUUl~r~,
AhU TO AUU COURSES TAKEN TO ANy STUUE~T"S REec~u. ST~DE~T5 Uk
CUURSES MAY HE DELETED, CAUSING rHE H£CORCS Te ~E "AECLAIMtO"
AND LINKEu UNTO THE FRE£LIST ~y THE PMOGR~~. AfT£k ANY M~~UHuS
ARE CREATED OR HECLAIMEO, THE NExTAVL,FHEELIST,SP, A~U cup VALUlS
ARE UPDATED I~ RECURD ZERO OF THE FIL~ re ~AI~TAI~ ITS I~TtGHlTY
IN THE EvENI THE PHUGHAM ABNORMALLY lER~I~ATES, C~ THE MACMIN£
HAhGS.

ALL INFGHMAIION IN THE SYSTEM CAN ~E LIsTED Ih VA~ICUS FUkMS.

IhE FINO uPIIGN ENABLES THE USER TO OlTER~I~E INFCH~ATIO~ ~~ouT
THE DATA ~ASE HE HAS ESTA~LlSHED. FOk tX~~PLE, T~tRE IS A
COM~AND wHI~H UETlHMINES WHAT REQuIREU CGlRSES H~vl AlEN T~KEI~ UR
~EEP TO ~l TAKEN, tITHER fOR A pAHTIClLAR STUDENT UR ALL
STUDENTS. UTHER vARIATIONS OF THIS CL~~A~D FI~D ThE GAAU~
ANU GRADE pUINT A~~RAGE FUR ONE srUDE~T CR ALL STL~E~TS.
A THIRD OPTION FINUS EITHER ALL PEUPLE ~HC TOCK A fARTICULAR
COURSE, Ok UUT OF THE PEOPLE WHO rOOK THAT eOlHSE TheSE wHu MADE A
cERTAIN GRAUE, OR FINDS THIS INFGHMAIION FeR ALL C~URSES. 'HE LAST
FINU OPTIUN LISTS ALL STUUENTS WHO HAvE A PARTICLLAR UEGHEtj

7-22

flLt. kE,t-IOIE;
RlCLRu fILE Sf UI~K OLU(1,lU,30)J
Rt~LR~ STUDENT Sf(~AME'AUD~lSS,SSNO,CO~riSES,OE.G~EE'~EAT);
RtC~~~ COURSlCESC~Ip SF(UE.PT,COURSFNa,H£~~lhEO,CESC~I~Tl~~,

HUUH5,NlXTCuURSE);
RlCLRu COURSELl5T1NG SF(WUARTER'CUUHSEP~I~rE.R,G~ACE,CLL~SES);
ST~!N~ FIlLG ~AME ee} [u I 26l,

AuukfSS (J) [2137J,
55"0 (7) l7l<lJJ

CULkSlLIS1ING FIELU CO~kSES (9) [1111);
STHINu f lELV ~lGHlE (~) l3121J
STUUE~T FIELD NlXI (~) LJOI18]J
STklNG FIELD UEPT (0) [~141,

COUHSENU (0) [413),
~E.~UIREC(O) [711J,
DESCRIPTIUN (1) [UI64J,
hOUkS (9) ld3lJ

C~LhSlUlSCRIP FlELD NEXT~O~HSE (9) (3011dl,
COLHSEPOINTlR (C,6) [30118];

RlAL ~IELD GRADE. (O,~) ~1816], 'TREAT AS AlP~A FIELuS
~UAHTER (O,~) [24161J

S T L U E I' T S P J
CUUkSlOlSCRIP CUP;
SlR1N<i

NAtJ.ESTtH~o),
ALJUSTR(37),
SSNUMBER('J),
UEGHEESTR(2h
DEPTSTR(4),
COlJHS[NOSIR(3),
OlSCRIPSTH(b4),
hOlJRSTR(3)J

Ildi:.G£R Ti
LABE.L STARTJ
STUDENT PHOCEUUk[LOOKUP~S~O 'SSNUM~ER}j

STRING 5ShU~~ERj
FORwAkD;

COMME"T
ThIS PROClDUHE "PH iNS" THE
A RlCORO POINTED TO 8Y P.
TRAILING blANKS, lHES£ ARE
~OINTS TO O~E ~LAN~ BEYU~O

CUURSE O£SCRIPTION I~FCk~ArIU~ ih
SINCE UESCHIPTIC~(F) ~A~ CUNTAI~
EFFECTIVELY OELETEG sc I~Al lAb
THE INFORMATICI\J

7-23

PHU~EUWRE Phl~CUUkSEUES~klP (P)J
VALUE P;
COURS[O(S~HlP ~J

tlEGIN
PRIN OEPI{P),CDU"St.NOCP) HE~lJIRE.D(P)'I'IOLRS(P) S"'~Ct.(l)J
UESCRIPSTH 1= DtSCHIPTIONCP)J
I 1= oj;

MilLE UESCldPSHi(l,l) = " " ANO T GTH 0 CC T 1= I· 1;
I := T + 1J
Pkl~ DESCHI~STH(u,r);

tNLlJ
COMME"T

THIS PRUClDURE FIHSr PRl~TS THE QUARTER A~O G~AOE A~O THE~
CALLS PRINCuURSED[~CRIP FOR ALL COURSES I~ THE LI~'
OF COURSELl~TINGkECOROS POINrEU JU ~y PJ

PMOC[uURE PRIN1COURSES(P)J
VALUE pi
COUHS[LlS11~G Pi
IH.G IN
~LPHA Ai
INTEGE.R Ii
LABEL SIAHT;
IF ~=NIL THEN RETu~~J Z REFERENCE TO ~UlL RECCR~ CA~SES tH~UH

STAHT1fCR I .= 0 STEP 1 UNTIL 8 DO
I:!I:.GIN
IF CaUHSE~OINTER[IJ(p) = NIL THEN RETURNJ
CASE QUARTEktIlCPJ Of
8EGIN
PRIN 'FA IJ
PRIN ,wI i;
PRI~ .sP '1j

PRIN ,su Ii
ENOl
PRIN A .= GHAOE[IJCP),;
PHINCOURS~OtSCRIP(COURSEPUINTER[lj(P»J
JERPRI,;
E~OJ
IF P a= CUUkSES(P) NEQ ~IL THEN GU START.
£1'40;

PHU~EUUHE PRINTSTUOENT (P,N)J
VALUE P.~J
SlUUENT fJJ J WHICH STUDENT
INTEGER ~J ~ KEY TO ~HAT IS PRINT£D AbOUT STUCE~T

CAS£ N OF BEGIN * N •
PRI~T 'Sa, SSNQ(P)J SO. PRINT SCCIAL S~C~HITy ~~MoER
PRINT #N. # NAME(P)J % 1 • PRINT STLOEN1S ~A~E
PRINT 'AI # ADURESS(P)J J 2 • PRIN, STLOEN1S ACURESS
PRINT '0' , OEGAEE(P); i 3 • PRINT STLOENTS ClGREl
PRINTCOURSES(COURSlS(P»j J q • PHl~T COLRSES ST~U[Nr HAS TA~E~
EI\DJ

7-24

CUMM[~I

~hI~TALL LI~TS ALL STuOE~TS" ~AMlS' A~nRESSES, SCC!AL St~u"ITY
~~M~EHS, U~GRElS, CULkSES TAKE~ INCLU~I~G
l~E QUARTER T~l CUUHSl wAS TA~E~ A~D IHE GRADE hECtI~tU;

~HC~lUu"t P~I~TAlLJ
bEGIN
SlUUENT PJ
l~TEGER 1;
IF f .= S~ = ~IL IHE~
~lGIN

PRINT *STUOlNT LI~T EMPTY'}
RETURN}
[NO;
whILE P ~l~ NIL Du
bEGIN
FUR 11=0 STlP 1 U~I!L 4 DO PRINTSTUDt~TCP'l);
TEHPRIi
P a= N[xTCP);
E~D;

E~Oi

CUMME~T
LISTER LI51~ VARIOUS THIkUS FHOM THE ~IFFERENT REclROS. In[
~GMMANDS ARtl

L [SO~IAL S£C~HITY ~U~H£Rl lOPTla~ LIST]

WHEHE
[CPTIU~ LIST] II- [OPIIONl , (cpTIC~ LIST)
tO~TIu~l It= 5 ~ PRI~T SOCIAL SECLkITY NUMd[~

I N i PRINT NA~E
I A ~ PRI~T AUUR£SS
I 0 * PRl~T DEGREE
I C ~ PRI~r COURSES TAK£~

L S LISTS tHE SOCIAL SECUHITY NU~~ER AND ~A~ES
OF ALL STUDENTS IN THE DATA SASE

L C LISTS 'HE oESCRIpTIO~ OF ~LL COURSESI
THl OlPARTME~T, COURSE ~U~8ER,
FOLLOntD BY AN OPTIO~AL ASTERISK C*) ~HICH
I~OIC~JES THAT THE COURSE IS REQUIREC FeR GHAD~ATI0~,
ThE CUUHSE HOURS AND COURSE TITLE;

PkOC£WUHE LIST[Hi
dE-GiN
!;)TUUENT SJ
CUlJl~SE.D£Sl.l1iP C;
INTEGER Ti
LA8EL STAt·n;
iF "0" LEw HlAL(I~xSl(2,1» LEQ "~" r~E~
ljE,GIN
~SNUMbER := T~XS1(~'9);
IF S := LUOKUPSS~U(SSNU~8ER) = ~lL THEN
I:jEGIN
PRINT #ST~DENT NCT FCUNO#J
kETURNJ
END;
CUL .= 12;

srA"';If T := HlAUN(lWXA) = "S" THEN T := 0 ELSl
IF T = "N" THEN T I: 1 ELSE
IF \ = "A" IHE,I'J T .= 2 ELSE
IF T = "Un THEN T I: 3 ELSE
H "\ = "e" IHEN T ,= 4 ELSE
tH.GIN
PRI~T 'ILLEGAL I~PU1#i
HETURNi
ENDi
PRINTST~UlNl(s,T);
If TWXS1(COL,1) = "," THEN
IH.GIN
COL 1= COL" 1i
GO START;
END;
kETURNi
ENOi
IF T := HlALCTWXS1(2,1» = "5" TH£~
tH.GIN
IF S := S~ = NIL lHEN
bEGIN
PRINT 'STUDENT LIST EMPTY';
RETlJRN~
E.NO;
~HILE S Nl~ NIL OU
bEGIN
PRINT SSNUC~),NAM~(S)i

S 1= NEXTCSH
I:.NO;
RETURN;
END;
IF l= " C " I HEN
bEGIN
IF C ,= CUP = NIL THEN
i::l£GIN

7-26

PHI~T 'CUUH~E LISI E~PTY#;

HETIJRr..J
Et\OJ
~hILE C ~tQ NIL Uu
tlf.Gltll
~Rl~CUUHSlUtSCHlP (el;
IE.RPRU
L 1= ~ExT~UuHSl(C)}

UdJi
HE.TURrd
E~LJ;

PHI~T 'lLLE~AL LIST COM~ANO#J
EI\LJ LISTER;

CU~"EI~l
THIS PRGCtUURl SEAMCHES FUR A STLUEt\T SOCIAL SEtL~lTY ~1.J~~tR ~H1CH
NATCHES SSNuM~lR. IF SUCH A STI.JU~NT lXlSTS T~E~ , PCl~llh
Tl HIS REeUHU IS KlTIJRNEO, OTHERwISE tHE ~ULL PCI~tER IS
I"ItTlJRNEO;

SlULE~T PROCEUuHE LOUKI.J~~SNU (SSNUMdER);
STRING SSNUMBERi
dE.GIN
STUDENT P;
P := SP';
~HILE P ~EQ NIL UU
IjEGIN
IF SSNO(P) = SSNUM~ER (0,9) THEN RETURN PJ
P := NEXT (P)j
END;
t.NO;

CO~fI!E.I\ r
THIS pRUCEDURE ADOS STUDENTS TO THE UATA eAsE. T~E
P~OCEDURE LUOPS ASKING FOR THE FOLLO~ING I~FOR~ATIUN

FOR EACh STUDENT 10 ~E ENTEREU INTO T~E SYSTE~:

SSfI,ln

NAME:

A[)UHE~SI

OEGH[ll

EXPECTS A ~ DIGIT ~OCIAL SECURITy ~UM~ll"l Uk
IF THE WORD "STOP" OR A BLPhK LlhE
IS FOUND THEN THE PRGCEOURE IS tXI1EU.
EXPECTS THE NAME Of T~E STLDE~r ~p fU ic
CHARAC1ERS IN LENGTH.
EXPECTS THE AOURESS CF THE STLCtNT wP T~ 31
CHARACTEHS IN LENGfH.
EXPECTS THE OEGHEE OF THE STUCE~T

(2 CHARACTERS) SUC~ AS EE, IE, ~R CEo

IF THE STUOlNT ALkt.AOY ExISTS ON THE SYSTE~ T~E~ A~ EkH~"
~ESSAGE IS TYPED, UtHERwISE THE ~E~ SfUUE~T Is ACLtC TU IHt
SYSTEM;

7-27

PkOCEUUHE AUOSrUUl~l;

~£GIN

L~~fL LOOP;
LOUP: P~I~T #SSNO: 'i HEAU lWX; SSNUMHEH := T~XS1(U,Y);

If SS~U~blR'O,4) = "SlOP" OR SSNLM~EH : SPACE T~E~ ~EILkA;
IF LOUKL~SS~O(SS~LM8Ek) ~lQ NIL THEh
d[GI~

PHl~T #SrUUt~1 ALhtADY O~ SYSTEM';
ijU 10 LGOP;
l~O;

PRINT #~AMEI Ii READ TWX; NAM£STR := IWxSl(C,~6)}
PRINT 'AUURtSS: ,; READ TWX; ADDSJR := T~~Sl(C,37)j
PRINT 'C[GREEI I; HEAU TWX; DEGRl£STH 1= T~xSl(O,~);
~ CHEATE ~£~ STUOtNI RECOHO
bP 1= STLDENT(NAMlSrR,ADOSTR,SSNLMdEH'.,DEGREEST~'~P);
GC TO LeCp; ~ DE LUOP
~kl'E(SF[O],*,NExlAVL(SF)'FREELIST(SF),SP,CDP);
END;

CUM~ENr
uELETESTUUENT DELEIES STUDENTS CLHHENILY (N T~E Sy5TEM.
whEN A STUOlNl IS UELETED HIS OLe HEcCRO JS LINKEc INIU
THE FRElLISl BY THE RECLAIM STATEMEhT SO T~AT T~E HECGRU
CAN LATER tit ~SEU, ALSO ALL OF hiS CLURSELISTI~G ~ECURU~
A~E RECLAIM~O. THE PRocEDURE EITHEH ASKS FOR A SCCIAL
SECURITY ~UMHER OK IT MAY BE GIVt~ I~ TrE CO~MA~C "0 S"
SUCh AS "U 5 40S62~8Cl~. A SERIES OF SOCIAL SECL~lTY ~UMb~HS
MAY ~E GIV£~' IF tACH PRECEDI~G ChE IF FOLLOwEO By A ceMMA.
AS EACH SluuE~T IS DELETEU HIS NAME IS FRINTEC AS fEEudA~K
TU THE LS~Rj

PHG~EUURE DELErlsrUCE~Tj
bEGIN
STUDENT S,T)
COUASELISll~G C,Di
LAtiEL LUOP,hC,L,Ll)
IF SSNUM~lHI=TwXS1(4,9) = SPACE(9) THEN
bEGIN
LOOPI PRINT *SSNQ"i
klAD TWX;

L: SS~UMbEH 1= TwX51(O,9);
END ELSE l~ASl := TwXS1(4) & SPACE;
IF SSNUM~ER(O,4) = "sroP" OR SS~UM~ER = SFACE ThEN REluk~;
If S 1= T 1= SP = NIL THEN
~EGIN
PRINT 'STUDENT LIST EMPTY"
RETURN;
END}

7-28

l~ SS~U~~~HlU,~) = SS~OCSP) THEN 4 liS r~l FI~SI ~lCCHL
dEGI~
~kINTSTLUt~r(SP'l);
~ 1= COllH~ESCS)l

~HIlf DI·~ ~EQ ~ll DO I DELETE COURSE OESCRIPlIU~ "£CUkU~
tjt:.GIN
~ 1= COLH~t~(C); h PCINTEk Tn NExr ~EcaHC

klClAl~(U); * HECLA!~ THE RlCURO
£.I'.i U I
~ 1= NEXI (S"');
kI:.ClAIMCS)i

~p 1= SI , HESTORl STUDENT pnlNlt~
GO Tn Re;
t.~ul
~HIlE S 1= ~EXTCS) NE~ NIL un I SCA~ ~OW~ T~E LISI
tjEGIN
iF S5NU~tjl:.~'O,~) = SS~O(S) THE~ I FCL~O ~l~
dEGIN
PRINTSTlJUENICS,l);
c .= COlJR::,t::.SCSH
~~ILE 0 .= C ~lQ ~'L UO I DELETE CO~RSE CESCRIPTIC~ RtCUKU~
tj~.GIN

C .= COUH!:IESCC)J
H[CLAIM(I);
END;
NEXTCT) .= NEXTCS); * DELINK THE kECOHO
HECLAIMCS); ~ LI~K HECLAIMEO REcakO O~TG FREELIST
GU TO RCI
lNO;
r := s; ~ KlEP TA~ OF TRAILING POINTEH
E~D OF wHILt:. LUOP;
PRIN SSNUM~lR, #N~T FUUND" ~ NOI ON SYSTEM • NOTiFY USI:.M
IF TWXS1(~,I) = "," THEN PRINT "CONT!NUI~G* ELSE IERPkIi
GO TO LlJ

ReI ~~llE(SF[O],.,NEXTAVL(SF)'FREELlSr(SF),SP,CDP); j ~POATl FilE
Ll' IF TWXS1C~,I) = ",~ THEN

I:jEGIN

COMMENT

T~XSll='WXS1(10) ~ SPACEJ
GO TO L;
ENOl
GO 10 LOOP;
E~O DELETlSTUCENli

LOOKUPCOUHSt IS THE SAM[AS LOOK~PSSNL EXCEPT IT
LGOKS UP A 'OURSE GIVEN BY DEPT NAMECCT) ~NO COURSE NuMb~klCN).
IT HETURNS THE AOOHESS or THE CO~HSEU~SCRIP RECCRC IF SuCH
A COURSE EXiSTS;

7-29

CUUNStUESCRIP PkU~EOURE LUCKUPCUURS£ COI,CN)J
STRING OT,C~;

~lulN

CUUkSEU~S~R1P P;
p := COP;
~~ILE p ~lG ~lL UL
~[GI~

IF UT(0,4) : OlP'(~) ANO CN(O,3) : COLRSE~C(P) J~l~ ~lrUH~ p;
P 1= NEXICOUHSE (P);
l~O;

t~D;

CU~~E~1
AOOCOURSE AUUS CGUH~ES TO THE SyS'E~. T~E INpUl l~ AS FULLU~~

DEP1, EXPECTS IHt UEPT NAME (4 C~AkACIERS).
IF THE ~ORU "STOP" OR A BLA~K Ll~E 15 E~lEhEu
THEN THE PROC£uURt IS EXITED.

CGUkStNC: EXPECTS THt COURSE NL~~ER CF T~t COUH~~.
AT THIS lIME THE CLUHSEDESCRIP kECUHU~ ~H£
SEARCHED BY CALLING LCCKLP Tu StE 1~ IHt
CCURSE ALREADY EXISTS, AND IF 11 DUES A~ EHHUH
MESSAGE IS TYPED.

HEQU!HEO: EXPECTS "V" OR "YES" IF TH~ CCLriSE IS RtWUIRlO
FCR GRADUATION, OTHER~ISE A ~LA~K Ll~t
wILL SUFFICE FUR A NO RESPONSE.

OESCHIP1IO~: EXPECTS THE COURSE TITLE TC ~E ~~TEkEU ~p IU
6~ CHARACTERS IN LENGT~

HO~HSI EXPECTS 3 CHARACTEkS OF THE FC~M "JUJ" ~HlriE
THE FIRST DIGIT INUICATES THE ~~~8tH
OF HO~RS OF IN-CLASS I~STRLCIIC~, THE S~CO~D
DIGIT INDICATES THl NL~8ER OF ~~URS S~Ei~T

IN LAB PER WEE~' AND T~E T~IHC UIGIT
INDICATES THl HGUkS EAR~EC FeF THAI ~GUkSl.

AT THIS TIMt THE NEW RECOkD IS CH£ATEu ANC THE~ Trt PHGCtU~H[
LOOPS;

~HCCEUUHE AoDCUURSE;
~EGIN
bOOLEAN ~;

LABEL LUOP;
LOUP: PRINT 'DEPT' I; R[AO TWX; OEPTSTR := IWxSl(C,4);

IF UEPTSTH= "STOP" OR DEPTSTR z SPACE(4) THEN RETURN;
PRINT 'COURSE NO: Ii READ T~X; COUASENOSTR := TwxSlCC,J);
IF LOOKUPCO~RSE(U[PTSTR,COURSENOSrH) NEG ~IL THEN
~EGIN

PRINT #COURSE ALkEADY ENTERED';
uO TO LOOP;
END;

7-30

PklNT #REWLIREU:'i READ TWXi
b := TwXS1CU,1) = "Y"i
PRI~T 'UE~CHIPTIO~I Ii READ TwXi UESCHIPST~ := T~x~l(v,O~)'
PRINT ,~UUH5: I; HlAC T~X; HnURST~ 1= T~XS1(O,3};
COP 1= COUR5EOlSCklp(OEPTSTH'CUUR~E~OSTR, ~ ChEATt CC~H~t ~lCuHu

SlRING(IF ~ Thl~ "*" lLSE " ",l),UESCHIPSIR,
HCLkSIR,CDP);

tiu 10 LLO~;

~RIIE(SFLU]'*,NExlAVLCSF)'fRfELISrCSF),SP,CDP)J
£~DJ

COM~l~l

UELETECUUHSl OlLETlS A COURSE SI~lLAR TO CELEIESTL~E~l.
THE DEPARTMt~T NAMl A~D CCUH5E NUM~ER AHE REQLESTt~.

It THE COUHSE RECGHO IS FOUNO THE~ IT IS ~ECLAI~E~
SC lHAT IT tA~ BE USEU LATEH. IF THE CGLRSE CA~ ~~T
~E ~OUNU lHl~ A~ tHRGR ME55AGl 15 ~Rl~TED.
****** SOME CAkE SHUULD BE USEO I~ OELETI~G CCUkSES BECAU5t ******
****.* THERt ~AY dE POINTERS IN caURSEL'STI~G PCI~II~~ IU *.*** •
• ***** THl HE CURD dEING DELETED, THUS ERRC~EOLS LISII~GS ***.**
.*. ~AY HESULT *.;

PHLCEUuHE DlLETlCUUHSEi
bEGIN
~uuRSEOESCR!P C,1;
LABEL LUUP.kC,Li

L~GP' PHINT 'OEPT.#; REAU T~XJ OEpTST~ 1= T~xS1CC,4);
IF UEPTSTH = "STOP" OR DEPTSTR = 5PAC~ ThE~ RETURh;
PRINT 'COURSE NOl'i READ T~x' L.CUURSENOSTRI=T~.Sl(C,J);
IF C := T 1= CDP = NIL THlN
BE~IN
PRINT #COURSE LIsr EMPTY';
HETURN;
END;
If UEPTSTk = DEPTCCUp) AND COURSEN05TH = CCLHSE~C(CCP) T~t~
uEGIN % 115 ThE FIH~T RECURU
C 1= NExlCouRSlCCOP);
HECLAIMCCUP}J
CDP t= CJ
GO TO RCi
lNDi
~~ILE C t= NEXTCOUHSECC) NEw NIL uO i SCA~ ca~~ Trt LISl
~lGIN
IF DEPT5TH = DEPTCe) AND COURSENOSTR = CClRSE~GCC) T~t~ ~ uUT H1M
~EGIN
NEXTCUURSlCT) 1= NEXTcnURSECC);
HECLAIMCC)J
~o TO RCJ
ENDJ
T ,= CJ
E~D OF wHILE LOOP; J

7-31

~kI~T 'C~UH~E ~Cl FOU~O#J I COURS~ hOI U~ SYSTEM
bL 10 LLU~J

H~: wHI1E{SfLul,.,h[XlAVL(SF),FHlELISI(SFJ,SP,COP1J
IF TWXSl(j,l) = "," THEN
~[GI~

l~XSl 1= 1~AS1(4) ~ S~ACE;

bL 10 L;
[~OJ

~L 10 LGUPJ
t~U OELEllCLURS[;

CU~~E~T
ADUCOURSESTLSTUUE~1 AOOS CO~HSES rAKE~ Te ~ SILLE~I Rlcwnu.
THESE I~PUTS ARE p~r INTO CUUHS£LISrl~G A~O

ThEN IF 11 IS THE FIRST COUHSl TAKE~, OR AN OLD H~~CRU l~
FLLL (EACH HECOHD HULDS 9 CUlJRSES) THEN A NE~ RECLHC IS
CHEATED A~D LINKEu INTO THE LIST. OlbER~ISE IHE I~FCH~All~N
IS ADDEU 10 A~ ExiSIING RECUHU. lHE PRGCEOLRE VEklFIES
THAT 80TH T~E STuulNT A~O THE COURSE EXIST. THE I~PLT
IS kEQuESIEU AS FOLLowSI

SSNU.
OEPr.
COUkSlNO:
GRAUEl
QvAHTlRI

EITHER AN 55 ~u. U~ "STOP" CR A dLA~~.
DEPARTMENT NAME (4 CHAhACTERS).
CCURSE NUMBER,
GRADE RECEIVED, ElrHER A OR b eM C OH U UR t,
THIS I~OICATES THE QUA~TER ThE ~CUHsl ~A5

TAKEN. ~NTER tITHER FALL OR F, SPRl~~ ~H
sp, wI~TER oH ~l, LR SL~~ER LR ~L.

IhE PRUClUUH[LOOPS UNTIL "STOP" OR tLA~K IS E~TtNEC
AT THE REQUEST FOR SS~OI. IF AN ERROR OCCURS A~ APPRGPH1AIl
ERRUR MESSAijE IS TYPEUJ

PROcEwU~E AODCOURSESTOSTUOENTJ
dEGIN
STUUENT Si
COURSEOESCRIP PJ
ALPHA A,bi
COUHSELISTI~G CLJ
I~TEGER Ii
LA~EL OLNE,LOGP,Ql'GOJ
PRINT #SSNOI #J RlAO TWXJ SSNUM~Eri := T~XS1(O,9)J
If S 1= LUOKUPSS~O(SSNUMBlR) = NIL THlN
dlGIN
PRINT 'STUDENT NOT FOUND';
~ETURNJ
ENOl
PRINT NAMECS)J

LUCPI PHI~T #oEPT: #J REAu TWX; DEPTSTR 1= TwxSl(C,Q)J
IF DEPTSTH = "STOP" OR OEPTSTR = SPACE(4) THE~ BEJ~R~J

7-32

PHINT #CUuRSE~U' Ii REAO rWXJ CO~kSlNLSTR 1= Tw~SllC,j)i

IF ~ := LUCKUPCO~"SE(UEPTSTH'COUR~E~U~TH) = ~(L T~t~
o~Gl~

PRl~T ,~U SUCH CUuH~t#'
\.ill 10 LUU ;
t:..NG;

GUI ~RINT 16k AUt:.. 1 Ij "t:..AO TwX; A 1= H[AL(/wxS1CC,1»J
If "A" GlW ~ Gf~ "F" UR A = "E" THE~
bEGIN
Pkl~T 'lLLE~AL G~AUl';
i.J(J uo;
t:.t-.Di

QT' RI~T #~UAR1ERI 'i HEAD TwX; ~ 1= HEALCT~XS1(C,~»;
If ~ = "F " OR t:l :: "FA" THEI\ tl &= 0 ELSi:.
IF ~ :: "~ " UR B :: "~I" THEN d := 1 ELSE
IF d = "51"'" T~l~ ~ 1= 2 ELSE
IF ~ = "SUn T~E~ b := 3 ELSE
bEGIN
PRINT #~O SuCh QUARTER"
I.iO TO QTi
ll\iH
If Cl := COURSES(~) :: NIL THEN GO UO~t:.i
whILE CL NE~ ~ll UU
tJEGIN
FuR J := 0 STEP 1 UNTIL a DU
IF COURSt:.POINTER[IJ(CL) = NIL THEN GU DG~Ei
CL ,= CGURSES(CL);
t:."'Oi

UU~EI IF 1 = 0 UR 1 = 9 IHE~
dEGIN j CREATE ~E~ COURSELISTING riECOHQ
COURSESCS) a= COUk~t:.LISTING(~,P,A,CCUHSES(S»;
wRITFCSf[Ul,·,NEXTAVLCSF),FREELISTCSFl,SF,COP);
l~O ELSE
dlGIN J UPDATE OLD COURSELISTING kECOHO
QUAHTER[IJeCL) 1= ~J
COUkSEPGI~TlR[IJ(CL) 1= Pi
GRAUE[I) CeL) 1= A;
E~D;

GO TO LLOP;
t::~D;

CU~ME"'T
fI~DOEGREl fI~DS ALL STUDENTS ~HO HAvE A CEGREE GIVE~ l~
THE COM~AND "F 0 (DEGREE]" WHERE [UEG~Et] IS A~Y i
CHAkACTEHSi

PHU~E~uhE FINOUtGHlEi
t:!t:.GIN
~TUUFI\iT SJ
LlGHEES1~ ,= lwxSl(4.2)J
S := SP;
~HILE S ~l~ NIL Uw
ot:.GlN
If UEGR[[Slh = UE~HEE(S) IHlN PHINT S~~C(S);
S := NEXT (S)J
1:.,1\10;
U" (,; ;

CLJM,.EI\T
FI~UGRAOE E1Tht:.R ~'NOS THE GHADES FO~ Q FARTICULA~ STU~E~T
UR ALL SIUDlNTS. IF lHE SOCIAL SECURITy ~U~~ER I~ GIvEN
IN THt:. CUMMAND "F ij (SSNOJ" THEN fHAI STUCENT"S G~ACES AHE
SLMARIZEO, UTHlR~lSl ALL STUOENTS" SU~MARIES AHE fkINII:..U;

PriCLE0LRE FINDGNA~EJ

tH.GIN
SlUOEhT SJ
CLJUHSlllSTING elJ
STRING LINE(26)J
ALPHA Gi
INTEGER I,~~,hT,H;

ARRAY GC(O''''lJ
bCGLEAN ~,P~INTEDJ
FeRMAT HEAD(" A ~ C 0 F WP HE PA NA~E")J

FeRMAT INFC(7(I3),F5.2)J
lA~£l Ll,L2,L3,LS;
IF ~ 1= SSNUM6ER ;= T~XS1(4,9) NE~ SPACE THEN
bEGIN
IF S := LUOKUPSS~U(SSNUMBI:..R) = NIL THEN
tj~GIN

PRINT #srUO~NT ~OT FOUND#;
i-IETUHNi
[NDJ
lND ELSE S := SPi
IF S = NIL THEN
tlEGIN
PRINT 'STUDENT LI~l E~PTY#J
I'<ETURNJ
Et.OJ
wHILE S NEQ NIL DU
bEGIN
IF CL 1= COUHSES(~) :: NIL THfN GO TO LSJ
FOR I r= U STEP 1 uNTIL 4 OU GCtIJI=OJ
hT 1= QP 1= OJ

7-34

L11 ~LH J := U ~T[P 1 U~TIL 8 OL
blGIN
If CnURSl~O!~TlH[lJ(CL) = NIL rHE~ GU TL L2J
~C[~~AOl[lJlCL)·"~"J 1= * + 1;
LI~l := HUWkS(COUH~tPOlhTlR(JJ(CL);
H := ~FAL(Ll~l(2,1);
H1 := HI + HJ
~p a= ~p + H ~ (IF HI=GHAUELTJeCLJ = "F" l~E~ 0 ELSE "t"-hJ;
t~O;
If CL 1= CULRSlS(~L) kEQ ~IL THE~ GC 10 Ll;

L~I If HT ~t~ a THE~
dlGIN
IF ~Ol FkI~IEu THlN ~KITE(T~XF2,hEAU);
PRI~T£O 1= JRWE;
~~I1E(LI~l,I~FU,Fu~ 1:=0 STlP 1 L~TrL 4 cc GClIJ,~~,~',~~/HI)j
PkI~T LI~~(U'26), ~~~E(S);
L~Oi

LSI IF ~ THE~ GL TU LJJj
~ 1= NEXT(S);
L~Ui

LJI It ~aT PHl~IEC THEN PRI~T #NULL')
[NO;

CUMME~T

FINDCOURS£ tI~DS EITHER ALL PEOPLE ~HC HAvE TAK£~ A PAH1IC~LAK
COuRSE OR ALL PEOPLE ~HO MADE A PARTI~ULAR GRAUL.
THE COMMANU "F G" CAUSES THIS PHOCEDU~E Te BE EN1fKEO ~HIcn
THEN HEWUlSIS THE kEST OF THE NEC~SSAkY I~FOR~ArICN.
THE FOLLOwING IS REQUESTED.

DEPT'
CUUHSlNca
GRAUEl

PKO~EUURE FINCCOuNSEJ
bEGIN
STUDENT SJ
COUHSlLISTI~G eli
COUR5EDEseRIP CPJ
ALPHA GJ
bOOLEAN ~,PAI~TEDj
I~TEGER II
LA~EL Ll,L2,lOOPJ

SAME AS fOri AUu CO~RSES

"
If A GHAUE IS GIVl~ T~EN T~AT CULRSl
~ILL ~E LISTED ~IT~ ALL pECPlE ~~C TUU~
IT AND MADE ThAT GNADE ELSE ALL PEuPLt
whO TOOK THAT COURSE ~ILL bE LLSTEUi

LOOP: PRINT #OE~TI#j REAU T~XJ UEPTSTR 1= T~XS1(O,4)J
IF UEPTSTR = "STOP" OR DEPTSTR = SPACt ThE~ RETLM~;
PRI~T #COURSE~OI'J REAn TWXJ COURSENOSTR := T~XS1(~,3)J
PHINT 'GHADEI*J READ rwXI B 1= G ,= RtAL(T~XS1(U,1) = " "j

7-35

If LnUK~PtOUHSl(UlprS1R,CUU~SE~OSIH) = ~lL THl~
tjf(JIN

PRI~T #~L 5LC~ CCUH5l#J
I,jlj TO LLCI-';
U,IJ J
S := ~P;

~~lLE S ~l~ ~IL Uu
o£.GIN
IF CL := CUURS~S(~) = NIL THE~ GU TO L2;

L11 fOR J := U STEP 1 U~rlL 8 DC
bEGIN
If CP 1= tCURSEPCl~IEH[I](CL) = ~IL f~E~ GO Te L~;
IF UEPT(CP) = UlPI~IR ANO CUURSE~U(CP) = CCLHSE~C51~ A~U

(b UR GHADELl](CL) = G) THE~

uEGIN
PRINT SS~U(S), ~A~l(S)J
PRII'iH.D 1= IRld: .. i
\ill TO L2i
UdJi
1:.1\0;
If CL := COUHSlSCLL) ~£Q ~IL rHE~ GO TO L1J

L~: ~ 1= NEXT(S);
l"Ui
IF NOT PRINIED THt~ PRI~T #NULL#;
It\L1 FINUCUUf1SEi

CuMr-El'.f
FINUREQLlkt.U rlf\US ALL OF ThE REQuIRE~ CCLHSES TrAt A
STuOENT HAS OR HAS NOT TAKEN, THIS CA~ EE D[~I:. fUR lllht" A~

INDIVIDUAL UR ALL SILUENTS. THE CU~MA~OS ARE:

f H [SOCIAL SECURITY "0] [UPTIO~J

[UPTIU~J 1:= L I (E~P1Yl

IF lHE SOcIAL SECURITy NU~BER IS UMIllEO lHE~ ALL
STUUE~TS ARE FRI~TEO. IF T~f OpTIU~ FIElC IS EMPTY THE~ ALL
k~wUIHlD COURSES THAT HAVE tiEEN TAKEN ARE LISTEO, lLSE
IF THE "L" APPEAH5 THEN THE COURSES lHAT ARE
R~~uIRED A~D HAVE NOT BEEN TAKEN AHE LISTECJ

7-36

PHO~lu~RE FINURl~UIHEU;
tH.GIN
~TULJff'.T SJ
{;("UHSllIS1II\G eli
CGURSEOtS~R!P ep,up;
II\H.GER Ii
LAcill Ll,L~,L3,L4,L5,L6i
o (; OLE A N Ij, P I'< I " I l U , I~ 0 C L lJ R S E S i
If d := SSNUMbER := T~XS1(4,~) = ~~Ael UR

SS"U~~ER(C,l) = "L" THEN S J= S~ ELSE
if 5 := LUU~UPSSN~(SSNUMHlR) : NIL THE~
dEGIN
~~INT l~ SP = NIL IHEh 'STUDENT LiST EMPTY# ELSE

,srUOt~T NUT fCUNO#i
iH T URI''';
E~OJ
iF TWXS1(lF H lHE~ 3 ELSE 13,3) I\£~ SPACE(3) THE" bl fC Ljj

~hILF S Nl~ NIL UC
dEGll\i
PRINTED := fALSE;
iF Cl J= ~OURSES(S) = NIL THf.~ GL rc L2i

Ll: FOR I := U STEP 1 UNTIL 8 DU
dE.GIN
IF CP := (aLHS[POl~IER[Il(CL) = 1\1L T~EI\ GO Te L~;
if HE~UIRED(CP) = "." THEN
dEGIN
IF NOT PHINIEO THE~
tlEGlf\/
H.RPRP
IF b THEN pkI"T SSNO(S),NAMECS) ELSE fRII\TSTl.JCENT(~,l);

t'tdNTf..O .= lRIJE.J
E"Oj
PRINCOURSlDESCRIP(CP)j
H..RPR Ii
£I\Oj
£NDJ
IF Cl := CO~RSES(CL) NfQ NIL THE" GU TO Lli

L~: IF ~OT PRIN1EO THtN
!jEGIN
TE..RPRIJ
IF ~ THE~ p~I~T SS~O(S),~AME(S) ELSE PRI~TSTUCE~T{S,t)i
PRINT #~G RtQIJIREu COURSES IAKE~ YE1,j
[(\IU;

IF NOT ~ IH~N kETUHNJ
S := NEXHsH
END;
HE TURtd

Ljl ~HILE S ~E..~ ~IL Du
dEGIN
PRINTED 1= FALSE;

7-37

IH 1= CUPJ
~HILf UP ~£~ hlL UO
bE.GIN
l~ kE~UIHlD{DP) ~l~ "." T~E~ ijU TU L6J
~uCUU~SlS := CL := CCuRSES(S) = ~iLJ

L41 l~ ~nCOuR~E~ IHlh ~O TO L5J
tuH I := U ~TEP 1 u~rlL 8 OU
I:jE.GIN
IF CP := tC~HSEPGi~IEH[Il(CL) = ~tL l~Eh GC rc LSi
H c.;p = 1.11-' IHI:.I\ liu TO L6;
£1\0;
if Cl := COI.RSE.Sc<';L) f\:E~ I'JIL fHlh GO 10 LI.jJ

L~: IF ~Ol PklNIEIJ THt~

tH.GIN
!~ ~ TH£~ Pkll\T S~~O(~)#I\A~ECS) ELSE fRII\TSTuCEI\T{~,l)J

Pi-< HTED := I foiLU
t:.I\CJ
PRINCDURSEOlSCHIP(OP);
'[RPRIl

LeI up:= NExICWURSI:.(UP)J
1:.1\0;
If NOT PHII\IEC ThlN
olGIN
PkINTST~DI:.NI(S#l);
PRINT #ALL k[QuIR£MENTS SATISFIED';
PRINTED := 1RuE; _
1:.1\ ();
IF NOT ti THI:.I\ HETUHN;
S := NEXTCSH
END;
£1\0 FINDHEQvI~EC;

c u ~ 1", Ei'. I
THE COM~AND~ AREI

LIST
L ALL
L [UPIIONSJ

o S
o S LLSS f\CJ,

A 5
A C

U C

STOf'

ACTION

CALL PHINTALL
CALL PftINTALL
CALL LISfER
SEE LISTER fUR tLPTICNSl
CALL DELETESrUOEI\T . . .]
CALL ALHlSTUOENT
CALL ADDCOURSES

CALL AOOCOURSESTLST~CEI\T IvPCATE CUuk~£S

~NO OF PROGHAM J~RAF ~P

7-38

F I'" U COMMAt\uS

F D [UEGREEJ CALL FINUU£GtH.£

f (j CALL FINLh.iHAu£
F G (~S~O] CAll Fl~OGHAUl

F C CALL F lI\iOCLlLr~SES

f H CAll Fll\iOREQuIREU
F k l CALL FINUREQulHE~

F Ii l~SI\UJ CALL F INUREI~UIREU
F tI l~SI\OJ L CALL F INDrcE(~ul~I:.U;

P k 11\ T # G U A r; E AU, II ;
H[AUCSFlOJ,*,i\EXTAVlCSFl,FR£fLIST(SFl,SP,CCP)J

SlAhPPRINT /I.:ltj
~I:.AD TwX)
IF T := HI:.ALCTWXS1(Q,q» : "LIST" OR I = "l Al" T~tl\ p~I~IMLL ELSE
IF TWXSICU,l) ="L" THlN LISTER ELSI:.
IF 1 = "0 S " THE~ OELETEST~D£NT ELSE
IF T = "U C " THEh OElETE~O~RSE ELSE
It 1 = "A 5 " THE~ ADUSTUUENT ELSE
IF 1 = "A C " THEh AD~COUHSE ELSE
If 1 = "U C " lhE~ ADUCUUHSESTOSTUDEI\I ELSE
IF 1 = "F 0 " THEh fII\ODEGREF ELSE
It T = "F G " THEN FII\DGRAOI:. ELSE
It T = "F C " lH£h fl~OCOURSE ELSE
IF T = "F R " THE~ FINDREGUIREO ELSE
If T = "STOP" THEN
t;EGIN
~hl1E(SF(O],.,NEX1AVL(SF)'FHE£LIS1(SF),SP,CDP)J
PFINT 'ENU-UF-UPDATE'j
PRINT IGOUObYE#;
EX 11;
E."'D ELSE
PRI~T 'ILl[bAL INPU1#j
Gll !)TARTJ

7-39

RU1'. kl~LkU

-I:::lLJ- (IRECUfH':
uU AHt:.AU.
I L (;

hS 4)" 536
Ie::, I~ 4 ~ 3(13
l~S ·de 3u3
ICS 4'::4 3u3
I C S 4;::3 303
ICS ~15 233
ICS 4le * 303
ICS 4Gb* 303
Ie::; 4 v it 303
IcS 402 303
lI.;S 4Ul 303
IeS 3,5* 30J
IeS J42* 3lJ3
Ie;:, .13c 303
Ie S j25* 303
~IA I ~ ;::Jy* 30J
I~S J1C* 233
ICS ;:::'0* 303
IcS ~ :11 233
Ies .1::15 101
Ies 1,1* 233
:L ;)

L~GIC UlSIG~ ANG S~lTCHl~~ THEORY
Lli\J1SllC SY::iTl:..r-1S
I~t~~~ATIL~ SYST£~S

~LlM~1'.TS wt l~FGH~AII~N THlCHY
~AThE~ATICAL TEC~~I~UES FUH I~FCR~ATIC1'. SClE~~t
ThE LITEH~lUkl OF SCIENCE A1'.O E~GI~EEHl~G
PHOoL£M SULVIt-,(j
CU~PUTI~G LAt-,GUAGtS
TUPICS I~ LI~GUlSIICS
LA~~UA(JES FUR SCIENCE A~U lEC~1'.CLCGY
LAN~UAGES fUR SCJE~CE A~O TEC~NCL(GY
INfUR~ATlw~ SlRUCIUHE5 A~U PHLClSSES
I~T~COuCT1UN Tn S~~IOIICS

11'.IKOOUCrlu~TO J1'.FORMATIUN E~GI~EERI~G
INTKO~UCrIU~ 10 CY8l~NETICS
I~T"ODUCTIUN 10 SET-THEUritJIC CC~CEPTS
CUM~UTEH·G"!E~TEO Nu~ERICAL MtTHC~S
CU~PUTEH A~U PROGHAM~I~G SYSTtMS
AUTUMATIC uATA pRUC£SSlNG
TECHNICAL INfGRMATION RESUURStS
UIGITAL CUMp~TER URGA~IZArlcN AND PROGRA~~'~G

4U~b2o~04 CHUCK CLVEHALL
40~c2boUl 8AHRY FLLSUM
4u5t2od06 BILL bRG~~
40~c2bc05 RAY SPUlhlCK
40~c2odu3 JERkY CIGAHS
40~b2bdG2 JOHN fU~TER
If Cl

A 0 C U F GP ~l PA ~AME
2 1 1 0 0 3~ 12 3.2J BILL HHO~N
3 j 2 1 0 lb 27 2.d~ RAY SPUTNICK

IF 1'1 4(j5628b04 L
NI LHUCK CUVEkALL
ItS 41u* 303 PHuoLlM SULV!NG
ICS 4Ue* 303 CUMPUTING LANGUAGES
IeS J:,5* 303 INFLRMATIU~ SlRUCfUHES ANU PHLCESSES
ICS Jq2* 303 INTkOUUCTluN TO SEMIOTICS
IeS J25* 303 INT~ODUCTIUN TO CYBERNETICS
MATh ~J~* 303 INTHODUCTIUN 10 SET-THEORElIC CC~CEpTS
I~S J1C. 233 CUMPUTlR·Ok'E~TED NUMERICAL METHCCS
I~S i~6* 303 CUMrU1ER A~O PROGAAMMI~G SYSTEMS
IeS 1~1* 233 UIG1TAL CUMPUTER GRGANIZATICN A~D PROGRA~~'hG
IF t< qvS628tlO~ L
N& hAY SPUTNICK

7-40

ALL Hl~~IHE~l~T~ ~AIISFl~U

I~ t"I LI\;~Ot!dBOl

I'd l.1Atq"Y FULSLfv
NO hE~\;lH[D CLukSlS TAKtN ytT
I A ::,
SS"L:LlU~o~HbOI
N~Wl:.lb(jU t-'ASSCLI

[1lGt"Itt.:ll
s::, r. L :

IU C
S::'I\LI4.jU~62~eOI
But.,; PA~~CUT

lJlPT:IC~
CULriStl\(I: 151
GkALd:'; A

(,j u A tl T t 1"1 : F ALL
OlP,:ICS
ClJLt"IStl\u:t!50
!\ill ~UCh CUURSE
Di:.Pf:
:F ~

D[Pf:lCS
ClJL~Si:."L:151
Gt<ALiE:
4u5t2cd07 HUO PAS~OLl
4UJc2ddU6 BILL bRuw~

4U50iCd05 RAY SPulNICK
IF t"<

4U)c2ddCl YUD PA5::'OLT
lCS 151* 233 UIGlrAL CLMPLTER URGA~ILAIICI\ ANC FROGRAfv~lI\G

4u5t2ddU4 ChUCK ClJV£RALL
NU nEwUIRlD CLLkSlS TA~tN YlT

4U562~aOl 8ARRY FLLSU~
NU hE~UIRED CGLHSlS lAKl~ YlT

405t2de06 BILL bRLW~
MA1H ~39* 303 INlkOOUCTIUN fa SET-THEORErIC CONCEPTS
I~S J25* 303 INTt"<OCUCTIU~ 10 CY8ER~ETICS
IcS l~l* ~33 DIGITAL CUMPUTER ORGA~IlAIIGN AhO PRGGriA~~l~G

4U5e2dd05 RAY spurNICK
les 410* 303 P~ObLlM SULVING
I~S 4Ut* 303 CUM~U1ING LANGUAGES
I~S J,5* 303 INfUR~ATluN SIRUCIUHES A~u PReCESSES
ICS J4~* 303 l~lkaOUCTIU~ TO SEMIOTICS

7-41

ICS j~~* 303 I~THa~UCTlu~ 10 CY8E~NETl~S
MAr~ ~3Y* 303 I~ThOOUCrIO~ TO SET-1HEOHETIC CC~CEPTS

ICS 310* 233 CUM~UTEH·u~l£~rED NW~£RICAL M£THCCS
I~S i~e* 303 CUM~UTER A~U PROGKAMMING SYSTEMS
IeS 1~1* 233 UIGITAL CUMPUTER URGANIlArIC~ ANC PROGRA~~l~G

4u~~2odu3 JER~Y CIGAHS
NU hl~~lHlO CCUHSlS IAKtN ytT

4LJ()2ddC2 J(!HF\ t C~TtH
NU hl~UIHln CCLHSlS TAKtN ytr
If H L
4u~o2o~Ol RuO PAS~GUl
res ~lU* 303 PHC~LEM SLLVI~G
Ies 4ue* 303 CUM~uTING LAN~UAGlS
Ies j~5* 303 INFUR~AlluN STRUCTUHfS ANu PHLCESSES
IC~ J42* 303 INTHOGUCIIU~ TO SEMIorICS
Ies j~~* 303 INTHOUUCTlu~ TO CY8lR~ErlCS
MAlh ~3~* 303 INThOOUCfIUN TO SET-THEORETIC CC~CEFTS
Ies J10* 233 CUMPUIER·uHIE~TEO ~U~EHICAL METHCLS
ICS ~'6* 303 CUMPUTlk ~NO PROGHAMMING SYSTtMS
40~e2Hd04 CHUCK CLVlHALL
yes Q10' 303 PHO~LlM SLLVI~G
lOS 400* 3u3 CUM~UIING LA~GUAGES
ICS J~~* 30] INFUR~ATIGN STRUCTUHES A~D PHLCESSES
ICS J42* 303 INTkOCUCJ1UN TO SEMIOTICS
IcS j~~* 303 INTHOCUCTIUN 10 CyaEH~ETICS
MAlh ~3~* 303 INTHOLUCTI0N 10 SET-THEURETIC CO~CEpTs
ICS JIO* 233 CU~~UTEH-UHIE~TEO NUME~lCAL METHCCS
Ies ~~6* 303 CUMPUTER ANU PROGHAMMI~G SYS'E~S
ICS 151* 233 DIGITAL CUMPlTER ORGANIZAIICN ANC PROGNA~~lNG
40~c2~d01 BARRY rULSUM
IcS 410* 303 PHO~LEM SULVING
I~S que* 303 CUMPUTING LANGUAGES
ICS J~5. 303 INFUHMAIIUN STR~CTUkES A~U PHLCESSES
ICS Jq2* 303 I~THOCUCTIUN 10 SEMIOTICS
los 325* 303 INThOUUCTIUN TO CYBERNETICS
MArh ~3~* 303 INTROUUCTIU~ TO SlT-THEORErIC CONCEPTS
lOS 310* 233 COM~UIER·LHIENTEO NUMERICAL MtTHOCS
I~S ~~b* 303 CUMPUTEk AND PROGHAM~ING SYS'E~S
ICS 1~1. 233 OlGITAL COMPUTER ORGANIZArION A~C PROGRA~~l~G
40~62~d06 BILL bRLw~
I~S 410* 303 PHU~LEM SGLVING
Ies 4ut* 303 COMPUTr~G LA~GUAGES
Ies J~5* 303 I~FUR~ATIGN STRucTURES A~U PHLCESSES
ICS jq2* 303 l~lhOouCTIU~ Tn SEMlnrICS.
ICS JIO. 233 COMPUTtH·OHIE~TED NUMERIC~L MlTHO~S
ILS ~~6* 303 CUMPUTlR AND PROGRAMMING SYSTEMS
I'd nAY SPLJTNICK
ALL ~tWLJlkE~EF\TS ~ATISfllD

7 .. 42

40~C~bd03 J~~kY C!uAkS
ILS ~lU* 303 PkGbL[M SULVI~G

IC~ 4Ut* 3U3 CUMfuTl~G LANbUAGlS
IC~ j~~* 303 l~f~H~AlluN SIRUCIURFS A~u PHLCl5SES
IC!:i j~.!* 3("3 lNTrcCOuCT lUI''' TO Stlltlll! Ies
IC~ J~~* 303 l~THOLUCTl~N Tn CY~lHNETICS
MAI~ ~j~* 303 INlkOUULTIU~ TO StT-THEOHtIIC CC~CEFrs
I C S j l(H 2 3 3 C LJ ~ I" u 11:.. 11 • L t'\ 1 E I~ fE lJ to, l.J M t ~ I CAL ~ t. The C S
lC~ ~~b* 3UJ LU~~Ul~R ~~u ~RLGkA~~lN~ SYSllN~

IC~ l~l* 233 ~lbl1AL CuMPL1ER URljANIIAflUN A~C PRCG~_~~l~G
4u~c2cd~2 JQh~ FU~TlH
Ies ~lU* 303 PkO~LEM SuLVING
ILS qUo* 3u3 CU~~Ullt\lj LANGUAGlS
lC!:i j~~* 303 IhtLH~ATluN STRUCTUHFS ANU PHLCI:..S~ES
ICS jq2* 303 I~Tkouucrl~N TO SEMlorICS
IL~ J25* 303 INTkOCUCT1UN Tn CYBERNETICS
MAT~ ~j~* 303 INTHO~UCTlu~ TO SlT-THEORlIIC CCto,CEPTs
Ies j10* 233 CUMPUTI:..H-UHIENTEO Nl.JMERICAL MlT~CCS
ICS ~~b. 303 CUMPUTE~ A~U ~ROGkA~MING ~YSllMS
I~S 151* 233 CIGlfAL CuMPlt[R URGA~llAJIC~ ANC PROGRA~~lNG

:SJLP
Ei\C-Ut-UPUATE
GUOl-tHE.

7-43

VIII. SYNTAX-DIRECTED PARSING

8.1 INTRODUCTION

Experiments with the GTL list processing facility and the GTL string

processing system indicate that GTL may often serve as a convenient basis

for writing artificial language translators, As a result of these experi-

ments, several extensions of GTL have been implemented with the goal of

achieving a general purpose translator-writing system within the framework

of GTL. This section describes the extension of GTL in this direction.

The GTL parsing facility is intended to be used primarily as a top-

down no-backtracking parser (Reference 5), Syntax rules are specified

through BNF-like declarations called "SYMBOL FORMAT" declarations. Matching

of sequences of symbol strings is intended to be accomplished primarily

through the use of the symbol table provided by the GTL system for LISP

atomic symbo Is. It is suggested that, in order to make effective use of

the constructs described, the user be familiar with Sections V, VI, and IX.

Also, the plex processing system described in Section VII has been found

to be helpful in writing translators.

In order to illustrate the general form and meaning of a GTL syntax

declaration, consider the following simple BNF definition of a simplified

arithmetic expression.

(ae) , '- (p) (sec)

(sec) , '- (op) (p) (sec) (empty) , ,-

(op) , '- + I -
(p) . ,- A B I C I (ae))

Lower case identifiers represent nonterminal symbols, upper case identifiers

and special characters represent terminal symbols, and the vertical bar I
means "or."

8-1

The correspondence between BNF and GTL syntax rules is indicated in

the table given below.

TERM

(nonterm)

(empty)

GTL Equivalent

ELSE

"TERM"

*NONl'ERM

NIL

Meaning

"or"

example of terminal symbol

example of nonterminal symbol

the "empty" string of symbols

The SYMBOL FORMAT declarations corresponding to the BNF definition given

above are:

SYMBOL FORMAT AE; [*P, *SEC]

SYMBOL FORMAT SEC; [*OP, *P, *SEC ELSE NIL]

SYMBOL FORMAT OP; ["+" ELSE It_"]

SYMBOL FORMAT P;

["A" ELSE liB" ELSE nC" ELSE "(", *AE, ")"]

Note that two or more components of a syntax rule are separated by commas.

The identifiers corresponding to the BNF nonterminal symbols are called

SYMBOL FORMAT identifiers (hereafter, SF identifiers); the expression con­

tained in brackets, corresponding to the right-hand side of a BNF

definition, is called a SYMBOL FORMAT expression (hereafter, SF expression) .

(In an actual program, all of the SF identifiers appearing in an SF expres­

sion must be previously defined; this is done by reordering the sequence

of declarations, or by declaring an SF identifier FORWARD, as defined in

Subsection 8.3.)

In GTL, recursive syntax defil:'J.itions, such as that given for SEC, can

often be replaced by equivalent "iterative" definitions. For example,

SEC may be declared as

SYMBOL FORMAT SEC; [;'(OP, ;\-P, RETURN ELSE NIL]

In an SF expression, the word RETURN effectively returns control of the

scanning sequence to the beginning of the SF expression; thus, SEC could

scan an indefinite number of operator (OP) - primary (p) pairs.

An SF expression may contain subexpressions; an SF identifier may

be replaced by its definition. For example, AE, SEC, and OP, as defined

above, may be combined into one declaration:

SYMBOL FORMAT AE;

[~~p, [["+" ELSE "_"], ~'(P, RETURN ELSE NIL]]
• I

As indicated by the arrow in the above example, the word RETURN returns

control to the beginning of the innermost subexpression in which it

appears. The phrase RETURN START may be used in an SF expression to return

control to the outermost level of an SF expression. For example, the

following SF declaration could be used to scan an SF expression (as defined

up to this point):

SYMBOL FORMAT SFX;

[[[*TERM ELSE "[", *SFX ELSE "*", ~~SF ID] ,

[",", RETURN START ELSE NIL] ELSE

"RETURW', ["START" ELSE NIL]]

["ELSE", RETURN START ELSE "]"]]

The undefined SF identifiers TERM and SFID are understood to match terminal

symbols and SF identifiers, respectively.

8-3

All of the quoted terminal symbols appearing in SF expressions are

LISP atomic symbols. The atomic symbol itself is not directly compared

with the current input symbol; instead, a syntactic class number which is

assigned to the atomic symbol by the programmer is compared with the

syntactic class of the current input symbol. A syntactic class number may

be specified directly in an SF expression. For example, [2,3,4J will

match a sequence of three input. symbols whose class numbers are 2, 3,

and 4. This indirection allows the programmer to specify terminal symbols

other than atomic symbols, such as numbers and tlcomposite" symbols

(e.g., quoted strings). Various mt;:ans of assigning syntactic class

numbers (both at compile time and run time) are described in paragraph 8.5.1.

The class of the current input symbol is always contained in a REAL or

INTEGER variable declared by the programmer. There is a separate special

declaration which tells the GTL compiler that a particular variable is

intended to be used as a class variable (paragraph 8.5.2). When a syntactic

class number is successfully matched with the class of the current input

symbol, the class variablt;: must be reset to' the class of the next input

symbol. This is done automatically through a procedure supplied to the

system by the programmer. Whenever a syntactic class match is made, the

system calls on this procedure. It is the responsibility of the programmer

to ensure that the procedure will obtain the next input symbol and assign

its syntactic class number to the class variable. In the remainder of

this manual, this procedure will be referred to as the "getnext" procedure.

A special declaration which tells the GTL compiler the name of the

intended getnext procedure must be supplied by the programmer (paragraph 8.5.3),

8-4

The SYMBOL FORMAT declaration is effectively equivalent to the

declaration of a BOOLEAN procedure. The SF identifier, which may have

associated formal parameters, is analogous to a BOOLEAN procedure iden­

tifier, and may be used as a Boolean primary in any GTL Boolean expression.

The SF expression associated with the SF identifier is analogous to the

procedure body of a BOOLEAN procedure declaration. There is also a

"block" form of the declaration, consisting of the word BEGIN followed by

a series of declarations, the SF expression and END. For example, the

previously defined SF identifier AE could be declared by

SYMBOL FORMAT AE;

BEGIN LABEL L;

[*P, L: [["+" El,.SE "-"], ~\"P, GO TO L ELSE NIL]]

END

Note that this example also illustrates the use of labels and statements

in SF expressions.

The "semantics" of the language defined by the SF expression is

determined by the inclusion of statements in the SF expression. These

statements may appear anywhere in the SF expression, and each statement

must be followed by a semicolon (except before an "ELSE"). For example,

[IIPRINT", ["A", PRINT A ELSE "B", PRINT B;]]

It is often convenient to execute a sequence of statements between a syntax

class match and the call on the getnext procedure. This can be done by

using the delayed getnext construct: If a colon is placed immediately after

a terminal component of an SF expression then the calIon the getnext

procedure is delayed until another (nonterminal or terminal) matching

component, or an ELSE,], [, NIL, RETURN or label is encountered. For

example, if 2 is the syntactic class of a number which is contained in

the variable INREAL, and T is a REAL variable, then

[2: T :=INREAL; "+", 2: T :=T + INREAL;

PRINT #SUM = #T;]

will match two numbers separated by a + and print their sum.

As an example of some of the features described so far, a set of

SYMBOL FORMAT declarations which will transform an arithmetic expression

into a suffix Polish string is presented below. It is assumed that syn-

tactic class numbers of 2 and 3 have been chosen for variables and

numbers, respectively. To make the SF expressions more readable, the

following define declaration is used:

DEFINE VARIABLE c 2#, NUMBER = 3#

It is also assumed that the class variable and getnext procedure dec 1ara-

tions, such as those given below, have been made.

REAL FIELD CDRF [33:15J;

REAL CLASS;

PROCEDURE GETNEX!;

CLASS:=

CASE READCON(FALSE) OF

BEGIN

1; COMMENT END OF FILE CLASS;

3; COMMENT ILLEGAL NUMBER CLASS;

3; COMMENT NUMBER CLASS;

CDRF(INSYM); COMMENT ATOMIC SYMBOL CLASSES;

0; COMMENT MULTI-CHARACTER STRING CLASS;

END

8-6

The READCON function is described in paragraph 9.4.4. The expression

CDRF(INSYM)

yields the last 15 bits (the CDR field) of the contents of the atomic

symbol contained in INSYM (see paragraph 7.2.4). It is assumed here that

the CDR fields of the atomic symbols representing variables in the arith­

metic expressions to be scanned have been preset to the value two.

Although specific class number assignments have been indicated for this

example, it should be noted that the declarations given below contain no

direct or explicit reference to a class number. In two of the declara­

tions, AEXP and TERM, the class number of an atomic symbol is indirectly

referenced in an arithmetic expression by preceding the quoted atomic

symbol by an =.

SYMBOL FORMAT AEXP; FORWARD;

SYMBOL FORMAT PRIMARY;

[VARIABLE: PRIN INSYM SPACE ELSE

NUMBER: PRIN INREAL SPACE ELSE

"(", ~"'AEXP, ")"J;

SYMBOL FORMAT FACTOR;

[i(PRIMARY, [";'1"', 7(PRIMARY, PRIN iff""" iF; RETURN ELSE NILJJ;

SYMBOL FORMAT TERM;

BEGIN BOOLEAN TIMES;

END;

["'<"FACTOR, ["®";'<" /": TIMES ::::: CLASS "" (""II®");

;'(FACTOR, PRIN IF TIMES THEN iff® if ELSE 4F / iF;

RETURN ELSE NILJJ

8-7

SYMBOL FORMAT AEXPj

BEGIN BOOLEAN MINUS;

[*TERM, ["+" * " ... ": MINUS := CLASS = (="_");

*TERM, PRIN IF MINUS THEN #- # ELSE #+ #;

RETURN ELSE NIL]]

END

~'(

The composite terminal symbols, "f/!!' *"/" in TERM and "+" * "_" in AEXP ,

allow a match on either one of the atomic symbols (see paragraph 8.2.1).

Also, since AEXP and PRIMARY call on each other indirectly, it was

necessary to declare one of these SF identifiers FORWARD. If the input

string consists of

A + (B - C) / D + E * F

then a call on AEXP, followed by a TERPRI, will produce the following

output:

ABC - D / + E F * +

In order to give a better idea of how the GTL parsing declarations

actually work, AEXP and PRIMARY are redefined in paragraph 8.7 as

BOOLEAN procedures, and are a~so used in a program in the EXAMPLES section.

In the remaining paragraphs of this seetion, SYMBOL FORMAT dec lara-

tions are used to define the syntax and semantics of the entire GTL

syntax-directed parsing system.

* The arithmetic scanner liated above does not handle unary operators.
See the program in Subsection 8.8 for a complete example of arithmetic
expression parsing.

8-8

8.2 SYMBOL FORMAT EXPRESSIONS

8.2.1 Terminal Symbols

A simple terminal symbol matching component in an SF expression is

either a number or a quoted atomic symbol. The CDR field of the quoted

atomic symbol will contain a syntactic class number, which is either pre­

set by the programmer (see paragraph 8.5.1) or made by default by the

GTL compiler. The rule by which a default class assignment is made is

described below.

A "composite" terminal symbol matching component may be formed with

two or more class numbers and/or quoted atomic symbols separated by

asterisks or equal signs. The~" means that the next class number must be

strictly greater than the previous class number; and the = implies strict

equality. In order for a match to occur with the composite terminal sym­

bol component, the value of the class variable must be greater than or

equal to the first member and less than or equal to the last member of

the sequence of class numbers or quoted atomic symbols. If default assign­

ment occurs after an asterisk, the value assigned will be one greater than

the previous class number. For example, if the CDR fields of + and - have

not been previously assigned,

2 :::: "+" ~" "_"

will assign the class number 2 and 3 to "+" and "_", respectively, and a

match will occur if the value of the class variable is a 2 or a 3.

As indicated in Subsection 8.1, the class number assigned to an atomic

symbol used as a terminal matching component may be referenced indirectly

in an arithmetic expression by preceding the quoted atomic symbol by an =.

If no syntactic class assignment has been made previous to the occurrence

8-9

of the atomic symbol in an arithmetic expression context, a default class

assignment will be made.

There is also an indirect terminal symbol matching component, which

consists of a period followed by a REAL simple variable identifier. The

value of the variable is compared with the value of the class number of

the current input symbol. For example,

SYMBOL FORMAT LST. (X); VALUE X; REAL X;

[.X, [",", RETURN START ELSE NIL]]

The SYMBOL FORMAT declaration given below indicates how the GTL com­

piler scans terminal symbol components of SF expressions and makes default

class assignments. For the purpose of this declaration, it is assumed

that LITNO, ATOMICSYMBOL. REALID are previously defined identifiers

representing the syntactic class numbers assigned to unsigned integers,

LISP atomic symbols, and REAL variable identifiers, respectively. The

values of the constants and atomic symbols are assumed to be contained in

the variables INREAL and INSYM, respectively. Also, CLASS is a REAL

variable used as the class variable, SFC is a real variable which is used

to control the default class assignment, and FLAG is an error message

procedure.

8-10

SYMBOL FORMAT TERMINAL;

BEGIN

BOOLEAN AST;

REAL FIELD CDRF[33:15];

REAL LAST, T;

LABEL L;

[AST :::: TRUE; LAST ::::: 0;

L: [LITNO: SFC:= INREAL ELSE

""" , ATOMICSYMBOL:

IF T ::;: CDRF (INSYM)

BEGIN

o THEN

IF AST THEN SFC := SFC + 1;

CDRF (INSYM) : = SFC;

END

PRINT 4fDCA if SFC

END

ELSE

SFC ::::: T; """ ELSE

".", REALm],

IF SFC < LAST THEN FLAG(670);

LAST := SFC;

[''*" * "=": AST := CLASS::: (:;:"*"); GO TO L ELSE

NIL]]

As can be seen from this declaration, every default class assignment will

cause "DCA" followed by the class number to be printed during the com­

pilation. The variable SFC is set to zero at the beginning of the

compilation.

8-11

As indicated in Subsection 8.1, a call on the getnext procedure normally

occurs immediately after a match. ~he calIon the getnext procedure may

be delayed for the purpose of executing a series of statements which may

operate on additional information associated with the current input

symbol by placing a colon immediately after the terminal symbol matching

component. This construct may also be used in conjunction with the error

message option described in paragraph B.2.B.

8.2.2 Nonterminal Symbols

As defined in Subsection B.l, a nonterminal symbol in an SF expression is

an asterisk followed by an SF identifier. In addition, the asterisk may

be followed by any Boolean expression; a syntax match will occur if and

only if the value of the Boolean expression is TRUE. For example,

[* CLASS ~ 2 AND CLAS S ~ 3, GETNEXT;]

has the same effect as

[2 = "+" * "_"]

(if GETNEXT is the name of the getnext procedure).

8.2.3 !ill:.

NIL is the matching component which matches the empty string of

symbols, and is used primarily to indicate that an SF expression can be

satisfied even if the preceding alternatives are not. It is usually

introduced when transforming a non-deterministic syntax rule into a form

acceptable to a no-backtracking parser (p. 90, Reference 5). For example,

8-12

(factor) (primary) ~'< (factor)

is transformed into

(factor) ::= (primary) (remfact)

(remfact) ""- (factor) I (empty)

which is combined into the SF declaration

SYMBOL FORMAT FACTOR;

[?'<PRlMARY, ["?';-II, -"'FACTOR ELSE NIL]] ;

(primary)

NIL may also appear among a series of statements folloWing a delayed

getnext for the purpose of forcing the callan the getnext procedure.

8.2.4 Statements

Any GTL statement may be included in an SF expression. The statement

must be followed by a semicolon except before an ELSE. The use of iden­

tifiers in statements which are part of SYMBOL FORMAT declarations are

subject to the same restrictions as those in procedure declarations. A

sequence of one or more statements may be used in place of NIL to match

the empty string of symbols; for example,

["RETURN", ["START", BV:= TRUE ELSE BV := FALSE]]

8.2.5 Labels

Labels may appear anywhere in the SF expression. Each label must be

followed by a colon. An example of the use of a label for simplifying

an SF expression is given in paragraph 802.9.

8-13

8.2.6 RETURN

The RETURN part of an SF expression causes transfer of control to

the beginning of an SF expression, as described in Subsection 8.1. An optional

UNTIL part allows the programmer to limit the number of possible iterations;

for example,

["C", J ::::: 0; [["Au ELSE "D"], RETURN UNTIL (J: = J + 1) 10 ELSE "R"]]

The syntax of the RETURN part is defined below.

SYMBOL FORMAT RETRN;

[I1RETURN", ["START" ELSE NIL], ["UNTIL", '>"BEXP ELSE NIL]]

BEXP represents an SF identifier which defines the syntax of Boolean

expressions. When the UNTIL option is used in the RETURN part of the SF

expression, transfer of control will continue until the value of the

Boolean expression is TRUE.

8.2.7 The SWITCH Option

When the first components of a series of alternative rules in an

SF expression are all consecutively numbered terminal components, and when

the number of alternative rules is relatively large, the scanning speed can

be substantially increased by using the SWITCH option. The SWITCH option

is effected by placing the word SWITCH immediately after the [in the SF

expression. The code generated is similar to that produced by the declara­

tion of an ALGOL switch although the meaning of the remainder of the SF

expression remains unchanged. For example, if LABELID, REALID, and INTID

represent class numbers of label and real and integer variable identifiers,

respectively, then

8-14

SYMBOL FORMAT STMT;

[SWITCH

LABELID: LABELR; ":", RETURN ELSE

REALID~'~INTID: VARIABLE (FS) ELSE

"WHILE", WHILESTMT ELSE

liDO", DOSTMT ELSE

"fOR", FORSTMT ELSE

"READ", READSTMl' ELSE

''WRITE'', WRITESTMT]

indicates how a subset of labeled ALGOL statements might be scanned. Any

resemblance between STMT and the STMT procedure of the B 5500 ALGOL com­

piler is not coincidental.

8.2.8 The Error Message Option

If the delayed getnext option (paragraph 8.2.1) is used, the colon

following the terminal component may be followed by a number or by a state­

ment preceded by an asterisk for the purpose of generating an error message

if the terminal symbol is not matched. If a number is given, there will be

an implicit calIon an error message procedure supplied by the programmer

with that number as its argument. For example, given the procedure

PROCEDURE ERR(X); VALUE X; REAL X;

PRINT #ERROR NUMBER # X

the SF expressions

["(", ~\-AEXP, ")": 104;J

["(", "'~AEXP, ")": ~\-PRINT #MISSING)11=;J

8-15

would generate the following error messages if the ")" were missing from

the input text:

ERROR NUMBER 104

MISSING)

8.2.9 Syntax and Semantics of SYMBOL FORMAT Expressions

The complete syntax of SF expressions is defined by the following SF

declarations:

SYMBOL FORMAT SFEXP; ["[", *SFXP];

SYMBOL FORMAT SFXP; [["SWITCH" ELSE NIL], ~'<'SFX];

SYMBOL FORMAT SFX;

BEGIN

LABEL L;

[[*TERMINAL , ["_" . , [LITNO ELSE "*", *STMT ELSE *STMT] ,

";", RETURN START ELSE

GO TO L] ELSE

["~';", *BEXP ELSE "NIL" ELSE "[", *SFXP],

L: [",", RETURN START ELSE NIL] ELSE

END

["RETURN", ["START" ELSE NIL],

["UNTIL", *BEXP ELSE NIL] ELSE

LABELID, ":", RETURN START ELSE

*STMT] , [";", RETURN START ELSE NIL],

["ELSE", RETURN START ELSE"]"]]

The SF identifiers TERMINAL, BEXP, and STMT are intended to match terminal

components (paragraph 8.2.1), Boolean expressions and statements, respectively.

The identifier LITNO represents the class number of an unsigned integer,

and LABELID represents the class number of label identifiers.

The value assigned to an SF identifier is TRUE if one of the alter-

native rules in the SF expressions is satisfied, and is FALSE otherwise.

The actual REAL equivalent of these Boolean values can be one of three

values as indicated in the table below.

Value of SF identifier Equivalent Value

TRUE Boolean (1)

FALSE Boolean (0)

FALSE Boolean (2)

Meaning

syntax OK

syntax not satisfied;
getnext procedure not called

syntax not satisfied;
getnext procedure called

As an example of how the two different "FALSE" values can arise, consider

the declaration of the SF identifier TERMINAL given in paragraph 8 0201.

If the class number of the current input symbol does not match the class

numbers assigned to LITNO, quote, or period, then the value of TERMINAL

will be BOOLEAN (0) (FALSE); however, if period is matched and REALID is

not matched then the value of TERMINAL will be BOOLEAN (2) (also FALSE),

since a callan the getnext procedure occurred after matching the period.

The two different FALSE values of an SF identifier can make a difference

in the evaluation of an SF expression in which it appears. For example,

referring to the declaration of SFX given above, if the value of TERMINAL

is BOOLEAN (0), then the getnext procedure has not been called, and it

makes sense to test the next two terminal components Ck and [).

However, if the value of TERMINAL is BOOLEAN (2), the getnext proced-

ure has been called, and since the GTL system provides no backtracking

facility, the current input symbol cannot be restored to its previous

8-17

value, the remaining alternatives are not tested and the value of SFX will

be BOOLEAN (2).

In general, the following rule is used in testing the value of a non-

terminal component (an asterisk followed by a Boolean expression) in an

SF expression: If the value of the Boolean expression is TRUE (the REAL

equivalent is an odd number), the next component in the rule is tested.

If all of the components of a rule are satisfied, then the value of the

associated SF identifier will be BOOLEAN (1) (TRUE). If the REAL value

of the Boolean expression is zero and it is the first component of a rule,

then the first component of the next alternative rule following the ELSE

will be tested; if no alternative rules remain, then the value of the

associated SF identifier will be BOOLEAN (0) (since the getnext procedure

was not called.) In all other cases, including the failure of a ter-

minal component which is not the first component of a rule, the evalua-

tion of the SF expression is immediately halted, and the value of the

associated SF identifier will be set to BOOLEAN (2).

8.3 SYMBOL FORMAT DECLARATIONS

The syntaX of SYMBOL FORMAT declarations is defined by the following

SYMBOL FORMAT declaration:

SYMBOL FORMAT SFDECLARATION;

["SYMBOL" "FORMAT" *IDENTIFIER , , ,

[*FORMALPARAPART ELSE NIL], ";",

["BEGIN",*DECLARATIONS, *SFEXP, "END" ELSE *SFEXP]]

where IDENTIFIER matches the SF identifier to be declared, FORMALPARAPART

scans the formal parameter part of the declaration, such as might occur in

8-18

a BOOLEAN procedure declaration, and DECLARATIONS scans a series of GTL

declarations, separated by semicolons. SFEXP is defined in paragraph 8.2.9

above.

In addition, SYMBOL FORMAT formal parameter declarations are allowed;

for example,

PROCEDURE TEST(X); SYMBOL FORMAT X;

PRINT IF X THEN #SYNTAX OK:fF ELSE #SYNTAX ERROR#;

SYMBOL FORMAT LST(Y); SYMBOL FORMAT Y;

[",Y, ["; ", RETURN START ELSE NIL]]

TEST(SFD) ;

IF LST(SFD) THEN •.••

The actual parameter corresponding to a SYMBOL FORMAT formal parameter

must be a SYMBOL FORMAT identifier which itself has no arguments (there

are no formal parameters specified in the SYMBOL FORMAT declaration).

SYMBOL FORMAT forward declarations have the same meaning and are

made in the same form as forward procedure declarations (paragraph 9-106,

Reference 4); for example,

SYMBOL FORMAT SFD; FORWARD;

SYMBOL FORMAT LST(Y); SYMBOL FORMAT Y; FORWARD;

8.4 SYMBOL FORMAT STATEMENTS

An SF expression may be used as a statement if a colon followed by a

label is placed immediately after the last]; for example,

["[", ;'<SFXP, ": 11, LABELID] : SYNTAXERROR

If a syntax error occurs during the execution of the SF expression, a

branch is made to the specified local label; otherwise, ,control continues in

sequence.

8.5 SYMBOL FORMAT AUXILIARY DECLARATIONS

All of the SYMBOL FORMAT auxiliary declarations must occur in the

outermost block of the program, and, with the exception of the trace

declaration (paragraph 8.5.5), must precede the declarations of SF iden­

tifiers.

8.5.1 Syntactic Class Declaration

The syntactic class declaration provides a convenient means of

assigning class numbers to the CDR fields of quoted atomic symbols, and to

previously undefined ident;i.f:i,.ers. Its effect is similar to the default

class assignment described in paragraph 8.2.1. The declaration has the

form

SYMBOL FORMAT * class dec

where classdec represents a sequence of constants, quoted atomic symbols,

and previously undefined identifiers. The syntax of classdec :i,.s defined

as follows:

8-20

SYMBOL FORMAT CLASSDEC;

BEGIN

REAL FIELD CDRF [33:15J;

REAL T, FIRST,LAST;

BOOLEAN FST, AST;

LABEL L;

[AST : =; FST ::::: TRUE;

L: [LITNO: SFC ::::: INREAL ELSE

END

""" , ATOMICSYMBOL:

IF T ::;:: CDru; (INSYM) == 0 THEN

BEGIN

ELSE

IF AST THEN SFC ::=0 SFC + 1;

CDRF(INSYM) :;;::;; SFC

END

SFG ::::0; T; ""11 ELSE

UNDEFINEDID: IF .i\ST THEN SFC :== SFC +1;

ENTER (DEFINEDID, SFC)],

IF FST THEN

BEGIN FST ::;: FALSE; FIRST ;::: LAST := SFC END

ELSE

IF SFC < LAST THEN FLAG(670);

SFC :'" LAST;

["~'(" ~.("::::"; AST ;:::: CLASS == (::::"~\'''); GO TO L ELSE

NIL],

PRINT #RANGE # FIRST # TO # LAST]

8-21

The identifiers LITNO, ATOMICSYMBOL, INREAL,J:NSYM, and SFC have the same

meanings as defined for the SF declaration given in paragraph 8.2.1.

UNDEFINEDID is the class number aSl'.ligned to a previously undefined iden­

tifier, and ENTER is assumed to be the name of a procedure which assigns

the class 'number DEFINEDID to the current symbol and places SFC in

additional info, linked through the CDR field. Note that the range of

syntactic class assignments is printed at the end of the declaration.

The quantity placed in the CDR field of the atomic symbol is the

number itself, and not a link to an atom representing the class number

(i.e., the class number is not represented as an atomic number). Thus, in

a GTL parsing program, the CDR field of an atomic symbol may contain two

different data types: a class number and a reference value. These two

data types are usually distinguished by their magnitude. One method of

obtaining the REAL value of the CDR field contents is the use of the CTSM

transfer function (see paragraph 6.15.1).

CTSM(sexp).[33:15]

where sexp represents a SYMBOL expression whose value should be an atomic

symbol. Another, sometimes more convenient, method is the REAL valued

field designator (see paragraph 7.2.2); for example, given the field dec1aratiol

REAL FIELD CDRF [33:15J

the value of the field designator

CDRF(sexp)

will be the REAL value contents of the CDR field.

If it is assumed that the CDR field of an atomic symbol will not

be used to reference an atom, then the distinction between the two data

types can be easily made. The addresses 0 to 63 are reserved for the 64

single character atoms, so that the address of a quoted multi-character

atomic symbol (created at compile time) will be greater than 63. Each

multi-character atomic symbol requires two or more words. Thus, a safe

lower bound for the maximum class number is twice the number of atomic

symbols appearing in the program plus 63. In most cases, the range of

class values will be found to be adequate; if not, the address of the

first available record may be reset to one greater than the maximum class

number by means of the assignment statement described in paragraph 7.4.4.

The following example illustrates a possible method of class variable

assignment in the getnext procedure. The class variable is CLASS, and

the SYMBOL variable INFO is understood to be a reference to additional

information (including the class number).

IF CLASS: = CDRF (INSYM) ::::; CLASSMAX THEN

INFO := NIL

ELSE

CLASS ::= CLASSF (INFO::= ATSM(CLASS»

where ATSM is the Arithmetic 10 §y~ol transfer function and CLASSF is a

field identifier referencing a predefined REAL-valued class field

(Section VII), and CLASSMAX is a defined identifier representing the

the maximum class number. If automatic storage reclamation is used, then

the maximum class number is limited to 63, since the LISP garbage collector

expects that all reference-valued LISP fields will contain an actual

8-23

reference value. In most translator applications, however, atuomatic

storage reclamation has been found to be unnecessary, even in quite large

cases.

8.5.2 Class Variable Declaration

The programmer indicates to the GTL compiler which variable is to be

used as the class variable by the following declaration:

SYMBOL FORMAT -k class variable

For example,

REAL CLASS; SYMBOL FORMAT ~'< CLASS

The class variable must be of type REAL or INTEGER and must have been

previously declared.

805.3 Getnext Procedure Declaration

The programmer indicates to the GTL compiler the name of the procedure

to be used as the getnext procedure by the folloWing declaration:

SYMBOL FORMAT ~'< getnext procedure

For example, using the procedure declared in Subsection 8.1,

SYMBOL FORMAT ~'< GETNEXT

The getnext procedure must have been previously declared and must have

no formal parameters.

8-24

8.5.4 Error Procedure

The programmer indicates to the CTL compiler the name of the procedure

to be used to generate error messages with the following declaration:

SYMBOL FORMAT .. '- error procedure

For example, using the procedure declared in paragraph 8.2.8,

SYMBOL FORMAT ~.(ERR

The error message procedure must have been previously declared and must

have one formal parameter of type REAL called by value.

8.5.5 The Trace Option

The sequence of SF identifiers executed during a scan, and their REAL

equivalent values, can be traced if an optional Boolean trace variable

supplied by the programmer is set to TRUE; the name of the trace variable

may be specified to the CTL compiler by the declaration

SYMBOL FORMAT ~.(trace variab Ie

For example,

BOOLEAN TRACE; SYMBOL FORMAT * TRACE

If any SF declarations precede the trace declaration, they will not be

traced. It is recommended that the trace option be used for debugging or

experimental purposes only, due to the additional code generated.

8-25

8.6 RECOMMENDED PRACTICES

The association of additional information with an atomic symbol,

such as run-time class number assignment, can usually be most easily

accomplished with the constructs provided by the GTL plex processing

system (Section VII).

It is important to remember that the class variable should contain

the class number of the current input symbol before an SF expression is

executed. This usually means that the getnext procedure should be

executed once at the beginning of the program before executing any SF

expressions.

It should be noted from paragraph 8.~.1 that, by using defined iden­

tifiers representing syntactic class numbers, instead of making explicit

reference to the numbers themselves, it would be possible to insert

additional syntactic categories without the necessity of making any com­

pensating changes in the remainder of the program. Also, some attention

should be given to the ordering of the syntax classes so as to make optimal

use of the SWITCH option described in paragraph 8.2.7.

When constructing the getnext procedure, it should be noted that every

GTL read function, with the exception of the SCAN function, will ordinarily

read a signed number as one item. It is often desirable to be able to read

a number and its associated sign (a + or - immediately preceding the

number) separate, as for example, would be required when parsing arithmetic

expressions. To do so requires the use of the appropriate form of the

INPUT statement containing the sign separation option (see paragraph 9.5.4).

8-26

8.7 BOOLEAN PROCEDURE EQUIVALENT OF SYMBOL FORMAT DECLARATION

The following BOOLEAN procedure declarations are (effectively) equiva­

lent to the SYMBOL FORMAT declarations of AEXP and PRIMARY given in

Subsection 8.1

BOOLEAN PROCEDURE AEXP;

BEGIN

LABEL LR, LFN, EXIT;
BOOLEAN MINUS;

IF TERM THAN

BEGIN

LR: IF CLASS;;::: (:::;"+11) AND CLASS::;; (:;:"_") THEN

END

ELSE

BEGIN

MINUS := CLASS::; (="-");
GETNEXT;

IF TERM TEEN

BEGIN

ELSE

END;

PRIN IF MINUS THEN 4/:- 4F ELSE 1F+ 4/:;

GO TO LR

END

GO TO LFN;

AEXP := TRUE;

GO TO EXIT;

LFN: AEXP := BOOLEAN(2);

EXIT:

END OF AEXP

8-27

BOOLEAN PROCED~E PRIMARY;

BEGIN

LABEL LFN, EXIT;

IF CLASS .~ VARIABLE THEN

BEGIN

ELSE

PRIN INSYM SPACE; GETNEXT

END

IF CLAS S = NlJMBER THEN

BEGIN

ELSE

PRIN INREAL SPACE; GET NEXT

END

IF CLASS :;: (="(") THEN

BEGIN

ELSE

GETNEXT;

IF AEXP THEN

ELSE

END

BEGIN

IF CLASS = (0;::")") THEN

GETNEXT

ELSE

GO TO LFN

GO TO LFN

AEXP := FALSE; GO TO EXIT

END;

AEXP := TRUE; GO TO EXIT;

LFN: AEXP := BOOLEAN(2);

EXIT:

END OF PRIMARY

8 .. 28

s.s EXAMPLE PROGRAM

The program listed on the following pages was designed to illustrate

the use of most of the constructs described in this section. The program

accepts ALGOL-like function definitions from a remote terminal and com­

piles them into a simple interpreter language. After compilation, a

function may then be evaluated to produce its graph on the remote terminal.

Compilation takes place while the function is typed in (line by line); if

a syntax error is detected, the compiler attempts to recover so that

compilation can continue. A simple example of the program's operation is

given at the end of the listing.

It may be of interest to note that the organization of the compiler

resembles that of the B 5500 ALGOL compiler, and that the interpreter

language resembles, in some respects, the B 5500 mach~ne language. In

effect, the compiler is a miniature version of an ALGOL compiler. It

might also be noted that the interpreter itself was implemented wit h the

help of SYMBOL FORMAT declarations.

In order to understand the operation of the program, the programmer

should be familiar with the GTL list processing, record processing, string

processing, and Input-Output systems as described in Sections VI, VII, V,

and IX, respectively.

8-29

HlG!~ ~y~~OL ~Llx;
:f;

1, IMIS t. 1~ J1l~rJE iE.Rt.'lNAl. PLOIT£H Pf.jO\JI1/l~. , ~-... --.. -... ~-...... ~-.. ~-.~.~.~ -..
%

Z iT ACClpl~ ~lGUl-LIKE Fu~trlu~ DEtl~IlrC~~ FRCw A "Ev~lt
I llR~I~AL A~U CU~P'LES T~EM I~TO A Sl~~l~ I~T£~PHEltH

I LA~GUAGl. A~TlR ~UMPllATIO~' A tu~CTIC~ ~AY '~l~ cE
, lVALUATtU Tu PHCU~~l lr~S GHAPH C~ THl ~E~CTE ll~~I~AL. * CUM~ILAJIU~ TAKES ~LAtE ~HILE T~E FU~~TIC~ IS T'Fl~ {h

I 'LI~f BY Ll~E)~ 1~ A 5YN~rAX E~HOH IS ~ETECTEG, I~l
J CUMPILER AfIE~~TS 10 HECCVEH SO THAT ~C~FILArlC~ CA~
1. (';u"'H~Ut:.. IHE SY!'IATl(OF I'HE l~T£kPREIEH LA~G\,.A{iE is \.dVI:.~
~ 1~ ~AC~WS h~HMAL tUR~ OR ijNf, fUL~C~t~ ~y A~ CPJIl~AL

, SlMAN1IC Ui:.~CRIprlU~.
I,

" 1.
i.
'I>
i.
%

IT IS ASSUMtU THAI THt pEkSUt-.: ATTlMPl!NG Ie liS~ tt .. J.S
fhU6RA~ KNO~S ALGLL ~LLL l~UUGH T~ HAvE ~~ITTl~ T~~ Ck
l~HlE PkObMAMS A~htADY, THEkFORE r~E CESC~IPTIC~ l~ F~h
kELATING THl SY~'AX OF THt PRUGRAM TO T~E lisE~. • TC~·I~·
~GTIO~ APPRLACH c~ THE SY~TAX WAS CHO[SE~, SI~CE ThE
I~TlRPRETtR I1SElFIS WNlrTl~ TOP·TC-t01TC~.

IPLLT11:.k CO~MAh~ tA~G~Aijl.
1. Sn~TAX.

~ <PLUT1E~ COMMA~U LA~GUAGE) :l= f~~CTIC~ <FL~~TIL~~lC~
~ I LISI I PLUT <PLOTl£~) I O~LETE I ~lLr
:t, :)[MANIICS.
~ "F~NCTIC~" ALLO~S THE OECLAHATIL~ Cf A~ ALGLL-lIKl
~ PkUtEuu~£ OtCLARATIO~, ~HICH, ~~E~ FASS£O F~HAM£ltH~

I ~ILL kETUR~ VALuES 10 HE PL~TTEL.
~ THE DtSC~IPTION OF THE FUNCtION IS 'HEN TYFEW I~
~ Ll~E dY LI~£. THE CO~PILEH ~ILL TYFE LINE ~~~8I:.NS
~ AS tO~PILAl!ON PROC~OlS.
~ NOlE IHAf fUNC1IO~S ~AY HECuHSE, CALL E.eM (t~E~,
'#. ETC ••••

"LIST" ~iLL LIST ALL FUNCTIUNS ~ECLARED.

"PLUT" PLOTS THE GIVE~ FU~crICN' ~~IC~ ~Ay lhVCLvE
CALLS O~ CTMlR FUNC/IUNS. SEE lHE l~FOR~ATl~~ u~UI:.H

PlelTl:.k.

"DEL£lE~ O~LETES THE fI~ST PHGCEOLR£ THAT T~t "LISI"
CU~MA~O LIS IS. THUS IF T~O OR ~OAE FUNC1IC~S AHt IL
~E DELETEC, ~a£LETE~ ~tLL HAVE TO E~TEREO SEvERAL
TIMES. ThE LISl 15 STRuCT~riEO ~o l~AT THE ~~ST
RECENT DECLAMATION Is FIRS" ~lfH T~E E~O Cf THE
LiST dEING fME ~IRST fUNCfIGN E~TEREO.

8 .. 30

~

~

~

~

~

~

~

"SlUP" CALSES THE PHOGRAM TU GL Te l~C·CF·~Lt.

AFfEH CCMPL~Tl~G A COM~ANO, EXCEPI l~E ~STC~" CL~~~~~I

ThE P"OGkA~ IYPES "~O AHEAG~ TL SIG~IFY T~AI IT IS
HEAUY feN A~Ul~lR CUM~A~U.

IF~~CllL~ O~CLAkAIIL~.
~ SY~lAX.
~ <~UNCIICNOE~> ::= <fU~CTIO~ HEALI~G> <FL~~Tl~~ bL~'>
~ <f~NCIICN htAOI~G> 1:= <FU~~TIO~ IO~~TIFIEh)
I <fURM~L PARA~IER PAH1>
% <F~HMAl PAHAMETER PARr> ::= <E~PTY) I (<FCh~Al

I PAHA~TlH LIST>)
I <.UH~AL PAHAM~TER LIST> 11= <IutNTIFIEH> I
I <F~RMAL PARAMETE~ LIST> , <lCE~TIFlth)
~ <PHUCtUUHE oUDY> &1= dEGIN <UECLARATIONS>
I <CUMFLUNOIAIL> I <SlAIE~E~T>
I

~

~
~

~

I

Sl~ANTICS.
THE F~NCTIOh UECLARATION ALLU~S A "FEAL" tL~Crru~
TU ~£ OECLA~tO ~IT~ OPTIONAL FU~MAL PARA~ETE~S, ~Hi~h
AHE dY CEFAULI UF TYPE "REAL", fOLL(wED tiY t1THtR ~
~LU~K OR A ~TATlMENT.

tUE~LAkAIIO~S.
~ SY~TAX.
J <UECLAHAIIO~> &1= <TypE DlCLA~AIIC~) I
I <UECLAHATION> ; <TypE UECLARA1IGN>
I <TY~E O£CLAhATIUN> 1:= <TYPE> <IYPE LIST>
% <lY~E> 11= LA8EL I HEAL I I~TEGlR I eCOLEA~
~ <TyrE LIST> I:: <IOtNTIFIEH> I <TyPE LIST> , <[uE~IItl~~>
~ SEMANTICS.
% OECLAkATIO~S ALLOw LOCAL VAriIA~LES TO ~E CEC~AR£U ~U~
~ USE IN THE 'UkHENT fU~CIIOh DECLARATICN. C~Ly
i PkEVIUUSLY UECLARED FU~CTIC~S AkE ALLC~EO AS
~ GLO~AL QuA~lllES.
~

~STAT£MEN1.
~ SYNTAX.
% <STAT£MlNT> 11= LA~EL I <srATE'E~T> I
~ <ASSlij~ME~T STATEMENT> I ~O Te LAbEL I <E~~IY> I
~ <CO~UlllaNAL STATEMENT> I <~HILE SlAlt~E~T> I
~ <DO SlATEMENT> I riETUriN <AEXP> I b£GI~
% <CDMPUUNOTAIL>
i <CO~PwU~DTAIL> 11= <STATEMENT> ENU I
l <STAIEME~l> J <COMPOU~UTAIL)
% SEMANTICS.
~ THE 8ASIC CO~STITUENTS UF THE I~TERPRETER
, LANGUAGE AH£ STATEMENTS. THESE STATEMEN1S ARE V£HY
, SIMILAR TO ALGOL STAT£ME~lS.

8-31

~

IASSIb~NENT SlAllME~T.
I ~Y~TAX.

~ <AS~IbN~E~T ~lAIEME~T> 11= <LEFI PA~T LIST> <AE~P>

~ <LE~T PART LIST> ::= <VARIAdLE> := I <VARIAtLE> :=
~ <LEFr PART LIST>
~ Sf~ANTICS.

% THE A~SlbN~t~1 STATEMENT CAuSES T~E VAULF
% RlPHE~f~TEO ~y lH[ARITHMlTIC lXPHESSIU~ (AlxP)
~ Te bE ASSIG~ED TO ThE VARIAuLES APFlARI~G c~ T~l
~ LEFT ~F EACH ASSIG~~E~T SY~o~L.
I
ICOhDITIONAl STATEMlNT.
I bY~lAX.

• <CU~OlTIU~AL STATlMl~T> 1:= <It CLALSE) <ST~TE~E~I> I
I <IF CLAUSl> <STATEME~I> ELSE <STAIE~E~I)
, <IF CLALSE> II: If <8EXP> THEN <S'ATE~E~T>

I SEMA~TICS.
~ Cc~ulrICNAL SIATEMENTS PRovlUE A ~E.hS ~HlREoy THE
I ThE lXECTLTIU~ UF A SlATEME~T, CR A SERIES [f
% STAT£ME~lS, IS DEPENDENT UPON T~E LCGICAL VPLLE
, P~OUUCED bY A "~OOLtA~" EXPHESSI0N (8EXf).
%
~~HILE STATEMl~l.
t ~YN1AX.
I <~hlLE STAIEMENT> 1:= WHILE <~E~p> CO <STATE~E~T>
~ SEMANTICS.
, T~E "~hILE" SIATEME~T PHOvluEs A METHCD OF C~~TkGLLli\G
~ A~ lrtRATIvl PRUCESS IN ~HICH ExIT FROM ThE Lecp
~ DEP~NUS ON £XCElOING A LIMIT. rHE "BOOLEA~" ~XPHE~SluN
I IS FIHST TESllO; ThE FOLLa~'NG STAIE~E~l IS IhE~
I EXEC~IED AS LONG AS THE ~OCLEAN ExP~ESSIO~ l~ "fHuE".

IOU 5IATEMENT.
~ SYNTAX.
% <DO slATEME~I> ::= DO <STATEMENt> U~TIL <dE~~)
~ SEMANTICS.
~ ThE HuOn SlAIE~ENT PROVIDES A METHCC OF CL~IHCLLl~~
% AN ITERATIVE PROCESS IN ~HICH ExIT FROM THE LOCp
I DEPlNuS ON HEACHING A LIMIT. T~E STAiE~ENl 'S
I FIRST EXECUTEU THEN THE TEST IS MACE, A~O r~l
I EXECU1IGN OF THE STATEMENT 15 HEPEATEC AS LC~G AS IHt
, "cOULEAN" EX~HESSIO~ IS "FALSE". ThIS IS VtNY
I SI~lLAR TO A fORTRA~ "00" LUOP.
~
lARlTHtMTIC EXPRESSIU~S (AExP) AND ~OOL£AN ~XPREXSIC~S (~EXP).
, ~£MANTICS.

% T~lSE EXPRESSIONS ARE IOE~TICAL TC l~EIR AL~LL
J CGU~T~RPAR1S, wITH THE HESf"lCIIO~ THAT STRl~GS
, ARl~"1 AlLG~ED. CO~SULT THt ALGOL ~A~UAL.

8-32

~

tSlA~UARU FUNCTIC~S.

~ T~E STA~DAkU (H l~IRI~SIC FU~CTIC~S A~E LIST~L ~ELL~

~ ~ITH APfHU~HIAT[utFI~ITIU~5. Ulv[~ fHAI AE IS A~ <AlX~>' T~t~:
~
.,.,
1,

~

t,

1,.

'I.
~

1,lVpl
1,

%

AbS(A[)
SlI'dAE)
C(lS<Al)
lXP(AI:)
Lt-.<AF:)
S(~kJ(AEJ

Pk~DLLlS ABSOLUIE VALUE U~ AE
PRUDLClS SINE OF AE
P~OD~Cts THE COSl~E Cf AE
P~OO~CES lHE lXpnNENflAL fUhCTIC~

PI'IUDUClS IHE ~AIIJRAL L(JGAt1ITf-~ OF
PRGOUClS THE SQUA~£ RUGI LF AE

IkA~SFER tUNCTIC~~.
IHE TYPE IHAN5fEk tU~CTIONS ~RE L1STlU BELC~:

~ REAL.

U fAt.
At.

I ThE FU~CTIU~ "RlAL(bE)" YIELUS A VALUE CF TYPE
1, "REAL" tROM A dUOL£AN EXPRES51U~. r~IS ALL(~S
% ARIlhMETlC u~tRATIO~S TO BE CA~HIEC elf UN
~ bUOL[AN QUA~!TITES dUI OO£S NOT ALTER lrEIN
J INTlH~AL SY5r~M RlPHESENTAfION.
1. IjUCLEAI\j.
~ l~E FUNCTIO~ "~UOLEAN(AE)" tIEL~S A VALLE Ct TY~l
• "~U~LEAN" FHUM AN AHITHMETIC EXPR£SSIC~. l~lS ALLL~~
~ HGCL£~N OPEhATICNS To HE cAriRIEU eLl c~ Akrlr~ErI~
I QLANT1TES d~1 DUES ~OT ALTER THEIR l~TER~AL ~YS1E~
I RE~HE5E~lAT!UN.
:t
%

%
i;

:tiPLLT HR SEC TI cr~
~

." StMANTICS.
~ THE "~LCT" ~UM~ANU IS FaLLC~EO ~y l~E FL~CTl~~

~ IDENTIFIER TO at PLOTTED. IT MLSl ~AvE tiEE~ CECL~"EU
% rlITh ~T L£A51 ONE PARAMETER ~HIC~ ~ILL dE L~EO I~ lh£
~ PLG1TING. iF fHE fUNCTION HAS ~aRE T~A~ G~t pA"AMtl~K IHE
% PROGRA~ WILL RF.QUEst THEIR vALuES.
:t
% THE PkOGHAM AILL T~EN ASK FUH l~E
I BEGIN~I~G PGSITlnN, t~CHEMENT, ANC FI~AL VALLE FU~ ThE
~ RANGE OF THE PLUT.
t
i THE PLOT Of THE FUNCTION wiLL ~t TYPED C~ T~E
, TEHMI~AL ANU T~lN THE PROGRAM ~ILL RETURN
i TO COMMAND MUOE.
i
1,

I

B-33

u u I L I iH II F fH. M u H. P Lu I 1 UI P RUG k A M
AL~ OF THE PHO~EDURES USfn A~D T~EIR FUNCTIC~S AhE

Ot. S(.R HH D tHLLJW

IHl GETNlXT ANU lRRUK
G£il\~.)(1

~. RhO",

PfWCtiJURlS
T~I:. "GE.T~E~T" PHCClnUH~

T~I:. "E~ROR" PriUCEU~RE
MIS~. ROuTJNlS FCH

PUT
ACCESSING CUOE. 5THII\G

PUTAUR
GET
G[IAllk
EM If
[rJ.lTAOk
£MITNUf',

~x~k~SSION S~A~NEHS
IFEXP
VARiAbLE
PAI\A
PRl~AMY

FACTUR
TERM
A[XP
BOGPklM
t:$OCSI:.C
EXPHI:.S~

I::lEXP
~T_rlMlNl SCA~I\EHS

eO/ll~uli!~D I AIL
sTld
RE.SE lLA"ELS

STATI:.~t:..NT

uEC~ARATION SCA~NERS
ENTRY
fNTE.k

OECLARATION
PURGE.

DECLARt:.

PLACI:.S CHAriACTlH 11\ eCCE srRl~~

puTS ADOHFSS l~ CDCE STRI~G
ijEIS CHAriACrER FHON eCCE SlHl~~

GtlS AonkES~ FHO~ CODE STkII\~
E~[TS ONE INSTHUC1I0N
E~ITS ADURESS UF (~STRLCTIC~

EtJITS l'iUMHERS

HANDLES CO~OITIONAL EXFRESSIL~~
COMPIL~S VARIAcLES & ASSIG~Ml~l~
PARE~TrlESlS A~U AH1T~~lrIC ExP~~S
CG~PIL~S AHIT~~ETIC PRl~AHIES
CGMPIL£S AHIT~METIC FACTCHS
COMPILES ARIT~METIC TE~wS
CCMPILls ARIT~MErIC EXFRESSIG~~
COMPILES HOOLEA~ PriI~A~IES
CCMPILES ~aOLEA~ TER~S
COMPILES HOTH AHIT~METIC A~O
HOlJl£AI\ I:.XPRESS!ONS
COMPILts HaOLEA~ EXPRESSIO~S

TAIL E~O UF CCMPOU~O srATE~ENT

SCANS SOME sTArE~E~T ~EGI~~EkS
RESETS FOR~ARD LA~EL RtFEHE~CES
~HEN ~UNCOMPILING" (RECOv[~ING
FROM EHRORS)
CCMPILlS ALL srATEME~Ts & ~ANCLtS
HECOVEHY FHOM ERROkS I~ sTATt~~~rs

RL~ TIME SYNTAX CL~SS ASSIGN~f~1
APPLIES ENTRY TO LIST CF
IOENTIF HRS
HA~OLES DECLARATIO~S
RE~ovES ATOMIC SYMcOLS FRO~
OdJECT LIS' w~l~ LfAVI~G T~E
8LOC~ AND CHEC~S FUR ~ISSI~G
LA8ELS
HANDLES ~ERIES OF UECLARATIONS
ANu PROVIDES FOA RECOVERY FRO~
SyNTAX ERRORS

8-34

DUf'lPCCLE TRANSFtRS CODE FROI" CCCE SIHI"\;;
Te THE LISp "SlACK" AT A PCI~1
1~~EOIATtLY FOLLCwl~G IHE INFC
wORD OF THE Alu~IC SY~eCL

HEPRlSl~TI~G THE ~~NCTIOI\
PRCClQ0RlUlC HA~nLES UFCLAkATIUI\S Cf FUI\CIIC~S

Te BE PLUTTELl
~ il\llRPkFTER SE~TIOI\
% ~KAOh REMnvES ~ CHAkACIEHS FhC~ CDGE
~ STRING TU ~E LSEO AS Ai\ AUCHlS~
i INTEhPkET IN1ERPkETS fHE CUUE ST~II\G

I EXECUTl MAKES CALLS U~ F~~~rlCI\S; lSlS
I Il\fEkPRET
% PLLTltk PLCTS fl;~C1I(J" [XECUIEL tjy

I Il\1ERPkETFri
1 REMGlt IERMI~AL FILE UECLARATiCI\

FILl:. KI:.I',GH;
bUULtl4l\j

~tnLII\E'

!l\if[RPHE T iNti;

A(lIH<ESSJ

, TELLS GETN[XT rc GET I\E~ LII\I:.
J, WHt_N TRUt:.
, TELLS GETNEXT IU PHIi\f LINE
~ NUMBERS
;, SET TOT R tJ E w H I:. 1\ AS S I G 1\ I " G
j CLASSES ru fORMAL PAHA~ETEHS Ct
j A ~ur-.CIION
, IS SET TO TRuE ~Y PURGE IF A
Al D£(;lARI:.O '-AriEL IS i\OT LSEO
~ TELLS GEJ~ExT fHAT NEXT "SYM~CL"
~ IS TO COME FHOM PH£CC~PILEC
, CODE ANO "CLASS" IS Te 8E THI:.
, NEXT INSTRUCTIUN

, IS THE NUMdER UF NL~·II\TE~ER

J CG~STA~TS UCCL~II\G IN ft FUI\CTICi\
" DECLARATION
• COUNTS NUM~ER UF ILEI\TIFIERS
• E~lEREO bY ENTHY
, THE SY~TAX CLASS VARIA8LE
j TEMP VARIA8LE USED AT EI\O CF
~ PROGRA'"
, USED LIKI:. ~5500 "F" REGISTER
1 SAVES lOCATIU~ IN "SrACKn CF
i pOINT ~HERE FLNCIILN VALLE IS
~ TO BE RETURNED
, INUEX TO "STAC~n
~ THE WHUlE INFORMATION ~CHO

i ASSOCIATED ~IIH EACH DECLAHEU
~ IOENTIFIEH. SET ~y ~ET~EXT
* ADDRESS OF OI:.CLAHEC IDENTIFIER
, SET BY GETNEXT

8-35

I I~ 1 t:. G l H

SY~tlUL

AkRA'(

L.lI'I.lN(1, ,t,

1,

L,),

~

J, 1.

tHIS!:., ,tl

J,

~

PLISl, ~

1,

IH, 4;

J,

lr-..Fu; 1,

to

5TACKlO:fjY)1 .t.
1;

CLNSTANT, ,

LI~E ~U~bER PHlr\TEU bEFORE EAC~

LI~E Of FUNC'IU~ UECLARATICr\
RELATIvE LOCAI10~ LF C~ARACTE~
11\ celH. STRII';(i
TErvP V/\RP~LE

PCINTEk Tn FIR~T weRD FCLLC"lr\G l~~O ~L"U

ASSOCIATI:.IJ ~lTH A I-L~CTIC'" lCEI\IIFl!:.ti
START OF FUNCTIU~ CODE STRI~G
LIST Cf IIJEI';TIFIEH~ c~EATEC ~y

l"IRY
peINTER 10 INF~ ~u~o C~EATEO ~y

r.I\IRY
POINTER Tn I~FU ~UhO • SET By
GETN(XT

THl "STACK" USlU ~y r~E

INTERPRETER
TAblE LF NQ~.I~T£GER ClNSTAN1S

, APPEARING IN Ful';CTIOI'; CECLAHAl1L~
CLNSTADklU:127JJi LINKS TO ADDRESS pART CF UF

~ "ReN" INSTRUC110N
S1HING AriRAy STk[U:~91(~); ~ COUt SrHI~G USEe CU~I~~ C~~PlL~rlu~

LA~lL START, RE~TAR11 EAlI;
Df.Fll\t:.

dLMPL = L := l + ~"
CLSS =(3j=15]#,
AUkS - lldaIS)#,
LINK = [.;:15]#,
LINKF = I\I"'JH<k,
CLASSF = CDkf#1
r ... PARA~, = LII\KI,
AlYPE = U,
r;TYPE = 211-;

SIRl~G ~IELD STkf [Oz81;
Rt:.AL riELO CORf (J3:15J,

AOUHES~F [lellS)'
I\iPAR lJ:151,
wHJ

SY~BOL FORMAT ~ IHl FCLLU~lNG ARE Sy~TACTIC CLASS ASSIGI\~E~T~
.. flRA~OC~" .. "A~S" .. "SIN" .. "eeS"
'" "EXP" .. "L~" .. "SQRT" .. "MAX"
.. "~IN" .. REALPRCCID * REALlu * ll\TIC
.. tiOOIO .. LAbELlu
= lOMAX .. "l~"

'" "UD"
.. "E.ND"
'" "LABEL"
'" "FALSE"

* "[L.St"
.. "R£AL"
'" "T~IJE"

* "GO"
* "RETliH,"
* "J"
* "INTEGEH"
* FCONSTA/'il

8-36

.. "~~IlE"
,. "BEGH"
* "L;,\TIL"
* "BCOllA""
,. I1CONSTANI

• "~ll~.C TIll,,"" ..
• "STOP" =
• "TO" ..
• "1'401" ..
.. "LSS" ..
.. "l" '*
'" fI+" ..
'" "." ..
= ,,~ ,. =
= " [" =
= CLASS~AXi

5y~t;lOL FGtH~AT *
1 = cleF ~

.. dUN 1:

* CHS 1: .. AUfJP ~

• st:;OP 1: .. MUlUP ~ .. ovnup ~

• FACIOF J, .. LI\G 1

* UkOP ~ .. At-4DUP ~ .. E(,jLf 1 .. t',[QF :t .. LS Sf 'I,

.. LI:.QF :E

• GlQF i

'" GTRf :t;

• /-',K S ,
'" St,jR i

* R1N l

.. LHN " • LITe ~ .. CPDC ~ .. STO i .. ISO 1: .. St-;D 'I,

• ISN ,
.. au.J 'I,

* MAXF ~ .. MINF I;

* RANO i

* At:;SF 1

* SlNf i

* COSF· j

* EXPF :t;

* LNF i

* SQRTF 1

* RCN ; i

"LlS I" .. "PLOT" .. "CELf:.T["
"(~ulT" • "f1ES£I"
" T H t f\ " * "ANll" .. "CR"
"=" = "£I~L" .. t1 f\ E (~ "
"LL(~" .. "GE~" iii "GTH"
")" ," .. " • t • • "- ,. • ")(" * "I"
"." = """ = "Bo"

";j," = "," :;; "(!i"
" J " = F.:IJF = I\U'["'f~

~ INTERPHETEH 1I\St~LcTIC~S
I:lRANCH ON FAL5£
I:l tl A I\; C r utile U t\ [) I r I U 1\ A L
CHAi\GE SIGf\;
AUU
SlitllRACT
jlliULTlPLY
OIvlOE
RJilSt:. TO PIJWI:.R
LOGICAL tIIE(iATF.:
LOulCAL OR
LlJulCAL Mil)
=
1
<
~

~
>
MAkK THE STACK FOH HETLRI\
CALL FUNCTIOI\
~ETU"I\ FROM fUNCTllil\
MAKE SPACE FUR VARIABLtS 11\ ST~CK
US!:. ADURFSS AS CO~STANI
"CPt~A~O CALL"
STWHE OESTRUCTlVE
l~ftGER STuR~ uEST~LCTIVE

ST~~E ~ONDlsTRucrIvE
l~TEGER STORE NONOESTRLCIIVE
t1CULF.AN VALUE
fINU ~AX Of TWU ~~M~EHS
FI~U ~IN OF TWO NLM~EHS
RAI\UUIV NUMtiER
AciSULliTE VALuE
SII\iI:. FiJNCTION
CQS!NE FUNCTl[)~
EXP FUf'.JCTIO~
NATUHAL LOG FUNCTI~~
S~uARE RUOT fUNCTICN
NON INTEGER ~UMBtR

8-37

I JHl bEI~~XT A~~ [HhLn PHUClOURlS
PHCC~UUhE GlT~lxl;

Ut.Gl"
LAtlt.L LSi

It INTERPktl I~G 'ht~

t.LSl

dl;.Gll\

J := L L!V ci
CLA~S %: REAL(STRF(ATSM(J.dASl))(L.lGS:3].ll)J
L := L ... 1
E 1\ lJ

tH.G 1",
If CLASS = lUF OR ~lwLIN£ IHE~

tjEGII\

~EwLl~l := FALSE;
IF CC~~ILING rHEN

dt:GIN
TWXS2 := fILL(Ll~lNL,3) & ":";
lAB := 4; T[HPRIJ
Ll~tNn := LI~E~U + 1

REAC jllX;
EI\O;

CASE. HEAUCU~(FAlSE) Of
dFG!1\

iF COMPiLING THlN Gl TC lS
ELSE CLASS ;= lOF;

CLASS := ~UMEHH; I ILLEGAL I\U~~EH
tiEGIN ~ NUMt3EI1
CLASS := HCONSTANTi
iF INHEAl < 4096 TH[N
iF INREAl = J := Il\riEAL THEI\

BEGIN

i:.NIH

II\REAL := .J;
CLASS := fCO(\!:iTAI\ r;
ENOj

iF CLASS 1= CURF(II\SY~) S CLASS~AX
THEN iNFO := I\IL

t.LSE:.
BEGIN
wHL := ~~(INFL:=~lS~(CLAS~)J
CLA&S ,: ~HL.~LSSJ
A0DHESS :: WHL.AO~SJ
ENOJ

CLASS := 0;
E~U O~ CASE STATEMENT;

END
ENll Of GETNEXTi

8-38

PHUClUL~t F~HLH(XJJ vnL~t x; hEAL x;
bl:..Gll\

It COL ~ td r~~~ ~Hl~l SPAClCCCL + 3) #*,;
PkIN NlhkU": ~IS~l~G #J
elSE x - 1 LF

ll\U U I:.HRi

Htlilf\
Pril~l ~CR lLLlGAL ILE~rIFIE" l~ CECLARATILf\,;
PhJ~T 4; c~ tNC,;
pRl~1 uLlFT ~A~~NTHlS1S.;

Phl~T 'hIGHI PAkF~THESIS';
P~I~T 'tH lLLLGAl SIA1FMEI\TR;
PhI ~'l Ii" U t\ TIL ,. 1 N 0 L S TAT E. tJ t. 1\ Til;
p~l~l ntH ILLEGAL USE nF lAdE.L~;
p~I~T '~l~t.~n I~ C[~OITICI\AL EX~RESSICf\ C~

SlJlTEl"'lf, r;t;
PRINT '"ELS!:.." IN COI\OITrOI\Al £X~RI:..SSICI\~;
PRl~T 'CULO~ FULLowll\~ LAdEL';
PHI~T 'LA~lL 11\ GU 10 SIAIEMI:..~Tj;
PRINT #nuC" l~ hHILl STA1ENI:..~T';

Pkl~T .n=" ~LLLC~I~ij "I" r~ ASSIG~~E~r
STJlTt.I"ItNT#i

PHlf\Jl ',In
PRINT ILk lLL(G~L ~LOLEA~ £xPRESSIC~~;
[I\C

SYMuOL fORMAT *CLASS,6El~Exr,ER~OH;
I. r-. I ~ C. R 0 LJ T 11\ t ~ F C h A (; C [S ::, I 1\ Ii C tJ I) EST H 11\ G
I PUT PLACES CHARACTER l~ eCCE SlRl~G
PkO(;EUGRE PUT(r,A)' VALuE T,A) HEAL T,A;

SlALA DIV 8JeA ~Ou b,l) :; STHI~G(T.[q2:6J,I)J
~ PUTAUR Puls AGDMESS II~ CUUE SlRI"G
PkucEuuHE PUTAUH(I,A)J ~ALLt r,A; R~AL I,A;

I:lEGIN
PuT<T.(36:6J,A);
fUTCT. II + 1)
lJ'.O;

I GET GETS CHARACTER FhU~ eCCE STH1~G
RlAL ~ROC[OURl bEleA); vALLE Ai REAL A;

GlT 1= RlAL(STH[A Ulv 8](A,[45:31,1));
I GlTAUH GElS AUORESS FHC~ COUE STHI~b
REAL ~HOCI:..DURE ijE1AGR(AJJ vALUE AJ REAL AI

ijETAOR 1= GtT(A) x 64 + GET(A + 1);
~ EMIT £~ITS UNE INSlrlGCJ10i\
PHucEUURE EMIT(x}j VALut XJ REAL ~J

tjt.GIN
PlJT(X,L)J
IF L 2 19b lHEN

BEGIN
PHINT #CUOE UV£RfLCW#J
LINUdJ 1= C

8-39

li\U
iLSl

l := L .. U

I EMlfAUh ~¥lTS AOURESS Uf 1~SIRLC1IC~
P r'(C eEL l. h t [~. I r A tJ I~ t A); Ii I<. L LEA,; ri [A LA;

b£.Glt\
t."'II(A.l36:C]);
t ~' I T (P.)
E. ~, 0 ;

:t, Uqll\l.~' f 11/ 1 T S 1\ U jl/ ti i:.I~ S
\li-ILuE Ci HEAL Ci PRGI..E.L-\.;R£ Ff,l TI\l;l"lC);

BUd I'.
LAdt:L fL!L~,Uj

fUh J := U ~T~~ 1 u~rlL C~AX GO
IF CUNSTA~ILJJ :: C T~lN GC 10 FOL~U;
CC~STANT(J := C~A~ := CMAX • 1] := Ci

FUL~L: lMIT(RCI\);
lMIIAUR(C~I\STAURl~J);

C~I\STAO~lJ] := l - 2
tl't.; U lMITl'vun
% t Ut1,~AHU oECLAf~ATlUt'\S
SYMuCL FCkMAf A(xPJ FC~"AHU;
SY~cUL FCRMAT dlX~J FCRnAHU;
HEAL ~kLC[DURE tx~RESSJ fLRnAROJ
bwL.Lll"(, PkUC[L1Lh[SlATEIV.LNn FOH\"A~O;

PKUCE0l.~l fxECLll(C[UE1J VALUE cccr; Sy~~CL eaCEJ FCR"A~I..J
~ lX~klSSIUN SCA~NEHS

I IF£X~ ~A~OLES cnNOITIU~AL EXfRESSIC~~

SY~bDL fORMAT I~~XP(x); SYMbOL fCkMAT X;
b i:. G j, I~
RtALI, Fi

L*~~XP, "lht~":~; EMIT(BO~)J F := ~L~PL; iX, "ELSt"19J
E~ll(b~~)J PUIAGR(T := dUMPL,r-2);

*X, PUTAGt1(L,l • ~};]

(I~li Ut IFEXPi
I VARIAUL~ cCMPILES VAHIAtiL£S & ASSIG~~l~T~
SY~bGL FCRM~r VAhlAbLE(IY~E'ADDhESS'FROM)J

SYf'libOL
B~G!I\

VALUF TYP[,AODHESS'FHCMJ
KEAl lYFE, ADDRESS' fROM)
[[":", "=":13; [*iY~E = 8001n, .~£xp ELSE .AEXP].

E~ll(kEpL(TYPE = l~IIO) + FHO~ + STL) ELSE
*fRUM = 2, tMITCOPUC)J],

E~11AUH(A00RESS)J]J
PANA PAkENTHESIS ANU AH'TH~ETIC Exp~Es

feRMAT PA~A J ["(":3; *AEXP, ")"14];
PRIMARY COMPILES AriITHMETIC PRl~ARIES

FCRMAT Pklrv;ARY;

Rt:.AL I, I\i

8-40

LhtAL10 * l~lIU: I := CLASS; J := AGU~[SS;
.VAHl~8LE(1,J,2) lLSE

"EALPhOC[~: l~lr(~KS); N:= (I :: ft~L).~~ARA~;
(*1\ :.:; C (LSt
"C'Q3i */lExr',

[*~ := ~ -] # C, ~,";14; *AE~P,

i-H. T URI'; !:. L S E
")":4J),

E~ll(~~~); I:.MIT~Uh{ I .lle:9]); E~I re r.[~l:~J)
~- L 5 [

F L C 1\ S 1 A i\ f: t. 1'1 i I (L i i C) ; t. ~ 1 T A () ri (l 1\ " E A l) r. L S t
HCC~SlA~rl tMIII\LM(II\REAL) lLSl
"/luSH * "S~HT": 1 :: CLASS· (="AdS"); *PAI\A,

Oll(AHSF .. I) !:.lSE
"~AX" * "Mli\": 1 := CLASS • (="~AX");

"(":3} *AEXP, ",":14; *AEXP' ")":4)
tflill U"AXf ... 1) lLSE

"k(AL", "(":3; *dtXP, ")":4 ELSE
.. h A 1\ [J [j iv1 ", 1::1" I 1 (R AI' U) L L S F.
*FAI\A]

[I~ COl- t- t1 I ~ /l R Y ;
~ FACTUR ClJMPll!:.S Ar(I'I-<~ErIC FACTeRS
SY~DGL FOkNAT fACIOHJ

[*PRIMARI, L"*", *PR!~ARY' EMlr(FACTO~)J ~ErUh~
ELSt. i'lL]];

I lEHM CCMPILls At1IT~METIC TEh~S
SY~bJL FC~MAT rlR~J

bl:.G1N
R£.AL 1;

L*FACTGR,L"X" * "/~: T := CLASS· (="-"); *FAtTeR,
E~Il(MGLUP • Tl; RETUkN ELS~ NllJ]

t.f\;l) O~ lERM;
% AExP COMPILES AHIIH~ETIC tXFRESSIG~5
SY~tOL FGh~Ar AlX~;

btGll\
Rt::AL \;

l"IF", *lflAP(AEXPl ELSE
l"t" * "un: I 1= CLASS ELSE ~Il]'

EI\;U Uf AEXPJ

*TEH~' IF T = <="-"lfH[N EMIT(CHSlJ
["." * H_": I := CLASS. (="t")J

*TEkM,
EMIT(AOOP + Tl; RETUH~ ELSE

NILjJ

I BOCPHIM COMPILES ~OOLEAN PRIMARIES
REAL PHUCEDURE ~O~PRIMJ
Bt G 1f~
R£AL Ii
f:1UCLEAN NOH Lt\(jJ
LAbtL LF, EXITi

8-41

L["~n'", ~CIFLAG := THUE ELSE NILJ,
[l~UOIO: 1 ,= AUUHlSS; *VARlft~LE(dGOl~,T,2) lLSl

"fALSE" * "THLE", E~ITC~L~);
E~ll(~LASS • <="FALSE"» EL~l

"bnUL~A~"' *PA~AJ, T I~ dTVPE ELSE
"(", T := EXPhESS; ")":q lLSE
*AEXP, 1 := ATYP[iJ,

f.< E r l,; R~, T;

[*' = ATYPE,

,., 1 L],

l"EWL" * "GTR"' T := CL~SS·(="EbL");
*AEXP, E~lTCE~LF+T);
T := tjTyPI:. ELSE

f~IL] LLSE

L*T = dTYP[,
l*NCTFLAG, E~LT(LNG) ELSE NILJ t~SE

*1 = ATYPl A~U ~OT NOTFLAG1J' LFi

U' tjLOPRIM:= \.i
[i' .. O lH tlClJPFn,..,;
~ bOGSLC CG~PIL[S BOOLEAN TE:.R~S
RtAL ~KGCEDUR£ dULSECJ
IH.G.i.N
RlAL 1 i
LAbt.L LFi

l * T f= ~UUPHl~ = dTYPl,
["ANO", *~CUPRIM =

E.LSE i\ILJ t.L~£
*T = ATyPl] I LF;
i1ETURf\; T;
UOOS[C := (]

bTYPE, EMIT(ANCCF); RE1L~~

LF:
[NO
'J,

~

Of bO(]SlCj
LXPfH.SS CO~PILES HOTH AHIT~MEllC A~D

6COLEA~ EXPRESSIONS
RlAL ~HGCED~HE lX~RESSJ

~t:.G1N
HEAL 1, R, 5;
LAi::lI:.L LF, EXITi

l"If",*SExp, "ThEN"aS; EMIT(~OF)J H := ~L~PL;
T := lXPHESS; "lLSE":9} EMIIC8U~)J
PLTAD~(S := tjU~PL, R - 2)}
[*T = ATYPE, .AEXP ELSE .T = 8fYPE, *eExPJ,
PL1AUk(L'S·~) ELSE

*1 := BOUSEC = ~TYfE, ["Ok", *80CSEC = bTyPE'
E~lT(URGP)1 HETUR~ ELSE NILJ ELSE

.1 = ATY~£l : LFJ
HE-TURN 11

LF: EXPRESS 1= uJ
END Ot EXPRESS;
~ I:lEXP
SYMbOL fORMAT BlX~1

COMPILES HOOLEA~ EXPRESSIQ~S

8-42

L"lf", *ltEXP(~EXPJ ELSE *EXP~ESS = ~lYPE ELS~
EHHUH(15); *FALSE];

, ~T~I[M~~l SCA~~EhS

:t. CUtJl-'UlJl\UTAIL TAIL [NO UF CCMPCUI\D STATErvEl\1
SYM~OL fURMAT CU~~OL~U'AIL;

L*~~ATl~(~r, ["in, HETUh~ SrA~T ELSl "E~C":~)J;
~ STMi SCANS SOME STAlltJE~T ci~Gl~~EhS

SY~bCL FORMAT Sl~l;

HI:.Gil\
RI:.AL I,t,,;

LSI'jITCH
HtALIO * l~IIC * b~UIUI T 1= CLASS; A := 'DDRlSS;

*VAHIAHLECf,A,C) ELSE
LABELID: 1 := ~~L; ~~L.AOHS 1= LI

~~(II\FG) 1= AbS(WhL)J *T < U,
":"Il~; HETUH~ lLSE

"IF", *bEXP,"Th£~":e; EMIT(HUF); A := bL~PL;
*SlATtMEI\T,
L"ELSl", EMll(dlN)J T := bLMPLJ

PLTAl)h(L,A-2>J
*S·IATlM!:.I\T, P~TADi1(L'T"2) F.:LSE

PUTAPk(L,A·~);l ELSI:.
"GO", ("TU" ELSE ~lL), LA~ELIO:I1J EMIT(BL~)J

E~llA~HC~hL.LlI\K)J LII\KFCIl\fU) := L • 2 ELSt
"~HJL~", A Z= LJ *~EXP, "UO":12; EMITCBGf)J T := ~~~PLJ

*STAll:.~EI\T, tMIT(BUN)J EMITAUR(A);
PLTAOk(L,T - 2) ELSt

"GC", T := L; *STA1E~ENT' "~NrIL"16; .SEXP,
E~lT(bOF); t~lTAORCT) ELSE

"~ETUHN", *~ExP, E~lTCRTI\) lLSE
"bEGIN", *C~MPOU~Ul~IL]

E"'U U~ STMT;
~ kESETLA~lLS

t.
:t

HESETS FGR~ARO LAe~L REFER~~CES
~H~N "UNcnMPILING" (RECGVE~I~G
FROM EHR[JRS)

PkOLEUU~E RESETLA~ELS;

8/:.G J. N
fH.AL 1, AJ
SYh;[jL Si

j~~.~LJI'JE := IRLU
\,lTNFXTi
F~R S I~ PLIST 00
If (T := ~H(CGk S),CLSS =

8EGIN
A :=I.Llf\Ki

LAd£Llu THEN

~HILE A ~ qQ~5 AND A > L 00 A 1= GErAOR(A)J
T .LINK 1= Ai
If" 1 > 0 THt.N
IF T.ADRS > L THEN

I:IEGIN

8-43

T := at r;
T .ALJH~ := 0;
U\lH

fj/-1(tut, S) ::::, Ti
t.I\Li

fUk J := U ~'EP 1 UhlIL CMAX UU
tH. G 1.1\
A ;= CU~STAU~[JJ;
~hlLE A - 0 ANC A 2 L no A := ~lTAD~(A)J
C(;"~T/oIUR[JJ := A
E/\'UJ

[~U Ot R£SETLA~~L~;

, STAlt~t~l CC~PILES ALL SrATE~E"Ts & ~A"CLtS
I REGOVEHY FRUM tHAnkS .1\ STATE~l~TS

buULEA~ PROCEUUHE SJATEMtNTJ
bt.Gli~
LAbEL kEeDV, ~TAkl;

tH.AL LNR, LUi
LNH := Ll~E~O • 1;
L(; ;= l;

SIAkT: l*STNT ELSE
*CLASS 2 (=flENU fl) AI\D CLASS S (="LNIIL") ELSE
flRESE1":SJ LINE~O := INTEGE~(HEAUN(IWX);

GU 10 RECOVJJ : REeDV;
rlE TURN TI1UI:.J

RlCLV~If LIN£NU ~ LNR THEN
BEGIN
L p:: LU;
PRINT #RETvft STARTING AT LINE i LINEI\O := LNRJ
RESETLAbf:.LS;
GO Ie STAHl
EI\O;

STATEMENT := BOOLt AN(2);
[NU Of STATEMENT;
I JELLARATION SCANI\EHS
I ENTHY RU~ TIME sy~TAx CLASS ASSIG~~E~I
HUULEA~ PkOC£UUHE E~TRY(lYPE)J VALUE TYPE; REAL TyPE;
HI:..GIN

If CLASS> l,I THEN
BUil"
ERHURllH
RETURN FALSI:..
£I'\ui

PLIST :; (I~SYM :: MKATOM) • PLISfJ
CUR(INSYM) ,= INf I: CONSlCLASSf: TYPE,

ADUKESSF: IF TYPE = LA~ElID OR fORM TOG T~EN U
ELSE

IF TYPE: REALPHOCID THEN
NEXTAVL(SYMdOL) + 2 ELSt

CUUNT 1= COUNT + 11j

8-44

if TV,..,!:. :: LAHELILJ IHEI'~

LlSl

tH. til 1\
wH U\~) ::: -I'IH(INF);
LlI\KHll\~) := 41J9J;
[I\G

l~ FnHMTUG I~E~ CUUNT := COUNf + 1;
1l1:.11\EXT;
[I\TRY ;:: lRLE;

EI\U Of [I\TRY;
, [~TEk APPLIES tNTHY TO LIST CF
~ IUENTIFIEHS
SY~bUL ~CkMAT (NTI:.ReX); vALUE Xi rifAL xi

l*l~TRY(X), (",", HI:.TURN STAHT llSE NIL])'
, UECLAHATIUi\ HAI\OlES GECLAHATIOi\S
SYM~OL FeRMAT OECLARATlu~;

%

::t
~

%

lS1'tITCH
"LAij(L",
"REAL'"
"ll\lEliER",

*ENTERCLAdELIO) ElSE
*ENTER(HEALIO) LLSE
*lI\TER(INITO) ELSE

"bCULtA~". *EN1ER(bOOID»)J
PURGl REMOVES ATOMIC SYMbOLS FRO~

adJECT lIST wHll\ LEAV!i\G T~E
bLUCK AND CHEC~S FCR ~lSSII\G

lAbELS
P~ULEULHE PURGI:.(L)J
fH. G 1 (\.

VALUE. LJ SY~80l L;

SYl'o1dCL IH
H(AL I,Ai

CCUI'iT 1= vi
NULAB[L ,= tALSEJ
FLR R 11\ l UO

BlGIN
IF (T 1= "H(CU~ R»).CLSS = LA~[LID lHEN

IF T < 0 THEN NOLAdEL := TRUE
ELSE

tiE-GIN
A a= T.LlI'd<J
T := T.AORS;
wHILE A # 4095 UU

i:.NOJ

8LGIN
J := GETALlRCAn
PUTADHCT,A);
A : = J
END;

IF SMTA(R) > 64 THE~
REMOdel-<)

ELSl ~OR R ;= ~IL;
COUNT 1= CGUN I t 1

8-45

Et\LJ
01' PUHfiEJ

LJEClA~1:. HA~nLE~ SEHIES Cf UfCL~RATIC~S
A~l PRUVIOES FUH HlCCVE~Y FRL~
SYt.TAX ER'hlHS

~U~LE~~ PkOC[ULkl:.
tll:..Glr'i
LA~tL STAHT,RECUVi
Rt:.AL I, lNR, COJ
SYt-'t)OL PLlSTOj

LJf:..CLAtd: .. j

SIAMT: CG := COUhiJ
i := NEX1AVL(SYM~UL)J
r'LIST := NILJ
L ~ R : = LIN E i, 0 ;
l*OlCLAHAIIUN, "J",

PLlSJu := N~U~C(PLIST,PLISTU); GO Ie
"Rl~f:..T": LINfhU := INTEGtR(R£AON(r~X»j

GC lU Hf:..CCw I:..LSE
"ILl: RlCuv;

t-'LIST ::: t-'LlSlU;
KETU!1:r-.: TkU[i

Rt:..CUV:t-'U~G[(PLIST)J NEXIAVLlSYMdOL) := r;
IF LINE~U ~ L~R THEN

:: COi

STAi11 E.LsE

r:3EGIN
CCUNT
PHIl\f
GO 10
E~O;

4HllYPE SlARllNG .1 LiNE # LI~Et\O :=
STAHr

END
1,

%
%

"

UECLARE := ~ULLEA~(2);
r'LI5T p: PL1STC;

Of UECLAR£.;
OUMPCUiJE THANSFERS CODE FRO~ eCCE STH1~G

TO THE LISP "STACK" AT A PCI~T
~CRO OF THE ATOMIC SY~BCL
REPRES~NTI~G THE F~NCTIC~

PRUCEUURE DUMFCUOl;
I:H.Gl"
I~Tt.Gt:.k LMAXJ
REAL I j

LMAX := (L + 7) DIU 8;
fOR J := 0 STEP 1 UNTIL CMAX DO

~hlLE T := eONSTAORlJl _ a uo
i:l E G 11\
CCNSTAUklJ] 1= GETAOR(T)J
PUTADRCJ t LMAx, fl.
E ~ l)J

FeR J := U STEP 1 UNTIL LMAX • 1 uo
SlFH«"OI\S) := STR£JJJ

FOR J := U ~TEP 1 UNTIL CMAX DO
~H(CO~S) 1= CO~STANT[J]J

8-46

1:.1'11.1 U~ LJu~PCOIJU
~ PROCluLREUEC HANDLES uECLAHATIOf\S CF FUf\CIIL~S

Ie ~E PLLTTEO %
PHu~EUUR[PROCtUwHEOECJ
tH .. GIN
RlAL H, 1, p, ~A, l~R;

LAc~L ~TANT, NOGU, nEcev, EXIT;
SY~~CL PLISTU, ~N, S, Pl~FO, pAHA~J

LINEf\O 1= 1;
c~, A X : = ·1;
PLIST(J 1= PL!ST;
n .= f\ExTAVL(SY~duL);
PLIST := 1\1L.;
(*E~TRY(HI:.ALPROCIU), FN := PLISTJ PLIST := f\ILJ

elk F~ := ATSM(H);
PINfO 1= INFJ P 1= NI:.~TAVL(SY~BCL);
COuNT 1= 0; FORrHOG := TRUE;

["(~, *ENT[HCHEPlIO), ")":4; FA := 2046;
FeR S IN ~LIS' 00

AODHESSf(COR 5) I: fA := FA + 1 tLS£
I\lL J J :f\OGOi

~PAH(PI~FU) 1= CU~~I;
PM~AM 1= f-'LlSTJ
PLIST := NIL;
r := NEX1AVL(SY~dUL);
FURMTOG := fALSE;
1~PUT(T~Xfl,T~XS1,1:6'/FALSE);
CCMPILI~G := TRUE;
GE..T~EXT;

L~R 1= LINEI\O • 1i
STAkT:CUUNT := L ;= OJ

l"~EGIN"' *UECLAHt,
IF COUNT ; U THEN

HEI,l!1\
E~ITCLk~); E~IT(CUUNT)
0. U;

.COMPUU~U1AIL ELSE
*STATE~ENTJ : RE'OV;

EMIT(BL~)J ~MIT(C); EMIT(RT~);
PURGE(PLI5T)J

IF NOLAtH.L THEN
BEGIN
pRINT #OECLAHEO LABELS DID NOT CCCLR,j
GO TO I\CGO
END;

PUHGE(PARAMn
~EXTAVL(SYM~OL) := Pi
OUMPCODEj
PLISTU 1= NCOI\CCFN, PLISTO)i
GO EXITJ

8-47

HtClV:IF LT~[~L ~ L~k rHl~
HtGli\
Pl;l-itlE.(PLlST);
NE.XIAvl(SY~bUL) z= TJ
PhINT #hlTYPl SIARTiNG AT Lli\[, LI~E~O := L~R;
NEVi L 11'0 I:. : = I r"I U l ;
GlTNl:.xT;
GC 10 START
f~L:j

NUij~: PUhG[CPAHAMlJ
i-'l!RGECPLISUJ
fU~MTOG := fALSE;
PUI-lGE(FN)i
~lXIAVL(SY~bGL) := RJ

EXII: ~UMPILIj\G := FALSE.; PLIST := PLISrOJ
1I\PUT(hjX~ 1, fwxS1, 146,ITRUE)J

E~U O~ PHUCEULRlOtCJ
% INII:.HPHE1Ek 5E.~TIUN
1.

J..
I I\T l GI:. M

bI:.G!N
RI:.AL. , j

REMOVES 2 CHARACIEriS FRC~ eCUE
STRING TG dE lSED AS A~ AUGHES~

PROCE[;l"HE f\'lKADH(A); VALUEAJ BIJuLEAi\ fd

T := CLAS::';
ulTt-.EX1;
T := 1 x 04 + CLA~S;
GI-_Tr~Exl;

MKAlJR 1= If A THE."
If T > 2C4A THEN FH + 204d • T

i.:.LSE. FR + T
ELSE Tj

[1"fU Ot fvlKADkJ
I INTEHPMET Ii\TERP~E1S THE CeDI:. STRING
SY~~GL FORMAT INTI:.RPR£T;
t::H .. G IN
DEFINt.

SA = STACKll := I - 1]#,
::,b = SlACK(lh,
SC = STA~K(l + lJ',
su = STACKll s= I + lJIJ

ALPHA wi
RlAL Ii

lSl'iITCH
I::lOf, 1 ,= I" 1i

IF bOCJL£AN(SC) rH£N
dEGIN

ELSE.

L := L + U
GETNEXT
I:.. NO

END Of
1
~

d[GIN
L &= MKADN(~ALSt);

utT~fxr
t~o EL5~

ti~~, L := ~~AOR(FAL5E); GE1~EXl ELSt
CHS, S~ :: ~ S~ ELSE
ALUP, SA := ~b + SC EL5(
~bLP' SA := ~~ • SC ELSE
M~LUP' SA := 58 x SC ELSE
DVUUP, SA 1= 5~ / SC lL5l
FAC10f, SA := S~ ~ SC [L~E

L~G' ~~ := ktALCNOT BUnLEA~(S~» ELSE
UkC~, SA := HEAL(BOULlANCSbJ UH HLCL£AN(S~»)lL~l
AhUUP, SA := REAL(~UOLEAN(So) A~n B(CLEA~(SCJ)

ELSE .
E~L~, SA := HEALCSB = SC) ELSE
NEWF, SA := HEAL~S8 ~ SC) ELSE
LSs~, SA := k£ALCSB < SC) ELs~
L£Wf, SA := HEALCSB S SC) ELSE
GlG~, SA := REALCSH ~ SC) ELSE
GTHf, SA := HEALCS~ > SC) ELSE
MKS, 50 := SAVEl' SAVEl := 1 ELSE
S~H' ~O := r~' fR := IJ

EXECUTE(AlSM(~KADR(FALSE)-64 + CLASS»)J
GET~£~I ELSE

RTN, T := SbJ fH := STACK(FriJ;
SAVEl 1= STACK(1 1= SAVEll; Sb 1= 1J
*FALSE ELSE

iHN, rO~ CLA~S uo SU := 0; uETNlXT ELSE
LITe, SC := MKAUR(fALSE) ELSE
OPU~, SU := STACK[MKAUR(fHLE») tLSE
S10 * IsD • 5NC * 15N:

IF ~GuLEA~CT := CLASS • SIO) THEN
s~ := INT£G£R(Sd);

NIL, STACK[MKADRCTRUE)J :; 5e;
If 1 < 2 THEN I :~ 1 • 1; ELSE

BLN, ~o := CLASS; GtTNExT ELSE
MAXt, SA := MAX(SB~SC) £LSE
MINF, SA 1= ~1~(S8,SC) ELSE
RANU, 50 := CONVALCO) ELSE
A~SF, S~ := ABS(S~> ELSE
SlNf, S8 1= 51N(SB) ELSE
CuSf, S8 1= COS(SB) ELSE
[XPf, Sb 1= EXP(SB) ELSE
LNF, S8 := LN(Srl) ELS~
SQR1F, SH := SQRT(S~) ELSE
RCN, SO := ~H(A1SM(~KAOH(fALSE),8ASE»;J

INIERPHEI;
EXECUTE MAKES CALLS ON FUNCTIC~S' LSES

INTERPRET

8-49

PkL~E~U~l EX~CLIElCCUl)J VALUl CnUFJ SY~~LL CCCE;
" E. (j 11,
S Y /-I. b G L lJ L () CUD I:. ;
Rl:.AL LLUL;

'I;

C L L.l C n L' l : = tJ A S [.;
bASE. := CUi,JI:.;
uLOl := Li
L 1 = 0';
llt_r~EXTJ

~~ILE I~TlN~kET Ou;
bASE := LL.O(;OOli
L := LlLCL,;

01- FXlCUTE.;
I-'LCTIE.I"I PLUTS FUI\CfIU" £XI:.~urEC BY

INJERPkETEI'i
PHUCtuukl PLorTER,;
I:lEGJ.i'o
RI:.Al X, y, z, ~, V, l/-l.A~, T~t~' T, J, KJ
SYMbOL COUE, SY~;

LAdt.L I:.XIT;
IF CLASS t k[ALPHUCID Ok K ;= ~HL.~PAkAM = C lHE.~

~EGIN PRl~r 'MI5SINb OR IlLt.GAL FL~CTIO~#;
G C TO I:. XIT E N U .;

~YM := 1l\~Ylv,;

CODE. := A1SM(1,II\FU);
IF 1\ 11TH!:.'"

I::H. Ii 1 !\
PRI~T 'TYPE # ~-1 # PARAMElI:.R#

If K = 2 THE!\ # t ELSI:. #5#;
J : = U
DC ~TACK[J := ~ + II := REAU"(I~X)

LNTIL J = K;
EN l)i

K 1= K + Ii
PkINT #E!\lEk bE.G1NNIN~ VALUE, INC~E~E~T, AI\C FINAL VA~ul FUH#,

ITHI:.. '"'LeU)
x := READN(lwX); Y := REAU!\(T~X); L := REAON(l~x)i
N := (Z - XJ I Y + lJ
~ 1= -lJ INIERPR£T1NG := TRUE;
bE.uIN
ARRAY VALLES[CIN1J

T~AX &= -(TMIN 1= TEN(68)J
fOR V :: X &ll:.P V U~TIL l OW

BEliII';
SAVEl:: (H
fH p: 1 := K;
STACKLl] := vJ
EXECUTl(CODE)j
VALUES(J := J + lJ 1= T := STACKlC]J
TMAX 1= ~AX(TMAX'T);

8-':>0

T~l~ :: ~lN(TMI~JI);
EI\O;

PRI~T ./,/,1,/,1 SPACE(d) #PLCT OF # sy~

leX), X:::; # X # TU f L # I~ ST[FS Cr #
y,/SPACl(16) #AANijE C~ # ~y~ ~ IS #

T~lh ~ Ie , l~AX ,1,1,1;
IF lMAX 1 IMIN THE~
T~AX 1= SC/(IMAX - r~lN);

J := "1;
FLH v := X STtp v U~TIL l DO

tlt:.GII\

E 1\ lH

T\;XS;:: I:::; SPACU
PH H v;
T := l~ALUES[J:=J+l] • TM1~) ~ TM~X • d;
IF J ~UU 10 :::; a THE(\,

r~X52(8) ;= (2 1 " •••• "] & TwXS~(t'42)
ELSE IWX52(8) := "."}
TwX52(T,1) := "*";
ftHITE I~)(;

E 1\ lH

PkIN ,1,/,/,/,/;
EXll: 1\j~wLTj\jE:= IHliE;

l~r~RPR£Tll\u := FAL~E;
Ei'd.) OF PLOTlEHi
, ~All\ PHOGRA~ StC1lUl\

PhII\T tREec FLNCTIU~ PLOTTER';
SIAk1:

PhINT #GG AHEAO.#,I;
I\EwLll\t := TMU~J GETI\ExT;

[51'11 f(,1-1

"fUNCTIUN", PROCE~U"EUEC ELSE
"LIST", PHINT PllST ELSE
"PLUTH, PLG'T~H lLSt
"UELETE", I~ hULL PLIST THEN

ELSE
P~ll\l 'fUNCTION LIST E~FTY#

tHo (d f\
UL 1= SMTA(CT~(II\F := PLIST»;
PL1ST 1= CUR PLl~TJ CDR I~F :~ ~'L;
PHl~T CAR INf, #uELEIEU*;
PUI'CGECI~F);
~EXTAVL(SVMHOL) :; ULJ
t.I'lO ELS~

"STOP", GU 1U EXIT)] , RE&TART~

GlJ 10 Sf Af'<Ti
RlS1Akl: p~INT #PlEASE "ETypE,; GO TO STAHl;
EXIT: PRI~T #E~U UF PHO~RA~.' ,/,/,1;
ENU.

RlC~ tL~cTlu~ PLCITEk
GU AHi:.AU.
f li 1\ (,; 1 ! lJ~' ~ (X) j

l:Rll~HI\ SII\(X)XCCS(x)lex+l)J
GU ~HI;AlJ.

PLu I ~

ENTER BEGINNING VALUE, INCREMENT, AND FINAL VALUE FOR THE PLOT
'IU,,21C

PLOt Cf FLX), X ~ C TO 10 IN STtHS IF .2
RA~Gl O~ f IS ·.lq86~ TU .2~126

o • • • • • • • • • • • • • • • • * •
• 2
• I.j

.6
• /j

1
1 .2
1 .4
1 .6
l.d

•
•
•
•
•
•
•
•
•

*
*

'II

*
'*

*
2 • • * •
2.2
~.4

2.6
~.d

3
3.2
3.4
3.6
3.8

'*
*
•

•
•
•
•
•

*
*

* ..
*

*
* 4 • * •

4.2
4.4
4.6
4.tl
!:t
!:t.2

•
•
•
•
•
•

* '*

*
*

*
*

•

~.4

~.o

~.c

b
b.~

6.<.1

b.o
fl.C
7
7. Co

7.4
l.e
1 • d
t"

o.~

t'>.4
8.b
e.d
If
Y.;'
':1.4
':I.t
9.~

ill

•
•
•

..
* ..

• • • • • • • • • • • • * • ..
..

..

..

..
..
*

· , .
.. ..
..

..

..
.. ..

..
• * • , •

(, L Po I"' I:. A Ij •

STet"
f.I\LJ lH ~RLr,f.<A"',

8-53

IX. GTL INPUT-OUTPUT FUNCTIONS

9.1 INTRODUCTION

In addition to the standard ALGOL Input-Output functions, GTL

contains a set of Input-Output functions which facilitates reading and

writing the GTL data types. The purpose of this section is to describe

in detail the operation of these Input-Output functions and to indicate

how they might be used with various kinds of files.

9.2 THE OUTPUT FUNCTIONS

9.2.1 Extended WRITE Statement

The syntax of the array row form of the ordinary Extended ALGOL

WRITE statement has been extended as follows: Any string variable (See Sub­

section S.l)which is not a formal parameter and which is longer than 8

characters in length may be used in place of an array row. The number of

words to be written is specified as in the array row form, instead of the

number of characters, since only multiples of 8 characters can be written.

For example, if LINE is a l20-character string variable and OUTFILE is a

IS-word output file, then

WRITE (OUTFILE , 15, LINE)

is a legal GTL construct.

9.2.2 The PRINT. PRIN, and TERPRI Statements

The PRINT (PRIN) statement consists of the word PRINT (PRIN)

followed by a list of one or more printable items which are to be writ­

ten on an output file. The output file is specified by the OUTPUT

statement (Subsection 9.3, below). The OUTPUT statement also specifies

an output string variable in which the printed output is composed,

9-1

the size of the output file, and the left and right margins. The PRINT

s,tatement will cause each item in the list of printable items to be

inserted into the output string beginning at the left margin. If the out­

put string is filled, i.e., the right margin is reached, before all of

the items have been printed, then the output string is written onto the

output file and output string composition process continues at the left

margin. When all of the print items have been inserted into the output

string the output string is written onto the output file.

The PRIN statement has the same effect as the PRINT statement except

that the output string is not immediately written unless the right margin

has been reached. Subsequent PRINT or PRIN statements will continue to

fill the partially composed output string instead of restarting at the

left margin. The TERPIn statement will cause a partially composed output

string to be written after a series of one or more PRIN statements. (The

PRINT statement is equivalent to a PRIN statement followed by the TERPRI

statement.)

When two or more printable items appear in a PRINT or PRIN statement,

they may be separated by one of three following print list separators:

1) One or more spaces, which causes two print items to be

printed without intervening spaces,

2) A comma, which causes two print items to be printed with

one intervening space, and,

3) A comma followed by a slash C', I"), which causes an implicit

call on the TERPRI function starting a new line of print before the next

item is printed).

For example,

PRINT 11 12, 13,/ 14

will cause the following to be printed (assuming 11, 12, 13, and 14 are

chosen to represent the symbolic output corresponding to the four

printable items),

1112 13

14

The kinds of items which may be printed are described in detail in para­

graphs 9.2.4 through 9.2.15 below.

9.2.3 The FORMAT Option

In addition to the PRINT and PRIN statements described above, there

are four optional forms of output functions. Anyone of the following

may precede the list of printable items:

PRINT FORMAT

PRIN FORMAT

PRINT FORMAT [~J

PRIN FORMAT [~J

where ae represents an arithmetic expression. The use of this FORMAT

option will cause the items to be printed to be spaced evenly across the

line. After a printable item is inserted into the output string

variable, spaces are inserted into the output string variable up to the

smallest multiple of the spacing factor, the value of~. If ae is not

given, the spacing factor will retain its previous setting (the spacing

factor is initially set to 15). In terms of the standard variable TAB

(described in paragraph 9.7.2), the equivalent of

PRIN SPACE(ae - (TAB MOD ae))

is executed after each printable item is composed and inserted into the

output string variable (paragraph 9.2.14). For example,

PRINT FORMAT [5J II 12 13 14

will cause the following to be printed (assuming II, 12, 13, and 14 are

chosen to represent the symbolic output corresponding to the four printable

items),

II 12 13 14

9.2.4 Literal String

A string to be printed, like a quoted string in a format statement,

may be enclosed in #'s. The character # itself may be printed by ###.

Two or more spaces in the string are reduced to one in the printed output.

For example,

4FTHIS IS A LITERAL STRINGf!

4NN!

4! X = #

The length of a literal string may not exceed 896 characters. If a

literal string will not fit into one line of output it will be divided

into two or more strings (the print mechanism will attempt to avoid

dividing a string in the middle of an identifier).

9-4

9.2.5 String Values

String valued printable items are string designators and string

assignment statements (Section V). If the string thus generated will not

fit into the output string, it will be divided in the manner described

in paragraph 9.2.4 above.

9.2.6 Real and Integer Values

Real and integer valued printable items are real and integer

variables, assignment statements, procedures and standard functions. The

maximum number of significant figures to be printed is initially set to 5;

it may be changed by the NTS function described in paragraph 9.2.16 below.

9.2.7 Alpha Values

Alpha variables, alpha procedures, and string constants (quoted

strings containing 7 or less characters) are printable items. They are

printed in standard alpha format (up to 7 characters in length).

9.2.8 Boolean Values

Any Boolean expression which does not begin with a conditional

expression is a printable item. The Boolean values TRUE or FALSE are

printed according to the value of the Boolean expression.

9.2.9 Double Precision Values

Double precision variables and assignment statements (Section III)

are printable items. The maximum number of significant figures is

initially set to 22; it may be changed by the NTS function described in

paragraph 9.2.16 below.

9-5

9.2.10 Complex and Double Precision Complex Values

Complex and double precision complex variables and assignment state­

ments (Section IV) are printab le items. If the imaginary part of the

complex number is zero, then only the real part is printed. If the real

part of the complex number is zero and the imaginary part is non-zero,

then only the imaginary part is printed. If the imaginary part is

printed, then it is preceded by a colon (:). If the complex number is

double precision, the remarks given in paragraph 9.2.9 above also apply.

9.2.11 LISP Values

LISP variables, procedures, and assignment statements, i.e., those

declared with the type SYMBOL, and the LISP field designators (Section VI)

are printable items. The item to be printed must have an S-expression

representation; the circular list described in Subsection 6.7, for

example, could not be printed.

9.2.12 Reference Values

Variables and procedures of type "reference" (Section VII) are

printable items. The contents of the records referenced by the reference

values are not printed. Instead, the record class identifier associated

with the reference value and the reference value itself are printed.

9.2.13 QMARK

QMARK is a printable item which causes the question mark (the "illegal

character") to be printed. It is provided since there would be no other

convenient way of inserting a ? into the output string.

9-6

9.2.14 SPACE

The SPACE function is a printable item which may be used in one of

the two forms:

SPACE

SPACE(ae)

where ae represents an arithmetic expression. If SPACE alone is used,

then one space is printed. If the other form is used, then the value of

the arithmetic expression ae determines the number of spaces to be

printed. If the value of ae is negative or zero, then nothing happens.

If the number of spaces to be printed extends beyond the right margin of

the output string, then the string of spaces is truncated at the right

margin, and does not extend onto the next line of print.

9.2.15 SKIP

The word SKIP used in the form

where ae is an arithmetic expression, is a printable item. It causes

spaces to be placed in the output string up to the point indicated by the

value of the arithmetic expression. For example, if the output string is

120 characters long,

PRIN SKIP(60)

causes spaces to be filled in up to the sixtieth character position in

the output string. If the output string has been filled to a point beyond

the position given by the value of the arithmetic expression, or if the

value of the arithmetic expression is zero or negative, then nothing

happens.

9-7

9.2.16 The NTS Statement

The NTS statement may be used in one of the three following forms:

NTS(~~, ae)

NTS (~~'k, ~)

NTS(aev, ~)

where ~ and ~ are arithmetic expressions. The first form of the NTS

statement will reset the value of the maximum number of significant

figures of a single precision number to be printed to the value of ae

(see paragraph 9.2.6). The second form of the NTS statement will reset

the value of the maximum number of significant figures of a double

precision number to be printed to the value of ~ (see paragraph 9.2.9).

The third form of the NTS statement will convert the value of the arith­

metic expression ~ into a string representing that value with a

maximum number of significant figures determined by the value of~

The string thus generated will be contained in the standard string

variable OUTSTR (see paragraph 9.6.1) and its length is given by LENGTH

(OUTSTR). For example,

NTS(123,5)

will cause the string "123" to be placed in the string designator

OUTSTR(O, LENGTH(OUTSTR))

where, in this case, LENGTH(OUTSTR) is equal to 3.

The string FILL statement (see paragraph 5.3.16) is similar to the

third form of the NTS statement and may at times be more convenient.

9-8

9.2.17 Conditional PRINT Statement

In addition to the preceding forms of the PRIN and PRINT statements,

the following "conditional" forms are allowed:

PRINT IF bexp THEN printlistl ELSE printlist2

PRIN IF bexp THEN printlistl ELSE printlist2

where bexp represents a Boolean expression, and printlistl and printlist2

are lists of printable items defined previously. These constructs are

equivalent to

IF bexp THEN PRINT printlistl ELSE PRINT printlist2

and

IF bexp THEN PRIN printlistl ELSE PRIN printlist2

respectively. For example,

PRINT IF X = 0 THEN #YES# ELSE #N~F

prints

YES

if X = 0 and otherwise prints

NO

9-9

9.3 THE OUTPUT STATEMENT

9.3.1 The Standard Form

The standard form of the OUTPUT statement, which may be used with any

output file, is

OUTPUT(outfi1e, outputstring, filelength)

where outfile represents an output file identifier, outputstring represents

a simple string variable, in which the output to be printed is composed,

and filelength represents an arithmetic expression the value of which

should be the length of the output file in characters. The output file

and simple string variable should be declared in the outermost block of

the program. The output file is declared by an ordinary ALGOL file

declaration. The simple string variable (Section V) is declared in the

form

STRING outputstring (g)

where E represents an unsigned integer which determines the length of the

string variable in characters. The string variable length should be at

least as long as the size of a logical record of the output file. With

this form of the OUTPUT statement, the left margin of the output string is

set to zero and the right margin is set to the value of the arithmetic

expression fi1e1ength. For example, given declarations

FILE OUT TAPE (2, 56, 10)

STRING TAP(80)

then the statement

OUTPUT(TAPE,TAP,80)

9-10

will cause the print mechanism to print successive logical records onto

the TAPE file. An OUTPUT statement need only be executed once during a

program, although it may be executed as many times as desired to change

files, output string and/or left and right margins. The remote terminal

output file (file type REMOTE), which is described in Reference 7, is treated

the same way as any other output file in ALGOL. The most important dif­

ference is the restriction of the character set which may be printed; the

remote terminal character set is given in Appendix B. Another difference

is that a carriage return, line feed is generated before every line of

printing. The other difference is the action taken when "break" or

"output impossible" condition occurs. If either of these conditions

occurs, the program is terminated with an error message. See Subsection

9.6 to avoid this action.

9.3.2 The Output Procedure

The name of an untyped procedure may be used in place of the output

file identifier in the OUTPUT statement. The statement has the form

OUTPUT (outpro, outputstring, filelength)

where outpro represents the procedure identifier, and outputstring and

filelength have the same meanings as defined in paragraph 9.3.1 above.

The output procedure will be called whenever the output string has been

filled or whenever TERPRI is called: it is assumed that the output

procedure will write the output string on some output file. The procedure

must be declared in the outermost block of the program, and must have no

formal parameters.

9-11

For example, given the declarations

FILE OUT OUTFILE 16(2,15)

STRING LINE (120)

PROCEDURE OUTPRO;

WRITE (OUTFILE, 15 ,LINE)

the OUTPUT statement

OUTPUT (OUTPRO, LINE, 120)

will have the same effect as the OUTPUT statement described in paragraph

9.7.2. This option is provided since it is sometimes desired to introduce

certain kinds of side effects.

9.3.3 Setting Left and Right Margins

There are three forms of OUTPUT statements which allow settings of

left and right margins in the output string variable to be filled by the

print mechanism:

OUTPUT(outfile, outputstring, file1ength, lmargin, rmargin)

OUTPUT (outpro, outputstring, filelength, lmargin, rmargin)

OUTPUT(*, lmargin, rmargin)

where outfile, outputstring, fi1e1ength, and outpro have the same meanings

as in paragraphs 9.3.1 anQ 9.3.2 above. Lmargin and rmargin represent arith­

metic expressions whose values determine the left and right margins in the

output string. The first OUTPUT statement given above is an extension of

the OUTPUT statement described in paragraph 9.3.1. The second OUTPUT state­

ment is an extension of the OUTPUT statement described in paragraph 9.3.2.

9-12

The third OUTPUT statement (the asterisk form) may be used after the execu­

tion of any OUTPUT statement to change left and right margins when there

is no change in the output string, and the output file or output procedure.

The value of lmargin determines the number of characters to be skipped in

the output string before any printable item is inserted into the output

string. The right margin determines the maximum number of characters, from

the beginning of the output string, which can be placed in the output

string before it is written (starting a new line of print). For example,

with the declarations

FILE OUT OUTFILE 16(2,15)

STRING LINE(120)

the output statement

OUTPUT (OUTFILE , LINE, 120, 8, 104)

will cause a line to be printed indented 8 spaces and will allow a maximum

of 96 characters on a line (i.e., there is a cutoff of 104 characters from

the beginning of the string LINE).

Warning: Since the output mechanism does not change the contents of

the output string to the left of the left margin and to the right of the

right margin, and since any string variable is initially filled with zeroes

when declared, the output string variable should be filled with spaces

before any print statement is used. This may be accomplished by the assign­

ment statement

outputstring:= SPACE

9-13

\

For example, referring to the example given above,

LINE:= SPACE

will prevent zeroes from being printed before the left margin and after

the right margin.

9.4 THE READ FUNCTIONS

9.4.1 Extended READ Statement

The syntax of the array row form of the ordinary Extended ALGOL READ

statement has been extended as follows: Any string variable (Section 5)

which is not a formal parameter and which is longer than eight characters

in length may be used in place of an array row. The number of words to be

read is specified, as in the array row form, instead of the number of

characters since only multiples of eight characters can be read. For

example, if CARD is an 80 character string variable and INFILE is a ten­

word input file, then

READ (INFILE,lO,CARD)

is a legal GTL construct.

9.4.2 The GTL Read Mechanism

When a GTL read function is called, one or more items of various kinds

are read from an input file. The input file is specified either directly

or indirectly (see Subsection 9.5). The read mechanism will fill an

input string variable (also specified by the INPUT statement) from a

logical record from the input file. The scanning process starts from a

left margin in the input string variable and continues until the right

9-14

margin is reached, at which point the input string variable is refilled

from the next logical record. The left and right margins of the input

string are also specified by the INPUT statement. The scanning mechanism

will scan the input string and extract one or more items depending on the

type of read function being used. Blank spaces serve as delimiters only

and do not contribute to the value of a read function (except in the

case of the SCAN function described below). There are five basic different

kinds of read functions provided which are described in paragraphs 9.4.3

through 9.4.7.

9.4.3 The SCAN Function

The SCAN function is an integer valued function having one of five

possible values depending on the contents of the input string variable

which it is scanning. The values of the SCAN function and their meanings

are given in the table below.

Value of SCAN

o

1

2

3

4

Meaning

one or more spaces scanned

an identifier was scanned

a digit string was scanned

one non-alpha character was scanned

end of file has been reached

The SCAN function will scan up to 31 spaces at a time so that a value of

zero does not mean that there are no remaining spaces; it simply means

that one or more spaces were seen. When an identifier, digit string, or

non-alpha character is scanned, the item scanned may be accessed through

the standard string variable INSTR (see paragraph 9.7.1). The length of

9-15

the item scanned by a calIon the SCAN function is given by LENGTH (INSTR) ,

so that the string scanned by SCAN is given by

INSTR(O,LENGTH(INSTR))

9.4.4 The READCON Function

The READCON function is an integer valued function having one of

five possible values depending on the contents of the input string

variable which it is scanning. The READCON function is called in the

form

READCON(bx)

where bx represents a Boolean expression. The value of bx determines

whether a multi-character identifier will be read as a string or LISP

atomic symbol. If the value of ~ is TRUE; then every multi-character

identifier is read as a LISP atomic symbol; otherwise, a multi-character

identifier is reported to be a LISP atomic symbol only if an atomic symbol

representing the identifier already exists. The values of the READCON

function and their meanings are given in the table below.

Value of READCON Meaning

0 end of file

1 number with exponent overflow (the
exponent is too large or too small)

2 number

3 LISP atomic symbol

4 multi-character identifier string

As indicated above, READCON can have a value of four only if the value of

its argument is FALSE. The value of an item read by READCON can be accessed

9-16

through the standard variables (see paragraph 9.7.1) INREAD, INDBL, INSYM,

and INSTR. If a number is read, its value is given by INREAL in a single

precision arithmetic expression, or by INDBL in a double precision expres­

sion. If a LISP atomic symbol is read, then its value is given by INSYM.

If a multi-character identifier is read, then its value is contained in

the string designator

INSTR(O,LENGTH(INSTR))

9.4.5 The READN Function

The READN function may be used to read numbers only. Its value is

the number which is read. If used in a single precision context, its

value is a single precision number; if used in a double precision context

(Section III), its value is a double precision number. If the item read is

not a number, its value is set to zero, and the standard variable INSYM

is set to the question mark character (otherwise INSYM is set to zero).

9.4.6 The READl Function

The value of the READl function, when used in a symbol expression,

is a LISP atomic symbol. This function is described further in para­

graph 6.10.2.

9.4.7 The READ Function

The value of the READ Function,when used in a symbol expression, is

a LISP S-expression. This function is described further in paragraph 6.10.2.

9-17

9.5 THE INPUT STATEMENT

9.5.1 The Standard Form

The standard form of the INPUT statement, which may be used with any

input file

INPUT (infi1e, inputstring, fi1e1ength)

where infi1e represents an input file identifier, inputstring represents a

simple string variable which the read mechanism will scan, and fi1e1ength

represents an arithmetic expression the value of which should be the length

of the input file (in characters). The input file and simple string

variable should be declared in the outermost block of the program. The

input file is declared by an ordinary ALGOL file declaration. The simple

string variable (Section V) is declared in the form

STRING inputstring(n)

where ~ represents an unsigned integer which determines the length of the

string variable in characters. The string variable length should be at

least as long as the size of the logical record of the input file. With

this form of the INPUT statement, the left margin of the input string is

set to zero (the scanning starts at the beginning of the string variable)

and the right margin is set to the value of the arithmetic expression

fi1e1ength, so that the read mechanism will scan the entire logical record

from the input file. For example, given the declarations (for a tape file)

FILE IN TAPE (2, 56, 10)

STRING TAP(80)

then the statement

INPUT (TAPE ,TAP,80)

9-18

will cause the read mechanism to scan from successive logical records from

the TAPE file. An INPUT statement need be executed only once during a

program, although it may be executed as many times as desired to change

files, input string, and/or left and right margins.

NOTE: The remote terminal input file (file type REMOTE), which is described

in reference 7, is treated the same way as any other input file in ALGOL.

The most important difference is the restriction of the character set

which may be printed; the remote terminal character set is given in Appen­

dix B. Another difference is that a message is sent after every READ

statement to give a carriage return, line feed. The other difference is

the action taken when "parity", "buffer overflow", and "input too long 11

occur. If any of these conditions occur, the program is terminated

with an error message. (See Subsection 9.6 to avoid this action.)

9.5.2 The Input Procedure

The name of a BOOLEAN procedure may be used in place of the input

file identifier in the INPUT statement. This statement has the form

INPUT(inpro, inputstring, filelength)

where inpro represents the BOOLEAN procedure identifier, and inputstring

and filelength have the same meanings as in paragraph 9.5.1 above. The

input procedure will be called whenever the scanning mechanism has

reached the right margin of the input string; it is assumed that the input

procedure will refill the input string variable from some input file and

will return a value of FALSE unless end of file is detected. The BOOLEAN

procedure must be declared in the outermost block of the program, and

must have no formal parameters. For example,

9-19

FILE IN INFILE(2, 10)

STRING CARD(BO)

BOOLEAN PROCEDURE INPRO;

BEGIN LABEL EOF, EXIT;

READ (INFILE , 10, CARD) [EOF]

GO TO EXIT;

EOF : INPRO: = TRUE;

EXIT:

END OF INPRO

Then the INPUT statement

INPUT (INPRO , CARD, BO)

will have the same effect as the first input statement described in

paragraph 9.B.l. This option is provided since it is sometimes desired

to introduce certain kinds of side effects (see paragraph 9.B.l).

9.5.3 Setting Left and Right Margins

There are three forms of INPUT statements which allow settings of

left and right margins in the input string variable to be scanned by the

read mechanism:

INPUT(infile, inputstring, filelength, lmargin, rmargin)

INPUT (inpro, inputstring, filelength, lmargin, rmargin)

INPUT (~~, lmargin, rmargin)

where infile, inputstring, filelength, and inpro have the same meanings as

in paragraphs 9.5.1 and 9.5.2 above. Lmargin andrmargin represent

9-20

arithmetic expressions whose values determine the left and right margins

in the input string. The first INPUT statement given above is an extension

of the INPUT statement described in paragraph 9.5.1. The second INPUT

statement is an extension of the INPUT statement described in paragraph

9.5.2. The third INPUT statement (the asterisk form) may be used after

the execution of any INPUT statement to change left and right margins when

there is no change in the input string variable, and input file or input

procedure. The value of lmargin determines the number of characters to be

skipped in the input string before beginning the scan of a logical record.

The value of rmargin determines the number of characters to be scanned

(from the beginning of the logical record) before continuing on the next

logical record. For example, with the declarations

FILE IN INFILE (2,10)

STRING CARD (80)

the INPUT statement

INPUT (INFILE, CARD, 80, 8, 72)

will cause the read mechanism to scan the first 72 characters from input

string CARD (filled from a logical record from INFILE) after skipping

over the first eight characters.

9.5.4 Sign-Number Separation

When using the read functions described in Subsection 9.4 (except for

the SCAN function), the sign of a number and the number itself are originally

read as one item (assuming there are no intervening spaces between the sign

and the number).

9-21

For example,

+125 -42

appear in the input string variable being scanned; then two numbers, the

first positive and the second negative, will be read. It is sometimes

useful, however, to be able to read a number and its sign separately.

This may be accomplished by inserting a comma followed by a slash followed

by a Boolean expression immediately before the right parenthesis in any of

the INPUT statements described above. If the value of the Boolean expres­

sion is FALSE, then a number and its sign (if any) will be read separately,

and vice versa. To be explicit, the following additional forms of INPUT

statements are allowed:

INPUT (infi1e, inputstring, file length , /bx)

INPUT(inpro, inputstring, fi1e1ength, /bx)

INPUT (infi1e, inputstring, fi1e1ength, 1margin, rmargin, /bx)

INPUT (inpro , inputstring, fi1e1ength, 1margin, rmargin, /bx)

INPUT(*, 1margin, rmargin, /bx)

where bx represents the Boolean expression, and infi1e, inputstring,

file length , inpro, 1margin, and rmargin all have the same meanings defined

in the previous paragraphs. When the sign separation option is used, the

two numbers given at the beginning of this paragraph will be read as four

separate items, the first and third items being the LISP atomic symbols +

and - (SectionVI). The primary purpose for this option is that of facili­

tating the parsing of arithmetic expressions via the GTL Input mechanism.

9-22

9.6 REMOTE TERMINAL INPUT-OUTPUT

9.6.1 The FILE REMOTE Declaration

The declaration FILE REMOTE may be used in a GTL program to declare

a remote terminal file. It is a pseudo-declaration which takes the place

of the usual pair of file declarations, and the associated input and out­

put string declarations and the INPUT and OUTPUT statements; it is equiva­

lent to the following declarations and statements:

FILE IN TWXF1 REMOTE (2,17) ;

DEFINE TWXF2 = TWXF1#;

STRING TWXS1, TWXS2(136)

INPUT (TWXF1, TWXS1, 136);

OUTPUT (TWXF2, TWXS2, 136,0,72)

There are, in addition, other forms of the FILE REMOTE declaration

which are variants of the following basic form:

FILE REMOTE (file length in characters, outputstring right margin,

WAIT wait time, break label,

input time-out label, input overflow label,

output impossible label,

abnormal input condition label,

input end-of-fi1e label, input parity label,

input buffer overflow label)

where file length in characters is the length of the file in characters, and

the length of TWXS1 and TWXS2 in characters, outputstring right margin is the

9-23

right margin of TWXS2. The maximum length of TWXSl and TWXS2 is 136 characters.

Wait time is the maximum time the system will wait for a response after an

input message is requested (in seconds--must be an unsigned integer--

maximum time is 300 seconds). Break label is the label specifying the

location of the next statement to be executed after the "break" key is

depressed on the remote station; after detecting a "break" condition, the

program must READ from the terminal to clear the break--the remote user

should just enter a left arrow. Input time-out label is the label preceding

the statements which determine the action to be taken if the wait time is

exceeded; input-overflow label is the label to which the system transfers

if the input message exceeds the length of the input string; output

impossible label is the label to which the system transfers if it becomes

impossible to write on the remote terminal file. The abnormal input con­

dition label is the label to which the system transfers if it becomes

impossible to read from the remote terminal file. Input end-of-file-label

is branched to when the user types ?END on the remote terminal; input

parity label is transfered to when a parity error is detected on a READ;

and input buffer overflow label branches to that label, indicating a buffer

overflow has occurred during a READ. Any of the components of the FILE

REMOTE declaration may be deleted, with two restrictions: (1) since the

GTL compiler determines the meaning of a label by its relative position in

the sequence of labels, they may be deleted only from right to left; the

absence of a label contained in a sequence of labels may be indicated by

placing an asterisk in the corresponding position; (2) if only one unsigned

integer is specified, then it is assumed to be the file length in characters;

to specify the outputstring right margin only, the file length in characters should

9-24

be replaced with an asterisk. For example,

FILE REMOTE (break label, *, input overflow label)

FILE REMOTE (*, 136, input end-of-file label)

The effect of deleting various components of the FILE REMOTE declaration

is indicated in the table shown below. In the case of labels, it is

assumed that the condition which affects a transfer to the label in ques-

tion has occurred.

MISSING COMPONENT EFFECT ON PROGRAM

file length in characters set to 136 characters

outputstring right margin set to 72 characters

wait time set to 300 seconds

break label GTL run time error 4F19

input time-out label GTL run time error 4F16

input overflow label "INPUT TOO LONG. RETYPE"

output impossible label GTL run time error 4/:9

abnormal input condition label GTL run time error 4/:17

input end-of-file label GTL run time error 4/:18

input parity label "PARITY ERROR. RETYPE"

input buffer overflow label "BUFFER OVERFLOW. RETY PE"

In the case of input overflow label, input parity label, and input buffer

overflow label, the system automatically types the indicated message and

then waits for more input from the terminal. The program cannot detect

when the system does this, nor does it need to know, because recovery is

handled for the user by the system. Under the Time Sharing MCP, all

information after outputstring right margin i;; ignored.

9-25

Any labels appearing in the sequence of labels in the FILE REMOTE

declaration need not be previously declared; they are declared by default.

The FILE REMOTE declaration must occur in the outermost block of the

program, preferably immediately following the BEGIN.

9.6.2 FILE REMOTE Side-effects

A few side-effects occur when the FILE REMOTE declaration is used.

They are listed below.

1) The left margin related to output is set to zero, and the

right margin is set to 72, or the length of·the outputstring right margin, if

specified. A non-zero left margin may be set by

OUTPUT (TWXF2 , TWXS2, file length in characters, Imargin, rmargin)

where lmargin and rmargin are unsigned integers.

2) The FILE REMOTE mechanism causes the printing device to be

positioned at the 'beginning of a new line before the printing starts .. '

3) The left margin related to input is set to zero, and the

right margin is dynamically set to the number of characters received in

one transmission. A non-zero left margin may be set by

INPUT (TWXF1, TWXSl, file length in characters, lmargi~

where lmargin is an unsigned integer.

4) A psuedo end-of-file indication is normally returned after

each remote terminal message, thus providing non-programmatic "punctuation"

between remote terminal entries. Thus, in the case of SCAN and READCON

(paragraphs 9.4.3 and 9.4.41 an end of file is indicated every other time

9-26

the function is called. In the case of READN, READ 1 , and READ (para­

graphs 9.4.5 through 9.4.7), INSYM will contain a question mark character

on every other read. Thus the following would read an S-expression from

the terminal, L assumed to be type SYMBOL:

WHILE L .- READ EQ QMARK DO;

Whenever a real end-of-file occurs ("?END"), it can be accessed by using

an end-of-file label in the FILE REMOTE declaration (see paragraph 9.6.1).

To have control over the psuedo end-of-file the programmer should execute

INPUT (booid)

where booid is a previously declared Boolean variable. As long as the

value of booid is FALSE, the end-of-file condition will be returned; if

booid is set TRUE, then the psuedo end-of-file is turned off.

5) If, after declaring FILE REMOTE, and having executed either

an INPUT or OUTPUT statement to change the file type, it is desired to

change back to the implicitly declared files of FILE REMOTE, then the

following INPUT and/or OUTPUT statements may be used.

INPUT (TWXFl, TWXS 1, file length in characters)

OUTPUT (TWXF2 , TWXS2, file length in characters)

9.6.3 READ and WRITE Statements

Ordinary ALGOL READ and WRITE statements may be used with the remote

terminal file declared by the FILE REMOTE declaration if the implicitly

declared input and output string variable identifiers TWXSI and TWXS2 are

used in place of the file identifiers. For example,

9-27

READ (TWXS 1, FORMATID, LIS TID)

WRITE (TWXS2 , FORMATID, LISTID)

The effective "file size" is determined by the lengths of the input and

output strings.

9.6.4 READ TWX

The use of the statement READ TWX will cause the input string variable

to be refilled with a remote terminal message regardless of what portion

of the previous message has been scanned. Also, any remaining positions

in the input string variable beyond the end of the input message are

filled with spaces. For example, the following program segment will trans­

fer successive remote terminal messages to a disk file (DISC) until the

first character of the message is found to be an asterisk.

READ TWX;

WHILE TWXS 1 (0,1) 1= "~'c" DO

BEGIN

WRITE(DISC,9,TWXS1);

READ TWX

END

9.6.5 WRITE TWX

The statement WRITE TWX will cause the contents of the output string

variable to be written onto the remote terminal. It is equivalent to the

two statements:

TAB .- 72; TERPRI

9-28

For example, the following statements will write the contents of a disk

file (DISC) onto the remote terminal:

WHILE TRUE DO

9.6.6 READN(TWX)

BEGIN

READ(DISC,9,TWXS2)[EOF];

WRITE TWX

END;

EOF:

The function READN(TWX) is a special remote terminal version of the

READN function (paragraph 9.4.5). This function is used for reading num­

bers from the remote terminal input message. It will ignore anything in

the message which is not a number. If it reaches the end of a message

without finding a number, it will print a question mark, followed by a

space, and wait for a new message •. For example, if the remote terminal

message initially contains

235

then three successive calls on READN(TWX) will yield the three numbers.

A fourth call will cause a question mark to be printed, and the system

will wait for another number.

If READN(TWX) is used in a double precision context, its value will

be a double precision number (see Section 3).

9-29

9.6.7 READN(TWXA)

The function READN(TWXA) works like READN(TWX) except that it returns

alphanumeric strings and special characters, and ignores numbers. If an

alphanumeric string exceeds 7 characters in length, it is truncated to

the leftmost 7 characters.

Example:

PRINT 7'FCONTINUE 1f;

IF READN(TWXA) " ''YES'' THEN GO TO EXIT

9.6.8 TWXNUM

The function TWXNUM is a Boolean-valued function which combines the

functions of READN(TWX) and READN(TWXA). Its value is TRUE if a number

is read, and FALSE otherwise. In either case, the resulting value will

be contained in the standard variables INREAL and INDBL.

Example:

L: WHILE TWXNUM DO AR[I := I + lJ := INREAL:

IF INREAL " "STOP" THEN GO TO L;

9.6.9 Conversational READ Statement

A familiar problem in writing remote terminal programs concerns the

process of getting data into the program in a conversational fashion.

Typically, the program prints a key word and reads the response from the

user for each piece of data required. This construct simply helps

mechanize this process. The syntax is as follows:

READ [Vl, V2,---,VN]

where VI, V2,---, VN are each simple variables of type SYMBOL, BOOLEAN,

ALPHA, REAL, or INTEGER. Strings and subscripted variables are excluded.

9-30

For each variable in the list, the name of the variable (up to 7

characters) is printed, followed by "=11 and a"?". Then a value is read

from the terminal.

The following table shows the variable types and the corresponding

value type that is expected:

SYMBOL

BOOLEAN

REAL

INTEGER

ALPHA

atomic symbol (READl)

numeric (READN(TWX))

numeric (READN(TWX))

numeric (READN(TWX))

alphanumeric (READN(TWXA))

If the proper value type is not entered the program types another "?" and

reads from the terminal again.

For example, the following GTL program fragment:

BEGIN

ALPHA A; BOOLEAN B; INTEGER I; REAL R; SYMBOL S;

FILE REMOTE;

READ [A, B, I, R, S]

produces the following at run time:

9-31

A =:: ?

100 <-

?

ABCDE <- (note ALPHA expected)

B ?

o <- (1 =:: TRUE, 0 =:: FALSE)

I ?

ABC <-

?

10 <­

R =:: ?

(note INTEGER expected)

10.2 <-

S =:: ?

ATOMICSYMBOL <-

9.7 STANDARD VARIABLES AND SYSTEM CONTROL PARAMETERS

9.7.1 The Standard Variables

The GTL language contains a set of six standard variables whose

values reflect, and sometimes control, the operation of the GTL Input­

Output mechanism. These variables, which are not declared in a GTL pro­

gram, may be used in any context appropriate for the type of the variable.

The names of these variables and their types are illustrated by the

following declarations:

9-32

INTEGER TAB, COL

REAL INREAL

DOUBLE INDBL

SYMBOL INSYM

STRING INSTR(3l), OUTSTR(64)

If any of these variables were actually declared in a GTL program, such

declarations would override the implicit declarations and they could no

longer have any special meaning. The staridard variables INREAL, INDBL,

INSYM, and INSTR are used to return the values of real numbers, double

precision numbers, atomic symbols, and strings, respectively, which are

read by the SCAN and READCON functions (paragraphs 9.4.3 and 9.4.4). The

string variable OUTSTR is used primarily to return the string represen­

tation of a number converted by the NTS function (paragraph 9.2.16). The

variables TAB and COL are discussed in the next paragraphs.

9.7.2 The Standard Variable TAB

The value of the standard variable TAB is equal to the current num­

ber of characters inserted into the output string variable by the output

system. The only valid values of TAB are 0 to output string length,

inclusive. At the beginning of a line of print, TAB is set to the left

margin. When the string of characters representing a printable item is

inserted into the output strnng, the value of TAB is increased by the num­

ber of characters inserted. Ordinarily, whenever the TERPRI function is

called, either implicitly at the end of a PRINT statement, or explicitly,

the statement

PRIN SPACE (RM - TAB)

9-33

where RM represents the right margin, is implicitly executed, and TAB is

reset to the right margin. An example of the use of TAB is the following

procedure which is used in a GTL program which produces flow charts from

GTL programs:

PROCEDURE CLEAR(A,B); VALUE A,B; INTEGER A,B;

BEGIN

TAB := A;

PRIN SPACE (B - A);

TAB := RMARG;

TERPRI

END OF CLEAR

This procedure has the effect of repeating the previous line of print with

spaces filled in between the character positions A and B in the output

string variable. The value of RMARG (see paragraph 9.7.4) is the current

right margin in the output string variable.

9.7.3 The Standard Variable COL

The value of the standard variable COL is equal to the current number

of characters in the input string which have been scanned by the read sys­

tem. The only valid values of COL are a to input string length, inclusive.

9-34

When a logical record from an input file has been transferred to the

input string variable, COL is set to the left margin of the input string

variable. Each time a GTL read function reads an item, COL is increased

by the number of characters read. This process continues until COL equals

the right margin of the input string variable, at which point a new logical

record is read from the input file and COL is reset to the left margin.

When an INPUT statement is executed COL is set to the right margin, so

that a logical record will be read before the scanning begins. An example

of the use of COL is the following procedure which scans a quoted string

from a card. In this procedure, which uses GTL string constructs (Sec­

tion 5), it is assumed that CARD is the input string variable, T is a

global integer variable, and that left and right margins are 0 and 72,

respectively. It is further assumed that a quote mark has just been read.

PROCEDURE SCANQ;

BEGIN

T := COL - 1;

WHILE CARD (COL . - COL+l, 1) " 111'" AND COL ~ 72 DO;

COL := COL + 1

END OF SCANQ

The quoted string, including the quote marks, will be found in the string

designator

CARD(T,COL-T)

9.7.4 System Control Parameters

The values of certain control parameters used by the GTL Input-Output

system may be accessed by a standard function called CONVAL. The CONVAL

9-35

function is used in the form

CONVAL(n)

where n represents an unsigned integer whose value designates the desired

control parameter. Some of the values of n which may be used and the

corresponding values of CONVAL(n) are listed in the table given below:

n

2

3

4

13

14

15

16

17

18

19

20

21

22

23

24

value of CONVAL(n)

maximum number of Significant figures in single
precision printed numbers

maximum number of significant figures in double
precision printed numbers

sign-separation control (see paragraph 9.5.4)

left margin of output string variable (same as LMARG)

left margin of input string variable (same as LMARGI)

right margin of output string variable (same as RMARG)

right margin of input string variable (same as RMARGI)

equals ° if OUTPUT statement has been executed;
1, otherwise

equals 1 if INPUT statement has been executed;
0, otherwise

number of words in output logical record

number of words in input logical record

equals 1 if output procedure is being used; 0, otherwise

equals 1 if input procedure is being used; 0, otherwise

same as LENGTH(OUTSTR)

same as LENGTH(INSTR)

9-36

The values of the GTL margin control parameters may be accessed

through the following standard variables:

Standard Variable Meaning

LMARG left margin of output string variable

RMARG right margin of output string variable

LMARGI left margin of input string variable

RMARGI right margin of input string variable

CONVAL
Number

13

15

14

16

The asterisk forms of the INPUT and OUTPUT statements can be used to

change the left and right margins (refer to paragraphs 9.3.3 and 9.5.3).

9.8 SAMPLE INPUT AND OUTPUT STATEMENTS

9.8.1 Card Reader

In order to read from cards the following declarations could be made:

FILE IN INFILE(2,10)

STRING CARD (80)

If the entire card is to be scanned, then the following INPUT statement

INPUT(INFILE, CARD, 80)

could be used. If the input cards are sequenced, then the following

declarations could be used to check for the ordering:

STRING CARD(72,SEQ(8),OLDSEQ(8))

BOOLEAN PROCEDURE INPRO;

BEGIN LABEL EOF, EXIT;

READ (INFILE, 10, CARD) [EOFJ;

IF SEQ < OLDSEQ THEN PRINT #SEQUENCE ERROR#, CARD;

OLDSEQ := SEQ; RETURN FALSE;

EOF: RETURN TRUE ;

EXIT: END OF INPRO

9-37

In this case the INPUT statement should be

INPUT (INPRO, CARD, BO, 0, 72)

9.B.2 Line Printer

In order to print on a line printer, the following declarations

could be made:

FILE OUT OUTFILE 16 (2,15)

STRING LINE(120)

to be used with the OUTPUT statement

OUTPUT(OUTFILE, LINE, 120)

90B.3 Remote Terminal Files

In order to use the remote terminal files the following declarations

could be used:

FILE IN Fl REMOTE(2,17)

DEFINE F2 = Fl#

STRING STRl, STR2 (136)

Then the following INPUT and OUTPUT statements could be used:

INPUT(Fl, STRl, 136)

OUTPUT(Fl, STR2, 136,0,72)

STR2(72) := SPACE

Also the following form could be used,

FILE REMOTE

with many variations given in Subsection 9.6.

9-3B

9.S.4 Listing of Input Cards

If a listing of the card input file on the PRINTER file is desired,

then the following additional declaration is suggested:

BOOLEAN PROCEDURE INPRO;

BEGIN LABEL EOF;

READ(INFILE,lO,CARD)[EOF];

WRITE(PRINTER,lO,CARD);

RETURN FALSE;

EOF: RETURN TRUE;

END OF INPRO

Then, in place of the INPUT statement given in paragraph 9.S.1 the following

statement should be executed before using READ or READ1:

INPUT (INPRO ,CARD,SO)

These changes will cause each data card read by the program to be printed

on the line printer.

9-39

APPENDIX A

EXAMPLES OF GTL PROGRAMS

Four examples of GTL programs are listed in the following pages. They
I

are not intended to be examples of practical applications, but merely serv~

to illustrate some aspects of the GTL language. Other examples are

included in Subsections 3.8, 4.9, 6.25, 7.6 and 8.8.

A-l

String Processing Example

B£Gl~
CUMME~J THIS PRUGHAM MEkGES TWO CARD IMAGE TAPES ACCORCI~G TO

SEQUENCE NUMBER.

FIRST TAPE ALREADY HAS SE~UENCE NUM~EHS • SEQLE~Ct ~UM~EkS
FOR SECONU TAPE SP~CIFIEO AT INTEHVALS BY CARD I~AGES
wHICH ~EGI~ WITH A "!" CONTAINING STAHTl~G SEQUt~cl ~UM~EH
ANO INCREME~TAL VALUE. IF COLUM~ POS!TIO~S 71 A~C 72
ON UNSEGUEN~EO CAkUS ARE ~LAN~, "'A" IS I~SERTEO;

FILl I~ TAPEI (~,~6,10)J
fILl !N TAPE2 (~,~6,IO)J
SAVE FILE OUT TApE3 (2,~6,IO,SAVE lU»)
STRINu CARDI(72,SEQ1(8»,

LA~EL

Lli
L2:

EOFa
[NO,

CARD2(72,~E~2(8), NE~SEQCINCR(8),SEQCd»)J
LI,L2,EOFJ
READCTAPE1,lO,CARU1)[EOF1)
REAUCTAPE2,lO,CARD2)J
If CARD2CO,1) = "$" THEN

BEGIN NEWSEw := CARD2C64,l6)J GO TO L2 ENU;
SEQ2 a= SEQ; COMMtNT SET SEQ2 TO CURHENT SEQ NOJ
SEQ .= + INCR; COMMENT INCREMENT CURRENT SEQ NO;
WHILE SEQl LSS SE~2 DO

BEGIN
WRITECTAPEl,lQ,CARD1);
READ(lAPE1,IO,CARDI)J
E~D;

If CAR02(70,2) =" "THEN CAAD2(IO,2) sa "IA"J
WHITE(TAP£3,10,CAA02);
IF SEQ! = SEQ2 THEN GO TO II ELSE GO TO l2J

A-2

Lisp Processing Example

BlGIN
CUMMENT THIS PRUGRAM TAKES THE FIRST OF T~O LISTS,

REVERSES IT AND AODS THE SECOND LIST TO ITI
FILL REMOTE;
SVMdOL Ll,L2J
SVM~OL PRUClDuRE HEVANDAUO (X,Y)J VALUE X,VI SY~BOL X,Vi

REVANOAUO ,. IF NULl(X) THEN V ELSE
REVANOAUDCCUk(X),CONSCCAR(X),Y»;

LABEL EDr,STARTS
PHI~T 'GO AHEAD',li
STARTI wHILE Lila READ lQ QMARK 001

IF Ll EQ "STOP" THlN GO TO EOFJ
WHILE L21a READ EQ QMARK DOJ
PRINT 'THE NEW LIST IS , REVANDAOD(Ll,L2),I,/J
GO START;

EOFI
END.

EKEeU1E REVADD
HUNNING

GO AHlAO
(THIS IS A LIST)S
(THIS IS ANOTHER LIST)S
THE N£~ LIST IS (LIST A IS THIS THIS IS AN01HER LIST)

(THIS (IS A) (COMPLEX (LIST»)!
(THIS IS A SIMPLE LIST)S
THE NEw LIST IS «COMPLEX (LIST» (IS A) THIS T~IS IS A SIMPLE L!Sl)

(REVEKSE IS THIS)S
(UF A LIST)S
THE NEw LIST IS (THIS IS REVERSE OF A LIST)

STOP

END HEVADD 1.1 SEC,

A-3

Lisp Processing Example

BEGIN
CUM~E~T THIS PHO~HAM# US1NG LIST PHOCESSINij# ACCEPTS

SYN1AX HULES AS INPUT# AND ~ILL PROOUCE R_~DO~ GE~ERATEO
STRUCTURES ~HICH ARE SYNTACTICALLY CORRECT. TO
INPUT A HULE# THE COMMAND "RULE" IS FOLLOwED FIRST 8Y
THE NAME Uf T~E RULE AND THEN ITS UEFINITION.
A RULE IS ANY COM~lNATION OF EITHER
~ULE NAMES# ~~ETHEH PREVIOUSLY UEFINEC OR NOT, UR A~

"ATOM". (AN "ATOM" IS AN ATOMIC SYM~GL AS DEFINEC IN
SECTION 6.12). ALTERNATE RULES MAy ~E 5EpARATEU
BY A SLASH(/) WHICH MEANS "OR".
THE SYNTAX OF "RULES" IS SHO~N BELOw,

SPECIFICATION I.- ATOM I ATO~ SpECIFICATl~N
RULl ••• SPECIfICATION I SPECIFICA1ION "I" HULl
RULlNAME II: ATOM
RULlS la= HULENAME RULE

TO GENERATE RANDOM STHUCTURES FROM THE RULE SPECIFICATIO~S
1HE COMMAND "GENERATE""INTEGER" "HULE NAME" WILL CAUSE
"INTEGER" RULE NAMES TO BE GENERATED
ACCORDING TU THE SPECIFICATION OF THE "RULE NAME".
TO STOP THE PROGRAM "STOP" SHOULD 8E ENTERED.
AFTER EVEHy COMMANO# "GO AHEAO" IS PRINTEc ANC THE
PROGRAM ~AI1S FOR MORE COMMANDS FROM THE TERMINAL;

FILl kEMOIEJ
SYMtlOL Ri
REAL. Xi
LA~EL LJ
SYM~OL PRUCEDURE HULEJ

RULE a= IF k .= READl EQ "I" OR R EQ ~MARK THEN NIL ELSE R • HULE;
SYMBOL PROCEDURE HULESi

RULES a= HULE • (IF R EQ "I" THEN HULES ELSE NIL»)
PHOCEUURE GEN(X)J

VALUE XJ
SYMSOL X;
IF NUMBER~(X) OR NULL(COR(X» THEN

BEGIN
If X NEQL ~EMPTY" THEN PRIN X SPACE;
END

ELSE fOR X IN RANuUMCCOR X) DO GENCX)J

COMMENT PROGRAM STARTS HERE.

LI PRINT ,GO A~EAD.'#IJ
READ TWX;
IF R ,. RlAUi EQ "HULE" THEN

;

00 CDR(READ1) •• RULES UNTIL R EQ Q~ARK
ELSE
If R EQ ~GENERATE" THEN

A-4

~EGIN
X ,11 kE~IJN(T~X);

R .- HEAUli
FOR X 00 BE~lN GENCR); TERPHI; lNO;
END

f.LSf.
. IF k EQ "STOP" THt.N

BEGIN PRl~T 'EOJ"I,I,I; EXIT; [NO
ELSE PRINT 'ILLEGAL I~PUT'i
GO TO Li

END.

EXECUTE SENGE~

-tHiJ- OSENGEN
GU AHI::.AD.
RULI::. SuBJECT ~AHRY/SUSI£/RECC/B5500/GTL
GU AHf.AD.
RULI::. VERB LOVES/HATES/RUNS/PROCESSES
GO AHlAD.
HULl ADVERB REALLY/MOSTLY
GO AHI:.AD.
RULt:. ACTION VER~/AOVER~ VERB
GO AHE.AD.
RULE O~JECT SUBJECT
GO AHEAD.
RULE SENTENcE SUBJECT ACTI0~/SUBJECT ACTION OBJECT
GO AHEAD.
GENERATE 25 SENTENCE
GTl PROCESSES RECC
B5500 REALLY PROCESSES
~ARRY REALLY RUNS
GTl PHOCESSES
REce REALLY RUNS ~ARRY

SUSIE HATES BARRY
GTl HAlES SUSIE
85500 REALLY RUNS
REce ~OSTlY LOVES RECC
GTL PROCESSES
GTL REALLY LOVES
GTL Rf.ALLY RUNS
HARRY RUNS
SuSIE REALLY RUNS
HARRY REALLY RUNS
B5500 REAllY RUNS
GIL PROCESSES
BARRY REALLY PROCESSES
BARRY MOSTLY PROCESSES
RECC LOVES
REec REALLY LOVES B5500

A-5

SUSIE RUNS SUSIE
SUSIE PROCESSES B~500
HARRY REALLY PRUClSSlS HtCC
BARRY RlALLY LOVES
GO AHE.AD,
STOP'
EOJ

Syntax-Directed Parsing Example

BlGl~
COMME~T A SY~TAX-OIRECTEU PARSI~G PAOGAA~ USI~G THE RE~C1E TEHMI~AL.

THIS PROGHAM PROOUCES REVERSE POLIS~ FRO~ ANY ARITH~ETIC
EXPRESSION, THE COMMAND "POLISH" fOLLOwEC BY AhY ARITHMtT1C
EXPRESSION wILL ~ESULT Ih THE PRINTI~G OF THE POLISH Of
THAT EXPRESSIOh. A~ OPTIONAL TRACE FEAT~RE IS I~CLUDlU. tHE
CUMMAND "1HACE Oh" wILL TURN THIS FEA1URE O~I T~LS GIVING
A THACE OF THE PAHSING Of THE ARITH~ETIC EXPRESSIC~ INTU
POLISH. TO TUHN THE TRACE OFF THE COMMAhC "TRACE OFF" I~
USED. TO slap THE PRUGRAM 1 THE USER ENTERS "STOP" A~U lHE
PROGRAM GUES TO ENU.Of·JO~. ANy OTHEH INPUT CR
AN ILLEGAL ARITHMETIc EXPRESSION RESULTS I~ A~ ERkUR
MESSAGE. AFTEH COMPLETING A COMMA~D OR OETECTI~G A~
EHROR~ THE PROGRAM PRINTS "GO AHEAD" AND ~AITS fOR A~OTHEH
COMMAND FHOM THE TERMINAL;

flLl HEMOTEJ
REAL CLASSJ , THE CLASS VARIAdLE
HOOLE AN THACEi * THE TRACE VARIAdLE
LAdEL START~ERRUR;
SYMdOL FORMAT i SYNTACTICAL CLASS ASSIG~ME~T

*0
= VARIABLE
* NUMBER
* "C"
* ")"
* "*" * "x"
* "I"
* "+"
* "-" * "POLISH"
* "TRACE"
* "ON"
* "OFF"
* "STOP"
* ·EOFi

REAL fIELD CDRf [33115];
I
ITHE "GET~EXT" PROCEDURl
I
PHOCEUURE GET~EXTI

CLASS I- CASE READCONCrALSE) OF
BEGIN
EDFS , THE ENe-Of-FILE CLASS (SECTION 9.6,2)
NUMBERS I ILLEGAL NUM~ER CLASS
~UM~ERJ I NUMeER CLASS • NUMBER I~ I~REAL
CORfCINSYM)11 ATOMIC SYMBOL CLASS
VARIABLES I NOT ON SYMBOL TABLE - GIVE VARIABLE CLASS
ENOS
COMMENT

A-7

NOW TELL THE COMPILER THE NAMES OF THE GE1~EXT PRC'EDUHE~
WHICH VARIA~LE IS rHE CLASS VARIABLE A~O
THAT THE TRACl OPTION IS UESIREO. NOTE TrAT THE EkROk
OPTION 15 NOT HEI~G USED IN THIS ~XAMPLEJ

SYM~Ol FORMAT *ClASS~ GEINEXT~ TRACEJ
SYMbOL FORMAT A~XPJ FORwARDJ
SYM~Ol FORMAT PHIMARYJ

[VARIABlEI PRIN I~5YM SPACE ELSE
NUM~ERI PRIN INREAl SPACE ELSE
"("~ *AEXP~ ")" JJ

SYMbOL fORMAT FACTORJ
[·PRIMAAY~
L"."~ *PRIMARY~ PAIN '* IJ RETURN ELSE NILl]J

SYMbOL fORMAT TlRMJ
~EGIN
~OOLEAN TIMESJ
[*FACTOR~
L"X"*"I"a TIMES .= CLASS = ="x"1
*FACTOR~ PRlN IF TIMES THEN 'x , ELSE 'I II
RETURN ELSE NILllI
ENDJ

SYM~OL FORMAT AlXPI
BEGIN
REAL MINUS;
t·TERM~
["+"*"-"1 MINUS ,= CLASS;
*TERM~ PRIN IF MINUS - -"-" THEN ,- , ELSE ,+ "
RETURN ELSE NILJ];
END;

COMMENT PROGRAM STARTS HEREJ
PRINT 'RECC POLISH GENERATOR'J
GETNEXTJ

STAkTltEOfl PRINT 'GO AHEAD'~I ELSE
"POLISH"~ *AEXP~ TERPRI ELSE
"TRACE"~

["ON"*"CFF"' TRACE .= CLASS - -"ON";] ELSE
"STOP"~ PRINT 'GOUD 8YE'~/~/~/J EXITJJIERRORJ
GO STARTJ

ERRURIPRINT 'ILLEGAL SYNTAX OR COMMAND';
COL .= RMARGIJ GETNEXT; GO STARTJ

END.

RUN

-HUJ- OPOLISH
RECe POLISH GENERATOR
GO AHlAO
POLISH (A+B)x(C-O'

A-8

A t;; + C 0 -)C
GU AHE.AU
THACE ON
GU AHt:.AO
POLISH (A+8»)C(C-O)

CALL AEXP

CALL TEHM

CALL fACTOR

CALL PRIMARY

CALL AEXP

CALL TERM

·CALL FACTOR

CALL pAIMAHy
A

PRIMARY :II 1

fACTOR ;; 1

TlRM ;; 1

CALL TERM

CALL FACTOR

CALL PRIMMq
B

PRIMARY ;; 1

fACTOR ;; 1

H.RM = 1
+

AEXP ;; 1

PRIMARy :II 1

FAC10H = 1

CALL FACTOR

CAL.L PRIMARY

A-9

C

o

-

)(

CALL AEXP

CALL TERM

CALL FACTOR

CALL PRIMARY

Pkh1ARY = 1

F'ACIOR = 1

rt.RM = 1

CALL TERM

CALL FACTOR

CALL pRIMARY

PRIMARY = 1

FACTOR = 1

HRM = 1

AEXP = 1

PH!MARY = 1

fAC10R = 1

TERM = 1

AEXP = 1

GO AHEAD
POLlSH (A+(~*C)/D)+E*f

CAL.L AEXP

CALL TERM

CALL, FACTOR

CALL PRIMARY

CALL AEXP

CAL.L TERM

A

C

*

o

I

CALL FACTOR

CALL PRIMAI1Y

PHIMARY = 1

FACTOI1 = 1

It.R~ = 1

CALL TEHM

CALL FACTOR

CALL PRIMARY

CALL AExp

CALL TERti

CALL FACTGR

CALL PRIMARy

PRUJAfiY = 1

CALL PRIMARy

PAI.,AAY = 1

FACTOR = 1

TER~ = 1

AE)(P. 1

PAIMARY = 1

FACTOA II 1

CALL FACTOR

CALL PRIMAHY

PRIMARY:: 1

FACTOR II 1

TERM II 1

A-U

+
AEXP = 1

PMH'ARY = 1

FACTOi'< : 1

T!:..RM : 1

CALL TE.HM

E

F

*

CALL FACTOR

CALL PRltvlARy

PRIMARY: 1

CALL PRIMARY

PklMAR'(= 1

FAClON = 1

TERM = 1
+

At:.XP = 1

GO AHt:.AD
TI'IA<.;E OFf
GU AHEAD
POLISH (A+(B*C)/D)+E*F
AbC * 0 / + E F * +
GO AHtAD
STOP
GUOU bYE

A-12

APPENDIX B

REMOTE TERMINAL CHARACTER SET

The following is intended to serve as a convenient summary of the

relation between the standard B 5500 character set and the remote terminal

set. Other references should be consulted for a complete description (see,

for example, Reference 7). In the following it is assumed that the file

designated in the INPUT and OUTPUT statements are ALGOL file type REMOTE files,

or the GTL FILE REMOTE declaration is used.

All letters of the alphabet and all digits may be printed on a remote

station. The character ® (multiplication sign) is printed as \. With the

exception of six characters, all of the remaining non-alphanumeric characters

may be printed on a remote station. The following characters serve as con-

trol characters and will have different effects, depending on which MCP

the system is running under, either the Data Communications MCP (DCMCP) or

the Time Sharing MCP (TSMCP).

Character

>

<

Effect on Output

DCMCP

causes carriage return

causes line feed

causes station disconnect

activates paper tape reader
(X-ON character)

causes preceding characters to be
transmitted to remote station to
be printed

sends rub-out character

B-1

TSMCP

prints ?

prints ?

prints ?

prints ?

prints ?

prints ?

Whenever the output string variable is ready to be printed, the GTL FILE

REMOTE Output system first writes a blank line to cause a carriage return­

line feed to be sent to the remote station, followed by the output string.

All letters of the alphabet and all di,gi ts may be entered on a remote

terminal by depressing the keys marked with these characters. The remote

terminal keyboard also contains keys for the following non-alphanumeric

characters:

/

"

4J:

$

%

&

(

)

*
=
@

+

>

The blank character is entered by depressing the space bar.

The following additional characters may be entered with the keys

indicated in the table below:

character key

[upper case K

] upper case M

® upper case L

The character causes the preceding portion of the line to be ignored.

The? character should. not be entered since it may be interpreted by the

system as a control character which is not a part of the intended input.

The < character causes a hardware logical backspace each time it is

depressed; i.e., if it is depressed n times it will cause n characters to

be deleted from the current message. Since a message is transmitted from

B-2

a remote terminal in 28 character groups, characters can be deleted only

from the current 28 character group. Under the TSMCP, the ' character

causes a software logical backspace and is not dependent upon hardware

configuration. The GTL FILE REMOTE system dynamically sets the RMARGI on

input from a remote terminal to point to the last non-blank character.

Thus RMARGI indicates the number of characters sent in the transmission,

excluding the ~, which caused the information to be sent. When a GTL read

function scans to RMARGI a pseudo end-of-file indication will normally result

(see Subsection 9.6).

B-3

APPENDIX C

CONVAL FUNCTION

The values of various control parameters used by the GTL LISP and

Input-Output systems may be accessed by a standard function called CONVAL.

The CONVAL function is used in the form

CONVAL(n)

where n represents an unsigned integer whose value designates the desired

control parameter. The values of n which may be used and the corresponding

values of CONVAL(n) are listed in the table given below.

o

1

2

3

4

5

6

7

8

9

10

11

Value of CONVAL(n)

a newly-created random number between 0 and 1

value of current random number produced by CONVAL(O)

maximum number of significant figures in single
precision printed numbers

maximum number of significant figures in double
precision printed numbers

Sign-separation control

total number of words collected by garbage collector

number of times garbage collector is called

time (in seconds) required by last call on garbage
~ollector

arithmetic value of the address of the first word in
the free1ist

first subscript of array described in paragraph 6.22.1

second subscript of array described in paragraph 6.22.1

same as COL

C-1

n

12

13

14

15

16

17

18

19

20

21

22

23

24

29

30

31

Value of CONVAL(n)

same as TAB

left margin of output string variable (LMARG)

left margin of input string variable (LMARGI)

right margin of output string variable (RMARG)

right margin of input string variable (RMARGI)

equals 0 if OUTPUT statement has been executed;
1, otherwise

equals 1 if INPUT statement has been executed;
0, otherwise

number of words inrutput logical record

number of words in input logical record

equals 1 if output procedure is being used;
0, otherwise

equals 1 if input procedure is being used;
0, otherwise

same as LENGTH(OUTSTR)

same as LENGTH(INSTR)

normally 0; will be set to 1 after a REMEMBER is
executed, meaning that no LISP operation may be
performed that causes a new LISP record to be
generated when using automatic storage reclamation

initially 0; will be set to 1 after the first LISP
record is created by the program; when set to 1, the
RECALL statement cannot be used when using automatic
storage reclamation

number of atomic symbols created by GENSYM

C-2

APPENDIX D

GTL RUN TIME ERROR MESSAGES

The following is a listing of the error numbers which may be generated

during the execution of the GTL program. The form of the message is as

follows:

Error Number

1.

2.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

-GTL ERROR Error Number Terminal Reference

Meaning

String designator reference beyond string variable
boundary.

Value of string expression longer than destination
string variable in string assignment statement.

File length specification in INPUT statement greater
than input string variable length.

File length specification in OUTPUT statement greater
than output string variable length.

Left margin greater than right margin or right margin
greater than specified file length in INPUT statement.

Left margin greater than right margin or right margin
greater than specified file length in OUTPUT statement.

Remote terminal "output impossible" condition detected-­
no "output impossible" label provided in GTL program.

Supply of LISP records exhausted ("free1ist empty").

Value of Symbol expression is not a number (this
error can occur when a Symbol-valued item is used in
an arithmetic expression).

Attempt to generate new LISP records after REMEMBER
statement is executed (SYMBOL RECLAIM OPTION).

Attempt to execute RECALL statement after run-time
generation of new LISP records (SYMBOL RECLAIM OPTION).

Attempt to apply a field designator to a null reference.

Invalid field index.

Remote read wait time exceeded (no label given).

Remote abnormal read condition detected (no label given).

Remote read end-of-file (READ) detected (no label given).

Remote "break" key depressed (no label given).

D-l

APPENDIX E

REFERENCES

1. Paul W. Abrahams, Jeffrey A. Barnett, et. a1., "The LISP 2 Programming
Language and System," AFIPS Conference Proceedings, ~ (1966 Fall
Joint Computer Conference), 661-676.

2. John McCarthy, Paul W. Abrahams, Daniel J. Edwards, Timothy P. Hart,
and Michael I. Levin, Lisp 1.5 Programmer's Manual, Cambridge,
Massachusetts: The MIT Press, 1962.

3. Edmund C. Berkeley and Daniel G. Bo1row [editors], The Programming
Language LISP: Its Operation and Applications, 2nd ed, Cambridge,
Massachusetts: The MIT Press, 1966.

4. Burroughs B 5500 Extended ALGOL Language Manual, Burroughs Corpor­
ation, Detroit, Michigan, 1962.

5. Jerome Fieldman and David Gries, "Translator Writing Systems,"
Communications of the ACM, II, No.2, 77-113 (February, 1968).

6. M. Levin, Lisp 2 Primer, SDC Document TM-27l0/l0l/00, 1966.

7. Users Manual for B 5500 REMOTE TERMINAL OPERATIONS, Rich Electronic
Computer Center, Georgia Institute of Technology, Atlanta, Georgia,
June 1968.

8. Clark Weissman, LISP 1.5 Primer, Belmont California: Dickenson
Publishing Company, 1967.

9. Nicklaus Wirth and C. A. R. Hoare, "A Contribution to the Develop­
ment of Algol," Communications of the Association for Computing
Machinery, 9, No, 6, 413-432 (June 1966).

E-l

r

