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I. INTRODUCTION 

Since the beginning of Newell, Simon, and Shaw's list processing 

language, IPL, in 1954, the role of symbol manipulation languages in com­

puter applications has become increasingly important. In 1965, a LISP 

interpreter was implemented on the Burroughs B 5500 here at Georgia Tech. 

For several years, it was used quite successfully in classroom instruction 

and in a few small scale symbol manipulation applications. Since the inter­

preter was too slow and too restrictive for any large scale applications, a 

decision was made to implement a high level symbol manipulation language by 

extending the existing, and excellent, B 5500 ALGOL compiler. The result 

was GTL, an acronym for Qeorgia !ech 1anguage. 

The GTL compiler is truly an extension of the Burroughs B 5500 ALGOL 

compiler; hence, it contains all features of Burroughs Extended ALGOL. (As 

used at Georgia Tech, STREAM PROCEDURES are prohibited.) Only one class of 

exception exists. The addition of certain GTL constructs to the ALGOL 

compiler has introduced new reserved words which cannot be used as defined 

identifiers by the programmer. These words are CAR, CDR, COMPLEX, GTR, EQ, 

FIELD, NEQL, NIL, RECORD, STRING, and SYMBOL. 

In addition to its symbol manipulation capabilities, GTL also contains 

significant extensions to B 5500 ALGOL for numeric computation. GTL contains 

facilities for: double precision, complex, and double precision complex 

arithmetic; string manipulation; list processing (a non-standard version of 

LISP 2); record processing (linked disk records or "plex" processing); 

syntax-directed parsing; extended input-output functions (including special 

functions for remote terminal files); and other miscellaneous ALGOL 
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extensions (including additional intrinsic functions, the BASIC compiler 

matrix functions, an efficient means of swapping the contents of two arrays, 

a random number generator, and several other useful constructs). 

Almost all of the major features of GTL were implemented prior to 1970. 

Some of the miscellaneous extensions, some of the inevitable error correc-

tions, and updates to later versions of the ALGOL compiler have been accom-

plished since that time. All the features of GTL, as described in this 

manual, are currently being used by a large number of Georgia Tech students, 

faculty, and research workers. It is currently running under the Burroughs 

Mark XII Data Communications and Time Sharing Master Control Programs.* 

Most of the features of GTL were implemented and made operational in 

successive stages. As each new feature was implemented it was described in 

a separate publication. Altogether, ten of these preliminary draft manuals 

were published between May 1968 and December 1969. The contents of these 

ten preliminary drafts have been consolidated into this single manual with 

a small amount of editing, rearrangement, and with the incorporation of 

some new material. The preliminary drafts are now obsolete, and this manual 

should be considered the official and complete documentation for GTL. 

Comments, suggestions, or corrections to this manual or the GTL language 

are welcomed and should be forwarded to the Director, Information and 

Computer Science, Georgia Institute of Technology, Atlanta, Georgia 30332. 

*As of November 1971, GTL is being updated to Mark XIII.O which provides 
a new COMPLEX Polish statement. Since this conflicts with the more convenient 
GTL COMPLEX construct, it is planned to omit this particular Mark XIII.O feature. 
With this omission, GTL will no longer be a true extension of Burroughs ALGOL. 
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II. MISCELLANEOUS EXTENSIONS OF ALGOL 

The GTL system contains a number of miscellaneous extensions of the 

ALGOL framework in which it is embedded. Those are described in detail 

below. 

2.1 SINGLE PRECISION STANDARD FUNCTIONS 

In addition to the sta.ndard (or "intrinsic") functions already provided 

by the B 5500 ALGOL 

standard functions: 

Name 

LOG 

ARCSIN 

ARCOS 

TAN 

COTAN 

SINH 

COSH 

TANH 

GAMMA 

LNGAMMA 

ERRORF 

2.2 CASE EXPRESSION 

compiler, GTL provides the following new single precision 

Meaning 

logarithm (base 10) 

inverse sine 

inverse cosine 

tangent 

cotangent 

hyperbolic sine 

hyperbolic cosine 

hyperbolic tangent 

gamma function 

natural logarithm of gamma function 

error function 

The syntax of expressions of type REAL, BOOLEAN, DOUBLE, COMPLEX, DOUBLE 

COMPLEX, SYMBOL, and "reference" (disk record address) has been extended by 

the inclusion of the "CASE expression", an expression having the same form 
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as the CASE statement of Burroughs Extended ALGOL with the statements 

replaced by expressions of the appropriate type. For example, if X, Y, and Z 

are REAL variables, then 

CASE J OF BEGIN X; Y; Z; END 

is an expression of type REAL, the value of which is the value of X if J is 0, 

Y if J is 1, or Z if J is 2, or an error termination otherwise. 

2.3 FOR STATEMENT 

The syntax of the FOR statemen~ has been extended by allowing a single 

unsigned integer or simple variable to appear between the FOR and DO, 

indicating that the controlled statement is to be executed the number of times 

given by the value of the variable or integer. For example, if X is a real 

variable which has a value of 100, then 

FOR X DO ST~ 

FOR 100 DO STMT 

both have the effect of causing STMT to be. executed 100 times. 

2.4 EXIT STATEMENT 

The word EXIT may be used in any block which is not a procedure body to 

cause an immediate exit from that block. The EXIT statement may appear any­

where in the block and may appear any number of times. 

2.5 RETURN STATEMENT 

The RETURN statement may be used to cause an immediate exit from any 

procedure in which it appears. If the procedure is typed, then the procedure 
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is given the value of the expression immediately following the word RETURN. 

The RETURN statement may appear anywhere in the procedure declaration and may 

appear any number of times (if the RETURN statement appears in a block, then 

that block must constitute the procedure body). For example, the LISP func­

tion MEMBER (a GTL standard function) may be defined as 

BOOLEAN PROCEDURE MEMBER(X,Y); VALUE X,Y; SYMBOL X,Y; 

FOR Y IN Y DO IF X = Y THEN RETURN TRUE 

2.6 ERROR STATEMENT 

A convenient way of providing an immediate exit from any point in a 

program in which an error condition is detected is the ERROR statement. An 

execution of the ERROR statement will cause the value of its argument to be 

printed in a 2 character alpha format, together with the segment and relative 

address in the program of the ERROR statement. After the execution of the 

ERROR statement the program is immediately terminated. For example, execution 

of 

ERROR ("E3") 

will cause "E3" to be printed and the program to be terminated. 

2.7 MATRIX MANIPULATION 

GTL provides a limited amount of matrix manipulation (using the intrinsic 

functions provided by Burroughs for the BASIC compiler). The matrix opera­

tions are addition, subtraction, mult~p1ication, inversion, transposition, 

and assignment. There are 10 basic constructs which are illustrated below. 
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ARRAY A,B,C[0:10,0:10] sample declaration 

1) A:= B + C 

2) Ao- B - C 

3) A:= B ® C 

4) A:= 1 / B 

5) A:= B * 
6) A:= B ® primary 

7) A:= B 

8) Ao- IDN 

9) A:= gER 

10) A:= C0N 

addition 

subtraction 

multiplication 

matrix inversion 

transpose 

multiplication by a scalar 

simple a~signment 

identity matrix assignment 

zero matrix assignment 

unit matrix assignment 

where primary is any arithmetic primary; e.g., 

A:= B ® 2 

A:= B ® (SIN(X) + 1) 

All arrays must be two dimensional and may never be specified as SAVE. 

The lower bounds of the arrays must be declared to be 0; however, they are 

treated as if they had lower bounds of 1; for example, the arrays declared 

above are considered to be 1 by 10 matrices. The intrinsic functions use 

the declared sizes of the arrays for their activities, not the amount of 

information the programmer has p1aGed into the arrays, necessarily. 

The last four modes of assignment are vastly more efficient than the 

equivalent open GTL code and should be used whenever that type of assignment 

is desired. 
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2.8 POWERS OF TEN TABLE 

GTL provides access to a table containing powers of ten. It may be 

referenced with a construct of the form 

TEN[aexpJ 

where aexp represents an arithmetic expression which, when integerized, will 

have a value from zero to 69. The value of this subscript should be the 

(integral) power of ten de~ired: 

TEN[aexpJ is equivalent to 10 * (aexp) 

l/TEN[aexpJ is equivalent to 10 * (-(aexp)) 

When used in a double precision context, it yields a double precision value; 

in a single precision context, its value is the double precision value 

truncated to a single word. 

The use of this construct is encouraged since it provides a much more 

efficient means of calculating a power of ten than do the alternate forms. 

The object program uses the powers of ten table for 1/0 conversion, so its 

use will not further increase core requirements. 

2.9 SWAP STATEMENT 

The fastest and easiest w~y to swap two two-dimensional arrays is by 

the following construct: 

SWAP(Al,A2) 

where Al and A2 are two array identifiers. The effect is to swap the contents 

and sizes of the two arrays. The actual implementation swaps only the 

pointers to the arrays, rfther than the information in the arrays themselves. 

2-5 



2.10 RANDOM NUMBER GENERATOR 

GTL contains a built-in random number generator which the programmer 

may reference directly through the arithmetic primary 

CONVAL(O) 

Each calIon CONVAL(O) will generate a new random number between 0 and 1, 

but never 1. The arithmetic primary 

CONVAL(l) 

will return the previously-generated random number and will not generate 

a new one. If it is desired to change the stream of random numbers being 

generated, an alternate form of CONVAL(O) may be used, involving the following 

arithmetic primary 

CONVAL(O,~) 

Depending on the value of ~, a different seed for random number generation 

will be used. In many applications, the following special form of CONVAL 

is used once at the beginning of the program: 

CONVAL(O ,TIME (4» 

This presents the program with one of 64 different streams of random numbers, 

usually different each time the program is used, dependent upon the machine 

clock. 
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2.11 STATEMENT LINE NUMBER DETERMINATION 

The line number of the current statement in a program may be accessed 

through the arithmetic primary 

LINENUMBER 

This is convenient in many applications, especially for debugging. If the 

programmer defines this identifier for his own use, it loses this meaning. 
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III. DOUBLE PRECISION ARITHMETIC 

3.1 INTRODUCTION 

In GTL, the declarator DOUBLE may be used in the same manner in which 

the declarator REAL is used in an ALGOL program. For example: 

DOUBLE X, Y, Z 

DOUBLE ARRAY DR[a:99] 

DOUBLE PROCEDURE DSINH (X); VALUE X; DOUBLE X; 

BEGIN DOUBLE Y; 

DSINH:~ «Y:= EXP(X)) - 1.a/Y) ® .5 

E~ 

Calculations with such variables, elements of arrays, and procedure 

values will automatically be done in double precision, subject to the 

rules of context (Subsection 3.6) and the available double preciSion 

operators and standard functions (Subsections 3.3, 3.4, 3.5). The Input-

Output mechanism (Section IX) facilitates reading and writing double values. 

3.2 FORM FOR DOUBLE EXPRESSIONS 

A double expression has the form of an ordinary ALGOL arithmetic 

expression with double primaries andlor single precision primaries. A 

double primary can be a double variable, a double function designator (a call 

on a double-valued procedure or on a double standard function with its 

actual parameters, if any), a double assignment statement, a double expression 
/ 

within parentheses, READN in a double context (see Subsection 3.6 for con-

text rules and Section IX for READN), or a constant appearing in a double 

context. 
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3.3 DOUBLE ARITHMETIC OPERATORS 

The operators available for double precision arithmetic are +, -,~, I, 

and MOD. DIV may be used between double primaries, but the calculation of 

the result will always be done in single precision. 

3.4 DOUBLE RELATIONAL OPERATORS 

All the relational operators, =, ~, <, >, ~, ~, and their mnemonics, 

are available for double precision comparison. A comparison is a double 

precision comparison only when the expression on the left hand side of the 

relational operator is a double variable, double procedure, or double 

assignment statement. A double assignment statement is one in which the 

leftmost variable is double. 

3.5 DOUBLE STANDARD FUNCTIONS 

The available standard (or "intrinsic") functions of double expressions 

are as follows: 

FUNCTION 

COS 

SIN 

EXP 

LN 

LOG 

SQRT 

ARCTAN 

LOPART 

HIPART 

MEANING 

cosine 

sine 

e~ponential function 

natural logarithm 

common logarithm 

square root 

inverse tangent 

least significant part of double value 

most significant part of double value 
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The other functions available for single precision can be applied to 

double expressions, but the calculation of the function value will always 

be performed in single precision. 

3.6 RULES OF CONTEXT 

Whether single or double precision calculations are performed to 

evaluate an arithmetic expression depends on whether the arithmetic expres­

sion is in a single or double context. If the context is single, the 

calculations are done in single precision. If the context is double, all 

the calculations are done in double precision except for the operator DIV 

and intrinsic functions not avilable in double (which are done in single 

precision). When a double va~iable or double procedure is used in a single 

precision context, the double value is normalized and truncated to a single 

precision value. When a single precision variable, procedure, or standard 

function is used in a double context, it is converted to a double precision 

operand by setting the least significant part of the double operand to zero. 

An arithmetic expression is in a double context in anyone of the 

following cases and is otherwise in a single context: 

1) If the arithmetic expression is on the right hand side of 

a := in an assignment statement, it is in a double context if, and only if, 

the variable immediately to the left of the := is a double variable. 

2) If the arithmetic expression is an argument of a procedure 

for which the corresponding formal parameter is double, the arithmetic 

expression is in double context. 

3) If the arithmetic expression is the expression on the right hand 

side of the relational operator of a double precision comparison (see Sub­

section 3.4). 
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3.7 DOUBLE PRECISION INPUT-OUTPUT 

Ordinary ALGOL READ statements Can be used to read single precision 

numbers to be used in double context, and ordinary ALGOL WRITE statements 

can be used to write a double value in single precision. ALGOL READ and 

WRITE statements cannot read and write double precision numbers. However, 

the I/O facilities of GTL facilitate the reading of double numbers and the 

writing of double numbers and editing phrases. 

The GTL Input-Output system provides a very flexible and powerful means 

of reading and writing many types of data using any of the files which can 

be declared in normal ALGOL. The system is described in detail in Section IX 

of this manual. 

3.8 RESTRICTIONS 

If a double formal parameter is call-by-name and the corresponding 

actual parameter is a variable, this variable must be double. 

If the actual procedure corresponding to a formal procedure is to 

have a double parameter, then in the actual procedure, that parameter must 

be double call-by-value, and the expression used as the corresponding para­

meter of the formal procedure must begin with a double variable. When the 

formal procedure and its double arguments are compiled, the compiler will 

print a warning message indicating the requisite type of the corresponding 

actual parameter of the actual procedure. 

3.9 EXAMPLE PROGRAM 

The following example double precision program is not intended to 

represent a practical program, but merely serves to illustrate some of 

~he GTL double precision constructs. The GTL Input-Output system, which is 

described in Section IX, is also included in the example. 
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AEGIN CCM~rNT FI~r nOU8LE PRFC1~In~ RCOTS Cr ~LACPATIC E'LATIC~S; 
rILE l~ INCO (2,1C); 
STRING CROCAO)J 
rILE OUT PRINTER 16(2,15); 
STRI~G LIN (120); 
REAL J,K; 
P R GeE D u R E Q II A r. s n L v E ( A , Ij 1 C ) J 

VALliF A,A,Ci 
nCUHlf A,R,el 
tjF G PJ 
nUUHI E 0; 
PRINT A,8,C; 
IF 0 := 8 * 2 - 4 ~ A x C < n THEN 

pRI~T SPACE(lC) fCO~PLf1 GGors, 
ELSE 

I3EGIN 
C := (n .= SQRT(n) + B~ I A := ;. x ~ : 
B := (D - 8) I A ; 
PRINT tREAL ROCT~I # 8, CJ 
Ef<.Oi 

END nr GUAOSOLVEJ 
J~PUT(I~CD,CRD,eC); 
CJurpl.lTCPRINTERllINI1(0)J 
PRINT #GUAOSOLV[ PROGRAM'; 
CO~~ENT READ IN NUMBER OF TRTPLrs TO Sf RFAC I~J 
K := REAC""; 
FUR J:=l STEP 1 U~TIL I( DO QIJAnsr:LVECFiF'AC",READt-.,J;EAljfl.); 

END. 

THE PROGRA~ HAD THE FDLLOwYN~ CARD INPLT: 

5 
1 2 3 .002 3.14 .42 .U01.1.1 

AND THE OUTPUT lISTI~G ~ASt 

QUAD SOLVE PROGRA~ 

1 2 3 
CO~PLEX ROCTS 

2~-3 3.14 .42 

.01 .01 .01 .ee .C~ .C7 

REAL HOOTS: 7.e4a66230640610~02244?@2 1.56ge6623CE4c61C5C2244~3 
1~·3 .1 .1 
REAL RorTS, 4.8ge97948556635~196394~1 9.a98~794e5;6~3561~6394~1 
U-2 1~-2 t~"2 

C(1MPLEX ROOTS 
8@-2 6~-2 7€i-2 

COMPLEX ROOTS 
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IV. COMPLEX ARITHMETIC 

4.1 INTRODUCTION 

In GTL, the declarator COMPLEX may be used in the same manner in which the 

declarator REAL is used in an ALGOL program. For example, 

COMPLEX Y 

COMPLEX ARRAY A[O:5] 

COMPLEX PROCEDURE ROOTl(A,B,C); 

VALUE A,B,C; 

REAL A,B,C; 

ROOTI := (-B + SQRT(B*2 - 4~~»/(2~) 

Such variables, elements of arrays, and procedure values will be automatically 

treated as complex numbers and may be used in the same manner as reals. 

The Input-Output mechanism (Section IX) facilitates reading and 

writing complex values. 

Complex arithmetic in double precision is also available (Subsection 

4.7). 

4.2 FORM FOR COMPLEX EXPRESSIONS 

A complex expression has the form of an ordinary ALGOL arithmetic 

expression with complex primaries, with the exception of exponentiation (*), 

in which case the exponent must be real. (In other words, in A*B, A may be 

complex but B must be real.) 

A complex primary can be an ordinary real-valued primary, a complex 

variable, a complex function designator (a calIon a complex-valued 

procedure or on a complex standard (intrinsic) function with actual 
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parameters, if any), a complex assignment statement, a complex expression 

within parentheses, or :comp1ex primary. The colon (:) in a complex primary 

indicates multiplication by i; i.e., the is syntactically equivalent to 

SQRT(-l)@. For example, if X is a complex variable and X :=3+:7, then 

the real part of X is 3 and the imaginary part is 7. Since the colon means 

"i times," it must be followed by a primary; 7:, for instance, has no 

meaning. 

Examples of complex expressions, where A and B are real variables and 

X and Yare complex variables: 

A+:B 

X/Y 

COS(X+A) + :SIN(:ARG(X» 

::A - B (Le., -A-B) 

X + : (A+B) 

4.3 COMPLEX ARITHMETIC OPERATORS 

The operators are +, -, @, /, * MOD, DIV. The meaning of the operators 

is illustrated by the table of equivalent algebraic expressions given below, 

where Zl and Z2 are complex numbers such that Zl ~ a + ib and Z2 = c + id 

and a,b,c,d, and R are real numbers. 

EXPRESSION DEFINITION 

Zl+Z2 (a+c) + i(b+d) 

Zl-Z2 (a-c) + i(b-d) 

Zl@Z2 (ac-bd) + i (bc+ad) 

Z1/Z2 {ac+bd2 
(cz +dZ ) 

i {bc-ad2 
+ (cz +d2 ) 
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Zl*R 

Zl MOD Z2 

Zl DIV Z2 

4.4 COMPLEX RELATIONAL OPERATORS 

IZllRei R arg(Zl) 

(ac+bd)MOD (c2 +d2 ) + i «bc-ad)MOD (c2 +d2 )) 

(ac+bd)DIV(c2 +d2 ) + i«bc-ad)DIV(c2 +d2 )) 

Two relational operators, = and 1-, and their mnemonics, are available 

for complex comparisons. Two complex expressions A and Bare = if and only 

if the real part of A is equal to the real part of B and if the imaginary 

part of A is equal to the imaginary part of B. Otherwise, the I- relation is 

true. The left hand side of a complex relation must be a complex variable 

(including complex array elements) or a complex assignment statement 

(i.e., the leftmost variable must be a complex variable) and the right hand 

side can be any complex expression (including rea1s). For example, if X 

is complex and A is real, then X=A only if the real part of X equals A and 

if the imaginary part of X is zero. 

4.5 COMPLEX STANDARD FUNCTIONS 

The available intrinsic functions of complex expressions are given 

in the following chart. Assume X:= 1+:1 and Y:= 3+:4. 

FUNCTION MEANING TYPE OF RESULT EXAMPLE 

ABS absolute value real ABS(Y) = 5 

ARG argument real ARG(X) = .78540 

CONJ conjugate complex CONJ(X+Y) = 4-:5 

SQRT principal complex SQRT(:20-21) = 2+:5 

IMAGPART imaginary part real lMAGPART(Y) = 4 

REALPART real part real REALPART(Y) = 3 
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FUNCTION MEANING TYPE OF RESULT EXAMPLE 

SIN sine complex SIN (X) 1.2984 + :.63496 

COS cosine complex COS (X) = .83373 :.98890 

~P exponential function complex EXP(X) = 1.4687 + :2.2874 

LN principal value of complex LN(X) = .34657 + :78540 
natural logarithm 

4.6 COMPL~ INPUT-OUTPUT 

Ordinary ALGOL READ and WRITE statements can be used to read and write 

complex numbers if the real parts and the imaginary parts of the numbers 

are read and written separately as real numbers. However, the I/O facilities 

of GTL facilitate the reading of complex numbers and the writing of complex 

numbers and editing phrases. 

The GTL Input-Output system provides a very flexible and powerful means 

of reading and writing many types of data using any of the files which can 

be declared in normal ALGOL. The system is described in detail in Section IX 

of this manual. 

4.7 DOUBLE COMPLEX DECLARATOR 

In a GTL program, COMPLEX declarations may be replaced by DOUBLE COMPL~ 

declarations for complex arithmetic in double precision. The "Rules of 

Context" described in Subsection 3.6 of this manual apply. The arithmetic 

operators available for DOUBLE precision COMPL~ are +, -, ®, /, *, MOD; 

the relational operators are = and I and their mnemonics,and the intrinsic 

functions are REALPART, IMAGPART, ARG, ABS, CONJ. All the other operators 

and functions available for complex can be applied to DOUBLE COMPLEX, but 

the calculation will be done in single precision. When a DOUBLE COMPL~ 

variable, assignment statement, or typed procedure appears in the list of 

a PRINT statement, the real and imaginary parts are printed in double precision. 
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4.8 RESTRICTIONS 

If a complex parameter is call-by-name and the actual parameter 

expression is a single variable, this variable must be complex. 

If the actual procedure corresponding to a formal procedure is to 

have a complex parameter, then in the actual procedure, that parameter 

must be complex call-by-value and the expression used as the corresponding 

parameter of the formal procedure must begin with a complex variable. When 

the formal procedure and its complex arguments are compiled, the compiler 

will print a warning message indicating the requisite type of the corres­

ponding actual parameter of the actual procedure. 

4. 9 EXAMPLE PROGRAM 

The following example program uses a simplified portion of Robert 

Rodman's "Muller's Method for Finding Roots of an Arbitrary Function," 

(Algorithm 196, CACM, Vol. 6, August 1963), which finds real and complex 

roots of an arbitrary function. Given the starting values PI, P2, and P3, 

a limit MXM on the number of iterations, and convergence criteria EPI and 

EP2, the procedure Muller listed below attempts to find a root to the func­

tion FUNCTION. This example also illustrates the GTL Input-Output system as 

described in Section IX. A listing of the compilation of the complete 

program and output is given. The card input was the following set of num­

bers, in order: 

-1 0 1 30 @-8 @-8 

The compilation listing is as follows: 
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tH.G!1'l 
FIL~ iN INFILE (2'10); 
FILt UUT LINE 1b(q'1~); 
STHIN~ CRU(~O)'LI~(120); 
CUM~LlX PHUCE~~HE Spr(A,~); 

VALlJE A,~; 

COMPLEX An;!i 
dEGIN 
A p= SQRJ(A)J 
~lTlJRN IF A~S(~+A) < ABS(~·A) THE~ ~·A ELSE BtAj 
ENO OF SPfi 

PHUCEUURE MULLEH(P1,P2,PJ,MXM,EP1,EP2,FUNCTION); 
VALUE P1,P2,P3,MXM'EP1,EP2J 
HEAL P1,P~,P3,EP1,lP2; 
INH.GER MXMi 
COMPLEX PHO~EDUR~ FU~CTIONJ 
~EGIN 

INTEGER ITC; 
COMPLEX Xl,X2,X3,fl,fXl,fX2,FX3,H,LAM,OEL,Gi 
LAHEL M9,Ma,M6; 
Xl 1= P1; x2:= P~i X3 1= P3J 
txl 1= flJNC1ICN(Xl); 
FX2 .= FlJNCIIONCX~); 
FX3 .= FlJNCTICN(X3)J 
H 1= X3 - x,d 
LAM .= IF X~ EQL Xl THEN 1 ELSE H / (X2 • Xl)' 
UtL l= LAM + 1J 

M~I IF fX1 EQL fX2 ANU FX2 EQL FX3 TH£N 
BEGIN LAM 1= 1i GO TO M8i END; 

T1 1= 4 x Fx3 x DlL x LAM x (FXl x LA~ • FX2 ~ DEL t FX~)j 
G 1= LAM x LAM x fXl • DEL x DEL x FX2 + fX3 x (LA~ + UEL)I 
LAM 1= (-2 x FX3 x DEL) / SPfCG x G + Tl, G)i 

Mdl ITC 1= ITt + 1; 
xl 1= X2; Xi 1= Xl; fXl 1= FX2; FX~ 1= fX3J 
H 1= LAM x 1'1; 

M61 UEL 1= LAM + 1; X3 1= X2 + H; FX3 1= fW~CTICN(X3); 
IF fX2 NEQ ~ THEN 
If ABSCFXJ/tX2) GfH 10 THEN 

8EGl~ LAM 1= LAM I 2; H 1= H I 2; GO TO ~ei ENU; 
IF ABSCCXJ-X2)/X2) GTR EPl AND A8S<FXl) GTR Ep2 A~U ITe LS~ MXM 

THEto; uO TO MIj; 
~RI~T .THE kOGT fuUND IS" SPACECS), x3; 
PRINT ,THE fU~cTIUN EVALUATED AT THIS poI~T IS#, SPACE(S), FXJ; 
END OF tl,ULLI;.R; 

CUMPLEx PROCEDUHE FCL); 
VALUE Z; 
COMPLEX l.; 
HETURN Z~(LX(ZX(lx(Z~CZxCZx(l+1)+3)+2)+3)·1)+3)·2)+lJ 
COMMENT END OF DECLARATIONS; 
INPUTcINFILE,CRD,dO); 
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UUTpUT(LINE,LI~,l~U)J 

"TSC·,ll)J 
MULLEH(kEAO~'READ~'READN,HEAO~,REAU~'HEAC~,F)J 

T~~ OUTPUT FHU~ THE PROGHAM LUUKS LI~E T~IS: 

THl R~~l FOUN~ IS .67ge53150~6 

THE F~j\;CTION EVALuATED AI THIS PO!NT IS 
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V. STRING PROCESSING 

5.1 STRING VARIABLES 

5.1.1 Simple String Variables and Arrays 

In GTL, a string variable contains a string of characters; just as in 

ALGOL a variable of type REAL coptains a number. String variables are 

declared with declarator STRING in the same forms as REAL, INTEGER, and 

BOOLEAN variables in ALGOL. The declaration of string variables which are 

not formal parameters of a procedure must also contain a "size part" which 

specifies the size of a string variable, i.e., the maximum number of 

characters which a string variable can contain. The simplest form of the 

size part is an unsigned i~teger enclosed in parentheses. The syntax of the 

string variable declaration is illustrated by the following examples: 

STRING STR(5) 

STRING CARDl, CARD2(80), LINE(120) 

OWN STRING TEMP(26) 

STRING ARRAY SR[0:9] (lO) 

STRING ARRAY SAl, SA2 [1:100J(8) 

Thus the Simple string variable STR can contain at most 5 characters, CARDI 

and CARD2 at most 80 characters, etc. The specification OWN in this context 

has the same functional meaning as other types of OWN variables in ALGOL. 

Similarly, each element of the string array SR can contain at most 10 

characters. 

The size of a string variable cannot exceed 8184 characters. 
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5.1.2 Substring Variables 

The declaration of a string variable which is not a formal parameter 

of a procedure may contain the declaration of a substring variable. A 

substring variable is a string variable which references only a fixed part 

of (a "substring" of) the string variable which is declared. The substring 

variable identifier appears in the size part of the string declaration. 

The size part of the string variable declaration may now be defined as a 

list of one or more string length specifications enclosed in parentheses. 

Each string length specification is either 

1) an unsigned integer, or 

2) a substring variable identifier followed by a size part. 

Two or more string length specifications are separated by commas. The sum 

of the unsigned integers in the si2:e part determines the length of the 

string being declared. For example, 

STRING A(9, B(14), 7) 

means that A is a string variable which can contain at most 30 characters, 

and B is a string variable which is a substring of A containing at most 14 

characters. The sum of the string length specifications occurring before 

the substring variable identifier determines the number of character posi­

tions to be skipped in the main string before reaching the starting character 

position of the substring. The character positions of a string variable 

may be illustrated graphically by a set of contiguous "boxes", each box 

representing a single character position. Thus, the string variable A and 

its substring B, may be displayed graphically as follows: 
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A (30 characters) 

1
-'-([1 I~·I-'-I6-I'--[' fJ-'.'.m" 12 13 ill" " ,-b·I'·'TI" ".1_2'1"1" {' f" 
_1 ___ ._ ..._ ___._ . __ _ ..... J 1 .. . ..... j 

"1'-'-0" ~I1~1 
.J ____ I 

I r 

B (14 characters) 

Note that the definition of the size part allows the declaration of 

substring variables to be "nested"; Le., a substring variable may contain 

a substring variable. For example, 

STRING ST(STA(14),3,STB(2, STC(6),2, STD(3),1), 4) 

may be displayed graphically as 

ST (35 characters) 

STB 

When two or more string variables are associated with a size part 

which contains substring variables, the main string with which a substring 

identifier is to be associated in any particular instance must be given 

explicitly. For example, with the string declaration, 

STRING A, B, C(72, SEQ(8» 

one of the following forms must be used when referring to SEQ: 
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SEQ IN A 

SEQ IN B 

SEQ IN C 

This form of the substring variable may be used like any other string 

variable. Ambiguously defined substrings of subscripted string variables 

are handled in the same way. For example, with the following string array 

declaration, 

STRING ARRAY R, S [O:99](T(I),7) 

if J represents a subscript expression for elements of the string arrays 

Rand S, then one of the following forms must be used when referring to 

the substring T: 

T IN R [J] 

T IN S [J] 

This form of the subscripted string variable may be used like any other 

string variable. 

5.1.3 Formal String Variables 

A formal string variable, i.e., a string variable which is a formal 

parameter of a procedure, is declared without a size part. The maximum 

number of characters that a formal string variable can contain will depend 

on the size of the corresponding actual parameter of the function designator. 

(See paragraphs 5.7.1 and 5.7.2.) In a procedure declaration which contains 

a formal string variable, the size of the string variable may be determined 

by the application of the GTL standard function LENGTH to the formal string 
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variable identifier, For example, if STR is a simple formal string 

variable and STRA is a formal string array, the 

LENGTH (STR) 

and 

LENGTH (STRA) 

gives the sizes of these formal string variables. 

5.2 STRING DESIGNATOR 

In GTL, the string designator is a construct which allows the programmer 

to refer to a string variable or any proper substring thereof. The defini­

tion of string designator inGludes the string variable, and has the three 

following forms: 

SV 

SV(ael) 

SV(ae2,ae2) 

where SV represents a string variable, either simple or subscripted, and 

ael and ae2 represent arithmetic expressions. The first form of the 

string designator is simply the string variable itself. The second form of 

the string deSignator is the substring of SV obtained by skipping over the 

first ael characters in SV; the size of the substring is the number of 

remaining characters. The third form of the string designator is the 

substring of SV obtained by skipping over the first ael character positions 

in SV and its size is specified by ae2. (If the values of ael and ae2 

are not non-negative integers, then they are converted into this form.) 
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For example, given the string declaration, 

STRING CARD (72, SEQ(8» 

the string designator 

CARD (72) 

refers to the same substring of CARD as the substring variable SEQ. Given 

the string declaration, 

STRING A(9, B(14), 7) 

the string designator, 

A(9, 14) 

refers to the same substring of A as the substring variable B. The string 

designators A(2,4) and A(9,14) are illustrated graphically below. 

A (30 characters) 

A(2,4) A(9,14) 

5.3 STRING EXPRESSIONS 

5.3.1 String Expression Forms 

In ALGOL, an arithmetic expression may be considered as a set of rules 

which, when executed, generates a value which is a number; in GTL, a string 

expression is a set of rules which produces a value which is a string of 

characters. 
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A string expression is either a string primary, which has a string of 

characters as its value, or two or more string primaries separated by 

ampersands (& - the "concatenate operator"). The latter form has as its 

value the string produced by "joining together" the values of the con­

stituent string primaries. The string primaries are described in para­

graphs 5.3.2 through 5.3.19. 

5.3.2 The Quoted String 

The quoted string has the same syntactical form as a string in 

Burroughs Extended ALGOL, i.e., a string of characters enclosed in quotes ("). 

The quote mark itself may be quoted: ''''''. The value of the quoted string is 

the string of characters appearing between the quote marks. The quoted 

string may not exceed 420 characters in length. 

Examples: 

"A" 

"THIS IS A QUOTED STRING" 

""" 

5.3.3 String Designator 

When used as a string primary, the value of the string designator is 

the string of characters in the string variable, or substring thereof, 

referenced by the string designator. 

5.3.4 String Assignment Statement 

A string assignment statement, besides being used as a statement, 

may be used in a string expression havi.ng as its value the value which is 
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assigned to the variables in the left part list. An extension of the 

syntax of a string assignment statement is described in Subsection 5.4. 

5.3.5 String Function Designator 

A string function designator is a calIon a procedure which was 

declared with the type STRING, its value being the value to which the 

string procedure identifier is assigned in the string procedure declaration. 

The value of a string function designator may not exceed 7 characters in 

length. The formal parameters of the procedure, if any, may be of any 

type, including the string formal parameters discussed in Subsection 5.7. 

For example, 

STRING PROCEDURE REVERSE(S); VALUE S; STRING S; 

BEGIN REAL L; 

REVERSE:::;; 

IF (L:= LENGTH(S» = 1 THEN S ELSE 

S(L-l,l) & REVERSE(S(O,L-l»; 

END OF REVERSE 

defines a procedure which has as its value the string of characters in the 

string S in reverse order: 

REVERSE("ABC") ::;; CBA 

5.3.6 SPACE function 

The SPACE function is used to generate a specified number of spaces in a 

string expression. The SPACE function may be used in one of the following 

forms: 
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n SPACE 

where n is an unsigned int~~er, and 

SPACE(~) 

where ~ represents an arithmet~c expression. The SPACE function will 

generate the number of ~pace~ specified by the value of n or ae. For 

example, if J is a real variable having a value of 40 then, 

40 SPACE 

SPACE (40) 

SPACE(J) 

all have the effect of generating 40 spaces. 

5.3.7 The NIL Function 

The NIL function is used to generate a specified number of zeros 

(the character "0") in a string expression. The NIL function may be used 

in one of the two following forms: 

n NIL 

where n is an unsigned integer, and 

NIL(~) 

where ~ represents an arith~etic expression. The NIL function will 

generate the number of zeros ~pecitied by the value of n or ae. For 

example, if J is a real variable having the value of 40, then 



40 NIL 

NIL (40) 

NIL(J) 

all have the effect of generating 40 ~eros. 

5.3.8 The String Skip Indicator 

The string skip indicator ha.s the effect of creating a gap in the 

string being generated by the string expression in which it appears. Its 

actual effect depends on the context of the string expression: If it is 

used in a string expression which is assigned to string variable in a 

string assignment statement (see Sub~ection 5.4), it causes the indicated 

number of character positions to be skipped over in the string variable 

during the execution of the assignment statement (see paragraph 5.4.4). 

If it appears in the string expression on the right hand side of a string 

relational expression (see Subsection 5.5), it causes the indicated number 

of characters in the string designator (on the left hand side) to be ignored 

in the process of de,termining the Va,11,l8 of the string relational expression 

(see paragraph 5.5.4). 

The string skip indicator ma.y be used in one of the two following forms: 

where n is an unsigned integer, and 

where ~ represents an arithmetic expression; for example, if J is a real 

variable having a value of 40, then 
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40 -k 

,,;- (40) 

-k (J) 

all have the effect of causing 40 characters to be skipped over. 

5.3.9 The QMARK Function 

The QMARK function, used in the form, 

QMARK 

in a string expression will generate one question mark (?) or invalid 

character. This function is provided since the question mark cannot be 

quoted in a GTL program, and there would be no other simple way of 

generating this character. 

5.3.10 The Bit Expression 

A bit expression is a string primary which generates a string of bits 

(not the characters "1" and "O"~ but the actual bit components of 

characters). If any characters are generated in the remainder of the string 

expression, the first of these characters will start at a position equal to 

the position of the last character generated before the bit expression plus 

the smallest multiple of six bits containing the bit string (since a 

character is six bits long). The syntax and semantics of the bit expression 

are explained in Subsection 5.6. 

5.3.11 The Restricted Boolean Expression 

A restricted Boolean expression, i.e., a Boolean expression which does 

not begin with any of the other preceding string primaries, may be used as 
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a string primary itself. The value of the Boolean expression in this 

context will be a string of letters, "TRUE" or "FALSE", depending on the 

value of the Boolean expression. 

5.3.12 The Restricted Arithmetic Expression 

A restricted arithmetic expression, i.e., an arithmetic expression 

which does not begin with any of the other preceding string primaries, may 

be used as a string primary itself. The value of the arithmetic expression 

in this context will be an unsigned string of digits up to 7 characters in 

length representing the value of the arithmetic expression. If the value 

of the arithmetic expression cannot be represented in this way, then the 

string value of the expression is undefined. For example, if R is a real 

variable with a value of 25, then 

R ® 10 

when used as a string primary, will generate the string "250". 

5.3.13 The Restricted Symbol Expression 

A restricted symbol expression (Section VI), i.e., a symbol expression 

which does not begin with any of the other preceding primaries, may be used 

as a string primary itself. The value of the symbol expression in this 

context must be an atomic symbol, which is converted into the string which 

the atomic symbol represents. For example, if S is a symbol variable 

having as its value the list (THIS IS A LIST), then 

CAR(S) 

will cause the string "THIS" to be generated. 



5.3.14 The STRING Transfer Function 

The STRING transfer function, when used in the form, 

STRING(.!~) 

where ~ represents an arithmetic expression, will generate the equivalent 

alpha representation of the value of the arithmetic expression (up to 7 

characters in length), left-justified. For example,if R is a real or alpha 

variable, the value of which is the alpha string "AB", then 

STRING(R) 

will generate the string "AB". If the value of R is 250, then "3," will 

be generated. 

A string which is right-justified in a field of E characters may be 

produced by the following variant of the STRING transfer function: 

STRING(aexp,E) 

where aexp is the arithmetic expression to be converted, and E is an unsigned 

integer, ranging from 1 to 7, which specifies the size of the resulting 

string. For example, if R is a real variable containing the ALPHA string 

"AB", then the value of 

STRING (R,4) 

would be the string "OOAB". If R has a value of 250, then 

STRING(R,l) 

would generate the string "3,". 
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5.3.15 The SUBST Function 

The string-valued function SUBS! allows the programmer to make charac­

ter-for-character substitutions in a string variable. The SUBST function 

may be used in two forms, the first of which is 

SUBST(string designator, substitution pair list) 

where string designator must be a string variable, or designated substring 

thereof, and substitution pair list is a list of one to 12 substitution pairs 

of the form 

matching character substitution character 

where substitution character is the quoted character which is to replace 

the quoted special character matching character. The matching character 

cannot be the "blank" character. The length of the string designator must 

not be greater than 126 characters, and if longer than 63 characters it 

must be an even number; also, the string variable may not be a formal 

parameter. The value of the SUBST function is the contents of the string 

designator after the substitutions have been made. For example, if the 

string CARD contains "AR[INDEX]", then 

CARD:= SUBST(CARD(O,72),"[":"(","]":")") 

will change this string to "AR(INDEX) " • 

The second form of the SUBST function is 

SUBST(string deSignator, substitution table) 

where string designator has the same meaning as above, and substitution table 
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is a simple string variable containing substitution characters for all of 

the 64 characters in the B 5500 character set. This "table" is indexed by 

the REAL value equivalent of the character to be replaced; for example, the 

replacement for the Jth character of the string CARD from the string TABLE 

would be 

TABLE(REAL(CARD(J,l»,l) 

For example, if the first 10 characters of TABLE are "123456789A" and CARD 

contains the string "539648", then 

CARD:=SUBST(CARD(0,72) ,TABLE) 

will change the string to "64A759". The substitution table must be at least 

64 characters long. 

5.3.16 The FILL Function 

The FILL Function allows access to the B 5500 operator TBN (Transfer 

Blanks for Non-numerics). It may be used in GTL string expressions in two 

forms, the first of which is 

FILL (aexp, n) 

where aexp is an aFithmetic expression whose value should be an integer, 

and n is an unsigned integer ranging from 1 to 8. The value of the arith­

metic expression is converted into a string which is right-justified in the 

field of characters, whose length is specified by~. Characters to the left 

of the left-most digit of the string are set to the blank character. For 

example, 

FILL(215,5) 

generates the string" 215". 
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The second form of the FlLL function is 

FILL n 

where n is an unsigned integer ranging from 1 to 63. This string primary 

is intended to be used in a string ass~gnment statement where it will 

replace each zero digit or non-digit character in the "destination string" 

by a blank until a non-zero~d~git is encountered. The number of characters 

tested will be n minus one characters (so that if the last character is a 

zero, it will not be replaced bya blank). For example, if the first 5 

characters in the string CAR.D are "00215", then 

CARD:=FILL 5 

changes the string to" 215". 

5.3.17 The OCTAL Function 

The OCTAL function transforms a 48-bit B 5500 word into a 16-character 

string containing the equivalent octal value. This function has the 

following forms: 

OCTAL (aexp) 

OCTAL(string desigaator) 

where aexp is any arithmetic expression and string deSignator is a string 

variable, or substring thereof, beginning at a word boundary (multiple of 

8 characters), which is 8 charact~rs long. 



5.3.18 The String Repeat Expression 

The string repeat expression, which has the form 

where ~ represents an arithmetic expression, and ~ represents a string 

expression, will cause the value of the string expression to be generated 

repeatedly the number of times specified by the value of the arithmetic 

expression. For example, 

[3: "AB"] 

will cause the string 

ABABAB 

to be generated. The value of the arithmetic expression must be an integer 

less than 64. 

5.3.19 Parenthesized String Expression 

A string expression enctosed in parentheses may be used as a string 

primary. For example, if A and B are string variables, then the following 

are string primaries: 

(A &: "_" &: B) 

(A : =B &: liS ") 
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5.4 THE STRING ASSIGNMENT STATEMENT 

5.4.1 The Basic Strin& Assignment Statement 

The basic string assignment statement has the same form as an ordinary 

ALGOL assignment statement. However, in addition to string variables, 

string designators may also appear in the left part list of the assignment 

statement. For example, if A is a string variable 30 characters in length 

which contains only spaces at the time of execution of the assignment state­

ment, and B is a string variable, the first 5 characters of which is the 

string "CARRY", then 

A:=A(10):=B(0,4) & "IES" 

will change the contents of A as indicated by the following graphic represen­

tation: 

If this assignment statement is used as a primary in a string expression, 

then its value would be the string "CARRIES". If the length of the string 

generated by the string expression exceeds the number of character 

positions available in any of the string designators appearing in the left 

part list of the string assignment statement, then an error message will 

be generated, and the program will be terminated. 

5.4.2 String Assignment with SPAC~ 

The word SPACE (see paragraph 5.3.6) may be used at the end of a string 

expression to indicate that all of the remaining character positions in the 

string into which the string expression is aSSigned is to be filled with 
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spaces. For example, if A is a 30 character string, the assignment state­

ments 

A:=B(O,S) & SPACE 

A:=SPACE 

are equivalent to the assignment statements 

A:=B(O,S) & SPACE(2S) 

A:=SPACE (30) 

5.4.3 String Assignment with NIL 

The word NIL (see paragraph 5.3.7) may be used in the same way as SPACE 

in paragraph 5.4.2; for example, 

A:=B(0,5) & NIL 

is equivalent to 

A:=B(O,S) & NIL(25) 

5.4.4 String Assignment with String Skip Indicator 

The string skip indicator as defined in paragraph 5.3.B may be used 

in the string expression in a string assignment statement as a means of 

effectively combining two or more assignment statements into one; for 

example, if LINE is a 120 character string variable, and CARD is an BO 

character string variable, then 

LINE(B):=CARD(O,72) & *(B) & CARD(72,B) 
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is equivalent to the two assignment statements: 

LINE(8):~CARD(0,72) 

LINE(88):~CARD(72,8) 

If there is more than one string designator in the left part list of the 

assignment statement a gap caused by a string skip indicator is filled 

in with characters from the right most string designator in the left part 

list; for example, if A and B are string variables, the latter containing 

the string "ABCDEFGH", then the assignment statement 

A:=B:;::;"l23" &2 7( & "678" 

will set the value of A(0,8) to the string "l23DE678". 

5.4.5 String Assignment Overlap: A Warning 

A string generated by a string expression in a string assignment state­

ment is not generated in its entirety before it is transferred into the 

string designators in the left part list. Instead, as each character of 

the string is generated from the string expression, it is transferred into 

the rightmost string designator in the left part list. Then each character 

in the string thus generated is transferred, one by one, into the preceding 

string designator, and this process continues until the string has been 

transferred into all of the string designators in the left part list. The 

means by which string assignment statement is effected introduces a side 

effect which may not be obvious. Whenever the string variable referenced 

by the rightmost string designator in the left part list also appears as a 

part of a string designator in the string expression of an assignment state­

ment, the characters to be referenced in the string expression may have 
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already been changed to new characters generated earlier in string 

expression; for example, if A is a string variable containing the string 

"12345678", then 

A ( 2) : =A ( 1 , 3 ) 

will change A(0,8) to "12222678"; on the other hand 

A(2):=A(4,3) 

will change A(0,8) to "12567678". This side effect may be used to advan­

tage; for example, the most efficient way to fill the 120 character string 

variable LINE with asterisks is 

5.4.6 String Assignment Statement Containing String Length Assignment 

Sometimes it is not easy or convenient to determine the length of a 

string generated by a string ~xpression. For this reason the following 

option is provided for the string assignment statement: if a real 

variable followed by a colon is inserted between the := and the 

string expression in the string assignment statement, then the length of 

the string generated by the string expression is assigned to this variable. 

For example, if A is a string variable, R is a real variable, and S is a 

symbol variable, the value of which is the atomic symbol "ATOMICSYMBOL", 

then the execution of the string assignment statement 

A:=R: S 

will set the first 12 characters of the string variable A to the string 

"ATOMICSYMBOL" and will set the value of R to 12. 
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5.4.7 The String FILL Sta~ement 

~len filling a string variable with a very long literal string, the 

string FILL statement may be used: 

FILL stringid WITH STRING quoted string 

where stringid is the name of a ~Lmple string variable, and quoted string 

is a string of characters enclosed by quotes which may be as long as 1022 

characters. For example, 

STRING STR(2l6) 

FILL STR WITH STRING "WHEN fILLING A STRING VARIABLE WITH A 

VERY LONG LITERAL STRING, THE STRJ;NG FILL STATEMENT MAY BE USED." 

5.4.B The String Addition Assignment Statement 

The addition of a + between the := and the string expression of a 

string assignment statement will cause the string generated by the string 

assignment statement to be added to the contents of the rightmost string 

designator in the left part list. For example, if CARD is an BO charac­

ter string variable such that the last B characters contain the string 

"12345000" and INCR is an B character string variable containing the string 

"00001000", then the string assignment statement 

CARD(72,B):= + INCR 

will cause the contents of CARP(72,B) to be changed to "12346000". 

The value of the string e~pres~ion in this context should be a string 

of digits not exceeding 63 characters in length. If there is an overflow 

in the most significant character position, then this overflow will be lost. 
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(This type of string assignment statement has the same effect as the 

statement 

DS:~N ADD 

4 
in a stream procedure of Burroughs Extended ALGOL .) 

5.4.9 The String Subtraction Assignment Statement 

The addition of a - between the := and the string expression of a 

string assignment statement will cause the string generated by the string 

assignment statement to be subtracted from the contents of the rightmost 

string designator in the left part list. For example, if CARD is an 80 

character string variable such that the last 8 characters contain the 

string "12345000" and DCR is an 8 character string variable containing the 

string "00001000", then the string assignment statement 

CARD (72 ,8) : == - DCR 

will cause the contents of CARD(72,8) to be changed to "12344000". The 

value of the string expression in this context should be a string of digits 

not exceeding 63 characters in length. (This type of string assignment 

statement has the same effect as the statement 

DS :==N SUB 

4 
in a stream procedure of Burroughs Extended ALGOL 0) 

5.5 STRING COMPARISON 

5.5.1 String Relational expression 

The string relational expression may consist of a string designator 

followed by a relational operator followed by any string expression. Any 
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of the relational operators, =, t, <, >, ~, ~, or their mnemonics, may 

be used; comparisons are made on the basis of the ordering of the B 5500 

. 4 
co11at1ng sequence. For example, if A, B, CARD, and SEQ are string 

variables, then 

A(O,J) = B(0,J-2) & "LY" 

CARD(72,8) > SEQ(0,8) 

are examples of string relational expressions. 

If the length of the field of characters specified by the string 

designator is not equal to the length of the string generated by the 

string expression, then the result of the comparison will depend on the 

relational operator: if the string expression length is greater than the 

string designator length, then the relation will be TRUE if the operator 

is t, FALSE otherwise; if the string expression length is less than the 

string designator length, then 

(1) If the operator is =, then the relation will be FALSE. 

(2) If the operator is t, then the relation will be TRUE, and; 

(3) For any other op~rators, the value of the relation will 

depend only on the result of the comparison of the string generated by 

the string expression. 

5.5.2 String Relation with SPACE 

The word SPACE (see paragraph 5.3.6) may be used at the end of a 

string expression to indicate that all of the remaining characters yet 

to be compared in the string designator on the lefthand side of the string 

relation are to be compared with the "blank" character. For example, if 
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A is a 30 character string, the string relations 

A E(0,5) & SPACE 

A SPACE 

are equivalent to the relations 

A B(0,5) & SPACE(25) 

A = SPACE(30) 

5.5.3 String Relation with NIL 

The word NIL (see parag~aph 5.3.7) may be used in string relations in 

the same way as SPACE in paragraph 5.5.2 above. For example, 

A = B(0,5) & NIL 

is equivalent to 

A = B(0,5) & NIL(25) 

when A is a 30 character string variable. 

5.5.4 String Relation with String Skip Indicator 

The string skip indicator, as defined in paragraph 5.3.8, may be used 

in the string expression in a st~ing relational expression as a means of 

effectively combining two or mo~e string relations into one; for example, 

if LINE is a 120 character string variable, and CARD is an 80 character 

string variable, then 

LINE(8,88) = CARD(0,72) & *(8) & CARD(72,8) 

is equivalent to the expression 

LINE(8,72) = CARD(0,72) AND LINE(88,8) = CARD(72,8) 
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An asterisk by itself may be u~ed at the end of the string expression 

on the righthand side of a string relation containing the relational 

operator = to indicate that, in case the length of the string generated 

by the preceding part of the string expression is less than the string 

designator length, the value of the relation will depend only on the 

result of the string comparison and not on the difference in length (which 

would ordinarily make the relation FALSE; see paragraph 5.5.1). For 

example, if A and Bare 30 character strings, and J is a real variable, 

having a value of between land 30, 

A B(O,J) & * 

is equivalent to 

A(O,J) = B(O,J) 

5.5.5 String Pattern Matching 

A limited amount of string pattern matching is made possible in GTL 

by extending the number of primaries allowed in the string expression on 

the righthand side of the string relational expression when the operators 

are = and I. In addition to the string primaries described in Subsection 5.3, 

a number of pattern matching primaries are allowed. These pattern 

matching primaries have the following forms 

n P 

P@) 

P 

where P represents a "pattern element", !! represents an unsigned integer, 

and ~ represents an arithmetic expression. The number of characters in 

the string designator tested for a match is determined by !! or ~, and 
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must be less than 64. If the pattern element is given with neither ae 

nor ~, then only one character from the string designator is tested. A 

table of the pattern elements and the set of characters they match is 

given below. 

Pattern Element 

ALF 

LTR 

DGT 

VWL 

AMONG ~ 

Characters matched 

any alphanumeric character 

any letter 

any digit 

any vowel (A, E, I, 0, or U) 

any character in the quoted string 
represented by ~ (which must be less 
than 8 characters in length) 

For example, if the string variable A contains the string "CARRIES", then 

the following relation will be TRUE: 

A(O,7) = 4 LTR & 2 VWL & "s" 

Also, if the string variable A contains the string "AACBABB" , then the 

following relation will be TRUE: 

A (0,7) = 7 AMONG "ABC" 

Note that the pattern element VWL is equivalent to AMONG "AEIOU". 

5.5.6 The SEARCH Function 

The SEARCH function converts a string relational expression into a 

pattern searching function. It has the basic form: 

SEARCH(string designator relop string expression) 

where the string designator is the test string, relop is the relational 
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operator, and string expression generates the string which will be compared 

to successive substrings of the string contained in the string designator. 

The sequence of comparisons will continue until the relation is satisfied, 

or until no more comparisons are possible. If the length of the string 

contained in the string designator is denoted by Ll and the length of the 

string generated by the string expression is denoted by L2 , then the 

maximum number of comparisons which can be made is (Ll - L2 + 1); this 

number is limited to 63. The value of the SEARCH function is the number 

of character positions skipped in the string designator before a success­

ful match is made; if no substring of the string designator satisfies the 

relation, then the value of SEARCH is (Ll - L2 + 1). For example, if STR 

is a 7 character string, then 

Contents of STR SEARCH Function Value of SEARCH 

"ABCDEFG" SEARCH (STR :;: tIC ") 2 

"ABCDEFG" SEARCH (STR :;: "G") 6 

"ABCDEFG" SEARCH (STR :::: "X") 7 

"ABCDEFG" SEARCH(STR :::: "CD") 2 

"ABCDEFG" SEARGH(STR :::: "XYZ") 5 

"AR(X) ; " SEARCH (STR :: AMONG" 0, ") 2 

"ABC456." SEARCH(STR ;;::: "0") 3 

" 1023" SEAR,CH(STR " " ") 3 

There is also an additional form of the SEARCH function 

SEARCH(strexp, ~) 

where strexp is a string relational expression as defined above, and var 

is a REAL or ALPHA variable. If the match of a single character 
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succeeds, then this character is transferred into the last character 

position of~. Otherwise, var retains its former value. For example, 

given the 7-character string variable STR, and the REAL variable R 

(initially zero), 

Contents of STR SEARCH Function, R VALUE of SEARCH VALUE of 

"ABX5Y " SEARCH (STR ::::: DGT,R) 3 "5 " 

" 1023" SEARCH(STR -.t " ",R) 3 "1" 

"AR(X) ; " SEARCH (STR = AMONG" 0 ," ,R) 2 "(" 

"ABCDEFG" SEARCH (STR ".",R) 7 "0" 

5.6 BIT EXPRESSIONS 

5.6.1 Bit Expression Form 

A bit expression is an expression which generates a string of bits. 

A bit string so generated may contain gaps, such as might be used for 

masking purposes, analogous in effect to the string skip indicator (see 

paragraph 5.3.8). Since a single character is six bits long, a bit 

string ~ bits long, including gaps, is considered to contribute 

«~ + 5) DIV 6) characters to the string expression in which bit expres-

R 

sions appear. A bit expression may consist of one or more bit primaries. 

Two or more bit primaries may be separated by + symbols. 

5.6.2 Bit Primary 

A bit primary may have one of the following forms: 

n BITI 

~ BITO 

BITl(ael) 

BITO (ael) 

BITl(ae2, ael) 

BITO(~, ill.) 

BITI 

BITO 



BIT1 represents the bit "1" and BIIO represents the bit "0". The number 

of bits to be generated is determined by the unsigned integer n or the 

arithmetic expression ~ if given, or is 1 otherwise. If the arithmetic 

expression ae2 is also given, it determines the number of bit positions to 

be skipped before any bits are generated. If, for example, Cl, C2, C3, C4, 

and C5 are real variables which have values of 1 and 0 only, J is a real 

variable, and CODE is a string variable~ then 

CODE(J,l) = BITl(l-Cl,Cl) + BITl(1-C2,C2) + 

BITl(1-C3,C3) + BIT1(1-C4,C4) + BIT1(1-C5,C5) 

will be TRUE only if the nth bit of CODE(J,l) is 1 for each Cn which is 1, 

for n = 1, 2, ••• ,5. If, in the example given above, the string 

relational expression were changed into a string assignment statement by 

replacing the = with a :=, and COD~(J,l) initially contained the charac­

ter 0, then the execution of this assignment statement would place into 

CODE(J,l) a bit pattern corresponding to the sequence of values of the 

Cn's. 

5.7 STRING ACTUAL PARAMETERS 

5.7.1 Cal1-by-Value 

When a formal string parameter is called by value, as in the example 

given in paragraph 5.3.5, then the corresponding actual parameter may be 

any string expression. However, the string generated by the string 

expression may not be longer than 7 characters in length. 

5.7.2 Ca1l-by-Name 

When the formal parameter is a string array then the corresponding 

actual parameter may only be a string array identifier or string array row. 
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However, when the formal parameter is a simple string variable (call-by­

name) then the actual pa~ameter may be either a string designator or 

string assignment statement. The latter is not equivalent to calling a 

string expression by name. Instead, the string assignment statement is 

executed when the function designator is called, not when referenced 

inside the procedure body. The name of the leftmost string designator in 

the left part list of the st~ing assignment statement is given to the 

string formal parameter. The length of the string formal parameter will 

be the length of the string generated by the string expression in the 

assignment statement. 

Even though the actual pa~ameter may be a string designator which 

refers to a substring of a string variable, the corresponding formal 

string variable may be used in the procedure body as if it were the name 

of an entire string variable, and itself may be used in a string designa­

tor; for example, consider the following procedure declaration: 

PROCEDURE peR,S); VALUE S; STRING R,S; 

R(l ,4) :=S & "X" 

If A is a string variable containing the string "ABCDEFGH" then 

P (A (1,6) , "RS ") 

will change the value of A(O,8) to "ABRSXFGH". 

5.8 USING STRINGS IN OTHER TYPES OF EXPRESSIONS 

5.8.1 Arithmetic Expressions 

If the contents of a string designator is a string of less than 8 

digits, it may be used in an arithmetic expression in the same manner as 
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any other arithmetic primary. In this context, the digit string is 

automatically converted into the integer which the string represents. 

For example, if A is a real variable and S is a string variable con­

taining the string "125 11 , then the assignment statement 

A::S(0,3) + 25 

will set A to 150. 

If A is an alpha or real variable, and S is a string variable con­

taining the string "ABC" in its first three character positions, then 

A::S(O,3) + 25 

will set A to 148, since tlABC" :::: "123" when zone bits are stripped. 

If the string referenced by a string designator is less than 8 charac­

ters in length, then the transfer function REAL applied to that string 

designator may be used in an arithmetic expression in the same manner as 

any other arithmetic primary. In this context, the string is automatically 

converted into the number which represents the string (in ALPHA format, 

right justified). For example, if A is an alpha or real variable, and S 

is a string variable containing the string "ABC" in its first three posi­

tions, then 

A:=REAL(S (0,3)) 

has the same effect as 

A:="ABC" 

The transfer function REAL may not be applied to a Boolean expression 

starting with a string designator because of the ambiguity with the con­

text described above. 
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5.S.2 Symbolic Expressions 

If the string referenced by ~ string designator is less than 32 

characters in length, then it may be used in a symbol expression in the 

same manner as any other symbol primary. In this context, the string is 

automatically converted into the atomic symbol which represents the string. 

For example, if L is a symbol variab Ie, the value of which is the list 

(IS A LIST), and S is a string variable containing the string "THIS", 

then 

L:=CONS(S(O,4),L) 

will cause L to be set to the list (THIS IS A LIST). 

5.9 USING AN ARRAY OR A STRING VARIABLE 

A single-dimensional array identifier may be used in place of a 

string variable in the left-part list of a string assignment statement, in 

a string expression, or in a string relational expression. For example, 

STRING CARD(SO); ARRAY AR[O:9] 

CARD(72,8):=AR(72,8) 

AR(7,8):=CARD(32,6) & SPACE 

AR(3,5) > CARD(3,5) 

Note that whenever an array identifier appears in the left-part list of 

a string assignment statement, it is possible that the flag bit of one or 

more array elements may be set, If an array element is accessed in an 

arithmetic expression context and the flag bit is set, then a FLAG BIT 

run time error will occur. 



5.10 OPTIMALITY OF STRING EXPRESSIONS 

In all string expressions for which the compiler can determine at 

compile time exactly what actions are to be performed (all skip parts 

and size parts in a string expression or assignment statement are 

unsigned integers), then the code emitted is almost always more efficient 

than an equivalent STREAM PROCEDURE. This is not necessarily true other­

wise. 

5.11 READING AND WRITING STRINGS 

5.11.1 READ and WRITE Statements 

A string variable not a formal parameter and longer than 8 charac­

ters in length may appear in ALGOL READ and WRITE statements at any place 

at which an array row is allowed. As with the array row forms, the 

number of words to be read or written, rather than the number of charac­

ters, must be given since only multiples of 8 characters may be read or 

written. For example, if CARD is an 80 character string, INFILE is an 

input file, LINE is a 120 character string, and OUTFILE is an output file, 

then the following READ and WRITE statements are allowed: 

READ (INFILE, 10 ,CARD) 

WRITE(OUTFILE,15,LINE) 

5.11.2 GTL Input-Output Functions 

In addition to the ALGOL READ and WRITE statements described above, 

strings may be easily read from or written onto any file using the GTL Input­

Output functions described in Section IX. 



VI. LISP 2 

6.1 INTRODUCTION 

Among the facilities for processing symbolic data, GTL contains a 

1 non-standard version of LISP 2, a list processing language • 

This section of the manual describes the list processing constructs 

provided by the GTL language. Although enough information is provided 

in this section to enable the user to write a LISP program, it is intended 

to supplement, but not replace, the standard references on LISp2 ,3,8,6. 

6.2 S-EXPRESSIONS AND LISP RECORDS 

6.2.1 Record and Field Designator 

The name S-expression (or "Symbolic expression") is given to the 

symbolic (or "external") representations of LISP data. In order to 

define the S-expression and relate it to the various LISP operations, the 

concept of a linked record9 is introduced. 

A record, like an array in ALGOL, is a set of values. In ALGOL, an 

array is an ordered set of values all of the same type, each of which may 

be referenced by an appropriate subscript. A record, on the other hand, 

contains a set of fields, and each field contains a value, the type of 

which corresponds to the type of field. A collection of records is said 

to belong to the same record class if each record in the collection con-

tains the same corresponding fields. The value of a field in a record is 

referenced by the application of the field name to a reference expression, 

the value of which is a reference to the record. In GTL, this construct 

is called a field designator, and has the form 

FIELDNAME(re) 

where FIELDNAME is the name of a field and re is a reference expression. 
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Certain classes of LISP records contain two fields which are directly 

accessible to the programmer, the names of which are CAR and CDR. The 

value of a CAR or CDR field is a reference to a LISP record. A LISP 

reference expression; i.e., an expression the value of which is a refer-

ence to a LISP record, is called a s¥mbol expression. Thus, 

CDR(se) --
is a reference to the LISP record which is referenced by the value of 

the CDR field of the LISP record referenced by the symbol expression ~. 

6.2.2 LISP Records 

There are three primary classes of LISP records: 

1) A record which represents a string of characters. This type 

of record is called an atomic symbol, and contains a CDR field, but not a 

CAR field. 

2) A record which represents a number. This type of record is 

called an atomic number, or simply number, and contains neither the CAR 

nor the CDR field. 

3) A record which contains only the CAR and CDR fields. It 

represents a symbolic expression called a dotted pair, which is defined 

below. 

LISP records of types land 2, atomic symbols and atomic numbers, 

are called atoms because they are the basic components from which the sym-

bolic representations of LISP data are constructed. Atoms are represented 

symbolically simply by the strings and numbers which they represent. 

A LISP record of type 3 is represented symbolically by a dotted pair 
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which has the form 

( s1 • s2 ) 

where sl and s2 are the symbolic representations of the LISP records 

referred to by the values of the CAR and CDR fields, respectively, of 

the LISP record. For example, 

(DOTTED • PAIR) 

is the symbolic representation of a LISP record for which the CAR field 

refers to the atomic symbol DOTTED, and the CDR field refers to the 

atomic symbol PAIR. Note that the definition of a dotted pair is recur­

sive. If the values of the CAR and CDR fields of a LISP record are non­

atomic, then the dotted pair representing the record will contain dotted 

pairs; for example, 

«DOTTED • PAIR) (POTTED DAIR) ) 

LISP records which represent dotted pairs can be represented graphi­

cally by a rectangle divided in half, the left half representing the CAR 

field and the right half representing the CDR field. Each half contains 

an atom if the corresponding field is atomic, or an arrow pointing to 

another rectangle if non-atomic. For example, the two dotted pairs given 

above can be represented as shown below. 
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CAR CDR 

DOTTED PAIR corresponds to (DOTTED . PAIR) 

CAR CDR 

POTTED DAIR 

i...-+ DOTTED PAIR 

corresponds to «DOTTED. PAIR) . (POTTED. DAIR» 

It is possible to create LISP records which have a graphic 

representation, but which have no corresponding symbolic representation 

as a dotted pair; for example, 

CAR CDR 

A 

B 

J 
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6.2.3 LISP Lists 

Atomic symbols, atomic numbers, and dotted pairs are all forms of 

symbolic representations of LISP data called S-expressions. There is an 

additional type of S-expression called a list. A LISP list can be defined 

recursively as 

1) a sequence of one or more S-expressions enclosed in paren-

theses, or 

2) the empty list, () 

The non-empty list has the form 

(sl s2 ••• ) 

where sl, s2, ••• , are S~expre~sions. Two or more list items may be 

separated by commas if desired. 

Examples of LISP Lists: 

(A 15 B) 

(A,B,C) 

(ONE) 

«A • B) , (C • D) , (E • F)) 

(A (B C)) 

o 

Lists are defined in terms of atoms and dotted pairs as follows. 

The empty list is equivalent to the atom 0 (zero)*. A list with one 

list item is equivalent to a dotted pair with the list item first and 

the atom 0 (zero)* second. A list with two or more list items is 

equivalent to a dotted pair with the first list item as the first 

*In most LISP systems, the atomic symbol NIL is used instead of O. 
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component and a list containing all list items except the first as the 

second component. Thus LISP lists may be defined in terms of dotted pairs 

(but not vice versa). 

Examples: 

o == 0 

(A) == (A 0) 

(A B) == (A • (B • 0» 

( (C) D) "" « C • 0) • (D • 0» 

«A B) (C) D) «A. (B • 0» • « C • 0) • (D • 0») 

LISP lists can be represented graphically in the same manner as 

dotted pairs; for example, (A B C) may be represented as 

CAR CDR 

~_A __ ~ ____ ~~--~~~I B a 

This kind of graphical representation is often useful for visualizing 

what occurs when S-expressions are manipulated by altering the contents 

of the CAR and CDR fields of the associated LISP records. 

6.3 SYMBOL EXPRESSION 

6.3.1 Definition 

In ALGOL, an arithmetic expression may be considered as a set of 

rules which, when executed, generates a value which is a number. In GTL, 

a symbolic expression is a se.t of rules which produces a value which is 

a reference to a LISP record. Some of the components from which symbolic 

expressions are composed are described below. 
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6.3.2 Quoted S-expressions 

The quoted S-expression is an S-expression enclosed in quotes which 

has as its value a LISP record, the symbolic representation of which is 

the S-expression. For example, 

"(THIS IS A LIST)" 

"ATOMICSYMBOL' , 

"(DOTTED. PAIR)" 

"(3 5 7 11)" 

6.3.3 Numbers and Arithmetic Expressions 

Almost any class of arithmetic expression~ including those composed 

of literal numbers, may be used in a symbol expression. Whenever an 

arithmetic expression is used where a LISP reference value is expected, 

its value is a reference to a LISP record which represents the number 

which is the value of the arithmetic expression. The arithmetic primary 

which cannot be used in this context is the string constant (of Burroughs 

Extended ALGOL, in which GTL is embedded), since it may be identical in 

form to a quoted atomic symbol representing the same string. 

6.3.4 LISP Variables 

Variables whose values are references to LISP records are declared 

and used in the same forms as REAL, INTEGER, and BOOLEAN variables in 

ALGOL. LISP variables are declared with the declarator SYMBOL; for 

example, 

SYMBOL X, Y, Z 

SYMBOL ARRAY SR[O:20] 
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A variable of type SYMBOL may be used in a symbol expression to produce 

its value, or, as in ALGOL, in the left part list of an assignment state­

ment to change its value. 

6.3.5 Assignment Statement 

An assignment statement, besides being. used as a statement, may be 

used in a symbol expression having as its value the value which is 

assigned to the variables in the left part list. An extension of the 

syntax of the LISP assignment statement is described in Subsection 6.7. 

6.3.6 The Field Designators 

The CDR field name may be applied to any symbol expression the value 

of which is a LISP record of type I or 3 (atomic symbol or dotted pair). 

The CAR field name may be applied to any symbol expression the value of 

which is a type 3 LISP record (dotted pair). 

Examples 

CAR("(A • B)")= A 

CDR("(A • B)")= B 

CAR("(A B C)")::::: A 

CDR("(A B C)")= (B C) 

Compositions of these field designators may be contracted to a form illus­

trated by the following examples: 

CADR("(A B C)") = CAR(CDR("(A B C)")= B 

CDAR("«A B) C)") :; CPR(CAR("«A B)C)"» = (B) 

CAAAR("«(A»)")= CAR(CAR(CAR("«(A»)"»)= A 

CADDR("(A B C)")= CAR(CDR(CDR("(A B C)"»)= C 

The length of a composite field designator may not exceed 13 characters. 

6-8 



6.3.7 Conditional Expression 

The LISP 2 conditional expression has the same form as any ALGOL 

conditional expression. For example, 

IF X 1 THEN CAR(S) ELSE CADR(S) 

6.3.8 LISP Function Designator 

A LISP function designator is simply a calIon a procedure which was 

declared with the type SYMBOL, its value being the reference to the LISP 

record defined by the SYMBOL procedure declaration. In GTL, the formal 

parameters of the procedure, if any, may be of type SYMBOL; the conventions 

of call-by-value and call-by-name of standard ALGOL also apply. For 

example, the declaration 

SYMBOL PROCEDURE ELN(N ,S); REAL N; SYMBOL S; 

BEGIN 

WHILE (N:=N - 1) > 0 DO S:=CDR(S); 

ELN:=CAR(S) 

END OF ELN 

defines a procedure which has as its value the Nth element of the list S; 

ELN(l, "(A B C D)")= A 

ELN(3, "(A B C D)")= C 

Note that the preceding definition is not intended to imply that procedures 

of any other type (or untyped) may not have formal parameters of type 

SYMBOL; see, for example, the procedure declaration given in paragraph 6.8.2. 
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6.4 LISP STANDARD FUNCTIONS 

6.4.1 CONS 

The LISP function CONS is a :;;tandard (or "intrinsic") function of two 

arguments, both symbolic expressions. The value of CONS is a freshly­

created LISP record whose CAR field is set to the value of the first argu­

ment, and whose CDR field is set to the value of its second argument. For 

example, 

CONS ("A", "B"} =;; (A . B) 

CONS ("A", CONS("L!ST",O» =;; (A LIST) 

Note that the difference between CONS("A", "B") and "(A . B)" is that each 

time the latter is evaluated, its value is a reference to the same LISP 

record. 

6.4.2 LIST 

The LIST function is a standard function of one or more arguments, 

the value of which is a set of link LISP records the symbolic represen­

tation of which is a LISP list. For example, 

LIST("THIS", "IS", "(A LIST)") =;; (THIS IS (A LIST» 

The use of the word LIST in this context does not interfere with its use 

in the LIST declaration of Burroughs Extended ALGOL. 

6.4.3 RANDOM 

The standard function RANDOM is a function of one symbol expression 

argument the value of which should be a list. The value of RANDOM is one 

item chosen at random from the list. 

Example: 

RANDOM (" (CHOOSE ONE OF THESE AT RANDOM) ") 
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6.4.4 APPEND 

The standard function APPEND is a function of two symbol expression 

arguments whose values should be lists. Its value is a copy of the first 

list with the CDR field of its last record modified to point to the second 

list. Its effect is illustrated by the following procedure declaration: 

SYMBOL PROCEDURE APPEND(X, Y); VALUE X, Y; SYMBOL X, Y; 

APPEND:=IF NULL (X) THEN Y ELSE 

CONS (CAR(X) , APPEND (CDR(X) , Y)) 

(The NULL function is TRUE if its argument is the empty list - see 

paragraph 6.5.5). 

Example: 

APPEND("(A B C)","(D E F)") == (A BCD E F) 

6.4.5 NCONC ---
The standard function NCONC is a function of two symbol expression 

arguments whose values should be lists. Its value is its first argument 

(if a non-empty list) with the CDR field of its last record altered to 

point to the value of NCONC's second argument. If the first argument is 

the empty list, then the value of NCONC is the value of its second argu-

ment. The effect of NCONC, illustrated by the procedure declaration given 

below, is similar to that of APPEND except that its first argument is not 

copied. 

SYMBOL PROCEDURE NCONC(X,Y); VALUE X, Y; SYMBOL X, Y; 

IF NULL(X) THEN NCONC:=Y ELSE 

BEGIN 

NCONC:::;;X; 

WHILE NOT NULL(CDR(X») DO X:=CDR(X); 

CDR(X):=Y; 

END 



The las tass ignment statement shown above means that the CDR fi.eld of the 

record to which the value of X refers is changed to the value of Y. This 

construct is further explicated in Subsection 6.7. 

6.4.6 SPACE and QMARK 

The standard functions SPACE and QMARK are functions of no arguments 

whose values are atomic symbols which represent the blank and question 

mark characters , respectively. Thes~e functions are provided since these 

characters are not part of the syntax of S.-expressions which may be read 

or quoted (see Subsection 6.10). 

6.5 BOOLEAN STANDARD FUNCTIONS 

6.5.1 ATOM 

The Boolean standard function ATOM, when applied to a symbolic expres­

sion argument, yields a value of TRUE if the value of the symbolic expres­

sion is an atom, i.e., an atomic symbol or number, and is FALSE otherwise. 

Examples: 

6.5.2 ATSYM 

ATOM("ATOMICSYMBOL") == TRUE 

ATOM(X + 5) == TRUE 

ATOM("(A • B)") == FALSE 

The Boolean standard function ATSYM, when applied to a symbolic 

expression argument, yields a value of TRUE if the value of the symbolic 

expression is an atomic symbol, and is FALSE otherwise. 

Examples: 

ATSYM("ATOMICSYMBOL") ::; TRUE 

ATSYM(125) == FALSE 

ATSYM("(A • B)") = FALSE 
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6.5.3 NUMBERP 

The Boolean standard function NUMBERP, when applied to a symbolic 

expression argument, yields a value of TRUE if the value of the symbolic 

expression is a reference to a LISP record which represents a number, 

and is FALSE otherwise. 

Examples: 

6.5.4 ALF 

NUMBERP ("ATOMICSYMaOL") = FALSE 

NUMBERP(125) :::;; TRUE 

NUMBERP (" (A . B) I') :::;; FALSE 

The Boolean standard function ALF, when applied to a symbolic expres­

sion argument having an atomic symbol as its value, yields a value of 

TRUE if the atomic symbol is an identifier, and is FALSE otherwise. If 

the value of the symbolic expression argument is not an atomic symbol, the 

value of ALF is undefined. 

Examples: 

ALF ("ATOMICSYMBOL") TRUE 

ALF(":") :::;; FALSE 

ALF("A") :::;; TRUE 

In other words, ALF distinquishes between atomic symbols of types 1 and 2 

as defined in paragraph 6.12.1. 

6.5.5 NULL 

The Boolean standard function NULL, when applied to a symbolic 

expression argument, yields a value of TRUE if the value of the symbolic 
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expression is the atom 0 (zero), and is FALSE otherwise. 

Examples: 

6.5.6 MEMBER 

NULL(O) "" TRUE 

NULL (" 0 ") = TRUE 

NULL("(ONE)") :;:: FALSE 

NULL(CDR("(ONE)"» = TRUE 

The Boolean standard function MEMBER, when applied to two symbolic 

expression arguments, yields a value of TRUE if the value of the first 

argument is a member of the list which is the value of the second argument. 

Examples: 

MEMBER("B", "( A B C)") = TRUE 

MEMBER ("X" , "( A B C)") = FALSE 

MEMBER("( C D)", "(A B (C D»") = TRUE 

6.6 LISP RELATIONAL EXPRESSIONS 

The definition of the relational expression of ALGOL is extended by 

the includionof the LISP relational expression which has the form: 

~EQ~ 

~ NEQL ~ 

where sv is a SYMBOL variable, LISP assignment statement, LISP function 

designator, or a field designator; EQ, NEQL, =, and J are the LISP 

relational operators; and ~ is a symbol expression. The relational 
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expression containing EQ is TRUE if, and only if, the values of ~ and se 

are references to the same LISP record. The relational expression con­

taining = is TRUE if and only if the values of sv and se are references 

to LISP records (not necessarily the same) which represent the same 

S-expression. The relational expressions containing NEQL and I are the 

negations of the relational expression containing EQ and =, respectively. 

Note that, according to the definitions given above, a relational 

expression of the form 

CAR(S) 15 

is syntactically correct, whereas 

CAR(S) > 15 

is not, since> is not a LISP relational operator. The above expression 

could be written correctly as 

15 < CAR(S) 

in which case a run-time error would result if CAR(S) is not a number. 

6.7 THE LISP ASSIGNMENT STATEMENT 

The LISP assignment statement has the same form and operational 

meaning as an ordinary ALGOL assignment statement. In addition to SYMBOL 

variables, however, field designators (including the composite forms 

shown in paragraph 6.3.6) may be used in place of any variable in a left 

part list. For example, if X is a SYMBOL variable having the value 

(ABC),then 

CAR(X) :="D" 
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changes the CAR field of the LISP record referenced by the value of X to 

the atomic symbol D, so that, after the execution of this assignment state-

ment, the value of X is (D B C). 

Examples: 

If the value of X before the statement is (A B C), then 

the following occurs: 

assignment statement 

CADR (X) : ="D" 

CDR (X) ::" (D E)" 

CAR (X) :::::CDR(X) :::::"C" 

CDDDR(X) :=X 

value of X after 
assignment statement 

(A D C) 

(A D E) 

(C • C) 

no S-expression 
representation 

The result of the last assignment statement given above is a "circular" 

list and may be illustrated graphically as the following: 

.1 BI 

Note that NCONC (X, X) would have the same effect. It also changes X into 

a circular list. Circular lists may not be read or printed by the normal 

GTL Input-Output mechanism. 

The assignment statement with the field designator in the left part 

list is the only means of changing the CDR and CAR fields of LISP records 

in LISP 2. 
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6.8 THE LISP ITERATIVE STATEMENT 

6.8.1 The ON Statement 

There are two types of LISP iterative statements which are similar in 

form to the FOR-statement of ALGOL. The first type has the form: 

where 

FOR s ON e DO st 

s is a simple SYMBOL variable 

e is a symbol expression, and 

st is any statement 

It is equivalent to the following compound statement: 

BEGIN 

For example, consider the following procedure declaration: 

SYMBOL PROCEDURE SUBST(X, Y, Z); VALUE X, Y, Z; SYMBOL X, Y, Z; 

BEGIN 

SYMBOL S; 

SUBST:=Z; 

FOR S ON Z DO IF X 

END 

CAReS) THEN CAR(S):=Y; 

which has the effect of substituting Y for every occurrence of X in the 

list Z. 

SUBST("A", "R", "(A E A C)") = (R B R C) 

6-17 



6.S.2 The IN Statement 

The second type of LISP iterative statement has the following form: 

FOR s IN ~ DO st 

where ~, ~, and st have the same meanings as in paragraph 6.S.l above. It 

is equivalent to the block: 

BEGIN 

SYMBOL X; 

FOR X ON ~ DO BEGIN ~:=CAR(X); st END 

END 

For example, a definition of the MEMBER standard function could be given 

by the following procedure declaration: 

BOOLEAN PROCEDURE MEMBER(X,Y); VALUE X, Y; SYMBOL X, Y; 

BEGIN LABEL EXIT; SYMBOL S; 

FOR S IN Y DO IF X ::: S THEN BEGIN MEMBER:=TRUE; 

GO TO EXIT END; 

MEMBER:=FALSE; 

EXIT: END OF MEMBER 

6.S.3 The WHILE Part 

Both forms of the iterative statement may contain a WHILE part in the 

form: 

FOR .!!. { ;;: }.!!. WHILE be DO ~ 

where be is a Boolean expression. This means that the loop will continue 

until be is FALSE or until the empty list is reached. 
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6.9 EXTENSIONS OF ARITHMETIC EXPRESSIONS 

6.9.1 Arithmetic Expression Syntax Extension 

An arithmetic expression may contain any of the symbol expressions 

described in Subsection 6.3; the value of the symbolic expression should 

be a reference to a LISP record which represents a number. The value of 

the symbol expression in this context will be this number. For example, 

if X is a REAL variable and S is a SYMBOL variable, 

X:=CDR(S) + X 

is permitted if it is known that the value of CDR(S) is a number. 

6.9.2 The LENGTH Function 

There is a usefu1-integer-va1ued standard function called LENGTH 

which has a symbolic expression as an argument. If the value of the sym­

bolic expression is a list, then the value of LENGTH is the number of items 

on the list. If the value of the symbolic expression is an atomic symbol, 

then the value of LENGTH is the number of characters in the string 

represented by the atomic symbol; otherwise, the value of LENGTH is 

undefined. For example, 

LENGTHC'(A B)") = 2 

LENGTH("«A B) (B C) (D E»") 3 

LENGTH (" 0") = 0 

LENGTH("0NE") = 3 

LENGTH("ATOMICSYMBOL") = 12 
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6.10 READING AND WRITING S-EXPRESSIONS 

6.10.1 Output Functions 

The value of any GTL variable or function designator, including LISP 

variables, procedures, and assignment statements--i.e., those declared 

with type SYMBOL, and LISP field designators--may be printed by the PRINT 

statement. The PRINT statement consists of the word PRINT followed by 

one or more "printable items". (See paragraphs 9.2.2 through 9.2.17 on 

the use of the PRINT statement.) For example, if S is a SYMBOL variable 

having the atomic symbol X as its value, and Y is a REAL variable, the 

value of which is 15, then 

PRINT # THE VALUE OF # S # IS # Y 

causes 

THE VALUE OF X IS 15 

to be printed on the output file. The output file is specified by the 

OUTPUT statement. (See Subsection 9.3.) 

If Sand R are SYMBOL variables with values (A B C) and CD E F), 

respectively, then 

PRINT S,R 

causes 

(A B C) (D E F) 

to be printed. 
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If S is a SYMBOL PROCEDURE which returns as its value the S-expres­

sion (THIS IS A LIST), then 

PRINT CDR(S) 

causes 

(IS A LIST) 

to be printed. 

The user need not be concerned about printing items for which the 

character representation exceeds the size of a logical record of the out­

put file. The output system automatically edits the output string so 

that it can be written on one or more logical records as needed. 

If the GTL Output mechanism is used, then the following file and 

output string declarations are suggested: 

1) for the line printer: 

FILE OUT OUTFILE 16(2,15) 

and 

STRING LINE (120) 

2) for the remote terminal: 

FILE OUT OUTFILE REMOTE (2,9) 

a~ 

STRING LINE (72) 

These declarations must appear in the outermost block of the program. 

With these declarations, the following output statement should be executed 
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before using PRINT: 

OUTPUT(OUTFILE,LINE,file length in characters) 

where file length in characters would be an unsigned integer specifying 

the file length in characters of the file. For the line printer and 

remote terminal, this would be 120 and 72, respectively. For remote 

terminals, the FILE REMOTE construct can be used (Subsection 9.6). (See 

Section IX for complete details on GTL Input-Output.) 

6.10.2 Input Functions 

The functions READ and READ1 may be used in symbol expressions for 

reading S-expressions from the input files. The function READl reads 

single atomic symbols and numbers only, and READ reads S-expressions. 

Dotted pairs and lists read by READ must be followed by $ (which serves 

to indicate the end of an S-expression in case of a parenthesis mismatch); 

the $ functions as a delimiter only and will not be read by a subsequent 

READ or READ1. For example, if 

(NUMBER. 125)$ 

appears in the input string, then the value of READ will be the dotted 

pair (NUMBER. 125); if READ1 is executed six times (without an inter­

vening READ), then the values of READ1 will be six atoms: 

( 

NUMBER 

125 

) 

$ 
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Although the spacing between items read from an input file by READ or READl 

is not important, an identifier or a digit string in a number cannot be 

broken across the boundaries of an input record (for example, the characters 

of an atomic symbol cannot begin on one card and continue on the following 

card); S-expressions read by READ can otherwise be spread across more than 

one input record. The value of READ or READI at end-of-file is the QMARK 

atomic symbol. 

If the GTL Input mechanism is used, the following file and input string 

declarations are suggested for a card file: 

FILE IN INFILE (2,10); 

a~ 

STRING CARD (80) 

For a remote terminal file, the following might be used: 

FILE IN INFILE REMOTE (2,9); 

and 

STRING CARD (72) 

These declarations must appear in the outermost block of the program. With 

these declarations, the following INPUT statement should be executed before 

using READ or READl: 

INPUT (INFILE ,CARD ,file length in characters) 

where file length in characters would be 80 and 72 for the card reader and 

remote terminal, respectively. (See Subsection 9.5.) If the remote terminal 

is being used for both Input and Output, then only one REMOTE file should be 

declared and the file identifier associated with that file should be used 

in both the INPUT and OUTPUT statements. If a listing of the input 

string from the card file is desired, then the additional declarations 

given in paragraph 9.8.4 can be used. For remote terminals 
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the FILE REMOTE construct can be used. (See Section IX for details of 

GTL Input-Output.) Warning: If the FILE REMOTE declaration (Subsec-

tion 9.6) is used in lieu of the above, then care should be exercised 

since a psuedo end-of-fi1e is normally returned after every other READ 

or READ1; i.e., READ or READ1 will be equal to the QMARK (question mark) 

atomic symbol on every other read. (See paragraph 9.6.2, especially 

part 4.) 

6.11 THE SYMBOL MONITOR 

The values of SYMBOL variables and procedures can be monitored by the 

LISP monitor system. The variables and procedures to be monitored are 

specified by the declaration SYMBOL MONITOR followed by a list of SYMBOL 

variables or procedure identifiers. For example, if the variables X and 

SR and the procedure ELN (declared in paragraphs 6.3.4 and 6.3.8) are to 

be monitored, then the delcaration 

SYMBOL MONITOR X, SR, ELN 

should be used (after the declarations of these items). The name of the 

SYMBOL variable (plus values of subscripts if a subscripted variable) is 

printed with its value whenever it appears in the left part list of an 

assignment statement which is executed (a subscripted variable must be the 

leftmost variable for it to be monitored). Whenever a monitored SYMBOL 

procedure is evaluated, the procedure name, its arguments (if call by 

value and type REAL, INTEGER, BOOLEAN, or SYMBOL) and its value are 

printed. If a call on a SYMBOL procedure to be monitored appears before 

the SYMBOL MONITOR declaration (such as would normally occur with recursive 

procedure declarations), then that procedure call would not be monitored. 

This restriction can be circumvented by either declaring the procedure 
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FORWARD and making the actual procedure declaration after the SYMBOL MONI­

TOR declaration or by making the SYMBOL MONITOR declaration inside the 

procedure declaration itself (which would cause only recursive calls to be 

monitored). The monitor file is specified by the output statement (para­

graph 6.10.1). A monitor declaration is effective only in the block in 

which it appears. 

For example, with the declarations 

SYMBOL R; 

SYMBOL PROCEDURE LISTOFATOMS(S);VALUE S; SYMBOL S; FORWARD; 

SYMBOL MONITOR LIS TOFATOMS, R; 

SYMBOL PROCEDURE LISTOFATOMS(S); VALUE S; SYMBOL S; 

LISTOFATOMS:=IF NULL(S) THEN 0 ELSE 

IF ATOM(CAR(S»THEN 

CONS(CAR(S),LISTOFATOMS(CDR(S»)ELSE 

NCONC(LISTOFATOMS(CAR(S»,LISTOFATOMS(CDR(S») 

the execution of the assignment statement 

R:=LISTOFATOMS (" (A «B) C) )") 

will cause the following to be printed (names of variables and procedures 

are truncated to 7 characters when necessary): 

CALL LISTOFA 

(A «B) C» 

CALL LISTOFA 

«(B) C» 

CALL LISTOFA 

«B) C) 

6-25 



CALL LISTOFA 

(B) 

CALL LISTOFA 

o 

LISTOFA 0 

LISTOFA == (B) 

CALL LISTOFA 

(C) 

CALL LISTOFA 

o 

LISTOFA 0 

LISTOFA :;: (C) 

LISTOFA :::: (B C) 

CALL LISTOFA 

o 

LISTOFA ::: 0 

LISTOFA == (B C ) 

LISTOFA :::: (A B C) 

R ::: (A B C) 

6.12 ATOMIC SYMBOLS 

6.12.1 Types of Atomic Symbols 

In the GTL LISP 2 system, there are three types of atomic symbols 

(classified by the kinds of strings the atomic symbol represents): 

1) Identifier, which is an ordinary ALGOL identifier (i.e., a 

letter, which may be followed by one or more letters or digits), 
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2) Special character, which is any non-alphanumeric character 

in the B 5500 character set except the blank character and the question 

mark, and 

3) Non-standard atomic symbol, which is any string of charac­

ters (which may include the blank character and question mark which is 

neither an identifier nor a special character. 

No atomic symbol of any type may exceed 31 characters in length. 

Quoted atomic symbols appearing in symbol expressions (paragraph 6.3.2) 

and atomic symbols read by READ1 may be any identifier or special charac­

ter. The atomic symbols appearing in quoted dotted pairs or lists, or 

dotted pairs or lists read by READ, may be any identifier or special charac­

ter except the following special characters: 

( 

) 

" 

$ 

These special characters cannot be recognized as atomic symbols in this 

context since they serve as delimiters of dotted pairs and lists (for 

S-expressions which are quoted or read by READ). 

6.12.2 Nonstandard Atomic Symbols 

Any nonstandard atomic symbol may be created by the MKATOM function 

which is described in paragraph 6.14.3. Also, the blank and question mark 

atomic symbols may be created by using the SPACE and QMARK functions, 

respectively, in symbolic expressions (paragraph 6.4.6). 

6-27 



6.12.3 Uniqueness of Atomic Symbols 

Every atomic symbol created by the constructs described in this section 

(i.e., those appearing in quoted S-expressions, or read by READ or READl) 

is unique. A single type 1 LISP record represents all occurrences of 

identical character strings in S-expressions which are read or quoted. 

This uniqueness has an important consequence: Information contained in a 

set of linked LISP records may be associated with the character string 

represented by an atomic symbol via the CDR field of the atomic symbol. 

For example, if one describes the syntax of simple arithmetic expressions 

by the following BNF equations, 

<e> == <p>I<p><op><p>I<p><op><e> 

<P> == <v>I «e» 
<v> == A I B I C 

<op> :: == + I - I ® I / 

their representation may be effected through the following assignment 

statements: 

CDR("E"):=="«P) (P OP P) ( P OP E))" 

CDR ("P") : =CONS (LIST (" (", "E", ") "), II «V)) ") 

CDR("V"):=="«A) (B) (C»" 

CDR("OPII) ::::" « +) (-) (®) (/»" 

so that, when using the procedure GEN, as defined below, 

PROCEDURE GEN(X); VALUE X; SYMBOL X; 

IF NULL(CDR(X» THEN PRIN X SPACE ELSE 

FOR X IN RANDOM(CDR(X» DO GEN(X) 
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calls on the pair of statements 

GEN (liE "); TERPRI 

would cause to be printed randomly generated expressions which may have 

forms like those shown below: 

A 

A + B 

A / (B - C) 

(A + B ~ C) / A 

6.13 THE LISP OBJECT LIST 

6.13.1 The LISP Symbol Table 

The uniqueness of atomic symbols described in paragraph 6.12.3 is 

assured through the use of a symbol table created and maintained by the GTL 

system. All single character atomic symbols are necessarily unique. The 

numeric value of a character is internally converted directly into the 

reference to the LISP record representing the character. However, all unique 

multi-character atomic symbols are contained on a list called the object list. 

Whenever a unique atomic symbol representing a string of characters is to 

be created, the object list is consulted first to determine whether or not 

an atomic symbol already exists which represents the string in question. 

If the atomic symbol already exists, a reference to this atomic symbol is 

returned. If the atomic symbol is not on the object list, it is created, 

and placed on the object list. The object list itself is actually not a 

single list but a collection of 125 lists. An arithmetic operation (MOD) 

is performed on a part of the string to be tested, yielding a value between 
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o and 124. This value is then used as an index to an implicitly declared 

SYMBOL array, each element of which references a possibly empty list of 

atomic symbols. This procedure, called hashing, greatly reduces the amount 

of time required to determine the existence of an atomic symbol representing 

a multi-character identifier. The atomic symbols on an object list are not 

actually members of a list but are linked together through the CTR field 

of the atomic symbol. (The CTR field is described in Subsection 6.16.) 

In this context, 1 is used as an end of list indicator instead of O. Therefore, 

every atomic symbol on the object list has a non-NULL CTR field. 

6.13.2 The OBLIST Function 

The OBLIST function may be used to access all of the multi-character 

atomic symbols on the LISP symbol table as described above. The OBLIST 

function is used in the form: 

OBLIST (aexp) 

where aexp represents an arithmetic expression, the value of which must be 

an integer between 0 and 124 (as explained above). For example, if S is 

a SYMBOL variable and X is a REAL variable, then the following statements 

could be used to print the contents of the object list: 

FOR X:=O STEP 1 UNTIL 124 DO 

IF NOT NULL(S:=OBLIST(X)) THEN 

DO PRIN S SPACE UNTIL S:=CTR(S) = 1; 

TERPRI 
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6.13.3 The REMOB Statement 

One or more atomic symbols may be removed from the object list by the 

REMOB function for the purpose of reclaiming storage used for atomic symbols 

and/or making an atomic symbol unrecognizable. The REMOB statement may be 

used in two forms: 

REMOB 

REMOB(~) 

where ~ represents a symbol expression. The first form of the REMOB state­

ment will remove the entire object list. The second form will remove from 

the object list the atomic symbol referenced by the value of the symbol 

expression ~. 

6.14 STRINGS AND ATOMIC SYMBOLS 

6.14.1 Creation of Atomic Symbols 

Any string of characters less than 32 characters in length can be 

converted into an atomic symbol, and vice versa. Conversion of an atomic 

symbol into the string of characters which it represents was discussed in 

paragraph 5.3.13. Every multi-character atomic symbol created by the GTL 

system is placed on the object list with the exception of those created by 

the GENSYM function (paragraph 6.14.4) and the asterisk forms of the 

MKATOM function (paragraph 6.14.3). The following two paragraphs describe 

functions of string expressions (See Section V) which are useful in the 

LISP portion of GTL. These functions are used implicitly by the READCON 

function (Section IX). 
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6.14.2 The ATGON Function 

The ATGON function is ~ Boolean standard function which indicates 

whether or not a string is represented by an atomic symbol on the object 

list. The ATGON function is used in the form: 

ATGON(~) 

where ~ is a string expression. The value of the string expression should 

be less than 32 characters in length. The value of ATGON will be TRUE if 

there is an atomic symbol on the object list which represents the string, 

and FALSE otherwise. If ATCON is TRUE, then the atomic symbol which was 

found may be accessed by the standard variable INSYM (see paragraph 9.7.1). 

If the function ATGON is used by itself, without the string expression, the 

string contained in the string designator 

INSTR(O, LENGTH(INSTR» 

will be tested (see paragraphs 9.4.3, 9.4.4, and 9.7.1). 

6.14.3 The MKATOM Function 

The MKATOM fUnction is used to create an atomic symbol from a string. 

The value of MKATOM is the atomic symbol which is created. The MKATOM func­

tion may be used in the following forms: 

MKATOM(~) 

MKATOM(se)* 

MKATOM 

MKATOM* 

where ~ represents a string expression. The value of the string expression 
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must be less than 32 characters in length. The first two forms of the 

MKATOM function will return a reference to an atomic symbol which represents 

the string generated by the string expression see The third and fourth forms 

of the MKATOM function will return a reference to an atomic symbol which 

represents the string contained in the string designator 

INSTR(O ,LENGTH (INSTR)) 

(see paragraphs 9.4.3, 9.4.4, and 9.7.1). The first and third forms of the 

MKATOM function will check the object list first to see if the atomic sym­

bol already exists (see Subsection 6.13); if so, a reference to this atomic 

symbol is returned. If an atomic symbol does not already exist, then a 

new one is created and placed on the object list. If the second and fourth 

forms of the MKATOM function, the asterisk forms, are used, with multi­

character atomic symbols, they will create a new atomic symbol which is 

not placed on the object list, regardless of whether or not there is an 

atomic symbol on the object list representing the string. The asterisk 

has no effect if the value of se is a single-character atomic symbol. 

6.14.4 The GENSYM Function 

The GENSYM function is a SYMBOL standard function of no arguments. 

Each calIon the GENSYM function will create a new atomic symbol which is 

not placed on the object list (and will not be recognized if read or 

quoted, or tested by ATCON). Atomic symbols created by GENSYM represent 

strings consisting of the letter "G" followed by a 3 digit number. For 

example, the first 3 calls on GENSYM will create the atomic symbols 

GOal 

G002 

G003 
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6.15 LISP REFERENCE VALUE TRANSFER FUNCTIONS 

6.15.1 The CTSM Function 

The CTSM function is a real-valued function used in the form: 

CTSM(~) 

where se represents a symbol expression. The value of CTSM is the con­

tents of the word referenced by the value of see For example, the value of 

the ID field of a LISP record (see paragraph 6.22.1) is given by 

CTSM(se). [1: 2J 

In many cases, a REAL FIELD deSignator is more convenient than the CTSM 

function (see paragraph 7.2.2). 

6.15.2 The SMTA Function 

The SMTA (~~ol !o ~rithmetic) function is a real-valued function 

used in the form: 

where se represents a symbol expression. The value of SMTA is the arith­

metic equivalent of the LISP reference value. For example, if 

SMTA("THING") :;:: 167 

then 167 is the actual (relative) address of the LISP record which is the 

atomic symbol THING (see paragraph 6.22.1). Note that the relation 

SMTA(~) ::;; 63 

is true when the value of ~ is a single character atomic symbol or a 

single digit number (see paragraphs 6.22.2 and 6.22.3). 
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6.15.3 The ATSM Function 

The ATSM (~rithmetic !o §y~ol) function is a LISP reference-valued 

function used in the form 

ATSM(~) 

where ~ represents an arithmetic expression. The ATSM function converts 

the value of ~ into the equivalent LISP reference value. For example, 

the following relations are always true: 

SMTA(ATSM(~)) = ae 

ATSM(SMTA(~)) = se 

where ~ and ~ represent arithmetic and symbol expressions, respectively. 

Since any arithmetic expression may be used as an argument of ATSM, the 

user should be very careful to make certain that the value of ATSM is a 

legitimate LISP reference value. This is especially important when auto­

matic reclamation is used, since the garbage collector will expect that all 

SYMBOL valued items will be an address of a legitimate LISP record. 

The ATSM transfer function may also be used to modify the address of 

a LISP record when used in the following form 

ATSM(aexp, sexp) 

where aexp is an arithmetic expression, the value of which is added to the 

value of the SYMBOL expression sexp. The value of aexp must be a non­

negative integer (see also paragraph 7.4.5). This expression is equivalent 

to 

ATSM(aexp + SMTA(sexp)) 
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6.16 THE CTR FIELD 

In addition to the CAR and CDR fields contained in LISP records which 

represent dotted pairs, there is an additional field, in GTL, called the 

eTR field. This additional field is provided since the internal machine 

representation of a LISP record, a B 5500 word, is large enough to accom­

modate an additional reference-valued field. The eTR field is not a stan­

dard LISP field, and it is not found in most LISP systems. There is also 

no corresponding symbolic representation of this field in LISP S-expres­

sions. A eTR field designator may be used in the same forms as the eAR 

and eDR field designators, and may be used in composite field designators 

(see paragraph 6.3.6). For example, 

CTDR(X) = CTR(CDR(X» 

The CTR field is useful for a variety of applications such as predecessor 

links and for multi-linked list structures (see also Subsection 6.18). 

A "dotted-pair" type LISP record with CTR field may be represented 

graphically by 

eTR eAR 

6.17 PREFIX AND DOT OPERATORS 

6.17.1 Prefix Field Designators 

CDR 

All of the LISP field designators described in paragraph 6.3.6 and 

the CTR field designator described above, may be used in a prefix form. 

The prefix form consists of the field name followed by a SYMBOL variable, 

either simple or subscripted. For example, if S is a SYMBOL variable, 
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then, 

CADR S := CAR S 

is equivalent to 

CADR(S) := CAR(S) 

6.17.2 Boolean Prefix Operators 

If an argument of any of the Boolean standard functions ATOM, 

ATSYM, NUMBERP, ALF, or NULL (described in paragraphs 6.5.1 through 

6.5.5) is a SYMBOL variable, then the Boolean function may be 

used as a prefix operator (Without parentheses). For example, if S is a 

SYMBOL variable, 

ATOM S 

NULL S 

ATSYM S 

NUMBERP S 

ALF S 

are valid GTL constructs. 

6.17.3 The Dot Operator 

The definition of symbolic expression given in Subsection 6.3 is 

extended by the inclusion of the following construct: 

se1 • se2 

where se1 and se2 represent symbol expressions. It is equivalent to 

CONS (se1, se2) 
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The period used in this context is called the dot operator. For example, 

the value of 

"A" • "B" 

is the dotted pair (A • B). Since sel and se2, as defined above, may also 

contain dot operators, symbol expressions may be parenthesized to limit 

the scope of a dot operator. When two or more dot operators appear in a 

symbol expression, the association is from the right; for example 

"A" . "B" . "e" . "D" 

is equivalent to 

"A" • ("B" • ("e" . "D")) 

the value of which is (A • (B . (e . D))). In the following additional 

examples, it is assumed that S is a SYMBOL variable with a value of 

(B e D). 

symbol expressions 

"A" • S 

eAR S . "(A D)" 

"A" • "B" • "e" . 0 

("A" • "B") • ("e" . "D") • 0 

value 

(A BeD) 

(B A D) 

(A B e) 

«A. B) (e . D)) 

When the symbol expression contains arithmetic operators, the dot operator 

has the lowest precedence; for example, if the value of the SYMBOL variable 

S is (3 4 5), then the value of 

CAR S + CADR S • "(8 9)" 

is the list (7 8 9). 



6.18 PROPERTY LIST OPERATORS 

6.18.1 The Property List 

Most LISP systems use the CDR field of atomic symbols to reference 

linked lists of some kind containing attribute-value pairs. Such lists 

are called property lists of atomic symbols. Thus, with each atomic sym­

bol there may be associated one or more attributes (atomic symbols) and 

each attribute of an atomic symbol has a corresponding value (an S-expres­

sion). In GTL, an economy of representation is achieved by using the CTR 

field for the attribute, the CAR field for the value, and the CDR field 

to reference the following attribute-value pairs (if any). The GTL 

property list operations are described in the following paragraphs. 

6.18.2 ADD PROP 

ADDPROP is a statement which is used to add an attribute-value pair 

to the property list of an atomic symbol. It is used in the form 

ADD PROP (sym, attribute, value) 

where sym, attribute, and value represent symbol expressions. The values 

of sym and attribute should be atomic symbols. The effect of ADDPROP is 

illustrated by the following procedure declaration: 

PROCEDURE ADDPROP(S,A,V); VALUE S,A,V; SYMBOL S,A,V; 

IF ATSYM(S) THEN 

BEGIN CDR S : = V. CDR S; 

CTDR S := A 

END 
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For example, if the'CDR field of the atomic symbol "'!WO" is initially 

empty, then the two statements 

ADD PROP ("'!WO" , "VAL", 2) 

ADD PROP ("'!WO", "TYPE", "NUM") 

have the effect of changing the CDR field of "'!WO" as illustrated 

graphically below. 

CTR CAR CDR CTR CAR CDR 

1~_TY __ p_E ____ NUM ________ ~~~_V_A_L ______ 2 _______ 0-J 

6.18.3 ~ 

PROP is a symbol-valued function which may be used in any symbol 

expression. It is used in the form 

PROP (sym, attribute) 

where sym and attribute represent symbol expressions whose values should 

be atomic symbols. If the CDR field of sym is a property list containing 

attribute, then the value of PROP is the LISP record containing attribute 

in its CTR field and the value associated with the attribute in its CAR 

field. Otherwise, the value of PROP is O. The effect of PROP is illus­

trated by the following procedure declaration: 

SYMBOL PROCEDURE PROP (S, A); VALUE S, A; SYMBOL S, A; 

IF ATSYM S THEN 

IF NULL(S := CDR S) THEN PROP := 0 ELSE 

FOR S ON S DO 

IF CTR S EQ A THEN RETURN S 
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(Note that this declaration makes use of the RETURN statement described 

in Subsection 2.5. Referring to the example given in paragraph 6.18.2 

above, 

CAR (PROP ("TWO", "TYPE")) = NUM 

CAR(PROP("TWO","VAL")) = 2 

PROP (l'lWO", "*") = 0 

A list associated with a given attribute could be extended by a statement 

like that given below. 

IF NULL (S := PROP (R, "*")) THEN ADD PROP (R, ",.~II, L) 

ELSE CAR S := APPEND (L, CAR S) 

6.18.4 REMPROP 

REMPROP is a statement which is used to remove an attribute-value 

pair from the property list of an atomic symbol. It is used in the form 

REMPROP(sym, attribute) 

where sym and attribute represent symbol expressions. The effect of REMPROP 

is illustrated by the following procedure declaration: 

PROCEDURE REMPROP(S ,A); VALUE S, A; SYMBOL S, A; 

IF ATSYM S THEN 

BEGIN SYMBOL R; 

END 

WHILE NOT (NULL (R : = CDR S) OR 

(CTR R)EQ A) DO S := R; 

CDR S := CDR R 

6-41 



6.18.5 The Numeric Property Record 

The property list of an atomic symbol may also contain a "numeric" 

property record which contains a CDR field but neither the CTR nor CAR 

fields. Instead of containing LISP reference values, the CTR and CAR 

fields are combined into a single field which can contain an unsigned 

integero The length of this field is 29 bits (its value may lie between 

o and (229_ 1), inclusive). The numeric property record is added to and 

removed from property lists of atomic symbols by the statements 

ADD PROP (sym, -J( aexp) 

REMPROP (sym, -J() 

where sym represents a symbol expression and aexp represents an arithmetic 

expression. The value of sym should be an atomic symbol and the value of 

aexp should be an unsigned integer. A number placed on a property list in 

this manner may be accessed by the arithmetic standard function NPROP used 

in the form 

NPROP(sym) 

where sym has the same meaning as above. NPROP may be used in any arith­

metic expression. For example, after the execution of 

ADDPROP("VALH ,*,215) 
then 

NPROP("VAL") = 215 

6.18.6 Reference Property Records 

References to records other than LISP records may be placed on 

property lists of atomic symbols in LISP records called "reference property 

records." Like the numeric property records described above, these records 

have neither CAR nor CTR fields. These records and the property list 

operations associated with them are described in Section 7. 
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6.19 THE SYMBOL DEFINE DECLARATION 

6.19.1 The Standard Declaration 

A SYMBOL DEFINE declaration is used to define an identifier which 

represents an S-expression. It has the same form as an ordinary DEFINE 

declaration of B 5500 Extended ALGOL except that the definition must be 

a quoted S-expression without a # at the end. For example, 

SYMBOL DEFINE DF ::: "(A B C)" 

In this case, every occurrence of DF in symbol expressions, including 

quoted S-expressions, is replaced by (A B C). Thus, with the declara­

tions, 

SYMBOL DEFINE Al ::: n(A B C)", 

A2 ::: "(D E F)", 

A3 == "(G HI)", 

Bl == "(AI A2 A3)" 

every occurrence of Bl is replaced with the list 

«A B C) (D E F) (G HI)) 

Each occurrence of the SYMBOL DEFINE identifier is replaced with the same 

set of records representing the quoted S-expression. If an ordinary 

DEFINE declaration were used; e.g., 

DEFINE D ::: "(A B C)"1f: 

it would be replaced by a different set of records representing the same 

S-expression(except in the case of atomic symbols, which are unique). In 

addition, an ordinary defined identifier would not be replaced by its 

definition in a quoted S-expression. Also, a SYMBOL defined identifier may 

not be used in its own definition. 
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6.19.2 CDR Field Initialization 

If the quoted S-expression appearing in a SYMBOL DEFINE declaration 

is a quoted atomic symbol, then the CDR field of the atomic symbol can be 

initialized at the time the declaration is made by the inclusion of a 

"field initialization part" in the SYMBOL DEFINE declaration. There are 

four forms of the "field initialization part," each of which must 

immediately follow the quoted atomic symbol. 

The first form of the field initialization part consists of a colon 

followed by any quoted S-expression. The CDR field of the quoted atomic 

symbol will reference the records representing the quoted S-expression. 

For example, with 

SYMBOL DEFINE DF "ABC" 

the folloWing relations will be true: 

DF = "ABC" 

CDR(DF) = "(A B C)" 

CDR("ABC") = "(A B C)" 

"(A B C)" 

The second form of the field initialization part is a colon followed 

by an unsigned integer enclosed in brackets. The CDR field of the quoted 

atomic symbol will reference a numeric property record representing the 

unsigned integer (see paragraph 6.18.5). For example, with the declaration 

SYMBOL DEFINE Al = "VALli [251J 

the following relation will be true: 

NPROP(Al) = 251 
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The third form of the field initialization part is a colon followed 

by a parenthesized list of attribute-value pairs and/or bracketed 

unsigned integers. Two or more list items are separated by commas, and 

each attribute-value pair consists of an atomic symbol followed by a 

colon followed by an S-expression. The CDR field of the atomic symbol is 

initialized to a property list (see paragraph 6.18.1) consisting of 

attribute-value pairs and/or numeric property records. For example, 

SYMBOL DEFINE TW = "TWO" (TYPE:NUM, VAL:2) 

has the same effect as the two examples of ADDPROP statements given in 

paragraph 6.18.2. Also, with the declaration 

SYMBOL DEFINE DV = "/" (TYPE:OP, [125J) 

the following relations will be true: 

CAR(PROP(DV,"TYPE")) = "OP" 

NPROP(DV) = 125 

The fourth form of the field initialization part consists of a colon 

followed by an unsigned integer. The CDR field of the atomic symbol will 

be initialized to the integer itself and not to a reference to a LISP 

record. The value of the integer must be less than 32768 and must not 

exceed 63 when automatic storage reclamation is used (see Subsection 6.20). 

The CDR field of the quoted symbol appearing in this type of SYMBOL DEFINE 

declaration must never be referenced in a symbol expression. 

The CDR field of such an atomic symbol may be used in an arithmetic 

expression when the CTSM transfer function is used (see paragraph 6.15.1). 
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For example, with the declaration 

SYMBOL DEFINE D523 == "START" 523 

the following relation will be true: 

CTSM(D523).[33:l5] == 523 

6.19.3 The Asterisk Form 

When a SYMBOL DEFINE declaration is used for the sole purpose of 

initializing the CDR field of an atomic symbol, the following form of 

the definition part may be used: the defined identifier and the = may be 

replaced with an asterisk. For example, 

SYMBOL DEFINE ok "THE" "ARTICLE" 

will initialize the CDR field of the atomic symbol THE to the atomic 

symbol ARTICLE. With this form of SYMBOL DEFINE declaration, the fourth 

form of the CDR field initialization part (as described above) is parti­

cularly useful for associating numbers with classes of key words; for 

example, 

SYMBOL DEFINE * "SIN" 1, 

"/( "COS" 2 , 

* "EXP" 3, 

"/( "LN" 4 

might be used in conjunction with the CASE statement: 
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CASE CTSM(S:=READl).[33:l5] OF 

BEGIN 

E~ 

PRINT #UNDEFINED OPERATION#; 

PRINT X:=SIN(X); 

PRINT X:=COS(X); 

PRINT X:=EXP(X); 

PRINT X:=LN(X); 

6.20 STORAGE RECLAMATION 

6.20.1 Automatic Versus Programmed Storage Reclamation 

In GTL, the user is given a choice between automatic and programmed 

storage reclamation. When a relatively large amount of storage is used 

and when keeping track of discarded list structure is difficult or 

impossible, automatic storage reclamation should be used. On the other 

hand, if it is relatively easy for the programmer to keep track of the 

list structure which is to be discarded, then it would be more efficient 

to use the RECLAIM statement described below. Also, if the amount of 

storage used is relatively small, or if the amount of list structure in 

use does not decrease, then the user may elect to use no storage reclama­

tion at all. In GTL, storage is allocated for LISP programs in 512 word 

blocks. Each time four of the blocks have been used (2048 words), the 

GTL system will check the available storage list, called the freelist, 

to see if any words have been reclaimed. No new blocks of storage will be 

allocated as long as there are a sufficient number of words remaining on 

the freelist. Words are linked into the freelist either automatically, by 

the automatic storage reclamation system, or programmatically by the 

RECLAIM function. 
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6.20.2 Automatic Storage Reclamation 

ffilen automatic storage reclamation is desired in a LISP program, the 

words SYMBOL RECLAIM, followed by a semicolon, must appear directly after 

the first BEGIN in the program; i.e., 

BEGIN SYMBOL RECLAIM; 

This pseudo-declaration tells the compiler that the automatic storage 

reclamation is to be used. The internal function used to perform the 

storage reclamation is usually called the garbage collector. The gar-

bage collector goes to work when a block of allocated storage is 

exhausted and the freelist is empty (see paragraph 6.20.1). The garbage 

collector can also be forced into action by the RECLAIM function described 

below. The GTL garbage collector uses an algorithm used by most other 

LISP systems: a marking phase followed by a collection phase. In the 

marking phase, every LISP record which can be accessed by a SYMBOL 

variable or through the CDR field of an atomic symbol on the object list 

is marked. In other words, all list structure in use by the program at 

the time the garbage collector is called is marked. In the collection 

phase, a linear scan of the blocks of storage allocated at that point is 

made, unmarking the LISP records which are marked, and reclaiming the 

initially unmarked records. The operation of the garbage collector can be 

monitored through various GTL system control parameters which are made 

available to users (see Appendix C). There are two restrictions which must 

be observed when automatic reclamation is used. Non-local jumps--i.e., 

jumps to labels outside a procedure or b1ock--are not permitted, and the 

values of SYMBOL variables and procedures and the contents of all CAR and 

CDR fields must be legitimate LISP reference values (see paragraphs 6.19.3 

and 6.15.3). 
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6.20.3 Programmed Storage Reclamation 

When automatic storage reclamation is not used, LISP records to be 

discarded may be linked into the freelist RECLAIM statement of the form 

RECLAIM(se) 

where se represents a symbol expression the value of which should be a 

reference to the LISP record which is to be reclaimed. The RECLAIM func­

tion will reclaim single LISP records only. A collection of procedures 

for reclaiming lists and atomic symbols is given in Subsection 6. 24. If 

automatic storage reclamation is used, the statement RECLAIM may be used 

to force the garbage collector to go into action. (Also see paragraph 7.4.4.) 

6.21 AUTOMATIC STORAGE AND RETRIEVAL OF LISP LIST STRUCTURE 

6.21.1 The LISP "Memory" 

The GTL LISP system provides a mechanism by which all of the atomic 

symbols on the object list, and all of the list structure referenced by 

the CDR fields of these atomic symbols, can be dumped at some point in a 

program, and later loaded at another point in the same or another program. 

This is done by actually saving and retrieving the internal representation 

of the LISP records, rather than by attempting to read and write the sym­

bolic representations of these records. If a program's "experiences" are 

encoded, for example, in property lists of atomic symbols, then these 

"experiences" could be saved and later recalled by the same program or by a 

different program, giving the program a "memory". The fi Ie upon which the 

LISP records are stored must be specified by the user, and must have the 

following specifications: the file must be declared in the outermost block 

of the program, each logical record in the file must be at least 512 words 

long, and the file should be large enough to contain 80 logical records. 
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For example, 

FILE REMEM DISK SERIAL [20:4J (1,540,SAVE 10); COMMENT DISK; 

or 

FILE REMEM 2 (1,5l2,SAVE 10); COMMENT TAPE; 

Two functions which operate on the file, RECALL and REMEMBER, are described 

below. 

6.21.2 The REMEMBER Statement 

The REMEMBER statement is used to store the contents of LISP records. 

It is used in the form 

REMEMBER (fileid) 

where fileid is the name of the file described in paragraph 6.21.1 above. 

To save the pointers of various SYMBOL variables and SYMBOL arrays, as well 

as the LISP memory, the following extension of the REMEMBER statement may 

be used: 

REMEMBER(fileid,*,list) 

where list is any explicit list of SYMBOL variables and SYMBOL arrays. The 

syntax of this list is identical to an explicit ALGOL LIST used in an ALGOL 

WRITE statement. For example, 

REMEMBER(fi1eid,*,L,L1,L2,FOR 1:=1 STEP 1 UNTIL N DO S[IJ) 

In fact, the REMEMBER statement may be considered identical to an ALGOL 

WRITE statement with an explicit LIST, with the additional attribute of 

writing out the LISP memory. The REMEMBER statement does not REWIND or 
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LOCK the file. Thus multiple REMEMBERs may be made to the same file. If 

the SYMBOL RECLAIM option is being used (see Subsection 6.20), then the 

garbage collector is called before the REMEMBER statement is executed. 

The garbage collector collects all LISP records which are not on or 

referenced through the object list, and places these records on the free 

list. Therefore, in this case no LISP records may be referenced after the 

REMEMBER statement is used. 

6.21.3 The RECALL Statement 

The RECALL statement will recall a LISP memory which was generated by 

a program in which a REMEMBER statement was executed. It is used in the 

form 

RECALL (fileid) 

where fileid is the name of the file described in paragraph 6.21.1 above. 

To retain the pointers saved during a REMEMBER statement (see paragraph 

6.21.2) as well as the LISP memory, the following extension of the RECALL 

statement may be used: 

RECALL(fileid,*,list) 

where list is any explicit list of SYMBOL variables and SYMBOL arrays. 

The syntax of this list is identical to an explicit ALGOL LIST used in an 

ALGOL READ statement. For example, 

RECALL(fileid,*,FOR 1:=1 STEP 1 UNTIL 3 DO S[IJ,L) 

The RECALL may be considered analogous to an ALGOL READ statement with an 

explicit list, with the additional attribute of reading in the LISP memory 

from the file specified. The RECALL statement does not REWIND the file. 
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Thus multiple RECALLs may be made from the same file. Since a RECALL 

statement initializes the LISP symbol table and all LISP records refer­

enced through the CDR fields of atomic symbols in the symbol table, all 

references created by the compiler into the LISP memory may be invalid 

after executing a RECALL statement. To avoid this problem, every quoted 

S-expression appearing in the program must be a single character atom (a 

single character atomic symbol or a digit). If the SYMBOL RECLAIM option 

is used, then no operation which causes a LISP record to be generated may 

be performed before the execution of the RECALL statement. These opera­

tions include the creation of lists, dotted pairs, atomic numbers (other 

than single digits) and multi-character atomic symbols. Also every quoted 

S-expression appearing in the program must be a single character atom (a 

single-character atomic symbol, or a digit). 

6.22 THE INTERNAL REPRESENTATION OF LISP RECORDS 

6.22.1 LISP Reference Values 

All LISP reference values in GTL are actually pointers or (relative) 

addresses of words in core memory. A maximum of 32768 words are available, 

addressed from ° to 32767. These words are, in effect, elements of an 

array like that specified by the following declaration 

ARRAY LINK[O:63,O:5l2] 

If R represents a LISP reference value, then the contents of the word 

referenced by R would be 

LINK[R.[33:6],R.[39:9]] 

A field which is common to all types of LISP records is the ID field. 
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The ID field is a 2 bit field, the value of which indicates the type of 

LISP record. ID is not a GTL field name, but the contents of the ID field 

can be referenced indirectly (see paragraph 6.1501). The locations of the 

ID, CTR, CAR, and CDR fields are specified by the following partial word 

field descriptions: 

field name Eartial word field descriEtion 

ID [1:2J 

CTR [3:l5J 

CAR [18:l5J 

CDR [33:l5J 

A description of the contents of these and other fields in LISP records 

is given below. 

6.22.2 Atomic Symbols 

A LISP record is identified as an atomic symbol by an ID field value 

of 2. The CTR field is used to link together atomic symbols which are on 

the object list (see Subsection 6.13), and should never be changed by the 

programmer. The CAR field of a single character will contain a 1, if a 

letter, or a 2 otherwise. The CAR field of a multi-character atomic symbol 

contains a pointer to a set of linked words containing the string of charac­

ters which the atomic symbol represents. A word representing a single 

character atomic symbol does not contain a reference to its symbolic 

representation; the address of the word will always be equal to the numeric 

value of the character. The CAR field of an atomic symbol should not be 

referenced. 
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6.22.3 Atomic Number 

A LISP record is identified as an atomic number by an ID field 

value of 3. A number which is a single digit is uniquely represented by 

one word; the address of the word is the value of the digit. All other 

numbers are represented by two words. 

6.22.4 Dotted Pairs 

A LISP record which represents a dotted pair is identified by an ID 

field value of O. All three of the fields, CTR, CAR, and CDR, may be 

referenced and changed by the programmer. Also, all three fields are con­

sidered to be valid LISP reference fields by the garbage collector. 

6.22.5 Other Types of Records 

Numeric property records and reference property records are identified 

by an ID field value of 1. Only the CDR field of these words is considered 

to be a valid LISP reference field. 

6.23 LISP SYSTEM CONTROL PARAMETERS 

The values of various control parameters used by the GTL system may be 

accessed by a standard function called CONVAL. The CONVAL function is used 

in the form 

CONVAL(~) 

where n represents an unsigned integer whose value designates the desired 

control parameter. Some of the values of ~ which may be used and the 

corresponding values of CONVAL(n) are listed in the table given below. 

(See also APPENDIX C.) 
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n 

o 

1 

5 

6 

7 

8 

9 

10 

29 

30 

31 

36 

37 

value of CONVAL(n) 

a newly-generated random number between 0 and 1 
(used by the LISP RANDOM function) 

value of current random number produced by 
CONVAL(O) 

total number of words collected by 
garbage collector 

number of times garbage collector 
is called 

time (in seconds) required by last call 
on garbage collector 

arithmetic value of the address of the 
first word in the freelist (0 if empty) 

first subscript of array described in 
paragraph 6.22.1 

second subscript of the array described 
in paragraph 6.22.1 

normally 0; will be set to 1 after REMEMBER 
is executed, meaning that no LISP operation 
may be performed that causes a new LISP 
record to be generated when using automatic 
garbage collection 

initially 0; will be set to 1 after the 
first LISP record is created by the program; 
when set to 1, the RECALL statement cannot 
be used when using automatic garbage collection 

number of atomic symbols created by GENSYM 

current index of table of LISP reference 
values maintained by the garbage collector; 
it is initially 125 

two less than the number of initial blocks of 
storage allocated before the garbage collector 
is called (see paragraph 6.20.1) 
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Three expressions involving CONVAL which might be useful to the GTL 

programmer are listed below. 

expression 

CONVAL(9) ® 512 + CONVAL(lO) 

LENGTH(ATSM(CONVAL(8») 

ENTIER(CONVAL(O) ® N) 

meaning 

number of words in use by 
the GTL system 

length of free1ist 

random integer between 
o and N-1 

The value of the first expression minus the second is the number of words 

in use by the program. 

6.24 PROGRAMMED STORAGE RECLAMATION 

The following set of procedures may be used to reclaim storage when 

the automatic storage system is not used. 

PROCEDURE RECLAIMLIST(L); VALUE L; SYMBOL L; 

BEGIN SYMBOL S; 

IF NOT ATOM(L) THEN 

DO BEGIN S := CDR L; 

RECLAIM(L) 

END UNTIL ATOM(L := S) 

END OF RECLAIMLIST 

PROCEDURE RECLAIMATOM(L); VALUE L; SYMBOL L; 

BEGIN REAL R, N; 

IF SMTA(S) > 63 THEN 

IF R := CTSM(L) < 0 THEN COMMENT ATOM; 
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IF R.[1:2] = 3 THEN BEGIN COMMENT NUMBER; 

RECLA 1M (L) ; 

RECLAIM(ATSM(R) ) 

END ELSE 

BEGIN COMMENT ATOMIC SYMBOL; 

END 

IF R.[3:15] ~ 0 THEN REMOB(L); 

RECLAIM(L) ; 

N:= (R :=CTSM(L :=ATSM(R.[18:15]»).[1:5]; 

WHILE N > 7 DO BEGIN 

RECLAIM(L) 

RECLAIM(L) ; 

N:=N-4; 

R :=CTSM(L :=ATSM(R»; 

END; 

END OF RECLAIMATOM 

PROCEDURE RECLAIMALL(S); VALUE S; SYMBOL S; 

BEGIN LABEL START; REAL R; 

START: IF R := CTSM(S) < 0 THEN RECLAIMATOM(S) ELSE 

BEGIN RECLAIM(S) 

END 

IF R.[1:2] = 0 THEN BEGIN COMMENT DOTTED PAIR; 

RECLAIMALL(ATSM(R.[3:15]»; 

RECLAlMALL(ATSM(R.[18:15]» 

S :=ATSM(R); 

GO TO START 

END; 

END OF RECLAlMALL 

6-57 



The procedure RECLAIMLIST will reclaim a dotted pair on the top level 

of a list; i.e., the records referenced by the CAR and CTR fields of the 

top level records will not be reclaimed. 

The procedure RECLAIMATOM will reclaim atomic symbols and atomic 

numbers. If an atomic symbol to be reclaimed by RECLAIMATOM is on the 

object list, it will first be removed from the object list. 

The procedure RECLAIMALL, which uses RECLAIMATOM, wit1 reclaim atoms, 

lists and dotted pairs. If RECLAIMALL is applied to a list or dotted 

pair, it will reclaim everything in the list or dotted pair. If the 

user wants to reclaim everything except atomic symbols, then RECLAIMATOM(S) 

may be replaced by 

BEGIN IF R.[1:2] = 3 THEN RECLAIMATOM(S) END 

in the procedure RECLAlMALL. 

Under no circumstances should RECLAIMLIST and RECLAlMALL be applied 

to circular lists. This would generate an infinite loop in the program. 
I 

6.25 LISP EXAMPLE PROGRAM 

The following example LISP program is not intended to represent a 

practical program, but merely serves to illustrate some of the GTL LISP 2 

constructs. The GTL Input-Output system, which is described in 6.10 and 

in Section IX, is also included in the example. 
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HlGIN CUM~[NT THE SYM~OL PRUCEOURt LCS, UEFI~EC BELew, f'~C~ Iht 
LU~bESl CWMMCN SEijM(Nf OF T~t T~C LISTS Ll A~u L~J 

fIll IN INFILE (~'lU); 
FILl LuT PRI~TEH 16(2'1~)j 
SlkINb LIN[(120), CAkU(~0); 

HUUL£~~ PHOCEOUkl IN~HO; 

dEliIN 
LAtiEL EU,I:.XITJ 
HlAU(INFIL(,lC,CA~U)(I:.OF); 
~hIJE(PRIN'I:.H,10,~ARC)J 
IJO TO EXIT; 

E~F: INPkO 1= TRUEJ 
[xIII Ef'..lJ Of INI-'Rl.d 
5YMtiOL Ll,L2; 
LAi:l(L ::'lAHT; 

COMMENT 
~UMSfGL FINUS THE LE~6TH UF THE LONGEST I~lTIAL CL~~C~ Slb~I:.Nr 
OF J~O LISTS, x A~U YJ 

INrI:.Gl~ PROCEDURE CCMSEGL(X,Y)J 
VALUE x,Y; 
SYMI:jOL x,n 
COMSEGL 1= iF NULLLX) OR NULL(Y) ON CAR(X) NE~ CAH(Y) THl~ 0 

ELSE COMS£GLCCOR(X),CDR(y» + 1; 
COMt-'iENT 
CUMSEG rINDS THE LUNGlSl INlTIAL CUMMON SEG~ENT CF l~u LiSIS 
X AND y; 

SYM~OL PRUCEDURE CUMSEG(X,y); 
VALUE X,YJ 
SYMt!OL X,YJ 
CUMSEG 1= IF NULL(X) OR NULLey) Ori CA~(X) ~EQ CAR(Y) TbE~ u 

ELSE CONSCCAR(X),COMSEGeCCH(X),CGR(X»); 
SYMuOL PROCEDURE LCSCL1,L2); 

vALUE Ll,L2; 

A : 

SYM~OL Ll,Lt:J 
tH .. G It-. 
LABEL A; 
HEAL K,~,LX'LYi 
SYMt:10L X,y,I:lESTJ 
Lx 1= LE~GTHeLl)J 
FOR x ON Ll WhILE Lx GTR K uO 

BEGIN 
lY 1= LENGTH(L2)J 
fOH y ON L2 ~HILE LV GTR K uO 

I:!EGIN 

ENOJ 

N := CUMSEGLeX,Y)J 
IF N LtQ K THEN GO TU A; 
HEST := COMSEG(X,Y)J K ,= Nj 

LY 1= LY • 1J 
END; 
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LCS 1= IjE~Ti 

ll\O OF LC5i 
CLJM,.,[I\T 
5TAHT Of tXtCLTA~Lt CUOEi 
UUTPUT(PHl~IER,LIl\t,120)J 

l~PLT(II\PkO,CAHU'dU)J 
PRINT ,THl fOlLC~l~G IS A TEST OF T~t LCS FLNCTIC~~J 

SIA"T;lF Ll:=RlAU E~ W~AHK UR Ll £Q "SrUP" THEI\ ExIT; 
L2 := REALJJ 

Ef'iIJ. 

P~lNT LC5(Ll,L2); 
GL TO STAkH 

THl CARD I~Pul fO THE PROGHAM IS AS FCLlC~S; 

(A tl C t3 C D E.H 
(~ C U A ~ C U E.)~ 
STOr' 

THE U~TPUl AS LISTEU ON THE PRr~TER IS: 

THE FuLla~ING l~ A TEST OF THE LCS FUNCIICN 
(A tl C beD EHi 
(b ~ U A ~ C D l)~ 
(l:l C U l) 
STOP 
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VII. RECORD PROCESSING 

7.1 INTRODUCTION 

Among the facilities in GTL, there is a collection of interrelated 

systems for creating and manipulating complex data structures. One of 

these systems, the GTL version of LISP 2, is described in Section VI. 

The purpose of this section is to describe the GTL record processing 

system, which consists of two separate systems: a disk-storage-oriented 

system and a core-storage-oriented system. The disk system is designed 

for manipulating fixed length linked records on a random disk file. 

The core system is an extension of the GTL LISP system for variable 

length plex processing. (The term "plex", first used by D. T. Ross, 

refers to a node, or linked record, which contains a variety of data 

types. In this section the term "plex processing" will be used primarily 

to refer to the core-storage record processing system ~ub5ection 7.4» . 

Both of these systems use constructs which are based on the record processing 

system described in Wirth and Hoare's "A Contribution to the Development 

of ALGOL". 9 

Familiarity with the GTL LISP system is required for understanding 

the core-oriented plex processing system. 

The remainder of this section is divided into three subsections: 

a description of the constructs common to both record processing systems 

(Subsection 7.2), and complete definitions of the disk and core systems 

(Subsections 7.3 and 7.4). 
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7.2 BASIC CONCEPTS OF (;TL RECORD PROCESSING 

7.2.1. Reference ~xpressions 

A reference expression is simply an expression whose value is a 

ref l'rC'nce to, or address of, :1 rt'conl (S('C' S:'ction 6.7, "Reference 

Expressions", p. 426, Referencl' 9). 

the following: 

III GTL, reference expressions include 

1) reference variable, 

2) reference function designator, 

3) reference-valued field designator, 

4) reference assignment statement, 

5) conditional reference expression, 

6) record designator, 

7) null reference, and 

8) parenthesized reference expression 

A reference variable is a reference-valued simple variable or 

array element. In GTL, it is declared with a special class of declarators 

called record class identifiers (p. 423, Reference 9). As the name 

implies, a reference variable may only reference records contained in 

the class of records associated with the record class identifier. 

Reference variables are declared in the same form as variable declarations 

of type REAL; for example, 

rci A, B, C 

rci ARRAY RCA[O:99] 

where rci represents a record class identifier. Record class identifiers 

are discussed further in Subsections 7.3 and 7.4. 
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R,'fcrvncL'-v;llued procedures and formal parilmenters (both nilme nnd 

v<llUt,) arc dl'c lar('cI in the samt~ manner: 

rci PROCEDURE P(X,Y); VALlJE X; rei X,Y; etc. 

A reference-valued field designator is a construct which refers 

to the value of a particulilr field within a record. The type of field 

is determined by the declarator used to declare the field. Field 

designators are discussed in paragraphs 7.2.2 and 7.2.4, below. 

A reference assignment statement has the same form and operational 

meaning as an ordinary REAL-valued assignment statement. All of the 

variables, function designators, and field designators appearing in a 

reference-valued assignment statement must be of the same type; i.e., 

they must have been declared with the same record class identifier. 

Conditional reference expressions have the same form and operational 

meaning as other types of conditional expressions: 

IF bexp THEN rexpl ELSE rexp2 

Where bexp represents a Boolean expression, and rexpl and rexp2 represent 

reference expressions. If the value of the Boolean expression is TRUE, 

then the value of the conditional expression is the value of rexpl; 

otherwise, its value is the value or rexp2. Of course, rexpl and 

rexp2 must have the same reference type; i.e., they must both be associated 

with the same record class. 

Record designator is the name given to the construct which is used 

to generate new records in a given record class. This construct is 

described in Subsection 7.3 and 7.4. 
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The nllll reference is represented by the word NIL, and is used to 

indicate the absence of a reference to a record. It may be used, for 

example, to indicate the end of a list of linked records. (Internally, 

the villue of NIL is zero - the zeroth record is never accessed.) NIL 

is the only reference expression which is associated with all record 

classes. 

7.2.2. Field Designators 

As mentioned above, the field designator is a construct used to 

access the value of a field within a record. It has the form 

fieldid(rexp) 

where fieldid represents a field identifier and rexp represents a 

reference expression. The type of the field and its relative location 

within the record referenced by rexp is determined by a field declaration, 

which is described below. The programmer should be careful to ensure 

that the value of the reference expression is never the null reference. 

A field designator of any type may take the place of a variable of 

the same type in the left-part list of an assignment statement. For 

example, 

AGE(JACK):=28 

where AGE is a REAL-type field identifier and JACK is a reference 

variable. In addition, a string field designator may take the place 

of a string variable in a string designator; for example, 

STRING CARD (80); 

STRING FIELD CARDF [0:80J; 

rci X 

CARDF(X) (0,72):=CARD(0,72); 

CARD(72,8):=CARDF(X)(72,8) 
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\"lll'rl' rc i rl'prL'scnts ;) record class identifier. 

7.2.3. TIll' ReCCrCllCl' Assignment ~.)taLement 

Tht' rt'il'rl'11CC assignmc11t stntl'mcnt (vJhcn lIS((: ilS a statement) h'-Is 

tIll' same fonn and is subject to Lill' s,:m)(' restrictions as thc' rcfc'rencc­

V,)lU,'d ;lssignll1l'nt statement d('scribed ill p:lragrnph 7.2.1. For example, 

X : NEXT (X); 

NEXT (X) :N lL 

,\lhere X is il rL'fcrencc variable and NEXT is a field identifier, both 

of the same typc(i.e., both declared by the same record class identifier). 

7.2.4. The Field Declaration 

The field declaration is used to declare the type of a field 

identifier and its relative location within a record. It has the 

following forms 

~ FIELD fieldid (loc) [skip:length] 

~ FIELD fieldid (lac) 

where ~ represents a declarator indicating the type of field, fieldid 

represents the field identifier being declared, and lac, skip and length 

represent unsigned integers. The relative position of the field within 

a record is given by lac, which may range in value from 0 to 127. A 

lac of 0 refers to the first word, 1 to the second word, etc. For a 

non-STRING field, skip is the number of bits to be skipped from the 

beginning of the word and length is the length of the field in bits, so 

that this part of the field declaration has the same meaning as the 

field description of the partial word designator of Extended ALGOL 

(paragraph 3-10, Reference 4). If the field identifier is to refer 

to the entire word, the partial word part of the declaration must be 

omitted, as a partial word part of [0:48J is not permitted. In the 
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cast' of a STRING field, skip is the number of characters to be skipped 

from the b<.'ginning of the word (from 0 to 7), and length is the length 

of tlll' field in characters; skip and length must be included in all 

STRING field declarations. 

The peol1it ted field types are REAL, INTEGER, ALPHA, BOOLEAN, STR INC 

and the record class identifiers (which includes SYMBOL). 

Examples: 

REAL FIELD AGE (0) [4l:7J 

SYMBOL FIELD SYMF (3) 

STRING FIELD NAME (4) [0:32J 

rci FIELD NEXT (2) [33:15] 

where rci represents a record class identifier, a reference-type field. 

SYMBOL and other reference-type fields must be at least 15 bits long. 

The GTL compiler makes no distinction between REAL and INTEGER FIELDs; 

a full word INTEGER field may be assigned a REAL value. 

Several simplifications of the field declaration are permitted: 

a lac part of 0 may be omitted; if the ~ part is omitted, a REAL 

'field is implied; and a collection of field declarations of the same 

type may be combined into one declaration. For example, 

Sample 

STRING FIELD SF [0 :64J 

FIELD RF 

SYMBOL FIELD CARF[18:l5J, 

CDRF[33 : 15 J 

Equivalent 

STRING FIELD SF (0) [0:64J 

REAL FIELD RF (0) 

SYMBOL FIELD CARF(0)[18:l5] 

SYMBOL FIELD CDRF(0)[33:l5] 
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7.2.5. Indc'xcd Fields 

Another form of field designator is the indexed field designator, 

with till' form 

fieldid l_indexJ (rexp) 

where rexp and [ieldid represent a record expression and field identifier, 

respectively, and index represents an arithmetic expression, the value of 

which designates the relative location of the field in the record 

referenced by rexp. The value of index must be within the bounds 

specified in the indexed field declaration, which has the two forms 

~ FIELD fieldid (£, ~) [skip:length] 

~ FIELD fieldid (~, ~) 

where ~, skip and length have the same meanings as above (except an 

indexed STRING field is not allowed). The constants ~ and ~ specify 

the first and last words in the record which may be referenced by the 

indexed field designator. For example, 

REAL FIELD RFX (0,9) 

may be used to reference the first 10 words of a record. For example, 

the sum of the first 10 words of the record referenced by the reference 

variable X may be computed as follows: 

FOR 1:=0 STEP I UNTIL 9 DO SUM:=RFX[I] (X) + SUM 

7.3. THE DISK SYSTEM 

7.3.1. The Record Class Declaration 

A GTL program may contain up to 31 record class identifiers 

associated with linked-record random disk files. A record class 

identifier is declared by a record class declaration (Section 5.4, 

"Record Class Declarations", p. 423, Reference 9); it has the form 

RECORD !£i fileid (fieldlist) 
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wlll're rc i represents the record c lass identifier, fi leid is the name 

nf the random disk file which is to contain records of the rci class, 

and ficldlist is a list of one or more field identifiers. The size of 

a logical record of the file fileid must be large enough to accommodate 

all of the fields in the fieldlist. The field identifiers in the 

fieldlist may be declared either before or after the record class 

declaration, except for the rei-type fields which must be declared 

afterwards. The compiler allows the specification of overlapping 

fields in the record class declaration. In general, if the first 

character of a word is part of a STRING field, then that word should 

not also contain a non-STRING field; to do otherwise may result in a 

FLAG BIT error termination. 

Two or more rei's may be associated with a given disk file, and 

a given field may be contained in two or more record classes; for 

example, 

RECORD DEALER RANFILE (NAME, ORDER, NEXT); 

RECORD STOCK RANFILE (STOCKNO, PRICE, QUANTITY, DATE, NEXT, 

NXT); 

STRING FIELD NAME (1) [0:32J; 

STOCK FIELD ORDER (5), NXT (5); 

DEALER FIELD NEXT; 

REAL FIELD STOGKNO (l)~ 

PRICE (2), 

QUANTITY (3), 

DATE (4) 
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Till' 1'0 llowi ngi s an example () [ the constructs described in Subsection 7.2 

t1sing the declarati.ons given ahove, and 

DEALER nLH; 

STOCK STK; 

IU~AL SlTM 

WHILE DLR f NIL DO 

BEGIN 

S TK : c=ORDER (DLR) ; 

SUM:=O; 

WHILE STK * NIL DO 

BEGIN 

SUM:=PRICE(STK) 0 QUANTITY (STK) + SUM; 

STK:=NXT(STK) 

END; 

PRINT NAME(DLR) SKIP(40) SUM; 

DLR:=NEXT(DLR) 

END 

The file fileid in a record class declaration must be declared by a 

special random disk file declaration, which is described below. 

7.3.2. The RECORD File Declaration 

The RECORD file declaration has the same general form as ordinary 

random disk file declarations (paragraph 9-39, Reference 4), with the 

following exceptions: 
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1) "FILE" is replaced by "RECORD FILE", 

2) the disk access technique ("RANDOM") is replaced 

by the disk type ("LOCAL", "NEW", or "OLD"), 

optionally followed by a constant, adr, and 

3) the logical record size must be a constant. 

A disk type of LOCAL means that the file is (a non-SAVE file) to be 

created by the program in which it appears and will not exist after the 

execution of the program; a non-LOCAL disk type indicates a new file to 

be created (NEW), or a previously created file (OLD). The optional 

constant, ~, indicates the (relative) address of the first record to 

be created by the record processing system (for a LOCAL or NEW file); 

if it does not appear, the starting address will be one. This allows 

the programmer to use the disk records with smaller addresses for other 

purposes (such as storing the heads of lists of linked records in non­

LOCAL files). 

Examples: 

RECORD FILE DISC DISK LOCAL [20:300J (1,10,30) 

SAVE RECORD FILE NEWF DISK NEW 2 [5:300J (1,15,30,SAVE 30) 

RECORD FILE RANFILE DISK OLD "DEALERS" (1,10,30) 

7.3.3. The Record Designator 

The record designator is the constuct used to generate recordso 

It has the two forms 

rci(expression list) 

rci 

were rci is a record class identifier, and expression list is a list 

of expressions corresponding in type and position to the fields given 

in the record class declaration (p.426, Reference 9). If the field 
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is nn indexed field, the corresponding expression should be a list of 

expressions (corresponding in type to the type of field) enclosed in 

brackets. If any of the fields in the record are not to be assigned 

a value in the record designator, an asterisk may replace the corresponding 

expression. If the rci is given v]ithout the expression list, a record 

is generated with all of its words set to zeroo This means that a REAL 

field is set to zero, a BOOLEAN field is set to FALSE, a STRING field 

is set to all zero characters and reference fields are set to the null 

reference, NIL. 

Examples: 

RECORD PART NO DF (STF,TYPE,NBR); 

STOCK FIELD STF; 

REAL FIELD TYPE (1,9)[18:15],NBR(I,9)[33:15]; 

PART NO X 

X·=PARTNO(~'< "k [23 24 25 ~'< -{< ~'< 56 57 58 l )" 
. "" """ J, 

DLR: =DEALER (CARD (10,32) , ~'< ,DLR) ; 

ORDER(DLR:=DEALER) := STK .- STOCK 

7.3.4. Record Relational Expressions 

In order to compare two addresses of records of the same type, 

the following relation expression may be used in any Boolean expression: 

recvar relop rexp 

where recvar is a reference variable, relop is one of the relational 

operators or their mnemonics, and rexp is a reference expression. 

For example, given the record class identifier DEALER, 
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DEALER DLR,X 

DLR X 

DLR ::f. NIL 

DLR NIL OR X ~ NIL 

are Boolean expressions. 

7.3.5. Transfer Functions 

On occasion, it is convenient to be able to treat a reference value 

as a number, and vice versa. This can be accomplished with the two 

type transfer functions: 

REAL (recvar) 

!£i(aexp) 

The first transforms the value of the reference variable recvar into 

an arithmetic primary; the second transforms the value of the arithmetic 

expression aexp into a reference value associated with the record class 

of the record class identifier !£i. These transfer functions should be 

used with caution since they allow errors which would otherwise be 

prevented by syntactic restrictions. 

7.3.6. Storage Reclamation 

Disk records may be reclaimed by the RECLAIM statement: 

RECLAIM (recvar) 

where recvar is a reference variable. It is the programmer's responsi­

bility to ensure that the value of reference variable is not the null 

reference and that the record to be reclaimed does not remain a member 

of some active list, or is, in any other way, referenced at some later 

time. Whenever a record is reclaimed, it is placed on a list of records 
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called the freclist. When a new record is to be generated and the free­

list is not empty, that record is obtained from the free list. A 

separate free list is maintained for each RECORD file in the program; 

two or more record classes associated with a given RECORD file use 

this freelist in common. 

7.3.7. Saving and Restoring Heads of Master Lists in Non-LOCAL Files 

The heads of master lists of linked records contained in a non­

LOCAL RECORD file must be saved at the end of a program, and must be 

restored at the beginning of the program if the RECORD file is of 

type OLD. In addition, two other parameters associated with the RECORD 

file must be saved and restored; these are the head of the freelist 

(see above) and the location of the next available record. The values 

of these parameters are accessed by the constructs 

FREELIST(fileid) 

NEXfAVL (fileid) 

where fileid is the name of the RECORD file. These two constructs 

may be used in the left-part list of assignment statements and in 

arithmetic expressions as if they were REAL variables. 

Normally, the heads of master lists, and the freelist and next 

available record, are written onto, and read from, the first record 

in the file (with disk address zero). This can be done without inter­

ference to the remainder of the system, since the record with disk 

address a corresponds to the null reference, which is never accessed. 

Simple reference variables, and the FREELIST and NEXTAVL constructs, 

may be included in the lists of READ and WRITE statements as if they 

were ordinary simple variables. For example, referring to the de­

clarations given in paragraphs 7.3.1 and 7.3.2 
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DEALEI{ DU; STOCK SH; 

LIST SAVELIST (NEXTAVL(RANFILE) ,FREELlST (RANFILE), UH,SIl) 

READ (RANFILE[O],-k ,SAVELIST) 

WRITE (RANFILE[OJ, ~', ,SAVELIST) 

The internal value of NEXTAVL(fileid) is actually the disk address 

of the next available record minus one. The programmer should keep 

this in mind if he attempts to use the NEXTAVL construct for any purpose 

other than saving and restoring this parameter on a non-LOCAL file (e.g., 

the file might be used as a stack instead of using the RECLAIM statement). 

Notice also that it allows the programmer to use a simple method of com­

bining the file creation program and the file manipulation program into 

one program. For example, referring to the example given above, if 

RANFILE[OJ is initially cleared to zero, then, the first time the program 

is executed, the parameters in the list SAVELIST will be set to zero; 

i.e., the heads of the master lists DR and SR, and the freelist, will 

be set to the null reference, and the first record generated by the 

program will have a disk address of one. The file itself could be 

created by the following program: 

BEGIN 

FILE RANFILE DISK RANDOM [20:300J "DEALERS" (1,10,30, SAVE 90); 

WRITE(RANFILE[O]); 

LOCK (RANF ILE) ; 

END. 

A RECORD disk file created by one program may be updated in both form and 

content by associating additional record class identifiers with the file. 
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7.3.8. Printing RC[0rence Values 

If ;1 reference-valued variable or fi0ld designator appears in a 

l'Rl.N or l'l{.lNT statcml'nt, then the' associated record class identifier 

followed by the actual value of the disk address will be printed 

(Sl'C paragraph 9.2.12. of Sl'ction IX). 

7.4. THE CORE STORAGE PLEX PROCESSING SYSTEM 

7.4.1. The Record Class Identifier 

Since the core system is an extension of the GTL version of LISP, 

the record class identifier in this case will be the LISP 2 declarator 

SYMBOL. SYMBOL reference expressions are the SYMBOL expressions de­

fined in Section VI. 

7.4.2. Field Designators 

The LISP system contains the predefined field identifiers CAR, 

CDR, and eTR, and their composite forms (e.g., CADR). In addition, 

programmer defined fields may be defined as described in Subsection 7.2. 

In the latter case, the SYMBOL expression to which the field identifier 

may be applied is restricted to the following: a SYMBOL variable, a 

SYMBOL standard function (e.g., APPEND, NCONC, etc), the transfer function 

ATSM, the SYMBOL assignment statement, and the SYMBOL-valued field 

designator. 

7.4.3. Record Designator 

The LISP record designator is the function CONS, which is normally 

used to generate the one word record containing the fields CAR and CDR. 

Another form of the CONS function used with the plex processing system 

is 

CONS[field-expression pair list] 

where field-expression pair list is a list of one or more field-expression 

pairs having the form 

7-15 



ficldid : cxprcssion 

whcrc ficlJid reprcsents a field identifier, and expression represents 

~111 L'xpn'ssion whose type corresponds to the type of the field identifier. 

For example, given the declarations 

SYMBOL X, Y 

SYMBOL FIELD CARF [18: 15 J , 

CDRF [33:l5J 

the following two expressions are equivalent: 

CONS[CARF: X, CDRF: yJ 

CONS(X, Y) 

Since CONS can create only one word at a time, a multi-word record is 

created by successive CONSes (assuming that the freelist is empty so 

that successive CONSes would produce consecutively-addressed one-word 

records). In addition, certain restrictions must be placed on the field 

in this form of record designator: 

1) STRING fields must not be extended beyond a word 

boundary; in no case may the length of a string 

field be longer than 8 characters, 

2) only the first field identifier in a series of 

field expression pairs may refer to an entire 

word, 

3) indexed fields are not allowed, and 

4) all of the fields in the field-expression list must 

refer to the same relative word location (within a 

multi-word record). 

Any portion of the word which is not initialized by a field-expression 

pair is set to zero. In addition to the two forms of the CONS record 
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dl'signator described above, the word CONS, used by itself, will create 

a one word record which is initialized to zero. 

7.4.4. The SYMBOL PLEX Option 

Since the user-defined field designator allows the specification 

of the contents and meaning of arbitrary fields, the GTL automatic 

storage reclamation system cannot be used. Another form of storage 

reclamation available is the RECLAIM statement described in Section 6. 

This form of storage reclamation is generally to be avoided however, 

since, as mentioned in paragraph 7.4.3. a non-empty freelist would 

make the creation of records consisting of consecutive words difficult 

or impossible. 

Another option available for the plex processing system is the 

SYMBOL PLEX option which is specified at the beginning of the outer­

most block of the program by the pseudo-declaration "SYMBOLPLEX;": 

BEGIN SYMBOL PLEX; 

When this option is used, the value of the address of the next available 

word (minus one) may be accessed by the construct 

NEXTAVL(SYMBOL) 

This construct may be used in the left-part list of an assignment 

statement or in an arithmetic expression as if it were a REAL variable. 

This feature allows the programmer to use the entire block of words 

available for LISP records as a stack. (The variable NEXT INFO plays 

a similar role with respect to the INFO array in the B 5500 ALGOL 

compiler). The SYMBOL PLEX option was designed to be used with the 

GTL translator writing system described in Section VIII. A sample 

program using the SYMBOL PLEX option is given in Subsection 8.8. 
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Wi th til<.' SYMBOL PLEX option, the RECLAIM statement simply has the 

t'("feet of rl'st,tting the NEXTAVL pa.rameter to the value of its argument. 

The user should keep in mind that, before resetting NEXTAVL(SYMBOL) 

to its previous va lue, any multi--character atomic symbols created 

since its value was first saved will be linked into the object list. (See 

Section 6.) Thus, these atomic symbols must be removed from the object 

list by the REMOB statement before the words occupied by the atomic 

symbols can be re-used; if this is not done the GTL symbol table 

mechanism will not work. In the sample program given in Subsection 

8.8, a list of newly created atomic symbols is maintained for this 

purpose. 

7.4.5. The ATSM Transfer Function 

The !rithmetic 10 §y~ol transfer function, ATSM (paragraph 6.15.3) 

may be used to modify the address of a LISP record when used in the 

following form 

ATSM(aexp, sexp) 

where aexp is an arithmetic expression, the value of which is added to the 

value of the SYMBOL expression sexp. The value of aexp must be a non­

negative integer. The following example illustrates a method of 

printing the contents of a list of variable length records, each 

record containing a sequence of whole word numbers. The first word is 

the length of the remainder of the record. 

SYMBOL R, S; 

REAL I; 

REAL FIELD WHOLE 

7-18 



FOR S IN R DO 

BEGIN 

N :=WHOLE (S); 

FOR 1:=1 STEP 1 UNTIL N 1m 

PRIN WHOLE (S: :ATSM (1 , S)) S PAC E; 

TERPRI 

END 

It is assumed that the value of R is the list in question. 

7.4.6. The RECALL and REMEMBER Statements 

The RECALL and REMEMBER statements, as described in Subsection 6.21 

may be used with the SYMBOL PLEX option. When the SYMBOL PLEX option is 

used, there are no restrictions on the use of these statements; they may 

be used at any point in the program as often as desired. This feature 

might be used, for example, in the implementation of a self-extending 

syntax-directed translator. The value of NEXTAVL(SYMBOL) must be set 

before a REMEMBER to a point above the last element of the linked list 

to be stored. 

In general, a LISP memory file created by one program will not 

be compatible with another program, since the addresses of quoted 

atomic symbols (created at compile time) will almost always be different, 

unless they are all single-character atomic symbols. 

7.5 RECOMMENDED PRACTICES 

If the RECLAIM statement is used to reclaim records then the following 

program should be used to create the record file: 
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BEGIN 

FILE FILENAME DISK [20:300J (1, 10,30,SAVE 90); 

ARRAY A[O: 9J; 

INTEGER I; 

FOR 1:= 0 STEP 1 UNTIL 5999 DO WRITE (FILENAME,lO,A[''''J); 

LOCK (FILENAME); 

END. 

If the programmer fails to use this type program and has reused all 

reclaimed records and is creating a new record, he will have an error 

termination. This is due to the way random files are handled by the MCP 

and not by GTL. 

7.6 EXAMPLE PROGRAM 

The program listed on the following pages was designed to illustrate 

the use of the disk-storage-oriented record processing system. The program 

maintains a data base of students and possible courses they might take. 

The data base can be updated and maintained from a terminal. The user 

may inquire into the status of students in regard to required courses taken, 

or needed to be taken, grade average, which students took a particular course, 

etc. A simple example of the program's operation is given at the end of the 

listing. 

Attention should be given to the DELETESTUDENTS procedure which illus­

trates not only how to reclaim a record, but also how to reclaim all records 

to which only the reclaimed record points. 

This program should not be construed to represent a practical application 

or to represent data base construction. The program merely illustrates the 

creation and deletion of records in record processing. 
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In order to understand the operation of the program, the programmer 

should be familiar with GTL string processing (Section V) and the Input­

Output system (Section IX). Knowledge of list processing (Section VI) is 

helpful in understanding record class identifiers. 
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~t~l~ 
CU~ME~I 

IhIS PHUGHAM MAI~TA'~S J ryp~S OF HECLRUS I~ C~l ~1LE. 

THE FIRST RlCCHD, ~J~OE~T, CUNTAI~S A STLCE~T"S ~-'E, AUUHLSS, 
SCCIAL SEC~hITY ~~M~EH, AND CULLEGE UlGHEE, PL~S 
A FJfLD ~HI~H POI~IS TO A RECORU, CC~HSELISTI~G, ~MICH 

HlCUROS THE HISTUHY OF CO~RSES TA~E~ ~Y T~E SJU~E~I. THt ~IHlk 
~UINTlR pUl~TS TO lHE NEXT ST~DE~r"S ~ECC~D. If lHIS PUI~'£R 
15 NUll THEN THEHt AHl NO MURE SIUDENI AECCRDS. THIS 
IhDICATES E~O UF lHE LIST. THE STUDENT PCINTEk, ~p, PU1~IS fa 
I~E FIRSl HECOAD IN THE LINKED LIST CF ST~CE~T RE~CRUS. 

rhE CUUHSlUlSCHIP HfCuRO CONTAINS A UtSCRIPTICN Cf EVlHY rU~SI~Ll 

COURSE THE STUUENT MAY TAKE. THIS CESCHIFTIO~ 1~~LUCE5 
ThE OEPART~ENT ~H1CH CFFEHS THE CUURSE, l~E CCUkSt ~U~dEH' ~HlTHEh 
THE CO~kSl IS HE~UlREo OR hOl, A~U THl TITLE cE5CHIFTIL~ Ut THE 
CG~HSl. ~D~ PUI~T5 TU Th~ FIRST HECUriO 'CF ThIS LI~KEu L1SI, 

IhE ThIRU RECORD, ~OuRSELISTI~G' CUhT~I~S 2 FIELC~. I~~ f!HSr 
FIELD COhTAINS 3 lIE~SI THE QUAHTER I~E eCURSE ~AS TAK£~' A 
POINTER TU lHl COUk5EUESCRlp REeOHO, ANO THE GHACE AEcElv£w. ThIS 
FIELD OCCUH5 9 TIMES wITHl~ THE HECOHU, ~~ERE EAC~ FIlLU U~CUPIlS 
1 wORD, lHl SlCC~U FIELO, ~HICH IS I~ l~E LAST ~CHC wF Ihl 
hlCORO, PUI~TS TO ANOTHlR COUHSEDESCRIP IF (hE ~XI~TS. IHt NULL 
vALUE OF ~OUHS[UESCHIp POINTER ENOS '~E LIST CF CC~RStS IAKEN, 
WHEREAS A NuLL COUH5ES POINTER E~US T~E LINKEc LISr GF 
CUUkStLISll~G HECLHDS. 

THE PROGRAM ALLOwS THE USlR TO AUU COLRSES, Te Ace STUUl~r~, 
AhU TO AUU COURSES TAKEN TO ANy STUUE~T"S REec~u. ST~DE~T5 Uk 
CUURSES MAY HE DELETED, CAUSING rHE H£CORCS Te ~E "AECLAIMtO" 
AND LINKEu UNTO THE FRE£LIST ~y THE PMOGR~~. AfT£k ANY M~~UHuS 
ARE CREATED OR HECLAIMEO, THE NExTAVL,FHEELIST,SP, A~U cup VALUlS 
ARE UPDATED I~ RECURD ZERO OF THE FIL~ re ~AI~TAI~ ITS I~TtGHlTY 
IN THE EvENI THE PHUGHAM ABNORMALLY lER~I~ATES, C~ THE MACMIN£ 
HAhGS. 

ALL INFGHMAIION IN THE SYSTEM CAN ~E LIsTED Ih VA~ICUS FUkMS. 

IhE FINO uPIIGN ENABLES THE USER TO OlTER~I~E INFCH~ATIO~ ~~ouT 
THE DATA ~ASE HE HAS ESTA~LlSHED. FOk tX~~PLE, T~tRE IS A 
COM~AND wHI~H UETlHMINES WHAT REQuIREU CGlRSES H~vl AlEN T~KEI~ UR 
~EEP TO ~l TAKEN, tITHER fOR A pAHTIClLAR STUDENT UR ALL 
STUDENTS. UTHER vARIATIONS OF THIS CL~~A~D FI~D ThE GAAU~ 
ANU GRADE pUINT A~~RAGE FUR ONE srUDE~T CR ALL STL~E~TS. 
A THIRD OPTION FINUS EITHER ALL PEUPLE ~HC TOCK A fARTICULAR 
COURSE, Ok UUT OF THE PEOPLE WHO rOOK THAT eOlHSE TheSE wHu MADE A 
cERTAIN GRAUE, OR FINDS THIS INFGHMAIION FeR ALL C~URSES. 'HE LAST 
FINU OPTIUN LISTS ALL STUUENTS WHO HAvE A PARTICLLAR UEGHEtj 
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flLt. kE,t-IOIE; 
RlCLRu fILE Sf UI~K OLU(1,lU,30)J 
Rt~LR~ STUDENT Sf(~AME'AUD~lSS,SSNO,CO~riSES,OE.G~EE'~EAT); 
RtC~~~ COURSlCESC~Ip SF(UE.PT,COURSFNa,H£~~lhEO,CESC~I~Tl~~, 

HUUH5,NlXTCuURSE); 
RlCLRu COURSELl5T1NG SF(WUARTER'CUUHSEP~I~rE.R,G~ACE,CLL~SES); 
ST~!N~ FIlLG ~AME ee} [u I 26l, 

AuukfSS (J) [2137J, 
55"0 (7) l7l<lJJ 

CULkSlLIS1ING FIELU CO~kSES (9) [1111); 
STHINu f lELV ~lGHlE (~) l3121J 
STUUE~T FIELD NlXI (~) LJOI18]J 
STklNG FIELD UEPT (0) [~141, 

COUHSENU (0) [413), 
~E.~UIREC(O) [711J, 
DESCRIPTIUN (1) [UI64J, 
hOUkS (9) ld3lJ 

C~LhSlUlSCRIP FlELD NEXT~O~HSE (9) (3011dl, 
COLHSEPOINTlR (C,6) [30118]; 

RlAL ~IELD GRADE. (O,~) ~1816], 'TREAT AS AlP~A FIELuS 
~UAHTER (O,~) [24161J 

S T L U E I' T S P J 
CUUkSlOlSCRIP CUP; 
SlR1N<i 

NAtJ.ESTtH~o), 
ALJUSTR(37), 
SSNUMBER('J), 
UEGHEESTR(2h 
DEPTSTR(4), 
COlJHS[NOSIR(3), 
OlSCRIPSTH(b4), 
hOlJRSTR(3)J 

Ildi:.G£R Ti 
LABE.L STARTJ 
STUDENT PHOCEUUk[ LOOKUP~S~O 'SSNUM~ER}j 

STRING 5ShU~~ERj 
FORwAkD; 

COMME"T 
ThIS PROClDUHE "PH iNS" THE 
A RlCORO POINTED TO 8Y P. 
TRAILING blANKS, lHES£ ARE 
~OINTS TO O~E ~LAN~ BEYU~O 

CUURSE O£SCRIPTION I~FCk~ArIU~ ih 
SINCE UESCHIPTIC~(F) ~A~ CUNTAI~ 
EFFECTIVELY OELETEG sc I~Al lAb 
THE INFORMATICI\J 
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PHU~EUWRE Phl~CUUkSEUES~klP (P)J 
VALUE P; 
COURS[O(S~HlP ~J 

tlEGIN 
PRIN OEPI{P),CDU"St.NOCP) HE~lJIRE.D(P)'I'IOLRS(P) S"'~Ct.(l)J 
UESCRIPSTH 1= DtSCHIPTIONCP)J 
I 1= oj; 

MilLE UESCldPSHi(l,l) = " " ANO T GTH 0 CC T 1= I· 1; 
I := T + 1J 
Pkl~ DESCHI~STH(u,r); 

tNLlJ 
COMME"T 

THIS PRUClDURE FIHSr PRl~TS THE QUARTER A~O G~AOE A~O THE~ 
CALLS PRINCuURSED[~CRIP FOR ALL COURSES I~ THE LI~' 
OF COURSELl~TINGkECOROS POINrEU JU ~y PJ 

PMOC[uURE PRIN1COURSES(P)J 
VALUE pi 
COUHS[LlS11~G Pi 
IH.G IN 
~LPHA Ai 
INTEGE.R Ii 
LABEL SIAHT; 
IF ~=NIL THEN RETu~~J Z REFERENCE TO ~UlL RECCR~ CA~SES tH~UH 

STAHT1fCR I .= 0 STEP 1 UNTIL 8 DO 
I:!I:.GIN 
IF CaUHSE~OINTER[IJ(p) = NIL THEN RETURNJ 
CASE QUARTEktIlCPJ Of 
8EGIN 
PRIN 'FA IJ 
PRIN ,wI i; 
PRI~ .sP '1j 

PRIN ,su Ii 
ENOl 
PRIN A .= GHAOE[IJCP),; 
PHINCOURS~OtSCRIP(COURSEPUINTER[lj(P»J 
JERPRI,; 
E~OJ 
IF P a= CUUkSES(P) NEQ ~IL THEN GU START. 
£1'40; 

PHU~EUUHE PRINTSTUOENT (P,N)J 
VALUE P.~J 
SlUUENT fJJ J WHICH STUDENT 
INTEGER ~J ~ KEY TO ~HAT IS PRINT£D AbOUT STUCE~T 

CAS£ N OF BEGIN * N • 
PRI~T 'Sa, SSNQ(P)J SO. PRINT SCCIAL S~C~HITy ~~MoER 
PRINT #N. # NAME(P)J % 1 • PRINT STLOEN1S ~A~E 
PRINT 'AI # ADURESS(P)J J 2 • PRIN, STLOEN1S ACURESS 
PRINT '0' , OEGAEE(P); i 3 • PRINT STLOENTS ClGREl 
PRINTCOURSES(COURSlS(P»j J q • PHl~T COLRSES ST~U[Nr HAS TA~E~ 
EI\DJ 
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CUMM[~I 

~hI~TALL LI~TS ALL STuOE~TS" ~AMlS' A~nRESSES, SCC!AL St~u"ITY 
~~M~EHS, U~GRElS, CULkSES TAKE~ INCLU~I~G 
l~E QUARTER T~l CUUHSl wAS TA~E~ A~D IHE GRADE hECtI~tU; 

~HC~lUu"t P~I~TAlLJ 
bEGIN 
SlUUENT PJ 
l~TEGER 1; 
IF f .= S~ = ~IL IHE~ 
~lGIN 

PRINT *STUOlNT LI~T EMPTY'} 
RETURN} 
[NO; 
whILE P ~l~ NIL Du 
bEGIN 
FUR 11=0 STlP 1 U~I!L 4 DO PRINTSTUDt~TCP'l); 
TEHPRIi 
P a= N[xTCP); 
E~D; 

E~Oi 

CUMME~T 
LISTER LI51~ VARIOUS THIkUS FHOM THE ~IFFERENT REclROS. In[ 
~GMMANDS ARtl 

L [SO~IAL S£C~HITY ~U~H£Rl lOPTla~ LIST] 

WHEHE 
[CPTIU~ LIST] II- [OPIIONl , (cpTIC~ LIST) 
tO~TIu~l It= 5 ~ PRI~T SOCIAL SECLkITY NUMd[~ 

I N i PRINT NA~E 
I A ~ PRI~T AUUR£SS 
I 0 * PRl~T DEGREE 
I C ~ PRI~r COURSES TAK£~ 

L S LISTS tHE SOCIAL SECUHITY NU~~ER AND ~A~ES 
OF ALL STUDENTS IN THE DATA SASE 

L C LISTS 'HE oESCRIpTIO~ OF ~LL COURSESI 
THl OlPARTME~T, COURSE ~U~8ER, 
FOLLOntD BY AN OPTIO~AL ASTERISK C*) ~HICH 
I~OIC~JES THAT THE COURSE IS REQUIREC FeR GHAD~ATI0~, 
ThE CUUHSE HOURS AND COURSE TITLE; 



PkOC£WUHE LIST[Hi 
dE-GiN 
!;)TUUENT SJ 
CUlJl~SE.D£Sl.l1iP C; 
INTEGER Ti 
LA8EL STAt·n; 
iF "0" LEw HlAL(I~xSl(2,1» LEQ "~" r~E~ 
ljE,GIN 
~SNUMbER := T~XS1(~'9); 
IF S := LUOKUPSS~U(SSNU~8ER) = ~lL THEN 
I:jEGIN 
PRINT #ST~DENT NCT FCUNO#J 
kETURNJ 
END; 
CUL .= 12; 

srA"';If T := HlAUN(lWXA) = "S" THEN T := 0 ELSl 
IF T = "N" THEN T I: 1 ELSE 
IF \ = "A" IHE,I'J T .= 2 ELSE 
IF T = "Un THEN T I: 3 ELSE 
H "\ = "e" IHEN T ,= 4 ELSE 
tH.GIN 
PRI~T 'ILLEGAL I~PU1#i 
HETURNi 
ENDi 
PRINTST~UlNl(s,T); 
If TWXS1(COL,1) = "," THEN 
IH.GIN 
COL 1= COL" 1i 
GO START; 
END; 
kETURNi 
ENOi 
IF T := HlALCTWXS1(2,1» = "5" TH£~ 
tH.GIN 
IF S := S~ = NIL lHEN 
bEGIN 
PRINT 'STUDENT LIST EMPTY'; 
RETlJRN~ 
E.NO; 
~HILE S Nl~ NIL OU 
bEGIN 
PRINT SSNUC~),NAM~(S)i 

S 1= NEXTCSH 
I:.NO; 
RETURN; 
END; 
IF l= " C " I HEN 
bEGIN 
IF C ,= CUP = NIL THEN 
i::l£GIN 
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PHI~T 'CUUH~E LISI E~PTY#; 

HETIJRr..J 
Et\OJ 
~hILE C ~tQ NIL Uu 
tlf.Gltll 
~Rl~CUUHSlUtSCHlP (el; 
IE.RPRU 
L 1= ~ExT~UuHSl(C)} 

UdJi 
HE.TURrd 
E~LJ; 

PHI~T 'lLLE~AL LIST COM~ANO#J 
EI\LJ LISTER; 

CU~"EI~l 
THIS PRGCtUURl SEAMCHES FUR A STLUEt\T SOCIAL SEtL~lTY ~1.J~~tR ~H1CH 
NATCHES SSNuM~lR. IF SUCH A STI.JU~NT lXlSTS T~E~ , PCl~llh 
Tl HIS REeUHU IS KlTIJRNEO, OTHERwISE tHE ~ULL PCI~tER IS 
I"ItTlJRNEO; 

SlULE~T PROCEUuHE LOUKI.J~~SNU (SSNUMdER); 
STRING SSNUMBERi 
dE.GIN 
STUDENT P; 
P := SP'; 
~HILE P ~EQ NIL UU 
IjEGIN 
IF SSNO(P) = SSNUM~ER (0,9) THEN RETURN PJ 
P := NEXT (P)j 
END; 
t.NO; 

CO~fI!E.I\ r 
THIS pRUCEDURE ADOS STUDENTS TO THE UATA eAsE. T~E 
P~OCEDURE LUOPS ASKING FOR THE FOLLO~ING I~FOR~ATIUN 

FOR EACh STUDENT 10 ~E ENTEREU INTO T~E SYSTE~: 

SSfI,ln 

NAME: 

A[)UHE~SI 

OEGH[ll 

EXPECTS A ~ DIGIT ~OCIAL SECURITy ~UM~ll"l Uk 
IF THE WORD "STOP" OR A BLPhK LlhE 
IS FOUND THEN THE PRGCEOURE IS tXI1EU. 
EXPECTS THE NAME Of T~E STLDE~r ~p fU ic 
CHARAC1ERS IN LENGTH. 
EXPECTS THE AOURESS CF THE STLCtNT wP T~ 31 
CHARACTEHS IN LENGfH. 
EXPECTS THE OEGHEE OF THE STUCE~T 

(2 CHARACTERS) SUC~ AS EE, IE, ~R CEo 

IF THE STUOlNT ALkt.AOY ExISTS ON THE SYSTE~ T~E~ A~ EkH~" 
~ESSAGE IS TYPED, UtHERwISE THE ~E~ SfUUE~T Is ACLtC TU IHt 
SYSTEM; 
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PkOCEUUHE AUOSrUUl~l; 

~£GIN 

L~~fL LOOP; 
LOUP: P~I~T #SSNO: 'i HEAU lWX; SSNUMHEH := T~XS1(U,Y); 

If SS~U~blR'O,4) = "SlOP" OR SSNLM~EH : SPACE T~E~ ~EILkA; 
IF LOUKL~SS~O(SS~LM8Ek) ~lQ NIL THEh 
d[GI~ 

PHl~T #SrUUt~1 ALhtADY O~ SYSTEM'; 
ijU 10 LGOP; 
l~O; 

PRINT #~AMEI Ii READ TWX; NAM£STR := IWxSl(C,~6)} 
PRINT 'AUURtSS: ,; READ TWX; ADDSJR := T~~Sl(C,37)j 
PRINT 'C[GREEI I; HEAU TWX; DEGRl£STH 1= T~xSl(O,~); 
~ CHEATE ~£~ STUOtNI RECOHO 
bP 1= STLDENT(NAMlSrR,ADOSTR,SSNLMdEH'.,DEGREEST~'~P); 
GC TO LeCp; ~ DE LUOP 
~kl'E(SF[O],*,NExlAVL(SF)'FREELIST(SF),SP,CDP); 
END; 

CUM~ENr 
uELETESTUUENT DELEIES STUDENTS CLHHENILY (N T~E Sy5TEM. 
whEN A STUOlNl IS UELETED HIS OLe HEcCRO JS LINKEc INIU 
THE FRElLISl BY THE RECLAIM STATEMEhT SO T~AT T~E HECGRU 
CAN LATER tit ~SEU, ALSO ALL OF hiS CLURSELISTI~G ~ECURU~ 
A~E RECLAIM~O. THE PRocEDURE EITHEH ASKS FOR A SCCIAL 
SECURITY ~UMHER OK IT MAY BE GIVt~ I~ TrE CO~MA~C "0 S" 
SUCh AS "U 5 40S62~8Cl~. A SERIES OF SOCIAL SECL~lTY ~UMb~HS 
MAY ~E GIV£~' IF tACH PRECEDI~G ChE IF FOLLOwEO By A ceMMA. 
AS EACH SluuE~T IS DELETEU HIS NAME IS FRINTEC AS fEEudA~K 
TU THE LS~Rj 

PHG~EUURE DELErlsrUCE~Tj 
bEGIN 
STUDENT S,T) 
COUASELISll~G C,Di 
LAtiEL LUOP,hC,L,Ll) 
IF SSNUM~lHI=TwXS1(4,9) = SPACE(9) THEN 
bEGIN 
LOOPI PRINT *SSNQ"i 
klAD TWX; 

L: SS~UMbEH 1= TwX51(O,9); 
END ELSE l~ASl := TwXS1(4) & SPACE; 
IF SSNUM~ER(O,4) = "sroP" OR SS~UM~ER = SFACE ThEN REluk~; 
If S 1= T 1= SP = NIL THEN 
~EGIN 
PRINT 'STUDENT LIST EMPTY" 
RETURN; 
END} 
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l~ SS~U~~~HlU,~) = SS~OCSP) THEN 4 liS r~l FI~SI ~lCCHL 
dEGI~ 
~kINTSTLUt~r(SP'l); 
~ 1= COllH~ESCS)l 

~HIlf DI·~ ~EQ ~ll DO I DELETE COURSE OESCRIPlIU~ "£CUkU~ 
tjt:.GIN 
~ 1= COLH~t~(C); h PCINTEk Tn NExr ~EcaHC 

klClAl~(U); * HECLA!~ THE RlCURO 
£.I'.i U I 
~ 1= NEXI (S"'); 
kI:.ClAIMCS .... )i 

~p 1= SI , HESTORl STUDENT pnlNlt~ 
GO Tn Re; 
t.~ul 
~HIlE S 1= ~EXTCS) NE~ NIL un I SCA~ ~OW~ T~E LISI 
tjEGIN 
iF S5NU~tjl:.~'O,~) = SS~O(S) THE~ I FCL~O ~l~ 
dEGIN 
PRINTSTlJUENICS,l); 
c .= COlJR::,t::.SCSH 
~~ILE 0 .= C ~lQ ~'L UO I DELETE CO~RSE CESCRIPTIC~ RtCUKU~ 
tj~.GIN 

C .= COUH!:IESCC)J 
H[CLAIM(I); 
END; 
NEXTCT) .= NEXTCS); * DELINK THE kECOHO 
HECLAIMCS); ~ LI~K HECLAIMEO REcakO O~TG FREELIST 
GU TO RCI 
lNO; 
r := s; ~ KlEP TA~ OF TRAILING POINTEH 
E~D OF wHILt:. LUOP; 
PRIN SSNUM~lR, #N~T FUUND" ~ NOI ON SYSTEM • NOTiFY USI:.M 
IF TWXS1(~,I) = "," THEN PRINT "CONT!NUI~G* ELSE IERPkIi 
GO TO LlJ 

ReI ~~llE(SF[O],.,NEXTAVL(SF)'FREELlSr(SF),SP,CDP); j ~POATl FilE 
Ll' IF TWXS1C~,I) = ",~ THEN 

I:jEGIN 

COMMENT 

T~XSll='WXS1(10) ~ SPACEJ 
GO TO L; 
ENOl 
GO 10 LOOP; 
E~O DELETlSTUCENli 

LOOKUPCOUHSt IS THE SAM[ AS LOOK~PSSNL EXCEPT IT 
LGOKS UP A 'OURSE GIVEN BY DEPT NAMECCT) ~NO COURSE NuMb~klCN). 
IT HETURNS THE AOOHESS or THE CO~HSEU~SCRIP RECCRC IF SuCH 
A COURSE EXiSTS; 
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CUUNStUESCRIP PkU~EOURE LUCKUPCUURS£ COI,CN)J 
STRING OT,C~; 

~lulN 

CUUkSEU~S~R1P P; 
p := COP; 
~~ILE p ~lG ~lL UL 
~[GI~ 

IF UT(0,4) : OlP'(~) ANO CN(O,3) : COLRSE~C(P) J~l~ ~lrUH~ p; 
P 1= NEXICOUHSE (P); 
l~O; 

t~D; 

CU~~E~1 
AOOCOURSE AUUS CGUH~ES TO THE SyS'E~. T~E INpUl l~ AS FULLU~~ 

DEP1, EXPECTS IHt UEPT NAME (4 C~AkACIERS). 
IF THE ~ORU "STOP" OR A BLA~K Ll~E 15 E~lEhEu 
THEN THE PROC£uURt IS EXITED. 

CGUkStNC: EXPECTS THt COURSE NL~~ER CF T~t COUH~~. 
AT THIS lIME THE CLUHSEDESCRIP kECUHU~ ~H£ 
SEARCHED BY CALLING LCCKLP Tu StE 1~ IHt 
CCURSE ALREADY EXISTS, AND IF 11 DUES A~ EHHUH 
MESSAGE IS TYPED. 

HEQU!HEO: EXPECTS "V" OR "YES" IF TH~ CCLriSE IS RtWUIRlO 
FCR GRADUATION, OTHER~ISE A ~LA~K Ll~t 
wILL SUFFICE FUR A NO RESPONSE. 

OESCHIP1IO~: EXPECTS THE COURSE TITLE TC ~E ~~TEkEU ~p IU 
6~ CHARACTERS IN LENGT~ 

HO~HSI EXPECTS 3 CHARACTEkS OF THE FC~M "JUJ" ~HlriE 
THE FIRST DIGIT INUICATES THE ~~~8tH 
OF HO~RS OF IN-CLASS I~STRLCIIC~, THE S~CO~D 
DIGIT INDICATES THl NL~8ER OF ~~URS S~Ei~T 

IN LAB PER WEE~' AND T~E T~IHC UIGIT 
INDICATES THl HGUkS EAR~EC FeF THAI ~GUkSl. 

AT THIS TIMt THE NEW RECOkD IS CH£ATEu ANC THE~ Trt PHGCtU~H[ 
LOOPS; 

~HCCEUUHE AoDCUURSE; 
~EGIN 
bOOLEAN ~; 

LABEL LUOP; 
LOUP: PRINT 'DEPT' I; R[AO TWX; OEPTSTR := IWxSl(C,4); 

IF UEPTSTH= "STOP" OR DEPTSTR z SPACE(4) THEN RETURN; 
PRINT 'COURSE NO: Ii READ T~X; COUASENOSTR := TwxSlCC,J); 
IF LOOKUPCO~RSE(U[PTSTR,COURSENOSrH) NEG ~IL THEN 
~EGIN 

PRINT #COURSE ALkEADY ENTERED'; 
uO TO LOOP; 
END; 
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PklNT #REWLIREU:'i READ TWXi 
b := TwXS1CU,1) = "Y"i 
PRI~T 'UE~CHIPTIO~I Ii READ TwXi UESCHIPST~ := T~x~l(v,O~)' 
PRINT ,~UUH5: I; HlAC T~X; HnURST~ 1= T~XS1(O,3}; 
COP 1= COUR5EOlSCklp(OEPTSTH'CUUR~E~OSTR, ~ ChEATt CC~H~t ~lCuHu 

SlRING(IF ~ Thl~ "*" lLSE " ",l),UESCHIPSIR, 
HCLkSIR,CDP); 

tiu 10 LLO~; 

~RIIE(SFLU]'*,NExlAVLCSF )'fRfELISrCSF),SP,CDP)J 
£~DJ 

COM~l~l 

UELETECUUHSl OlLETlS A COURSE SI~lLAR TO CELEIESTL~E~l. 
THE DEPARTMt~T NAMl A~D CCUH5E NUM~ER AHE REQLESTt~. 

It THE COUHSE RECGHO IS FOUNO THE~ IT IS ~ECLAI~E~ 
SC lHAT IT tA~ BE USEU LATEH. IF THE CGLRSE CA~ ~~T 
~E ~OUNU lHl~ A~ tHRGR ME55AGl 15 ~Rl~TED. 
****** SOME CAkE SHUULD BE USEO I~ OELETI~G CCUkSES BECAU5t ****** 
****.* THERt ~AY dE POINTERS IN caURSEL'STI~G PCI~II~~ IU *.*** • 
• ***** THl HE CURD dEING DELETED, THUS ERRC~EOLS LISII~GS ***.** 
***.*. ~AY HESULT ****.; 

PHLCEUuHE DlLETlCUUHSEi 
bEGIN 
~uuRSEOESCR!P C,1; 
LABEL LUUP.kC,Li 

L~GP' PHINT 'OEPT.#; REAU T~XJ OEpTST~ 1= T~xS1CC,4); 
IF UEPTSTH = "STOP" OR DEPTSTR = 5PAC~ ThE~ RETURh; 
PRINT 'COURSE NOl'i READ T~x' L.CUURSENOSTRI=T~.Sl(C,J); 
IF C := T 1= CDP = NIL THlN 
BE~IN 
PRINT #COURSE LIsr EMPTY'; 
HETURN; 
END; 
If UEPTSTk = DEPTCCUp) AND COURSEN05TH = CCLHSE~C(CCP) T~t~ 
uEGIN % 115 ThE FIH~T RECURU 
C 1= NExlCouRSlCCOP); 
HECLAIMCCUP}J 
CDP t= CJ 
GO TO RCi 
lNDi 
~~ILE C t= NEXTCOUHSECC) NEw NIL uO i SCA~ ca~~ Trt LISl 
~lGIN 
IF DEPT5TH = DEPTCe) AND COURSENOSTR = CClRSE~GCC) T~t~ ~ uUT H1M 
~EGIN 
NEXTCUURSlCT) 1= NEXTcnURSECC); 
HECLAIMCC)J 
~o TO RCJ 
ENDJ 
T ,= CJ 
E~D OF wHILE LOOP; J 
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~kI~T 'C~UH~E ~Cl FOU~O#J I COURS~ hOI U~ SYSTEM 
bL 10 LLU~J 

H~: wHI1E{SfLul,.,h[XlAVL(SF),FHlELISI(SFJ,SP,COP1J 
IF TWXSl(j,l) = "," THEN 
~[GI~ 

l~XSl 1= 1~AS1(4) ~ S~ACE; 

bL 10 L; 
[~OJ 

~L 10 LGUPJ 
t~U OELEllCLURS[; 

CU~~E~T 
ADUCOURSESTLSTUUE~1 AOOS CO~HSES rAKE~ Te ~ SILLE~I Rlcwnu. 
THESE I~PUTS ARE p~r INTO CUUHS£LISrl~G A~O 

ThEN IF 11 IS THE FIRST COUHSl TAKE~, OR AN OLD H~~CRU l~ 
FLLL (EACH HECOHD HULDS 9 CUlJRSES) THEN A NE~ RECLHC IS 
CHEATED A~D LINKEu INTO THE LIST. OlbER~ISE IHE I~FCH~All~N 
IS ADDEU 10 A~ ExiSIING RECUHU. lHE PRGCEOLRE VEklFIES 
THAT 80TH T~E STuulNT A~O THE COURSE EXIST. THE I~PLT 
IS kEQuESIEU AS FOLLowSI 

SSNU. 
OEPr. 
COUkSlNO: 
GRAUEl 
QvAHTlRI 

EITHER AN 55 ~u. U~ "STOP" CR A dLA~~. 
DEPARTMENT NAME (4 CHAhACTERS). 
CCURSE NUMBER, 
GRADE RECEIVED, ElrHER A OR b eM C OH U UR t, 
THIS I~OICATES THE QUA~TER ThE ~CUHsl ~A5 

TAKEN. ~NTER tITHER FALL OR F, SPRl~~ ~H 
sp, wI~TER oH ~l, LR SL~~ER LR ~L. 

IhE PRUClUUH[ LOOPS UNTIL "STOP" OR tLA~K IS E~TtNEC 
AT THE REQUEST FOR SS~OI. IF AN ERROR OCCURS A~ APPRGPH1AIl 
ERRUR MESSAijE IS TYPEUJ 

PROcEwU~E AODCOURSESTOSTUOENTJ 
dEGIN 
STUUENT Si 
COURSEOESCRIP PJ 
ALPHA A,bi 
COUHSELISTI~G CLJ 
I~TEGER Ii 
LA~EL OLNE,LOGP,Ql'GOJ 
PRINT #SSNOI #J RlAO TWXJ SSNUM~Eri := T~XS1(O,9)J 
If S 1= LUOKUPSS~O(SSNUMBlR) = NIL THlN 
dlGIN 
PRINT 'STUDENT NOT FOUND'; 
~ETURNJ 
ENOl 
PRINT NAMECS)J 

LUCPI PHI~T #oEPT: #J REAu TWX; DEPTSTR 1= TwxSl(C,Q)J 
IF DEPTSTH = "STOP" OR OEPTSTR = SPACE(4) THE~ BEJ~R~J 
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PHINT #CUuRSE~U' Ii REAO rWXJ CO~kSlNLSTR 1= Tw~SllC,j)i 

IF ~ := LUCKUPCO~"SE(UEPTSTH'COUR~E~U~TH) = ~(L T~t~ 
o~Gl~ 

PRl~T ,~U SUCH CUuH~t#' 
\.ill 10 LUU .... ; 
t:..NG; 

GUI ~RINT 16k AUt:.. 1 Ij "t:..AO TwX; A 1= H[AL(/wxS1CC,1»J 
If "A" GlW ~ Gf~ "F" UR A = "E" THE~ 
bEGIN 
Pkl~T 'lLLE~AL G~AUl'; 
i.J(J uo; 
t:.t-.Di 

QT' .... RI~T #~UAR1ERI 'i HEAD TwX; ~ 1= HEALCT~XS1(C,~»; 
If ~ = "F " OR t:l :: "FA" THEI\ tl &= 0 ELSi:. 
IF ~ :: "~ " UR B :: "~I" THEN d := 1 ELSE 
IF d = "51"'" T~l~ ~ 1= 2 ELSE 
IF ~ = "SUn T~E~ b := 3 ELSE 
bEGIN 
PRINT #~O SuCh QUARTER" 
I.iO TO QTi 
ll\iH 
If Cl := COURSES(~) :: NIL THEN GO UO~t:.i 
whILE CL NE~ ~ll UU 
tJEGIN 
FuR J := 0 STEP 1 UNTIL a DU 
IF COURSt:.POINTER[IJ(CL) = NIL THEN GU DG~Ei 
CL ,= CGURSES(CL); 
t:."'Oi 

UU~EI IF 1 = 0 UR 1 = 9 IHE~ 
dEGIN j CREATE ~E~ COURSELISTING riECOHQ 
COURSESCS) a= COUk~t:.LISTING(~,P,A,CCUHSES(S»; 
wRITFCSf[Ul,·,NEXTAVLCSF),FREELISTCSFl,SF,COP); 
l~O ELSE 
dlGIN J UPDATE OLD COURSELISTING kECOHO 
QUAHTER[IJeCL) 1= ~J 
COUkSEPGI~TlR[IJ(CL) 1= Pi 
GRAUE[I) CeL) 1= A; 
E~D; 

GO TO LLOP; 
t::~D; 

CU~ME"'T 
fI~DOEGREl fI~DS ALL STUDENTS ~HO HAvE A CEGREE GIVE~ l~ 
THE COM~AND "F 0 (DEGREE]" WHERE [UEG~Et] IS A~Y i 
CHAkACTEHSi 



PHU~E~uhE FINOUtGHlEi 
t:!t:.GIN 
~TUUFI\iT SJ 
LlGHEES1~ ,= lwxSl(4.2)J 
S := SP; 
~HILE S ~l~ NIL Uw 
ot:.GlN 
If UEGR[[Slh = UE~HEE(S) IHlN PHINT S~~C(S); 
S := NEXT (S)J 
1:.,1\10; 
U" (,; ; 

CLJM,.EI\T 
FI~UGRAOE E1Tht:.R ~'NOS THE GHADES FO~ Q FARTICULA~ STU~E~T 
UR ALL SIUDlNTS. IF lHE SOCIAL SECURITy ~U~~ER I~ GIvEN 
IN THt:. CUMMAND "F ij (SSNOJ" THEN fHAI STUCENT"S G~ACES AHE 
SLMARIZEO, UTHlR~lSl ALL STUOENTS" SU~MARIES AHE fkINII:..U; 

PriCLE0LRE FINDGNA~EJ 

tH.GIN 
SlUOEhT SJ 
CLJUHSlllSTING elJ 
STRING LINE(26)J 
ALPHA Gi 
INTEGER I,~~,hT,H; 

ARRAY GC(O''''lJ 
bCGLEAN ~,P~INTEDJ 
FeRMAT HEAD(" A ~ C 0 F WP HE PA NA~E")J 

FeRMAT INFC(7(I3),F5.2)J 
lA~£l Ll,L2,L3,LS; 
IF ~ 1= SSNUM6ER ;= T~XS1(4,9) NE~ SPACE THEN 
bEGIN 
IF S := LUOKUPSS~U(SSNUMBI:..R) = NIL THEN 
tj~GIN 

PRINT #srUO~NT ~OT FOUND#; 
i-IETUHNi 
[NDJ 
lND ELSE S := SPi 
IF S = NIL THEN 
tlEGIN 
PRINT 'STUDENT LI~l E~PTY#J 
I'<ETURNJ 
Et.OJ 
wHILE S NEQ NIL DU 
bEGIN 
IF CL 1= COUHSES(~) :: NIL THfN GO TO LSJ 
FOR I r= U STEP 1 uNTIL 4 OU GCtIJI=OJ 
hT 1= QP 1= OJ 
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L11 ~LH J := U ~T[P 1 U~TIL 8 OL 
blGIN 
If CnURSl~O!~TlH[lJ(CL) = NIL rHE~ GU TL L2J 
~C[~~AOl[lJlCL)·"~"J 1= * + 1; 
LI~l := HUWkS(COUH~tPOlhTlR(JJ(CL); 
H := ~FAL(Ll~l(2,1); 
H1 := HI + HJ 
~p a= ~p + H ~ (IF HI=GHAUELTJeCLJ = "F" l~E~ 0 ELSE "t"-hJ; 
t~O; 
If CL 1= CULRSlS(~L) kEQ ~IL THE~ GC 10 Ll; 

L~I If HT ~t~ a THE~ 
dlGIN 
IF ~Ol FkI~IEu THlN ~KITE(T~XF2,hEAU); 
PRI~T£O 1= JRWE; 
~~I1E(LI~l,I~FU,Fu~ 1:=0 STlP 1 L~TrL 4 cc GClIJ,~~,~',~~/HI)j 
PkI~T LI~~(U'26), ~~~E(S); 
L~Oi 

LSI IF ~ THE~ GL TU LJJj 
~ 1= NEXT(S); 
L~Ui 

LJI It ~aT PHl~IEC THEN PRI~T #NULL') 
[NO; 

CUMME~T 

FINDCOURS£ tI~DS EITHER ALL PEOPLE ~HC HAvE TAK£~ A PAH1IC~LAK 
COuRSE OR ALL PEOPLE ~HO MADE A PARTI~ULAR GRAUL. 
THE COMMANU "F G" CAUSES THIS PHOCEDU~E Te BE EN1fKEO ~HIcn 
THEN HEWUlSIS THE kEST OF THE NEC~SSAkY I~FOR~ArICN. 
THE FOLLOwING IS REQUESTED. 

DEPT' 
CUUHSlNca 
GRAUEl 

PKO~EUURE FINCCOuNSEJ 
bEGIN 
STUDENT SJ 
COUHSlLISTI~G eli 
COUR5EDEseRIP CPJ 
ALPHA GJ 
bOOLEAN ~,PAI~TEDj 
I~TEGER II 
LA~EL Ll,L2,lOOPJ 

SAME AS fOri AUu CO~RSES 

" 
If A GHAUE IS GIVl~ T~EN T~AT CULRSl 
~ILL ~E LISTED ~IT~ ALL pECPlE ~~C TUU~ 
IT AND MADE ThAT GNADE ELSE ALL PEuPLt 
whO TOOK THAT COURSE ~ILL bE LLSTEUi 

LOOP: PRINT #OE~TI#j REAU T~XJ UEPTSTR 1= T~XS1(O,4)J 
IF UEPTSTR = "STOP" OR DEPTSTR = SPACt ThE~ RETLM~; 
PRI~T #COURSE~OI'J REAn TWXJ COURSENOSTR := T~XS1(~,3)J 
PHINT 'GHADEI*J READ rwXI B 1= G ,= RtAL(T~XS1(U,1) = " "j 
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If LnUK~PtOUHSl(UlprS1R,CUU~SE~OSIH) = ~lL THl~ 
tjf(JIN 

PRI~T #~L 5LC~ CCUH5l#J 
I,jlj TO LLCI-'; 
U,IJ J 
S := ~P; 

~~lLE S ~l~ ~IL Uu 
o£.GIN 
IF CL := CUURS~S(~) = NIL THE~ GU TO L2; 

L11 fOR J := U STEP 1 U~rlL 8 DC 
bEGIN 
If CP 1= tCURSEPCl~IEH[I](CL) = ~IL f~E~ GO Te L~; 
IF UEPT(CP) = UlPI~IR ANO CUURSE~U(CP) = CCLHSE~C51~ A~U 

(b UR GHADELl](CL) = G) THE~ 

uEGIN 
PRINT SS~U(S), ~A~l(S)J 
PRII'iH.D 1= IRld: .. i 
\ill TO L2i 
UdJi 
1:.1\0; 
If CL := COUHSlSCLL) ~£Q ~IL rHE~ GO TO L1J 

L~: ~ 1= NEXT(S); 
l"Ui 
IF NOT PRINIED THt~ PRI~T #NULL#; 
It\L1 FINUCUUf1SEi 

CuMr-El'.f 
FINUREQLlkt.U rlf\US ALL OF ThE REQuIRE~ CCLHSES TrAt A 
STuOENT HAS OR HAS NOT TAKEN, THIS CA~ EE D[~I:. fUR lllht" A~ 

INDIVIDUAL UR ALL SILUENTS. THE CU~MA~OS ARE: 

f H [SOCIAL SECURITY "0] [UPTIO~J 

[UPTIU~J 1:= L I (E~P1Yl 

IF lHE SOcIAL SECURITy NU~BER IS UMIllEO lHE~ ALL 
STUUE~TS ARE FRI~TEO. IF T~f OpTIU~ FIElC IS EMPTY THE~ ALL 
k~wUIHlD COURSES THAT HAVE tiEEN TAKEN ARE LISTEO, lLSE 
IF THE "L" APPEAH5 THEN THE COURSES lHAT ARE 
R~~uIRED A~D HAVE NOT BEEN TAKEN AHE LISTECJ 
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PHO~lu~RE FINURl~UIHEU; 
tH.GIN 
~TULJff'.T SJ 
{;("UHSllIS1II\G eli 
CGURSEOtS~R!P ep,up; 
II\H.GER Ii 
LAcill Ll,L~,L3,L4,L5,L6i 
o (; OLE A N Ij, P I'< I " I l U , I~ 0 C L lJ R S E S i 
If d := SSNUMbER := T~XS1(4,~) = ~~Ael UR 

SS"U~~ER(C,l) = "L" THEN S J= S~ ELSE 
if 5 := LUU~UPSSN~(SSNUMHlR) : NIL THE~ 
dEGIN 
~~INT l~ SP = NIL IHEh 'STUDENT LiST EMPTY# ELSE 

,srUOt~T NUT fCUNO#i 
iH T URI'''; 
E~OJ 
iF TWXS1(lF H lHE~ 3 ELSE 13,3) I\£~ SPACE(3) THE" bl fC Ljj 

~hILF S Nl~ NIL UC 
dEGll\i 
PRINTED := fALSE; 
iF Cl J= ~OURSES(S) = NIL THf.~ GL rc L2i 

Ll: FOR I := U STEP 1 UNTIL 8 DU 
dE.GIN 
IF CP := (aLHS[POl~IER[Il(CL) = 1\1L T~EI\ GO Te L~; 
if HE~UIRED(CP) = "." THEN 
dEGIN 
IF NOT PHINIEO THE~ 
tlEGlf\/ 
H.RPRP 
IF b THEN pkI"T SSNO(S),NAMECS) ELSE fRII\TSTl.JCENT(~,l); 

t'tdNTf..O .= lRIJE.J 
E"Oj 
PRINCOURSlDESCRIP(CP)j 
H..RPR Ii 
£I\Oj 
£NDJ 
IF Cl := CO~RSES(CL) NfQ NIL THE" GU TO Lli 

L~: IF ~OT PRIN1EO THtN 
!jEGIN 
TE..RPRIJ 
IF ~ THE~ p~I~T SS~O(S),~AME(S) ELSE PRI~TSTUCE~T{S,t)i 
PRINT #~G RtQIJIREu COURSES IAKE~ YE1,j 
[(\IU; 

IF NOT ~ IH~N kETUHNJ 
S := NEXHsH 
END; 
HE TURtd 

Ljl ~HILE S ~E..~ ~IL Du 
dEGIN 
PRINTED 1= FALSE; 
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IH 1= CUPJ 
~HILf UP ~£~ hlL UO 
bE.GIN 
l~ kE~UIHlD{DP) ~l~ "." T~E~ ijU TU L6J 
~uCUU~SlS := CL := CCuRSES(S) = ~iLJ 

L41 l~ ~nCOuR~E~ IHlh ~O TO L5J 
tuH I := U ~TEP 1 u~rlL 8 OU 
I:jE.GIN 
IF CP := tC~HSEPGi~IEH[Il(CL) = ~tL l~Eh GC rc LSi 
H c.;p = 1.11-' IHI:.I\ liu TO L6; 
£1\0; 
if Cl := COI.RSE.Sc<';L) f\:E~ I'JIL fHlh GO 10 LI.jJ 

L~: IF ~Ol PklNIEIJ THt~ 

tH.GIN 
!~ ~ TH£~ Pkll\T S~~O(~)#I\A~ECS) ELSE fRII\TSTuCEI\T{~,l)J 

Pi-< HTED := I foiLU 
t:.I\CJ 
PRINCDURSEOlSCHIP(OP); 
'[RPRIl 

LeI up:= NExICWURSI:.(UP)J 
1:.1\0; 
If NOT PHII\IEC ThlN 
olGIN 
PkINTST~DI:.NI(S#l); 
PRINT #ALL k[QuIR£MENTS SATISFIED'; 
PRINTED := 1RuE; _ 
1:.1\ (); 
IF NOT ti THI:.I\ HETUHN; 
S := NEXTCSH 
END; 
£1\0 FINDHEQvI~EC; 

c u ~ 1", Ei'. I 
THE COM~AND~ AREI 

LIST 
L ALL 
L [UPIIONSJ 

o S 
o S LLSS f\CJ, 

A 5 
A C 

U C 

STOf' 

ACTION 

CALL PHINTALL 
CALL PftINTALL 
CALL LISfER 
SEE LISTER fUR tLPTICNSl 
CALL DELETESrUOEI\T . . . ] 
CALL ALHlSTUOENT 
CALL ADDCOURSES 

CALL AOOCOURSESTLST~CEI\T IvPCATE CUuk~£S 

~NO OF PROGHAM J~RAF ~P 
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F I'" U COMMAt\uS 

F D [UEGREEJ CALL FINUU£GtH.£ 

f (j CALL FINLh.iHAu£ 
F G (~S~O] CAll Fl~OGHAUl 

F C CALL F lI\iOCLlLr~SES 

f H CAll Fll\iOREQuIREU 
F k l CALL FINUREQulHE~ 

F Ii l~SI\UJ CALL F INUREI~UIREU 
F tI l~SI\OJ L CALL F INDrcE(~ul~I:.U; 

P k 11\ T # G U A r; E AU, II ; 
H[AUCSFlOJ,*,i\EXTAVlCSFl,FR£fLIST(SFl,SP,CCP)J 

SlAhPPRINT /I.:ltj 
~I:.AD TwX) 
IF T := HI:.ALCTWXS1(Q,q» : "LIST" OR I = "l Al" T~tl\ p~I~IMLL ELSE 
IF TWXSICU,l) ="L" THlN LISTER ELSI:. 
IF 1 = "0 S " THE~ OELETEST~D£NT ELSE 
IF T = "U C " THEh OElETE~O~RSE ELSE 
It 1 = "A 5 " THE~ ADUSTUUENT ELSE 
IF 1 = "A C " THEh AD~COUHSE ELSE 
If 1 = "U C " lhE~ ADUCUUHSESTOSTUDEI\I ELSE 
IF 1 = "F 0 " THEh fII\ODEGREF ELSE 
It T = "F G " THEN FII\DGRAOI:. ELSE 
It T = "F C " lH£h fl~OCOURSE ELSE 
IF T = "F R " THE~ FINDREGUIREO ELSE 
If T = "STOP" THEN 
t;EGIN 
~hl1E(SF(O],.,NEX1AVL(SF)'FHE£LIS1(SF),SP,CDP)J 
PFINT 'ENU-UF-UPDATE'j 
PRINT IGOUObYE#; 
EX 11; 
E."'D ELSE 
PRI~T 'ILl[bAL INPU1#j 
Gll !)TARTJ 
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RU1'. kl~LkU 

-I:::lLJ- (IRECUfH': 
uU AHt:.AU. 
I L (; 

hS 4)" 536 
Ie::, I~ 4 ~ 3(13 
l~S ·de 3u3 
ICS 4'::4 3u3 
I C S 4;::3 303 
ICS ~15 233 
ICS 4le * 303 
ICS 4Gb* 303 
Ie::; 4 v it 303 
IcS 402 303 
lI.;S 4Ul 303 
IeS 3,5* 30J 
IeS J42* 3lJ3 
Ie;:, .13c 303 
Ie S j25* 303 
~IA I ~ ;::Jy* 30J 
I~S J1C* 233 
ICS ;:::'0* 303 
IcS ~ :11 233 
Ies .1::15 101 
Ies 1,1* 233 
:L ;) 

L~GIC UlSIG~ ANG S~lTCHl~~ THEORY 
Lli\J1SllC SY::iTl:..r-1S 
I~t~~~ATIL~ SYST£~S 

~LlM~1'.TS wt l~FGH~AII~N THlCHY 
~AThE~ATICAL TEC~~I~UES FUH I~FCR~ATIC1'. SClE~~t 
ThE LITEH~lUkl OF SCIENCE A1'.O E~GI~EEHl~G 
PHOoL£M SULVIt-,(j 
CU~PUTI~G LAt-,GUAGtS 
TUPICS I~ LI~GUlSIICS 
LA~~UA(JES FUR SCIENCE A~U lEC~1'.CLCGY 
LAN~UAGES fUR SCJE~CE A~O TEC~NCL(GY 
INfUR~ATlw~ SlRUCIUHE5 A~U PHLClSSES 
I~T~COuCT1UN Tn S~~IOIICS 

11'.IKOOUCrlu~TO J1'.FORMATIUN E~GI~EERI~G 
INTKO~UCrIU~ 10 CY8l~NETICS 
I~T"ODUCTIUN 10 SET-THEUritJIC CC~CEPTS 
CUM~UTEH·G"!E~TEO Nu~ERICAL MtTHC~S 
CU~PUTEH A~U PROGHAM~I~G SYSTtMS 
AUTUMATIC uATA pRUC£SSlNG 
TECHNICAL INfGRMATION RESUURStS 
UIGITAL CUMp~TER URGA~IZArlcN AND PROGRA~~'~G 

4U~b2o~04 CHUCK CLVEHALL 
40~c2boUl 8AHRY FLLSUM 
4u5t2od06 BILL bRG~~ 
40~c2bc05 RAY SPUlhlCK 
40~c2odu3 JERkY CIGAHS 
40~b2bdG2 JOHN fU~TER 
If Cl 

A 0 C U F GP ~l PA ~AME 
2 1 1 0 0 3~ 12 3.2J BILL HHO~N 
3 j 2 1 0 lb 27 2.d~ RAY SPUTNICK 

IF 1'1 4(j5628b04 L 
NI LHUCK CUVEkALL 
ItS 41u* 303 PHuoLlM SULV!NG 
ICS 4Ue* 303 CUMPUTING LANGUAGES 
IeS J:,5* 303 INFLRMATIU~ SlRUCfUHES ANU PHLCESSES 
ICS Jq2* 303 INTkOUUCTluN TO SEMIOTICS 
IeS J25* 303 INT~ODUCTIUN TO CYBERNETICS 
MATh ~J~* 303 INTHODUCTIUN 10 SET-THEORElIC CC~CEpTS 
I~S J1C. 233 CUMPUTlR·Ok'E~TED NUMERICAL METHCCS 
I~S i~6* 303 CUMrU1ER A~O PROGAAMMI~G SYSTEMS 
IeS 1~1* 233 UIG1TAL CUMPUTER GRGANIZATICN A~D PROGRA~~'hG 
IF t< qvS628tlO~ L 
N& hAY SPUTNICK 
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ALL Hl~~IHE~l~T~ ~AIISFl~U 

I~ t"I LI\;~Ot!dBOl 

I'd l.1Atq"Y FULSLfv 
NO hE~\;lH[D CLukSlS TAKtN ytT 
I A ::, 
SS"L:LlU~o~HbOI 
N~Wl:.lb(jU t-'ASSCLI 

[1lGt"Itt.:ll 
s::, r. L : 

IU C 
S::'I\LI4.jU~62~eOI 
But.,; PA~~CUT 

lJlPT:IC~ 
CULriStl\(I: 151 
GkALd:'; A 

(,j u A tl T t 1"1 : F ALL 
OlP,:ICS 
ClJLt"IStl\u:t!50 
!\ill ~UCh CUURSE 
Di:.Pf: 
:F ~ 

D[Pf:lCS 
ClJL~Si:."L:151 
Gt<ALiE: 
4u5t2cd07 HUO PAS~OLl 
4UJc2ddU6 BILL bRuw~ 

4U50iCd05 RAY SPulNICK 
IF t"< 

4U)c2ddCl YUD PA5::'OLT 
lCS 151* 233 UIGlrAL CLMPLTER URGA~ILAIICI\ ANC FROGRAfv~lI\G 

4u5t2ddU4 ChUCK ClJV£RALL 
NU nEwUIRlD CLLkSlS TA~tN YlT 

4U562~aOl 8ARRY FLLSU~ 
NU hE~UIRED CGLHSlS lAKl~ YlT 

405t2de06 BILL bRLW~ 
MA1H ~39* 303 INlkOOUCTIUN fa SET-THEORErIC CONCEPTS 
I~S J25* 303 INTt"<OCUCTIU~ 10 CY8ER~ETICS 
IcS l~l* ~33 DIGITAL CUMPUTER ORGA~IlAIIGN AhO PRGGriA~~l~G 

4U5e2dd05 RAY spurNICK 
les 410* 303 P~ObLlM SULVING 
I~S 4Ut* 303 CUM~U1ING LANGUAGES 
I~S J,5* 303 INfUR~ATluN SIRUCIUHES A~u PReCESSES 
ICS J4~* 303 l~lkaOUCTIU~ TO SEMIOTICS 
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ICS j~~* 303 I~THa~UCTlu~ 10 CY8E~NETl~S 
MAr~ ~3Y* 303 I~ThOOUCrIO~ TO SET-1HEOHETIC CC~CEPTS 

ICS 310* 233 CUM~UTEH·u~l£~rED NW~£RICAL M£THCCS 
I~S i~e* 303 CUM~UTER A~U PROGKAMMING SYSTEMS 
IeS 1~1* 233 UIGITAL CUMPUTER URGANIlArIC~ ANC PROGRA~~l~G 

4u~~2odu3 JER~Y CIGAHS 
NU hl~~lHlO CCUHSlS IAKtN ytT 

4LJ()2ddC2 J(!HF\ t C~TtH 
NU hl~UIHln CCLHSlS TAKtN ytr 
If H L 
4u~o2o~Ol RuO PAS~GUl 
res ~lU* 303 PHC~LEM SLLVI~G 
Ies 4ue* 303 CUM~uTING LAN~UAGlS 
Ies j~5* 303 INFUR~AlluN STRUCTUHfS ANu PHLCESSES 
IC~ J42* 303 INTHOGUCIIU~ TO SEMIorICS 
Ies j~~* 303 INTHOUUCTlu~ TO CY8lR~ErlCS 
MAlh ~3~* 303 INThOOUCfIUN TO SET-THEORETIC CC~CEFTS 
Ies J10* 233 CUMPUIER·uHIE~TEO ~U~EHICAL METHCLS 
ICS ~'6* 303 CUMPUTlk ~NO PROGHAMMING SYSTtMS 
40~e2Hd04 CHUCK CLVlHALL 
yes Q10' 303 PHO~LlM SLLVI~G 
lOS 400* 3u3 CUM~UIING LA~GUAGES 
ICS J~~* 30] INFUR~ATIGN STRUCTUHES A~D PHLCESSES 
ICS J42* 303 INTkOCUCJ1UN TO SEMIOTICS 
IcS j~~* 303 INTHOCUCTIUN 10 CyaEH~ETICS 
MAlh ~3~* 303 INTHOLUCTI0N 10 SET-THEURETIC CO~CEpTs 
ICS JIO* 233 CU~~UTEH-UHIE~TEO NUME~lCAL METHCCS 
Ies ~~6* 303 CUMPUTER ANU PROGHAMMI~G SYS'E~S 
ICS 151* 233 DIGITAL CUMPlTER ORGANIZAIICN ANC PROGNA~~lNG 
40~c2~d01 BARRY rULSUM 
IcS 410* 303 PHO~LEM SULVING 
I~S que* 303 CUMPUTING LANGUAGES 
ICS J~5. 303 INFUHMAIIUN STR~CTUkES A~U PHLCESSES 
ICS Jq2* 303 I~THOCUCTIUN 10 SEMIOTICS 
los 325* 303 INThOUUCTIUN TO CYBERNETICS 
MArh ~3~* 303 INTROUUCTIU~ TO SlT-THEORErIC CONCEPTS 
lOS 310* 233 COM~UIER·LHIENTEO NUMERICAL MtTHOCS 
I~S ~~b* 303 CUMPUTEk AND PROGHAM~ING SYS'E~S 
ICS 1~1. 233 OlGITAL COMPUTER ORGANIZArION A~C PROGRA~~l~G 
40~62~d06 BILL bRLw~ 
I~S 410* 303 PHU~LEM SGLVING 
Ies 4ut* 303 COMPUTr~G LA~GUAGES 
Ies J~5* 303 I~FUR~ATIGN STRucTURES A~U PHLCESSES 
ICS jq2* 303 l~lhOouCTIU~ Tn SEMlnrICS. 
ICS JIO. 233 COMPUTtH·OHIE~TED NUMERIC~L MlTHO~S 
ILS ~~6* 303 CUMPUTlR AND PROGRAMMING SYSTEMS 
I'd nAY SPLJTNICK 
ALL ~tWLJlkE~EF\TS ~ATISfllD 
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40~C~bd03 J~~kY C!uAkS 
ILS ~lU* 303 PkGbL[M SULVI~G 

IC~ 4Ut* 3U3 CUMfuTl~G LANbUAGlS 
IC~ j~~* 303 l~f~H~AlluN SIRUCIURFS A~u PHLCl5SES 
IC!:i j~.!* 3("3 lNTrcCOuCT lUI''' TO Stlltlll! Ies 
IC~ J~~* 303 l~THOLUCTl~N Tn CY~lHNETICS 
MAI~ ~j~* 303 INlkOUULTIU~ TO StT-THEOHtIIC CC~CEFrs 
I C S j l(H 2 3 3 C LJ ~ I" u 11:.. 11 • L t'\ 1 E I~ fE lJ to, l.J M t ~ I CAL ~ t. The C S 
lC~ ~~b* 3UJ LU~~Ul~R ~~u ~RLGkA~~lN~ SYSllN~ 

IC~ l~l* 233 ~lbl1AL CuMPL1ER URljANIIAflUN A~C PRCG~_~~l~G 
4u~c2cd~2 JQh~ FU~TlH 
Ies ~lU* 303 PkO~LEM SuLVING 
ILS qUo* 3u3 CU~~Ullt\lj LANGUAGlS 
lC!:i j~~* 303 IhtLH~ATluN STRUCTUHFS ANU PHLCI:..S~ES 
ICS jq2* 303 I~Tkouucrl~N TO SEMlorICS 
IL~ J25* 303 INTkOCUCT1UN Tn CYBERNETICS 
MAT~ ~j~* 303 INTHO~UCTlu~ TO SlT-THEORlIIC CCto,CEPTs 
Ies j10* 233 CUMPUTI:..H-UHIENTEO Nl.JMERICAL MlT~CCS 
ICS ~~b. 303 CUMPUTE~ A~U ~ROGkA~MING ~YSllMS 
I~S 151* 233 CIGlfAL CuMPlt[R URGA~llAJIC~ ANC PROGRA~~lNG 

:SJLP 
Ei\C-Ut-UPUATE 
GUOl-tHE. 

7-43 





VIII. SYNTAX-DIRECTED PARSING 

8.1 INTRODUCTION 

Experiments with the GTL list processing facility and the GTL string 

processing system indicate that GTL may often serve as a convenient basis 

for writing artificial language translators, As a result of these experi-

ments, several extensions of GTL have been implemented with the goal of 

achieving a general purpose translator-writing system within the framework 

of GTL. This section describes the extension of GTL in this direction. 

The GTL parsing facility is intended to be used primarily as a top-

down no-backtracking parser (Reference 5), Syntax rules are specified 

through BNF-like declarations called "SYMBOL FORMAT" declarations. Matching 

of sequences of symbol strings is intended to be accomplished primarily 

through the use of the symbol table provided by the GTL system for LISP 

atomic symbo Is. It is suggested that, in order to make effective use of 

the constructs described, the user be familiar with Sections V, VI, and IX. 

Also, the plex processing system described in Section VII has been found 

to be helpful in writing translators. 

In order to illustrate the general form and meaning of a GTL syntax 

declaration, consider the following simple BNF definition of a simplified 

arithmetic expression. 

(ae) , '- (p) (sec) 

(sec) , '- (op) (p) (sec) (empty) , ,-

(op) , '- + I -
(p) . ,- A B I C I (ae) ) 

Lower case identifiers represent nonterminal symbols, upper case identifiers 

and special characters represent terminal symbols, and the vertical bar I 
means "or." 
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The correspondence between BNF and GTL syntax rules is indicated in 

the table given below. 

TERM 

(nonterm) 

(empty) 

GTL Equivalent 

ELSE 

"TERM" 

*NONl'ERM 

NIL 

Meaning 

"or" 

example of terminal symbol 

example of nonterminal symbol 

the "empty" string of symbols 

The SYMBOL FORMAT declarations corresponding to the BNF definition given 

above are: 

SYMBOL FORMAT AE; [*P, *SEC] 

SYMBOL FORMAT SEC; [*OP, *P, *SEC ELSE NIL] 

SYMBOL FORMAT OP; ["+" ELSE It_"] 

SYMBOL FORMAT P; 

["A" ELSE liB" ELSE nC" ELSE "(", *AE, ")"] 

Note that two or more components of a syntax rule are separated by commas. 

The identifiers corresponding to the BNF nonterminal symbols are called 

SYMBOL FORMAT identifiers (hereafter, SF identifiers); the expression con­

tained in brackets, corresponding to the right-hand side of a BNF 

definition, is called a SYMBOL FORMAT expression (hereafter, SF expression) . 

(In an actual program, all of the SF identifiers appearing in an SF expres­

sion must be previously defined; this is done by reordering the sequence 

of declarations, or by declaring an SF identifier FORWARD, as defined in 

Subsection 8.3.) 

In GTL, recursive syntax defil:'J.itions, such as that given for SEC, can 

often be replaced by equivalent "iterative" definitions. For example, 



SEC may be declared as 

SYMBOL FORMAT SEC; [;'(OP, ;\-P, RETURN ELSE NIL] 

In an SF expression, the word RETURN effectively returns control of the 

scanning sequence to the beginning of the SF expression; thus, SEC could 

scan an indefinite number of operator (OP) - primary (p) pairs. 

An SF expression may contain subexpressions; an SF identifier may 

be replaced by its definition. For example, AE, SEC, and OP, as defined 

above, may be combined into one declaration: 

SYMBOL FORMAT AE; 

[~~p, [["+" ELSE "_"], ~'(P, RETURN ELSE NIL]] 
• I 

As indicated by the arrow in the above example, the word RETURN returns 

control to the beginning of the innermost subexpression in which it 

appears. The phrase RETURN START may be used in an SF expression to return 

control to the outermost level of an SF expression. For example, the 

following SF declaration could be used to scan an SF expression (as defined 

up to this point): 

SYMBOL FORMAT SFX; 

[ [ [*TERM ELSE "[", *SFX ELSE "*", ~~SF ID] , 

[",", RETURN START ELSE NIL] ELSE 

"RETURW', ["START" ELSE NIL]] 

["ELSE", RETURN START ELSE "]"]] 

The undefined SF identifiers TERM and SFID are understood to match terminal 

symbols and SF identifiers, respectively. 
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All of the quoted terminal symbols appearing in SF expressions are 

LISP atomic symbols. The atomic symbol itself is not directly compared 

with the current input symbol; instead, a syntactic class number which is 

assigned to the atomic symbol by the programmer is compared with the 

syntactic class of the current input symbol. A syntactic class number may 

be specified directly in an SF expression. For example, [2,3,4J will 

match a sequence of three input. symbols whose class numbers are 2, 3, 

and 4. This indirection allows the programmer to specify terminal symbols 

other than atomic symbols, such as numbers and tlcomposite" symbols 

(e.g., quoted strings). Various mt;:ans of assigning syntactic class 

numbers (both at compile time and run time) are described in paragraph 8.5.1. 

The class of the current input symbol is always contained in a REAL or 

INTEGER variable declared by the programmer. There is a separate special 

declaration which tells the GTL compiler that a particular variable is 

intended to be used as a class variable (paragraph 8.5.2). When a syntactic 

class number is successfully matched with the class of the current input 

symbol, the class variablt;: must be reset to' the class of the next input 

symbol. This is done automatically through a procedure supplied to the 

system by the programmer. Whenever a syntactic class match is made, the 

system calls on this procedure. It is the responsibility of the programmer 

to ensure that the procedure will obtain the next input symbol and assign 

its syntactic class number to the class variable. In the remainder of 

this manual, this procedure will be referred to as the "getnext" procedure. 

A special declaration which tells the GTL compiler the name of the 

intended getnext procedure must be supplied by the programmer (paragraph 8.5.3), 
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The SYMBOL FORMAT declaration is effectively equivalent to the 

declaration of a BOOLEAN procedure. The SF identifier, which may have 

associated formal parameters, is analogous to a BOOLEAN procedure iden­

tifier, and may be used as a Boolean primary in any GTL Boolean expression. 

The SF expression associated with the SF identifier is analogous to the 

procedure body of a BOOLEAN procedure declaration. There is also a 

"block" form of the declaration, consisting of the word BEGIN followed by 

a series of declarations, the SF expression and END. For example, the 

previously defined SF identifier AE could be declared by 

SYMBOL FORMAT AE; 

BEGIN LABEL L; 

[*P, L: [["+" El,.SE "-"], ~\"P, GO TO L ELSE NIL]] 

END 

Note that this example also illustrates the use of labels and statements 

in SF expressions. 

The "semantics" of the language defined by the SF expression is 

determined by the inclusion of statements in the SF expression. These 

statements may appear anywhere in the SF expression, and each statement 

must be followed by a semicolon (except before an "ELSE"). For example, 

[IIPRINT", ["A", PRINT A ELSE "B", PRINT B;]] 

It is often convenient to execute a sequence of statements between a syntax 

class match and the call on the getnext procedure. This can be done by 

using the delayed getnext construct: If a colon is placed immediately after 

a terminal component of an SF expression then the calIon the getnext 

procedure is delayed until another (nonterminal or terminal) matching 



component, or an ELSE, ], [, NIL, RETURN or label is encountered. For 

example, if 2 is the syntactic class of a number which is contained in 

the variable INREAL, and T is a REAL variable, then 

[2: T :=INREAL; "+", 2: T :=T + INREAL; 

PRINT #SUM = #T;] 

will match two numbers separated by a + and print their sum. 

As an example of some of the features described so far, a set of 

SYMBOL FORMAT declarations which will transform an arithmetic expression 

into a suffix Polish string is presented below. It is assumed that syn-

tactic class numbers of 2 and 3 have been chosen for variables and 

numbers, respectively. To make the SF expressions more readable, the 

following define declaration is used: 

DEFINE VARIABLE c 2#, NUMBER = 3# 

It is also assumed that the class variable and getnext procedure dec 1ara-

tions, such as those given below, have been made. 

REAL FIELD CDRF [33:15J; 

REAL CLASS; 

PROCEDURE GETNEX!; 

CLASS:= 

CASE READCON(FALSE) OF 

BEGIN 

1; COMMENT END OF FILE CLASS; 

3; COMMENT ILLEGAL NUMBER CLASS; 

3; COMMENT NUMBER CLASS; 

CDRF(INSYM); COMMENT ATOMIC SYMBOL CLASSES; 

0; COMMENT MULTI-CHARACTER STRING CLASS; 

END 
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The READCON function is described in paragraph 9.4.4. The expression 

CDRF(INSYM) 

yields the last 15 bits (the CDR field) of the contents of the atomic 

symbol contained in INSYM (see paragraph 7.2.4). It is assumed here that 

the CDR fields of the atomic symbols representing variables in the arith­

metic expressions to be scanned have been preset to the value two. 

Although specific class number assignments have been indicated for this 

example, it should be noted that the declarations given below contain no 

direct or explicit reference to a class number. In two of the declara­

tions, AEXP and TERM, the class number of an atomic symbol is indirectly 

referenced in an arithmetic expression by preceding the quoted atomic 

symbol by an =. 

SYMBOL FORMAT AEXP; FORWARD; 

SYMBOL FORMAT PRIMARY; 

[VARIABLE: PRIN INSYM SPACE ELSE 

NUMBER: PRIN INREAL SPACE ELSE 

"(", ~"'AEXP, ")"J; 

SYMBOL FORMAT FACTOR; 

[i(PRIMARY, [";'1"', 7(PRIMARY, PRIN iff""" iF; RETURN ELSE NILJJ; 

SYMBOL FORMAT TERM; 

BEGIN BOOLEAN TIMES; 

END; 

["'<"FACTOR, ["®";'<" /": TIMES ::::: CLASS "" (""II®"); 

;'(FACTOR, PRIN IF TIMES THEN iff® if ELSE 4F / iF; 

RETURN ELSE NILJJ 
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SYMBOL FORMAT AEXPj 

BEGIN BOOLEAN MINUS; 

[*TERM, ["+" * " ... ": MINUS := CLASS = (="_"); 

*TERM, PRIN IF MINUS THEN #- # ELSE #+ #; 

RETURN ELSE NIL]] 

END 

~'( 

The composite terminal symbols, "f/!!' *"/" in TERM and "+" * "_" in AEXP , 

allow a match on either one of the atomic symbols (see paragraph 8.2.1). 

Also, since AEXP and PRIMARY call on each other indirectly, it was 

necessary to declare one of these SF identifiers FORWARD. If the input 

string consists of 

A + (B - C) / D + E * F 

then a call on AEXP, followed by a TERPRI, will produce the following 

output: 

ABC - D / + E F * + 

In order to give a better idea of how the GTL parsing declarations 

actually work, AEXP and PRIMARY are redefined in paragraph 8.7 as 

BOOLEAN procedures, and are a~so used in a program in the EXAMPLES section. 

In the remaining paragraphs of this seetion, SYMBOL FORMAT dec lara-

tions are used to define the syntax and semantics of the entire GTL 

syntax-directed parsing system. 

* The arithmetic scanner liated above does not handle unary operators. 
See the program in Subsection 8.8 for a complete example of arithmetic 
expression parsing. 
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8.2 SYMBOL FORMAT EXPRESSIONS 

8.2.1 Terminal Symbols 

A simple terminal symbol matching component in an SF expression is 

either a number or a quoted atomic symbol. The CDR field of the quoted 

atomic symbol will contain a syntactic class number, which is either pre­

set by the programmer (see paragraph 8.5.1) or made by default by the 

GTL compiler. The rule by which a default class assignment is made is 

described below. 

A "composite" terminal symbol matching component may be formed with 

two or more class numbers and/or quoted atomic symbols separated by 

asterisks or equal signs. The~" means that the next class number must be 

strictly greater than the previous class number; and the = implies strict 

equality. In order for a match to occur with the composite terminal sym­

bol component, the value of the class variable must be greater than or 

equal to the first member and less than or equal to the last member of 

the sequence of class numbers or quoted atomic symbols. If default assign­

ment occurs after an asterisk, the value assigned will be one greater than 

the previous class number. For example, if the CDR fields of + and - have 

not been previously assigned, 

2 :::: "+" ~" "_" 

will assign the class number 2 and 3 to "+" and "_", respectively, and a 

match will occur if the value of the class variable is a 2 or a 3. 

As indicated in Subsection 8.1, the class number assigned to an atomic 

symbol used as a terminal matching component may be referenced indirectly 

in an arithmetic expression by preceding the quoted atomic symbol by an =. 

If no syntactic class assignment has been made previous to the occurrence 
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of the atomic symbol in an arithmetic expression context, a default class 

assignment will be made. 

There is also an indirect terminal symbol matching component, which 

consists of a period followed by a REAL simple variable identifier. The 

value of the variable is compared with the value of the class number of 

the current input symbol. For example, 

SYMBOL FORMAT LST. (X); VALUE X; REAL X; 

[.X, [",", RETURN START ELSE NIL]] 

The SYMBOL FORMAT declaration given below indicates how the GTL com­

piler scans terminal symbol components of SF expressions and makes default 

class assignments. For the purpose of this declaration, it is assumed 

that LITNO, ATOMICSYMBOL. REALID are previously defined identifiers 

representing the syntactic class numbers assigned to unsigned integers, 

LISP atomic symbols, and REAL variable identifiers, respectively. The 

values of the constants and atomic symbols are assumed to be contained in 

the variables INREAL and INSYM, respectively. Also, CLASS is a REAL 

variable used as the class variable, SFC is a real variable which is used 

to control the default class assignment, and FLAG is an error message 

procedure. 
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SYMBOL FORMAT TERMINAL; 

BEGIN 

BOOLEAN AST; 

REAL FIELD CDRF[33:15]; 

REAL LAST, T; 

LABEL L; 

[AST :::: TRUE; LAST ::::: 0; 

L: [LITNO: SFC:= INREAL ELSE 

""" , ATOMICSYMBOL: 

IF T ::;: CDRF (INSYM) 

BEGIN 

o THEN 

IF AST THEN SFC := SFC + 1; 

CDRF (INSYM) : = SFC; 

END 

PRINT 4fDCA if SFC 

END 

ELSE 

SFC ::::: T; """ ELSE 

".", REALm], 

IF SFC < LAST THEN FLAG(670); 

LAST := SFC; 

[''*" * "=": AST := CLASS::: (:;:"*"); GO TO L ELSE 

NIL]] 

As can be seen from this declaration, every default class assignment will 

cause "DCA" followed by the class number to be printed during the com­

pilation. The variable SFC is set to zero at the beginning of the 

compilation. 
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As indicated in Subsection 8.1, a call on the getnext procedure normally 

occurs immediately after a match. ~he calIon the getnext procedure may 

be delayed for the purpose of executing a series of statements which may 

operate on additional information associated with the current input 

symbol by placing a colon immediately after the terminal symbol matching 

component. This construct may also be used in conjunction with the error 

message option described in paragraph B.2.B. 

8.2.2 Nonterminal Symbols 

As defined in Subsection B.l, a nonterminal symbol in an SF expression is 

an asterisk followed by an SF identifier. In addition, the asterisk may 

be followed by any Boolean expression; a syntax match will occur if and 

only if the value of the Boolean expression is TRUE. For example, 

[* CLASS ~ 2 AND CLAS S ~ 3, GETNEXT;] 

has the same effect as 

[2 = "+" * "_"] 

(if GETNEXT is the name of the getnext procedure). 

8.2.3 !ill:. 

NIL is the matching component which matches the empty string of 

symbols, and is used primarily to indicate that an SF expression can be 

satisfied even if the preceding alternatives are not. It is usually 

introduced when transforming a non-deterministic syntax rule into a form 

acceptable to a no-backtracking parser (p. 90, Reference 5). For example, 
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(factor) (primary) ~'< (factor) 

is transformed into 

(factor) ::= (primary) (remfact) 

(remfact) ""- (factor) I (empty) 

which is combined into the SF declaration 

SYMBOL FORMAT FACTOR; 

[?'<PRlMARY, ["?';-II, -"'FACTOR ELSE NIL] ] ; 

(primary) 

NIL may also appear among a series of statements folloWing a delayed 

getnext for the purpose of forcing the callan the getnext procedure. 

8.2.4 Statements 

Any GTL statement may be included in an SF expression. The statement 

must be followed by a semicolon except before an ELSE. The use of iden­

tifiers in statements which are part of SYMBOL FORMAT declarations are 

subject to the same restrictions as those in procedure declarations. A 

sequence of one or more statements may be used in place of NIL to match 

the empty string of symbols; for example, 

["RETURN", ["START", BV:= TRUE ELSE BV := FALSE]] 

8.2.5 Labels 

Labels may appear anywhere in the SF expression. Each label must be 

followed by a colon. An example of the use of a label for simplifying 

an SF expression is given in paragraph 802.9. 
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8.2.6 RETURN 

The RETURN part of an SF expression causes transfer of control to 

the beginning of an SF expression, as described in Subsection 8.1. An optional 

UNTIL part allows the programmer to limit the number of possible iterations; 

for example, 

["C", J ::::: 0; [["Au ELSE "D"], RETURN UNTIL (J: = J + 1) 10 ELSE "R"]] 

The syntax of the RETURN part is defined below. 

SYMBOL FORMAT RETRN; 

[I1RETURN", ["START" ELSE NIL], ["UNTIL", '>"BEXP ELSE NIL]] 

BEXP represents an SF identifier which defines the syntax of Boolean 

expressions. When the UNTIL option is used in the RETURN part of the SF 

expression, transfer of control will continue until the value of the 

Boolean expression is TRUE. 

8.2.7 The SWITCH Option 

When the first components of a series of alternative rules in an 

SF expression are all consecutively numbered terminal components, and when 

the number of alternative rules is relatively large, the scanning speed can 

be substantially increased by using the SWITCH option. The SWITCH option 

is effected by placing the word SWITCH immediately after the [ in the SF 

expression. The code generated is similar to that produced by the declara­

tion of an ALGOL switch although the meaning of the remainder of the SF 

expression remains unchanged. For example, if LABELID, REALID, and INTID 

represent class numbers of label and real and integer variable identifiers, 

respectively, then 
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SYMBOL FORMAT STMT; 

[SWITCH 

LABELID: LABELR; ":", RETURN ELSE 

REALID~'~INTID: VARIABLE (FS) ELSE 

"WHILE", WHILESTMT ELSE 

liDO", DOSTMT ELSE 

"fOR", FORSTMT ELSE 

"READ", READSTMl' ELSE 

''WRITE'', WRITESTMT] 

indicates how a subset of labeled ALGOL statements might be scanned. Any 

resemblance between STMT and the STMT procedure of the B 5500 ALGOL com­

piler is not coincidental. 

8.2.8 The Error Message Option 

If the delayed getnext option (paragraph 8.2.1) is used, the colon 

following the terminal component may be followed by a number or by a state­

ment preceded by an asterisk for the purpose of generating an error message 

if the terminal symbol is not matched. If a number is given, there will be 

an implicit calIon an error message procedure supplied by the programmer 

with that number as its argument. For example, given the procedure 

PROCEDURE ERR(X); VALUE X; REAL X; 

PRINT #ERROR NUMBER # X 

the SF expressions 

["(", ~\-AEXP, ")": 104;J 

["(", "'~AEXP, ")": ~\-PRINT #MISSING )11=;J 

8-15 



would generate the following error messages if the ")" were missing from 

the input text: 

ERROR NUMBER 104 

MISSING) 

8.2.9 Syntax and Semantics of SYMBOL FORMAT Expressions 

The complete syntax of SF expressions is defined by the following SF 

declarations: 

SYMBOL FORMAT SFEXP; ["[", *SFXP]; 

SYMBOL FORMAT SFXP; [["SWITCH" ELSE NIL], ~'<'SFX]; 

SYMBOL FORMAT SFX; 

BEGIN 

LABEL L; 

[ [ *TERMINAL , ["_" . , [LITNO ELSE "*", *STMT ELSE *STMT] , 

";", RETURN START ELSE 

GO TO L] ELSE 

["~';", *BEXP ELSE "NIL" ELSE "[", *SFXP], 

L: [",", RETURN START ELSE NIL] ELSE 

END 

["RETURN", ["START" ELSE NIL], 

["UNTIL", *BEXP ELSE NIL] ELSE 

LABELID, ":", RETURN START ELSE 

*STMT] , [";", RETURN START ELSE NIL], 

["ELSE", RETURN START ELSE"]"]] 

The SF identifiers TERMINAL, BEXP, and STMT are intended to match terminal 

components (paragraph 8.2.1), Boolean expressions and statements, respectively. 



The identifier LITNO represents the class number of an unsigned integer, 

and LABELID represents the class number of label identifiers. 

The value assigned to an SF identifier is TRUE if one of the alter-

native rules in the SF expressions is satisfied, and is FALSE otherwise. 

The actual REAL equivalent of these Boolean values can be one of three 

values as indicated in the table below. 

Value of SF identifier Equivalent Value 

TRUE Boolean (1) 

FALSE Boolean (0) 

FALSE Boolean (2) 

Meaning 

syntax OK 

syntax not satisfied; 
getnext procedure not called 

syntax not satisfied; 
getnext procedure called 

As an example of how the two different "FALSE" values can arise, consider 

the declaration of the SF identifier TERMINAL given in paragraph 8 0201. 

If the class number of the current input symbol does not match the class 

numbers assigned to LITNO, quote, or period, then the value of TERMINAL 

will be BOOLEAN (0) (FALSE); however, if period is matched and REALID is 

not matched then the value of TERMINAL will be BOOLEAN (2) (also FALSE), 

since a callan the getnext procedure occurred after matching the period. 

The two different FALSE values of an SF identifier can make a difference 

in the evaluation of an SF expression in which it appears. For example, 

referring to the declaration of SFX given above, if the value of TERMINAL 

is BOOLEAN (0), then the getnext procedure has not been called, and it 

makes sense to test the next two terminal components Ck and [). 

However, if the value of TERMINAL is BOOLEAN (2), the getnext proced-

ure has been called, and since the GTL system provides no backtracking 

facility, the current input symbol cannot be restored to its previous 
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value, the remaining alternatives are not tested and the value of SFX will 

be BOOLEAN (2). 

In general, the following rule is used in testing the value of a non-

terminal component (an asterisk followed by a Boolean expression) in an 

SF expression: If the value of the Boolean expression is TRUE (the REAL 

equivalent is an odd number), the next component in the rule is tested. 

If all of the components of a rule are satisfied, then the value of the 

associated SF identifier will be BOOLEAN (1) (TRUE). If the REAL value 

of the Boolean expression is zero and it is the first component of a rule, 

then the first component of the next alternative rule following the ELSE 

will be tested; if no alternative rules remain, then the value of the 

associated SF identifier will be BOOLEAN (0) (since the getnext procedure 

was not called.) In all other cases, including the failure of a ter-

minal component which is not the first component of a rule, the evalua-

tion of the SF expression is immediately halted, and the value of the 

associated SF identifier will be set to BOOLEAN (2). 

8.3 SYMBOL FORMAT DECLARATIONS 

The syntaX of SYMBOL FORMAT declarations is defined by the following 

SYMBOL FORMAT declaration: 

SYMBOL FORMAT SFDECLARATION; 

[ "SYMBOL" "FORMAT" *IDENTIFIER , , , 

[*FORMALPARAPART ELSE NIL], ";", 

["BEGIN",*DECLARATIONS, *SFEXP, "END" ELSE *SFEXP]] 

where IDENTIFIER matches the SF identifier to be declared, FORMALPARAPART 

scans the formal parameter part of the declaration, such as might occur in 
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a BOOLEAN procedure declaration, and DECLARATIONS scans a series of GTL 

declarations, separated by semicolons. SFEXP is defined in paragraph 8.2.9 

above. 

In addition, SYMBOL FORMAT formal parameter declarations are allowed; 

for example, 

PROCEDURE TEST(X); SYMBOL FORMAT X; 

PRINT IF X THEN #SYNTAX OK:fF ELSE #SYNTAX ERROR#; 

SYMBOL FORMAT LST(Y); SYMBOL FORMAT Y; 

[",Y, ["; ", RETURN START ELSE NIL]] 

TEST(SFD) ; 

IF LST(SFD) THEN •.•• 

The actual parameter corresponding to a SYMBOL FORMAT formal parameter 

must be a SYMBOL FORMAT identifier which itself has no arguments (there 

are no formal parameters specified in the SYMBOL FORMAT declaration). 

SYMBOL FORMAT forward declarations have the same meaning and are 

made in the same form as forward procedure declarations (paragraph 9-106, 

Reference 4); for example, 

SYMBOL FORMAT SFD; FORWARD; 

SYMBOL FORMAT LST(Y); SYMBOL FORMAT Y; FORWARD; 

8.4 SYMBOL FORMAT STATEMENTS 

An SF expression may be used as a statement if a colon followed by a 

label is placed immediately after the last ]; for example, 

["[", ;'<SFXP, ": 11, LABELID] : SYNTAXERROR 



If a syntax error occurs during the execution of the SF expression, a 

branch is made to the specified local label; otherwise, ,control continues in 

sequence. 

8.5 SYMBOL FORMAT AUXILIARY DECLARATIONS 

All of the SYMBOL FORMAT auxiliary declarations must occur in the 

outermost block of the program, and, with the exception of the trace 

declaration (paragraph 8.5.5), must precede the declarations of SF iden­

tifiers. 

8.5.1 Syntactic Class Declaration 

The syntactic class declaration provides a convenient means of 

assigning class numbers to the CDR fields of quoted atomic symbols, and to 

previously undefined ident;i.f:i,.ers. Its effect is similar to the default 

class assignment described in paragraph 8.2.1. The declaration has the 

form 

SYMBOL FORMAT * class dec 

where classdec represents a sequence of constants, quoted atomic symbols, 

and previously undefined identifiers. The syntax of classdec :i,.s defined 

as follows: 
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SYMBOL FORMAT CLASSDEC; 

BEGIN 

REAL FIELD CDRF [33:15J; 

REAL T, FIRST,LAST; 

BOOLEAN FST, AST; 

LABEL L; 

[AST : =; FST ::::: TRUE; 

L: [LITNO: SFC ::::: INREAL ELSE 

END 

""" , ATOMICSYMBOL: 

IF T ::;:: CDru; (INSYM) == 0 THEN 

BEGIN 

ELSE 

IF AST THEN SFC ::=0 SFC + 1; 

CDRF(INSYM) :;;::;; SFC 

END 

SFG ::::0; T; ""11 ELSE 

UNDEFINEDID: IF .i\ST THEN SFC :== SFC +1; 

ENTER (DEFINEDID, SFC)], 

IF FST THEN 

BEGIN FST ::;: FALSE; FIRST ;::: LAST := SFC END 

ELSE 

IF SFC < LAST THEN FLAG(670); 

SFC :'" LAST; 

["~'(" ~.( "::::"; AST ;:::: CLASS == (::::"~\'''); GO TO L ELSE 

NIL], 

PRINT #RANGE # FIRST # TO # LAST] 
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The identifiers LITNO, ATOMICSYMBOL, INREAL,J:NSYM, and SFC have the same 

meanings as defined for the SF declaration given in paragraph 8.2.1. 

UNDEFINEDID is the class number aSl'.ligned to a previously undefined iden­

tifier, and ENTER is assumed to be the name of a procedure which assigns 

the class 'number DEFINEDID to the current symbol and places SFC in 

additional info, linked through the CDR field. Note that the range of 

syntactic class assignments is printed at the end of the declaration. 

The quantity placed in the CDR field of the atomic symbol is the 

number itself, and not a link to an atom representing the class number 

(i.e., the class number is not represented as an atomic number). Thus, in 

a GTL parsing program, the CDR field of an atomic symbol may contain two 

different data types: a class number and a reference value. These two 

data types are usually distinguished by their magnitude. One method of 

obtaining the REAL value of the CDR field contents is the use of the CTSM 

transfer function (see paragraph 6.15.1). 

CTSM(sexp).[33:15] 

where sexp represents a SYMBOL expression whose value should be an atomic 

symbol. Another, sometimes more convenient, method is the REAL valued 

field designator (see paragraph 7.2.2); for example, given the field dec1aratiol 

REAL FIELD CDRF [33:15J 

the value of the field designator 

CDRF(sexp) 

will be the REAL value contents of the CDR field. 



If it is assumed that the CDR field of an atomic symbol will not 

be used to reference an atom, then the distinction between the two data 

types can be easily made. The addresses 0 to 63 are reserved for the 64 

single character atoms, so that the address of a quoted multi-character 

atomic symbol (created at compile time) will be greater than 63. Each 

multi-character atomic symbol requires two or more words. Thus, a safe 

lower bound for the maximum class number is twice the number of atomic 

symbols appearing in the program plus 63. In most cases, the range of 

class values will be found to be adequate; if not, the address of the 

first available record may be reset to one greater than the maximum class 

number by means of the assignment statement described in paragraph 7.4.4. 

The following example illustrates a possible method of class variable 

assignment in the getnext procedure. The class variable is CLASS, and 

the SYMBOL variable INFO is understood to be a reference to additional 

information (including the class number). 

IF CLASS: = CDRF (INSYM) ::::; CLASSMAX THEN 

INFO := NIL 

ELSE 

CLASS ::= CLASSF (INFO::= ATSM(CLASS» 

where ATSM is the Arithmetic 10 §y~ol transfer function and CLASSF is a 

field identifier referencing a predefined REAL-valued class field 

(Section VII), and CLASSMAX is a defined identifier representing the 

the maximum class number. If automatic storage reclamation is used, then 

the maximum class number is limited to 63, since the LISP garbage collector 

expects that all reference-valued LISP fields will contain an actual 
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reference value. In most translator applications, however, atuomatic 

storage reclamation has been found to be unnecessary, even in quite large 

cases. 

8.5.2 Class Variable Declaration 

The programmer indicates to the GTL compiler which variable is to be 

used as the class variable by the following declaration: 

SYMBOL FORMAT -k class variable 

For example, 

REAL CLASS; SYMBOL FORMAT ~'< CLASS 

The class variable must be of type REAL or INTEGER and must have been 

previously declared. 

805.3 Getnext Procedure Declaration 

The programmer indicates to the GTL compiler the name of the procedure 

to be used as the getnext procedure by the folloWing declaration: 

SYMBOL FORMAT ~'< getnext procedure 

For example, using the procedure declared in Subsection 8.1, 

SYMBOL FORMAT ~'< GETNEXT 

The getnext procedure must have been previously declared and must have 

no formal parameters. 
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8.5.4 Error Procedure 

The programmer indicates to the CTL compiler the name of the procedure 

to be used to generate error messages with the following declaration: 

SYMBOL FORMAT .. '- error procedure 

For example, using the procedure declared in paragraph 8.2.8, 

SYMBOL FORMAT ~.( ERR 

The error message procedure must have been previously declared and must 

have one formal parameter of type REAL called by value. 

8.5.5 The Trace Option 

The sequence of SF identifiers executed during a scan, and their REAL 

equivalent values, can be traced if an optional Boolean trace variable 

supplied by the programmer is set to TRUE; the name of the trace variable 

may be specified to the CTL compiler by the declaration 

SYMBOL FORMAT ~.( trace variab Ie 

For example, 

BOOLEAN TRACE; SYMBOL FORMAT * TRACE 

If any SF declarations precede the trace declaration, they will not be 

traced. It is recommended that the trace option be used for debugging or 

experimental purposes only, due to the additional code generated. 
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8.6 RECOMMENDED PRACTICES 

The association of additional information with an atomic symbol, 

such as run-time class number assignment, can usually be most easily 

accomplished with the constructs provided by the GTL plex processing 

system (Section VII). 

It is important to remember that the class variable should contain 

the class number of the current input symbol before an SF expression is 

executed. This usually means that the getnext procedure should be 

executed once at the beginning of the program before executing any SF 

expressions. 

It should be noted from paragraph 8.~.1 that, by using defined iden­

tifiers representing syntactic class numbers, instead of making explicit 

reference to the numbers themselves, it would be possible to insert 

additional syntactic categories without the necessity of making any com­

pensating changes in the remainder of the program. Also, some attention 

should be given to the ordering of the syntax classes so as to make optimal 

use of the SWITCH option described in paragraph 8.2.7. 

When constructing the getnext procedure, it should be noted that every 

GTL read function, with the exception of the SCAN function, will ordinarily 

read a signed number as one item. It is often desirable to be able to read 

a number and its associated sign (a + or - immediately preceding the 

number) separate, as for example, would be required when parsing arithmetic 

expressions. To do so requires the use of the appropriate form of the 

INPUT statement containing the sign separation option (see paragraph 9.5.4). 
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8.7 BOOLEAN PROCEDURE EQUIVALENT OF SYMBOL FORMAT DECLARATION 

The following BOOLEAN procedure declarations are (effectively) equiva­

lent to the SYMBOL FORMAT declarations of AEXP and PRIMARY given in 

Subsection 8.1 

BOOLEAN PROCEDURE AEXP; 

BEGIN 

LABEL LR, LFN, EXIT; 
BOOLEAN MINUS; 

IF TERM THAN 

BEGIN 

LR: IF CLASS;;::: (:::;"+11) AND CLASS::;; (:;:"_") THEN 

END 

ELSE 

BEGIN 

MINUS := CLASS::; (="-"); 
GETNEXT; 

IF TERM TEEN 

BEGIN 

ELSE 

END; 

PRIN IF MINUS THEN 4/:- 4F ELSE 1F+ 4/:; 

GO TO LR 

END 

GO TO LFN; 

AEXP := TRUE; 

GO TO EXIT; 

LFN: AEXP := BOOLEAN(2); 

EXIT: 

END OF AEXP 
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BOOLEAN PROCED~E PRIMARY; 

BEGIN 

LABEL LFN, EXIT; 

IF CLASS .~ VARIABLE THEN 

BEGIN 

ELSE 

PRIN INSYM SPACE; GETNEXT 

END 

IF CLAS S = NlJMBER THEN 

BEGIN 

ELSE 

PRIN INREAL SPACE; GET NEXT 

END 

IF CLASS :;: (="(") THEN 

BEGIN 

ELSE 

GETNEXT; 

IF AEXP THEN 

ELSE 

END 

BEGIN 

IF CLASS = (0;::")") THEN 

GETNEXT 

ELSE 

GO TO LFN 

GO TO LFN 

AEXP := FALSE; GO TO EXIT 

END; 

AEXP := TRUE; GO TO EXIT; 

LFN: AEXP := BOOLEAN(2); 

EXIT: 

END OF PRIMARY 
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s.s EXAMPLE PROGRAM 

The program listed on the following pages was designed to illustrate 

the use of most of the constructs described in this section. The program 

accepts ALGOL-like function definitions from a remote terminal and com­

piles them into a simple interpreter language. After compilation, a 

function may then be evaluated to produce its graph on the remote terminal. 

Compilation takes place while the function is typed in (line by line); if 

a syntax error is detected, the compiler attempts to recover so that 

compilation can continue. A simple example of the program's operation is 

given at the end of the listing. 

It may be of interest to note that the organization of the compiler 

resembles that of the B 5500 ALGOL compiler, and that the interpreter 

language resembles, in some respects, the B 5500 mach~ne language. In 

effect, the compiler is a miniature version of an ALGOL compiler. It 

might also be noted that the interpreter itself was implemented wit h the 

help of SYMBOL FORMAT declarations. 

In order to understand the operation of the program, the programmer 

should be familiar with the GTL list processing, record processing, string 

processing, and Input-Output systems as described in Sections VI, VII, V, 

and IX, respectively. 
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HlG!~ ~y~~OL ~Llx; 
:f; 

1, IMIS t. 1~ J1l~rJE iE.Rt.'lNAl. PLOIT£H Pf.jO\JI1/l~. , ~-... --.. -... ~-...... ~-.. ~-.~.~.~ ...... -.. 
% 

Z iT ACClpl~ ~lGUl-LIKE Fu~trlu~ DEtl~IlrC~~ FRCw A "Ev~lt 
I llR~I~AL A~U CU~P'LES T~EM I~TO A Sl~~l~ I~T£~PHEltH 

I LA~GUAGl. A~TlR ~UMPllATIO~' A tu~CTIC~ ~AY '~l~ cE 
, lVALUATtU Tu PHCU~~l lr~S GHAPH C~ THl ~E~CTE ll~~I~AL. * CUM~ILAJIU~ TAKES ~LAtE ~HILE T~E FU~~TIC~ IS T'Fl~ {h 

I 'LI~f BY Ll~E)~ 1~ A 5YN~rAX E~HOH IS ~ETECTEG, I~l 
J CUMPILER AfIE~~TS 10 HECCVEH SO THAT ~C~FILArlC~ CA~ 
1. (';u"'H~Ut:.. IHE SY!'IATl( OF I'HE l~T£kPREIEH LA~G\,.A{iE is \.dVI:.~ 
~ 1~ ~AC~WS h~HMAL tUR~ OR ijNf, fUL~C~t~ ~y A~ CPJIl~AL 

, SlMAN1IC Ui:.~CRIprlU~. 
I, 

" 1. 
i. 
'I> 
i. 
% 

IT IS ASSUMtU THAI THt pEkSUt-.: ATTlMPl!NG Ie liS~ tt .. J.S 
fhU6RA~ KNO~S ALGLL ~LLL l~UUGH T~ HAvE ~~ITTl~ T~~ Ck 
l~HlE PkObMAMS A~htADY, THEkFORE r~E CESC~IPTIC~ l~ F~h 
kELATING THl SY~'AX OF THt PRUGRAM TO T~E lisE~. • TC~·I~· 
~GTIO~ APPRLACH c~ THE SY~TAX WAS CHO[SE~, SI~CE ThE 
I~TlRPRETtR I1SElFIS WNlrTl~ TOP·TC-t01TC~. 

IPLLT11:.k CO~MAh~ tA~G~Aijl. 
1. Sn~TAX. 

~ <PLUT1E~ COMMA~U LA~GUAGE) :l= f~~CTIC~ <FL~~TIL~~lC~ 
~ I LISI I PLUT <PLOTl£~) I O~LETE I ~lLr 
:t, :)[MANIICS. 
~ "F~NCTIC~" ALLO~S THE OECLAHATIL~ Cf A~ ALGLL-lIKl 
~ PkUtEuu~£ OtCLARATIO~, ~HICH, ~~E~ FASS£O F~HAM£ltH~ 

I ~ILL kETUR~ VALuES 10 HE PL~TTEL. 
~ THE DtSC~IPTION OF THE FUNCtION IS 'HEN TYFEW I~ 
~ Ll~E dY LI~£. THE CO~PILEH ~ILL TYFE LINE ~~~8I:.NS 
~ AS tO~PILAl!ON PROC~OlS. 
~ NOlE IHAf fUNC1IO~S ~AY HECuHSE, CALL E.eM (t~E~, 
'#. ETC •••• 

"LIST" ~iLL LIST ALL FUNCTIUNS ~ECLARED. 

"PLUT" PLOTS THE GIVE~ FU~crICN' ~~IC~ ~Ay lhVCLvE 
CALLS O~ CTMlR FUNC/IUNS. SEE lHE l~FOR~ATl~~ u~UI:.H 

PlelTl:.k. 

"DEL£lE~ O~LETES THE fI~ST PHGCEOLR£ THAT T~t "LISI" 
CU~MA~O LIS IS. THUS IF T~O OR ~OAE FUNC1IC~S AHt IL 
~E DELETEC, ~a£LETE~ ~tLL HAVE TO E~TEREO SEvERAL 
TIMES. ThE LISl 15 STRuCT~riEO ~o l~AT THE ~~ST 
RECENT DECLAMATION Is FIRS" ~lfH T~E E~O Cf THE 
LiST dEING fME ~IRST fUNCfIGN E~TEREO. 
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~ 

~ 

~ 

~ 

~ 

~ 

~ 

"SlUP" CALSES THE PHOGRAM TU GL Te l~C·CF·~Lt. 

AFfEH CCMPL~Tl~G A COM~ANO, EXCEPI l~E ~STC~" CL~~~~~I 

ThE P"OGkA~ IYPES "~O AHEAG~ TL SIG~IFY T~AI IT IS 
HEAUY feN A~Ul~lR CUM~A~U. 

IF~~CllL~ O~CLAkAIIL~. 
~ SY~lAX. 
~ <~UNCIICNOE~> ::= <fU~CTIO~ HEALI~G> <FL~~Tl~~ bL~'> 
~ <f~NCIICN htAOI~G> 1:= <FU~~TIO~ IO~~TIFIEh) 
I <fURM~L PARA~IER PAH1> 
% <F~HMAl PAHAMETER PARr> ::= <E~PTY) I ( <FCh~Al 

I PAHA~TlH LIST> ) 
I <.UH~AL PAHAM~TER LIST> 11= <IutNTIFIEH> I 
I <F~RMAL PARAMETE~ LIST> , <lCE~TIFlth) 
~ <PHUCtUUHE oUDY> &1= dEGIN <UECLARATIONS> 
I <CUMFLUNOIAIL> I <SlAIE~E~T> 
I 

~ 

~ 
~ 

~ 

I 

Sl~ANTICS. 
THE F~NCTIOh UECLARATION ALLU~S A "FEAL" tL~Crru~ 
TU ~£ OECLA~tO ~IT~ OPTIONAL FU~MAL PARA~ETE~S, ~Hi~h 
AHE dY CEFAULI UF TYPE "REAL", fOLL(wED tiY t1THtR ~ 
~LU~K OR A ~TATlMENT. 

tUE~LAkAIIO~S. 
~ SY~TAX. 
J <UECLAHAIIO~> &1= <TypE DlCLA~AIIC~) I 
I <UECLAHATION> ; <TypE UECLARA1IGN> 
I <TY~E O£CLAhATIUN> 1:= <TYPE> <IYPE LIST> 
% <lY~E> 11= LA8EL I HEAL I I~TEGlR I eCOLEA~ 
~ <TyrE LIST> I:: <IOtNTIFIEH> I <TyPE LIST> , <[uE~IItl~~> 
~ SEMANTICS. 
% OECLAkATIO~S ALLOw LOCAL VAriIA~LES TO ~E CEC~AR£U ~U~ 
~ USE IN THE 'UkHENT fU~CIIOh DECLARATICN. C~Ly 
i PkEVIUUSLY UECLARED FU~CTIC~S AkE ALLC~EO AS 
~ GLO~AL QuA~lllES. 
~ 

~STAT£MEN1. 
~ SYNTAX. 
% <STAT£MlNT> 11= LA~EL I <srATE'E~T> I 
~ <ASSlij~ME~T STATEMENT> I ~O Te LAbEL I <E~~IY> I 
~ <CO~UlllaNAL STATEMENT> I <~HILE SlAlt~E~T> I 
~ <DO SlATEMENT> I riETUriN <AEXP> I b£GI~ 
% <CDMPUUNOTAIL> 
i <CO~PwU~DTAIL> 11= <STATEMENT> ENU I 
l <STAIEME~l> J <COMPOU~UTAIL) 
% SEMANTICS. 
~ THE 8ASIC CO~STITUENTS UF THE I~TERPRETER 
, LANGUAGE AH£ STATEMENTS. THESE STATEMEN1S ARE V£HY 
, SIMILAR TO ALGOL STAT£ME~lS. 
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~ 

IASSIb~NENT SlAllME~T. 
I ~Y~TAX. 

~ <AS~IbN~E~T ~lAIEME~T> 11= <LEFI PA~T LIST> <AE~P> 

~ <LE~T PART LIST> ::= <VARIAdLE> := I <VARIAtLE> := 
~ <LEFr PART LIST> 
~ Sf~ANTICS. 

% THE A~SlbN~t~1 STATEMENT CAuSES T~E VAULF 
% RlPHE~f~TEO ~y lH[ ARITHMlTIC lXPHESSIU~ (AlxP) 
~ Te bE ASSIG~ED TO ThE VARIAuLES APFlARI~G c~ T~l 
~ LEFT ~F EACH ASSIG~~E~T SY~o~L. 
I 
ICOhDITIONAl STATEMlNT. 
I bY~lAX. 

• <CU~OlTIU~AL STATlMl~T> 1:= <It CLALSE) <ST~TE~E~I> I 
I <IF CLAUSl> <STATEME~I> ELSE <STAIE~E~I) 
, <IF CLALSE> II: If <8EXP> THEN <S'ATE~E~T> 

I SEMA~TICS. 
~ Cc~ulrICNAL SIATEMENTS PRovlUE A ~E.hS ~HlREoy THE 
I ThE lXECTLTIU~ UF A SlATEME~T, CR A SERIES [f 
% STAT£ME~lS, IS DEPENDENT UPON T~E LCGICAL VPLLE 
, P~OUUCED bY A "~OOLtA~" EXPHESSI0N (8EXf). 
% 
~~HILE STATEMl~l. 
t ~YN1AX. 
I <~hlLE STAIEMENT> 1:= WHILE <~E~p> CO <STATE~E~T> 
~ SEMANTICS. 
, T~E "~hILE" SIATEME~T PHOvluEs A METHCD OF C~~TkGLLli\G 
~ A~ lrtRATIvl PRUCESS IN ~HICH ExIT FROM ThE Lecp 
~ DEP~NUS ON £XCElOING A LIMIT. rHE "BOOLEA~" ~XPHE~SluN 
I IS FIHST TESllO; ThE FOLLa~'NG STAIE~E~l IS IhE~ 
I EXEC~IED AS LONG AS THE ~OCLEAN ExP~ESSIO~ l~ "fHuE". 

IOU 5IATEMENT. 
~ SYNTAX. 
% <DO slATEME~I> ::= DO <STATEMENt> U~TIL <dE~~) 
~ SEMANTICS. 
~ ThE HuOn SlAIE~ENT PROVIDES A METHCC OF CL~IHCLLl~~ 
% AN ITERATIVE PROCESS IN ~HICH ExIT FROM THE LOCp 
I DEPlNuS ON HEACHING A LIMIT. T~E STAiE~ENl 'S 
I FIRST EXECUTEU THEN THE TEST IS MACE, A~O r~l 
I EXECU1IGN OF THE STATEMENT 15 HEPEATEC AS LC~G AS IHt 
, "cOULEAN" EX~HESSIO~ IS "FALSE". ThIS IS VtNY 
I SI~lLAR TO A fORTRA~ "00" LUOP. 
~ 
lARlTHtMTIC EXPRESSIU~S (AExP) AND ~OOL£AN ~XPREXSIC~S (~EXP). 
, ~£MANTICS. 

% T~lSE EXPRESSIONS ARE IOE~TICAL TC l~EIR AL~LL 
J CGU~T~RPAR1S, wITH THE HESf"lCIIO~ THAT STRl~GS 
, ARl~"1 AlLG~ED. CO~SULT THt ALGOL ~A~UAL. 
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~ 

tSlA~UARU FUNCTIC~S. 

~ T~E STA~DAkU (H l~IRI~SIC FU~CTIC~S A~E LIST~L ~ELL~ 

~ ~ITH APfHU~HIAT[ utFI~ITIU~5. Ulv[~ fHAI AE IS A~ <AlX~>' T~t~: 
~ 
.,., 
1, 

~ 

t, 

1,. 

'I. 
~ 

1,lVpl 
1, 

% 

AbS(A[) 
SlI'dAE) 
C(lS<Al) 
lXP(AI:) 
Lt-.<AF:) 
S(~kJ(AEJ 

Pk~DLLlS ABSOLUIE VALUE U~ AE 
PRUDLClS SINE OF AE 
P~OD~Cts THE COSl~E Cf AE 
P~OO~CES lHE lXpnNENflAL fUhCTIC~ 

PI'IUDUClS IHE ~AIIJRAL L(JGAt1ITf-~ OF 
PRGOUClS THE SQUA~£ RUGI LF AE 

IkA~SFER tUNCTIC~~. 
IHE TYPE IHAN5fEk tU~CTIONS ~RE L1STlU BELC~: 

~ REAL. 

U fAt. 
At. 

I ThE FU~CTIU~ "RlAL(bE)" YIELUS A VALUE CF TYPE 
1, "REAL" tROM A dUOL£AN EXPRES51U~. r~IS ALL(~S 
% ARIlhMETlC u~tRATIO~S TO BE CA~HIEC elf UN 
~ bUOL[AN QUA~!TITES dUI OO£S NOT ALTER lrEIN 
J INTlH~AL SY5r~M RlPHESENTAfION. 
1. IjUCLEAI\j. 
~ l~E FUNCTIO~ "~UOLEAN(AE)" tIEL~S A VALLE Ct TY~l 
• "~U~LEAN" FHUM AN AHITHMETIC EXPR£SSIC~. l~lS ALLL~~ 
~ HGCL£~N OPEhATICNS To HE cAriRIEU eLl c~ Akrlr~ErI~ 
I QLANT1TES d~1 DUES ~OT ALTER THEIR l~TER~AL ~YS1E~ 
I RE~HE5E~lAT!UN. 
:t 
% 

% 
i; 

:tiPLLT HR SEC TI cr~ 
~ 

." StMANTICS. 
~ THE "~LCT" ~UM~ANU IS FaLLC~EO ~y l~E FL~CTl~~ 

~ IDENTIFIER TO at PLOTTED. IT MLSl ~AvE tiEE~ CECL~"EU 
% rlITh ~T L£A51 ONE PARAMETER ~HIC~ ~ILL dE L~EO I~ lh£ 
~ PLG1TING. iF fHE fUNCTION HAS ~aRE T~A~ G~t pA"AMtl~K IHE 
% PROGRA~ WILL RF.QUEst THEIR vALuES. 
:t 
% THE PkOGHAM AILL T~EN ASK FUH l~E 
I BEGIN~I~G PGSITlnN, t~CHEMENT, ANC FI~AL VALLE FU~ ThE 
~ RANGE OF THE PLUT. 
t 
i THE PLOT Of THE FUNCTION wiLL ~t TYPED C~ T~E 
, TEHMI~AL ANU T~lN THE PROGRAM ~ILL RETURN 
i TO COMMAND MUOE. 
i 
1, 

I 
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u u I L I iH II F fH. M u H. P Lu I 1 UI P RUG k A M 
AL~ OF THE PHO~EDURES USfn A~D T~EIR FUNCTIC~S AhE 

Ot. S(.R HH D tHLLJW 

IHl GETNlXT ANU lRRUK 
G£il\~.)(1 

~. RhO", 

PfWCtiJURlS 
T~I:. "GE.T~E~T" PHCClnUH~ 

T~I:. "E~ROR" PriUCEU~RE 
MIS~. ROuTJNlS FCH 

PUT 
ACCESSING CUOE. 5THII\G 

PUTAUR 
GET 
G[IAllk 
EM If 
[rJ.lTAOk 
£MITNUf', 

~x~k~SSION S~A~NEHS 
IFEXP 
VARiAbLE 
PAI\A 
PRl~AMY 

FACTUR 
TERM 
A[XP 
BOGPklM 
t:$OCSI:.C 
EXPHI:.S~ 

I::lEXP 
~T_rlMlNl SCA~I\EHS 

eO/ll~uli!~D I AIL 
sTld 
RE.SE lLA"ELS 

STATI:.~t:..NT 

uEC~ARATION SCA~NERS 
ENTRY 
fNTE.k 

OECLARATION 
PURGE. 

DECLARt:. 

PLACI:.S CHAriACTlH 11\ eCCE srRl~~ 

puTS ADOHFSS l~ CDCE STRI~G 
ijEIS CHAriACrER FHON eCCE SlHl~~ 

GtlS AonkES~ FHO~ CODE STkII\~ 
E~[TS ONE INSTHUC1I0N 
E~ITS ADURESS UF (~STRLCTIC~ 

EtJITS l'iUMHERS 

HANDLES CO~OITIONAL EXFRESSIL~~ 
COMPIL~S VARIAcLES & ASSIG~Ml~l~ 
PARE~TrlESlS A~U AH1T~~lrIC ExP~~S 
CG~PIL~S AHIT~~ETIC PRl~AHIES 
CGMPIL£S AHIT~METIC FACTCHS 
COMPILES ARIT~METIC TE~wS 
CCMPILls ARIT~MErIC EXFRESSIG~~ 
COMPILES HOOLEA~ PriI~A~IES 
CCMPILES ~aOLEA~ TER~S 
COMPILES HOTH AHIT~METIC A~O 
HOlJl£AI\ I:.XPRESS!ONS 
COMPILts HaOLEA~ EXPRESSIO~S 

TAIL E~O UF CCMPOU~O srATE~ENT 

SCANS SOME sTArE~E~T ~EGI~~EkS 
RESETS FOR~ARD LA~EL RtFEHE~CES 
~HEN ~UNCOMPILING" (RECOv[~ING 
FROM EHRORS) 
CCMPILlS ALL srATEME~Ts & ~ANCLtS 
HECOVEHY FHOM ERROkS I~ sTATt~~~rs 

RL~ TIME SYNTAX CL~SS ASSIGN~f~1 
APPLIES ENTRY TO LIST CF 
IOENTIF HRS 
HA~OLES DECLARATIO~S 
RE~ovES ATOMIC SYMcOLS FRO~ 
OdJECT LIS' w~l~ LfAVI~G T~E 
8LOC~ AND CHEC~S FUR ~ISSI~G 
LA8ELS 
HANDLES ~ERIES OF UECLARATIONS 
ANu PROVIDES FOA RECOVERY FRO~ 
SyNTAX ERRORS 
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DUf'lPCCLE TRANSFtRS CODE FROI" CCCE SIHI"\;; 
Te THE LISp "SlACK" AT A PCI~1 
1~~EOIATtLY FOLLCwl~G IHE INFC 
wORD OF THE Alu~IC SY~eCL 

HEPRlSl~TI~G THE ~~NCTIOI\ 
PRCClQ0RlUlC HA~nLES UFCLAkATIUI\S Cf FUI\CIIC~S 

Te BE PLUTTELl 
~ il\llRPkFTER SE~TIOI\ 
% ~KAOh REMnvES ~ CHAkACIEHS FhC~ CDGE 
~ STRING TU ~E LSEO AS Ai\ AUCHlS~ 
i INTEhPkET IN1ERPkETS fHE CUUE ST~II\G 

I EXECUTl MAKES CALLS U~ F~~~rlCI\S; lSlS 
I Il\fEkPRET 
% PLLTltk PLCTS fl;~C1I(J" [XECUIEL tjy 

I Il\1ERPkETFri 
1 REMGlt IERMI~AL FILE UECLARATiCI\ 

FILl:. KI:.I',GH; 
bUULtl4l\j 

~tnLII\E' 

!l\if[RPHE T iNti; 

A(lIH<ESSJ 

, TELLS GETN[XT rc GET I\E~ LII\I:. 
J, WHt_N TRUt:. 
, TELLS GETNEXT IU PHIi\f LINE 
~ NUMBERS 
;, SET TOT R tJ E w H I:. 1\ AS S I G 1\ I " G 
j CLASSES ru fORMAL PAHA~ETEHS Ct 
j A ~ur-.CIION 
, IS SET TO TRuE ~Y PURGE IF A 
Al D£(;lARI:.O '-AriEL IS i\OT LSEO 
~ TELLS GEJ~ExT fHAT NEXT "SYM~CL" 
~ IS TO COME FHOM PH£CC~PILEC 
, CODE ANO "CLASS" IS Te 8E THI:. 
, NEXT INSTRUCTIUN 

, IS THE NUMdER UF NL~·II\TE~ER 

J CG~STA~TS UCCL~II\G IN ft FUI\CTICi\ 
" DECLARATION 
• COUNTS NUM~ER UF ILEI\TIFIERS 
• E~lEREO bY ENTHY 
, THE SY~TAX CLASS VARIA8LE 
j TEMP VARIA8LE USED AT EI\O CF 
~ PROGRA'" 
, USED LIKI:. ~5500 "F" REGISTER 
1 SAVES lOCATIU~ IN "SrACKn CF 
i pOINT ~HERE FLNCIILN VALLE IS 
~ TO BE RETURNED 
, INUEX TO "STAC~n 
~ THE WHUlE INFORMATION ~CHO 

i ASSOCIATED ~IIH EACH DECLAHEU 
~ IOENTIFIEH. SET ~y ~ET~EXT 
* ADDRESS OF OI:.CLAHEC IDENTIFIER 
, SET BY GETNEXT 
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I I~ 1 t:. G l H 

SY~tlUL 

AkRA'( 

L.lI'I.lN(1, ,t, 

1, 

L, ), 

~ 

J, 1. 

tHIS!:., ,tl 

J, 

~ 

PLISl, ~ 

1, 

IH, 4; 

J, 

lr-..Fu; 1, 

to 

5TACKlO:fjY)1 .t. 
1; 

CLNSTANT, , 

LI~E ~U~bER PHlr\TEU bEFORE EAC~ 

LI~E Of FUNC'IU~ UECLARATICr\ 
RELATIvE LOCAI10~ LF C~ARACTE~ 
11\ celH. STRII';(i 
TErvP V/\RP~LE 

PCINTEk Tn FIR~T weRD FCLLC"lr\G l~~O ~L"U 

ASSOCIATI:.IJ ~lTH A I-L~CTIC'" lCEI\IIFl!:.ti 
START OF FUNCTIU~ CODE STRI~G 
LIST Cf IIJEI';TIFIEH~ c~EATEC ~y 

l"IRY 
peINTER 10 INF~ ~u~o C~EATEO ~y 

r.I\IRY 
POINTER Tn I~FU ~UhO • SET By 
GETN(XT 

THl "STACK" USlU ~y r~E 

INTERPRETER 
TAblE LF NQ~.I~T£GER ClNSTAN1S 

, APPEARING IN Ful';CTIOI'; CECLAHAl1L~ 
CLNSTADklU:127JJi LINKS TO ADDRESS pART CF UF 

~ "ReN" INSTRUC110N 
S1HING AriRAy STk[U:~91(~); ~ COUt SrHI~G USEe CU~I~~ C~~PlL~rlu~ 

LA~lL START, RE~TAR11 EAlI; 
Df.Fll\t:. 

dLMPL = L := l + ~" 
CLSS =(3j=15]#, 
AUkS - lldaIS)#, 
LINK = [.;:15]#, 
LINKF = I\I"'JH<k, 
CLASSF = CDkf#1 
r ... PARA~, = LII\KI, 
AlYPE = U, 
r;TYPE = 211-; 

SIRl~G ~IELD STkf [Oz81; 
Rt:.AL riELO CORf (J3:15J, 

AOUHES~F [lellS)' 
I\iPAR lJ:151, 
wHJ 

SY~BOL FORMAT ~ IHl FCLLU~lNG ARE Sy~TACTIC CLASS ASSIGI\~E~T~ 
.. flRA~OC~" .. "A~S" .. "SIN" .. "eeS" 
'" "EXP" .. "L~" .. "SQRT" .. "MAX" 
.. "~IN" .. REALPRCCID * REALlu * ll\TIC 
.. tiOOIO .. LAbELlu 
= lOMAX .. "l~" 

'" "UD" 
.. "E.ND" 
'" "LABEL" 
'" "FALSE" 

* "[L.St" 
.. "R£AL" 
'" "T~IJE" 

* "GO" 
* "RETliH," 
* "J" 
* "INTEGEH" 
* FCONSTA/'il 
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,. "BEGH" 
* "L;,\TIL" 
* "BCOllA"" 
,. I1CONSTANI 



• "~ll~.C TIll,,"" .. 
• "STOP" = 
• "TO" .. 
• "1'401" .. 
.. "LSS" .. 
.. "l" '* 
'" fI+" .. 
'" "." .. 
= ,,~ ,. = 
= " [" = 
= CLASS~AXi 

5y~t;lOL FGtH~AT * 
1 = cleF ~ 

.. dUN 1: 

* CHS 1: .. AUfJP ~ 

• st:;OP 1: .. MUlUP ~ .. ovnup ~ 

• FACIOF J, .. LI\G 1 

* UkOP ~ .. At-4DUP ~ .. E(,jLf 1 .. t',[QF :t .. LS Sf 'I, 

.. LI:.QF :E 

• GlQF i 

'" GTRf :t; 

• /-',K S , 
'" St,jR i 

* R1N l 

.. LHN " • LITe ~ .. CPDC ~ .. STO i .. ISO 1: .. St-;D 'I, 

• ISN , 
.. au.J 'I, 

* MAXF ~ .. MINF I; 

* RANO i 

* At:;SF 1 

* SlNf i 

* COSF· j 

* EXPF :t; 

* LNF i 

* SQRTF 1 

* RCN ; i 

"LlS I" .. "PLOT" .. "CELf:.T[" 
"(~ulT" • "f1ES£I" 
" T H t f\ " * "ANll" .. "CR" 
"=" = "£I~L" .. t1 f\ E (~ " 
"LL(~" .. "GE~" iii "GTH" 
")" .. .. ," .. " • t • • "- ,. • ")(" * "I" 
"." = """ = "Bo" 

";j," = "," :;; "(!i" 
" J " = F.:IJF = I\U'["'f~ 

~ INTERPHETEH 1I\St~LcTIC~S 
I:lRANCH ON FAL5£ 
I:l tl A I\; C r utile U t\ [) I r I U 1\ A L 
CHAi\GE SIGf\; 
AUU 
SlitllRACT 
jlliULTlPLY 
OIvlOE 
RJilSt:. TO PIJWI:.R 
LOGICAL tIIE(iATF.: 
LOulCAL OR 
LlJulCAL Mil) 
= 
1 
< 
~ 

~ 
> 
MAkK THE STACK FOH HETLRI\ 
CALL FUNCTIOI\ 
~ETU"I\ FROM fUNCTllil\ 
MAKE SPACE FUR VARIABLtS 11\ ST~CK 
US!:. ADURFSS AS CO~STANI 
"CPt~A~O CALL" 
STWHE OESTRUCTlVE 
l~ftGER STuR~ uEST~LCTIVE 

ST~~E ~ONDlsTRucrIvE 
l~TEGER STORE NONOESTRLCIIVE 
t1CULF.AN VALUE 
fINU ~AX Of TWU ~~M~EHS 
FI~U ~IN OF TWO NLM~EHS 
RAI\UUIV NUMtiER 
AciSULliTE VALuE 
SII\iI:. FiJNCTION 
CQS!NE FUNCTl[)~ 
EXP FUf'.JCTIO~ 
NATUHAL LOG FUNCTI~~ 
S~uARE RUOT fUNCTICN 
NON INTEGER ~UMBtR 
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I JHl bEI~~XT A~~ [HhLn PHUClOURlS 
PHCC~UUhE GlT~lxl; 

Ut.Gl" 
LAtlt.L LSi 

It INTERPktl I~G 'ht~ 

t.LSl 

dl;.Gll\ 

J := L L!V ci 
CLA~S %: REAL(STRF(ATSM(J.dASl))(L.lGS:3].ll)J 
L := L ... 1 
E 1\ lJ 

tH.G 1", 
If CLASS = lUF OR ~lwLIN£ IHE~ 

tjEGII\ 

~EwLl~l := FALSE; 
IF CC~~ILING rHEN 

dt:GIN 
TWXS2 := fILL(Ll~lNL,3) & ":"; 
lAB := 4; T[HPRIJ 
Ll~tNn := LI~E~U + 1 

REAC jllX; 
EI\O; 

CASE. HEAUCU~(FAlSE) Of 
dFG!1\ 

iF COMPiLING THlN Gl TC lS 
ELSE CLASS ;= lOF; 

CLASS := ~UMEHH; I ILLEGAL I\U~~EH 
tiEGIN ~ NUMt3EI1 
CLASS := HCONSTANTi 
iF INHEAl < 4096 TH[N 
iF INREAl = J := Il\riEAL THEI\ 

BEGIN 

i:.NIH 

II\REAL := .J; 
CLASS := fCO(\!:iTAI\ r; 
ENOj 

iF CLASS 1= CURF(II\SY~) S CLASS~AX 
THEN iNFO := I\IL 

t.LSE:. 
BEGIN 
wHL := ~~(INFL:=~lS~(CLAS~)J 
CLA&S ,: ~HL.~LSSJ 
A0DHESS :: WHL.AO~SJ 
ENOJ 

CLASS := 0; 
E~U O~ CASE STATEMENT; 

END 
ENll Of GETNEXTi 
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PHUClUL~t F~HLH(XJJ vnL~t x; hEAL x; 
bl:..Gll\ 

It COL ~ td r~~~ ~Hl~l SPAClCCCL + 3) #*,; 
PkIN NlhkU": ~IS~l~G #J 
elSE x - 1 LF 

ll\U U I:.HRi 

Htlilf\ 
Pril~l ~CR lLLlGAL ILE~rIFIE" l~ CECLARATILf\,; 
PhJ~T 4; c~ tNC,; 
pRl~1 uLlFT ~A~~NTHlS1S.; 

Phl~T 'hIGHI PAkF~THESIS'; 
P~I~T 'tH lLLLGAl SIA1FMEI\TR; 
PhI ~'l Ii" U t\ TIL ,. 1 N 0 L S TAT E. tJ t. 1\ Til; 
p~l~l ntH ILLEGAL USE nF lAdE.L~; 
p~I~T '~l~t.~n I~ C[~OITICI\AL EX~RESSICf\ C~ 

SlJlTEl"'lf, r;t; 
PRINT '"ELS!:.." IN COI\OITrOI\Al £X~RI:..SSICI\~; 
PRl~T 'CULO~ FULLowll\~ LAdEL'; 
PHI~T 'LA~lL 11\ GU 10 SIAIEMI:..~Tj; 
PRINT #nuC" l~ hHILl STA1ENI:..~T'; 

Pkl~T .n=" ~LLLC~I~ij "I" r~ ASSIG~~E~r 
STJlTt.I"ItNT#i 

PHlf\Jl ',In 
PRINT ILk lLL(G~L ~LOLEA~ £xPRESSIC~~; 
[I\C 

SYMuOL fORMAT *CLASS,6El~Exr,ER~OH; 
I. r-. I ~ C. R 0 LJ T 11\ t ~ F C h A (; C [ S ::, I 1\ Ii C tJ I) EST H 11\ G 
I PUT PLACES CHARACTER l~ eCCE SlRl~G 
PkO(;EUGRE PUT(r,A)' VALuE T,A) HEAL T,A; 

SlALA DIV 8JeA ~Ou b,l) :; STHI~G(T.[q2:6J,I)J 
~ PUTAUR Puls AGDMESS II~ CUUE SlRI"G 
PkucEuuHE PUTAUH(I,A)J ~ALLt r,A; R~AL I,A; 

I:lEGIN 
PuT<T.(36:6J,A); 
fUTCT. II + 1) 
lJ'.O; 

I GET GETS CHARACTER FhU~ eCCE STH1~G 
RlAL ~ROC[OURl bEleA); vALLE Ai REAL A; 

GlT 1= RlAL(STH[A Ulv 8](A,[45:31,1)); 
I GlTAUH GElS AUORESS FHC~ COUE STHI~b 
REAL ~HOCI:..DURE ijE1AGR(AJJ vALUE AJ REAL AI 

ijETAOR 1= GtT(A) x 64 + GET(A + 1); 
~ EMIT £~ITS UNE INSlrlGCJ10i\ 
PHucEUURE EMIT(x}j VALut XJ REAL ~J 

tjt.GIN 
PlJT(X,L)J 
IF L 2 19b lHEN 

BEGIN 
PHINT #CUOE UV£RfLCW#J 
LINUdJ 1= C 
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li\U 
iLSl 

l := L .. U 

I EMlfAUh ~¥lTS AOURESS Uf 1~SIRLC1IC~ 
P r'( C eEL l. h t [~. I r A tJ I~ t A ); Ii I<. L LEA,; ri [ A LA; 

b£.Glt\ 
t."'II(A.l36:C]); 
t ~' I T ( P. ) 
E. ~, 0 ; 

:t, Uqll\l.~' f 11/ 1 T S 1\ U jl/ ti i:.I~ S 
\li-ILuE Ci HEAL Ci PRGI..E.L-\.;R£ Ff,l TI\l;l"lC); 

BUd I'. 
LAdt:L fL!L~,Uj 

fUh J := U ~T~~ 1 u~rlL C~AX GO 
IF CUNSTA~ILJJ :: C T~lN GC 10 FOL~U; 
CC~STANT(J := C~A~ := CMAX • 1] := Ci 

FUL~L: lMIT(RCI\); 
lMIIAUR(C~I\STAURl~J); 

C~I\STAO~lJ] := l - 2 
tl't.; U lMITl'vun 
% t Ut1,~AHU oECLAf~ATlUt'\S 
SYMuCL FCkMAf A(xPJ FC~"AHU; 
SY~cUL FCRMAT dlX~J FCRnAHU; 
HEAL ~kLC[DURE tx~RESSJ fLRnAROJ 
bwL.Lll"(, PkUC[L1Lh[ SlATEIV.LNn FOH\"A~O; 

PKUCE0l.~l fxECLll(C[UE1J VALUE cccr; Sy~~CL eaCEJ FCR"A~I..J 
~ lX~klSSIUN SCA~NEHS 

I IF£X~ ~A~OLES cnNOITIU~AL EXfRESSIC~~ 

SY~bDL fORMAT I~~XP(x); SYMbOL fCkMAT X; 
b i:. G j, I~ 
RtALI, Fi 

L*~~XP, "lht~":~; EMIT(BO~)J F := ~L~PL; iX, "ELSt"19J 
E~ll(b~~)J PUIAGR(T := dUMPL,r-2); 

*X, PUTAGt1(L,l • ~};] 

(I~li Ut IFEXPi 
I VARIAUL~ cCMPILES VAHIAtiL£S & ASSIG~~l~T~ 
SY~bGL FCRM~r VAhlAbLE(IY~E'ADDhESS'FROM)J 

SYf'libOL 
B~G!I\ 

VALUF TYP[,AODHESS'FHCMJ 
KEAl lYFE, ADDRESS' fROM) 
[[":", "=":13; [*iY~E = 8001n, .~£xp ELSE .AEXP]. 

E~ll(kEpL(TYPE = l~IIO) + FHO~ + STL) ELSE 
*fRUM = 2, tMITCOPUC)J], 

E~11AUH(A00RESS)J]J 
PANA PAkENTHESIS ANU AH'TH~ETIC Exp~Es 

feRMAT PA~A J ["(":3; *AEXP, ")"14]; 
PRIMARY COMPILES AriITHMETIC PRl~ARIES 

FCRMAT Pklrv;ARY; 

Rt:.AL I, I\i 
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LhtAL10 * l~lIU: I := CLASS; J := AGU~[SS; 
.VAHl~8LE(1,J,2) lLSE 

"EALPhOC[~: l~lr(~KS); N:= (I :: ft~L).~~ARA~; 
(*1\ :.:; C (LSt 
"C'Q3i */lExr', 

[*~ := ~ - ] # C, ~,";14; *AE~P, 

i-H. T URI'; !:. L S E 
")":4J), 

E~ll(~~~); I:.MIT~Uh{ I .lle:9]); E~I re r.[~l:~J) 
~- L 5 [ 

F L C 1\ S 1 A i\ f: t. 1'1 i I (L i i C ) ; t. ~ 1 T A () ri ( l 1\ " E A l) r. L S t 
HCC~SlA~rl tMIII\LM(II\REAL) lLSl 
"/luSH * "S~HT": 1 :: CLASS· (="AdS"); *PAI\A, 

Oll(AHSF .. I) !:.lSE 
"~AX" * "Mli\": 1 := CLASS • (="~AX"); 

"(":3} *AEXP, ",":14; *AEXP' ")":4) 
tflill U"AXf ... 1) lLSE 

"k(AL", "(":3; *dtXP, ")":4 ELSE 
.. h A 1\ [J [j iv1 ", 1::1" I 1 ( R AI' U) L L S F. 
*FAI\A] 

[ I~ COl- t- t1 I ~ /l R Y ; 
~ FACTUR ClJMPll!:.S Ar(I'I-<~ErIC FACTeRS 
SY~DGL FOkNAT fACIOHJ 

[*PRIMARI, L"*", *PR!~ARY' EMlr(FACTO~)J ~ErUh~ 
ELSt. i'lL]]; 

I lEHM CCMPILls At1IT~METIC TEh~S 
SY~bJL FC~MAT rlR~J 

bl:.G1N 
R£.AL 1; 

L*FACTGR,L"X" * "/~: T := CLASS· (="-"); *FAtTeR, 
E~Il(MGLUP • Tl; RETUkN ELS~ NllJ] 

t.f\;l) O~ lERM; 
% AExP COMPILES AHIIH~ETIC tXFRESSIG~5 
SY~tOL FGh~Ar AlX~; 

btGll\ 
Rt::AL \; 

l"IF", *lflAP(AEXPl ELSE 
l"t" * "un: I 1= CLASS ELSE ~Il]' 

EI\;U Uf AEXPJ 

*TEH~' IF T = <="-"lfH[N EMIT(CHSlJ 
["." * H_": I := CLASS. (="t")J 

*TEkM, 
EMIT(AOOP + Tl; RETUH~ ELSE 

NILjJ 

I BOCPHIM COMPILES ~OOLEAN PRIMARIES 
REAL PHUCEDURE ~O~PRIMJ 
Bt G 1f~ 
R£AL Ii 
f:1UCLEAN NOH Lt\(jJ 
LAbtL LF, EXITi 
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L["~n'", ~CIFLAG := THUE ELSE NILJ, 
[l~UOIO: 1 ,= AUUHlSS; *VARlft~LE(dGOl~,T,2) lLSl 

"fALSE" * "THLE", E~ITC~L~); 
E~ll(~LASS • <="FALSE"» EL~l 

"bnUL~A~"' *PA~AJ, T I~ dTVPE ELSE 
"(", T := EXPhESS; ")":q lLSE 
*AEXP, 1 := ATYP[iJ, 

f.< E r l,; R~, T; 

[*' = ATYPE, 

,., 1 L ], 

l"EWL" * "GTR"' T := CL~SS·(="EbL"); 
*AEXP, E~lTCE~LF+T); 
T := tjTyPI:. ELSE 

f~IL] LLSE 

L*T = dTYP[, 
l*NCTFLAG, E~LT(LNG) ELSE NILJ t~SE 

*1 = ATYPl A~U ~OT NOTFLAG1J' LFi 

U' tjLOPRIM:= \.i 
[i' .. O lH tlClJPFn,..,; 
~ bOGSLC CG~PIL[S BOOLEAN TE:.R~S 
RtAL ~KGCEDUR£ dULSECJ 
IH.G.i.N 
RlAL 1 i 
LAbt.L LFi 

l * T f= ~UUPHl~ = dTYPl, 
["ANO", *~CUPRIM = 

E.LSE i\ILJ t.L~£ 
*T = ATyPl] I LF; 
i1ETURf\; T; 
UOOS[C := (] 

bTYPE, EMIT(ANCCF); RE1L~~ 

LF: 
[NO 
'J, 

~ 

Of bO(]SlCj 
LXPfH.SS CO~PILES HOTH AHIT~MEllC A~D 

6COLEA~ EXPRESSIONS 
RlAL ~HGCED~HE lX~RESSJ 

~t:.G1N 
HEAL 1, R, 5; 
LAi::lI:.L LF, EXITi 

l"If",*SExp, "ThEN"aS; EMIT(~OF)J H := ~L~PL; 
T := lXPHESS; "lLSE":9} EMIIC8U~)J 
PLTAD~(S := tjU~PL, R - 2)} 
[*T = ATYPE, .AEXP ELSE .T = 8fYPE, *eExPJ, 
PL1AUk(L'S·~) ELSE 

*1 := BOUSEC = ~TYfE, ["Ok", *80CSEC = bTyPE' 
E~lT(URGP)1 HETUR~ ELSE NILJ ELSE 

.1 = ATY~£l : LFJ 
HE-TURN 11 

LF: EXPRESS 1= uJ 
END Ot EXPRESS; 
~ I:lEXP 
SYMbOL fORMAT BlX~1 

COMPILES HOOLEA~ EXPRESSIQ~S 
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L"lf", *ltEXP(~EXPJ ELSE *EXP~ESS = ~lYPE ELS~ 
EHHUH(15); *FALSE]; 

, ~T~I[M~~l SCA~~EhS 

:t. CUtJl-'UlJl\UTAIL TAIL [NO UF CCMPCUI\D STATErvEl\1 
SYM~OL fURMAT CU~~OL~U'AIL; 

L*~~ATl~(~r, ["in, HETUh~ SrA~T ELSl "E~C":~)J; 
~ STMi SCANS SOME STAlltJE~T ci~Gl~~EhS 

SY~bCL FORMAT Sl~l; 

HI:.Gil\ 
RI:.AL I,t,,; 

LSI'jITCH 
HtALIO * l~IIC * b~UIUI T 1= CLASS; A := 'DDRlSS; 

*VAHIAHLECf,A,C) ELSE 
LABELID: 1 := ~~L; ~~L.AOHS 1= LI 

~~(II\FG) 1= AbS(WhL)J *T < U, 
":"Il~; HETUH~ lLSE 

"IF", *bEXP,"Th£~":e; EMIT(HUF); A := bL~PL; 
*SlATtMEI\T, 
L"ELSl", EMll(dlN)J T := bLMPLJ 

PLTAl)h(L,A-2>J 
*S·IATlM!:.I\T, P~TADi1(L'T"2) F.:LSE 

PUTAPk(L,A·~);l ELSI:. 
"GO", ("TU" ELSE ~lL), LA~ELIO:I1J EMIT(BL~)J 

E~llA~HC~hL.LlI\K)J LII\KFCIl\fU) := L • 2 ELSt 
"~HJL~", A Z= LJ *~EXP, "UO":12; EMITCBGf)J T := ~~~PLJ 

*STAll:.~EI\T, tMIT(BUN)J EMITAUR(A); 
PLTAOk(L,T - 2) ELSt 

"GC", T := L; *STA1E~ENT' "~NrIL"16; .SEXP, 
E~lT(bOF); t~lTAORCT) ELSE 

"~ETUHN", *~ExP, E~lTCRTI\) lLSE 
"bEGIN", *C~MPOU~Ul~IL] 

E"'U U~ STMT; 
~ kESETLA~lLS 

t. 
:t 

HESETS FGR~ARO LAe~L REFER~~CES 
~H~N "UNcnMPILING" (RECGVE~I~G 
FROM EHR[JRS) 

PkOLEUU~E RESETLA~ELS; 

8/:.G J. N 
fH.AL 1, AJ 
SYh;[jL Si 

j~~.~LJI'JE := IRLU 
\,lTNFXTi 
F~R S I~ PLIST 00 
If (T := ~H(CGk S),CLSS = 

8EGIN 
A :=I.Llf\Ki 

LAd£Llu THEN 

~HILE A ~ qQ~5 AND A > L 00 A 1= GErAOR(A)J 
T .LINK 1= Ai 
If" 1 > 0 THt.N 
IF T.ADRS > L THEN 

I:IEGIN 
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T := at r; 
T .ALJH~ := 0; 
U\lH 

fj/-1(tut, S) ::::, Ti 
t.I\Li 

fUk J := U ~'EP 1 UhlIL CMAX UU 
tH. G 1.1\ 
A ;= CU~STAU~[JJ; 
~hlLE A - 0 ANC A 2 L no A := ~lTAD~(A)J 
C(;"~T/oIUR[JJ := A 
E/\'UJ 

[~U Ot R£SETLA~~L~; 

, STAlt~t~l CC~PILES ALL SrATE~E"Ts & ~A"CLtS 
I REGOVEHY FRUM tHAnkS .1\ STATE~l~TS 

buULEA~ PROCEUUHE SJATEMtNTJ 
bt.Gli~ 
LAbEL kEeDV, ~TAkl; 

tH.AL LNR, LUi 
LNH := Ll~E~O • 1; 
L(; ;= l; 

SIAkT: l*STNT ELSE 
*CLASS 2 (=flENU fl ) AI\D CLASS S (="LNIIL") ELSE 
flRESE1":SJ LINE~O := INTEGE~(HEAUN(IWX); 

GU 10 RECOVJJ : REeDV; 
rlE TURN TI1UI:.J 

RlCLV~If LIN£NU ~ LNR THEN 
BEGIN 
L p:: LU; 
PRINT #RETvft STARTING AT LINE i LINEI\O := LNRJ 
RESETLAbf:.LS; 
GO Ie STAHl 
EI\O; 

STATEMENT := BOOLt AN(2); 
[NU Of STATEMENT; 
I JELLARATION SCANI\EHS 
I ENTHY RU~ TIME sy~TAx CLASS ASSIG~~E~I 
HUULEA~ PkOC£UUHE E~TRY(lYPE)J VALUE TYPE; REAL TyPE; 
HI:..GIN 

If CLASS> l,I THEN 
BUil" 
ERHURllH 
RETURN FALSI:.. 
£I'\ui 

PLIST :; (I~SYM :: MKATOM) • PLISfJ 
CUR(INSYM) ,= INf I: CONSlCLASSf: TYPE, 

ADUKESSF: IF TYPE = LA~ElID OR fORM TOG T~EN U 
ELSE 

IF TYPE: REALPHOCID THEN 
NEXTAVL(SYMdOL) + 2 ELSt 

CUUNT 1= COUNT + 11j 
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if TV,..,!:. :: LAHELILJ IHEI'~ 

LlSl 

tH. til 1\ 
wH U\~) ::: -I'IH( INF); 
LlI\KHll\~) := 41J9J; 
[I\G 

l~ FnHMTUG I~E~ CUUNT := COUNf + 1; 
1l1:.11\EXT; 
[I\TRY ;:: lRLE; 

EI\U Of [I\TRY; 
, [~TEk APPLIES tNTHY TO LIST CF 
~ IUENTIFIEHS 
SY~bUL ~CkMAT (NTI:.ReX); vALUE Xi rifAL xi 

l*l~TRY(X), (",", HI:.TURN STAHT llSE NIL])' 
, UECLAHATIUi\ HAI\OlES GECLAHATIOi\S 
SYM~OL FeRMAT OECLARATlu~; 

% 

::t 
~ 

% 

lS1'tITCH 
"LAij(L", 
"REAL'" 
"ll\lEliER", 

*ENTERCLAdELIO) ElSE 
*ENTER(HEALIO) LLSE 
*lI\TER(INITO) ELSE 

"bCULtA~". *EN1ER(bOOID»)J 
PURGl REMOVES ATOMIC SYMbOLS FRO~ 

adJECT lIST wHll\ LEAV!i\G T~E 
bLUCK AND CHEC~S FCR ~lSSII\G 

lAbELS 
P~ULEULHE PURGI:.(L)J 
fH. G 1 (\. 

VALUE. LJ SY~80l L; 

SYl'o1dCL IH 
H(AL I,Ai 

CCUI'iT 1= vi 
NULAB[L ,= tALSEJ 
FLR R 11\ l UO 

BlGIN 
IF (T 1= "H(CU~ R»).CLSS = LA~[LID lHEN 

IF T < 0 THEN NOLAdEL := TRUE 
ELSE 

tiE-GIN 
A a= T.LlI'd<J 
T := T.AORS; 
wHILE A # 4095 UU 

i:.NOJ 

8LGIN 
J := GETALlRCAn 
PUTADHCT,A); 
A : = J 
END; 

IF SMTA(R) > 64 THE~ 
REMOdel-<) 

ELSl ~OR R ;= ~IL; 
COUNT 1= CGUN I t 1 
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Et\LJ 
01' PUHfiEJ 

LJEClA~1:. HA~nLE~ SEHIES Cf UfCL~RATIC~S 
A~l PRUVIOES FUH HlCCVE~Y FRL~ 
SYt.TAX ER'hlHS 

~U~LE~~ PkOC[ULkl:. 
tll:..Glr'i 
LA~tL STAHT,RECUVi 
Rt:.AL I, lNR, COJ 
SYt-'t)OL PLlSTOj 

LJf:..CLAtd: .. j 

SIAMT: CG := COUhiJ 
i := NEX1AVL(SYM~UL)J 
r'LIST := NILJ 
L ~ R : = LIN E i, 0 ; 
l*OlCLAHAIIUN, "J", 

PLlSJu := N~U~C(PLIST,PLISTU); GO Ie 
"Rl~f:..T": LINfhU := INTEGtR(R£AON(r~X»j 

GC lU Hf:..CCw I:..LSE 
"ILl: RlCuv; 

t-'LIST ::: t-'LlSlU; 
KETU!1:r-.: TkU[i 

Rt:..CUV:t-'U~G[(PLIST)J NEXIAVLlSYMdOL) := r; 
IF LINE~U ~ L~R THEN 

:: COi 

STAi11 E.LsE 

r:3EGIN 
CCUNT 
PHIl\f 
GO 10 
E~O; 

4HllYPE SlARllNG .1 LiNE # LI~Et\O := 
STAHr 

END 
1, 

% 
% 

" 

UECLARE := ~ULLEA~(2); 
r'LI5T p: PL1STC; 

Of UECLAR£.; 
OUMPCUiJE THANSFERS CODE FRO~ eCCE STH1~G 

TO THE LISP "STACK" AT A PCI~T 
~CRO OF THE ATOMIC SY~BCL 
REPRES~NTI~G THE F~NCTIC~ 

PRUCEUURE DUMFCUOl; 
I:H.Gl" 
I~Tt.Gt:.k LMAXJ 
REAL I j 

LMAX := (L + 7) DIU 8; 
fOR J := 0 STEP 1 UNTIL CMAX DO 

~hlLE T := eONSTAORlJl _ a uo 
i:l E G 11\ 
CCNSTAUklJ] 1= GETAOR(T)J 
PUTADRCJ t LMAx, fl. 
E ~ l)J 

FeR J := U STEP 1 UNTIL LMAX • 1 uo 
SlFH«"OI\S) := STR£JJJ 

FOR J := U ~TEP 1 UNTIL CMAX DO 
~H(CO~S) 1= CO~STANT[J]J 
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1:.1'11.1 U~ LJu~PCOIJU 
~ PROCluLREUEC HANDLES uECLAHATIOf\S CF FUf\CIIL~S 

Ie ~E PLLTTEO % 
PHu~EUUR[ PROCtUwHEOECJ 
tH .. GIN 
RlAL H, 1, p, ~A, l~R; 

LAc~L ~TANT, NOGU, nEcev, EXIT; 
SY~~CL PLISTU, ~N, S, Pl~FO, pAHA~J 

LINEf\O 1= 1; 
c~, A X : = ·1; 
PLIST(J 1= PL!ST; 
n .= f\ExTAVL(SY~duL); 
PLIST := 1\1L.; 
(*E~TRY(HI:.ALPROCIU), FN := PLISTJ PLIST := f\ILJ 

elk F~ := ATSM(H); 
PINfO 1= INFJ P 1= NI:.~TAVL(SY~BCL); 
COuNT 1= 0; FORrHOG := TRUE; 

["(~, *ENT[HCHEPlIO), ")":4; FA := 2046; 
FeR S IN ~LIS' 00 

AODHESSf(COR 5) I: fA := FA + 1 tLS£ 
I\lL J J :f\OGOi 

~PAH(PI~FU) 1= CU~~I; 
PM~AM 1= f-'LlSTJ 
PLIST := NIL; 
r := NEX1AVL(SY~dUL); 
FURMTOG := fALSE; 
1~PUT(T~Xfl,T~XS1,1:6'/FALSE); 
CCMPILI~G := TRUE; 
GE..T~EXT; 

L~R 1= LINEI\O • 1i 
STAkT:CUUNT := L ;= OJ 

l"~EGIN"' *UECLAHt, 
IF COUNT ; U THEN 

HEI,l!1\ 
E~ITCLk~); E~IT(CUUNT) 
0. U; 

.COMPUU~U1AIL ELSE 
*STATE~ENTJ : RE'OV; 

EMIT(BL~)J ~MIT(C); EMIT(RT~); 
PURGE(PLI5T )J 

IF NOLAtH.L THEN 
BEGIN 
pRINT #OECLAHEO LABELS DID NOT CCCLR,j 
GO TO I\CGO 
END; 

PUHGE(PARAMn 
~EXTAVL(SYM~OL) := Pi 
OUMPCODEj 
PLISTU 1= NCOI\CCFN, PLISTO)i 
GO EXITJ 
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HtClV:IF LT~[~L ~ L~k rHl~ 
HtGli\ 
Pl;l-itlE.(PLlST ); 
NE.XIAvl(SY~bUL) z= TJ 
PhINT #hlTYPl SIARTiNG AT Lli\[ , LI~E~O := L~R; 
NEVi L 11'0 I:. : = I r"I U l ; 
GlTNl:.xT; 
GC 10 START 
f~L:j 

NUij~: PUhG[CPAHAMlJ 
i-'l!RGECPLISUJ 
fU~MTOG := fALSE; 
PUI-lGE(FN)i 
~lXIAVL(SY~bGL) := RJ 

EXII: ~UMPILIj\G := FALSE.; PLIST := PLISrOJ 
1I\PUT(hjX~ 1, fwxS1, 146,ITRUE)J 

E~U O~ PHUCEULRlOtCJ 
% INII:.HPHE1Ek 5E.~TIUN 
1. 

J.. 
I I\T l GI:. M 

bI:.G!N 
RI:.AL. , j 

REMOVES 2 CHARACIEriS FRC~ eCUE 
STRING TG dE lSED AS A~ AUGHES~ 

PROCE[;l"HE f\'lKADH(A); VALUEAJ BIJuLEAi\ fd 

T := CLAS::'; 
ulTt-.EX1; 
T := 1 x 04 + CLA~S; 
GI-_Tr~Exl; 

MKAlJR 1= If A THE." 
If T > 2C4A THEN FH + 204d • T 

i.:.LSE. FR + T 
ELSE Tj 

[1"fU Ot fvlKADkJ 
I INTEHPMET Ii\TERP~E1S THE CeDI:. STRING 
SY~~GL FORMAT INTI:.RPR£T; 
t::H .. G IN 
DEFINt. 

SA = STACKll := I - 1]#, 
::,b = SlACK(lh, 
SC = STA~K(l + lJ', 
su = STACKll s= I + lJIJ 

ALPHA wi 
RlAL Ii 

lSl'iITCH 
I::lOf, 1 ,= I" 1i 

IF bOCJL£AN(SC) rH£N 
dEGIN 

ELSE. 

L := L + U 
GETNEXT 
I:.. NO 



END Of 
1 
~ 

d[GIN 
L &= MKADN(~ALSt); 

utT~fxr 
t~o EL5~ 

ti~~, L := ~~AOR(FAL5E); GE1~EXl ELSt 
CHS, S~ :: ~ S~ ELSE 
ALUP, SA := ~b + SC EL5( 
~bLP' SA := ~~ • SC ELSE 
M~LUP' SA := 58 x SC ELSE 
DVUUP, SA 1= 5~ / SC lL5l 
FAC10f, SA := S~ ~ SC [L~E 

L~G' ~~ := ktALCNOT BUnLEA~(S~» ELSE 
UkC~, SA := HEAL(BOULlANCSbJ UH HLCL£AN(S~»)lL~l 
AhUUP, SA := REAL(~UOLEAN(So) A~n B(CLEA~(SCJ) 

ELSE . 
E~L~, SA := HEALCSB = SC) ELSE 
NEWF, SA := HEAL~S8 ~ SC) ELSE 
LSs~, SA := k£ALCSB < SC) ELs~ 
L£Wf, SA := HEALCSB S SC) ELSE 
GlG~, SA := REALCSH ~ SC) ELSE 
GTHf, SA := HEALCS~ > SC) ELSE 
MKS, 50 := SAVEl' SAVEl := 1 ELSE 
S~H' ~O := r~' fR := IJ 

EXECUTE(AlSM(~KADR(FALSE)-64 + CLASS»)J 
GET~£~I ELSE 

RTN, T := SbJ fH := STACK(FriJ; 
SAVEl 1= STACK(1 1= SAVEll; Sb 1= 1J 
*FALSE ELSE 

iHN, rO~ CLA~S uo SU := 0; uETNlXT ELSE 
LITe, SC := MKAUR(fALSE) ELSE 
OPU~, SU := STACK[MKAUR(fHLE») tLSE 
S10 * IsD • 5NC * 15N: 

IF ~GuLEA~CT := CLASS • SIO) THEN 
s~ := INT£G£R(Sd); 

NIL, STACK[MKADRCTRUE)J :; 5e; 
If 1 < 2 THEN I :~ 1 • 1; ELSE 

BLN, ~o := CLASS; GtTNExT ELSE 
MAXt, SA := MAX(SB~SC) £LSE 
MINF, SA 1= ~1~(S8,SC) ELSE 
RANU, 50 := CONVALCO) ELSE 
A~SF, S~ := ABS(S~> ELSE 
SlNf, S8 1= 51N(SB) ELSE 
CuSf, S8 1= COS(SB) ELSE 
[XPf, Sb 1= EXP(SB) ELSE 
LNF, S8 := LN(Srl) ELS~ 
SQR1F, SH := SQRT(S~) ELSE 
RCN, SO := ~H(A1SM(~KAOH(fALSE),8ASE»;J 

INIERPHEI; 
EXECUTE MAKES CALLS ON FUNCTIC~S' LSES 

INTERPRET 
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PkL~E~U~l EX~CLIElCCUl)J VALUl CnUFJ SY~~LL CCCE; 
" E. (j 11, 
S Y /-I. b G L lJ L () CUD I:. ; 
Rl:.AL LLUL; 

'I; 

C L L.l C n L' l : = tJ A S [ .; 
bASE. := CUi,JI:.; 
uLOl := Li 
L 1 = 0'; 
llt_r~EXTJ 

~~ILE I~TlN~kET Ou; 
bASE := LL.O(;OOli 
L := LlLCL,; 

01- FXlCUTE.; 
I-'LCTIE.I"I PLUTS FUI\CfIU" £XI:.~urEC BY 

INJERPkETEI'i 
PHUCtuukl PLorTER,; 
I:lEGJ.i'o 
RI:.Al X, y, z, ~, V, l/-l.A~, T~t~' T, J, KJ 
SYMbOL COUE, SY~; 

LAdt.L I:.XIT; 
IF CLASS t k[ALPHUCID Ok K ;= ~HL.~PAkAM = C lHE.~ 

~EGIN PRl~r 'MI5SINb OR IlLt.GAL FL~CTIO~#; 
G C TO I:. XIT E N U .; 

~YM := 1l\~Ylv,; 

CODE. := A1SM(1,II\FU); 
IF 1\ 11TH!:.'" 

I::H. Ii 1 !\ 
PRI~T 'TYPE # ~-1 # PARAMElI:.R# 

If K = 2 THE!\ # t ELSI:. #5#; 
J : = U 
DC ~TACK[J := ~ + II := REAU"(I~X) 

LNTIL J = K; 
EN l)i 

K 1= K + Ii 
PkINT #E!\lEk bE.G1NNIN~ VALUE, INC~E~E~T, AI\C FINAL VA~ul FUH#, 

ITHI:.. '"'LeU) 
x := READN(lwX); Y := REAU!\(T~X); L := REAON(l~x)i 
N := (Z - XJ I Y + lJ 
~ 1= -lJ INIERPR£T1NG := TRUE; 
bE.uIN 
ARRAY VALLES[CIN1J 

T~AX &= -(TMIN 1= TEN(68)J 
fOR V :: X &ll:.P V U~TIL l OW 

BEliII'; 
SAVEl:: (H 
fH p: 1 := K; 
STACKLl] := vJ 
EXECUTl(CODE)j 
VALUES(J := J + lJ 1= T := STACKlC]J 
TMAX 1= ~AX(TMAX'T); 
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T~l~ :: ~lN(TMI~JI); 
EI\O; 

PRI~T ./,/,1,/,1 SPACE(d) #PLCT OF # sy~ 

leX), X:::; # X # TU f L # I~ ST[FS Cr # 
y,/SPACl(16) #AANijE C~ # ~y~ ~ IS # 

T~lh ~ Ie , l~AX ,1,1,1; 
IF lMAX 1 IMIN THE~ 
T~AX 1= SC/(IMAX - r~lN); 

J := "1; 
FLH v := X STtp v U~TIL l DO 

tlt:.GII\ 

E 1\ lH 

T\;XS;:: I:::; SPACU 
PH H v; 
T := l~ALUES[J:=J+l] • TM1~) ~ TM~X • d; 
IF J ~UU 10 :::; a THE(\, 

r~X52(8) ;= (2 1 " •••• "] & TwXS~(t'42) 
ELSE IWX52(8) := "."} 
TwX52(T,1) := "*"; 
ftHITE I~)(; 

E 1\ lH 

PkIN ,1,/,/,/,/; 
EXll: 1\j~wLTj\jE:= IHliE; 

l~r~RPR£Tll\u := FAL~E; 
Ei'd.) OF PLOTlEHi 
, ~All\ PHOGRA~ StC1lUl\ 

PhII\T tREec FLNCTIU~ PLOTTER'; 
SIAk1: 

PhINT #GG AHEAO.#,I; 
I\EwLll\t := TMU~J GETI\ExT; 

[51'11 f(,1-1 

"fUNCTIUN", PROCE~U"EUEC ELSE 
"LIST", PHINT PllST ELSE 
"PLUTH, PLG'T~H lLSt 
"UELETE", I~ hULL PLIST THEN 

ELSE 
P~ll\l 'fUNCTION LIST E~FTY# 

tHo (d f\ 
UL 1= SMTA(CT~(II\F := PLIST»; 
PL1ST 1= CUR PLl~TJ CDR I~F :~ ~'L; 
PHl~T CAR INf, #uELEIEU*; 
PUI'CGECI~F); 
~EXTAVL(SVMHOL) :; ULJ 
t.I'lO ELS~ 

"STOP", GU 1U EXIT)] , RE&TART~ 

GlJ 10 Sf Af'<Ti 
RlS1Akl: p~INT #PlEASE "ETypE,; GO TO STAHl; 
EXIT: PRI~T #E~U UF PHO~RA~.' ,/,/,1; 
ENU. 



RlC~ tL~cTlu~ PLCITEk 
GU AHi:.AU. 
f li 1\ (,; 1 ! lJ~' ~ ( X ) j 

l:Rll~HI\ SII\(X)XCCS(x)lex+l)J 
GU ~HI;AlJ. 

PLu I ~ 

ENTER BEGINNING VALUE, INCREMENT, AND FINAL VALUE FOR THE PLOT 
'IU,,21C 

PLOt Cf FLX), X ~ C TO 10 IN STtHS IF .2 
RA~Gl O~ f IS ·.lq86~ TU .2~126 

o • • • • • • • • • • • • • • • • * • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
• 2 
• I.j 

.6 
• /j 

1 
1 .2 
1 .4 
1 .6 
l.d 

• 
• 
• 
• 
• 
• 
• 
• 
• 

* 
* 

'II 

* 
'* 

* 
2 • • * • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
2.2 
~.4 

2.6 
~.d 

3 
3.2 
3.4 
3.6 
3.8 

'* 
* 
• 

• 
• 
• 
• 
• 

* 
* 

* .. 
* 

* 
* 4 • • • • • • • • • • • • • • • • • • • • • • • • • • • * • • • • • • • • • • • • • • • • • • • • 

4.2 
4.4 
4.6 
4.tl 
!:t 
!:t.2 

• 
• 
• 
• 
• 
• 

* '* 

* 
* 

* 
* 

• 



~.4 

~.o 

~.c 

b 
b.~ 

6.<.1 

b.o 
fl.C 
7 
7. Co 

7.4 
l.e 
1 • d 
t" 

o.~ 

t'>.4 
8.b 
e.d 
If 
Y.;' 
':1.4 
':I.t 
9.~ 

ill 

• 
• 
• 

.. 
* .. 

• • • • • • • • • • • • * • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • .. 
.. 

.. 

.. 

.. 
.. 
* 

· . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
.. .. 
.. 

.. 

.. 
.. .. 

.. 
• • • • • • • • • • • • • • • • • • • • • * • • • • • • • • • • • • • • • • • • • • • • • • , • 

(, L Po I"' I:. A Ij • 

STet" 
f.I\LJ lH ~RLr,f.<A"', 
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IX. GTL INPUT-OUTPUT FUNCTIONS 

9.1 INTRODUCTION 

In addition to the standard ALGOL Input-Output functions, GTL 

contains a set of Input-Output functions which facilitates reading and 

writing the GTL data types. The purpose of this section is to describe 

in detail the operation of these Input-Output functions and to indicate 

how they might be used with various kinds of files. 

9.2 THE OUTPUT FUNCTIONS 

9.2.1 Extended WRITE Statement 

The syntax of the array row form of the ordinary Extended ALGOL 

WRITE statement has been extended as follows: Any string variable (See Sub­

section S.l)which is not a formal parameter and which is longer than 8 

characters in length may be used in place of an array row. The number of 

words to be written is specified as in the array row form, instead of the 

number of characters, since only multiples of 8 characters can be written. 

For example, if LINE is a l20-character string variable and OUTFILE is a 

IS-word output file, then 

WRITE (OUTFILE , 15, LINE) 

is a legal GTL construct. 

9.2.2 The PRINT. PRIN, and TERPRI Statements 

The PRINT (PRIN) statement consists of the word PRINT (PRIN) 

followed by a list of one or more printable items which are to be writ­

ten on an output file. The output file is specified by the OUTPUT 

statement (Subsection 9.3, below). The OUTPUT statement also specifies 

an output string variable in which the printed output is composed, 
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the size of the output file, and the left and right margins. The PRINT 

s,tatement will cause each item in the list of printable items to be 

inserted into the output string beginning at the left margin. If the out­

put string is filled, i.e., the right margin is reached, before all of 

the items have been printed, then the output string is written onto the 

output file and output string composition process continues at the left 

margin. When all of the print items have been inserted into the output 

string the output string is written onto the output file. 

The PRIN statement has the same effect as the PRINT statement except 

that the output string is not immediately written unless the right margin 

has been reached. Subsequent PRINT or PRIN statements will continue to 

fill the partially composed output string instead of restarting at the 

left margin. The TERPIn statement will cause a partially composed output 

string to be written after a series of one or more PRIN statements. (The 

PRINT statement is equivalent to a PRIN statement followed by the TERPRI 

statement.) 

When two or more printable items appear in a PRINT or PRIN statement, 

they may be separated by one of three following print list separators: 

1) One or more spaces, which causes two print items to be 

printed without intervening spaces, 

2) A comma, which causes two print items to be printed with 

one intervening space, and, 

3) A comma followed by a slash C', I"), which causes an implicit 

call on the TERPRI function starting a new line of print before the next 

item is printed). 



For example, 

PRINT 11 12, 13,/ 14 

will cause the following to be printed (assuming 11, 12, 13, and 14 are 

chosen to represent the symbolic output corresponding to the four 

printable items), 

1112 13 

14 

The kinds of items which may be printed are described in detail in para­

graphs 9.2.4 through 9.2.15 below. 

9.2.3 The FORMAT Option 

In addition to the PRINT and PRIN statements described above, there 

are four optional forms of output functions. Anyone of the following 

may precede the list of printable items: 

PRINT FORMAT 

PRIN FORMAT 

PRINT FORMAT [~J 

PRIN FORMAT [~J 

where ae represents an arithmetic expression. The use of this FORMAT 

option will cause the items to be printed to be spaced evenly across the 

line. After a printable item is inserted into the output string 

variable, spaces are inserted into the output string variable up to the 

smallest multiple of the spacing factor, the value of~. If ae is not 

given, the spacing factor will retain its previous setting (the spacing 

factor is initially set to 15). In terms of the standard variable TAB 



(described in paragraph 9.7.2), the equivalent of 

PRIN SPACE(ae - (TAB MOD ae)) 

is executed after each printable item is composed and inserted into the 

output string variable (paragraph 9.2.14). For example, 

PRINT FORMAT [5J II 12 13 14 

will cause the following to be printed (assuming II, 12, 13, and 14 are 

chosen to represent the symbolic output corresponding to the four printable 

items), 

II 12 13 14 

9.2.4 Literal String 

A string to be printed, like a quoted string in a format statement, 

may be enclosed in #'s. The character # itself may be printed by ###. 

Two or more spaces in the string are reduced to one in the printed output. 

For example, 

4FTHIS IS A LITERAL STRINGf! 

4NN! 

4! X = # 

The length of a literal string may not exceed 896 characters. If a 

literal string will not fit into one line of output it will be divided 

into two or more strings (the print mechanism will attempt to avoid 

dividing a string in the middle of an identifier). 
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9.2.5 String Values 

String valued printable items are string designators and string 

assignment statements (Section V). If the string thus generated will not 

fit into the output string, it will be divided in the manner described 

in paragraph 9.2.4 above. 

9.2.6 Real and Integer Values 

Real and integer valued printable items are real and integer 

variables, assignment statements, procedures and standard functions. The 

maximum number of significant figures to be printed is initially set to 5; 

it may be changed by the NTS function described in paragraph 9.2.16 below. 

9.2.7 Alpha Values 

Alpha variables, alpha procedures, and string constants (quoted 

strings containing 7 or less characters) are printable items. They are 

printed in standard alpha format (up to 7 characters in length). 

9.2.8 Boolean Values 

Any Boolean expression which does not begin with a conditional 

expression is a printable item. The Boolean values TRUE or FALSE are 

printed according to the value of the Boolean expression. 

9.2.9 Double Precision Values 

Double precision variables and assignment statements (Section III) 

are printable items. The maximum number of significant figures is 

initially set to 22; it may be changed by the NTS function described in 

paragraph 9.2.16 below. 
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9.2.10 Complex and Double Precision Complex Values 

Complex and double precision complex variables and assignment state­

ments (Section IV) are printab le items. If the imaginary part of the 

complex number is zero, then only the real part is printed. If the real 

part of the complex number is zero and the imaginary part is non-zero, 

then only the imaginary part is printed. If the imaginary part is 

printed, then it is preceded by a colon (:). If the complex number is 

double precision, the remarks given in paragraph 9.2.9 above also apply. 

9.2.11 LISP Values 

LISP variables, procedures, and assignment statements, i.e., those 

declared with the type SYMBOL, and the LISP field designators (Section VI) 

are printable items. The item to be printed must have an S-expression 

representation; the circular list described in Subsection 6.7, for 

example, could not be printed. 

9.2.12 Reference Values 

Variables and procedures of type "reference" (Section VII) are 

printable items. The contents of the records referenced by the reference 

values are not printed. Instead, the record class identifier associated 

with the reference value and the reference value itself are printed. 

9.2.13 QMARK 

QMARK is a printable item which causes the question mark (the "illegal 

character") to be printed. It is provided since there would be no other 

convenient way of inserting a ? into the output string. 
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9.2.14 SPACE 

The SPACE function is a printable item which may be used in one of 

the two forms: 

SPACE 

SPACE(ae) 

where ae represents an arithmetic expression. If SPACE alone is used, 

then one space is printed. If the other form is used, then the value of 

the arithmetic expression ae determines the number of spaces to be 

printed. If the value of ae is negative or zero, then nothing happens. 

If the number of spaces to be printed extends beyond the right margin of 

the output string, then the string of spaces is truncated at the right 

margin, and does not extend onto the next line of print. 

9.2.15 SKIP 

The word SKIP used in the form 

where ae is an arithmetic expression, is a printable item. It causes 

spaces to be placed in the output string up to the point indicated by the 

value of the arithmetic expression. For example, if the output string is 

120 characters long, 

PRIN SKIP(60) 

causes spaces to be filled in up to the sixtieth character position in 

the output string. If the output string has been filled to a point beyond 

the position given by the value of the arithmetic expression, or if the 

value of the arithmetic expression is zero or negative, then nothing 

happens. 
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9.2.16 The NTS Statement 

The NTS statement may be used in one of the three following forms: 

NTS(~~, ae) 

NTS (~~'k, ~) 

NTS(aev, ~) 

where ~ and ~ are arithmetic expressions. The first form of the NTS 

statement will reset the value of the maximum number of significant 

figures of a single precision number to be printed to the value of ae 

(see paragraph 9.2.6). The second form of the NTS statement will reset 

the value of the maximum number of significant figures of a double 

precision number to be printed to the value of ~ (see paragraph 9.2.9). 

The third form of the NTS statement will convert the value of the arith­

metic expression ~ into a string representing that value with a 

maximum number of significant figures determined by the value of~ 

The string thus generated will be contained in the standard string 

variable OUTSTR (see paragraph 9.6.1) and its length is given by LENGTH 

(OUTSTR). For example, 

NTS(123,5) 

will cause the string "123" to be placed in the string designator 

OUTSTR(O, LENGTH(OUTSTR)) 

where, in this case, LENGTH(OUTSTR) is equal to 3. 

The string FILL statement (see paragraph 5.3.16) is similar to the 

third form of the NTS statement and may at times be more convenient. 
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9.2.17 Conditional PRINT Statement 

In addition to the preceding forms of the PRIN and PRINT statements, 

the following "conditional" forms are allowed: 

PRINT IF bexp THEN printlistl ELSE printlist2 

PRIN IF bexp THEN printlistl ELSE printlist2 

where bexp represents a Boolean expression, and printlistl and printlist2 

are lists of printable items defined previously. These constructs are 

equivalent to 

IF bexp THEN PRINT printlistl ELSE PRINT printlist2 

and 

IF bexp THEN PRIN printlistl ELSE PRIN printlist2 

respectively. For example, 

PRINT IF X = 0 THEN #YES# ELSE #N~F 

prints 

YES 

if X = 0 and otherwise prints 

NO 

9-9 



9.3 THE OUTPUT STATEMENT 

9.3.1 The Standard Form 

The standard form of the OUTPUT statement, which may be used with any 

output file, is 

OUTPUT(outfi1e, outputstring, filelength) 

where outfile represents an output file identifier, outputstring represents 

a simple string variable, in which the output to be printed is composed, 

and filelength represents an arithmetic expression the value of which 

should be the length of the output file in characters. The output file 

and simple string variable should be declared in the outermost block of 

the program. The output file is declared by an ordinary ALGOL file 

declaration. The simple string variable (Section V) is declared in the 

form 

STRING outputstring (g) 

where E represents an unsigned integer which determines the length of the 

string variable in characters. The string variable length should be at 

least as long as the size of a logical record of the output file. With 

this form of the OUTPUT statement, the left margin of the output string is 

set to zero and the right margin is set to the value of the arithmetic 

expression fi1e1ength. For example, given declarations 

FILE OUT TAPE (2, 56, 10) 

STRING TAP(80) 

then the statement 

OUTPUT(TAPE,TAP,80) 
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will cause the print mechanism to print successive logical records onto 

the TAPE file. An OUTPUT statement need only be executed once during a 

program, although it may be executed as many times as desired to change 

files, output string and/or left and right margins. The remote terminal 

output file (file type REMOTE), which is described in Reference 7, is treated 

the same way as any other output file in ALGOL. The most important dif­

ference is the restriction of the character set which may be printed; the 

remote terminal character set is given in Appendix B. Another difference 

is that a carriage return, line feed is generated before every line of 

printing. The other difference is the action taken when "break" or 

"output impossible" condition occurs. If either of these conditions 

occurs, the program is terminated with an error message. See Subsection 

9.6 to avoid this action. 

9.3.2 The Output Procedure 

The name of an untyped procedure may be used in place of the output 

file identifier in the OUTPUT statement. The statement has the form 

OUTPUT (outpro, outputstring, filelength) 

where outpro represents the procedure identifier, and outputstring and 

filelength have the same meanings as defined in paragraph 9.3.1 above. 

The output procedure will be called whenever the output string has been 

filled or whenever TERPRI is called: it is assumed that the output 

procedure will write the output string on some output file. The procedure 

must be declared in the outermost block of the program, and must have no 

formal parameters. 
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For example, given the declarations 

FILE OUT OUTFILE 16(2,15) 

STRING LINE (120) 

PROCEDURE OUTPRO; 

WRITE (OUTFILE, 15 ,LINE) 

the OUTPUT statement 

OUTPUT (OUTPRO, LINE, 120) 

will have the same effect as the OUTPUT statement described in paragraph 

9.7.2. This option is provided since it is sometimes desired to introduce 

certain kinds of side effects. 

9.3.3 Setting Left and Right Margins 

There are three forms of OUTPUT statements which allow settings of 

left and right margins in the output string variable to be filled by the 

print mechanism: 

OUTPUT(outfile, outputstring, file1ength, lmargin, rmargin) 

OUTPUT (outpro, outputstring, filelength, lmargin, rmargin) 

OUTPUT(*, lmargin, rmargin) 

where outfile, outputstring, fi1e1ength, and outpro have the same meanings 

as in paragraphs 9.3.1 anQ 9.3.2 above. Lmargin and rmargin represent arith­

metic expressions whose values determine the left and right margins in the 

output string. The first OUTPUT statement given above is an extension of 

the OUTPUT statement described in paragraph 9.3.1. The second OUTPUT state­

ment is an extension of the OUTPUT statement described in paragraph 9.3.2. 
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The third OUTPUT statement (the asterisk form) may be used after the execu­

tion of any OUTPUT statement to change left and right margins when there 

is no change in the output string, and the output file or output procedure. 

The value of lmargin determines the number of characters to be skipped in 

the output string before any printable item is inserted into the output 

string. The right margin determines the maximum number of characters, from 

the beginning of the output string, which can be placed in the output 

string before it is written (starting a new line of print). For example, 

with the declarations 

FILE OUT OUTFILE 16(2,15) 

STRING LINE(120) 

the output statement 

OUTPUT (OUTFILE , LINE, 120, 8, 104) 

will cause a line to be printed indented 8 spaces and will allow a maximum 

of 96 characters on a line (i.e., there is a cutoff of 104 characters from 

the beginning of the string LINE). 

Warning: Since the output mechanism does not change the contents of 

the output string to the left of the left margin and to the right of the 

right margin, and since any string variable is initially filled with zeroes 

when declared, the output string variable should be filled with spaces 

before any print statement is used. This may be accomplished by the assign­

ment statement 

outputstring:= SPACE 
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For example, referring to the example given above, 

LINE:= SPACE 

will prevent zeroes from being printed before the left margin and after 

the right margin. 

9.4 THE READ FUNCTIONS 

9.4.1 Extended READ Statement 

The syntax of the array row form of the ordinary Extended ALGOL READ 

statement has been extended as follows: Any string variable (Section 5) 

which is not a formal parameter and which is longer than eight characters 

in length may be used in place of an array row. The number of words to be 

read is specified, as in the array row form, instead of the number of 

characters since only multiples of eight characters can be read. For 

example, if CARD is an 80 character string variable and INFILE is a ten­

word input file, then 

READ (INFILE,lO,CARD) 

is a legal GTL construct. 

9.4.2 The GTL Read Mechanism 

When a GTL read function is called, one or more items of various kinds 

are read from an input file. The input file is specified either directly 

or indirectly (see Subsection 9.5). The read mechanism will fill an 

input string variable (also specified by the INPUT statement) from a 

logical record from the input file. The scanning process starts from a 

left margin in the input string variable and continues until the right 
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margin is reached, at which point the input string variable is refilled 

from the next logical record. The left and right margins of the input 

string are also specified by the INPUT statement. The scanning mechanism 

will scan the input string and extract one or more items depending on the 

type of read function being used. Blank spaces serve as delimiters only 

and do not contribute to the value of a read function (except in the 

case of the SCAN function described below). There are five basic different 

kinds of read functions provided which are described in paragraphs 9.4.3 

through 9.4.7. 

9.4.3 The SCAN Function 

The SCAN function is an integer valued function having one of five 

possible values depending on the contents of the input string variable 

which it is scanning. The values of the SCAN function and their meanings 

are given in the table below. 

Value of SCAN 

o 

1 

2 

3 

4 

Meaning 

one or more spaces scanned 

an identifier was scanned 

a digit string was scanned 

one non-alpha character was scanned 

end of file has been reached 

The SCAN function will scan up to 31 spaces at a time so that a value of 

zero does not mean that there are no remaining spaces; it simply means 

that one or more spaces were seen. When an identifier, digit string, or 

non-alpha character is scanned, the item scanned may be accessed through 

the standard string variable INSTR (see paragraph 9.7.1). The length of 
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the item scanned by a calIon the SCAN function is given by LENGTH (INSTR) , 

so that the string scanned by SCAN is given by 

INSTR(O,LENGTH(INSTR)) 

9.4.4 The READCON Function 

The READCON function is an integer valued function having one of 

five possible values depending on the contents of the input string 

variable which it is scanning. The READCON function is called in the 

form 

READCON(bx) 

where bx represents a Boolean expression. The value of bx determines 

whether a multi-character identifier will be read as a string or LISP 

atomic symbol. If the value of ~ is TRUE; then every multi-character 

identifier is read as a LISP atomic symbol; otherwise, a multi-character 

identifier is reported to be a LISP atomic symbol only if an atomic symbol 

representing the identifier already exists. The values of the READCON 

function and their meanings are given in the table below. 

Value of READCON Meaning 

0 end of file 

1 number with exponent overflow (the 
exponent is too large or too small) 

2 number 

3 LISP atomic symbol 

4 multi-character identifier string 

As indicated above, READCON can have a value of four only if the value of 

its argument is FALSE. The value of an item read by READCON can be accessed 
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through the standard variables (see paragraph 9.7.1) INREAD, INDBL, INSYM, 

and INSTR. If a number is read, its value is given by INREAL in a single 

precision arithmetic expression, or by INDBL in a double precision expres­

sion. If a LISP atomic symbol is read, then its value is given by INSYM. 

If a multi-character identifier is read, then its value is contained in 

the string designator 

INSTR(O,LENGTH(INSTR)) 

9.4.5 The READN Function 

The READN function may be used to read numbers only. Its value is 

the number which is read. If used in a single precision context, its 

value is a single precision number; if used in a double precision context 

(Section III), its value is a double precision number. If the item read is 

not a number, its value is set to zero, and the standard variable INSYM 

is set to the question mark character (otherwise INSYM is set to zero). 

9.4.6 The READl Function 

The value of the READl function, when used in a symbol expression, 

is a LISP atomic symbol. This function is described further in para­

graph 6.10.2. 

9.4.7 The READ Function 

The value of the READ Function,when used in a symbol expression, is 

a LISP S-expression. This function is described further in paragraph 6.10.2. 
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9.5 THE INPUT STATEMENT 

9.5.1 The Standard Form 

The standard form of the INPUT statement, which may be used with any 

input file 

INPUT (infi1e, inputstring, fi1e1ength) 

where infi1e represents an input file identifier, inputstring represents a 

simple string variable which the read mechanism will scan, and fi1e1ength 

represents an arithmetic expression the value of which should be the length 

of the input file (in characters). The input file and simple string 

variable should be declared in the outermost block of the program. The 

input file is declared by an ordinary ALGOL file declaration. The simple 

string variable (Section V) is declared in the form 

STRING inputstring(n) 

where ~ represents an unsigned integer which determines the length of the 

string variable in characters. The string variable length should be at 

least as long as the size of the logical record of the input file. With 

this form of the INPUT statement, the left margin of the input string is 

set to zero (the scanning starts at the beginning of the string variable) 

and the right margin is set to the value of the arithmetic expression 

fi1e1ength, so that the read mechanism will scan the entire logical record 

from the input file. For example, given the declarations (for a tape file) 

FILE IN TAPE (2, 56, 10) 

STRING TAP(80) 

then the statement 

INPUT (TAPE ,TAP,80) 
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will cause the read mechanism to scan from successive logical records from 

the TAPE file. An INPUT statement need be executed only once during a 

program, although it may be executed as many times as desired to change 

files, input string, and/or left and right margins. 

NOTE: The remote terminal input file (file type REMOTE), which is described 

in reference 7, is treated the same way as any other input file in ALGOL. 

The most important difference is the restriction of the character set 

which may be printed; the remote terminal character set is given in Appen­

dix B. Another difference is that a message is sent after every READ 

statement to give a carriage return, line feed. The other difference is 

the action taken when "parity", "buffer overflow", and "input too long 11 

occur. If any of these conditions occur, the program is terminated 

with an error message. (See Subsection 9.6 to avoid this action.) 

9.5.2 The Input Procedure 

The name of a BOOLEAN procedure may be used in place of the input 

file identifier in the INPUT statement. This statement has the form 

INPUT(inpro, inputstring, filelength) 

where inpro represents the BOOLEAN procedure identifier, and inputstring 

and filelength have the same meanings as in paragraph 9.5.1 above. The 

input procedure will be called whenever the scanning mechanism has 

reached the right margin of the input string; it is assumed that the input 

procedure will refill the input string variable from some input file and 

will return a value of FALSE unless end of file is detected. The BOOLEAN 

procedure must be declared in the outermost block of the program, and 

must have no formal parameters. For example, 

9-19 



FILE IN INFILE(2, 10) 

STRING CARD(BO) 

BOOLEAN PROCEDURE INPRO; 

BEGIN LABEL EOF, EXIT; 

READ (INFILE , 10, CARD) [EOF] 

GO TO EXIT; 

EOF : INPRO: = TRUE; 

EXIT: 

END OF INPRO 

Then the INPUT statement 

INPUT (INPRO , CARD, BO) 

will have the same effect as the first input statement described in 

paragraph 9.B.l. This option is provided since it is sometimes desired 

to introduce certain kinds of side effects (see paragraph 9.B.l). 

9.5.3 Setting Left and Right Margins 

There are three forms of INPUT statements which allow settings of 

left and right margins in the input string variable to be scanned by the 

read mechanism: 

INPUT(infile, inputstring, filelength, lmargin, rmargin) 

INPUT (inpro, inputstring, filelength, lmargin, rmargin) 

INPUT (~~, lmargin, rmargin) 

where infile, inputstring, filelength, and inpro have the same meanings as 

in paragraphs 9.5.1 and 9.5.2 above. Lmargin andrmargin represent 
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arithmetic expressions whose values determine the left and right margins 

in the input string. The first INPUT statement given above is an extension 

of the INPUT statement described in paragraph 9.5.1. The second INPUT 

statement is an extension of the INPUT statement described in paragraph 

9.5.2. The third INPUT statement (the asterisk form) may be used after 

the execution of any INPUT statement to change left and right margins when 

there is no change in the input string variable, and input file or input 

procedure. The value of lmargin determines the number of characters to be 

skipped in the input string before beginning the scan of a logical record. 

The value of rmargin determines the number of characters to be scanned 

(from the beginning of the logical record) before continuing on the next 

logical record. For example, with the declarations 

FILE IN INFILE (2,10) 

STRING CARD (80) 

the INPUT statement 

INPUT (INFILE, CARD, 80, 8, 72) 

will cause the read mechanism to scan the first 72 characters from input 

string CARD (filled from a logical record from INFILE) after skipping 

over the first eight characters. 

9.5.4 Sign-Number Separation 

When using the read functions described in Subsection 9.4 (except for 

the SCAN function), the sign of a number and the number itself are originally 

read as one item (assuming there are no intervening spaces between the sign 

and the number). 
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For example, 

+125 -42 

appear in the input string variable being scanned; then two numbers, the 

first positive and the second negative, will be read. It is sometimes 

useful, however, to be able to read a number and its sign separately. 

This may be accomplished by inserting a comma followed by a slash followed 

by a Boolean expression immediately before the right parenthesis in any of 

the INPUT statements described above. If the value of the Boolean expres­

sion is FALSE, then a number and its sign (if any) will be read separately, 

and vice versa. To be explicit, the following additional forms of INPUT 

statements are allowed: 

INPUT (infi1e, inputstring, file length , /bx) 

INPUT(inpro, inputstring, fi1e1ength, /bx) 

INPUT (infi1e, inputstring, fi1e1ength, 1margin, rmargin, /bx) 

INPUT (inpro , inputstring, fi1e1ength, 1margin, rmargin, /bx) 

INPUT(*, 1margin, rmargin, /bx) 

where bx represents the Boolean expression, and infi1e, inputstring, 

file length , inpro, 1margin, and rmargin all have the same meanings defined 

in the previous paragraphs. When the sign separation option is used, the 

two numbers given at the beginning of this paragraph will be read as four 

separate items, the first and third items being the LISP atomic symbols + 

and - (SectionVI). The primary purpose for this option is that of facili­

tating the parsing of arithmetic expressions via the GTL Input mechanism. 
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9.6 REMOTE TERMINAL INPUT-OUTPUT 

9.6.1 The FILE REMOTE Declaration 

The declaration FILE REMOTE may be used in a GTL program to declare 

a remote terminal file. It is a pseudo-declaration which takes the place 

of the usual pair of file declarations, and the associated input and out­

put string declarations and the INPUT and OUTPUT statements; it is equiva­

lent to the following declarations and statements: 

FILE IN TWXF1 REMOTE (2,17) ; 

DEFINE TWXF2 = TWXF1#; 

STRING TWXS1, TWXS2(136) 

INPUT (TWXF1, TWXS1, 136); 

OUTPUT (TWXF2, TWXS2, 136,0,72) 

There are, in addition, other forms of the FILE REMOTE declaration 

which are variants of the following basic form: 

FILE REMOTE (file length in characters, outputstring right margin, 

WAIT wait time, break label, 

input time-out label, input overflow label, 

output impossible label, 

abnormal input condition label, 

input end-of-fi1e label, input parity label, 

input buffer overflow label) 

where file length in characters is the length of the file in characters, and 

the length of TWXS1 and TWXS2 in characters, outputstring right margin is the 
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right margin of TWXS2. The maximum length of TWXSl and TWXS2 is 136 characters. 

Wait time is the maximum time the system will wait for a response after an 

input message is requested (in seconds--must be an unsigned integer--

maximum time is 300 seconds). Break label is the label specifying the 

location of the next statement to be executed after the "break" key is 

depressed on the remote station; after detecting a "break" condition, the 

program must READ from the terminal to clear the break--the remote user 

should just enter a left arrow. Input time-out label is the label preceding 

the statements which determine the action to be taken if the wait time is 

exceeded; input-overflow label is the label to which the system transfers 

if the input message exceeds the length of the input string; output 

impossible label is the label to which the system transfers if it becomes 

impossible to write on the remote terminal file. The abnormal input con­

dition label is the label to which the system transfers if it becomes 

impossible to read from the remote terminal file. Input end-of-file-label 

is branched to when the user types ?END on the remote terminal; input 

parity label is transfered to when a parity error is detected on a READ; 

and input buffer overflow label branches to that label, indicating a buffer 

overflow has occurred during a READ. Any of the components of the FILE 

REMOTE declaration may be deleted, with two restrictions: (1) since the 

GTL compiler determines the meaning of a label by its relative position in 

the sequence of labels, they may be deleted only from right to left; the 

absence of a label contained in a sequence of labels may be indicated by 

placing an asterisk in the corresponding position; (2) if only one unsigned 

integer is specified, then it is assumed to be the file length in characters; 

to specify the outputstring right margin only, the file length in characters should 
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be replaced with an asterisk. For example, 

FILE REMOTE (break label, *, input overflow label) 

FILE REMOTE (*, 136, input end-of-file label) 

The effect of deleting various components of the FILE REMOTE declaration 

is indicated in the table shown below. In the case of labels, it is 

assumed that the condition which affects a transfer to the label in ques-

tion has occurred. 

MISSING COMPONENT EFFECT ON PROGRAM 

file length in characters set to 136 characters 

outputstring right margin set to 72 characters 

wait time set to 300 seconds 

break label GTL run time error 4F19 

input time-out label GTL run time error 4F16 

input overflow label "INPUT TOO LONG. RETYPE" 

output impossible label GTL run time error 4/:9 

abnormal input condition label GTL run time error 4/:17 

input end-of-file label GTL run time error 4/:18 

input parity label "PARITY ERROR. RETYPE" 

input buffer overflow label "BUFFER OVERFLOW. RETY PE" 

In the case of input overflow label, input parity label, and input buffer 

overflow label, the system automatically types the indicated message and 

then waits for more input from the terminal. The program cannot detect 

when the system does this, nor does it need to know, because recovery is 

handled for the user by the system. Under the Time Sharing MCP, all 

information after outputstring right margin i;; ignored. 
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Any labels appearing in the sequence of labels in the FILE REMOTE 

declaration need not be previously declared; they are declared by default. 

The FILE REMOTE declaration must occur in the outermost block of the 

program, preferably immediately following the BEGIN. 

9.6.2 FILE REMOTE Side-effects 

A few side-effects occur when the FILE REMOTE declaration is used. 

They are listed below. 

1) The left margin related to output is set to zero, and the 

right margin is set to 72, or the length of·the outputstring right margin, if 

specified. A non-zero left margin may be set by 

OUTPUT (TWXF2 , TWXS2, file length in characters, Imargin, rmargin) 

where lmargin and rmargin are unsigned integers. 

2) The FILE REMOTE mechanism causes the printing device to be 

positioned at the 'beginning of a new line before the printing starts .. ' 

3) The left margin related to input is set to zero, and the 

right margin is dynamically set to the number of characters received in 

one transmission. A non-zero left margin may be set by 

INPUT (TWXF1, TWXSl, file length in characters, lmargi~ 

where lmargin is an unsigned integer. 

4) A psuedo end-of-file indication is normally returned after 

each remote terminal message, thus providing non-programmatic "punctuation" 

between remote terminal entries. Thus, in the case of SCAN and READCON 

(paragraphs 9.4.3 and 9.4.41 an end of file is indicated every other time 
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the function is called. In the case of READN, READ 1 , and READ (para­

graphs 9.4.5 through 9.4.7), INSYM will contain a question mark character 

on every other read. Thus the following would read an S-expression from 

the terminal, L assumed to be type SYMBOL: 

WHILE L .- READ EQ QMARK DO; 

Whenever a real end-of-file occurs ("?END"), it can be accessed by using 

an end-of-file label in the FILE REMOTE declaration (see paragraph 9.6.1). 

To have control over the psuedo end-of-file the programmer should execute 

INPUT (booid) 

where booid is a previously declared Boolean variable. As long as the 

value of booid is FALSE, the end-of-file condition will be returned; if 

booid is set TRUE, then the psuedo end-of-file is turned off. 

5) If, after declaring FILE REMOTE, and having executed either 

an INPUT or OUTPUT statement to change the file type, it is desired to 

change back to the implicitly declared files of FILE REMOTE, then the 

following INPUT and/or OUTPUT statements may be used. 

INPUT (TWXFl, TWXS 1, file length in characters) 

OUTPUT (TWXF2 , TWXS2, file length in characters) 

9.6.3 READ and WRITE Statements 

Ordinary ALGOL READ and WRITE statements may be used with the remote 

terminal file declared by the FILE REMOTE declaration if the implicitly 

declared input and output string variable identifiers TWXSI and TWXS2 are 

used in place of the file identifiers. For example, 
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READ (TWXS 1, FORMATID, LIS TID) 

WRITE (TWXS2 , FORMATID, LISTID) 

The effective "file size" is determined by the lengths of the input and 

output strings. 

9.6.4 READ TWX 

The use of the statement READ TWX will cause the input string variable 

to be refilled with a remote terminal message regardless of what portion 

of the previous message has been scanned. Also, any remaining positions 

in the input string variable beyond the end of the input message are 

filled with spaces. For example, the following program segment will trans­

fer successive remote terminal messages to a disk file (DISC) until the 

first character of the message is found to be an asterisk. 

READ TWX; 

WHILE TWXS 1 (0,1) 1= "~'c" DO 

BEGIN 

WRITE(DISC,9,TWXS1); 

READ TWX 

END 

9.6.5 WRITE TWX 

The statement WRITE TWX will cause the contents of the output string 

variable to be written onto the remote terminal. It is equivalent to the 

two statements: 

TAB .- 72; TERPRI 
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For example, the following statements will write the contents of a disk 

file (DISC) onto the remote terminal: 

WHILE TRUE DO 

9.6.6 READN(TWX) 

BEGIN 

READ(DISC,9,TWXS2)[EOF]; 

WRITE TWX 

END; 

EOF: 

The function READN(TWX) is a special remote terminal version of the 

READN function (paragraph 9.4.5). This function is used for reading num­

bers from the remote terminal input message. It will ignore anything in 

the message which is not a number. If it reaches the end of a message 

without finding a number, it will print a question mark, followed by a 

space, and wait for a new message •. For example, if the remote terminal 

message initially contains 

235 

then three successive calls on READN(TWX) will yield the three numbers. 

A fourth call will cause a question mark to be printed, and the system 

will wait for another number. 

If READN(TWX) is used in a double precision context, its value will 

be a double precision number (see Section 3). 
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9.6.7 READN(TWXA) 

The function READN(TWXA) works like READN(TWX) except that it returns 

alphanumeric strings and special characters, and ignores numbers. If an 

alphanumeric string exceeds 7 characters in length, it is truncated to 

the leftmost 7 characters. 

Example: 

PRINT 7'FCONTINUE 1f; 

IF READN(TWXA) " ''YES'' THEN GO TO EXIT 

9.6.8 TWXNUM 

The function TWXNUM is a Boolean-valued function which combines the 

functions of READN(TWX) and READN(TWXA). Its value is TRUE if a number 

is read, and FALSE otherwise. In either case, the resulting value will 

be contained in the standard variables INREAL and INDBL. 

Example: 

L: WHILE TWXNUM DO AR[I := I + lJ := INREAL: 

IF INREAL " "STOP" THEN GO TO L; 

9.6.9 Conversational READ Statement 

A familiar problem in writing remote terminal programs concerns the 

process of getting data into the program in a conversational fashion. 

Typically, the program prints a key word and reads the response from the 

user for each piece of data required. This construct simply helps 

mechanize this process. The syntax is as follows: 

READ [Vl, V2,---,VN] 

where VI, V2,---, VN are each simple variables of type SYMBOL, BOOLEAN, 

ALPHA, REAL, or INTEGER. Strings and subscripted variables are excluded. 
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For each variable in the list, the name of the variable (up to 7 

characters) is printed, followed by "=11 and a"?". Then a value is read 

from the terminal. 

The following table shows the variable types and the corresponding 

value type that is expected: 

SYMBOL 

BOOLEAN 

REAL 

INTEGER 

ALPHA 

atomic symbol (READl) 

numeric (READN(TWX)) 

numeric (READN(TWX)) 

numeric (READN(TWX)) 

alphanumeric (READN(TWXA)) 

If the proper value type is not entered the program types another "?" and 

reads from the terminal again. 

For example, the following GTL program fragment: 

BEGIN 

ALPHA A; BOOLEAN B; INTEGER I; REAL R; SYMBOL S; 

FILE REMOTE; 

READ [A, B, I, R, S] 

produces the following at run time: 
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A =:: ? 

100 <-

? 

ABCDE <- (note ALPHA expected) 

B ? 

o <- (1 =:: TRUE, 0 =:: FALSE) 

I ? 

ABC <-

? 

10 <­

R =:: ? 

(note INTEGER expected) 

10.2 <-

S =:: ? 

ATOMICSYMBOL <-

9.7 STANDARD VARIABLES AND SYSTEM CONTROL PARAMETERS 

9.7.1 The Standard Variables 

The GTL language contains a set of six standard variables whose 

values reflect, and sometimes control, the operation of the GTL Input­

Output mechanism. These variables, which are not declared in a GTL pro­

gram, may be used in any context appropriate for the type of the variable. 

The names of these variables and their types are illustrated by the 

following declarations: 
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INTEGER TAB, COL 

REAL INREAL 

DOUBLE INDBL 

SYMBOL INSYM 

STRING INSTR(3l), OUTSTR(64) 

If any of these variables were actually declared in a GTL program, such 

declarations would override the implicit declarations and they could no 

longer have any special meaning. The staridard variables INREAL, INDBL, 

INSYM, and INSTR are used to return the values of real numbers, double 

precision numbers, atomic symbols, and strings, respectively, which are 

read by the SCAN and READCON functions (paragraphs 9.4.3 and 9.4.4). The 

string variable OUTSTR is used primarily to return the string represen­

tation of a number converted by the NTS function (paragraph 9.2.16). The 

variables TAB and COL are discussed in the next paragraphs. 

9.7.2 The Standard Variable TAB 

The value of the standard variable TAB is equal to the current num­

ber of characters inserted into the output string variable by the output 

system. The only valid values of TAB are 0 to output string length, 

inclusive. At the beginning of a line of print, TAB is set to the left 

margin. When the string of characters representing a printable item is 

inserted into the output strnng, the value of TAB is increased by the num­

ber of characters inserted. Ordinarily, whenever the TERPRI function is 

called, either implicitly at the end of a PRINT statement, or explicitly, 

the statement 

PRIN SPACE (RM - TAB) 
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where RM represents the right margin, is implicitly executed, and TAB is 

reset to the right margin. An example of the use of TAB is the following 

procedure which is used in a GTL program which produces flow charts from 

GTL programs: 

PROCEDURE CLEAR(A,B); VALUE A,B; INTEGER A,B; 

BEGIN 

TAB := A; 

PRIN SPACE (B - A); 

TAB := RMARG; 

TERPRI 

END OF CLEAR 

This procedure has the effect of repeating the previous line of print with 

spaces filled in between the character positions A and B in the output 

string variable. The value of RMARG (see paragraph 9.7.4) is the current 

right margin in the output string variable. 

9.7.3 The Standard Variable COL 

The value of the standard variable COL is equal to the current number 

of characters in the input string which have been scanned by the read sys­

tem. The only valid values of COL are a to input string length, inclusive. 
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When a logical record from an input file has been transferred to the 

input string variable, COL is set to the left margin of the input string 

variable. Each time a GTL read function reads an item, COL is increased 

by the number of characters read. This process continues until COL equals 

the right margin of the input string variable, at which point a new logical 

record is read from the input file and COL is reset to the left margin. 

When an INPUT statement is executed COL is set to the right margin, so 

that a logical record will be read before the scanning begins. An example 

of the use of COL is the following procedure which scans a quoted string 

from a card. In this procedure, which uses GTL string constructs (Sec­

tion 5), it is assumed that CARD is the input string variable, T is a 

global integer variable, and that left and right margins are 0 and 72, 

respectively. It is further assumed that a quote mark has just been read. 

PROCEDURE SCANQ; 

BEGIN 

T := COL - 1; 

WHILE CARD (COL . - COL+l, 1) " 111'" AND COL ~ 72 DO; 

COL := COL + 1 

END OF SCANQ 

The quoted string, including the quote marks, will be found in the string 

designator 

CARD(T,COL-T) 

9.7.4 System Control Parameters 

The values of certain control parameters used by the GTL Input-Output 

system may be accessed by a standard function called CONVAL. The CONVAL 

9-35 



function is used in the form 

CONVAL(n) 

where n represents an unsigned integer whose value designates the desired 

control parameter. Some of the values of n which may be used and the 

corresponding values of CONVAL(n) are listed in the table given below: 

n 

2 

3 

4 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

value of CONVAL(n) 

maximum number of Significant figures in single 
precision printed numbers 

maximum number of significant figures in double 
precision printed numbers 

sign-separation control (see paragraph 9.5.4) 

left margin of output string variable (same as LMARG) 

left margin of input string variable (same as LMARGI) 

right margin of output string variable (same as RMARG) 

right margin of input string variable (same as RMARGI) 

equals ° if OUTPUT statement has been executed; 
1, otherwise 

equals 1 if INPUT statement has been executed; 
0, otherwise 

number of words in output logical record 

number of words in input logical record 

equals 1 if output procedure is being used; 0, otherwise 

equals 1 if input procedure is being used; 0, otherwise 

same as LENGTH(OUTSTR) 

same as LENGTH(INSTR) 
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The values of the GTL margin control parameters may be accessed 

through the following standard variables: 

Standard Variable Meaning 

LMARG left margin of output string variable 

RMARG right margin of output string variable 

LMARGI left margin of input string variable 

RMARGI right margin of input string variable 

CONVAL 
Number 

13 

15 

14 

16 

The asterisk forms of the INPUT and OUTPUT statements can be used to 

change the left and right margins (refer to paragraphs 9.3.3 and 9.5.3). 

9.8 SAMPLE INPUT AND OUTPUT STATEMENTS 

9.8.1 Card Reader 

In order to read from cards the following declarations could be made: 

FILE IN INFILE(2,10) 

STRING CARD (80) 

If the entire card is to be scanned, then the following INPUT statement 

INPUT(INFILE, CARD, 80) 

could be used. If the input cards are sequenced, then the following 

declarations could be used to check for the ordering: 

STRING CARD(72,SEQ(8),OLDSEQ(8)) 

BOOLEAN PROCEDURE INPRO; 

BEGIN LABEL EOF, EXIT; 

READ (INFILE, 10, CARD) [EOFJ; 

IF SEQ < OLDSEQ THEN PRINT #SEQUENCE ERROR#, CARD; 

OLDSEQ := SEQ; RETURN FALSE; 

EOF: RETURN TRUE ; 

EXIT: END OF INPRO 
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In this case the INPUT statement should be 

INPUT (INPRO, CARD, BO, 0, 72) 

9.B.2 Line Printer 

In order to print on a line printer, the following declarations 

could be made: 

FILE OUT OUTFILE 16 (2,15) 

STRING LINE(120) 

to be used with the OUTPUT statement 

OUTPUT(OUTFILE, LINE, 120) 

90B.3 Remote Terminal Files 

In order to use the remote terminal files the following declarations 

could be used: 

FILE IN Fl REMOTE(2,17) 

DEFINE F2 = Fl# 

STRING STRl, STR2 (136) 

Then the following INPUT and OUTPUT statements could be used: 

INPUT(Fl, STRl, 136) 

OUTPUT(Fl, STR2, 136,0,72) 

STR2(72) := SPACE 

Also the following form could be used, 

FILE REMOTE 

with many variations given in Subsection 9.6. 
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9.S.4 Listing of Input Cards 

If a listing of the card input file on the PRINTER file is desired, 

then the following additional declaration is suggested: 

BOOLEAN PROCEDURE INPRO; 

BEGIN LABEL EOF; 

READ(INFILE,lO,CARD)[EOF]; 

WRITE(PRINTER,lO,CARD); 

RETURN FALSE; 

EOF: RETURN TRUE; 

END OF INPRO 

Then, in place of the INPUT statement given in paragraph 9.S.1 the following 

statement should be executed before using READ or READ1: 

INPUT (INPRO ,CARD,SO) 

These changes will cause each data card read by the program to be printed 

on the line printer. 

9-39 





APPENDIX A 

EXAMPLES OF GTL PROGRAMS 

Four examples of GTL programs are listed in the following pages. They 
I 

are not intended to be examples of practical applications, but merely serv~ 

to illustrate some aspects of the GTL language. Other examples are 

included in Subsections 3.8, 4.9, 6.25, 7.6 and 8.8. 
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String Processing Example 

B£Gl~ 
CUMME~J THIS PRUGHAM MEkGES TWO CARD IMAGE TAPES ACCORCI~G TO 

SEQUENCE NUMBER. 

FIRST TAPE ALREADY HAS SE~UENCE NUM~EHS • SEQLE~Ct ~UM~EkS 
FOR SECONU TAPE SP~CIFIEO AT INTEHVALS BY CARD I~AGES 
wHICH ~EGI~ WITH A "!" CONTAINING STAHTl~G SEQUt~cl ~UM~EH 
ANO INCREME~TAL VALUE. IF COLUM~ POS!TIO~S 71 A~C 72 
ON UNSEGUEN~EO CAkUS ARE ~LAN~, "'A" IS I~SERTEO; 

FILl I~ TAPEI (~,~6,10)J 
fILl !N TAPE2 (~,~6,IO)J 
SAVE FILE OUT TApE3 (2,~6,IO,SAVE lU») 
STRINu CARDI(72,SEQ1(8», 

LA~EL 

Lli 
L2: 

EOFa 
[NO, 

CARD2(72,~E~2(8), NE~SEQCINCR(8),SEQCd»)J 
LI,L2,EOFJ 
READCTAPE1,lO,CARU1)[EOF1) 
REAUCTAPE2,lO,CARD2)J 
If CARD2CO,1) = "$" THEN 

BEGIN NEWSEw := CARD2C64,l6)J GO TO L2 ENU; 
SEQ2 a= SEQ; COMMtNT SET SEQ2 TO CURHENT SEQ NOJ 
SEQ .= + INCR; COMMENT INCREMENT CURRENT SEQ NO; 
WHILE SEQl LSS SE~2 DO 

BEGIN 
WRITECTAPEl,lQ,CARD1); 
READ(lAPE1,IO,CARDI)J 
E~D; 

If CAR02(70,2) =" "THEN CAAD2(IO,2) sa "IA"J 
WHITE(TAP£3,10,CAA02); 
IF SEQ! = SEQ2 THEN GO TO II ELSE GO TO l2J 
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Lisp Processing Example 

BlGIN 
CUMMENT THIS PRUGRAM TAKES THE FIRST OF T~O LISTS, 

REVERSES IT AND AODS THE SECOND LIST TO ITI 
FILL REMOTE; 
SVMdOL Ll,L2J 
SVM~OL PRUClDuRE HEVANDAUO (X,Y)J VALUE X,VI SY~BOL X,Vi 

REVANOAUO ,. IF NULl(X) THEN V ELSE 
REVANOAUDCCUk(X),CONSCCAR(X),Y»; 

LABEL EDr,STARTS 
PHI~T 'GO AHEAD',li 
STARTI wHILE Lila READ lQ QMARK 001 

IF Ll EQ "STOP" THlN GO TO EOFJ 
WHILE L21a READ EQ QMARK DOJ 
PRINT 'THE NEW LIST IS , REVANDAOD(Ll,L2),I,/J 
GO START; 

EOFI 
END. 

EKEeU1E REVADD 
HUNNING 

GO AHlAO 
(THIS IS A LIST)S 
(THIS IS ANOTHER LIST)S 
THE N£~ LIST IS (LIST A IS THIS THIS IS AN01HER LIST) 

(THIS (IS A) (COMPLEX (LIST»)! 
(THIS IS A SIMPLE LIST)S 
THE NEw LIST IS «COMPLEX (LIST» (IS A) THIS T~IS IS A SIMPLE L!Sl) 

(REVEKSE IS THIS)S 
(UF A LIST)S 
THE NEw LIST IS (THIS IS REVERSE OF A LIST) 

STOP 

END HEVADD 1.1 SEC, 
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Lisp Processing Example 

BEGIN 
CUM~E~T THIS PHO~HAM# US1NG LIST PHOCESSINij# ACCEPTS 

SYN1AX HULES AS INPUT# AND ~ILL PROOUCE R_~DO~ GE~ERATEO 
STRUCTURES ~HICH ARE SYNTACTICALLY CORRECT. TO 
INPUT A HULE# THE COMMAND "RULE" IS FOLLOwED FIRST 8Y 
THE NAME Uf T~E RULE AND THEN ITS UEFINITION. 
A RULE IS ANY COM~lNATION OF EITHER 
~ULE NAMES# ~~ETHEH PREVIOUSLY UEFINEC OR NOT, UR A~ 

"ATOM". (AN "ATOM" IS AN ATOMIC SYM~GL AS DEFINEC IN 
SECTION 6.12). ALTERNATE RULES MAy ~E 5EpARATEU 
BY A SLASH(/) WHICH MEANS "OR". 
THE SYNTAX OF "RULES" IS SHO~N BELOw, 

SPECIFICATION I.- ATOM I ATO~ SpECIFICATl~N 
RULl ••• SPECIfICATION I SPECIFICA1ION "I" HULl 
RULlNAME II: ATOM 
RULlS la= HULENAME RULE 

TO GENERATE RANDOM STHUCTURES FROM THE RULE SPECIFICATIO~S 
1HE COMMAND "GENERATE""INTEGER" "HULE NAME" WILL CAUSE 
"INTEGER" RULE NAMES TO BE GENERATED 
ACCORDING TU THE SPECIFICATION OF THE "RULE NAME". 
TO STOP THE PROGRAM "STOP" SHOULD 8E ENTERED. 
AFTER EVEHy COMMANO# "GO AHEAO" IS PRINTEc ANC THE 
PROGRAM ~AI1S FOR MORE COMMANDS FROM THE TERMINAL; 

FILl kEMOIEJ 
SYMtlOL Ri 
REAL. Xi 
LA~EL LJ 
SYM~OL PRUCEDURE HULEJ 

RULE a= IF k .= READl EQ "I" OR R EQ ~MARK THEN NIL ELSE R • HULE; 
SYMBOL PROCEDURE HULESi 

RULES a= HULE • (IF R EQ "I" THEN HULES ELSE NIL») 
PHOCEUURE GEN(X)J 

VALUE XJ 
SYMSOL X; 
IF NUMBER~(X) OR NULL(COR(X» THEN 

BEGIN 
If X NEQL ~EMPTY" THEN PRIN X SPACE; 
END 

ELSE fOR X IN RANuUMCCOR X) DO GENCX)J 

COMMENT PROGRAM STARTS HERE. 

LI PRINT ,GO A~EAD.'#IJ 
READ TWX; 
IF R ,. RlAUi EQ "HULE" THEN 

; 

00 CDR(READ1) •• RULES UNTIL R EQ Q~ARK 
ELSE 
If R EQ ~GENERATE" THEN 
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~EGIN 
X ,11 kE~IJN(T~X); 

R .- HEAUli 
FOR X 00 BE~lN GENCR); TERPHI; lNO; 
END 

f.LSf. 
. IF k EQ "STOP" THt.N 

BEGIN PRl~T 'EOJ"I,I,I; EXIT; [NO 
ELSE PRINT 'ILLEGAL I~PUT'i 
GO TO Li 

END. 

EXECUTE SENGE~ 

-tHiJ- OSENGEN 
GU AHI::.AD. 
RULI::. SuBJECT ~AHRY/SUSI£/RECC/B5500/GTL 
GU AHf.AD. 
RULI::. VERB LOVES/HATES/RUNS/PROCESSES 
GO AHlAD. 
HULl ADVERB REALLY/MOSTLY 
GO AHI:.AD. 
RULt:. ACTION VER~/AOVER~ VERB 
GO AHE.AD. 
RULE O~JECT SUBJECT 
GO AHEAD. 
RULE SENTENcE SUBJECT ACTI0~/SUBJECT ACTION OBJECT 
GO AHEAD. 
GENERATE 25 SENTENCE 
GTl PROCESSES RECC 
B5500 REALLY PROCESSES 
~ARRY REALLY RUNS 
GTl PHOCESSES 
REce REALLY RUNS ~ARRY 

SUSIE HATES BARRY 
GTl HAlES SUSIE 
85500 REALLY RUNS 
REce ~OSTlY LOVES RECC 
GTL PROCESSES 
GTL REALLY LOVES 
GTL Rf.ALLY RUNS 
HARRY RUNS 
SuSIE REALLY RUNS 
HARRY REALLY RUNS 
B5500 REAllY RUNS 
GIL PROCESSES 
BARRY REALLY PROCESSES 
BARRY MOSTLY PROCESSES 
RECC LOVES 
REec REALLY LOVES B5500 
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SUSIE RUNS SUSIE 
SUSIE PROCESSES B~500 
HARRY REALLY PRUClSSlS HtCC 
BARRY RlALLY LOVES 
GO AHE.AD, 
STOP' 
EOJ 



Syntax-Directed Parsing Example 

BlGl~ 
COMME~T A SY~TAX-OIRECTEU PARSI~G PAOGAA~ USI~G THE RE~C1E TEHMI~AL. 

THIS PROGHAM PROOUCES REVERSE POLIS~ FRO~ ANY ARITH~ETIC 
EXPRESSION, THE COMMAND "POLISH" fOLLOwEC BY AhY ARITHMtT1C 
EXPRESSION wILL ~ESULT Ih THE PRINTI~G OF THE POLISH Of 
THAT EXPRESSIOh. A~ OPTIONAL TRACE FEAT~RE IS I~CLUDlU. tHE 
CUMMAND "1HACE Oh" wILL TURN THIS FEA1URE O~I T~LS GIVING 
A THACE OF THE PAHSING Of THE ARITH~ETIC EXPRESSIC~ INTU 
POLISH. TO TUHN THE TRACE OFF THE COMMAhC "TRACE OFF" I~ 
USED. TO slap THE PRUGRAM 1 THE USER ENTERS "STOP" A~U lHE 
PROGRAM GUES TO ENU.Of·JO~. ANy OTHEH INPUT CR 
AN ILLEGAL ARITHMETIc EXPRESSION RESULTS I~ A~ ERkUR 
MESSAGE. AFTEH COMPLETING A COMMA~D OR OETECTI~G A~ 
EHROR~ THE PROGRAM PRINTS "GO AHEAD" AND ~AITS fOR A~OTHEH 
COMMAND FHOM THE TERMINAL; 

flLl HEMOTEJ 
REAL CLASSJ , THE CLASS VARIAdLE 
HOOLE AN THACEi * THE TRACE VARIAdLE 
LAdEL START~ERRUR; 
SYMdOL FORMAT i SYNTACTICAL CLASS ASSIG~ME~T 

*0 
= VARIABLE 
* NUMBER 
* "C" 
* ")" 
* "*" * "x" 
* "I" 
* "+" 
* "-" * "POLISH" 
* "TRACE" 
* "ON" 
* "OFF" 
* "STOP" 
* ·EOFi 

REAL fIELD CDRf [33115]; 
I 
ITHE "GET~EXT" PROCEDURl 
I 
PHOCEUURE GET~EXTI 

CLASS I- CASE READCONCrALSE) OF 
BEGIN 
EDFS , THE ENe-Of-FILE CLASS (SECTION 9.6,2) 
NUMBERS I ILLEGAL NUM~ER CLASS 
~UM~ERJ I NUMeER CLASS • NUMBER I~ I~REAL 
CORfCINSYM)11 ATOMIC SYMBOL CLASS 
VARIABLES I NOT ON SYMBOL TABLE - GIVE VARIABLE CLASS 
ENOS 
COMMENT 
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NOW TELL THE COMPILER THE NAMES OF THE GE1~EXT PRC'EDUHE~ 
WHICH VARIA~LE IS rHE CLASS VARIABLE A~O 
THAT THE TRACl OPTION IS UESIREO. NOTE TrAT THE EkROk 
OPTION 15 NOT HEI~G USED IN THIS ~XAMPLEJ 

SYM~Ol FORMAT *ClASS~ GEINEXT~ TRACEJ 
SYMbOL FORMAT A~XPJ FORwARDJ 
SYM~Ol FORMAT PHIMARYJ 

[VARIABlEI PRIN I~5YM SPACE ELSE 
NUM~ERI PRIN INREAl SPACE ELSE 
"("~ *AEXP~ ")" JJ 

SYMbOL fORMAT FACTORJ 
[·PRIMAAY~ 
L"."~ *PRIMARY~ PAIN '* IJ RETURN ELSE NILl]J 

SYMbOL fORMAT TlRMJ 
~EGIN 
~OOLEAN TIMESJ 
[*FACTOR~ 
L"X"*"I"a TIMES .= CLASS = ="x"1 
*FACTOR~ PRlN IF TIMES THEN 'x , ELSE 'I II 
RETURN ELSE NILllI 
ENDJ 

SYM~OL FORMAT AlXPI 
BEGIN 
REAL MINUS; 
t·TERM~ 
["+"*"-"1 MINUS ,= CLASS; 
*TERM~ PRIN IF MINUS - -"-" THEN ,- , ELSE ,+ " 
RETURN ELSE NILJ]; 
END; 

COMMENT PROGRAM STARTS HEREJ 
PRINT 'RECC POLISH GENERATOR'J 
GETNEXTJ 

STAkTltEOfl PRINT 'GO AHEAD'~I ELSE 
"POLISH"~ *AEXP~ TERPRI ELSE 
"TRACE"~ 

["ON"*"CFF"' TRACE .= CLASS - -"ON";] ELSE 
"STOP"~ PRINT 'GOUD 8YE'~/~/~/J EXITJJIERRORJ 
GO STARTJ 

ERRURIPRINT 'ILLEGAL SYNTAX OR COMMAND'; 
COL .= RMARGIJ GETNEXT; GO STARTJ 

END. 

RUN 

-HUJ- OPOLISH 
RECe POLISH GENERATOR 
GO AHlAO 
POLISH (A+B)x(C-O' 
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A t;; + C 0 - )C 
GU AHE.AU 
THACE ON 
GU AHt:.AO 
POLISH (A+8»)C(C-O) 

CALL AEXP 

CALL TEHM 

CALL fACTOR 

CALL PRIMARY 

CALL AEXP 

CALL TERM 

·CALL FACTOR 

CALL pAIMAHy 
A 

PRIMARY :II 1 

fACTOR ;; 1 

TlRM ;; 1 

CALL TERM 

CALL FACTOR 

CALL PRIMMq 
B 

PRIMARY ;; 1 

fACTOR ;; 1 

H.RM = 1 
+ 

AEXP ;; 1 

PRIMARy :II 1 

FAC10H = 1 

CALL FACTOR 

CAL.L PRIMARY 
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C 

o 

-

)( 

CALL AEXP 

CALL TERM 

CALL FACTOR 

CALL PRIMARY 

Pkh1ARY = 1 

F'ACIOR = 1 

rt.RM = 1 

CALL TERM 

CALL FACTOR 

CALL pRIMARY 

PRIMARY = 1 

FACTOR = 1 

HRM = 1 

AEXP = 1 

PH!MARY = 1 

fAC10R = 1 

TERM = 1 

AEXP = 1 

GO AHEAD 
POLlSH (A+(~*C)/D)+E*f 

CAL.L AEXP 

CALL TERM 

CALL, FACTOR 

CALL PRIMARY 

CALL AEXP 

CAL.L TERM 



A 

C 

* 

o 

I 

CALL FACTOR 

CALL PRIMAI1Y 

PHIMARY = 1 

FACTOI1 = 1 

It.R~ = 1 

CALL TEHM 

CALL FACTOR 

CALL PRIMARY 

CALL AExp 

CALL TERti 

CALL FACTGR 

CALL PRIMARy 

PRUJAfiY = 1 

CALL PRIMARy 

PAI.,AAY = 1 

FACTOR = 1 

TER~ = 1 

AE)(P. 1 

PAIMARY = 1 

FACTOA II 1 

CALL FACTOR 

CALL PRIMAHY 

PRIMARY:: 1 

FACTOR II 1 

TERM II 1 
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+ 
AEXP = 1 

PMH'ARY = 1 

FACTOi'< : 1 

T!:..RM : 1 

CALL TE.HM 

E 

F 

* 

CALL FACTOR 

CALL PRltvlARy 

PRIMARY: 1 

CALL PRIMARY 

PklMAR'( = 1 

FAClON = 1 

TERM = 1 
+ 

At:.XP = 1 

GO AHt:.AD 
TI'IA<.;E OFf 
GU AHEAD 
POLISH (A+(B*C)/D)+E*F 
AbC * 0 / + E F * + 
GO AHtAD 
STOP 
GUOU bYE 
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APPENDIX B 

REMOTE TERMINAL CHARACTER SET 

The following is intended to serve as a convenient summary of the 

relation between the standard B 5500 character set and the remote terminal 

set. Other references should be consulted for a complete description (see, 

for example, Reference 7). In the following it is assumed that the file 

designated in the INPUT and OUTPUT statements are ALGOL file type REMOTE files, 

or the GTL FILE REMOTE declaration is used. 

All letters of the alphabet and all digits may be printed on a remote 

station. The character ® (multiplication sign) is printed as \. With the 

exception of six characters, all of the remaining non-alphanumeric characters 

may be printed on a remote station. The following characters serve as con-

trol characters and will have different effects, depending on which MCP 

the system is running under, either the Data Communications MCP (DCMCP) or 

the Time Sharing MCP (TSMCP). 

Character 

> 

< 

Effect on Output 

DCMCP 

causes carriage return 

causes line feed 

causes station disconnect 

activates paper tape reader 
(X-ON character) 

causes preceding characters to be 
transmitted to remote station to 
be printed 

sends rub-out character 
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TSMCP 

prints ? 

prints ? 

prints ? 

prints ? 

prints ? 

prints ? 



Whenever the output string variable is ready to be printed, the GTL FILE 

REMOTE Output system first writes a blank line to cause a carriage return­

line feed to be sent to the remote station, followed by the output string. 

All letters of the alphabet and all di,gi ts may be entered on a remote 

terminal by depressing the keys marked with these characters. The remote 

terminal keyboard also contains keys for the following non-alphanumeric 

characters: 

/ 

" 

4J: 

$ 

% 

& 

( 

) 

* 
= 
@ 

+ 

> 

The blank character is entered by depressing the space bar. 

The following additional characters may be entered with the keys 

indicated in the table below: 

character key 

[ upper case K 

] upper case M 

® upper case L 

The character causes the preceding portion of the line to be ignored. 

The? character should. not be entered since it may be interpreted by the 

system as a control character which is not a part of the intended input. 

The < character causes a hardware logical backspace each time it is 

depressed; i.e., if it is depressed n times it will cause n characters to 

be deleted from the current message. Since a message is transmitted from 
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a remote terminal in 28 character groups, characters can be deleted only 

from the current 28 character group. Under the TSMCP, the ' character 

causes a software logical backspace and is not dependent upon hardware 

configuration. The GTL FILE REMOTE system dynamically sets the RMARGI on 

input from a remote terminal to point to the last non-blank character. 

Thus RMARGI indicates the number of characters sent in the transmission, 

excluding the ~, which caused the information to be sent. When a GTL read 

function scans to RMARGI a pseudo end-of-file indication will normally result 

(see Subsection 9.6). 
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APPENDIX C 

CONVAL FUNCTION 

The values of various control parameters used by the GTL LISP and 

Input-Output systems may be accessed by a standard function called CONVAL. 

The CONVAL function is used in the form 

CONVAL(n) 

where n represents an unsigned integer whose value designates the desired 

control parameter. The values of n which may be used and the corresponding 

values of CONVAL(n) are listed in the table given below. 

o 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Value of CONVAL(n) 

a newly-created random number between 0 and 1 

value of current random number produced by CONVAL(O) 

maximum number of significant figures in single 
precision printed numbers 

maximum number of significant figures in double 
precision printed numbers 

Sign-separation control 

total number of words collected by garbage collector 

number of times garbage collector is called 

time (in seconds) required by last call on garbage 
~ollector 

arithmetic value of the address of the first word in 
the free1ist 

first subscript of array described in paragraph 6.22.1 

second subscript of array described in paragraph 6.22.1 

same as COL 
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n 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

29 

30 

31 

Value of CONVAL(n) 

same as TAB 

left margin of output string variable (LMARG) 

left margin of input string variable (LMARGI) 

right margin of output string variable (RMARG) 

right margin of input string variable (RMARGI) 

equals 0 if OUTPUT statement has been executed; 
1, otherwise 

equals 1 if INPUT statement has been executed; 
0, otherwise 

number of words inrutput logical record 

number of words in input logical record 

equals 1 if output procedure is being used; 
0, otherwise 

equals 1 if input procedure is being used; 
0, otherwise 

same as LENGTH(OUTSTR) 

same as LENGTH(INSTR) 

normally 0; will be set to 1 after a REMEMBER is 
executed, meaning that no LISP operation may be 
performed that causes a new LISP record to be 
generated when using automatic storage reclamation 

initially 0; will be set to 1 after the first LISP 
record is created by the program; when set to 1, the 
RECALL statement cannot be used when using automatic 
storage reclamation 

number of atomic symbols created by GENSYM 
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APPENDIX D 

GTL RUN TIME ERROR MESSAGES 

The following is a listing of the error numbers which may be generated 

during the execution of the GTL program. The form of the message is as 

follows: 

Error Number 

1. 

2. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

-GTL ERROR Error Number Terminal Reference 

Meaning 

String designator reference beyond string variable 
boundary. 

Value of string expression longer than destination 
string variable in string assignment statement. 

File length specification in INPUT statement greater 
than input string variable length. 

File length specification in OUTPUT statement greater 
than output string variable length. 

Left margin greater than right margin or right margin 
greater than specified file length in INPUT statement. 

Left margin greater than right margin or right margin 
greater than specified file length in OUTPUT statement. 

Remote terminal "output impossible" condition detected-­
no "output impossible" label provided in GTL program. 

Supply of LISP records exhausted ("free1ist empty"). 

Value of Symbol expression is not a number (this 
error can occur when a Symbol-valued item is used in 
an arithmetic expression). 

Attempt to generate new LISP records after REMEMBER 
statement is executed (SYMBOL RECLAIM OPTION). 

Attempt to execute RECALL statement after run-time 
generation of new LISP records (SYMBOL RECLAIM OPTION). 

Attempt to apply a field designator to a null reference. 

Invalid field index. 

Remote read wait time exceeded (no label given). 

Remote abnormal read condition detected (no label given). 

Remote read end-of-file (READ) detected (no label given). 

Remote "break" key depressed (no label given). 

D-l 





APPENDIX E 

REFERENCES 

1. Paul W. Abrahams, Jeffrey A. Barnett, et. a1., "The LISP 2 Programming 
Language and System," AFIPS Conference Proceedings, ~ (1966 Fall 
Joint Computer Conference), 661-676. 

2. John McCarthy, Paul W. Abrahams, Daniel J. Edwards, Timothy P. Hart, 
and Michael I. Levin, Lisp 1.5 Programmer's Manual, Cambridge, 
Massachusetts: The MIT Press, 1962. 

3. Edmund C. Berkeley and Daniel G. Bo1row [editors], The Programming 
Language LISP: Its Operation and Applications, 2nd ed, Cambridge, 
Massachusetts: The MIT Press, 1966. 

4. Burroughs B 5500 Extended ALGOL Language Manual, Burroughs Corpor­
ation, Detroit, Michigan, 1962. 

5. Jerome Fieldman and David Gries, "Translator Writing Systems," 
Communications of the ACM, II, No.2, 77-113 (February, 1968). 

6. M. Levin, Lisp 2 Primer, SDC Document TM-27l0/l0l/00, 1966. 

7. Users Manual for B 5500 REMOTE TERMINAL OPERATIONS, Rich Electronic 
Computer Center, Georgia Institute of Technology, Atlanta, Georgia, 
June 1968. 

8. Clark Weissman, LISP 1.5 Primer, Belmont California: Dickenson 
Publishing Company, 1967. 

9. Nicklaus Wirth and C. A. R. Hoare, "A Contribution to the Develop­
ment of Algol," Communications of the Association for Computing 
Machinery, 9, No, 6, 413-432 (June 1966). 

E-l 



r 


