7112248

Informatnon
Services '

World Leader
In Time-Sharing
Service

'REFERENCE MANUAL

BASIC
Language

GENERAL @3 ELECTRIC

INFORMATION SERVICE DEPARTMENT

711224B

REFERENCE
MANUAL

BASIC
Language

Revised November 1970
Supersedes Revision A

The contents of this reference manual are sold on an ‘‘as is"’
basis. Buyer hereby waives all warranties, express or implied
or statutory, including but not limited to any warranty of
merchantability or fitness for use for a particular purpose.

GENERAL @D ELECTRIC

INFORMATION SERVICE DEPARTMENT

PREFACE

This manual, which supersedes the Preliminary Reference Manual of the same title and number,
describes the version of the BASIC language used with the MARK II Time-Sharing Service. All
material released 1n the BASIC Language supplement, publication number 711224A-1 is included
in this manual.

Another manual, the MARK II Command and Edit Systems Reference Manual (Publication
number 711223) explains all of the system commands that are a part of the MARK II Time-
Sharing Service.

The development of the BASIC language was supported by the National Science Foundation under
the terms of a grant to Dartmouth College. Under this grant, Dartmouth College developed,
under the direct.on of Professors John G. Kemeny and Thomas E. Kurtz, the BASIC language
compiler. Since that development, BASIC has been offered as part of the Time-Sharing Service
of General Electric's Information Service Department.

@ 1967, 1968, 1969, 1970 by General Electric Company, USA, and the Trustees of Dartmouth
College

INTRODUCTION

In this reference manual which describes the version of the BASIC language used with MARK II,
the extensions and additions to the versatile BASIC language are as follows:

ASCII sequential, binary sequential, and binary random data files.
String processing, which permits manipulation of alphanumeric data.

Chaining, which permits a program to stop and begin execution of another program
without direct intervention.

Liberal defining of variables in a function statement.
Powerful subfunction capability for formatting output.

Ability for initializing all variables, lists, and tables to zero.

A first introduction to writing a BASIC program is given in Section 2; it includes all that you
will need to know in order to write a wide variety of useful and interesting programs. Section
3 deals with more advanced computer techniques.

Appendix A provides a reference for Error Messages.

TABLE OF CONTENTS

Page
PREFACE
INTRODUCTION
Section 1. WHAT IS A PROGRAM? . it vttt ittt ettt et e et e eeeenn 1
Section 2. ABASICPRIMERt vt iiiit ittt ettt et eeeeeennn.. 2
An Example of a Complete BASIC Programoue.... 2
Formulaso i it i i e e e e e e e e e e e e e e 5
NUMDEIS. & vt v it ittt it e et ettt ettt et e 7
Variables ittt e e e e e e e e e e e 8
Relational Symbols.o v i ittt ittt e et e 8
70T) ¢ 8
Lists and Tableso vt ittt ittt ettt it e s eennnas 11
ErrorsandDebuggingo v ittt ittt e e e e 13
Summary of Elementary BASIC Statements oo v v v nn .. 16
LET Statement.o v ittt ittt ettt et ettt e eeeens 16
READ and DATA Statement00t renn.. 17
PRINT Statement i i ittt ittt et ettt etennenn 17
GOTOStatemento v vttt ittt et e ettt e 18
IF - THENor IF -G@ T@ Statemento v ennnn. 19
FOR and NEXT Statements. . . . v v v v v vt v nee et et eenns 19
DIM Statement i ittt ittt 20
END Statement.0ttt i i e e e 20
Section 3. ADVANCED BASIC .+« & vttt vttt ittt ettt et ettt ttneees 21
More About the PRINT Statementc.c0vi.... 21
The Tab Function00ttt ieneeinneennn 23
FormattedOutput. it ennn. 24
PRINT USING and Image Statements 24
Integer Fields o v vt v it ittt it ittt et e e enennn 25
Decimal Fieldso it i vt ittt ittt ittt ettt 26
Exponential Fields it inennnnn 27
Dollar Sign Fieldsottt it ineenennnn 27
Alphanumeric Fieldsttt ittt innnnnn 28
Literal Fields v i vt i ittt i ittt it e ittt eenenn 28
Functions and Stateme:}s./ 29
Integer Function Y. i it ittt nnnn 29
Sign Function.0 ittt ittt ittt et 29
RND FUnction i i ittt ineteeneneeeenenneneen 30
RANDOMIZE Statement oo v oo vvvvvnnnnenenenens 31
TIM Function. e e et e et e e 31
CLKS FUnCtion. vttt ittt it ettt ettt eeneenens 32
BCLFunctionc.i ittt tineeeeeennoneeeen 33
DATE FUNCHiOn. « . v vt ittt ettt ettt e teeeeennnn 33
IDAFUNCHiOnt v ittt ittt ittt et e e 34
HPS Function.t v i ittt it ittt ettt e naeennnes 34
VPS Function. v it ittt ittt ittt eneneeeenesas 35
LIN FUnCtion . . v v v v it ittt ettt et et ettt enneeeeennes 35
ASC Function. vt ittt i ittt it ittt et et e e 37
STRE FUNCHION . + v v v vt vt e et et e ettt et eeeeeseennnnns 37

iv

TABLE OF CONTENTS (Continued)

Page

VAL Functionottt i ittt it ettt ettt neoeneas 38
LEN Function ittt ittt ittt ittt e aeeenns 39
UNDB FUNCHION. & o v vttt ettt et e et et et et et taeeeees 40
USE Function. i it i ittt i ittt e et ettt eenaaens 40
DEF Statement. i i ittt ittt et e 41
GOSUB and RETURN Statement . . . oo oo v v v v vt vn oo 42
ON Statement. . . . v v v vttt ettt ettt ettt et eeeeeen 44
INPUT Statement i ittt it ittt i ittt e cnennn 44
CHAIN Statement0 it it ittt ittt ettt neneas 45
STOP Statement. . . . v v v vttt et ettt e e e 47
REM Statement i ittt i ittt e et e 47
RESTQRE Statement.ot vvv ittt ittt et e iee e 47
TRACE N, TRACE @FF Statementso00.... 48
B 21 5 = 49
Alphanumeric Data and String Variables 55
DIM Statement. i i i i e e e e e e e e e e 55
LET Statement ittt ittt ittt eenenns 55
IF—-THEN Statement. ittt 56
CHANGE Statementttt ittt eeennn. 56
Data Files . . . v v it i it it i e i i et e e e e e e e e e e e e e 58
File Types . . . o o it it it e et e e e e e 58
File Access Capabilities 59
Initial File Preparation. 59
ASCIL FileS . & v v i it it et e et e ettt e ettt ettt e e 59
Binary Files o 0 ot it e e 59
File Classification i i i i ittt ittt ettt i 59
File Reference v i i it i it ittt ettt ee e eeenn 60
FileDesignator i e 60
FILE Statement i ittt it e it et 61
File MOdeS . . & v v i i it i i e e e e e e e e e e e e e e e e e e e 62
ReadingData. ittt it 63
File READ ittt ittt ettt e it eiin 63
Reading with INPUT Statement 65
ReadingInternal Data 67
READ FORWARD Statement. oo v vt v oo i v iennnn 69
WritingData i e e 69
File WRITE Statement., 69
Writing with PRINT Statement 1
Matrix Input/Output Statements 72
MAT READ Statement. 72
MAT WRITE Statement 73
RESTORE Statement. v v v v v vttt it et et e e eeeeen 74
SCRATCH Statement. ittt ittt i 5
DELIMIT Statement i ittt i ittt et et nenn 75
APPEND Statementttt ittt te e eeeennneens mm
MARGIN Statement. v i i ittt ittt et et ee e "
IFEND Statement0 ittt ettt nnnn. 78
IF MORE Statement . . . o v v v v v v v e vt v et e e oot oo e e e 80
BACKSPACE Statement. v v it it ittt et et et ennnn 82
BACKSPACES$ Statementttt i it i innen. 83
SETW Statement ittt ennen 84

TABLE OF CONTENTS (Continued)

LCW FUNCHON « + v v v v o e
LEW Function i i it i it e e e e e e e e e e e et e e

SUMMARY .

....................................

Appendix A ERROR MESSAGES o ittt ittt et e e e e e e e e e e ee e
Compilation Errors i e e

Execution Errors

Section 1. WHAT IS A PROGRAM

A program is a set of directions that is used to tell a computer how to provide an answer to
some problem. It usually starts with the given data, contains a set of instructions to be per-
formed or carried out in a certain order, and ends up with a set of answers.

Any program must meet two requirements before it can be carried out. The first is that it must
be presented in a language that is understood by the computer. If the program is a set of in-
structions for solving a system of linear equations and the computer is an English-speaking
person, the program will be presented in some combination of mathematical notation and
English. If the computer is a French-speaking person, the program must be in his language;
and if the computer is a high-speed digital computer, the program must be presented in a
language which the computer understands.

The second requirement for all programs is that they must be completely and precisely stated.
This requirement is crucial when dealing with a digital computer, which has no ability to infer
what you mean--it does what you tell it to do, not what you meant to tell it.

We are, of course, talking about programs which provide numerical answers to numerical
problems. It is easy for a programmer to present a program in the English language, but such
a program poses great difficulties for the computer because English is rich with ambiguities
and redundancies, those qualities which make computing impossible. Instead, you present your
program in a language which resembles ordinary mathematical notation, which has a simple
vocabulary and grammar, and which permits a complete and precise specification of your
program. The language you will use is BASIC (Beginner's All-purpose Symbolic Instruction
Code) which is, at the same time, precise, simple, and easy to understand.

Section 2. A BASIC PRIMER

Example of a Complete BASIC Program

The following example is a complete BASIC program for solving a system of two simultaneous
linear equations in two variables

ax + by=c¢
dx + ey =1

and then solving two different systems, each differing from this system only in the constants c
and f.

You should be able to solve this system, if ae - bd is not equal to 0, to find that

xzu d _af-cd
ae - bd an Y= 326 -bd

If ae - bd = 0, there is either no solution or there are infinitely many, but there is no unique
solution. If you are rusty on solving such systems, take our word for it that this is correct.
For now, we want you to understand the BASIC program for solving this system.

Study this example carefully; in most cases, the purpose of each line in the program is
self-evident - and then read the commentary and explanation.

A first observation is that each line of the program begins with a number. These numbers are
called line numbers and serve to identify the lines, each of which is called a statement. Thus,
a program is made up of statements, most of which are instructions to the computer. Line
numbers also serve to specify the order in which the statements are to be performed by the
computer. This means that you may type your program in any order. Before the program is
run, the computer sorts out and edits the program, putting the statements into the order
specified by their line numbers. (This editing process facilitates the correcting and changing
of programs, as we shall explain later.)

A second observation is that each statement starts, after its line number, with an English
word. This word denotes the type of the statement. There are several types of statements in
BASIC, nine of which are discussed in this section. Seven of these nine appear in the sample
program of this section.

A third observation, not at all obvious from the program, is that spaces have no significance in
BASIC, except in messages which are to be printed out, as in Line 65 in the preceding example.
Thus, spaces may be used at will to make a program more readable. Statement 10 could have
been typed as 10READA, B,D, E, and Statement 15 as 15 LETG=A*E-B*D.

2

With this preface, let us go through the example, step by step. The first statement, 10, is a
READ statement. It must be accompanied by one or more DATA statements. When the computer
encounters a READ statement while executing your program, it will cause the variables listed
after the READ to be given values according to the next available numbers in the DATA state-
ments. In the example, we read A in Statement 10 and assign the value 1 to it from Statement

70 and similarly with B and 2, and with D and 4. At this point, we have exhausted the available
data in Statement 70, but there is more in Statement 80, and we pick up from it the number 2 to
be assigned to E.

We next go to Statement 15, which is a LET statement, and first encounter a formula to be
evaluated. (The asterisk is used to denote multiplication.) In this statement we direct the
computer to compute the value of AE - BD, and to call the result G. In general, a LET state-
ment directs the computer to set a variable equal to the value of the formula on the right side of
the equals sign. We know that if G is equal to zero, the system has no unique solution. There-
fore, we next ask, in line 20, if G is equal to zero, If the computer discovers a ''yes' answer
to the question, it is directed to go to Line 65, where it prints "N@ UNIQUE S@LUTI@N."
From this point, it would go to the next statement. But Lines 70, 80, and 85 give it no instruc-
tions since DATA statements are not "executed, " and it then goes to Line 90 which tells it to
"END" the program.

If the answer to the question "Is G equal to zero?" is ''no, " as it is in this example, the com-
puter goes on to the next statement, in this case 30. (Thus, an IF-THEN tells the computer
where to go if the IF condition is met but to go on to the next statement if it is not met.) The
computer is now directed to read the next two entries from the DATA statements, -7 and 5,
(both are in Statement 80) and to assign them to C and F, respectively. The computer is now
ready to solve the system

X+ 2y=-7 4x + 2y =5

In Statement 37 and 42, we direct the computer to compute the values of X and Y according to
the formulas provided. Note that we must use parentheses to indicate that CE - BF is divided
by G; without parentheses, only BF would be divided by G, and the computer would let

X = CE - BF/G.

The computer is told to print the two values computed, that of X and that of Y, in Line 55.
Having done this, it moves on to Line 60 where it is directed back to Line 30. If there are
additional numbers in the DATA statements, as there are here in 85, the computer is told in
Line 30 to take the next one and assign it to C, and the one after that to F. Thus, the computer
is now ready to solve the system

X+ 2y=1 4x + 2y =3

As before, it finds the solution in 37 and 42, and prints the values of X and Y in 55, and then
is directed in 60 to go back to 30.

In Line 30 the computer reads two more values, 4 and -7, which it finds in Line 85. It then
proceeds to solve the system

X+ 2y=4 4x + 2y = -1
and to print out the solutions. It is directed back again to 30, but there are no more pairs of

numbers available for C and F in the DATA statements. The computer then informs you that it
is out of data, printing on the paper in your terminal GUT @JF DATA IN 30, and stops.

For a moment, let us look at the importance of the various statements. For example, what
would have happened if we had omitted Line 55? The answer is simple: The computer would
have solved the three systems and told us when it was out of data. However, since it was not
asked to tell us (PRINT) its answers, it would not do it, and the solutions would be the com-
puter's secret. What would have happened if we had left out Line 20? In this problem just
solved, nothing would have happened. But, if G were equal to zero, we would have set the com-
puter the impossible task of dividing by zero in 37 and 42, and it would tell us so emphatically,
printing DIVISIGN BY ZER@ IN 37 AND DIVISIN BY ZERQ@ IN 42. Had we left out Statement
60, the computer would have solved the first system, printed out the values of X and Y, and
then gone on to Line 65 where it would be directed to print N UNIQUE S@LUTI@N. It would do
this and then stop.

One very natural question arises from the seemingly arbitrary numbering of the statements: Why
this selection of line numbers? The answer is that the particular choice of line numbers is ar-
bitrary, as long as the statements are numbered in the order which we want the machine to fol-
low in executing the program. We could have numbered the statements 1, 2, 3, ..., 13, although
we do not recommend this numbering. We would normally number the statements 10, 20, 30, ...,
130. We put the numbers such a distance apart so that we can later insert additional statements
if we find that we have forgotten them in writing the program originally. Thus, if we find that we
have left out two statements between those numbered 40 and 50, we can give them any two num-
bers between 40 and 50—say 44 and 46; and in the editing and sorting process, the computer will
put them in their proper place.

Another question arises from the seemingly arbitrary placing of the elements of data in the DATA
statements: Why place them as they have been in the sample program ? Here again, the choice is
arbitrary, and we need only put the numbers in the order that we want them read (the first for A,
the second for B, the third for D, the fourth for E, the fifth for C, the sixth for F, the seventh for
the next C, etc.). In place of the three statements numbered 70, 80, and 85, we could have put

or we could have written, perhaps more naturally,

to indicate that the coefficients appear in the first data statement and the various pairs of
right-hand constants appear in the subsequent statements.

The program and the resulting run is shown below exactly as it appears on the terminal:

After typing the program, we type RUN followed by a carriage return. Up to this point the
computer stores the program and does nothing with it. It is this command which directs the
computer to execute your program.

Note that the computer, before printing out the answers, prints the name which we gave to the
problem (LINEAR) and the time and date of the computation, *

The message GUT @F DATA IN 30 here may be ignored. But sometimes it would indicate an
error in the program. For more detail see the paragraph "READ and DATA."

Formulas

The computer can do a great many things - it can add, subtract, multiply, divide, extract
square roots, raise a number to a power, and find the sine of a number (on an angle measured

in radians), etc. We shall now learn how to tell the computer to do these things in the order
that we want them done.

The computer computes by evaluating formulas which are supplied in a program. These for-
mulas are similar to those used in standard mathematical calculation, except that all BASIC
formulas must be written on a single line. Five arithmetic operations can be used to write a
formula. These are listed in the following table:

*The time zone and date are not shown in this and subsequent examples.

Symbol Example Meaning

+ A+ B Addition (add B to A)

- A-B Subtraction (subtract B from A)
* A*B Multiplication (multiply B by A)
/ A/B Division (divide A by B)

4 or ** X } 20rX**2 Raise to the power (find X2)

NOTE: Some terminals use a A in place of the } .

We must be careful with parentheses to make sure that we group together those things which we
want together. We also must understand the order in which the computer does its work. For
example, if we type A + B * C 4 D, the computer will first raise C to the power D, multiply this
result by B, and then add A to the resulting product. This is the same convention as is usual for
A + B CD, If this is not the order intended, then we must use parentheses to indicate a different
order. For example, if it is the product of B and C that we want raised to the power D, we must
write A + (B * C) 4D; or, if we want to multiply A + B by C to the power D, we write

(A+ B) *C4D. We could even add A to B, multiply their sum by C, and raise the product to
the power D by writing ((A+B) *C) 4 D.

The order of priorities is summarized in the following rules:

1. The formula inside parentheses is computed before the parenthesized quantity is used
in further computations.

2. In the absence of parentheses in a formula involving addition, multiplication, and the
raising of a number to a power, the computer first raises the number to the power,
then multiplies, then adds. Division has the same priority as multiplication, and
subtraction the same as addition.

3. In the absence of parentheses in a formula involving only multiplication and division,
the operations are done from left to right, as they are read. Addition and subtrac-
tion are also done from left to right.

These rules are illustrated in the previous example. The rules also tell us that the computer,
faced with A - B - C, will (as usual) subtract B from A and then C from their difference; faced
with A/B/C, it will divide A by B and that quotient by C. Given A4 B4 C, the computer follows
the usual mathematical convention and calculates ABC, If there is any question in your mind
about the priority, put in more parentheses to eliminate possible ambiguities.

In addition to these five arithmetic operations, the computer can evaluate several mathematical
functions. These functions are given special three-letter English names, as the following list
shows:

Functions Interpretation

SIN (X) Find the sine of X)
X interpreted as
COs (X) Find the cosine of X a number, or as
/ an angle measured
TAN (X) Find the tangent of X in radians
COT (X) Find the cotangent of X
ATN (X) Find the arctangent of X
EXP (X) Find e
LOG (X) Find the natural logarithm of X (1n X)
ABS (X) Find the absolute value of X (1X1)
SQR (X) Find the square root of X (vX)

Two special functions, NUM and DET, are explained under Matrices in Section 3. Three other
mathematical functions are alsu available in BASIC: INT, SGN, and RND. These are explained
under Functions in Section 3. In place of X, we may substitute any formula or any number in
parentheses following any of these formulas. For example, we may ask the computer to find
J4 + X3 by writing SQR (4 + X 4 3), or the arctangent of 3X - 2eX + 8 by writing ATN
(3*X-2*EXP(X) + 8).

If, sitting at the terminal, you need the value of (g) 17, you can run the two-line program

Since we have mentioned numbers and variables, we should be sure that we understand how to
write numbers for the computer and what variables are allowed.

Numbers

A number may be positive or negative and it may contain up to nine digits, but it must be ex-
pressed in decimal form. For example, all of the following are numbers in BASIC: 2,-3.675,
123456789, -.987654321, and 483.4156. The following are not numbers in BASIC: 14/3, J/T7,
and .00123456789. The first two are formulas but not numbers, and the last one has more than
nine digits. We may ask the computer to find the value of 14/3 or </7 and to do something with
the resulting number, but we may not include either in a list of DATA.

We gain further flexibility by use of the letter E, which stands for 'times ten to the power."
Thus, we may write .00123456789 in a form acceptable to the computer in any of several forms:
.123456789E-2 or 123456789E-11 or 1234.56789E-6. We may write ten million as 1E7 and

1965 as 1.965E3. We do not write E7 as a number but must write 1E7 to indicate that it is 1
that is multiplied by 107. Numbers cannot be larger than 1.70141E38 or smaller than 1.49637E-
39.

When entering a series of numbers, separate them by commas. The comma following the last
number is optional.

Variables

A variable in BASIC is denoted by any letter, or by any letter followed by a single digit. Thus,
the computer will interpret E7 as a variable, along with A, X, N5, I0, and 1. A variable in
BASIC stands for a number, usually one that is not known to the programmer at the time the
program was written. Variables are given or assigned by F@R, LET, READ, or INPUT state-
ments. The value assigned will not change until the next time a FGR, LET, READ, or INPUT
statement is encountered with a value for that variable.

Note that since all variables are set to zero before a RUN, it is necessary to assign a value to
a variable only when you do not want it to be zero.

Relational Symbols

Six mathematical symbols are provided for in BASIC. These are symbols of relation used in
IF-THEN statements where it is necessary to compare values. An example of the use of these
relation symbols was given in the sample program in Section 1. Any of the following six
standard relations may be used:

Symbol Example Meaning

= A=B Is equal to (A is equal to B)

< A<B Is less than (A is less than B)
<= A<=B Is less than or gqual to

(A is less than or equal to B)
> A>B Is greater than (A is greater than B)

>= A>=B Is greater than or equal to
(A is greater than or equal to B)

<> A<>B Is not equal to (A is not equal to B)

Loops

We are frequently interested in writing a program in which one or more parts are done not just
once but a number of times, perhaps with slight changes each time. In order to write the
simplest program, the one in which the part to be repeated is written just once, we use the
programming device known as a loop.

Programs which use loops can be illustrated and explained by two programs for the simple task
of printing out a table of the first 100 positive integers together with the square root of each.
Without a loop, our program would be 101 lines long and read

With the following program, using one type of loop, we can obtain the same table with far fewer
lines of instruction, 5 instead of 101,

Statement 10 gives the value of 1 to X and "initializes" the loop. In Line 20 is printed both 1
and its square root. Then, in Line 30, X is increased by 1, to 2. Line 40 asks whether X is
less than or equal to 100; an affirmative answer directs the computer back to Line 20. Here it
prints 2 and /2, and goes to 30. Again X is increased by 1, this time to 3, and at 40 it goes
back to 20. This process is repeated--Line 20 (print 3 and ~/3), Line 30 (X = 4), Line 40 (since
4 =100 go back to line 20), etc.--until the loop has been traversed 100 times. Then, after it
has printed 100 and its square root has been printed, X becomes 101. The computer now
receives a negative answer to the question in Line 40 (X is greater than 100, not less than or
equal to it), does not return to 20 but moves on to Line 50, and ends the program. All loops
contain four characteristics: initialization (Line 10), the body (Line 20), modification (Line 30),
and an exit test (Line 40).

Because loops are so important and because loops of the type just illustrated arise so often,
BASIC provides two statements to specify a loop even more simply. They are the F@R and
NEXT statements, and their use is illustrated in the program,

In Line 10, X is set equal to 1, and a test is set up, like that of Line 40 above. Line 30 carries
out two tasks: X is increased by 1, and the test is carried out to determine whether to go back
to 20 or go on. Thus Lines 10 and 30 take the place of Lines 10, 30, and 40 in the previous
program--and they are easier to use.

Note that the value of X is increased by 1 each time we go through the loop. If we wanted a
different increase, say 5, we could specify it by writing

and the computer would assign 1 to X on the first time through the loop, 6 to X on the second
time through, 11 on the third time, and 96 on the last time. Another step of 5 would take X
beyond 100, so the program would proceed to the end after printing 96 and its square root. The
STEP may be positive or negativ. 'nd we could have obtained the first table, printed in reverse
order, by writing line 10 as

In the absence of a STEP instruction, a step size of +1 is assumed.

More complicated F@R statements are allowed. The initial value, the final val e, and the step
size may all be formulas of any complexity. For example, if N and Z have been 3pecified
earlier in the program, we could write

F@GR X = N + 7*Z T@ (Z-N) / 3 STEP (N-4*Z) / 10
For a positive step-size, the loop continues as long as the control variable is less than or

equal to the final value. For a negative step-size, the loop continues as long as the control
variable is greater than or equal to the final value.

If the initial value is greater than the final value (less than for negative step-size), then the
body of the loop will not be performed at all, but the computer will immediately pass to the
statement following the NEXT. As an example, the following program for adding up the first n
integers will give the correct result 0 when n is 0.

It is often useful to have loops within loops. These are called nested loops and can be expressed
with F@R and NEXT statements. However, they must actually be nested and must not cross, as
the following skeleton examples illustrate:

Allowed Allowed

—— F@R X F@R X

— F@GR Y — FQRY

L— NEXTY F@R Z
NEXT X |:-NEXT Z

‘Not Allowed FOR W
— FOR X l: NEXT W
FGR Y —— NEXT Y

—— NEXT X l: FQR Z
NEXT Y Nt 2

10

Lists and Tables

In addition to the ordinary variables used by BASIC, there are variables which can be used to
designate the elements of a list or of a table. These are used where we might ordinarily use a
subscript or a double subscript, for example the coefficients of a polynomial (ag, a1, a2, ...)
or the elements of a matrix (bj, j). The variables which we use in BASIC consist of a single
letter, which we call the name of the list, followed by the subscripts in parentheses. Thus, we
might write A(1), A(2), etc., for the coefficients of the polynomial and B(1, 1), B(1, 2), etc., for
the elements of the matrix.

We can enter the list A(0), ...A(10) into a program very simply by the lines

We need no special instruction to the computer if no subscript greater than 10 occurs. How-
ever, if we want larger subscripts, we must use a dimension (DIM) statement, to indicate to
the computer that it has to save extra space extra space for the list or table. When in doubt,
indicate a larger dimension than you expect to use. For example, if we want a list of 15
numbers entered, we might write

Statements 20 and 60 could have been eliminated by writing 30 as FGR I= 1 T@ 15, but the form
as typed would allow for the lengthening of the list by changing only Statement 60, so long as it
did not exceed 25.

We would enter a 3x5 table into a program by writing

11

Here again, we may enter a table with no dimension statement, and it will handle all the entries
from B(0, 0) to B(10,10). If you try to enter a table with a subscript greater than 10, without a
DIM statement, you will get an error message telling you that you have a subscript error. This
is easily rectified by entering the line

if for instance, we need a 20 by 30 table.

The single letter denoting a list or a table name may also be used to denote a simple variable
without confusion. However, the same letter may not be used to denote both a list and a table in
the same program. The form of the subscript is quite flexible, and you might have the list item
B(I + K) or the table items B(I,K) or Q(A(3,7), B - C).

The sample program which follows illustrates a LIST and RUN of a problem which uses both a
list and a table. The program computes the total sales of each of five salesmen, all of whom
sell the same three products. The list P gives the price/item of the three products, and the
table S shows the quantity of each item sold by each man. You can see from the program that
product number 1 sells for $1.25, number 2 for $4.30, and number 3 for $2. 50 per item; and
also that salesman number 1 sold 40 items of the first product, 10 of the second, and 35 of the
third, and so on. The program reads in the price list in Lines 10, 20, 30, using data in Line
900, and the sales table in Lines 40-80, using data in Lines 910-930. The same program could
be used again, modifying only Line 900 if the prices change, and only Lines 910-930 to enter
the sales in another month. '

This sample program did not need a dimension statement since the computer automatically saves
enough space to allow all subscripts to run from 0 to 10. A DIM statement is normally used to
save more space, but in a long program, requiring many small tables, DIM may be used to save
less space for tables in order to leave more for the program.

Since a DIM statement is not executed, it may be entered into the program on any line before
END; it is convenient, however, to place DIM statements near the beginning of the program.

12

Errors and Debugging

It may occasionally happen that the first run of a new problem will be free of errors and give
the correct answers. But it is much more common that errors will be present and will have to
be corrected. Errors are of two types: errors of form (or grammatical errors) which prevent
the running of the program; and logical errors in the program which cause the computer to
produce wrong answers or no answers at all.

Errors of form will cause error messages to be printed, and the various types of error
messages are listed and explained in Appendix A. Logical errors are often much harder to
uncover, particularly when the program gives answers which seem to be nearly correct. In
either case, after the errors are discovered, they can be corrected by changing lines, by in-
serting new lines, or by deleting lines from the program. As indicated in the last section, a
line is changed by typing it correctly with the same line number; a line is inserted by typing it
with a line number between those of two existing lines; and a line is deleted by typing its line
number and pressing the Return key. Notice that you can insert a line only if the original line
numbers are not consecutive integers. For this reason, most programmers will start out
using line numbers that are multiples of five or ten, but that is a matter of choice.

These corrections can be made at any time--whenever you notice them--either before or after
a run. Since the computer sorts lines out and arranges them in order, a line may be retyped
out of sequence. Simply retype the incorrect line with its original line number.

Although the computer does little in the way of "correcting'' during computation, it will some-
times help you when you forget to indicate absolute value. For example, if you ask for the
square root of -7 or the logarithm of -5, the computer will give you the square root of 7 with
the error message that you have asked for the square root of a negative number, or the
logarithm of 5 with the error message that you have asked for the logarithm of a negative
number.

As with most problems in computing, we can best illustrate the process of finding the errors
(or bugs) in a program, and correcting (or debugging) it, by an example. Let us consider the
problem of finding the value of X between 0 and 3 for which the sine of X is a maximum, and
ask the system to print out this value of X and the value of its sine. If you have studied
trigonometry, you know that m/2 is the correct value; but we shall use the system to test suc-
cessive values of X from 0 to 3, first using intervals of .1, then of .01, and finally of .001.
Thus, we shall ask the system to find the sine of 0, of .1, of .2, of .3, of 2.8, of 2.9,
and of 3, and to determine which of these 31 values is the largest. It will do it by testing SIN
(0) and SIN (.1) to see which is larger, and calling the larger of these two numbers M. Then
it will pick the larger of M and SIN (.2) and call it M. This number will be checked against
SIN (.3) and so on down the line. Each time a larger value of M is found, the value of X is
"remembered' in X0. When it finishes, M will have been assigned to the largest of the 31
sines, and X0 will be the argument that produced that largest value. It will then repeat the
search, this time checking the 301 numbers 0, .01, .02, .03, ..., 2.98, 2.99, and 3, finding
the sine of each and checking to see which sine is the largest. Lastly, it will check the 3001

13

numbers 0, .001, .002, .003,, 2.998, 2.999, and 3, to find which has the largest sine.
At the end of each of these three searches, we want the computer to print three numbers: the
value X0 which has the largest sine, the sine of that number, and the interval of search.

Before going to the terminal, we write a program and let us assume that it is the following:

We shall list the entire sequence on the terminal and make explanatory comments on the right
side.

Notice the use of the backwards arrow
(on some terminals, an underline) to
erase a character in Line 40, which
should have started IF SIN(X) etc., and
in Line 80.

After typing Line 90, we notice that LET
was mistyped in Line 20, so we retype it,
this time correctly.

After receiving the first error message,
we inspect Line 70 and find that we used
X@ for a variable instead of X0. The
next two error messages relate to lines
30 and 80, where we see that we mixed
variables. This is corrected by changing
Line 80.

NOTE: The use of the word "LET" is assignment statements is optional. Line 20 could also
be written X0=0.

14

We make both of these changes by retyping
Lines 70 and 80. In looking over the pro-
gram, we also notice that the IF-THEN
statement in 40 directed the computer to

a DATA statement and not to Line 80

h it should

This is obviously incorrect. We are
having every value of X printed, so we
direct the machine to cease operations by
pressing the break key, even while it is
running. We ponder the program for a
while, trying to figure out what is wrong
with it. We notice that SIN(0) is com-
pared with M on the first time through
the loop, but we had assigned a value to
X0 but not to M. However we recall that
all variables are set equal to zero before
a RUN so that line 20 is unnecessary.

Of course, Line 90 sent us back to Line
20 to repeat the operation and not back to
Line 10 to pick up a new value for D.

We are about to print out the same table
as before. It is printing out X0, the

current value of X, and the interval size
each time that it goes through the loo

We fix this by moving the PRINT state-
ment outside the loop. Typing 70 deletes
that line, and line 85 is outside of the
loop. We also realize that we want M
printed and not X. We also decide to put
in headings for our columns by a PRINT
statement.

There is an error in our PRINT state-
ment: no left quotation mark for the third
item

Retype Line 5, with all of the required
quotation marks.

Exactly the desired results. Of the 31
numbers (0, .1, .2, .3, ..., 2.8, 2.9,
3), it is 1.6 which has the largest sine,
namely .999574. Similarly for the finer
subdivisions.

15

Having changed so many parts of the
program, we ask for the corrected pro-

The program is saved for later use. This
should not be done unless future use is
necessary.

In solving this problem, there are two common devices which we did not use. One is the in-
sertion of a PRINT statement when we wonder if the machine is computing what we think we
asked it to compute. For example, if we wondered about M, we could have inserted 65
PRINT M, and we would have seen the values. The other device is used after several correc-
tions have been made and you are not sure just what the program looks like at this stage - in
this case type LIST, and the computer will type out the program in its current form for you to
inspect.

Summary of Elementary Basic Statements

In this section we shall give a short and concise description of each of the types of BASIC state-
ments discussed earlier in this section. In each form, we shall assume a line number, and
shall use underlining to denote a general type. Thus, variable refers to a variable, which is a
single latter, possibly followed by a single digit.

LET Statement

The LET statement is referred to as a replacement or assignment statement. It has the form

Constant
LET variable = {Variable
Arithmetic Expression

Examples

The expression on the right of the equals sign is evaluated, and the result is stored as the value
of the variable on the left of the equals sign.

Multiple assignments may be made with the LET statement. For example,

16

The word "LET" is optional in both the simple assignment and multiple assignment statements.
LET statements may be of the form

Constant
Variable = Variable
Expression

For example, X = (A=3) * (B=4)

READ and DATA Statement

We use a READ statement to assign to the listed variables values obtained from a DATA state-
ment. Neither statement is used without one of the other type. A READ statement causes the
variables listed in it to be given, in order, the next available numbers in the collection of DATA
statements. Before the program is run, the system takes all of the DATA statements in the order
in which they appear and creates a data block. Each time a READ statement is encountered any-
where in the program, the data block supplies the next available number or numbers. If the data
block runs out of data, with a READ statement still asking for more, the program is assumed

to be done and we get an GUT @F DATA message.

Since we have to read in data before we can work with it, READ statements normally occur near
the beginning of a program. The location of DATA statements is arbitrary, as long as they oc-
cur in the correct order. A common practice is to collect all DATA statements and place them
just before the end statement.

Each READ statement is of the form: READ sequence of variables and each DATA statement of
the form: DATA sequence of numbers

Examples:

150 READ X, Y, Z, X1, Y2, Q9
330 DATA 4, 2, 1.7
340 DATA 6.734E-3, -174.321, 3.14159265

234 READ B (K) W ¢
263 DATA 2, 3, 5, 17, 9, 11, 10, 8, 6, 4 T

10 READ R (I, J) T
440 DATA -3, 5, -9, 2.37, 2.9876, -437.234E-5 :
450 DATA 2.765, 5.5576, 2.3789E2

- “v.

When entering numeric values, remember that only numbers are put in a DATA statement and
that 15/7 and V3 are expressions, not numbers. AR e e e

PRINT Statement

The PRINT statement has a number of different uses and is discussed in more detail in Section
3. The common uses are

To print out the result of some computations

To print out verbatim a message included in the program
To perform a combination of a and b

To skip a line

poop

We have seen examples of only the first two in our sample programs. Each type is slightly
different in form, but all start with PRINT after the line number.

17

Examples of type a:

The first will print X and then, a few spaces to the right of that number, its square root. The
second will print five different numbers: X, Y, Z, B2 - 4AC, and eA-B, The system will com-
pute the two formulas and print them for you, as long as you have already given values to A, B,
C. It can print up to five numbers per line in this format.

Examples of type b:

Both have been encountered in the sample programs. The first prints that simple statement; the
second prints the three labels with spaces between them. The labels in 430 automatically line
up with three numbers called for in a PRINT statement - as seen in MAXSIN.

Examples of type c:

If the first has computed the value of X to be 3, the system will print out: THE VALUE @F X
IS 3. If the second has computed the value of X to be 625, the system will print out: THE
SQUARE RQ@T @F 625 IS 25.

Example of type d:

The system will advance the paper one lirie when it encounters this command.

G@ TQ Statement

There are times in a program when you do not want all commands executed in the order that
they appear in the program. An example of this occurs in the MAXSIN problem where the
system has computed X0, M, and D and printed them out in Line 85. We did not want the pro-
gram to go on to the END statement yet, but to go through the same process for a different
value of D. So we directed the system to go back to Line 10 with a G@ T@ statement. Each is
of the form G@ T line number.

Example:

18

IF—THEN or IF—G@ T Statement

There are times that we are interested in jumping the normal sequence of commands if a cer-
tain relationship holds. For this we use an IF--THEN statement, sometimes called a conditional

G@ TQ statement. Such a statement occurred at Line 40 of MAXSIN. Each such statement is
of the form

IF formula relation formula THEN line number or IF formula relation formula GO T®
line number

Examples:

Line 40 asks if the sine of X is less than or equal to M, and directs the system to skip to Line
80 if it is. Line 20 asks if G is equal to 0, and directs the system to skip to Line 65 if it is. In
each case, if the answer to the question is '"N@", the system will go to the next line of the
program. .

F@R and NEXT Statement

We already have encountered the F@R and NEXT statements in our loops and have seen that they
go together, one at the entrance to the loop and one at the exit, directing the system back to the
entrance again. Every F@R statement is of the form

F@R variable = formula T@ formula STEP formula

Most commonly, the formulas will be integers and the STEP omitted. In the latter case, a step
size of one is assumed. The accompanying NEXT statement is simple in form, but the variable
must be precisely the same one as that following F@R in the F@R statement. Its form is NEXT
variable. The variable following the word "F@R'" is called the index.

Examples:

Notice that the step size may be a formula (1/4), a negative number (-1), or a positive number
(2). In j:he example with Lines 120 and 235, the successive values of X4 will be . 25 apart, in
increasing order. In the next example, the successive values of X will be 8, 7,6,5 4,3. In

ghe ladstlilaxample, on successive trips through the loop, J will take on values -3, -1, 1, 3, 5, 1,
, an .

If the initial, final, or step-size values are given as formulas, these formulas are evaluated

only once, upon entering the F@R statement. The index variable can be changed in the body of
the loop; the exit test always uses the latest value of this variable.

19

If you write 50 F@R Z = 2 TQ -2 without a negative step size, the body of the loop will not be
performed, and the system will proceed to the statement immediately following the correspond-
ing NEXT statement. If you write 50 FOR Z = 1 T@ 1 without a step size, the body of the loop
will be executed once.

BASIC does not check for a step size of zero. It is possible to set up a loop with a step size
that at some time may become zero, and the result will be looping without end. If the step size
might give you problems in any program, include a test that will cause an exit from the loop on
finding a zero step size. For this and other reasons, manipulating the value of the index in the
body of the loop is not recommended.

In the sequence of program statements which follow, the loop with the index J is said to be
"nested' within the loop with the index I:

Nesting to a depth greater than 20 is not allowed.

DIM Statement

Whenever we want to enter a list or a table with a subscript greater than 10, we must use a
DIM statement to instruct the system to save us sufficient room for the list or the table.

Examples:

The first would enable us to enter a list of 35 items and the second a table 5 by 25.

END Statement

Every program must have an END statement, and it must be the statement with the highest
line number in the program. Its form is simple: a line number with END.

Example:

20

Section 3. ADVANCED BASIC

More About the PRINT Statement

The uses of the PRINT statement were described in Section 2, but we shall give more detail
here. Although the format of answers is automatically supplied for the beginner, the PRINT
statement permits a greater flexibility for the more advanced programmer who wishes a dif-
ferent format for his output.

The terminal line is divided into five zones of fifteen spaces each. Some control of these
comes from the use of the comma. A comma is a signal to move to the next print zone or if the
fifth print zone has just been filled, to move to the first print zone of the next line.

A closer grouping of numbers can be obtained by use of the semicolon. Numbers printed next
to each other by use of the semicolon will be in closest readable format. For example, if you
were to write the program

the terminal would print 1 at the beginning of a line, 2 at the beginning of the next line, and so
on, finally printing 15 on the fifteenth line. But, by changing Line 20 to read

you would have the numbers printed in the five print zones, reading

If you wanted the numbers printed in this fashion but more tightly packed, you would change line
20, replacing the comma with a semicolon.

The result would be printed

You should remember that a label inside quotation marks is printed just as it appears and also
that the end of a PRINT line signals a new line, unless a comma or semicolon is the last
symbol. When a label is followed by a semicolon, the label is printed with no space after it.

Thus, the instruction

21

will result in the printing of two numbers and the return to the next line, while

will result in the printing of these two values and no return—the next number to be printed will
occur in the third zone, after the values of X and Y in the first two.

Since the end of a PRINT statement signals a new line,

will cause the terminal to advance the paper one line. It puts a blank line in your output if you
want to use it for vertical spacing of your results, or it causes the completion of a partially
filled line, as illustrated in the following sequence of program statements:

This program will print B(1,1) B(1,2)...B(1,M) on one line if there is sufficient space. With-
out Line 140, the terminal would then go on printing B(2,1), B(2,2)...B(2,M) on the same line,
and even B(3,1), B(3,2), etc., if there were room. Line 140 directs the terminal after printing
B(1,1), B(1,2),...the values corresponding to I = 1, to start a new line and to do the same
thing after printing the values corresponding to I = 2, etc.

The following rules for the printing of numbers will help you in interpreting your printed
results:

1. If a number is an integer, the decimal point is not printed. If the integer contains
more than nine digits, the terminal will give you the first digit, followed by (a) a
decimal point, (b) the next five digits, and (c) write E followed by appropriate integer.
For example, it will write 32, 437, 580, 259 as 3.24376 E 10.

2. For any decimal number, no more than six significant digits are printed.

3. For a number less than 0.1, the E notation is used unless the entire significant part
of the number can be printed as a six-decimal number. Thus, .03456 means that the
number is exactly .0345600000, while 3.45600 E - 2 means that the number has been
rounded to .0345600.

4. Trailing zeros after the decimal point are not printed.
The following program, in which we print out the first 45 powers of 2, shows how numbers are
printed. The semicolon ""packed" form sometimes causes the last few characters in a number

to be printed on top of one another. BASIC checks to see if there are 12 or more spaces at the
end of a line before printing a number there, but some numbers require 15 spaces.

22

If you are using a wide carriage terminal (more than 75 characters per line) and wish to print
more than 75 characters per line, you should use the MARGIN statement in the following manner

line number MARGIN # file designator, margin value

or

line number MARGIN # file designator: margin value

When the system receives a margin value of 0, the margin at the terminal is assumed to be
infinite.

The TAB Function

The TAB (TABULATE) function permits you to specify tabulated formatting. For example, TAB
(17) would cause the teletypewriter to move to column 17. Positions on a line are numbered
0 through 74; 75 is assumed to be position 0 again.

TAB may contain any formula as its argument and may be the first argument after PRINT. The
value of the formula is computed, and its integer part is taken. This in turn is treated modulo
75, provided there is no preceding MARGIN command, to obtain a value 0 through 74. The
teletypewriter is then moved to this position. If it already has passed this position, the TAB is
ignored. For example, inserting the following line in a loop:

causes the X-values to start in column 0, the Y-values to start in column 12, and the Z-values
in column 27.

Combined with appropriate use of the MARGIN command, you may TAB up to 158 characters. If
all of the digits in a number and one additional blank cannot be printed on one line, the entire
number will be printed on the next line starting in column 0.

23

Formatted Output

PRINT USING and Image Statements

The PRINT USING and image statements provide formatted line output of up to 158 characters
per line, not including carriage return and line feed, without using the MARGIN statement.

The PRINT USING statement is in one of the following forms:

PRINT USING line number, output list

or

PRINT USING string variable, output list

In the first form the line number is that of the image statement to be used in formatting the
output line. In the second form, the image statement is a character string stored in the desig-
nated string variable.

The output list consists of elements to be placed in the output line. The elements may be
numbers, expressions, string constants, string variables, or functions.

Punctuation (delimiter) between elements in the list may be either commas or semicolons.

Each PRINT USING statement begins in the first field in the referenced image statement, even
if a previous list has not used all fields in that image statement; it also starts a new line of
output. If there are more data elements than replacement fields, the image is reused, starting
with the first replacement field, on a new line.

The form of the image statement is

line number: line image

where the line number is that in a PRINT USING statement, and the line image consists of for-
mat control characters and printable constants.

An image statement may be assigned to a string variable in the following way:

LET string variable="1line image"

Format control characters are

’ (Apostrophe) a one-character field that is filled with the first character of an alpha-
numeric string regardless of the string length.

E A continuation character which must be preceded by the apostrophe, for example,
'EEE...E. This specifies left justification of the data within the field if the data
does not fill the field, and field widening to the right if the data overflows the field.

L A continuation character which must be preceded by the apostrophe, for example,

'LLL...L. This specifies left justification of the data within the field. If the output
element overflows the field, the field is not widened and the element is truncated on
the right. P

R A continuation character which must be preceded by the apostrophe, for example,
RRR...R. This specifies right justification of the output element within the field.
If the element overflows the field, it is truncated on the right.

24

C A continuation character which must be preceded by the apostrophe, for example,
'CCC...C. This specifies centering the output element within the field. If the
element overflows the field, it is truncated on the right.

(Pound sign) the replacement field for a numeric character.
MM (Four up-arrows) scientific notation for a decimal field.

$ (Dollar sign) the replacement field for a dollar sign. When placed at the beginning
of a decimal or integer field, it causes a dollar sign to be printed to the left of the
numeric data in that position.

All other characters are treated as printable constants.

The image consists of one or more replacement fields. Together these form a pictorial layout
of the line to be printed. Every data element in the output list replaces a replacement field in
the image statement.

There are six types of fields:

Integer fields
Decimal fields
Exponential fields
Dollar sign fields
Alphanumeric fields
Literal fields

Integer Fields
The following rules apply to integer fields
¢ An integer field is composed of pound signs (#).

® If the number overflows the field, an asterisk is printed and the field is widened to
the right.

® Numbers in an integer field are right-justified and truncated if not integers.

® Any number equal to or greater than 2427 is converted according to the format
A

® The sign of the number is included in the field width.

Example:

Example of image statement assigned to string variable:

Decimal Fields

The following rules apply to decimal fields:

A decimal field is a string of pound signs (#) with a decimal point either preceding,
embedded, or terminating.

The number will be rounded and truncated to the number of places specified by the

ame—

pound signs following the decimal point.

The number is right-justified, and the decimal point is placed as specified in the
field definition.

When the number overflows the field, an asterisk is printed in the leftmost field
position, and the field is widened to the right.

Eight digit accuracy is assured, with nine digit accuracy possible if all digits,
excluding the decimal point, are less than 2427 (134217728).

Exponential Fields

The following rules apply to exponential fields:

Example:

An exponential field is a decimal field followed by four up arrows, 4444, which re-
serve a place for the exponent.

The pound signs preceding the period represent the factor by which the exponent will
be adjusted.

The number will be rounded in the same manner as decimal fields.
At least one pound sign must precede the period.

The leftmost pound sign reserves a position for the sign of the number, minus if
negative, blank if positive.

Dollar Sign Fields

The following rules apply to dollar sign fields:

A dollar sign field is a string of dollar signs ($) followed by either an integer field or
a decimal field.

Dollar signs may be placed only to the left of the decimal point. Dollar signs are
equivalent to pound signs with the exception that a dollar sign will appear to the left
of the numeric.

Only one dollar sign will be printed out. It will be floated to the right until either it
is adjacent to the number, or the next position in the image is a decimal point. In
the following example, the dollar sign in the first column does not float; the dollar
sign in the second and third columns do float.

27

Example:

Alphanumeric Fields

The following rules apply to alphanumeric fields:
e The apostrophe is used to indicate the leftmost position of the field.
e A continuation character is used to continue the field to the right.

e Any one of the characters E, L, R, and C may be used to continue the field, but they
may not be mixed in a single field. 200 p 24

Example:

Literal Fields

A literal field is composed of characters or character strings that are not string variables or
format control characters. It will appear on the print line exactly as it appears in the image.

28

= e e

Example:

Functions and Statements

Three functions were listed in Section 2 but not described. These are INT, SGN, and RND.
Also there are twelve other functions that will sometimes be useful: TIM, CLK$, BCL, DATS$,
IDA HPS, VPS, LIN, ASC, STR$, VAL, and LEN.

Integer Function

The INT function is the function which frequently appears in algebraic computation [x], and it
gives the greatest integer not greater than x. Thus INT(2.35) = 2, INT(-2.35) = -3, and

INT(12) = 12. i ’,,w‘
One use of the INT function is to round numbers. We may use it to round to the nearest inte- fr/ ’ (
ger by asking for INT (X + .5). This will round 2.9, for example, to 3, by finding, e LU

S

You should convince yourself that this will indeed do the rounding guaranteed (it will round a
number midway between two integers up to the larger of the integers).

It also can be used to round to any specific number of decimal places. For example, INT
(10*X + .5)/10 will round X correct to one decimal place, INT (100*¥X + .5)/100 will round X
correct to two decimal places, and INT (X*10 4 D + .5)/10 4 D will round X correct to D
decimal places.

Sign Function

The function SGN (argument) yields +1, -1, or 0 depending on the value of the argument. These
are the options:

Function Argument Value Yield
SGN Zero 0
SGN Positive, not zero +1
SGN Negative, not zero -1

29

Examples:

NOTE: (-0) is not negative.
RND Function

The function RND produces a random number between (not including) 0 and 1. No argument is
required. For example you may type:

If we want the first twenty random numbers, we write the program below and get twenty six-
digit decimals.

On the other hand, if we want twenty random one-digit integers, we could change Line 20 to read

30

We can vary the type of random number we get. For example, if we want 20 random numbers
ranging from 1 to 9 inclusive, we could change Line 20 as shown

or we can obtain random numbers which are the integers from 5 to 13 inclusive by changing
Line 20 as in the example which follows:

In general, if we want our random numbers to be chosen from the A integers of which B is the
smallest, we would call for

RANDOMIZE Statement

The RANDOMIZE (or RANDOM) statement can be used in conjunction with the random number
function to induce variance. It augments the function RND by causing it to produce different
sets of random numbers. For example, if this is the first instruction in the program using
random numbers, then repeated program execution will generally produce different results.
When this instruction is omitted, the "'standard list'" of random numbers is obtained.

It is suggested that a simulation model should be debugged without RAND@M, so that you always
obtain the same random numbers for test runs. After your program is debugged, you may
insert

before starting execution runs. The abbreviated form RAN is permissible.

TIM Function

The TIM function provides the elapsed execution time in seconds.

31

Example:

The execution time may be assigned a variable name.

Example:

The execution times provided by the TIM function will not agree with the total time printed out
at the end of a program run. This is so because TIM provides only execution time, but the total
time includes compilation, execution, and termination times.

CLKS$ Function
The CLKS$ function provides the time of day, based on a 24-hour clock, as a string.

Example:

This program will print the time of day in the form

10:34XXX

where XXX is the time zone.
The CLK$ function may be printed without assigning it to a string variable.

32

‘Example:

will print out the time of day as a string, exactly as in the previous example.

BCL Function

The function BCL returns the time of day in hours and decimal fractions of hours based on a
24-hour clock.

Example:

The following program sequence was executed at 11:02:

The output returned was

DAT$ Function

The DAT$ function provides the calendar date as a string.

Example:

will print the date in the form

Like the CLKS$ function, the DAT$ function need not be assigned to a string variable.

Example:

will also print the date, exactly as in the previous example.

33

IDA Function

The function IDA returns the date in integer form YYMMDD, where YY represents the last two
digits of the year, MM represents two digits for the month, and DD represents two digits for
the day.

Example:

The following program sequence was executed on 16 September 1970:

The output returned was

This reverse order is useful for sorting.

HPS Function

The form of the HPS function is
HPS (file designator)

and it gives the character position in the current line of the file being read or written, starting
after the line number.

Example:

The program

The character position when the HPS(0) statement was reached was 71. A zero file designator
refers to the teletypewriter.

The character position may be assigned a variable name.

34

Example:

VPS Function
The form of the VPS function is
VPS (file designator)
and gives the current number of lines in a file that have been read or written.
Example:

The program

prints out

LIN Function

The form of the LIN function is

LIN (file designator)
35

and provides the last line number encountered in reading from or writing to a file. The value
provided depends on the current mode of the-file (_READ OR WRITE).

Example:

This program will print out the last line number written to file A:

The listing of File A

verifies that the last line number in the file is 190.
A variable may be assigned the value of the function LIN.

Example:

In this program, the variable named A is assigned the value of LIN(1). The program when run
would produce the same results as the previous example.

36

ASC Function
The form of the ASC function is
ASC (character) or ASC (abbreviation)

and it provides the numeric value of the specified ASCII character or abbreviation for nonprinting
characters.

Example:

The program

will produce output of

which are the numeric representations of the specified characters, ?, carriage return, line
feed, and alphabetic character R.

A variable may be assigned the value of the function ASC.

Example:

This program will assign the variable named C the numeric representation of the ASCII carriage
return. The program when run will print out.

STR$ Function

The STR$ function has the form
STR$(N)
where N is a number. The function produces a string corresponding to the value of the number

N.
37

Example:

The program

will print out, if the value 12 is entered when input is requested, the string

Example:

The program

produces the output

In this example the number N, computed by the program, is converted to a string.

VAL Function
The form of the VAL function is
VAL(SS)

where S$ is a proper number. This function produces a number corresponding to the value of
the string represented by S$. This allows string variables to be used in arithmetic expressions.

Example:

The program

38

will give output of

for Q and B, respectively.
Example:

The program

will produce, with the input 5E5, the corresponding number

If the string does not represent a number, an error message is printed out.
LEN Function
The form of the LEN function is

LEN(X$)

where X$ is the name of any string. The function gives the number of characters in the speci-
fied string. The value of LEN may be assigned to a variable or used directly.

Example:

The program

39

Example:

The program

produces

UN@$ Function
The function UN@$ returns the 8-character user number of the current user.

Example:

If the current user number, returned by UN@S, is not ABC99999, the current user will not be
allowed further access to the program.

USE Function

The function USE returns the current number of milli-computer resource units (CRU) for the
current run.

Example:

In the following program sequence, a table of numbers, their squares, and their cubes will be
printed for values 1 to 1000 unless 115 milli-CRUs are consumed before completion of the table.

When the program was executed, seven sets of values were printed before the program consumed
the designated number of units. The program then stopped.

40

DEF Statement

In addition to the standard functions, you can define other functions which you except to use a
number of times in your program by use of a DEF statement. The name of the defined function
must be three letters, the first two of which are FN. Hence, you may define up to 26 functions,
e.g., FNA, FNB, etc.

If a function can be defined in a single line, it takes the following form:

Later on you can call for various values of the function by FNE(.1), FNE(3.45), FNE(A + 2),
etc. Such a definition can be a great labor saver when you want values of some function for a
number of different values of the variable.

Each function may have zero, one, two, or more variables, providing the definition fits on one
line. For example, we may type

The DEF statement may occur anywhere in the program, and the expression to the right of the
equal sign may be any formula which can ge fitted onto one line. It may include any combination
of other functions, including ones defined by different DEF statements, and it can involve other
variables besides the one denoting the argument of the function. Thus, assuming FNR is defined
by

if you have previously assigned values to Y and Z, you can ask for FNR (2.175). You can give
new values to Y and Z before the next use of FNR.

If a function requires more than one line for its definition, introduce the function with a DEF
statement containing no = and end the definition with a statement FNEND. For example;

41

The function will assume the last value assigned to the function name, i.e., Lines 20 or 40.

Multiple line DEF's may not be nested, and there must not be a transfer from inside the DEF
to outside its range, nor vice-versa.

Variables other than the arguments can be used and assigned values in multistatement functions.
These variables may be global, which means that they can be used both inside and outside the
function definition on either side of the equals sign; or they may be local, which means they are
defined only within the function definition. Normally they are global. To specify a variable as
being local, list the variable name in the DEF statement following the function name and argu-
ments, for example,

P and Q are specified as local variables,and bear no relation to P or Q used outside of the func-
tion definition.

G@SUB and RETURN Statements

When a particular part of a program is to be performed more than one time, or possibly at
several different places in the over-all program, it is most efficiently programmed as a sub-
routine. The subroutine is entered with a GOSUB statement, where the number is the line
number of the first statement in the subroutine. For example,

directs the system to Line 200, the first line of the subroutine. The last line of the subroutine
should be a RETURN statement directing the system to return to the earlier part of the program.
For example,

will tell the system to go back to the first line numbered greater than 80 and to continue the pro-
gram there.

42

The following example, a program for determining the greatest common divisor (GCD) of three
integers using the Euclidean Algorithm, illustrates the use of a subroutine. The first two num-
bers are selected in Lines 30 and 40, and their GCD is determined in the subroutine, Lines 200-
310. The GCD just found is called X in Line 60, the third number is called Y in Line 70, and
the subroutine is entered from Line 80 to find the GCD of these two numbers. This number is,
or course, the greatest common divisor of the three given numbers and is printed out with them
in Line 90.

You may use a G@SUB inside a subroutine to perform yet another subroutine. This would be
called "nested G@SUBs." In any case, it is absolutely necessary that a subroutine be left only
with a RETURN statement; using a G@TQ or an IF-THEN to get out of a subroutine will not work
properly. You may have several RETURNS in the subroutine. The first RETURN statement
executed in a subroutine causes a return to the earlier part of the program.

You must be very careful not to write a program in which a GPSUB appears inside a subroutine
which refers to one of the subroutines already entered. (Recursion is not allowed!)

43

ON Statement

The IF ... THEN statement discussed in Section 2 allows a two-way conditional switch in a
program. The @N statement provides a multiple switch. For example, consider the following:

If X = 1 the program branches to line number 100.
If X = 2 it goes to line 200.
If X = 3 it goes to line 150.

Any formula may replace X and there may be any number of line numbers in the instruction
providing it fits on one line. The value of the formula is computed and its integer part taken.
If this equals 1, the program transfers to the first specified number on the list.

If the integer part equals 2, the program transfers to the second number, and so forth. If the
integer part is less than 1 or larger than the number of line numbers specified, an error
message is printed.

Note the use of @N - GO T@ in line 120 of the following example:

INPUT Statement

There are times when it is desirable to have data entered during running of a program. This
is particularly true when one person writes the program and enters it into memory, and other
persons are to supply the data. This may be done by an INPUT statement, which acts as a
READ statement but does not draw numbers from a DATA statement. If, for example, you
want the user to supply values for X and Y into a program, you will type

44

before the first statement which is to use either of these numbers. When it encounters this
statement, the system will type a question mark. The user types two numbers, separated by a
comma, presses the return key, and the system goes on with the rest of the program.

Frequently an INPUT statement is combined with a PRINT statement to make sure that the user
knows what values to put in. You might type

and the system will type

Without the semicolon at the end of Line 20, the question mark would have been printed on the
next line.

Data entered via an INPUT statement is not saved with the program. Furthermore, it may take
a long time to enter a large amount of data using INPUT. Therefore, INPUT should be used
only when small amounts of data are to be entered, or when it is necessary to enter data during
the running of the program such as with game-playing programs.

CHAIN Statement

The CHAIN statement allows the user to stop execution of the current program and begin com-
pilation and execution of another program without intervention. It has the same effect as giving
the commands STOP, PLD, a program name, and RUN. The form of the statement is

CHAIN "new file name" or CHAIN X$
The name of the file to be accessed must be enclosed in quotation marks unless it is a string

variable. The file containing the CHAIN statement and the file to be accessed must be saved
files.

Example:

In this example, the program BARBI chains to the program BARB2. If BARBI, the current
file, had not been saved, the error message

45

would have been transmitted to your terminal. If the file BARB2, to which-you were chaining,
had not been saved, the error message

would have been transmitted to your terminal, and the copy of BARBI1 in working storage would
be scratched. As a result, it is advisable to save all files containing CHAIN statements prior to
execution to avoid loss of the file.

In the preceding example, when the system encounters Statement 10 in the program BARBI, it
will transfer BARBI1 out of working storage, and load and execute BARB2. The user must call
BARBI1 again if he wishes to make corrections or additions to that file.

The CHAIN statement, combined with the statements that permit reading from and writing to
files, provides greate flexibility with respect to program size. If the program BARB and its
associated data exceeded the working storage size, BARB can be divided into two programs,
BARBI1 and BARB2. Thses two programs, each about half the size of BARB, can be executed
in sequence by using the CHAIN statement. However, the CHAIN statement does one thing and
only one thing-- it takes BARBI out of working storage, puts BARB2 into working storage, and
executes BARB2. It does not allow the user to chain to a specific line of a file, nor does it save
the values of variables in BARBI for later use by BARB2. This can be overcome by the use of
files. Any program variables generated, manipulated, or otherwise provided by BARB2 and
needed by BARB2 can be written to a file, for example BARBF, by BARB1 and read from the
same file by BARB2.

Example:

The program BARB2 would contain the following statements:

STQ@P Statement

ST@P is equivalent to GPTP xxxxx, where xxxxx is the line number of the END statement in the
program. It is useful in programs having more than one natural finishing point. For example,
the following two program portions are exactly equivalent.

REM Statement

REM provides a means for inserting explanatory remarks in a program. The system completely
ignores the remainder of that line, allowing the programmer to follow the REM with directions
for using the program, with identifications of the parts of a long program, or with anything else
that he wants. Although what follows REM is ignored, its line number may be used in a G@SUB,
IF-THEN, G¢ T@, or N-G@ T@ statement.

Explanatory remarks may be located following a statement on a line, by using the character
"' ", Anything on the line following the " ' ' will be treated as an explanatory remark. For
example, the statement

includes the remark INITIALIZE Y TO ONE without affecting the running of the program.

RESTQRE Statement

Sometimes it is necessary to use the data in a program more than once. The REST@RE state-
ment permits reading the data as many additional times as it is used. Whenever RESTQ@RE is
encountered in a program, the system restores the data block pointer to the first number. A
subsequent READ statement will then start reading the data all over again. A word of warning—
if the desired data is preceded by code numbers or parameters, superfluous READ statements
should be used to pass over these numbers. As an example, the following program portion

47

reads the data, restores the data block to its original state, and reads the data again. Note the
use of line 570 to ""pass over' the value of N, which is already known.

TRACE ¢N, TRACE @FF Statements

TRACE ON and TRACE QFF statements may be useful in debugging programs. The TRACE @N
statement causes the line number of each subsequent statement that is executed to be printed
out. The TRACE QFF statement causes the printing out of line numbers to stop.

Example:

TRACE @N may be used without TRACE @FF.

48

Example:

Matrices

Although you can work out for yourself programs which involve matrix computations, there is
a special set of statements for such computations. These statements must start with the word

MAT. They are

MAT READ A,B,C,...

MAT PRINT A,BC,...

MAT B=A

MATC=A+B

MATC=A-B

MATC=A*B

MAT C = INV (A)
MAT C = TRN (A)

MAT C = (K) *A

MAT C = CON

Read the matrices A,B,C,...., their dimensions having
been previously specified. Data is read in row-wise sequence.

Print the matrices A,B,C,..., with A and C in the regular
format, but B closely packed.

Set the matrix B equal to the matrix A.

Add the two matrices A and B and store the result in matrix
C.

Subtract the matrix B from the matrix A and store the result
in matrix C.

Multiply the matrix A by the matrix B and store the result in
Matrix C.

Invert the matrix A and store resulting matrix in C.
Transpose the matrix A and store the resulting matrix in C.
Multiply the matrix A by the value represented by K. K may
be either a number or an expression, but in either case it

must be enclosed in parentheses.

Each element of matrix C is set to one. 49

MAT C = ZER Each element of Matrix C is set to zero.

MAT C = IDN The diagonal elements of matrix C are set to one's yielding an
identity matrix.

MAT INPUT V The input of a vector is called in.

Special rules apply to the dimensioning of matrices which occur in MAT instructions. DIM
statements indicate that the maximum dimension of a matrix is to be. Thus, if we write

then M may have up to 20 rows and up to 35 columns. If a matrix reference occurs without a
DIM statement, a 10x10 matrix is established.

The actual dimension of a matrix may be determined either when it is first set up, or when it is
computed. For example,

reads a matrix M of the dimension previously declared in a DIM statement. On the other hand,

reads a 17x3 matrix providing sufficient space has been saved for it.
Four of the MAT statements explicitly accomplish redimensioning:

MAT READ C (M,N)
MAT C = ZER (M,N)
MAT C = CON (M,N)
MAT C = IDN (N,N)

The first three statements would specify matrix C as consisting of M rows and N columns. The
fourth statement would specify matrix C as a square matrix of N rows and N columns. These
same instructions may be used to redimension a matrix during running. A matrix may be re-
dimensioned to either a larger or a smaller matrix provided the new dimensions do not require
more space than was originally reserved by the DIM statement. It is not possible to redimen-

sion a matrix within a multiline defined function. To illustrate, assume the following statements
exist:

From these statements observe that the DIM statement reserves sufficient storage to accom-
modate three matrices, each consisting of 64 elements. The initial MAT READ specifies the
dimensions of both matrices A and B as two rows and two columns. The MAT READ also reads
the number of values required by the dimensions into the storage which was reserved by the DIM
statement. The MAT READ reads the values in row-wise sequence. In the initial MAT READ,
the elements in order read are A(1,1), A(1,2), A(2,1), A(2,2), B(1,1) B(1,2), B(2,1) and
B(2,2). (Matrix statements use 1 to n subscripting, not 0 to n.)

Statement 60 illustrates the use of ZER to specify dimensions and to zero the elements of the
matrix C. Statements 100 and 110 illustrate redimensioning: Matrix A is redimensioned as
an eight-row, eight-column identity matrix, and matrices B and C are redimensioned as four-
row, four-column matrices into which data is to be read.

While the combination of ordinary BASIC instructions and MAT instructions makes the language
much more powerful, you must be very careful about dimensions. In addition to having both a
DIM statement and a declaration of current dimension, you must be careful with the MAT state-
ments. For example, a matrix product MAT C = A * B may be illegal for one of two reasons:
A and B may have dimensions such that the product is not defined, or even if it is defined,

C may not have reserved enough space for the answer. In either case, a DIMENSION ERROR
message results.

Matrices consisting of a single row or single column of elements, i.e., vectors, are per-
missible in MAT instructions. As is true with all other matrices, the dimensions for such
matrices should be explicitly stated before use in a MAT instruction. Thus,

illustrates the requirements for multiplying a (3x3) matrix by a (3x1) matrix (vector). Column
vectors should always be considered as (nx1) matrices, and row vectors must always be con-
sidered as (1xn) matrices.

The same matrix may occur on both sides of a MAT equation in case of replacement, addition,
subtraction, or constant multiplication; but not in any of the other instructions. Legal forms
are

MAT A =B

MATA=A+B

MAT A = (2.5)*A

MATA=A-B
Illegal forms are

MAT A = B*A

MAT A = INV (A)
MAT A = TRN (A)
MATA=A+B-C

51

The last example is an attempt to use more than one matrix operator in a MAT statement. Two
MAT statements must be used to do two matrix operations.

The determinant of a matrix can be obtained by first inverting the matrix, and then using DET.
For example,

The determinant of A is stored in D. You may decide whether the determinant was large enough
for the inverse to be meaningful.

Attempting to invert a singular matrix does not cause the program to stop, but DET is set equal
to zero.

Two programs follow which illustrate some of the capabilities of the MAT instructions. In the
first example, the values for M and N are read. Using these values as indexes, Statement 30
sets the dimensions for matrices A, B, D, and G, respectively. Also, the values for the
elements of these matrices are read. In sequence then, the dimensions of matrix C are specified
and the elements set to zero (Statement 40). Matrix A is printed (Statement 60); matrix B is
printed (Statement 80). The sum of matrices A and B is found and stored in C (Statement 90).
Matrix C is printed (Statement 110). The dimensions for matrix F (a vector) are set and the
elements set to zero (Statement 120). The product of matrices C and D is computed and stored
in F (Statement 130). The dimensions for matrix H (single value) are specified, and the elements
set to zero (Statement 140). Finally the product of matrices G and F is found and stored in H and
printed (Statements 150, 170).

In tne second example, a value N is read which determines the order of the Hilbert matrix seg-
ment to be computed, stored, and printed. Next this matrix is inverted and printed. Finally
the Hilbert matrix is multiplied by its own inverse, and the resulting product matrix is printed.
Notice that in the example N = 2 then N = 3 is run, demonstrating the ability to redimension
larger during running.

The statement

will call for the input of a vector. The number of components in the vector need not be specified.
Normally the input is limited by having to be typed on one line. However if you end the line of
input with & (before carriage return), the machine will ask for more input on the next line. Note
that, although the number of components need not be specified, if we wish to put in more than 10
numbers, we must save sufficient space with a DIM statement. After the input NUM will equal
the number of components, and V(1), V(2),..., V(NUM) will be the numbers entered. This
allows variable length input. For example,

allows the user to type in sets of numbers, which are averaged. The program takes advantage
of the fact that zero numbers may be put in, and uses this as a signal to stop. Thus, the user
can stop by simply pushing ''carriage return' on an input request.

Alphanumeric Data and String Variables

Alphanumeric data, names, and other identifying information can now be handled in the BASIC
language using string variables. You can input, store, compare and output alphanumeric and
certain special characters.

A STRING is any sequence of alphanumeric and certain special characters not used for control
purposes in the system.

STRING SIZE is limited to 119 valid characters.

Any variable followed by a "$" represents a string. For example: A$, B$. A subscripted
string variable refers to a particular string in a list of strings. For instance, B$(4) would refer
to the fourth string in the B$ list.

Let's consider the BASIC statements where strings can be used.

DIM Statement

Strings can be set up as one-dimensional lists only. Requests for two-dimensional lists are not
allowed.

Examples:

In Statement 10, only C$ and A$ are string variables. R$, as dimensioned in Statement 20,
will set aside space in memory for 35, 119 character lists. Any or all of these strings may be
less than 119 characters.

LET Statement

Strings and string variables may appear in only two forms of the LET statement. The first is
used to replace a string variable with the contents of another string variable:

Example:

and the second is used to assign a string variable:

Example:

Arithmetic operations may not be performed on string variables. Requests for addition, sub-
traction, multiplication, or division involving string variables produce an error message.

IF—THEN Statement

Only one string variable is allowed on each side of the IF-THEN relation. All of the six
standard relations (=<>,<,>,<=,>=) are valid. When strings of different lengths are compared,
the shorter string is filled with blanks so that it is the same length as the other string, then the
comparison is made.

Examples:

CHANGE Statement

The CHANGE statement is used to convert string characters into numerical "code" characters
or the reverse. Refer to Publication Number 711223 (Command and Edit Systems) for the
decimal codes for each printing and non-printing character.

In the following example the instruction CHANGE A$ TO A in Line 30 has caused the vector A
to have as its zero component the number of characters in the string A$ and to have code num-
bers in the other components.

To reverse the process and convert code characters to string characters, you must specify a
value for the zero component. The value should be equal to the number of stored code characters
you want to convert.

The following example reverses the process of the previous program. Note that the zero com-
ponent is given the value 26 by Line 50. :

56

The preceding program will produce the string

DATA, INPUT, and MAT INPUT Statements

In the DATA statements, numbers and strings may be intermixed. Numbers will be assigned
only to numerical variables, and strings only to string variables. Strings in DATA statements
are recognized by the fact that they start with a letter. If a string does not start with a letter,
or contains a comma, it must be enclosed in quotes. For example,

The only convention on INPUT is that a string containing a comma must be enclosed in quotes.

With a MAT INPUT, a string containing a comma or an ampersand must be enclosed in quotes.
For example:

is the correct format for a response to a MAT INPUT AS.

In any of the three ways of getting string information into a program - DATA, INPUT, or
MAT INPUT - leading blanks are ignored unless the string, including the blanks, is enclosed
in quotes.

If in doubt use quotes; they will not cause any errors. g/

READ and PRINT Statements

Strings may be read and printed in the usual manner. For example,

will print the word "TIME-SHARING. " Note that the effect of ';' in the print statement is con-
sistent with that discussed in the section on PRINT; that is, w1th alphanumeric output the

57

semicolon causes close packing whether that output is in quotes or is a string variable. (In con-
trast, recall that with numeric output the semicolon causes space to be left between the numbers
printed.) Commas and TAB's may be used as in any other PRINT statement. The loop

will read a list of 12 strings. In place of the READ and PRINT, the corresponding MAT instruc-
tions may be used for lists. For example, MAT PRINT M$; will cause the elements of the list
to be printed without spaces between them.

As usual, lists are assumed to have no more than 10 elements; otherwise, a DIM statement is
required.

Note: Numeric and string data are kept in two separate blocks, which act independently of each
other. The command RESTORE will restore both numeric and string data. RESTORE* will re-
store only the numeric data. RESTORES$ will restore only the string data.

Data Files

Data files may be used with MARK II BASIC language. These files, (if ASCII), may be created
at your terminal, transmitted to the system, saved, listed, and edited. An extensive set of

editing commands for use with files is described in the Command and Edit Systems Reference
Manual, publication number 711223.

Under program control you may read data from files or write data to files for subsequent use by
the same or other programs. The file types, access capabilities, methods of creating and using
files, and file manipulation capabilities are examined in the following paragraphs.

File Types

Files are classified by type--internal or external, ASCII* or binary.

An internal file is contained in the program which processes that file. Use of the READ and
DATA statements, described in Section 2, are examples of reading data from an internal file.

Use of the PRINT statement to create terminal output may be thought of as writing data to an
internal file.

An external file is not contained in the program which processes that file but rather is a file
saved in your catalog for subsequent use by another program.

An ASCII file contains data which is stored as a series of ASCII character codes. For example,
the word READ is stored as the four character codes for R, E, A and D.

A binary file contains data which is stored as a series of binary-coded representations of that
data. For example, the letter R is stored as 1010010.

Internal files must be ASCII files. External files may be either ASCII or binary.

*ASCII refers to the set of standard character codes established by the American National
Standard Code for Information Exchange.

58

File Access Capabilities

Files may be accessed either sequentially or randomly. A file is referred to as sequential
when access to any specific data element in the file is gained only by reading the file from the
beginning through to that data element. A file is referred to as random when you have selective
access to any data element in the file without reading through the file from the beginning to that
data element.

Only sequential access is available for ASCII files. Binary files may employ either sequential
access or random access.

Initial File Preparation

A data file must be created and saved in your catalog prior to execution of the program which
processes or uses that file.

ASCII Files

If a file of data input is to be used with the executing program, it must be prepared and saved
prior to execution. The word DATA is not required; simply type a line number, followed by the
input data, separated (delimited) by the comma (,). Although the comma is the standard
delimiter, you may specify a nonstandard delimiter with the DELIMIT statement (described
later in this section).

Example:

If the file is to be written during program execution, you must create and save the file prior to
program execution. To create a file for this purpose, refer to the system command CREATE
in the Command System Reference Manual, publication number 711223.

You may use all of the editing commands to access, list, and modify ASCII files.

Binary Files

To establish a binary file, you may use the CREATE command. To establish a binary random
file, you must use the CREATE command to specify the length of each record and the number
of records in the file.

Data may be placed in a binary file only under program control. Only a running program can
access and modify a binary file. You can obtain information about the file, e.g., file type,
length, by using the DESCRIBE command.

File Classification

A sequential file is classified as binary or ASCII by the format of the first WRITE statement
after the file is scratched. Once a file is so classified, all subsequent statements referring to
it must be consistent with that classification until the file once again is scratched.

It is important to emphasize that the distinction between binary sequential and ASCII sequential
is made solely by the nature of program statements referring to that file. If you refer toa
binary sequential file with a statement whose format is appropriate to ASCII sequential file, the

59

et

run will be aborted and you will receive an error message. The file, however, will remain
intact.

If you wish to reclassify a file, you must

e Scratch the file with a SCRATCH statement which conforms to the format appropriate
to the file's current classification.

e Use a WRITE statement which conforms to the format appropriate to the new classifi-
cation.
File Reference

Before files can be used in a program, their names must be specified in a file reference state-
ment. Valid forms of the statement are

FILES name 1; name 2;...;name n or FILES name 1, password 1;...;name n, password n

The file reference statement opens the named files. You can reference as many as eight files at
the same time in any program. If you reference more than eight, you will receive the error
message TOO MANY FILES.

Multiple FILES statements are permitted as long as the total number of files open at one time

oes not exceed eight.
1
File naming|must conform to the conventions for naming programs, except for these additional

restrictions:

e File names must not contain semicolons; they are interpreted as file separators.

e File names should not contain slashes (/), commas, or colons.

o Leading spaces are ignored.

e File names may not appear more than once in the same FILES reference statement.
An asterisk may be used in place of the file name in the FILES reference statement so that the
file may be designated at a later time with a FILE statement. The file used to replace the *
referenced file must already be saved in the same catalog. The * referenced file must be re-
placed with a saved file before the file can be referenced.

An example of the use of * referenced files appears with the description of the FILE statement.

File Designator

The file ‘designator is a numeric argument used in all file input and output statements. It selects
the file from the FILES reference statement to be used for the current operation.

For ASCII files the file designator is preceded by a pound sign (#). For binary files it is pre-

ceded by a colon. The file designator may be an integer, variable, subscripted variable, or an
arithmetic expression.

60

Example

For ASCII files For binary files
10 FILES' A;B;C;D 10 FILES A;B;C;D
20 READ #1,X 20 READ: 1,X

30 READ{#F,Y 30 READ% F,Y

40 READ #H(D), Z 40 READ:: H(D), Z
50 READ #M*N, T 50 READ : M*N, T

In Statements 30, 40, and 50 above, the value of the designator specifies the file to be used. For
example, if the value of F in Statement 30 is 2, a data item is read from file B.

If the value of a variable, subscripted variable, or arithmetic expression used as a file designator
is not an integer, the value is truncated to an integer and used as the designator.

FILE Statement

The identification of a file by a particular file designator may be changed within a program by
the use of the FILE statement. Valid forms of the statement are

For ASCII files For binary files
FILE #file designator, "file name"' FILE : file designator, "file name"
FILE #file designator: "file name"' FILE: file designator: "file name"

FILE #file designator, "file name, password" FILE : file designator, "file name, password"

FILE #file designator:"file name, password FILE: file designator:"file name, password"

The file name used in a FILE statement may be a regular file name enclosed in quotation marks,
an asterisk enclosed in quotation marks, or a string variable which may be subscripted. The
asterisk closes the designated file and invalidates the associated file designator, which may again
be validated by a subsequent FILE statement in the same program.

61

Example:

A file is opened when its name appears in a FILES reference statement or replaces another file
name or an * with a FILE statement. The FILE statement in Line 130 opens the file CFILE. In
effect, the FILES reference statement in Line 100 has become

A file which has been opened may not be opened again with a FILES reference statement or a
FILE statement unless it subsequently has been closed.

A file can be closed by replacing it with an asterisk (*) in a FILE statement, as in lines 125,
150, and 155. When Lines 100 through 155 have been executed, the FILES reference statement
has become, in effect,

When line 160 has been executed, the FILES reference statement has become

V/The limitation of eight fileg, mentioned in the discussion of the FILES reference statement,

refers to simultaneous access. The utilization of the FILE statement for closing files permits
access to more than eight files by a given program. When you have completed processing a
given file, simply close it and open another.

File Modes

All sequential files to be processed by BASIC are considered as being in either the read mode or
the write mode. A file in the read mode cannot be written. A file in the write mode cannot be
read. Initially, the FILES statement results in all files being set to read mode. Before you can
write to a sequential file, you must place it in the write mode by using a SCRATCH statement.
To change a file from write mode to read mode, use a RESTORE statement.

62

Reading Data
File READ

Valid forms of the file read statement are

For ASCII files For binary files
READ #file designator, input list READ :file designator, input list
READ #file designator:input list READ :file designator:input list

where the file designator is as previously described.

The input list consists of the variables, separated by commas, into which the data is to be read.
The list may contain nonstring and string variables, and any of them may be subscripted.

CAUTION: An IF END or IF MORE statement should be used to check for an end-of-file
condition when reading from an external file.

The following example shows the reading of three ASCII files, RFILE, RDATA, and STRING, by
the program READ.

Example:

For each execution of the READ statement, one value is read into the variable specified in the
input list. If the entire file has not been read, the data pointer will remain positioned following
the last read data item until additional statements designating that file are executed. For in-
stance, in the previous example, if in the program READ you added a statement

R,S, and T would have the respective values, 7, 8, and 9 assigned to them from the file RDATA.
Then the data pointer in RDATA would be positioned at 10, the next data item in the file. The
line number is not part of the data read by a READ statement.

Reading with INPUT Statement

An alternative method for reading data from an ASCII data file is provided by the INPUT state-
ment. Valid forms of the statement are

INPUT #file designator, input list or INPUT #file designator:input list

where the file designator and input list are as previously described.

When the input list is satisfied, the data pointer is moved to the beginning of the next line
(record)--before the line number.

Suppose that four data items are required of the input list by the INPUT statement, and that five
data items are on the line from which the data will be read. The four data items will be read
from that line, and the data pointer will be moved to the beginning of the next line. The fifth
data item will be ignored by subsequent INPUT or READ statements.

If six data items are required by the INPUT statement and only five items are on the line from
which the data will be read, the next line will be accessed for the sixth data item. The pointer
will then be moved to the beginning of the following line.

If READ and INPUT statements are intermixed, extreme care must be exercised with the location \/
of the data pointer. The READ statement moves the data pointer to the next data item regard-

less of whether it is on the current line or the next line. That is, the READ statement is data

item oriented and ignores line numbers if they are present. A READ statement, issued sub-

sequent to an INPUT statement, reads data from the beginning of the line which succeeds the

line accessed by the previous INPUT statement. An INPUT statement, issued subsequent to a

READ statement reads data, including a line number if present, from the beginning of the line

which succeeds the line accessed by the previous READ statement.

The INPUT statement, unlike the READ statement, does not ignore the line numbers of a file.
It treats the line numbers as items of data and in record ORIENTED (i. e, line oriented).

CAUTION: An IF END or IF MORE statement should be used to check for the end-of-file
condition.

Example

If file B contains

then the program

will produce output of the form

This happens because the line number is treated as part of the first data item. If file B
contained

with the line number being assigned to the variable name A. Thus, when using the INPUT state-
ment, you must include a delimiter immediately following each number in the file; otherwise,
the line number will be taken as part of the first data item on the line, with any embedded spaces
ignored. To avoide such an error, INPUT statements should be used primarily with files that
were written by the PRINT statement.

When using the INPUT statement to read data from a file with no line numbers or delimiters

(see Writing with PRINT Statement) » you must specify a blank as a delimiter so that the file
will be read correctly.

Examgle:

If file B contains

66

Reading Internal Data

Zero will be accepted as a file designator in the READ statement. A READ statement with zero
as a file designator refers to data contained inside the program in a DATA statement.

Example:

The program

will produce the following output:

There is an important difference between using a READ statement to read from a DATA state-
ment and using a READ statement to read from an external data file. When reading internally
from a DATA statement, string and nonstring variables in the input list need not have the
same order as string and nonstring variables in the DATA statement.

Example:

In both cases in the example, the data items will be read correctly, with A, B, and C having
values of 1, 2, and 3, and G$ and H$ having values of ABC and DEF.

However, when reading from an external data file, there must be a one-to-one correspondence
between string and nonstring items in the file and in the input list. Otherwise the run will be
aborted, and an INCORRECT FORMAT error message will be transmitted to your terminal.

67

The file MIX is correctly read. But if you change Line 20 to put all the nonstring variables
in the input list (A, B, and C) before the string variables (G$ and H$), the file cannot be read.

Example:

68

READ FORWARD Statement

The READ FORWARD statement allows you to search for the next number only, or the next
string only, when reading a binary file. Valid forms of the statement are

READ FORWARD: file designator, input list or READ FORWARD: file designator: input list

where the file designator is as previously described, and the input list consists of numeric vari-
ables, string variables, or numeric and string variables intermixed. When searching for a
numeric variable with READ FORWARD, all empty words and words containing string data are
skipped, and the next number in the file is read. When searching for a string variable with
READ FORWARD, all empty words and words containing numeric data are skipped, and the

next string in the file is read.

Writing Data
File WRITE

The form of the file write statement is

For ASCII files Fov binary files
WRITE #file designator, output list WRITE: file designator, output list
WRITE #file designator: output list WRITE: file designator: output list

where the file designator is as previously described.

The output list consists of variables, constants, or literals separated by commas or semicolons,
which are to be placed in the file. The variables may be either numeric or string, and may be
subscripted. WRITE #0 refers to the terminal.

Example:

The WRITE # statement generates one line of output unless the margin limit is exceeded or the
last output list item is followed by a comma or a semicolon. When the line limit is exceeded,
writing will continue on the next line with the next item of data. When the last item in the output
list is followed by a comma or a semicolon, subsequent writing occurs on the same line if space
is available. This arrangement permits listing the file on the terminal.

The WRITE # statement generates a file beginning with Line 100, and increments by 10 for each
additional line. The standard field delimiter, the comma, is used.

The format conventions of the regular PRINT statement apply to the WRITE # statement. The
comma and semicolon, used to separate data items in the output list, cause the data to be
written in regular or close-packed format. The TAB function can be used. But in counting for
tabbing, the line number is not included.

E:_cam ple:

The program, using the files DATA and STRING, produced the following output.

1

S
I

. o L7, . N . PV . - " o d P A
",','1"& TE = W ‘}51 SRR AN “ A B AN RPN LIS RSN ;ald QAL B “i ‘~9

A zero file designator used with a WRITE# statement will be accepted and cause the file to be
written to the terminal. In this case no SCRATCH statement is required, and no line numbers
are supplied.

70

Writing with PRINT Statement

An ASCII file may be written without line numbers or delimiters by using the PRINT statement.
Valid forms of the statement are

PRINT #file designator, output list or PRINT #file designator: output list

where the file designator and output list are as previously described.

The PRINT statement has the same result as the WRITE statement, except that no line numbers t/
or delimiters are written

Example:

With the file RDATA, the program FILE1 produces the output shown below:
File

In general, you cannot write to a file to which you have been printing, but you can print to a file
to which you have been writing.

Matrix Input/Output Statements

MAT READ Statement

Data in matrix form may be read from a file with the MAT READ statement. Valid forms of
the statement are

For ASCII files For binary files
MAT READ #file designator, input list MAT READ: f{ile designator, input list
MAT READ #file designator: input list MAT READ: f{ile designator: input list

where the file designator is as previously described and the input list contains matrix names.

The MAT READ statement reads from the designated file the matrices specified in the list.
Matrices in the list should have their dimensions specified, either in a DIM statement or in the
MAT READ statement itself. When no dimensions are specified, a 10 by 10 matrix is assumed.

The dimensions of a matix may be specified using the DIM statement or the MAT READ state-
ment. If no dimensions are specified, the system will assume a 10X10 matrix.

Example: (Dimensions not specified)

Since no dimensions are specified for X and Y, each is assumed to be a 10x10 matrix. If there
are not enough data items in file MATA to complete a 10x10 matrix, matrix X will be filled out
with zeros. The second matrix specified, Y, will then also be filled with zeroes. If MATA
contains

1,2,3,4,5,6,7,8,9
then the above program will read X as and will read Y as

12345617890 00000O0O0OO0OO0CDO
00000O0DO0OOO0ODO 00000O0O0O0OO0O
00000O0O0OO0OO0O 000000O0O0OO0O
000000O0O0OO0O 00000O0O0OOO0DO
0000O0O0OO0CBCOODO 0000O0OO0OO0OOOODO
00000O0OO0OOO0OO 00000O0OO0OO0OO0ODO
0000O0OOO0OCOOO 00000O0O0O0OO0OO
0000O0O0OO0OOO0OO 000000O0OO0OO0OO
0000O0O0OO0OO0OO0O 000000O0O0O0CO
0000O0O0O0OOODO 000000O0OO0OO0O

72

Example: (Dimensions specified in a MAT READ Statement)

Data is read from the file in row-wise sequence. A zero file designator causes the data to be .~
read from a DATA statement in the program.

Example:

Line 30 causes the reading of matrices C and D, dimensioned by line 20 as 3x3 and 5x7, from
file MATA. Since data is read row-wise, if MATA contains the integers

123 10 11 12 13 14 15 16
4 56 17 18 19 20 21 22 23
7809 24 25 26 27 28 29 30
31 32 33 34 35 36 37
38 39 40 41 42 43 44

MAT WRITE Statement

Data in matrix form may be written to a file with the MAT WRITE statement. Valid forms of
the statement are

For ASCII files For binary files

MAT WRITE #file designator, output list MAT WRITE: file designator, output list

MAT WRITE #file designator: output list MAT WRITE: file designator: output list

where the file designator is as previously described, and the output list contains matrix names.

The MAT WRITE statement writes the matrices specified in the output list to the designated
file. You cannot specify the dimensions of the matrices in the MAT WRITE statement.

Data is written to the file in row-wise sequence, and may be either packed or unpacked. A zero
file designator causes the data to be printed out by the terminal for ASCII files only.

73

In the following example, matrices X, Y, and Z are read from file A, and then written in matrix
form to files Band C. Matrices Y and Z are tightly packed, as specified by the semicolons fol-
lowing their names in the output list.

Example:

RESTORE Statement

The RESTORE statement causes the data pointer for the designated file to be repositioned at
the beginning of the file. The form of the statement is

For ASCII files For binary files
RESTORE #file designator RESTQRE: file designator

where the file designator is as previously described.

In addition to repositioning the data pointer, the RESTORE statement resets a sequential file

to the read mode. This makes it possible to read a file that has been previously written by the
same program, or to read the file more than once during a program run. The only action taken
on a random binary file is the repositioning of the data pointer.

In the following example, Line 40 will read the same values from the file DATA that were read

by Line 20. Line 30 sets file B to the read mode and the data pointer at the beginning of the
file.

Caution: If the last access to the designated file, prior to execution of the RESTORE state-
ment, was with a READ statement, an INPUT statement, issued subsequent to the RESTORE
statement, will begin reading data from the second line of the file.

Example:

SCRATCH Statement

Sequential files specified in a program are initially opened in the read mode. Before you can
write to a sequential file, it must be placed in the write mode. This can be done with the
SCRATCH statement. Valid forms of the statement are

For ASCII files For binary files
SCRATCH # file designator SCRATCH: file designator

where the file designator is as previously described. When a file is scratched, all data elements
contained in the file are erased.

If SCRATCH is used with a random binary file, the data pointer is positioned at the beginning of
the file, and all data elements are replaced with binary zeros.

DELIMIT Statement

The standard file delimiter used to separate items when reading from or writing to an ASCII file
is the comma. Sometimes it may be useful to have a nonstandard file delimiter. The DELIMIT
statement allows you to specify such a nonstandard delimiter. Valid forms of the statement are

DELIMIT #file designator, (character)

DELIMIT #file designator:(character)

DELIMIT #file designator, (abbreviation)

DELIMIT #file designator:(abbreviation)

where the file designator is as previously described, and the character is the nonstandard de-
limiter to be used. For nonprinting characters such as line feeds, the abbreviations used in the
USA standard Code for Information Interchange are employed: LF for line feed, CR for carriage
return, and so on. Whenever a file with a nonstandard delimiter is to be read or written, the
nonstandard delimiter must be specified in a DELIMIT statement before the READ or WRITE
statement. The PRINT statement, however, will write the specified file with no delimiters or
line numbers, regardless of whether a nonstandard delimiter or the comma is used.

Caution: Use of the ASCII characters for carriage return (CR) and null (NUL) is not
recommended.

Any FILE statement causes the delimiter for the named files to be once again the standard
comma(,). If, following a FILE statement that names a file, you want to continue using a
nonstandard delimiter with that file, you must so specify in a new DELIMIT statement.

Example:

75

In the above example, Line 20 is required to specify the nonstandard delimiter used in the file
DEL. If it were not present, an INCORRECT FORMAT message would be printed out upon the
attempt to execute the READ statement in Line 30.

A zero file designator will be accepted and interpreted to refer to your terminal.

76

Example:

APPEND Statement

Data may be added to sequential files with the APPEND statement. Valid forms of the statement
are

For ASCII files Fov binary sequential files
APPEND #file| designator APPEND:file designator

where the file designator is as previously described.

The APPEND statement causes the data pointer for the designated file to be located after the
last item of data in the file, and sets the file to the write mode. Use of APPEND allows you to
call and write to files without losing data previously saved in that file.

MARGIN Statement

The MARGIN statement enables you to specify the rightmost character position for a designated
ASCII file. Valid forms of the statement are

MARGIN #file designator, expression or MARGIN #file designator:expression

where the file designator is as previously described, and the expression is evaluated to deter-
mine the value at whjch the right margin is to be set.

The integer part of the expression's value is taken. For files other than the terminal, the margin
size cannot exceed 118. If a greater value is used, a margin of 118 will be set. A margin size
of zero will result in a margin of 118 being set for files other than the terminal. For the ter-
minal, if the value is$ 0 the margin is assumed to be infinite.

The following program will write file A with the right margin set at character position 25.

7

Example:

If Line 30 in the above example were

then the value of the expression C*D would determine the right margin for file A. The integer
part of the value is taken. If in the example the value of C*D is 28.365, the margin in file A will
be set to 28.

If you are using a wide-carriage terminal (greater than 75 characters per line), you must use the
MARGIN statement prior to any attempt at printing lines of more than 75 characters. The form
of the statement is

line number MARGIN #file designator, expression

IF END Statement

The IF END statement allows you to test, when reading a sequential file, for the end of data, or
when writing a sequential file, for the end of space. Valid forms of this statement are

For ASCII files Fov binary files
IF END #file designator THEN line IF END: file designator THEN line
number number
IF END #file designator, THEN line IF END: file designator, THEN line
number number
IF END #file designator:THEN line IF END:file designator:THEN line
number number

When reading a file, the IF END statement tests the designated file to determine whether a valid
data item was read. If not, the indicated path is taken. When writing a file, the IF END state-
ment tests the designated file for the end of file space. If the end of file space is detected, the
indicated path is taken.

Example:

If file B contains

then the program

78

In the above example, after the eighth time the READ statement in Line 20 is executed, the IF END
statement finds that no valid data remains in file B, and the indicated path to Line 60 is taken.

Example:

If file B contains

then the program

In this example, the first READ in Line 20 assigns the values of 1, 2, and 3 to the variables

A, B, and C. The IF END statement then finds that there is more data in the file, and Line 50
is executed. The second READ in Line 20 assigns the last two items in the file, 4 and 5, to the
variables A and B, and assigns the value 0 to C. The IF END test then finds that there is no
more data in the file, and the indicated path to Line 60 is taken.

When writing to a file, you use the IF END statement to test for the end of file space. If the end
of file space is detected, the indicated path is taken.

Example:
The program

79

will repeatedly write the value of X to file D until the end of file space is detected by the IF END

statement in Line 60. The the path to Line 80 will be taken, and IF END TEST INDICATES END
@F FILE will be printed out.

IF MJRE Statement

The IF M@RE statement allows you to test, when reading a sequential file, for more data, or
when writing a sequential file, for more space. Valid forms of the statement are

For ASCII files For binary files
IF M@RE #file designator THEN number IF M@RE:file designator THEN line
number number
IF MQ@RE #file designator, THEN line IF M@RE: file designator, THEN line
number number
IF M@RE #file designator:THEN line IF M@RE:file designator:THEN line
number number

When reading the designated file, the IF MORE statement tests whether there is any more data
in the file and acts on the result of the test. When writing the designated file, the IF MORE
statement tests whether there is any more file space and acts on the result of the test.

Example:

If file Y contains

then the program

will give the output
80

In the preceding example, the last data item in the file 7 was read on the third execution of Line
20. Then the variables B and C were assigned values of zero, because there was no more data
after 7. The IF M@RE statement then found no more data in the file and caused RAN @UT to be
printed out. If Lines 20 and 30 in the above examples were

then the program would have produced the output

When writing to a file, the IF M@RE statement can be used to test whether there is room to write
more to the file, and to act upon the result of the test.

Example:

The program

will print, after file B is completely filled,

81

The program writes X to file B as long as the IF M@RE statement in Line 60 finds that more
space remains in the file. When the file is full, the IF M@RE detects the end of space and
causes N M@RE R@@M to be printed out.

BACKSPACE Statement

The BACKSPACE statement, when used while in the read mode, causes the data pointer to be
stepped backward over one delimiter (and line number if present) to the previous data item.
When used while in the input mode, the BACKSPACE statement causes the data pointer to be
stepped backward to the beginning of the current line. Files being printed or written cannot be
backspaced and then written to, because backspacing places the file in the read mode. The form
of the statement is

BACKSPACE #1 file designator

You can use this statement to backspace to a particular data item or to the beginning of a file.
It may be used with ASCII files only.

Example:

If the file DATA contains

then in the program

L?ne 20 will read the values 1, 2, 3, and 4 into variables A, B, C, and D, and the data pointer
will be advanced to the next item, 5. Line 30 will then backspace the data pointer to the pre-

\cr;ious ;t;e{m, the number 4. Line 40 will then assign values of 4, 5, 6, and 7 to variables E, F,
, and H.

It': is'possible to backspace past the beginning of a file. When this happens, the first line in the
file is used again and again.

Example:

82

In the preceding example, after Line 20 the data pointer is positioned to indicate 16, the next
item in the file. The loop in lines 30 to 50 backspaces 16 times, moving the data pointer past
the beginning of the file. This causes the data pointer to begin backspacing from the end of the
first line of data. In this case, the pointer will indicate 8, and line 60 assigns the values 8, 9,
and 10to R, S, and T. If the backspace loop had been greater, the first line of data in the file
would have been repeatedly backspaced over, and the data pointer would have been positioned at
some item in the first line.

The following example illustrates backspacing of a file in the input mode.

Example:

Note that in the above example the line number is included in the first data item.

BACKSPACES$ Statement

The BACKSPACE$ statement is available for use with binary sequential and binary random files
containing string data. The form of the statement is

BACKSPACES :file designator
where the file designator is as previously described.
THE BACKSPACES$ statement backspaces the data pointer to the last string control word and

sets the file to the read mode. If no string control words are found, the data pointer is posi-
tioned at the beginning of the file.

83

SETW Statement

The SETW statement, in binary random access files, enables you to move the data pointer to
any position in the file. The form of the statement is

SETW expression for the file designator T@ expression

SETW moves the data pointer in the designated file to the word number specified by the value of
the expression.

LCW Function

The LCW function, in binary random access files, returns a number representing the current
word location of the data pointer. The form of the function in a statement is

LET X = LCW (expression for the file designator)

LFW Function

The LFW function, in binary random access files, returns a number representing the current
size of the file in words. The form of the function in a statement is

LET X = LFW (expression for the file designator)

SUMMARY

External files may be ASCII sequential, binary sequential, or binary random. The various file
manipulation statements described in this section are NOT all available for each of the three
classes. The following table indicates the availability of each file manipulation statement for
the three classes of files.

ALL THREE ASCII SEQUENTIAL ASCII SEQUENTIAL
CLASSES ONLY BINARY SEQUENTIAL
MAT READ DELIMIT APPEND
FILES MARGIN
FILE ‘ BACK SPACE
SCRATCH
RESTQRE
IF END
IF MQRE
MAT WRITE
BINARY SEQUENTIAL BINARY RANDOM
BINARY RANDOM ONLY
BACKSPACES$ SETW
READ FORWARD LFW
LCW

84

Appendix A. ERROR MESSAGES

Because most programs contain errors, a series of diagnostic messages is included in BASIC.
Some of these messages occur during compilation and others during execution of a program.
Many of the messages not only identify the type of error, but indicate the line number where the
error occurred or, if the line number where the error occurred cannot be determined, the
number of the previous line. We expect that as the development of the BASIC language continues
these error messages will be revised.

During execution, certain messages occur which do not stop execution, but inform you of irreg-

ular conditions existing in identified lines of your program. Other messages, however, point
out serious errors which stop execution.

Compilation Errors

MESSAGE MEANING

CUT PROGRAM @R DIMS Either the program is too long, or the
amount of space reserved by the DIM state-
ments is too large, or a comination of
these exists. This message can be elim-
inated by cutting the length of the program,
reducing the size of the lists and tables,
reducing the length of printed labels, or
reducing the number of simple variables.

DIMENSION TO® LARGE AT (LINE #) The size of a list or table is too large for
the available storage at the line indicated.

END IS N@GT LAST Self-explanatory; it also occurs if there are
two or more END statements in the pro-
gram.

EXPRESSION TOO COMPLICATED IN (LINE #) | Too many operations have been attempted

' in a single expression. Probably too many
parentheses have been used. Use two or
more simpler expressions instead.

FOR'S NESTED TQ® DEEPLY AT (LINE #) Corresponding NEXT statement for pre-
ceding FOR statement must occur before
another FOR statement can be used.

FOR WITHAUT NEXT IN (LINE #) A NEXT statement is missing.

ILLEGAL CHARACTER IN (LINE #) Use a valid character in place of an illegal
character.

ILLEGAL CONSTANT IN (LINE #) More than nine digits or incorrect form in

a constant number, or a number out of
bounds (> 1. 70141E38).

ILLEGAL FORMULA IN (LINE #) This may indicate missing parentheses,
illegal variable names, missing multiply
signs, illegal numbers, or many other
errors.

85

MESSAGE

MEANING

ILLEGAL INSTRUCTI®N IN (LIN% #)
ILLEGAL LINE NUMBER AFTER (LINE #)

ILLEGAL LINE REFERENCE IN (LINE #)

ILLEGAL MAT FUNCTI®N IN (LINE #)
ILLEGAL MAT MULTIPLY IN (LINE #)
ILLEGAL MAT TRANSP@SE IN (LINE #)

ILLEGAL VARIABLE IN (LINE #)

INCORRECT FORMAT IN (LINE #)

INCORRECT NUMBER @F ARGUMENTS IN
(LINE #)

INCORRECT NUMBER @F SUBSCRIPTS IN
(LINE #)

MISMATCHED STRING @PERATIPN IN (LINE #)

NESTED DEF IN (LINE #)

NEXT WITHOUT F@R IN (LINE #)

N@ END INSTRUCTION

SYSTEM ERR®R IN (LINE #)
TOO MANY CONSTANTS AT (LINE #)

TOO MANY FILES AT (LINE #)

86

Other than one of the legal BASIC instruc-
tions has been used in the line indicated.

Line number is of incorrect form, or con-
tains more than five digits.

There is some character other than a num-
ber in a transfer statement (such as a GO
T@) where the line number should be.

A matrix function which is not possible has
been attempted.

A matrix has not been multiplied correctly.
MAT A = A*B is illegal.

A matrix has not been transposed correctly.
MAT A = TRN(A) is illegal.

An illegal variable name has been used.
The format of an instruction is wrong.
The number of arguments when defined
must equal the number of arguments when

referenced.

Indicates a matrix with one subscript or a
vector with two.

You have attempted to combine two strings
algebraically, to compare a string and a
number, or to assign a number to a string
variable or vice versa.

Multiple-line DEF's cannot be nested.

A NEXT statement has been used without
an accompanying FOR statement.

The program has no END statement.

No user remedy is possible; please report
to your G. E. Time-Sharing Representative.

There are too many constants. Put some
in as DATA.

More than 8 files are specified in a FILES
statement.

MESSAGE

MEANING

*UNDEFINED LINE NUMBER (LINE #) IN
(LINE #)

*UNDEFINED FUNCTION FN (LETTER) IN
(LINE #)

UNFINISHED DEF

Execution Errors

The line number appearing in a GOT® or
IF-THEN statement does not appear as a
line number in the program.

A function such as FNF () has been used
without appearing in a DEF statement.
Check for typographical errors.

A multiple-line DEF has not been ended
with FNEND.

MESSAGE

MEANING

ABSOLUTE VALUE RAISED T® POWER IN
(LINE #)

CANN@T CHANGE SIZE @F MULTIPLE
ACCESS FILE (FILENAME) IN (LINE #)

CANNOT WRITE, READ ONLY FILE
(FILENAME) IN (LINE #)

CAN'T @PEN FILE (FILE NAME) IN (LINE #)

CAN'T WRITE FILE (FILE NAME) IN (LINE #)
CHANGE ERROR IN (LINE #)

DATA RECORD T@® LARGE IN (FILENAME)
IN (LINE #)

DIMENSION ERROR IN (LINE #)

A computation of the form (-3) 4 2.7 has

been attempted. The system supplies (ABS

(-3)) § 2.7 and continues.

NOTE: (-3) 13 is correctly computed to
give -27.

You have appended or written to a file that
was named at least twice in the FILES
statement, or otherwise referenced more
than once. Execution continues. You can
expect difficulties later.

You have attempted to write to a file which
only read access has been permitted.

You have tried to access a file that doesn't
exist.

Out of space.

In converting numerical code characters
into string characters, using the CHANGE
statement, you have probably made an
error in the character count. Check the
zero element of the string.

While reading a file, a line 120 or more
characters long has been encountered.

A dimension inconsistency has occured in
connection with a MAT statement in the
indicated line. Execution stops.

*These errors are not detected until run-time initialization.

87

MESSAGE

MEANING

DIVISION BY ZER@ IN (LINE #)

EXP T@® LARGE IN (LINE #)

FILE NOT SAVED (FILENAME) IN (LINE #)

ILLEGAL FILE COMMAND F@R (FILE NAME)
IN (LINE #)

ILLEGAL FILE NAME @R PASSWORD IN
(LINE #)

ILLEGAL 'VAL' ARGUMENT IN (LINE #)

INCORRECT FORMAT IN FILE (FILE NAME)
LINE #)

INCORRECT FORMAT--RETYPE IT

INVALID FILE NUMBER IN (LINE #)

LOG OF NEGATIVE NUMBER IN (LINE #)

LOG OF ZERQ IN (LINE #)

NOT ENOUGH INPUT--ADD M@RE

ON EVALUATED @UT @F RANGE IN (LINE #)

88

A division by zero has been attempted.
The system assumes the answer is + «
(about 1.70141E38) and continues running
the program.

The argument of an exponential function is

> =88.029. + » (1.70141E38) is supplied for
the value of the exponential and the running
is continued.

The specified line number references a file
that has not been saved under your user
number.

You have tried to write to a file that has not
been set to the write mode, or read from a
file that has not been set to the read mode.

File name or password violates rules for
naming.

You have used something other than a
numeric argument in a VAL function.

You have tried to read a string with a nu-
meric variable.

Correct the input data.

File number is less than 0 or greater than
8, or otherwise outside the range of
acceptable file numbers, or the referenced
file is not open.

The program has attempted to calculate the
logarithm of a negative number. The
system supplies the logarithm of the
absolute value and continues.

The program has attempted to calculate
the logarithm of 0. The system supplies
- » (about -1.70141E38) and continues
running the program.

Self-explanatory.

The integer part of the variable in the @N-
GOTO statement is less than 1 or greater
than the number of line numbers supplied
by the statement.

MESSAGE

MEANING

PUT OF DATA IN (LINE #)

OUT OF ROOM AT (LINE #)

OVERFLOW IN (LINE #)

PROGRAM HALTED

READ WAS NOT GRANTED TO FILE (FILE-
NAME) IN (LINE #)

RETURN BEFQRE GOSUB IN (LINE #)

RUN @NLY FILE - (FILENAME) IN (LINE #)

SQUARE ROPT OF NEGATIVE NUMBER IN
(LINE #)

SUBSCRIPT ERRQR IN (LINE #)

SYSTEM ERRQR IN (LINE #)

TO® MUCH INPUT--EXCESS IGNORED

A READ statement for which there is no re-
maining data in a DATA statement has been
encountered. This may mean a normal end
of your program. Otherwise, it means you
haven't supplied enough data. Execution
stops. This comment will not appear when
reading data from a file.

The space reserved was not large enough.
Try a dummy DIM statement, such as DIM
A$ (1000).

A number larger than about 1. 70141E38 has
been generated. The system supplies +

(or -) = (about + 1. 70141E38) and continues
running the program.

S or STOP was typed when a numeric input
was requested.

You have attempted to open a file to which
read access was not permitted.

This occurs if a RETURN is encountered
before a GOSUB. (The GOSUB does not
require a lower statement number, but
must be performed before a RETURN.)
Execution stops.

The specified line number references an
external data file that is run only (has a $
in the 6th character position of the file
name).

The program has attempted to extract the
square root of a negative number. The
system supplies the square root of the
absolute value and continues running the
program.

A subscript has been called for that lies
outside the range specified in the DIM
statement, or if no DIM statement applies,
outside the range 0 through 10. Execution
stops.

No user remedy is possible; please report
to your G. E. Time-Sharing Representative.

Self-explanatory.

89

MESSAGE

MEANING

90

UNDERFL@W IN (LINE #)

USELESS LO@P IN (LINE #)

ZERQ TO NEGATIVE POWER IN (LINE #)

A number in absolute size smaller than
about 1. 46937E-39 has been generated.

The system supplies 0 and continues running
the program. In many circumstances
underflow is permissible and may be
ignored.

Execution stops. Check the line indicated.

A computation of the form 0 § (-1) has been
attempted. The system supplies + = (about
1.70141E38) and continues running the
program.

O omp | dunsawmed varial. UJ I

ABS(X) . vt 7
APPEND statement M
ASCFunctioncovveuno.. 37
ATN(X) . .o e e e e e e et s e 7
Addition e 6
Alphanumericdata................ 55
Alphanumeric fields 28
Arithmetic operations. 6
ASCIL FilesS. . v v v v vt it i e e e e e as 59
BACKSPACE statement. 82
BACKSPACES statement 83
BCL function. i i 33
Binaryfiles 59
CHAIN statement 45
CHAIN classification 45
CHANGE statement 56
CLK$ function 32
COS(X) . o v ittt e e et e e 7
COT(X) o v ettt et i it e e ne e T
Compilation errors 85
Conditional switch 19, 44
DAT$ function 33
DATA statement 17, 57
DEF statement 41
DELIMIT statement 75
DET function. 52
DIM statement. 20, 55
DIM with strings 55
Datafiles......... ... 58
Debugging. 13
Decimal fields. 26
Deletingaline. 13
Division, 6
Dollar signfields. 217
END statement 20
EXP(X) © oot ittt i i e 7
Error messages 85
BrrorS. . . v i it e i e e e e e e e e e 13
Execution errors v oo v v 817
Exponential fields 217
Exponentiation. 6
FILE statement 61
FILES statement 60
FOR and NEXT statements 19
File access capabilities 59
File classification 59
File designator 60
Filemodes 62
FileREAD enenenn. 63
File reference. 60
Filetypes. 58
File WRITE 69
Format control characters 24
Formattedoutput 23
FormulasS ¢ v vt vttt e et oo e e e 5
GOTOstatement 18

INDEX
GOSUB and RETURN 42
HPSfunction. 34
IDAfunction 34
IF END statement 78
IF MORE statement 80
IF--GOTO statement 19
IF--THEN statement 19, 56
IF--THEN with strings 56
INPUT statement 44
INPUT for filereading 65
Initial file preparation 59
Integer fields 25
Integer function 29
Image statement 23
Insertingaline 13
LCWfunction 84
LENfunction. 39
LET statement 16, 55
LET with strings 55
LFWfunction 84
LINfunction 35
LOG(X) .. i ittt i e e e 7
Legal file commands table. 84
Line numbering 4
Linenumbers 4
Listsandtables. 11
Literal fields 28
LOOpPS . v v v i e e e e e 8
MARGIN statement. M
MATINPUT unn. 54, 57
MAT PRINTt uunnen. 49
MAT READ statement. 72
MAT READ for files. 72
MAT WRITE statement 73
MAT addition 49
MAT assignment 49
MAT inversion 49
MAT multiplication 49
MAT set to identity 50
MAT settoones 49
MAT settozeroes 50
MAT subtraction 49
MAT transposition 49
Mathematical functions 6
Mathematical symbols 6
Matrices 49
Matrix dimensioning. 50
Matrix redimensioning 50
Matrix statements table 49
Modes, read and write 62
Multiple switch 44
Multiplication 6
4 19
Numbersoiiieeee... 1
Numbers, printing 7, 22
Num function. 54

INDEX - Continued

Numeric data RESTORE 47
ON Statement0.0.... 44
ON--GOTO0ovvvinnun.. 44
OUT OF DATAmessage - 17
Optional LET 16
Order of computation 6
PRINT statement 17, 21, 57, 71
PRINT USING statement 23
PRINT for file writing 71
Parentheses 6
RAND@MIZE statement. 31
READ statement 17, 57
READ FGRWARD statement. 69
READ and DATA statements 17, 57
READforfiles 57
Reading Internal Data 67
Reading with INPUT statement 65
REM statement 47
RESTORE statement 47, 14
RETURN statement 42
RND function 30
Readingdata.................... 63
Relational symbols. 8
Rules for printing numbers 22
SCRATCH statement. 75
SETW statement 84
Signfunction 29
SINX) ..ot 7

92

SQR(X) - v oo et e 7
Step. o 19
STOP statement. 47
STR$ function 37
Stepsizeof zero 20
String data RESTORE 74
String size 55
String variables. 55
Strings. L e 55
Subroutines. 42
Subscripts 11, 55
Subtraction 6
TABfunction. 23
TANX) - oot it e e e e, 7
TIM function 31
TRACE OFF statement 48
TRACE ON statement 48
Types of datafiles 59
UNG$ function 40
USE function 40
VAL function. 38
VPSfunction.................... 35
Variables 8
Variables, string. 55
WRITE statement. 69
WritingData 69
Writing with PRINT statement 71

MARGIN INDEX OF
BASIC STATEMENTS

APPEND
BACKSPACE
BACKSPACE$
CHAIN
CHANGE
DATA

DEF
DELIMIT
DIM

END

FILE

FILES
FOR...NEXT
GOSUB. . .RETURN
GOTO

IF END
IF-GOTO

IF MORE
IF-THEN
INPUT

LET
MARGIN
MAT

MAT INPUT
MAT PRINT
MAT READ
MAT WRITE
ON-GOTO
PRINT
PRINT USING
RANDOMIZE
READ

READ FORWARD
REM
RESTORE
SETW
SCRATCH
STOP

TRACE ON...TRACE OFF

WRITE

711224B (10M) 7050

To use this index, bend book in half and follow
margin index to page with black edge marker.

Services of the Information Service Department are available in

principal cities throughout the United States, Canada, and Puerto

Rico.

Check your local telephone directory for the address and tele-
phone number of the office nearest you. Or write. . .

General Electric Company
Information Service Department
7735 Old Georgetown Road
Bethesda, Maryland 20014

GENERAL @D ELECTRIC

INFORMATION SERVICE DEPARTMENT

	Preface
	Introduction
	Table of Contents
	Section 1. What is a Program?
	Section 2. A BASIC Primer
	Section 3. Advanced BASIC
	Appendix A. Error Messages

