MMD-1

MINI-MICRO DESIGNER

Portions of this manual has been reprinted through the courtesy of Radio Electronics Magazine, May & June 19776. Copyright Gernsback Publications, Inc. 1976.

801-0082 REV. P 12/81

1. 1.

ELL Instruments , incorporated Biffirst Street , Derby, Connecticut 06418

TABLE OF CONTENTS

-

· I.	General Description	Page 2
11.	Specifications	Page 3
ш.	Assembly Instructions	Page 5
IV.	Replacement Parts List	Page 6
۷.	Power Supply Assembly and Checkoutt	Page 10
VI.	Main Board Assembly and Checkout	Page 18
VII.	Principles of Operation	Page 28
VIII.	MMD-1/Kex Program Listing	Page 37
IX.	MMD-1/L/D Program Listing	Page 41

ILLUSTRATIONS

•

1.	Housing Assembly	Page 12
1A.	Primary Wiring	Page 14
2.	Power Supply	Page 15
3.	Main Board Assembly	Page 19
4.	Schematic Diagram, Sheet 1	Page 26
5.	Schematic Diagram, Sheet 2	Page 27

I. GENERAL DESCRIPTION

The Mini-Micro Designer® (MMD-1) is a complete educational and engineering microcomputer using an 8080-type microprocessor chip. The system has been designed to teach you about microprocessors whether you are a high school student or a digital design engineer. The MMD-1 features direct keyboard entry of data and instructions, status and data indication via LEDs, immediate access to buffered input/output busses and a convenient breadboarding socket. A portion of this socket is hardwired to the input/output bus lines and other critical control lines. This permits you to monitor what is going on, control input/output and interface to other instruments. The socket has been designed to directly accept IC's or functional plug-in modules available from E & L Instruments ("Design Modules"), to enhance your learning and to minimize your breadboarding time. In addition, the same input/output bus and control signals are available on a flex cable connector to more fully utilize the total system capability by adding supplemental hardware. The unit is also equipped with an internal power supply.

The MMD-1 is available in two formats:

MMD-1/A:

Factory assembled, inspected and ready to use. Comes with the operating manual.

MMD-1/K: Kit form of the MMD-1/A, which requires you to assemble and solder the components into a working unit. Due to installation difficulty, the BP-25 Breadboarding Pins and the SK-10 Interface Socket are factory assembled. The unit comes with the operating manual.

Both formats are completely described in this manual.

There are many time-saving accessories available to the MMD-1 user. Complete descriptions of available options can be found in the E & L Instruments catalogue, "Teachings of the Modern Masters".

II. SPECIFICATIONS

Central Processor: Intel 8080A or equivalent Memory: RAM - 512 words (8 bits) on board.

> PROM - 256 words (8 bits) comes programmed to accommodate keyboard entry of data. Known as KEX (Keyboard Executive) and is located in prom position Ø.

256 words (8 bits) comes programmed to read data from the cassette and store it in successive memory locations on the M/I (Memory Interface) Board, starting at Ø3Ø - ØØØ. As the data is input it is displayed on the MMD-1's LED's; known as L/D (Loader/Dump) and is located in prom position 1.

Expansion capability: Up to a total of 65,536 words via cable connector - *would require additional power over 2 K RAM.

Displays: PORTS - Three groups of eight (8) LED's individually latched and addressable under software control. Note: during keyboard program entry, these LED's display Lo address, Hi address, and Memory data via the KEX PROM. Latch enables, for each port, via BP-25's, are available for external use.

> HALT INDICATOR - LED, located to the left of SK-10, glows when the 8080A has executed a HALT instruction. The HALT status is cleared only through a RESET or a hardware interrupt.

Data Entry: 16 switch keyboard - numerals 0 thru 7, Hi address (H) Lo address (L) go (G) reset (RESET) examine/deposit (S) three optional keys (A, B, C).

Breadboarding Socket: SK-10/IF18 Open area on socket will take up to five (5), sixteen (16) pin ICs and discrete components (from 20 to 26 gauge diameter leads) Bus signals hardwired to socket: A0 thru A7 OUT

AU thru A/OUTGNDWAIT+5 voltsREADYINTD0 thru D7INTERESETI ACKM1MEM RHALTMEM WHLDAIN

II. SPECIFICATIONS

	l 20 pin, har boarding sock		same signals as 8 thru Al5.
*Use	or 230 VAC op 1/2 amp fuse 1/4 amp fuse	at 115 V	
D.C. Output at 105/210 VAC:	+5 V ±5% +12 V ±5% -12 V ±5%	at	1.5 amp 0.5 amp 0.5 amp
Current available for : External use	+5 V +12 V -12 V	at	0.5 amp 0.4 amp 0.4 amp

Operation Range: 105 to 125/210 to 250 VAC

NOTE: Unit can be switched from 115V to 230V by setting the switch (LS1) in back of unit with a screwdriver. The 115V plug will have to be replaced with a plug compatible with the receptacle in use.

III. ASSEMBLY INSTRUCTIONS, GENERAL

A. The material has been prepacked in plastic bags in general categories for ease of assembly. Check the contents of the bags to make certain all the correct parts are there. Inspect packing material for any loose parts before discarding.

Bring all shortages or discrepancies to the immediate attention of E & L Instruments.

- When a wire is brought to a location, the designation "connect" is used; when it is followed by an (S), this indicates it is immediately soldered in place; if no (S) appears, do not solder at this time other wires will be brought to that point and if solder is applied too early, the assembly will be much more difficult.
- When soldering diodes and transistors, it is most important that the heat used is minimal - a 35W soldering iron is quite adequate for all of the assembly and a larger wattage iron should not be used.
- 3. The instructions are given line by line with two "Check-Off" columns. The first is for checking off as you actually do that step; the second is for rechecking if a problem is encountered.
- 4. Use rosin core solder only. The use of corrosive (acid core) solder or paste fluxes voids any and all warranties on the unit.
- 5. This manual uses the new IEEE (Institute of Electrical and Electronic Engineers) international standard term "hertz" as the basic unit of frequency. The terms are used as follows:

Hz (hertz)	=	cps	(cycles per	second)
KHz (kilohertz)	=	kc	(kilocycles	per second)
MHz (megahertz)	=	ШC	(megacycles	per second)

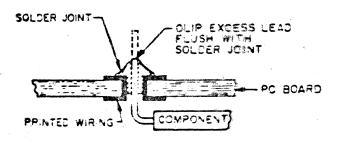
1. SOLDERING TIPS

The quality of your unit is going to depend on the quality of your assembly and soldering techniques. We have outlined, below, some standard practices that you should adhere to.

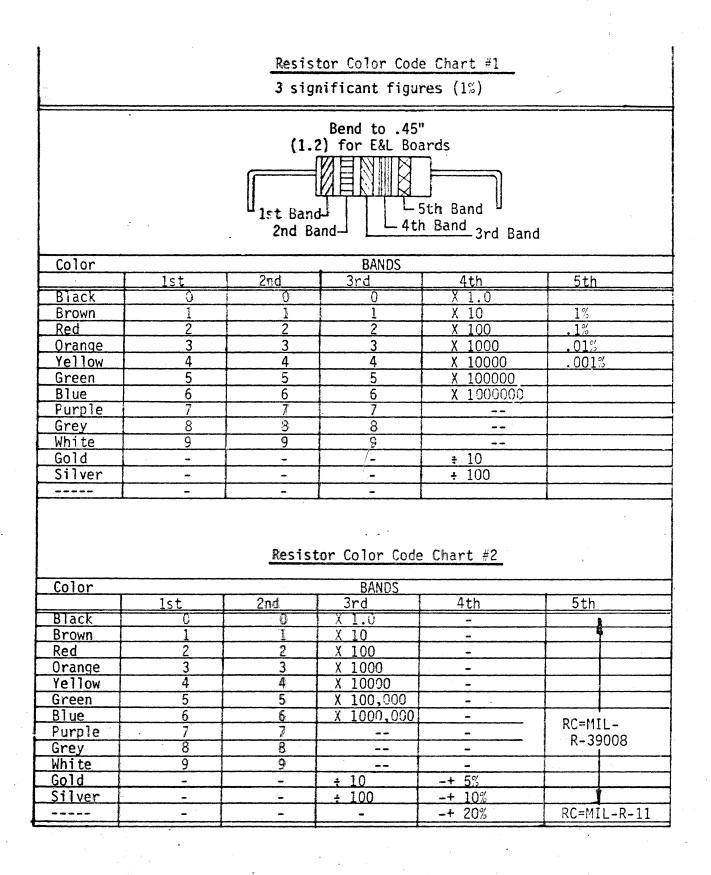
- 1.1 There is more to a soldered connection than two or more pieces of metal held together by a "blob" of solder. When molten solder is applied to a metal, the solder actually disolves some of the metal's surface. Thus, metals which have been soldered together are bonded by a solidified solution of solder and parts of the metals which were joined. Soldering is an easy task, but it is a task that must be done correctly. If your soldering techniques are poor you will have a great deal of trouble with the kit that you are about to assemble.
- 1.2 In order for molten solder to perform its function of joining metals together, the oxides on the surfaces of, the metals must be removed. The oxides are removed by a FLUX. A flux is a material which, when heated, dissolves surface oxides and suspends them away from the surface of the metal. With the surface oxides removed, the molten solder can dissolve some of the surface metal and bond itself tightly to the metal. We recommend the use of Rosin flux core solder with a mixture of 63% tin and 37% lead. This is the only mixture that goes directly from liquid state to solid state thus, bypassing the plastic state which causes cold solder joints.
- 1.3 A good solder connection is made in two steps: The first step is to make the mechanical connection. Then the molten solder is applied to the connection. After you have stripped a wire, always check to see that the wire is clean and free from heavy oxidation, grease or oil. Oxidation can be scraped off, and oil or grease can be removed with a rag. Steel wool or sandpaper is excellent for cleaning badly oxidized wires. Stranded wire should be tinned (covered with solder) to prevent the bare ends from fraying and possibly causing a short circuit.

5a

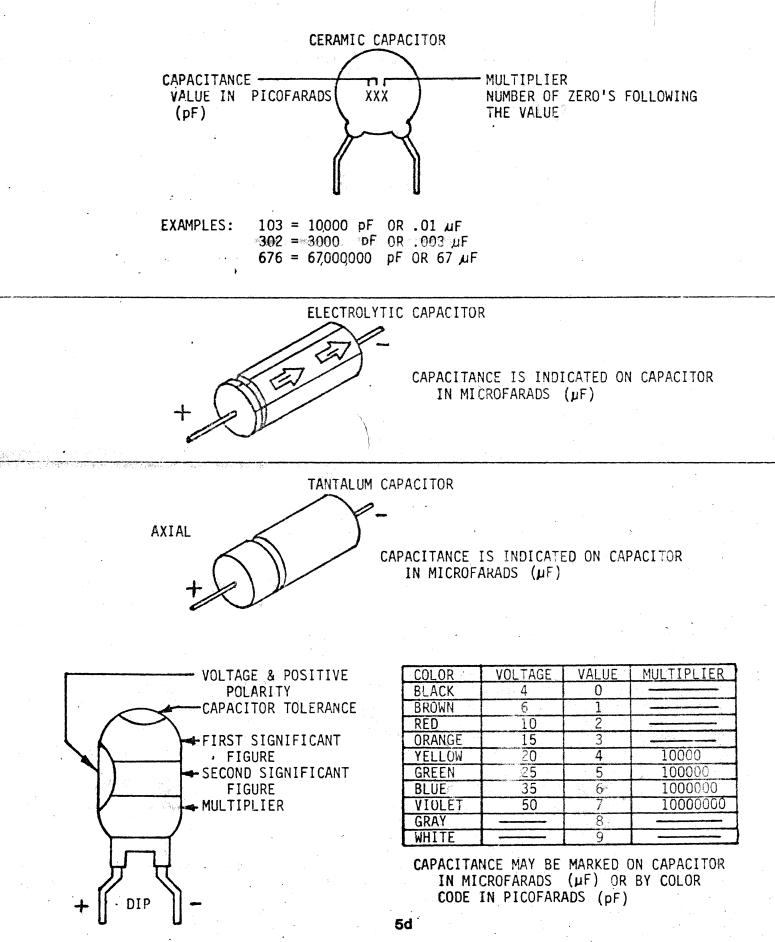
The next step in making a solder connection is to secure the wire or wires to the terminal or lug. The wire should make sufficient contact with the terminal or lug, but should not be tightly fastened. The solder will provide both mechanical strength and a low resistance junction.



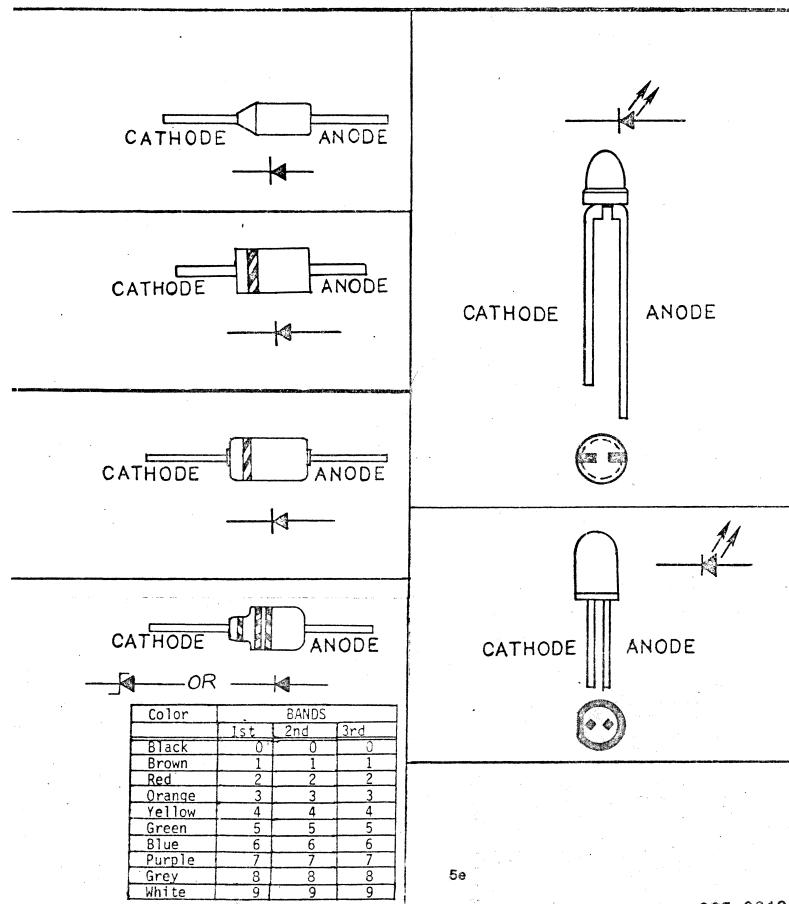
After the mechanical connections are complete, the next step is to apply the solder. First heat the mechanical connection, with the iron, to allow the solder to flow on the hot metal. Apply the solder to the point where the iron meets the contact to be soldered. The flux should melt and flow freely over the contact, dissolving allFoxides, and aiding heat transfer from tip to j connection. The solder should then melt and flow freely, covering the area to be soldered. Make sure you apply enough solder to cover the contact.


1.4

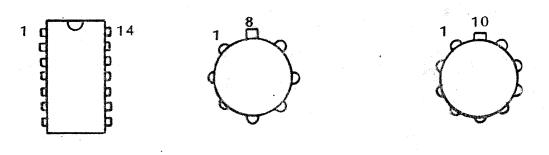
To prepare p.c. boards for soldering, clean the area to be soldered on the printed wiring by rubbing with a pencil eraser, and clean the component leads with a piece of steel wool. Place the component on the board, on the side with the nomenclature printed on it, with the leads extending through the holes indicated for the component. Flip the board over and solder the leads. The same general rule for soldering conventional circuitry should be adhered to.



5b


Resistor Identification

Capacitor Identification

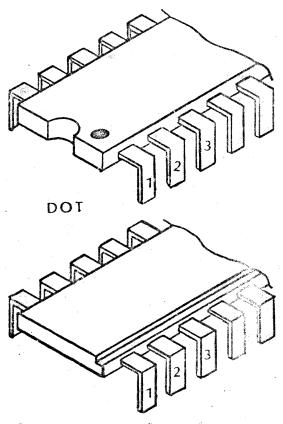


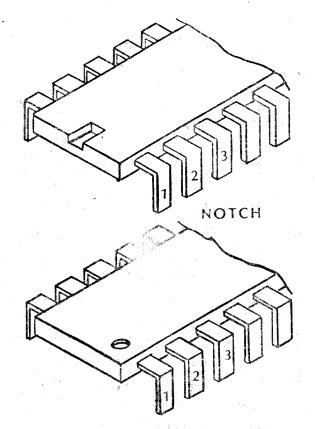
Diode & LED Identification

IC Identification

TOP VIEW

14 PIN DIP


8 PIN CAN


10 PIN CAN

PIN COUNT IS SEQUENTIAL IN A COUNTERCLOCKWISE FASHION

PIN 1 LOCATION

CAN STYLE TAB IS ALWAYS PLACED ON HIGHEST PIN NUMBER WITH PIN 1 TO THE LEFT SIDE

SMALL INDENTATION

IV. REPLACEMENT PARTS LIST

PACKING BAG	MANUAL DESIG.	DESCRIPTION	QTY.	P/N	CHECK
· ·	i _	Power Supply P.C. Board, Mach.	1	711-0125	
· · · · ·	01	Transistor, TIP3055	1	500-0026	
	VR1, VR2	Voltage Reg., 7812UC (LM340-12T)	2	504-0009	
	DI	Bridge Rect., (6 amp-200V) Power			
		Components Inc. BR-62	ר	502-0007	
	D2, D3	Bridge Rect., (1 amp-100V) Electronic Devices Inc. PF-05	2	502-0002	
	C1	Elec. Cap. 2200 mfd - 16V	1	523-0044	
	C2, C3	Elec: Cap. 1000 mfd-35V	2	523-0041	
	C4, C5	Tant. Cap. 1.0 mfd-35V	2	524-0009	
POWER	C6	Cer. Cap. 0.1 mfd-50V	1	520-0016	
SUPPLY	R1	Trimpot 2.5Ω Thumbwheel	1	515-0023	
PACKAGE	R2	CCRES 1/4W - 1KΩ - 5%	1	511-0039	
	R3	CCRES 1/4W - 2.2KΩ - 5%	1	511-0046	
	R4	WWRES 2W25Ω - 3%	1	519-0023	
	F1	Fuseholder, Littlefuse #348-657	1	563-0019	
	S1	Switch, SPST, w/integral light, Carling Co. LTA-110-PBWR	1	570-0019	
	- *	Fuse, 1/2 amp. Bussman AGC-Slo-Blo	1	563-0013	
	-	Rubber Feet, self-stick, 3M Co. S15112	4	611-0001	
	VR1, VR2	Sil-Pad for Regulator	2	616-0012	
	LSI	AC line voltage select switch	1	579-0003	
	Q1	Sil-Pad for transistor	1	616-0013	
	VR1,VR2, Q1	Nylon Bushing	3	617-0010	

	R35,R42	CCRES 1/4W - 10KΩ - 5%	8	511-0062
L. L.	C1	Elec. Cap. 33 mfd - 6.3V	1	523-0019
	C2	Tant. Cap. 5 mfd - 15V	1	524-0032
	C3,C5-C15	Cer. Cap01 mfd - 50V	12	520-0008
	C4	Elec. Cap. 3.3 mfd - 50V	1	523-0003
MAIN	C16,C17	Mica Cap. 47 pfd - 5%	2	521-0003
BOARD	R1, R2	CCRES 1/4W - 1KΩ - 5%	5	511-0039
PACKAGE	R4-R6	-		
	R3	CCRES 1/4W - 2.2KΩ - 5%	1	511-0046
	R7- R30	CCRES $1/4W - 470\Omega - 5\%$	24	511-0031
	R31-R33	CCRES 1/4W - 4.7KΩ - 5%	3	511-0054
	R34	CCRES $1/4W - 220\Omega - 5\%$	1	511-0022
	D1-D24	Red LED, Hewlett Packard 5082-4484	24	551-0005
	D25	Zener Diode, 5.1V - 5%, IN751A	1	501-0003
	D26	Zener Diode, 3.3V - 5%, IN746	1	501-0002
	D27	Red LED, Hewlett Packard 5082-4850	1	551-0003
	XTAL	Crystal, 5.76 MHz - 0 to 50 degree	1	509-0006
		Cent. series resonance 0.1%		
		Bliley Elec. HC18/U		

,

IV. <u>REPLACEMENT PARTS LIST</u> (contd.)

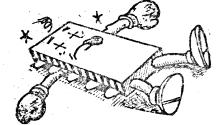
PACKING BAG	MANUAL DESIG.	DESCRIPTION	QTY	P/N	CHECK
	-	Binding Post, Red, E.F. Johnson 111-0102-001	1	543-0007	
		Binding Post, Black, E.F. Johnson 111-0103-001	1	543-0008	
		Binding Post, Blue, E.F. Johnson 111-0110-001	1	543-0009	
MAIN BOARD		Binding Post, White, E.F. Johnson 111-0101-001	1	543-0011	
PACKAGE		Capacitor Mount, white nylon	13	616-0006	
	-	Keyboard	1	575-0002	
		Connector, Rt. Angle, 40 Pin P.C.	1	540-0010	
	-				
	<u> </u>	Label - Interface Socket	1	633-0038	1

	A1, A22, A23	SN7404	3	503-0041
	A2, A3, A30	SN7400	3	503-0014
	A4	SN74LS174	1	503-0123
	A5	Intel 8224	1	503-0116
	A6, A7	Intel 8216	2	503-0117
	A8	Intel 8080A Migroprocessor	1	503-0078
	A9-A12	Intel 8111-2**	Ą	503-0118
INTEGRATED	A13, A17	SN74LS05	2	503-0122
CIRCUITS	A14	SN74LS155		503-0121
	A15	Intel 1702-A (Pre-Programmed) (Kex)		660-0008
	A16	Intel 1702-A (Pre-Programmed) (L/D)	1	660-0024
, i i i i i i i i i i i i i i i i i i i	A18	SN74L42]]	503-0081
	A19	SN7402	1	503-0042
	A20, A21	SN74L04	2	503-0120
	A24-A29	SN74LS75	6	503-0187
	A31	SN74365	11	503-0086
	A32, A33	SN74148	2	503-0119
	UT	Voltage Reg., LM723 (DIP) +5 volt (Power Supply)	1	504-0014

	J1-J3 J13, J17 J19-J23 J30, J34	Socket, DIP,	14 Pin	12		
SOCKET	J4-J7 J14, J18 J24-J29 J31-J33	Socket, DIP,	16 Pin	-	542-0008	
	J9-J12	Socket, DIP,	18 Pin	4	542-0021	
	J15, J16	Socket, DIP,	24 Pin	2	542-0017	
	J8	Socket, DIP,	40 Pin	1	542-0016	

IV. <u>REPLACEMENT PARTS LIST</u> (contd.)

PACKING BAG	MANUAL DESIG.	DESCRIPTION	QTY	P/N	CHECK
	_	6-32 x 1/2" Pan Hd. Screw	4	605-0002	
		6-32 Hex Nut	4	606-0012	
	-	#6 Lockwasher	2	607-0008	1
HARDWARE	_	#6 Ground Lug	11	545-0020	
	-	4-40 M/F Standoff	3	615-0019	
	-	4-40 x 1/4 Pan Hd. Screw	3	605-0025	
	-	4-40 Hex Nut	6	606-0006	+
	-	#4 Lockwasher	8	607-0001	
	-	#4-40 x 3/8" Pan Hd. Screw #4-40 NUT. Small	Ż	605-0037	
· .		#4-40_NUT, Small	1.2	606-0009	+
	-	#4-40 x 7/8" Pan Hd. Screw	3	605-0056	T
	-	#4 Nylon Spacer	3	615-0016	1
an a	-	1-1/2" (3,81 cm) 18 ga. White			
	-	1-1/2" (3,81 cm) 18 ga., Black	1		
	-	2" (5, 1 cm) 18 ga., Black	1		1
	-	5-1/2" (13,97 cm) 18 ga. White	1		1
	-	5-1/2" (13, 97 cm) 18 ga. Black	1:		·
WIRE	-	6" (15, 24 cm) 18 ga. White	i		1
(581-0005)		6" (15,24 cm) 18 ga. Black	1	and and a second s	1 m
(001 0000)		6-1/2" (16,51 cm) 18 ga. White	+		+
		3 1/2" (8,9cm) 22 ga., Green	9		
	-	5" (12,7cm) 22 ga., Orange	6		
		12" (30,5cm) 22 ga., White	ĩ		
		12" (30,5cm) 22 ga., Red	ii		
	-	12" (30,5cm) 22 ga., Blue	1		
	-	12" (30,5cm) 22 ga., Black	1		
		12" (30,5cm) 22 ga. Buss Wire	1	****	
		P.C. Board, Machined	11	711-0099	
	BP	BP-25 Breadboarding Pin	36	544-0004	
FACTORY	SK-10	SK-10/IF-18 Interface Socket	1	415-0003	
INSTALLED	-	4-40 x 5/8" Flat Hd. Screw	6	605-0033	
MAIN		#4 Lockwasher	6	607-0001	
BOARD	-	4-40 Hex Nut	6	606-0006	
ASSEMBLY	-	6-32 x 1/2" Pan Hd. Screw, used	4	605-0002	
		to mount Main Board to			
		Housing installed for shipping			
	-	Housing (E&L Instr.)	1	620-1011	
	TI	Transformer, (E&L Instr.)	1	531-0017	
	-	Line Cord w/Molded Plug (115V)	1	567-0002	
		Strain Relief, Heyco Inc. SR6P4	1	617-0002	
MISCELLANEOUS	-	Operating Manual	1	801-0082	
	-				
	-				
	-	8080A Inst. Reference Card	1	803-0147	1
	-	Yellow Warranty Card	1	801-0137	


ан Фл

* For 230V operation use:

		2-Bussman	CPa DPa		
	IA ny				
			N () - EM ()		

** Faster RAMs (8111A-4) (2111-2) may be substituted.

STATIC ELECTRICITY KILLS

the following devices:

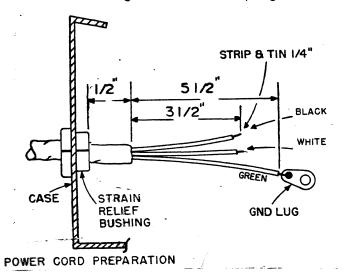
INTEL 8080 Microproccessor chip

INTEL 1702A-2 PROM INTEL 8212 IN/OUT Port chip INTEL 8102A-2 RAM

INTEL 8111-2 RAM

INTEL 8216

INTEL 2102A-6 RAM


Although protection against electrostatic effects is provided by built-in circuitry, the following handling precautions should be taken:

- Soldering iron tips and test equipment should be grounded. 1.
- Devices should not be inserted in non-conductive con-2.
- tainers such as conventional plastic snow or trays. Assembly work surfaces should be grounded.
- 3.
- Avoid carpeting or other furnishings that encourage 4. electrostatic charging of assembly personnel.

- V. <u>POWER SUPPLY ASSEMBLY AND CHECKOUT</u> (See Illustrations 1, 1A and 2)
 - A. Line Cord Preparation

If your unit is for 230V operation, the line cord will have no plug attached. A plug must be obtained that is suitable for the receptable available.

1. Prepare Line Cord as shown below. Slide strain relief onto Line Cord with large end towards plug end of cord.

- Insert Line Cord through hole in rear of housing. Compress Strain Relief and snap into hole. Connect the Ground Lug to the Green wire as shown.
- B. Transformer Installation (See Illustration 1)
 - 1. Scrape paint from around frontmost transformer mounting hole to bare metal for good grounding contact.
 - Fasten Transformer into the housing with (2) 6-32 x 1/2" Pan Head Screws, #6 Lockwashers and 6-32 Hex Nuts. Place Ground Lug under Transformer at frontmost hole when fastening. Terminals 1 through 4 with wires attached should be closest to the Line Cord (See Illustration 1).
- C. Mounting Voltage Regulators VR1, VR2 and Power Transistor Q1
 - Install with Sil-Pads shown in Illustration 1 using a 4-40x7/8" Pan Hd.Screw, #4 Nylon Spacer and 4-40 Hex Nut.
 - 2. Repeat the above step for VR1 and Q1.
- D. Completion of Case Assembly
 - 1. Install (3) standoffs in the 3 remaining holes in the bottom of the housing using the 4-40 x 1/4" Pan Head Screws and

CONST. CHECK

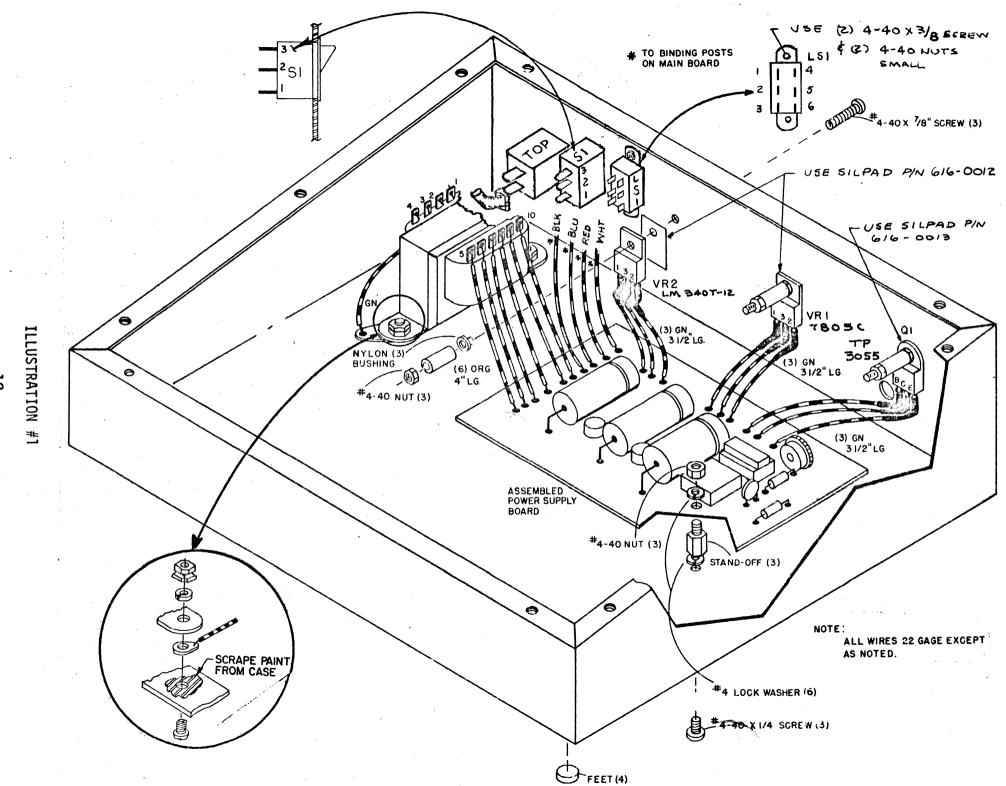
CHECK

#4 lockwashers.

2.

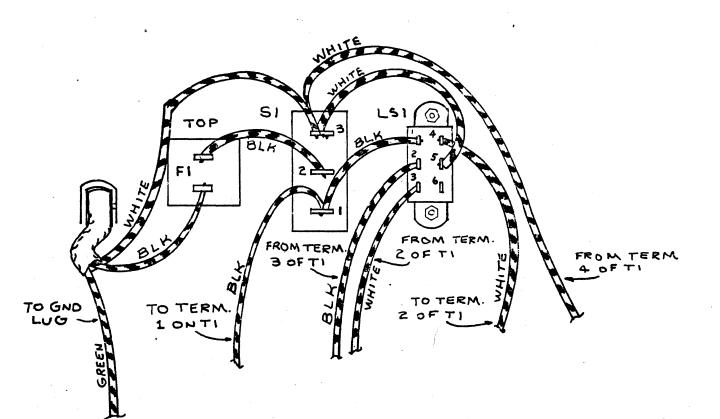
- Install line switch LS1 with (2) 4-40 x 3/8" screws,
 (2) 4-40 hex muts (small), and (2) #4 washers. Make sure 230V shows toward the top of case. (See Illus. #1).
- 3. Install fuseholder (F1) into hole at extreme right of housing with word "TOP" printed on fuseholder in the up position. Push until it snaps into place.
- 4. Install ON/OFF power switch (S1) in center hold between F1 and LS1 on rear of housing, with terminal 3 towards the top. Push in until it snaps into place. (See Illustration #1.)

STEPS 5 Through 10 See Illustration #1A

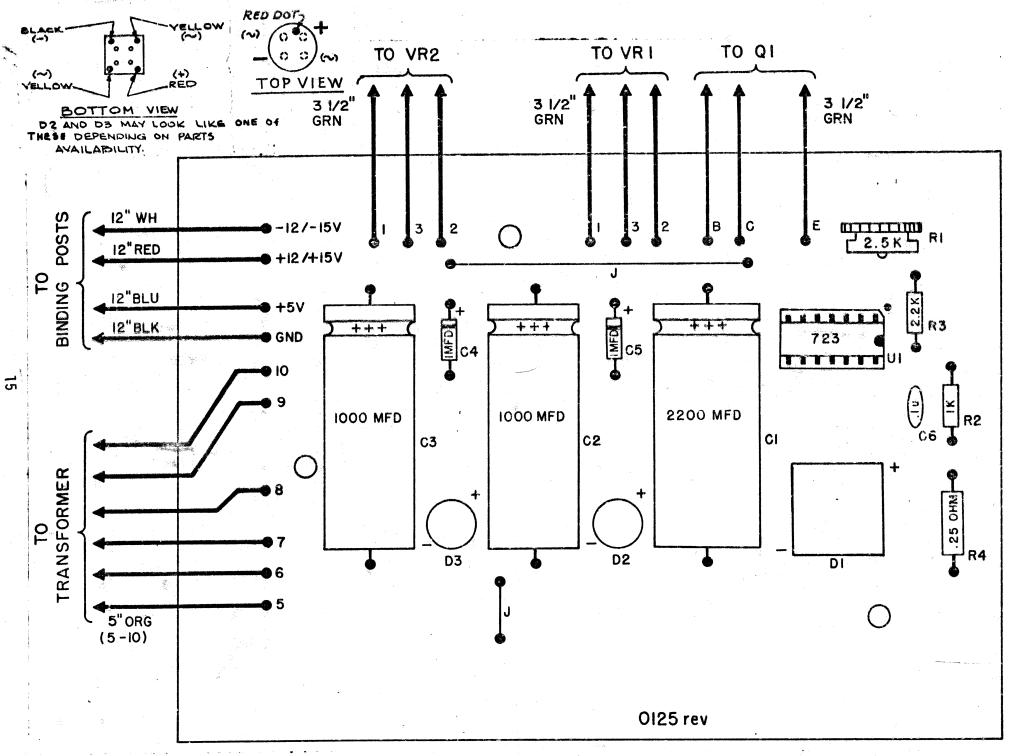

- 5. Connect 5-1/2" (13,97 cm) white wire from terminal 4 of T1 and white wire from Line Cord to top lug on switch (S1-3). Connect 1-1/2" (3,81 cm) white wire from (LS1-5) to (S1-3) (S).
- 6. Connect 6-1/2" (16,51 cm) white wire from (LS1-4) (S) to terminal 2 of T1. Connect 6" (15,24 cm) white wire from terminal 2 of T1 (S) to (LS1-3) (S).
- 7. Connect 5-1/2" (13, 97 cm) black wire from terminal 1 of T1 (S) to lower lug on Switch (S1-1). Connect 1-1/2" (3,81 cm) black wire from (S1-1) (S) to (LS1-1) (S).
- 8. Connect: 2" (5,1 cm) black wire from middle lug on Switch (S1-2) to the top lug on fuseholder (F1) (S).
- 9. Connect 6" (15,24 cm) black wire from (LS1-2) to terminal 3 of T1 (S).
- Connect black wire from Line Cord to lower lug on fuseholder (F1) (S).

PUT HOUSING ASIDE AT THIS POINT.

E. Power Supply P.C. Board Assembly (See Illustration 2)


NOTE: All solder connections are made on lower side of board.

- The (2) jumper wires using the 22 ga. bus wire supplied. Note the jumpers should be flat against the board before soldering.
- 2. The 14-Pin IC Socket (J34). Note the notch on socket is adjacent to white doe on P.C. Board.
- 3. The 2.5K Trimpot (R1).


CONST. CHECK 4. The 2.2K Resistor (R3). The IK Resistor (R2). 5. 6. The .25 ohm wirewound resistor (R4). 7. The (2) 1 mfd tant. capacitors (C4, C5), making certain that polarity agrees with marking on P.C. Board. The .1 mfd capacitor (C6). 8. 9. The (2) bridge receifiers (D2, D3), making certain that polarity agrees with markings on P.C. Board. 10. The bridge receifier (D1) making certain that polarity agrees with marking on P.C. Board. This Device should stand approx. 3/8" above P.C. Board.

(Instructions continued on Page 16.)

PRIMARY WIRING

ILLUSTRATION 1A

TILLUSTRATION #2

E. <u>F</u>	ower Supply P.C. Board Assembly (contd.)	CONST.	CHECK
11	The (2) 1000 mfd capacitors (C2 & C3), and 2200 mfd capacitor (C1) making certain that polarity on capacitors agree with markings on P.C. board.		
12	The (9) 3 1/2" (8,9cm) long green wires at hole locations marked 1,2,3,B,C, & E along the top edge of the P.C. board.		
13	The (6) 5" (12,7cm) long orange wires at hole locations marked 5,6,7,8,9, & 10 on the left side of the P.C. board.		
14	 The 12" (30,5cm) long black wire at hole marked "GND" on P.C. board. 		
19	The 12" (30,5cm) long blue wire at hole marked "+5" on P.C. board.		
10	The 12" (30,5cm) long red wire at hole marked "+12" on P.C. board.		
1	The 12" (30,5cm) long white wire at hole marked "-12" on P.C. board.		
D	NOT install the I.C. at this time.		
	completesthe Power Supply Board Wiring. • to Illustration 1 for the following steps:		
14	B. Position the Power Supply Board over the Stand- Offs in the Housing and fasten with (3) 4-40 Hex Nuts and #4 Lockwashers.		
1	Slip a 1" (2,5cm) piece of Heatshrink Tubing over each green wire then solder the (3) sets of 3 green wires to the corresponding semiconductors at the rear inside of the Housing as shown. Slide the Tubing up over the entire lead and heat to secure.	- 	• • •
24	Solder the (6) orange wires to the terminals on the Transformer (T1): Hole #5 to term. 5. Hole #6 to term. 6. Hole #7 to term. 7. Hole #8 to term. 8. Hole #9 to term. 9. Hole #10 to term. 10.		

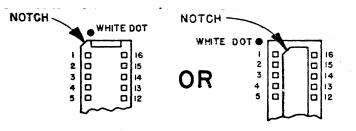
CONST

CHECK

The remaining 4 wires, black, blue, red, and white still go to the four Binding Posts on the Main Board at the Final Assembly.

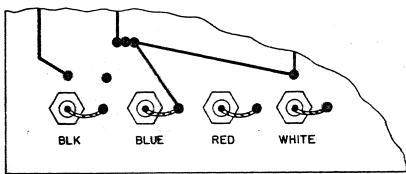
F. Testing the Power Supply

- 1. Insert I.C. (U1) LM723 into socket. Be certain that pin 1 is located next to the dot on the P.C. board.
- 2. Install the Fuse into the Fuseholder (F1). 1/2 amp for 115V. 1/4 amp for 230V.
- 3. Check that the 4 unconnected wires are not touching each other or touching the Housing.
- Plug Line Cord into an Outlet and turn on Switch (S1). Red light on switch should glow. If this does not happen, unplug cord from power and recheck all wiring.
- Connect appropriate lead of D.C. voltmeter to black wire "GND."
- 6. Touch the other lead of voltmeter to blue, red & white wires to read the following voltages: Blue*....+5V ±5% Red....+12V ±5% White....-12V ±5%
- *Adjust the Thumbwheel on the Trimpot (R1) to obtain this value. If any voltages are missing or incorrect, unplug the power cord and recheck all wiring.
- 7. Install (4) Rubber Feet at the corners of the bottom of the Housing.

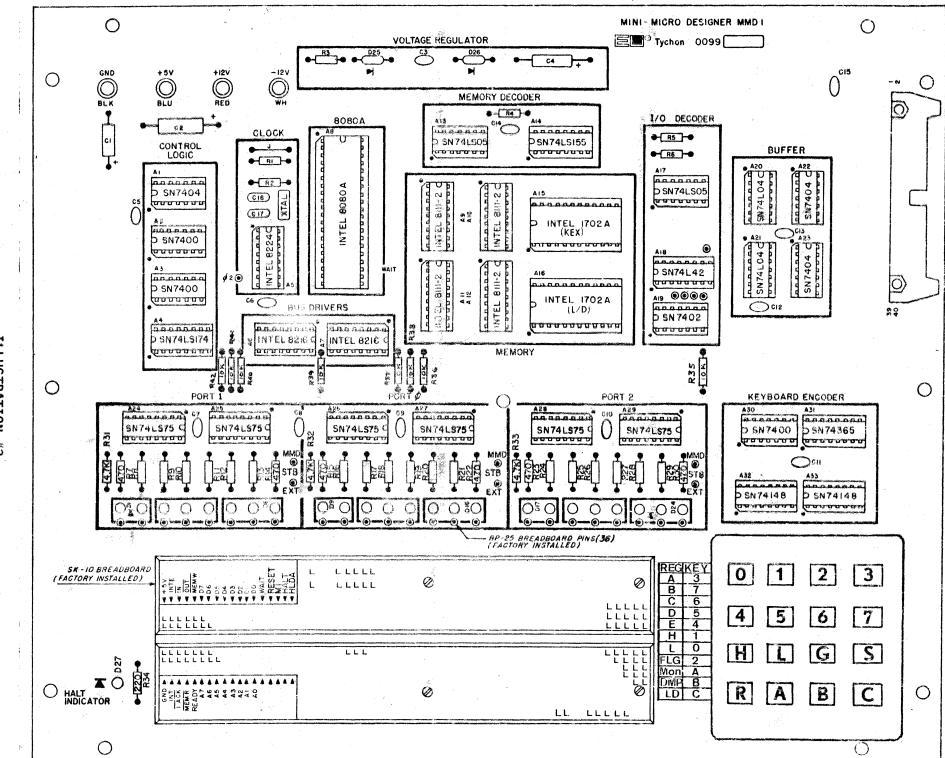

This completes Housing and Power Supply Assembly. Set aside and proceed to the Main Board Assembly.

CHECK

VI. <u>MAIN BOARD ASSEMBLY AND CHECKOUT</u> (See Illustration 3)


All solder connections are made on bottom (solder side of this board.

1. Insert and solder all I.C. sockets in their proper locations. Be extremely careful to avoid solder bridges between pins or adjacent clad. Pin 1 of the sockets is indicated by a notch or cut-off corner which is placed nearest to the white dot on the Main Board. Be certain that all leads protrude thru board and socket is flush with top of board before soldering.


SOCKET INSTALLATION

- Insert and solder the 40 pin ribbon connector. The connector supplied may be numbered 1 thru 40 or A thru VV. This is not important, just be sure that the horizontal pins for mating plug are on the right side of the board.
- 3. Attach Binding Posts to Main Board as shown with colors in positions as indicated below. When tightening Binding Posts turn so that test lead holes are parallel with sides of board to allow test lead insertion.

UPPER LEFT HAND CORNER BOTTOM SIDE OF MAIN BOARD

Cut (4) 1" (5,1cm) pieces of 22 ga. buss wire; Insert each wire into the corresponding hole as shown and solder. Trim the excess wire from the top of the board.

.

ILLUSTRATION #3

VI. MAIN BOARD ASSEMBLY AND CHECKOUT (contd.)

- CONST. CHECK
- 5. Insert nylon capacitor mounts over leads on (12) .01 mfd disc capacitors (C3, C5 thru C15) and insert and solder in the proper locations.

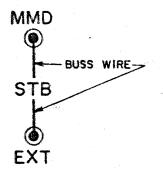
NYLON CAPACITOR MOUNT PTTTTA VIA mmm

6. Insert and solder the 33 mfd electrolytic capacitor (C1) and 5 mfd tant. capacitor (C2) at the top left hand corner of the board with (+) lead at the (+) silkscreened on the P.C. board.

The following 4 steps Refer to Voltage Regulator Section

- 7. Insert and solder the following:
 - a. The 2.2K resistor (R3).
 - b. The 1N751 5.1V Zener diode (D25). Observe Polarity.
 - c. The 1N746 3.3V Zener diode (D26). Observe Polarity.
 - d. The 3.3 mfd Electrolytic capacitor (C4). Observe Polarity.

The following 4 steps Refer to Clock Section


- Insert and solder the following: 8.
 - a. The 22 ga. black wire jumper.

 - b. The (2) 1K resistors (R1 & R2).
 c. The (2) 47 pf Mica capacitors (C16 & C17). d. The 6.75 MHz crystal, (XTAL), using 1
 - capacitor mount.
- 9. Insert and solder (1) 1K resistor (R4) in the Memory Decoder Section.
- Insert and solder (2) 1K resistors (R5 & R6) in 10. the I/O Decoder Section.
- 11. Insert and solder (24) 470Ω resistors (R7 thru R30) at the 3 ports, \emptyset , 1 & 2.
- 12. Insert and solder (24) Red L.E.D.'s (DI thru D24). Be sure to note polarity. Please be advised of the three types of L.E.D.'s E&L carries, as shown, on next page. One of these types is contained in this kit.

CAUTION!!! The (24) L.E.D.'s are easily damaged by excessive heat during soldering. Install the L.E.D.'s such that they stand up 1/8" from the top of the P.C. Board Solder them in from the bottom side of the board, only. Do not solder them in from the top side of the board as this is unnecessary and risks damaging them from excessive heat.

- 13. Insert and solder the (3) $4.7K\Omega$ resistors (R31 thru R33).
- 14. Insert (3) 3/4" (19,1mm) pieces of buss wire into the (6) BP-25 pins marked "MMD," "STB," "EXT," as shown below.

- 15. Insert and solder the large Red L.E.D. (D27) in the Halt Indicator spot next to the SK-10 socket on the P.C. Board Be sure that this L.E.D. is put in FLUSH with the top of the board and then soldered. Note polarity.
- 16. Insert and solder the 2200 resistor (R34) in P.C. Board next to large Red L.E.D. labeled Halt Indicator.

CONST.

VI. MAIN BOARD ASSEMBLY AND CHECKOUT (Continued)

- Insert and solder (8) 10KΩ Resistors R35 through R42.
- 18. Insert and solder the keyboard, making sure that the keyboard is mounted FLUSH with the top of the P.C. Board. Solder and clip the leads once it is mounted.
- Peel Labels from backing for the SK-10 Breadboarding socket and affix as shown in Illustration 3.
- 20. Place completed Main Board above the Housing, face down (solder side up), with the Binding Posts at the lower left.
- 21. Solder the (4) remaining wires, black, blue, red and white from power supply board to corresponding Binding Post terminals on Main Board.
- 22. Place Main Board on top of Housing Assembly and fasten with (6) 6-32 x 1/2" long screws.

You will now make some initial tests before inserting the integrated Circuit Chips.

22 .

VI. MAIN BOARD ASSEMBLY AND CHECKOUT (contd.)

A. Main Board Checkout

- 1. Plug unit into an outlet. Place switch (S1), in the UP position. The red light should come on.
- Connect common lead of D.C. Voltmeter to black binding post (GND). Check voltages at the following points.

D.C. Volts	+5γ	-5V	+12V	-9V
I.C. Number	Pin Numbers			
A8	20	11	28	al da al a n da
A5	16	a se ce Stabilit	9	
A6, A7	16			
A9-A12	18			
A15, A16	12,13,15 22,23		-	16,24*
A24-A29	5			
A1-A3, A13, A17	14			
A20-A23, A30				
A4,A14,Á18-A19, A31-A33	16			

*Prom must be in place for -9V to be present. Remember to reverse D.C. Voltmeter leads for Negative "Voltage Checks.

- 3. Remove power from the MMD-1, and insert the SN74LS75 latches (A24 thru A29). Be sure to note how the I.C.'s go into their sockets. There is a small mark near pin 1 for all the I.C.'s. This is part of the white screening. With the latches installed, apply power to the system. All of the L.E.D.'s should be on. If any are not on, check the associated SN74LS75 latch. With power still applied, ground the data bus lines D0 thru D7 at the SK-10 socket one at a time. One of the L.E.D.'s in each group of eight should go out, one at a time. If this doesn't happen, again check the SN74LS75's. This will prevent accidental short circuits at the I.C.'s which could cause damage.
- 4. The keyboard section consists of 16 keyswitches, 15 of which are used to input data and one of which is hardwired to the 8224 chip for the Reset function. The keyswitch closures are encoded in two SN74148 octal encoder chips and the encoded binary data is gated onto the bus through a three state DM8095 or SN74365 chip. Remove Power from the MMD-1, then insert the four integrated circuits,

CHECK

CONST

VI. MAIN BOARD ASSEMBLY AND CHECKOUT (contd.)

A. Main Board Checkout

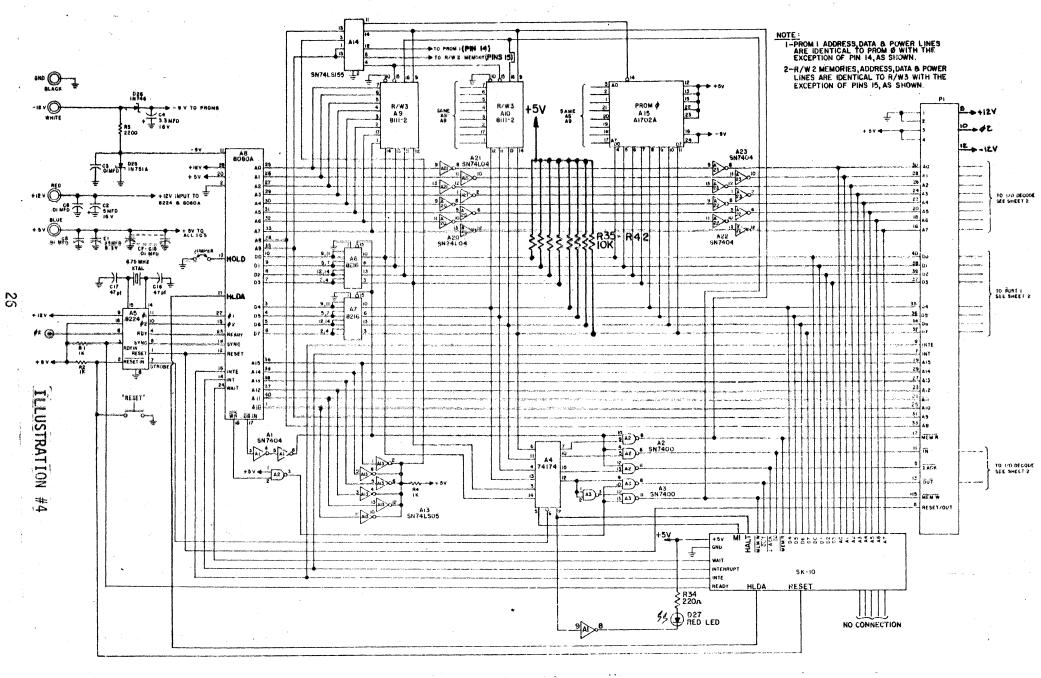
A30 thru A33. The keyboard is tested by monitoring the data on the L.E.D.'s. CAREFULLY ground pin 1 on A31 being very sure pin 2 is not also shorted. Also ground the IN line on the SK-10 socket. This will cause data from the keyswitch encoders to constantly be output to the bus. With these two points grounded, apply power and depress the keys, one at a time. The binary data for each keyswitch will be observed on the L.E.D.'s at all of the output ports, simultaneously. You will also note that the most significant bit, D7, will be on whenever one of the keys is depressed. This is often called a 'flag' since it is used to flag down the computer and tell it that one of the switches is ready with data. The second, third, and fourth most significant digit may be on, as they are not directly connected to the keyboard encoder. The lower left key will not output any data since it is hardwired to the 8224 clock chip. You can check this key's operation by testing the voltage at pin 1 of A5, the 8224 clock chip. When A5 is installed, it should normally be at about zero volts and will go to about 3 volts when the reset key is depressed.

5. After I.C. voltages, L.E.D. display and keyboard sections have been tested, install the remaining I.C.'s Remember to be sure that the I.C.'s are properly oriented as shown on the screened legends on the P.C. Board. Be sure that the R/W Section is installed correctly w/all four 18 pin sockets and all four 8111's going in sections 2 and 3, the KEX PROM (1702A) going in position 0, and the L/D PROM (1702A) going in position 1. (Refer to Illustration 3). If you have not already done so, obtain one of the 1702A PROMs with the Keyboard Executive (KEX) software, and one 1702A PROM with the Load/Dump (L/D) software in it. Preprogrammed PROMs are available (see Parts List) and if you already have a 1702A **PROM**, it may be programmed from the listing provided. There are currently a number of 1702A type PROMs available. These are 4702A and 8702A. These are pinfor-pin equivalents of the 1702A, but their access times are slower. The 1702A PROMs or equivalents should have a maximum access time of about 1300 nanoseconds to work with the Mini-Micro. If you purchase a 'surplus' PROM, be sure that these conditions are met. The PROM containing the KEX software must be placed in the PROM position 0. It will not work correctly if placed in position 1 since the addresses will be incorrect. The PROM containing L/D software must be placed in the PROM position 1. It will not work correctly if placed in position 0 since the addresses will be incorrect.

CONST.

VI. MAIN BOARD ASSEMBLY AND CHECKOUT (contd.)

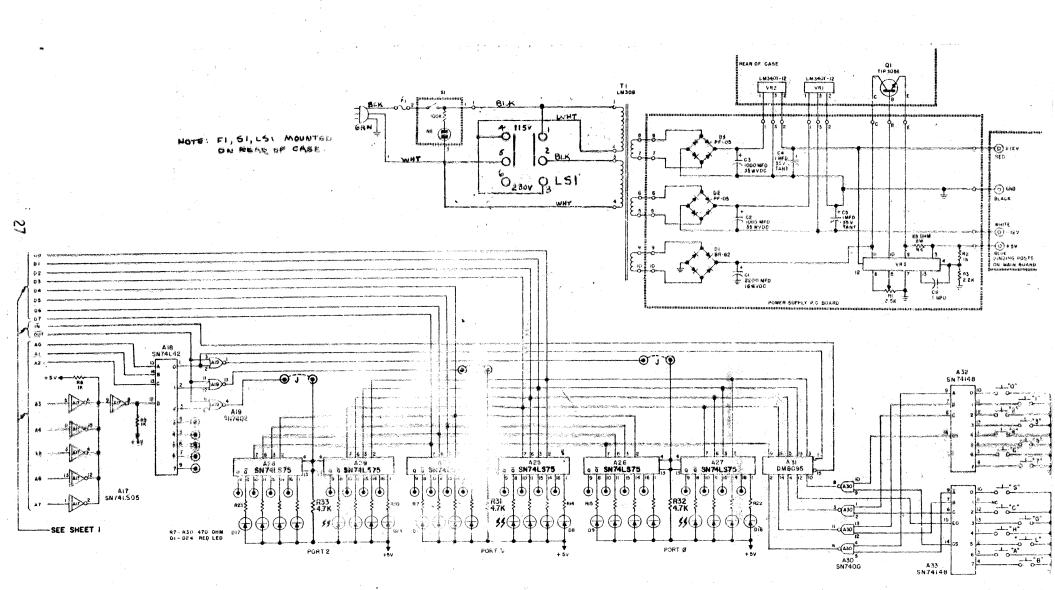
A. Main Board Checkout


- 6. Turn on the power with all the I.C.'s in place and check the power supply voltages at the Binding Posts. They should be at their preset levels of +5 and ±12 volts. If these are correct, your Mini-Micro system should be operational.
- 7. Depress the Reset key, R. The L.E.D. displays should now indicate 003 or 00000011 at the HI and 000 or 00000000 at the LO. The Output Port 2 L.E.D.'s may have some random data present. If this doesn't happen, remove the power and carefully check your system. Things to check for are solder bridges, cold joints, unsoldered I.C. pins and incorrect I.C. orientation. Plated through holes don't have to be soldered unless there is a component or other lead going through them. Also check for +5 volts and ground at all the I.C.'s. Refer to Step 2 of Main Board Checkout.
- 8. If the L.E.D.'s are on in the correct pattern, depress and release the S key. Each time that this key is pressed, the LO address information should be incremented by 1. If this doesn't happen, check the keyboard encoder section and the Input/Output sections of the Mini-Micro.
- 9. If the L.E.D's are operating correctly, try and enter some data, 0 through 7 from the keyboard. The binary codes for these switches should enter the Data Register display (Port 2) in the three least significant bits. You will note that as new data is entered the old data is shifted to the left where it finally disappears as more new data is entered. The actual operation of the KEX software to input and output data is discussed later in the KEX software section.

25

CHECK

Real Street


CONST.

. .

.

.

ILLUSTRAT. ON #5

VII. Operation-How to Use the Mini-Micro

The Keyboard Executive software is the 'heart' of the system. It allows you to examine data or program steps and it allows you to change data or program steps stored in the R/W portion of the memory. We can also specify any address and start the program there. The keyswitches are labeled 0-7 for octal data, H for HI Address, L for LO Address, G for Go and S for See and Store. Three keys are not used by the KEX, A, B and C. The Reset key, R, will always reset the computer and restart the KEX if its PROM is in place. All manual data entry is through the keyboard in the basic Mini-Micro system and there are no binary toggle switches to worry about.

Whenever you want to start the system, depress R. This will reset the KEX and it will always output the first address in the R/W block of memory in section 3. This is HI=003 and LO=000. If you will only be using one block of R/W memory to get started, it MUST be in block 3. The KEX will not function without R/W memory in section 3.

To enter data, whether it will be used for new data or addresses, simply depress the numbered keys as you would on a calculator. Data will be entered into the three least significant (right-most) LEDs and it will shift to the left as more data is entered. If a mistake is made, simply reenter the data. Mistakes are shifted out the left side and lost. The Data Register LEDs will display the data just entered from the keyboard and this may be used as HI Address data by depressing H, or it may be used as LO Address data by depressing L. These keys will transfer the data to the proper LED display register and it will be used by the 8080A to address a new memory location.

Whenever a new H or L is specified by actuating one of these two keys, the KEX will always output the contents of the specified location on the Data Register LEDs. To examine the next location, depress the S key for its See function. By depressing S again and again, we can examine data in sequential memory locations. It should be noted that this See function follows increasing memory locations, not the sequential flow of a program.

To change the data in a R/W memory location, simply load the address using the data input key and the H and L keys. The old data presently in the location will immediately appear on the Data Register LEDs. Enter the new data into the Data register using the numeric keys and then enter it into the R/W location by depressing the S key for the Store function. After S is actuated, the new data is stored and the address is automatically incremented by one to go to the next location. The data from the next location is now displayed on the Data Register LEDs. The **S key has two functions, both See and Store.** How can we tell the difference? If the data has changed we will store it and see the next location. If the data hasn't changed, we will store it back where it came from and then see the next location. When we store old data back to the location from which we got it, we can't really see any change, but this is exactly what the KEX does. It inputs data from the specified location, allows us to make changes and then puts it back. If no changes are made, the old data is restored to its memory location.

Once a program is entered into the computer through the keyboard, we can start it by loading our starting address and actuating the G or Go key. This will transfer control from the KEX software to the software that we want to try. Starting addresses are loaded in the same way that we use them to examine and alter locations. Starting addresses don't have to be in R/W memory, but can just as easily be in PRCM.

If your program starts at the first location in R/W memory, 003 000, you can simply depress R followed by G. We can do this because KEX always resets the address back to this first R/W location.

Keys labeled A, B and C are not used by KEX. It should be remembered that the three LED output ports and the keyboard input port are not hardwired for KEX alone. They are available for you to use in your programs. All fifteen keys may be used in any way you like, using software.

Keyboard Executive Software

The Keyboard Executive software is in a single 1702A type PROM which goes in PROM socket 0. This contains all the necessary software to operate the keyboard and the LED displays. This is our software controlled 'front panel', since the keys and LEDs perform functions determined by the KEX software.

How KEX Operates

Whenever the R key is depressed, the 8080A CPU chip will start to **execute the program that starts at location 0.** Looking at the software listing for KEX you will see that immediately after starting at location 0, the software instructions cause the computer to jump to location HI=000, LO=070 (HI=000 throughout KEX) where we START the program by pointing to the first R/W memory address in our minimum system, 003 000. The address and the data in that **location** are displayed on the three output ports. This is done between POINTA and POINTC. The software between POINTC and POINTD will do the necessary tasks to input new data from the keyboard and shift the data onto the LEDs. The shifting is done inside the 8080A with software instructions. Doing this in hardware would take many **more chips, but** it takes relatively few software steps. The software routines at POINTD, POINTE, POINTF and POINTG make up what is called a command decoder. The software decodes the key codes into real actions. Depressing H or L causes the data temporarily stored in the 8080A as numeric key inputs to be output to either the HI or LO set of LEDs. The S key code causes the current or new data to be put back into the memory location that we are looking at. Depressing G causes the computer to use the HI and LO address as the starting point for a new program.

The TIMOUT and KBRD software subroutines have specific tasks. TIMOUT will count its way through various loops for about 10 milliseconds, while the KBRD subroutine will input code from the keyboard. The KBRD subroutine has some unique features which illustrate an interesting hardware-software tradeoff. The keyswitches used in the Mini-Micro **are not** bounce free, so that when contacts are opened or closed, they **can often re-make** or re-break the contacts. This can be confusing to the computer since it can't distinguish between a real switch closure and a bounce. We don't want the computer to sense each bounce as a **key closure** so we would like some way to filter them out. Additional circuitry including latches, clocks and monostables could do this for us, but it complicates the system. We can also do the debouncing in software. The KBRD subroutine will recognize any key closure, but it will only input the key codes after being sure that the key is **closed** and **not** bouncing. It does this by waiting after sensing closure and then rechecking the switch to be sure it is still closed. It also checks when we release a key to be sure that it has stopped bouncing before it tries to sense another key being depressed by the user. We have traded some additional software steps for a great deal of hardware. Since we had plenty of PROM left, it was easy to include.

Since the TIMOUT and KBRD software segments have been set up as subroutines, you can use them in your software and in the experiments. Each of these subroutines may be started with a CALL instruction, 315.

The TIMOUT subroutine does not affect any of the registers or flags and it only serves to delay the software flow by 10 msec. The KBRD subroutine will return with the key code for the depressed key in the A register in the 8080A CPU chip. Flags and, of course, the A register have been used and modified.

An important distinction between the 8008 and the 8080 processors is in the use of subroutines. In the 8008, return pointer addresses were stored in the 8008 chip itself. In the 8080, these return pointer addresses are stored in a portion of the R/W memory. This is called a "stack" area, Whenever a subroutine is used we want to do the subroutine's task and then return back to the normal program flow. These return addresses are very important to the computer since they provide the only link between the subroutine and the main program. If we are to store them in a portion of R/W memory, the computer must know where this storage area is if it is to be able to use the addresses properly. In the KEX software this is set to be the top of the R/W memory with instructions at locations 070, 071 and 072. The LXISP instruction loads an internal 8080 stack Pointer Register to HI=004, LO=000. Since the Stack Pointer Register is decremented to point to a new location before anything is stored, the first stack location will be HI=003, LO=377. Check your sixteen bit binary numbers if this looks a little confusing.

You can use the stack as set up by the KEX (generally a good idea) or you can put your own stack anywhere you want, just by using the LXISP instruction. Remember to avoid the stack area when writing your programs. Remember, too, that you can't put the stack in an area of non-existent memory or in PROM.

You will use the stack area and you'll see how it can also be used to temporarily store data. This will be covered in the software modules. Let's see how the TIMOUT and KBRD subroutines can be used in our own software. We will use the software stack already set up in KEX.

Let's input a keyboard character, add a constant to it and display the result. We would first CALL the KBRD subroutine to input a binary key code, then add the constant and display the result.

The following software will do this:

1	HI	LO	INSTR	MNEMON	IC DI		
24	003	000	315	CALL			/Input keyboard character
(003	001	315	KBRD			/Subroutine's LO address
(003	002	000	0			/Subroutine's HI address
(003	003	306	ADI			/Add the following DATA to
(003	004	???	DATA			/the contents of register A
(003	005	323	OUT		7.	/Output data from register A to
	003	006	000	000			/device 000 (LEDs)
(003	007	303	JMP		6	/Jump back to program at
(03	010	000	000		2.1	/LO address =000
	003	011	003	003	31		/HI address =003

You can enter this with KEX, just restart, specify HI=003 and LO=000 and start entering data. Enter 000 at location 003 004 so we'll first add zero to the codes. This will let us check what values are assigned to each key. Write down the codes. Go back and restart KEX and change the value in 003 004 to, say, 005. This will add 5 to each code. Restart your software and see if this is the case. Congratulations, you have just done your first software experiment! The instructions at 003 003 and 003 004 could be changed to do other things to the data. Can you suggest one?

The 10 msec delay routine, TIMOUT, can be useful when we want a software delay that is in multiples of 10 msec. The following software routine will delay an output of all 1's on Output Port 0 by about 2.5 seconds after the program is started. Try it. Can you see how the time delay might be shortened? Can you see any use for programs like this?

Assume HI=003 throughout this program:

LO	INSTR	MNEMONIC	
000 001 002 003 004 005 006	006 370 315 277 000 005 302	MVIB 370 CALL 277 000 DECB JNZ	/Load register B with the following data /Data: time constant /Call TIMOUT subroutine at /LO address =277 /HI address =000 /Decrement B by 1 /Jump if result is not zero to
007	002	002	/LO address =002
010	003	003	/HI address =003
011	076	MVIA	/Load register A with the following data
012	377	377	/Data; all l's
013	323	OUT	/Output to device,
014	000	000	/device OOO (LEDs)
015	166	HLT	/Stop once you reach here

The keyboard input subroutine, KBRD, is called at address 000 315 and the time delay subroutine, TIMOUT, is called at address 000 277.

The 8080A Microprocessor

The 8080A type microprocessor chip is an eight bit paralled central processing unit (CPU) in which data is operate upon and decisions made. Unlike the earlier 8008 and 8008-1, 8080A is a more powerful, easy to use device. The 8008 was an 18 pin device and many things were multiplexed on the same bus. The 8080A is a 40 pin package which offers many advantages over the earlier devices: - simplified bus, separate address (16 bits) and data (8 bits) buses - three state and TTL compatible buses

- simplified control
- improved interrupt and stack

- more instructions

While the power and clock requirements for the 8080A are a bit more complex than for the 8008, they are easily met.

How the Mini-Micro Works

The Mini-Micro uses the same basic computer functions found in most other computers, large or small. These are:

- Central processing unit (CPU)
- Memory (R/W and PROM)
- Control Logic
- Input/Output Control
- Clock and power supplies

The 8080A has 24 data output lines, sixteen of which are used for address information and eight of which are a bidirectional data bus taking data to and from the CPU. The data flow on the data bus is controlled by the DBIN or Data Bus IN signal output by the 8080A chip on pin 17. Two bus buffers, Intel type 8216, are used to boost or buffer the data bus outputs and to protect the 8080A's imputs. The DBIN signal switches the 8216 buffer chips for either input or output of data on the bus.

The system's operation is controlled by signals output by the 8080A at various times as synchronized by the clock frequency. An Intel 8224 clock chip with a 6.75 MH_z crystal is used to provide the 750 KH_z MOS clock levels to the 8080A. These clocks are slightly out of phase and are nonoverlapping. While the 8080A chip can operate at frequencies up to 2 MH_z, the Mini-Micro's clock has been set to 750 KH_z so that it will work with the relatively slow 1702A type PROMS. You can increase the speed of the Mini-Micro by using a higher frequency crystal. The 8224 chip divides the crystal's frequency by nine, so an 18 MH_z crystal will give the 2 MH_z output needed for the highest operating speed.

The clock chip also synchronizes the Ready input with the clock so that system can slow down for slow memories and I/O devices. The Reset input from the R key is also input to the 8224 chip where it, too, is synchronized to the clock, and output to reset the 8080A.*

The 8080A's data bus will also contain some STATUS information which is used by the Control Logic section to synchronize its control operations. The STATUS information is output and is available when the SYNC signal is output from the 8080A. The 8224 clock chip gates the SYNC pulse from the 8080A with the main system clock to provide a very short STSTB signal or Status Strobe which 'catches' the status information in the SN74174 latch. The status information indicated data output, data input, halt condition, memory read, memory write and a special condition which signals the start of the next instruction, Ml. Four of these status signals are gated with other system signals to provide the IN, OUT, MW and MR signals used throughout the Mini-Micro. These signals are used as indicated on the next page.

* For more information about these signals and chips, see Intel's 8080 Microcomputer System User's Manual, Sept. 1975 and Bugbooks y and VI, for further information. \overline{IN} and \overline{OUT} - used to synchronize data flow to (\overline{IN}) and from (\overline{OUT}) the 8080A CPU. They are used with external devices for data transfer.

 $\overline{\text{MR}}$ and $\overline{\text{MW}}$ - used to indicate to the memory that the computer is executing a Memory Read or a Memory Write.

INTA - indicates that the computer has acknowledged an interrupt.

HALT and MI - latched and provided for the user. These are not used in the Mini-Micro, but are described in the experiment modules and are available for your use.

When the 8080A addresses memory, one and only one address must be specified on the 16 bit address lines. Since the 1702A and the 8111-2 memories only have eight input address lines to address their 256 locations, the remaining eight address lines must be used to select one and only one of the memory blocks. We can select from two blocks of PROM, two blocks of R/W or possibly no blocks on the Mini-Micro if we have expanded the memory off the card.

77

Address lines A0 through A7 are applied directly to the memory chips on the Mini-Micro card. Address lines AlO through Al5 are gated in a six input NOR gate made from an SN74LS05 open collector inverter, ICl3. When this gate's output is a logic 1, it indicates that we are selecting one memory location within the first 1024 locations. Address lines Al0 - Al5 are equal to logic 0. This would be one of the locations in either R/W or PROM, since these are located within the first 1024 locations. If the NOR gate indicates a logic 0, at least one of the address inputs, AlO -Al5, must be at a logic 1, indicating that we are now addressing memory outside the blocks on the Mini-Micro. Address bits A8 and A9 and the memory read signal MR are gated together in an SN74LS155 decoder to select the proper block of the four possible on the Mini-Micro card. The 8111-2 memories input the memory read and memory write signals to control the flow of data from and to the CPU. The 1702A PROM has only a chip select input, so the memory read synchronizing signal is used in the SN74LS155 to gate data from the 1702A onto the bus at the correct time. Table 1 shows the memory selection.

NOR Gate Output	A9	A8	MR	Memory Selected
0	x	x	x	NONE
ĩ	Ô	Ô	Ô	PROM 0
1	. 0	1	0	PROM 1
1	0	0	1	NONE
1	0	1	1	NONE
1	1	0	Х	R/W 2 *
1	1	1	Х	R/W 3 *

* MR and MW applied independently to the 8111-2 chips X = Don't care condition, logic 0 or logic 1

Data flows to and from the memory on the bidirectional data bus and the sixteen bit address bus specifies each location. This address bus is also used to help control the flow of data to and from external devices. The eight least significant or LO address bits can specify one of 256 possible peripheral devices. The address bits are decoded in the Mini-Micro to select one of four possible on-board devices. These are the three groups of LEDs and the keyboard. Address bits A3 - A7 are all ORed together in IC17, an OR gate made from a series of open-collector inverters in an SN74LS05 chip. If the eight bit LO address outputs a value greater than seven, the OR gate's output becomes a logic 1. Address bits A0 - A2 are used in IC 18, an SN74L42 decoder chip to provide a one-out-of-eight code for devices 0 to 7. The OR gate's output is used to enable the decoder for device coded 0 - 7, but to disable it for other codes. The decoding scheme is shown in Table 2.

a	b	1	е	2.	

On-Board I/Q DEVICE DECODER

OR Gate Output	A2	A1	AO	Mini-Micro Device
Ĩ	x	X	X	NONE
0	0	0	0	LED Port O, Keyboard
0	0	0	1	LED Port 1
0	0	1	0	LED Port 2
0	0	1	1	2
0	1	0	0	
0	1	Õ	1	> Available for user
0	1	1	0	
Ō	1	1	1	J

X = Don't care condition, logic 1 or logic 0.

You will notice that device code O selects both the LED Port O and Input Port O, the keyboard. How can the computer output and input data at the same time. It can't, and some means must be used to distinguish between them. The Control Logic section outputs two control signals, \overline{IN} and \overline{OUT} which indicate whether data will be input to the CPU or output to an external device. Both signals are exclusive, never taking place at the same time. The pulses are generated by the 8080A and the Control Logic section under control of our software. Only when we execute an I/O type instruction will either of these signals be generated. The device codes for theSN74LS751atches are gated with OUT in IC19, a NOR gate package, and the \overline{IN} is gated with the keyboard device doce in the DM8095 buffer chip associated with the keyboard, IC31. Data is input or output only when we have a valid device code and either \overline{IN} or \overline{OUT} .

A software-hardware user's group has been formed for the Mini-Micro. People interested should contact:

Digital Directions, Editor E & L INSTRUMENTS, INC. 61 First St. Derby, CT 06418

VIII. KEX PROM PROGRAM LISTING (OCTAL)

ADDRESS HI LOW	<u>DATA</u> <u>B7B0</u>	
000 000 000 001 000 002	303 070 000	*000 000 JMP START O
		/ JUMP UP 10 R/W MEMORY TO BE USED BY / RESTARTS & VECTORED INTERRUPTS
000 010 000 011 000 012 000 020	303 010 003 303	*000 010 JMP 010 003 *000 020 JMP
000 021 000 022	020 003	020 003 *000 030
000 030 000 031 000 032	303 030 003	JMP 030 003 *000 040
000 040 000 041 000 042	303 040 003	JMP 040 003 *000 050
000 050 000 051 000 052	303 050 003	JMP 050 003 *000 060
000 060 000 061 000 062	303 060 003	JMP 060 003
		/ BEGINNING OF MAIN PROGRAM
000070000071000072000073000074000075000076000077000100000101000102	061 START, 000 004 041 000 003 116 POINTA, 174 323 001 175	*000 070 LXISP /SET STACK POINTER TO TOP OF R/W MEM. 000 004 LXIH /INITIAL VALUE OF H & L 000 003 MOVCM /LOAD MEM DATA INTO TEMP DATA BUFFER MOVAH /OUTPUT HI TO LED'S OUT 001 MOVAL /OUTPUT LOW TO LED'S

ADDRESS	DATA	
HI LOW	$B_7 \dots B_0$	
000 103	323 OUT	
000 104	000 000	
000 105	171 POINTB, MOVAC / OUTPUT TEMP. DATA BUFFER DATA TO LED'S	S
000 106	323 OUT	
000 107	002 002	
000 110	315 POINTC, CALL / WAIT & INPUT NEXT KEY CLOSURE	
000 111	315 KBRD	
000 112	000 0	
000 113	376 CPI	
000 114		
000 115 000 116	322 JNC / JUMP IF KEY WAS < 010 134 POINTD / (0-7, OCTAL DIGIT)	
000 117	$\begin{array}{cccc} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	
000 120	107 MOVBA / SAVE KEY CODE	
000 121	171 MOVAC / GET OLD VALUE	
000 122	027 RAL / ROTATE 3 TIMES	
000 123	027 RAL	
000 124	027 RAL	
000 125	346 ANI / MAK OUT LEAST SIG. OCTAL DIGIT	
000 126		
000 127	260 ORAB / OR IN NEW OCTAL DIGIT	
000 130 000 131	117 MOVCA / PUT NEW DATA BACK INTO BUFFER 303 JMP	
000 132	105 POINTB	
000 133		
000 134	376 POINTD, CPI	
000 135	011 011 / "L" KEY	
000 136	302 JNZ / JUMP IF NOT AN "L"	
000 137	145 POINTE	
000 140		
000 141	151 MOVLC / PUT BUFFER DATA IN L	
000 142 000 143	303 JMP 076 POINTA	
000 144	000 0	
000 145	376 POINTE, CPI	
000 146	010 010 / "H" KEY	
000 147	302 JNZ / JUMP IF NOT AN "H"	
000 150	156 POINTF	
000 151	000 0	
000 152	141 MOVHC / PUT BUFFER DATA IN H	
000 153 000 154	303 JMP 076 POINTA	
000 155	000 0	
000 156	376 POINTF, CPI	
000 157	013 013 / "S" KEY	
000 160	302 JNZ / JUMP IF NOT "S"	
000 161	170 POINTG	
000 162		
000 163	161 MOVMC / PUT TEMP. DATA INTO MEMORY	
000 164 000 165	043 INXH / INCERMENT H & L	
000 165	303 JMP 076 POINTA	
000 167	000 0	
000 170	376 POINTG, CPI	

VIII. KEX PROM PROGRAM LISTING (OCTAL)

ADDRESS HI LOW	$\frac{\text{DATA}}{\text{B}_7 \dots \text{B}_0}$	
000 171 000 172 000 173 000 174	012 302 110 000	012 / "G" KEY JNZ / JUMP IF NOT "G" POINTC 0
000 175	351	PCHL / GO EXECUTE PGM POINTED TO BY H & L
		/ THIS 10 MSEC DELAY DISTURBS NO REGISTERS OR FLAG
000 277 000 300	365 TIMEOUT 325	*000 277 ,PUSHPSW / SAVE REGISTERS PUSHD
000 301 000 302	021 046	LXID / LOAD D & E WITH VALUE TO BE DECREMENTED
000 303 000 304 000 305 000 306 000 307	001 033 MORE, 172 263 302	OO1 DCXD / JUMP IN THIS LOOP UNTIL MOVAD / D & E ARE BOTH ZERO ORAE JNZ
000 310 000 311	304 000	MORE O
000 312 000 313 000 314	321 361 311	POPD POPPSW / RESTORE REGISTERS RET
		/ THE KBRD ROUTINE DEBOUNCES KEY CLOSURES / AND TRANSLATES KEY CODES
÷		/ FLAGS AND REG A ARE CHANGED / AO-A3= CODE ; A4-A7= 0000
000 315 000 316	333 KBRD, 000	IN / INPUT FROM KEYBOARD ENCODERS
000 317 000 320 000 321 000 322	267 372 315	ORAA / SET FLAGS JM / JUMP BACK IF LAST KEY NOT RELEASED KBRD
000 323 000 324	000 315 277	O CALL / WAIT 10 MSEC TIMOUT
000 325 000 326 000 327	000	0 , IN 000
000 330 000 331 000 332	267 362 326	ORAA JP / JUMP BACK TO WAIT FOR A NEW FLAGCK / KEY TO BE PRESSED
000 333 000 334 000 335	000 315 277	O CALL / WAIT 10 MSEC FOR BOUNCING TIMOUT
000 336 000 337	000 333	O IN
000 340 000 341 000 342	000 267 362	000 ORAA JP / JUMP BACK IF NEW KEY NOT STILL

VIII. KEX PROM PROGRAM LISTING (OCTAL)

000 366

000 367

000 370

000 371

000 372 000 373

000 374

000 375

000 376 000 377 006

007

013

000

017

012

010

011

015

016

ADDRESS HI LOW	<u>DATA</u> <u>B7B</u> 0	
000343000344000345000346000347000350000351000352000353000354000355000356000357	326 000 346 017 345 046 000 306 360 157 176 341 311	FLAGCK / PRESSED (FALSE ALARM) O ANI / MASK OUT ALL BUT KEY CODE O17 PUSHH / SAVE H&L MVIH / ZERO H REG OOO ADI /ADD THE ADDRESS OF THE BEGINNING OF 360 / THE TABLE TO THE KEY CODE MOVLA / MOVAM / FETCH NEW VALUE FROM TABLE POPH / RESTORE H & L RET
		/ THIS TRANSLATION TABLE CONVERTS THE CODE / GENERATED BY KEY CLOSURES TO THE CODE / USED BY THE MAIN KEX PROGRAM
000 360 000 361 000 362 000 363 000 364 000 365	000 TABLE, 001 002 003 004 005	000 001 002 003 004 005

/ S

/ C

/ G

. / H

/ L

/ A

. / B

/ THIS CODE CAN'T BE GENERATED

006

007

013

000

017

012

010

011

015

016

	<pre>/ 7-13-76 MMD-1 M-I Routines / THE FOLLOWING ROUTINES ARE USED WITH THE / MMD-1 MEMORY-INTERFACE BOARD</pre>
	/ THE READ FROM CASSETTE ROUTINE, RCAS, READS / DATA FROM THE CASSETTE AND STORES IT IN / SUCESSIVE MEMORY LOCATIONS ON THE M-I / BOARD, STARTING AT Ø30 Ø00. AS THE DATA IS INPUT / IT IS DISPLAYED ON THE MMD-1'S LEDS.
	001 000
ØØ1 ØØ9 Ø41 RCAS, ØØ1 ØØ1 ØØ9 ØØ1 ØØ9 ØØ1 ØØ2 Ø39 ØØ1 ØØ2 ØØ1 ØØ2 Ø39 ØØ1 ØØ2 ØØ1 ØØ2 Ø39 ØØ1 ØØ2 ØØ1 ØØ2 ØØ1 ØØ2 ØØ1 ØØ1 ØØ7 ØØ3 ØØ1 ØØ1 ØØ1 ØØ7 ØØ3 ØØ1 ØØ1 ØØ1 ØØ7 ØØ3 ØØ1 ØØ1 ØØ1 Ø17 167 ØØ1 Ø13 175 ØØ1 Ø13 175 ØØ2 ØØ1 Ø14 323 ØØ1 Ø15 ØØ9 ØØ1 Ø16 174 ØØ1 Ø16 174 ØØ1 Ø20 ØØ1 ØØ1 Ø20 ØØ1 Ø43 ØØ1 Ø22 Ø93 ØØ1 Ø22 Ø93 Ø5 Ø91 Ø23 Ø55 Ø91 Ø24 Ø91	LXIH / INITIALIZE THE MEMORY POINTER 000 930 IN / CLEAR FLAGS IF NECESSARY 922 CALL / INPUT A BYTE OF DATA CASIN 0 MOVMA / STORE THE DATA OUT / OUTPUT DATA AND ADDRESS 002 MOVAL OUT 001 001 001 001 001 001 001 00
	/ THE WRITE ONTO CASSETTE ROUTINE, WCAS, IS USED / TO STORE ON CASSETTE FROM 1 TO 8 256 BYTE BLOCKS / OF MEMORY STARTING AT Ø3Ø ØØØ. ONCE THE ROUTINE / HAS BEEN STARTED, A KEY ON THE MMD-1 KEYBOARD IS / PRESSED TO INDICATE HOW MANY 256 BYTE BLOCKS ARE / TO BE TRANSFERED. (KEY "Ø" INDICATES 8 BLOCKS.) / THEN AFTER A 5 SECOND DELAY THE DATA IS WRITTEN / ONTO THE CASSETTE; AFTER ANOTHER 5 SECOND DELAY / CONTROL IS RETURNED TO KEX.
001 025 041 WCAS, 001 026 000 001 027 030 001 030 315 KEY,	LXIH / INITIALIZE THE MEMORY POINTER ØØØ Ø3Ø CALL

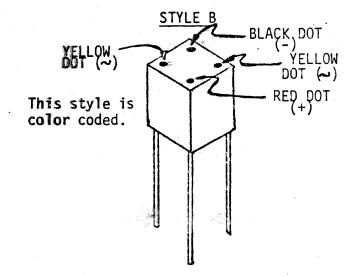
IX.	LOA	D/DUMP	PROM PROGRAM	LIS	TING (OCT	ÍAL)*
ØØI	Ø31	315			315		KEX KEYBOARD INPUT ROUTINE
001 001	Ø32 Ø33	ØØØ 376			ØØØ CPI	1	CHECK FOR Ø-7
001	Ø34	Ø1Ø	,		Ø1Ø	ł	CHECK FOR D-7
ØØ1	Ø35	322			JNC	1	IF NOT, JUMP BACK
ØØI	Ø36	Ø3Ø			KEY		
	037	001 267	·		ØORAA	,	S SET FLAGS
	Ø4Ø Ø41	267 3⊉2			JNZ	1	S SET FLAGS
	Ø42	Ø46			NOTØ		· · ·
ØØ1	Ø43	201		•	ø		
	044	3Ø6			ADI	1	ADD 8 IF ZERO KEY
	Ø45 Ø46	Ø1Ø 204	NOTØ,		ø1ø Addh	. 1	COMPUTE STOPPING ADDRESS
	Ø47	127			MOVDA	•	SAVE IT IN REG D
ØØI	Ø5Ø	315			CALL		DELAY FOR 5 SECONDS
	Ø51	130			FIVSEC		
	Ø52 Ø53	ØØ1 176	MORE,		Ø Movam	,	GET DATA FROM MEMORY
	Ø54	315	MURL		CALL		OUTPUT TO CASSETTE
	Ø55	114			CASOUT	•	
	Ø56	<i>ø</i> Ø1			9		
	Ø57	323			OUT ·	/	DISPLAY DATA AND ADRESS
	Ø6Ø Ø61	ØØ2 175			ØØ2 Moval		
	¢62	323			OUT		
001	Ø63	Ø70			ppp		
001	Ø64	174			MOVAH		
ØØ1	Ø65 Ø66	323 ØØ1			0UT ØØ1		
ØØT		<u>9</u> 43			INXH	1	INCREMENT THE MEMORY POINTER
ØØ٦	Ø7Ø	174			MOVAH		
ØØ1		272			CMPD		CHECK FOR END OF LOOP
	Ø72 Ø73	302 053		•	JNZ MORE	1	JUMP BACK IF MORE DATA TO BE OUTPUT
	Ø74	221			Ø		
ØØ1	Ø75	315			CALL	1	DELAY 5 SECONDS
	Ø76	130			FIVSEC		•
	Ø77 1 1ØØ				Ø JMP	1	RETURN TO KEX
	101			, ,	Ø7Ø	1.	ALTONA TO ALA
	1 102				000		• · ·
•	•				/ THE C	ASS	SETTE INPUT SUBROUTINE, CASIN, WAITS
•	· .		•				A TO BE RECEIVED BY THE CASSETTE
					/ UART,	A	ND INPUTS THE DATA.
001	103	333	CASIN,		IN	,	INPUT STATUS BITS
	104		CASIN,		Ø23	1	INFOI STATUS DITS
001	105	Ø37			RAR		
	106				JNC	1	JUMP BACK IF NO DATA AVAILABLE YET
ØØ1	1Ø7	1Ø3			CASIN		•
			•	•			
		- '-			42		
					42		4
					-		

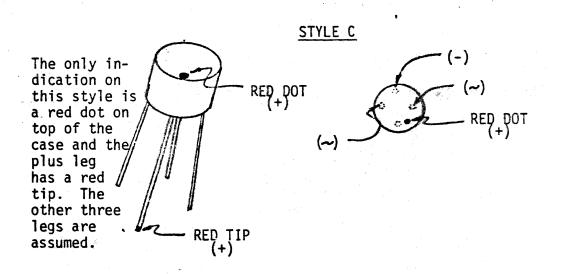
•

IX. LOAD/DUMP 201 110 001 001 111 333 001 112 022 001 113 311	PROM PROGRAM LIS	TING (OCTAL) Ø IN / INPUT DATA Ø22 RET
		/ THE CASSETTE OUTPUT SUBROUTINE, CASOUT, WAITS / IF THE TRANSMITTER HOLDING REGISTER IS FULL, / AND THEN OUTPUTS THE DATA
ØØ1 114 365 ØØ1 115 333 ØØ1 117 346 ØØ1 120 ØØ4 ØØ1 121 312 ØØ1 122 115 ØØ1 123 ØØ1 ØØ1 125 323 ØØ1 126 Ø22 ØØ1 127 311	CASOUT,	PUSHPSW / SAVE DATA IN / INPUT STATUS BITS 023 ANI 004 JZ / JUMP IF TRANSMISSION REG. NOT EMPTY CASOUT+1 0 POPPSW / RESTORE DATA OUT: / OUTPUT DATA 022 RET
ØØ113Ø365ØØ11313Ø5ØØ1132ØØ1ØØ1133364ØØ1134ØØ1ØØ1135315ØØ1136277ØØ1136277ØØ1140Ø13ØØ1141170ØØ1142261ØØ11433Ø2ØØ1144135ØØ1145ØØ1ØØ11453Ø1ØØ1147361ØØ1150311	FIVSEC,	/ FOR FIVE SECONDS BY REPEATEDLY CALLING THE / 10 MSEC DELAY IN KEX. PUSHPSW / SAVE REGISTERS PUSHB LXIB /-LOAD COUNT 364 001 CALL / KEX TIMOUT SUBROUTINE 277 000 DCXB / DECREMENT COUNT MOVAB ORAC JNZ / JUMP IF COUNT IS NOT ZERO FIVSEC+5 0 POPB / RESTORE REGISTERS POPPSW RET

/ THE TELETYPE INPUT SUBROUTINE, TTYIN, WAITS FOR / A CHARACTER TO BE RECEIVED BY THE TTY UART, / INPUTS THE CHARACTER, MASKS OUT THE PARITY BIT, / AND THEN ECHOS IT.

•


IX. LOAD/DUMP PROM PROGRAM LIS	TING (OCTAL)			
001 151 333 TTYIN, 001 152 021	IN / INPUT STATUS BITS \$21			
001 153 037 001 154 322 001 155 151	RAR JNC / JUMP BACK UNTIL A CHARACTER IS EIVED ITYIN			
ØØ1 156 ØØ1 ØØ1 157 333	9 IN / INPUT THE CHARACTER			
ØØ] 16Ø Ø2Ø ØØ] 161 346 ØØ] 162 177	929 ANI / MASK OUT THE PARITY BIT 177			
	/ THE TELETYPE OUTPUT SUBROUTINE, TTYOUT, WAITS / IF THE TRANSMISSION HOLDING REGISTER IS NOT / EMPTY, AND OUTPUTS THE CHARACTER.			
001 163 365 TTYOUT, 001 164 333 001 165 021	PUSHPSW / SAVE THE CHARACTER IN / INPUT STATUS BITS Ø21			
001 166 346 001 167 004 001 170 312 001 171 164	ANI 994 JZ / JUMP IF TRANSMITTER REG. NOT EMPTY TTYOUT+1			
ØØ1 172 ØØ1 ØØ1 173 361 ØØ1 174 323 ØØ1 175 Ø2Ø	9 POPPSW / RESTORE THE CHARACTER OUT / OUTPUT THE CHARACTER 929			
ØØ1 176 311	RET			
	<pre>/ THE PAPER TAPE READER INPUT SUBROUTINE, RDRIN, / TURNS ON THE READER RELAY CIRCUIT, WAITS FOR / DATA TO BE RECEIVED, AND INPUTS IT.</pre>			
901 177 323 RDRIN,	OUT / TURN READER RELAY ON			
ØØ1 200 Ø21 ØØ1 201 333 ØØ1 202 Ø21	921 IN / INPUT STATUS BITS 921			
001 203 037 001 204 322	RAR JNC / JUMP BACK IF NO DATA AVAILABLE			
ØØ1 205 201 ØØ1 206 ØØ1	RDRIN+2			
007 207 333 001 210 020 001 211 311	IN / INPUT DATA 920 RET			
NOTØ = 001046 MORE	= 001 005 WCAS = 001 025 KEY = 001 030 = 001 053 CASIN = 001 103 CASOUT = 001 114 = 001 151 TTYOUT = 001 163 RDRIN = 001 177			
ERRORS DETECTED = $\emptyset \emptyset \emptyset$				
	44			
	· · · · · · · · · · · · · · · · · · ·			


Due to Manufacturers differences in packaging, you may find that the Bridge Rectifier called out in your manual is different than the actual part. The diagrams below will assist you in defining the leads.

PF-05 Bridge Rectifier (1.5A 50PIV) E & L P/N: 502-0002

STYLE A

This style has each leg of the bridge stamped on the top of the case.

ENGINEERING NOTICE

Due to manufacturers availability, the following capacitors may have been substituted in your kit:

Part Number:	524-0005	10 mfd	0	20 V
	524-0009	l mfd	0	35 V
	524-0010	22 mfd	0	15 V
	524-0032	5 mfd	6	15 V

The substitution on the above parts is not a value substitution but a case style substitution.

OR

PLUS IS ALWAYS TO THE RIGHT OF THE DOT.

806-0026 (4-78)

ENGINEERING NOTICE

Fue to manufacturers availability we are temporarily out of stock of SN74LS75's (P/N 503-0187). In order not to hold up the shipment of your unit we have elected to substitute SN7475's (P/N 503-0045). Please make the necessary changes in your manual.

806-0033 3/79

E&L Instruments , Incorporated 61 First Street , Derby, Connecticut 06418

ENGINEERING NOTICE

Due to an internal change, by the manufacturers, to the 8224 Clock Generator Chip, the 47 pf capacitors (C 16 & C 17) are no longer necessary. We are not going to eliminate them from the manual at this time or change the pc board until we have made the proper tests and are certain that these caps will no longer be needed. All you have to do is ignore the references to these caps in your manual, we have eliminated from the bag of parts.

If you wish to go through your manual and note these changes now, they appear on pages 6, 18, and 19.

B E&L INSTRUMENTS, INCORPORATED 61 FIRST ST. MINIMUM DERBY, CT. 06418