
Digital Internal Use Only

The Hitch Hiker's Guide to
VAX Document

Order Number. PSO-TDK-014

by Theo de Klerk
SWAS/Project Services

This Guide gives an overview of the different components that comprise the VAX DOCUMENT
FT1 .2 type setting system. It is an unofficial document written by a normally reasonably happy
DOCUMENT user and administrator, especially while wearing Digital watches.

Revision/Update Information: V1 .2 (6th edition, 11-MAY-1989 00:57:42.87)
DON'T PANIC

~nmnoma™
Digital Equipment bv

Utrecht, the Netherlands

Digital Internal Use Only

May 1989

All rights reserved.
Processed. and prepared. in the Netherlands

First edition: 1987 by Megadodoo Publications, Ursa Minor
Second edition: April 1988 by Digital Equipment bv
Third edition: May 1988 by Digital Equipment bv
Fourth edition: August 1988 by Digital Equipment bv
Fifth edition: August 1988 by Digital Equipment bv
Sixth edition: May 1989 by Digital Equipment bv

It is not the most remarkable, and certainly not the most successful book ever to have come out
of the small publishing corporations of Ursa Minor. But it still is more popular than the Celestical
Home Care Omnibus, worser selling than the VAX DOCUMENT Cookbook by the same author.

Although this document contains much that is apocryphal, or at least wildly inaccurate, it scores
over the other VAX DOCUMENT books in two important ways. First, it is slightly cheaper, and
second, it has the words "Don't Panic" inscn'bed in small ugly letters on the front cover.
It also incorporates some suggestions from the VAX DOCUMENT engineers.

Copyright ©1989 Digital Equipment bv, the Netherlands

PostScript is a Trademark of Adobe Systems Inc
TEX is a Trademark of the American Mathematical Society

This document was prepared using VAX DOCUMENT, Version 1.2

Digital Internal Use Only

Preface

The first edition of this document was written after about one year of using VAX
DOCUMENT, scanning its associated notesfile CLOSET::DOCUMENT and helping out
people maintaining the product in their production environment.

Although the documentation supplied with VAX DOCUMENT is already very extensive,
the topics in this document can only be appreciated after havirig used VAX DOCUMENT
for a while and being familiar with its "heart", the '!EX system.

This publication shows the relationship among several files (programs as well as data)
produced and referenced by VAX DOCUMENT FTl.2 in its process from SDML source
file to final printable output. It is by no means complete or definite. But everything m
this publication is true, except the bits that are lies.

The third edition includes some corrections (removal of some lies) suggested by the VAX
DOCUMENT engineers after reading the second edition. Everything they suggested may
be considered true, but in addition I added something more myself that will go under
the usual disclaimer of the previous paragraph (I'm really approaching DOCUMENT in
a black-box fashion)

The fourth edition is revised to take some aspects of Vl .1 into account. The differences
are highlighted by changebars, which were automatically produced by comparing the
current text with the original one by the CHANGEBAR program-another brainchild of
mine, brought to perfection by Monty Sagal of the Israeli Local Engineering group.

The fifth and sixth edition adds information on the improved behaviour for foreign
language string and hyphenation support made availabe to internal users in August 1988.

Hopefully it will guide the administrator in locating possible errors or problems and
solving them quickly. For comments, improvements and suggestions, I invite you to
drop me a VAXmail at IJSAPL::KLERK.

Thanks are due to Patti Anklam, Bill Kohlbrenner, Dave Parmenter on the VAX DOCU­
MENT front.

Amsterdam, May 9th, 1989

Theo de Klerk

v

Digital Internal Use Only

Contents

Preface v

Chapter 1 The VAX DOCUMENT program

1.1 Overview .. 1-1
1.2 Command line parsing .. 1-1

1.2.1 Filespec .. 1-1
1.2.2 Doctype .. 1-2
1.2.3 Destination .. 1-3

1.3 Quota problems ... 1-5
1.4 Summary : 1-5

Chapter 2 The Tag Translator

2.1 Overview .. 2-1
2.2 Pass 0: Tag loading .. 2-1

2.2.1 Difference in STT and GTD files 2-2
2.2.2 User created and modified Tag Definitions 2-3
2.2.3 The Tag Designer's Guide .. 2-4

2.3 Pass 1: Source file tag validation · 2-5
2.4 Pass 2: Writing the .INT_ TEX file .. 2-6
2.5 Pass 3: Post-Processing: writing the .TEX file 2-6
2.6 Summary .. 2-6

Chapter 3 The TEXt Processor

3.1 Overview .. 3-1
3 .2 Loading T]3Xt macro definitions ... 3-2

3.2.1 Standard VAX DOCUMENT 1J3X commands 3-2
3 .2.2 TEX$ST ARTUP. TEX: additional definition files read 3-3

3.2.2.1 DOC$LOCAL_ELEMENTS: Site-specific modifications 3-4
3.2.2.2 DOC$$DOCTYPE: Standard Doctype-specific macros setup 3-4
3.2.2.3 DOC$$DEVICE_MACROS: output device specific definitions 3-5
3.2.2.4 TEX$EXCEPTIONS.TEX: hyphenation exceptions 3-5

3.3 Processing source TEX file ... 3-5
3.4 Summary .. 3-8

iii

Digital Internal Use Only

Chapter 4 The Device Converter

4.1 Overview .. 4-1
4.2 Device Independent Files .. 4-1
4.3 Font files .. 4-1

4.3.1 Producing LINEPRINTER files : 4-2
4.3.2 Producing POSTSCRIPT files 4-2
4.3.3 Producing LN03 files .. 4-3
4.3.4 Bookreader .. 4-3

4. 4 Knitting files together . 4-4
4.5 Summary .. 4-4

Appendix A Bibliography

Index

Tables
2-1 1EX built-in tag alias codes ... 2-5

iv

Digital Internal Use Only

Chapter 1
The VAX DOCUMENT program

$ DOCUMENT HHG2VAXDOC IJSAPL.MANUAL LN03/CONTENTS/INDEX
%DOC-I-IDENT, VAX Document Tl.2 6-MAR-1989 14:28:26.99

1.1 Overview
The DOCUMENT command line identifies the three major components that play a part
in the processing of your source file: ·

DOCUMENT f ilespec doctype destination

The two main activities of the DOCUMENT program are:

1. Parse the command line and set up logical names

2. Invoke the other DOCUMENT components

The DCL command "DOCUMENT" invokes the VAX DOCUMENT program DOC STOOLS: -
DOCUMENT. Eµ:. This program will scan the command line, check its validity and setup
information it will need in the subsequent phases and it will invoke the three main com­
ponents of which the DOCUMENT system is built:

1. The Tag Translator

2. The TE)<t Processor

3. The Device Converter

Each of these components is the subject of one of the next chapters. This chapter will
concern itself with the main program DOCUMENT. EXE itself.

As the three components do no talk to each other directly, much of the information that
is required for them is passed by the creation of logical names. The Tag Translator and
Device Converters are separate shareable images. The Text Processor is an integral part
of the DOCUMENT. EXE program.

1.2 Command line parsing
1.2.1 Filespec

The filespec parameter is the source file that contains the text to be formatted along
with the type setting commands that are recognized by VAX DOCUMENT. These type
setting commands are known as generic markup and more colloquially as tags. Appended
to this file specification may be the qualifier /PROFILE=filespec in which case the file is
considered to be just an element of a book to be built whose profile is specified with the
qualifier.

The VAX DOCUMENT program 1-1

Digital Internal Use Only

A tag in the SDML source file is recognized by the fact that it is a name (consisting of
alphanumeric characters and the underscore "_" and without blanks or tabs) enclosed by
two angle brackets (" < " and " > "). Optionally the tag may be followed by one or more
arguments. These arguments are enclosed in a set of parentheses (" (...) ") and separated
from each other by so-called backslashes ("\ "). There can be no space or end-of-line
between the tag and the arguments.

Some valid tag constructs are:

<TABLE>
<LIST>(NUMBERED)
<CHAPTER>(Once Upon A Time \openingchapter)

All valid tags are defined in the two VAX DOCUMENT User Reference Manuals. The first
manual contains all tags that can be used in any text. These are so-called "global" tags.
The second manual contains additional tag definitions that can only be used in the context
of a special document type. For instance, a tag like < FROM_ADDRESS > makes sense when
we're composing a letter, but not when writing a novel. Alternatively, <SLIDE> is only
useful when making overhead transparencies.

The tags are interpreted by the Tag Translator component of VAX DOCUMENT. It will
look up the definitons of all tags available for the specified doctype as supplied with
the DOCUMENT software, and the user-defined tags. Getting familiar with the available
tags is critical to making good use of VAX DOCUMENT. The Tag Translator also takes
care of all the cross-referencing within the document.

As we will see in Section 2.2.2 the user may define tags that are only available locally
and are "home made". This of course limits the use of the source file when it is going
to be sent to computer systems on which these tags are undefined.

1.2.2 Doctype
The doctype parameter indicates how the text to be printed should be formatted. The
word "doctype" is often used interchangeable with the word "design." A number of
designs are delivered with the VAX DOCUMENT installation. Some of them are
individual designs, such as overhead or report, others are members of a family of related
designs. For a design in a family, you indicate both the family name and the specific
family member name. For example, software.specification is the specification member of
the software family of designs.

The ·specified name for the doctype is used by the DOCUMENT program to start
looking for its validity. The available DOCUMENT doctype names are located a file
called DOC$$FORMATS:DOC$DESIGNS.DAT. The DOC$$FORMATS is a logical name defined
by DOCUMENT itself during run-time. It is a searchlist that is currently looking at
DOC$PERSONAL_FORMATS, DOC$LOCAL_FORMATS and finally DOC$STANDARD_FORMATS. H:ence
DOCUMENT will search for DOCSDESIGNS.DAT in the following order:

DOC$PERSONAL FORMATS:DOC$DESIGNS.DAT
DOC$LOCAL_FORMATS:DOC$DESIGNS.DAT
DOC$STANDARD_FORMATS:DOC$DESIGNS.DAT

These files are normal ASCII text files and can be edited using an ordinary editor such
as LSEDIT or EDT or even TECO.

The three logical names DOCS* _FORMATS should translate into three (sub)directories and
are scanned by DOCUMENT.EXE in the order given. Only DOC$STANDARD_FORMATS is
defined by the standard installation. The other two do not need to exist. If they do, it is
compulsory that the file DOCSDESIGNS.-DAT, however small, is present in that directory.

1-2 The VAX DOCUMENT program

Digital Internal Use Only

The DOC$PERSONAL_FORMATS is defined privately and can contain private modifications of
standard designs or entirely new designs.

The DOCSLOCAL_FORMATS is local to the entire VAX system, and is defined if the Digital
internal kit is installed. It contains modifications to standard designs or new designs that
are accessible to all users on the system, but are not part of the standard set.

The DOC$STANDARD_FORMATS is the default one supplied with VA.x DOCUMENT. As such,
it should not be modified.

If there are no private or local doctypes, the first two logical names should either not
exist or point to the null device (NL:).

Each line in the DOC$DESIGNS.DAT files has an identical format:

doctype /definitions=tagf ile/macros=designfile/fonts=fontfile

The first match of the doctype given on the command line with a definition in one of
those DOCSDESIGNS.DAT files will cause VAX DOCUMENT to use that definition. This
way it is possible to overrule a standard doctype by defining the same name in the local
or private version of DOCSDES IGNS. DAT. If the specified doctype is not found in either of
these three files, VAX DOCUMENT will abort with a message saying that the doctype
specified was unknown.

Local doctypes within Digital
The local design definitions can accomodate site-specific doctypes, but can also
be modifications of existing doctypes that are defined in the DOC$ST AND ARD_
FORMATS directory and are supplied with VAX DOCUMENT. Within Digital
it is used to allow for company-specific modifications to certain designs (e.g.
the MEMO is modified to be styled to the corporate standard interoffice memo
layout).

Valid doctype definitions specify which tag definitions are to be used by the Tag
Translator (through the /DEFINITIONS=), which design file (through /MACROS=) and what
fonts to use by the T£Xt Processor and Device Converter (through /FONTS=).

The DOCUMENT.EXE program creates a process logical name (during its execution)
DOC$$DOCTYPE_MACROS to identify the design file specification.

We will talk about tag definitions in Chapter 2 and about doctype design files in Chapter 3.

1.2.3 Destination

The destination parameter indicates to VAX DOCUMENT what device converter should
be used to produce the final pages after procesing by the T£Xt Processor.

Using a line printer leaves only the standard monos paced fonts and very few degrees of
freedom to make a pleasing looking page. It is useful however for line printer output, or
terminal and mail readable text.

If an LN03 file is to be produced, all characters must now be "translated" into a dot
pattern of white and black dots that together make for a nice looking character on paper.
Which areas of the page remain white or become black is all defined in the LN03 font
files that were bought separately through Digital from CompuGraphic. Hence the LN03
output files are not readable by anything but an LN03, or a translator, such as that
provided with the PrintServer 40 and ScriptPrinter.

The VAX DOCUMENT program 1-3

Digital Internal Use Only

Using PostScript output requires another approach. Here, most font information is
hidden in the Postscript printer itself. Like a Basic interpreter, this printer digests a
string of PostScript commands and formats a page accordingly. Hence the PostScript
output is human readable on a normal printer or video terminal, but doesn't make much
sense unless you're very fluent in the Postscript language.

A destination only for Digital internal use is the VO ILA_ ONLINE bookreader output for
DECwindows' Bookreader. This allows you to read a book from your workstation screen,
layed out as if it were printed from an LN03 or PostScript printer. It should be used in
combination with the ONLINE doctype.

All valid destinations for your command line are located in a system-wide file, maintained
by the DOCUMENT Administrator. There used to be only one place where VAX DOC­
UMENT can find information on valid destinations. From FTl.2 onwards, DOCUMENT
searches for the file DOC$ $FORMATS: DOCSDESTINATIONS. DAT to find this information. Since
this logical name is in fact a searchlist logical name, the destinations can be defined in
a similar manner to the way doctypes are defined: you can have three locations for this
destination information. Those three places are:

DOC$PERSONAL_FORMATS:DOC$DESTINATIONS.DAT
DOC$LOCAL_FORMATS:DOC$DESTINATIONS.DAT
DOC$STANDARD_FORMATS:DOC$DESTINATIONS.DAT

Similar to its search for a match with the specified doctype, DOCUMENT will also search
through these three files for a match with the specified destination. The search is done
through those files in the order specified above and on a first-match basis. This way
by using identical names in the different files, one can overrule such a destination's
characteristics.

The DOC$STANDARD_FORMATS:DOC$DESTINATIONS.DAT file is originally created and filled
during the installation, but can be modified later, either by part-installing VAX DOCU­
MENT or by editing it manually. Modifications should happen in the other two files -
the standard one should remain untouched.

Care must be taken not to add any blanks, tabs etc.1 It contains information on

the valid destination names

to which physical queue on the system is associated with the destination

additional print qualifiers (such as form type, setup,priority etc).

the standard TEX macro format definition (FMT) file to use during the TEXt processing
phase.

the files containing special character font definitions

If the specified destination is not found in the file, VAX DOCUMENT will abort, reporting
an unknown destination.

The DOCUMENT.EXE program will set up a logical name DOCSSDEVICE_MACROS to identify
the file that contains the standard format (FMT) file with 1EX macros to use during the TEXt
processing phase. Inside these FMT files are references are made to the hyphenation
rules for a particular language. The FTl.2 version comes with a set of foreign language
hyphenation rules2 .

1 the DOC$TOOLS:AUTODEST utility used to be available for this in BLB. However this tool proved full of gremlins.
It will be replaced in a next release by another automated tool for modifying DOCSDESTINATIONS.DAT. Currently
manual modification or part-installation is the only (error prone) way.

2 Vl.1 only supports American hyphenation

1-4 The VAX DOCUMENT program

Digital Internal Use Only

1.3 Quota problems
From the rough outline described in the previous sections, it will be clear that there
are many data files, programs and reference files used during the execution of VAX
DOCUMENT. In fact, this may be the reason why sometimes DOCUMENT aborts
abruptly due to an exceeded diskquota. Any totally illogical error message (like access
violations) should make you wonder about your diskquota.

Additionally, you must have at least the specified process quotas for number of open
files (FILLM > = 30) and page file quota (PGFLQUOTA > = 25,000) for DOCUMENT to
proceed correctly3.

1.4 Summary
The DOCUMENT program perf<?rms the following activities:

1. Parse the DCL command line parameters:

1. Verify valid doctype in OOC$*FORMATS:DOC$DESIGNS.DAT and setup logical name
DOC$$00CTYPE_MACROS for the design file

2. Verify valid destination in oocs~_FORMATS: OOC$DESTINATIONS.DAT and setup print
queue information as well as the TEXt macro .FMT format file through a logical
name DOC$$DEVICE_MACROS.

3. Setup flags for production of index file, contents file, etc depending on other
valid DOCUMENT command qualifiers.

4. Open list and map file if required through /LIST and /MAP

2. When step 1 is successful and /BATCH is specified, create small command procedure
to re-issue the same command in batch mode and submit it in the specified queue
and exit to DCL.

3. When step 1 is successful, pass command to the Tag Translator

4. When Tag Translator completes successfully, pass command to TEXt Processor

5. When TEXt Processor completes successfully, pass command to the Device Converter

6. When Device Converter completes successfully, submit final print file to the printer
queue, using appropriate qualifiers.

3 This was 15,000 for Vl.1

The VAX DOCUMENT program 1-5

Digital Internal Use Only

Chapter 2
The Tag Translator

[Tag Trans 1 at ion] •••
%TAG-I-DEFSLOADD, End of Loading of Tag Definitions
%TAG-I-ENDPASS_l, End of first pass over the input

2.1 Overview
In this chapter we will outline the actions taken by the first phase of the DOCUMENT
system: the Tag Translator. This can be split into four parts:

1. Pass 0: Tag loading

2. Pass 1: Source file tag validation

3. Pass 2: Writing the • INT_ TEX file

4. Pass 3: Post-Processing: writing the • TEX file

The Tag Translator itself is a callable routine in DOCS TOOLS: TAG$TRANSLATESHR. EXE share­
able image and it called from the main program of VAX DOCUMENT.

2.2 Pass O: Tag loading
Pass 0 of the Tag Translator is the loading of all required tag definitions and it opens the
output file with file type • INT_ TEX that will eventually contain all original source SDML
text with all tags replaced by their definitions. Although during pass 0 this file is opened,
it will normally not be used until pass 2. When we're in a book building process, a
separate . INT_TEX file is created for each of the elements of the book and the profile
itself.

The loading of tags consists of reading a minimum of two files:

1. The doctype specific definitions

2. The user-defined (or site-specific) tag definitions

More files are read if one of the above contains <INCLUDE> tags.

Doctype Specific and Standard Tag Definitions

First, the doctype specific tag definitions are read in. During the validation of the doctype

command parameter, the the DOCUMENT program has found a valid entry in the
DOCSDESIGNS. DAT file where the file with doctype specific tag definitions was defined
through the /definitions= qualifier. The filename specified defaults to file type .STT

and must be present in the DOCS*FORMATS directory where the matching OOCSDESIGNS.DAT

file was also found.

The Tag Translator 2-1

Digital Internal Use Only

Although not necessarily true, all doctype tag definition files currently start with an

<INCLUDE>(DOC$STANDARD_FORMATS:TAG$SDML_TAGS.STT)

tag that will force the Tag Translator to start to process that file. It contains the "global
tags" of VAX DOCUMENT, that are available to all doctypes.

After the reading of this "standard tag" file, the remainder of.the doctype tag definition
file is processed. This contains additional tags, specific to the doctype, redefinitions of
some of the standard ones or orders to "hide" several tags to make them unknown.

Tag definition files either have the file type . STT or . GDT4. Here . STT stands for Saved
Tag Table. This file is a binary version of its source file: a . GTD file. The • GTD stands for
Generic Tag Definition.

Private Tags

Finally, additional private tags will be loaded from the file that is referred to by
the (process)5 logical name TAG$LOCAL_TAGS. This file can also be specified with the
/SYMBOLS= qualifier on the command line. Alternatively, using this qualifier allows the
definition of a a number of symbols through the <DEFINE_SYMBOL>(name\text) tag. All the
files with tag and symbol definition are read in only once. This is in contrast to the file
specified as the SDML file to be processed and any files mentioned in that file through
<INCLUDE> or <ELEMENT>. These will be scanned twice: once in each of the passes 1
and 2 of the Tag Translator.

2.2.1 Difference in STT and GTD files
Using the binary SIT version of tag definitions allows faster loading of the tag
definitions6. You can use either the • STT or • GTD file. The Tag Translator is insensi­
tive to the file type, as both are processed by exactly the same code, which is also the
same code that processes the normal SDML tags.

Normally there is no normal "free" text in the tag definition files: just a (large) set of
<DEFINE> tags that define the tags. If ordinary text is written in the definition file, it is
output into the . INT_TEX file in the same way as later during pass 2 the text of the SDML
file is copied unchanged.

An STT file can be loaded much faster because all the main tags such as <DEFINE>
and <STRING> are encoded in a special format. These definitions are moved straight
into the internal tag table without further processing. This loading is triggered by the
<LOAD_TAGS::;:. that usually is written at the start of the SIT file. If non-encoded text is
encountered, the Tag Translator exits the fast loader and returns to the normal processing
routines that "compile" the tags into the encoded format and then load them into the
table. The rapid loading resumes when another <LOAD_TAGS> is encountered in the file.
As such, it is not the filetype SIT or GTD that triggers special processing, but rather the
presence of the tag <LOAD_TAGS> inside the file. However, it is advised to adhere to the
SIT and GTD difference for clarity.

4 Older files used GDX as file type
5 Due to a mistake in the Tag Translator code, this logical name is used only when it is specified in the process logical

name table in Vl.O
6 Compare TPU section files with TPU Command files

2-2 The Tag Translator

Digital Internal Use Only

When there are only a few tags defined in a definition file, the time saved by reading the
pre-compiled STT file instead of the source GTD file is minimal. With a large number of
tag definitions, it is substantial. All tag definitions that come with the VAX DOCUMENT
kit are only available in SIT format. As advantage to the development group, this will
discourage more people from modifying them to produce a maintenance nightmare.

2.2.2 User created and modified Tag Definitions

When customizing designs or creating private, house-style, designs, there may be a need
for local tags. The process of defining tags is not available or documented for customers at
this moment. For Digital internal users, there is a special manual called the Tag Designer's
Guide available that explains in detail how the Tag Translator works and how a proper
tag definition is made using the <DEFINE> command.

The source file containing tag definitions is normally a . GTD file: Generic Tag Definition.
When there are only a few tags present, it is not worth while to make an SIT file. Rather,
the Tag Translator can read the GTD definitions and compile them each time they are
read in. ·

Alternatively, with many tag definitions, the GTD file can be compiled into a binary
version, the .STT Saved Tag Table file by processing the GTD file by VAX DOCUMENT
by the command: ·

DOCUMENT my_doctype.GTD DOCTYPE_STT TAG_TABLE/KEEP=INT_TEX

or

DOCUMENT my_doctype.GTD GLOBAL_STT TAG_TABLE/KEEP=INT_TEX

The doctypes DOCTYPE_STT and GLOBAL_STT are recognized by VAX DOCUMENT if you
have installed the Digital Internal kit (DOCINT012.A and DOCINT012.B).

These "doctypes" are not available to customers. In fact, the DOCSDESIGNS. DAT file in
DOCSLOCAL_FORMATS contains the following two entries to allow t~ese doctypes to be valid:

1 Definition files for creating Saved Tag Table (STT) Files

name GLOBAL STT/definitions=TAG$BUILD GLOBAL.GDX
name DOCTYPE_STT/definitions=T~GSBUILD_DOCTYPE.GDX

where both GDX files (old name for GTD) contain only one line that forces DOCUMENT
to save all tags in an SIT file:

<SAVE_TAGS>

in the TAG$BUILD_DOCTYPE.GDX file or

<SAVE_TAGS>(ALL)

in the TAGSBUILD_GLOBAL.GDX file. This tag must be encountered during Pass 0 of the
Tag Translator and will cause the Pass 1 to be bypassed, and go into Pass 2 in which the
• INT_TEX file is written. During this pass 2, it is processed the same way as a normal
SDML file. During pass 0 the <SAVE_TAGS> sets up a special flag that is checked by the
Tag Translator in pass 2 and causes it to output an SIT file rather than a TEX file for
further processing.

The destination TAG_TABLE was added to the DOC$DESTINATIONS.DAT file during installa­
tion of the internal kit:

The Tag Translator 2-3

Digital Internal Use Only

DESTINATION TAG TABLE TAG -
/exclude action;(text forrnatter,device converter,print)
/output_filetype=.STT- -

There is a difference in the output of GLOBAL_STT or DOCTYPE_STT. When making a new
doctype that is based on an existing one, you may wish to copy all the corresponding
tags of that doctype and add your own. In this case, your tag .source file will start with

<include>(standard_tag_fiiespec)
<define>(my_own_tag\ •••)

Specifying DOCTYPE_ STT will ignore the <INCLUDE> tags during tag compilation and only
use the <DEFINE> tag definitions to make binary output. The <INCLUDE> tags are copied
literally into the final STT file. When the Tag Translator reads your STT file, it will see
the <INCLUDE> tag and starts reading the specified file first. This way your own STT
file can remain small and it can benefit from any addition or correction made to the STT
files it refers to.

By specifying the GLOBAL_ STT doctype, it will not ignore the <INCLUDE> tag during tag
compilation. The final STT file will contain binary versions of all tags: those taken from
the <INCLUDE> files and those <DEFINE>d yourself. Hence the final STT file will be
much larger, but will not contain any <INCLUDE> tags: all tags are available in one
single STT file. Due to fewer file lool<ups this is obviously faster but also means that
corrections made to the <INCLUDE> d tag definition files are not automatically used by
your STT version. ·

2.2.3 The Tag Designer's Guide
This book (for Digital internal use only) explains how to redefine an existing tag or to
create a new tag that in effect is a combination of other, standard, tags and is compulsory
reading for anyone who wants to define tags or create tags that are "short hand" for longer
combinations of existing tags.

The true designer will also want to create tags that will translate into TEXt Processor macros
to be further interpreted by the TEXt processor. Unfortunately, this is not described in the
Tag Designer's Guide, but needed nonetheless. As TEXnician (term defined by Donald
Knuth who "invented" the original '!EX program), you need to be able to output TEX
macros which are typically written as a name preceeded by a backslash("\") and have
their arguments enclosed in braces. For example:

\bottomline{For Internal Use Only}

is a straight translation of .the original SDML source file code

<BOTTOM_LINE>(For Internal Use Only)

by the Tag Translator. In order to do this, a tag <BOTI'OM_LINE> must be defined in a
GTD or STT file. In this example that definition would look like:

<DEFINE>(BOTTOM_LINE\I ATbottomlineABSlAE &\1\1)

You can see that the backslash is represented by a CTRLIT character and the braces
" {" by CTRL/B and "}" by CTRL/E respectively. For more specific information on the
<DEFINE> tag, we direct you to the Tag Designer's Guide.

To supplement the manual7, the characters used in the tag definitions to output valid
TEX macro definitions or invocations are listed in Table 2-1 There is a special utility that
makes the processing of the GTD files easier. It allows to process the original GTD (or
GDX) file into a GDE (edit) file, which is the same file, but with all control characters

7 Table 2-3: Built-in Tag Alias Codes

2-4 The Tag Translator

Digital Internal Use Only

replaced by normal printable characters, as indicated in the /1 GDE file representation /1

column. This way the CTRL/B will be replaced by /1

{

11

, while the CTRL/T is represented
as a tilde.

Table 2-1: TEX built-in tag alias codes

'JEX Control ASCil GOE file
symbol char value representation bescription

& CTRL/A 1 "& Table column separator

CTRL/B 2 T:E)C macro argument start
delimiter

% CTRL/C 3 % T:E)C comment on rest of the
line

$ CTRL/D 4 "$ T:E)C mathematical mode
c;lelimiter

CTRL/E 5 T:E)C macro argument end
delimiter

CTRL/Q 17 T:E)C macro assignment

\ \ CTRL/R 18 "R T:E)C new line when in
horizontal mode

CTRL/T 20 T:E)C macro escape introducer

Hence, a TEX macro like \hbox will be written as -hbox.

The conversion from GTD (or GDX) to GDE file is done through @DOCSLOCAL_TOOLS:­

ED ITGDX. COM.

When you've completed the editing, you can restore the proper tag definition file by
converting the TEX characters into their control characters through @DOC$LOCAL_TOOLS:­

FIXGDX. COM.

2.3 Pass 1: Source file tag validation
Once all tag definitions are loaded during Pass 0, Pass 1 starts. It performs the following
actions:

• Check tag definitions of SDML source file and perform the Pass 1 definitions of the
tags

• Write label information in cross-reference file

• Open table of contents and index files when requested

• Write map file and dose at end

• Write diagnostic file when required (through LSE or /DIAGNOSTIC)

• Signal message to user when the pass is completed.

Pass 1 opens the user source file (. SDML) and performs all Pass 1 specific actions specified
for each tag it encounters. When invalid tags occur, this is reported and the Tag Translator
will abort after Pass 1.

The Tag Translator 2-5

Digital Internal Use Only

When specified, also the index file and table of contents file are created. At the end of
pass 1, the map file is closed when it was required through /MAP and opened by the
main program.

The first pass also opens an . XREF file to build a cross reference table for all labels en­
countered while processing the SDML file, such as in <CHAPTER>(chapter title\chapterlabel).
These labels can be read in the cross reference table by the second pass when output is
written to the • INT_ TEX file. During Phase 1 no output is norffiany written to this file.

This first pass does not produce any other output file and is used only for syntax checking
and setting some internal counters or flags, that will be used in Pass 2. Tag definitions
may specify specific actions to perform only in Pass 1 or only in Pass 2. Usually, they
are the same.

It is important to realize that the resolving of any references is done in the Tag Translator
and not by the T:E'<t Processor, as most other T:E'<-based systems do. It is also the Tag
Translator that determines the numbering of the chapters, tables etc8•

2.4 Pass 2: Writing the .INT_ TEX file
This pass is similar to Pass 1. Howeve.r, in this pass, the . INT_TEX file, opened in Pass
0, is filled. All tags are replaced by their Pass-2 definitions as specified in the Saved Tag
Table files. The <REFERENCE> tags are resolved from the .XREF file created during the
first pass.

2.5 Pass 3: Post-Processing: writing the .TEX file
The Post Processor is called and opens the created . INT_TEX file and produces the
final . TEX file. During book building, several . TEX files are created: one for each
element, and one for the profile file. The Post Processor doesn't read any files other
than the . INT_TEX files. Amongst others, it replaces the CTRL/T character by the true
1EX backslash character and replaces MCS characters by special TE'< macros to support
them.

After the TEX files are created, the T:E'<t Processor is called.

2.6 Summary
The Tag Translator uses the following files:

• Pass 0: Read tag definitions

1. Create the . I NT_ TEX file

2. The doctype specific STI file as indicated in the DOCSDESIGNS.DAT file with the
/definitions=tagfile. This normally also includes reading the
DOC$STANDARD _FORMATS: TAG$SDML_ TAGS. STT that contains all doctype-independent
tag definitions9

3. Read the file pointed to by logical name TAGSLOCAL_TAGS and/or /SYMBOLS=file

for private tag defs9

• Pass 1: Validate SDML source file on tags specified. Create .XREF file and close
MAP file when it exists.

8 This explains also why it will be difficult to implement a reference to a particular page by VAX DOCUMENT, since
the Tag Translator hasn't got a clue where the 'IEXt Processor will actually position the text

9 Also additional <INCLUDE> (tagfiles) are processed

2-6 The Tag Translator

Digital Internal Use Only

• Pass 2: Fill source-file.INT_ TEX from source file and resolve references from .XREF
file

• Pass 3: Post Processor creates source-file.TEX and inserts special macros to support
MCS characters.

The Tag Translator 2-7

Digital Internal Use Only

Chapter 3
The TEXt Processor

[Text Format t in g] •••
%TEX-I-LINETOOLONG, Line too long by 1.51584 points
-TEX-I-ONPAGE, on page [3-6]

%TEX-I-LINETOOLONG, Line too long by 1.51584 points
-TEX-I-ONPAGE, on page [3-6]

%TEX-I-PAGESOUT, 28 pages w~itten.
-TEX-I-OUTFILENAME, 'PSQ:[PRIVATE.THEO]HHG2VAXDOC.DVI_LN03'
[content s Gener at ion] •••
[Text Formatting Contents] •••
%TEX-I-PAGESOUT, 2 pages written.
-TEX-I-OUTFILENAME, 'PSQ:[PRIVATE.THEO]HHG2VAXDOC_CONTENTS.DVI_LN03'
[Index Gener at ion] •••
%INX-I-ENDPASS_l, End of first pass over input file:
'PSQ:[PRIVATE.~HEO]HHG2VAXDOC.INX'

%INX-S-ENDPASS_2, End of second pass over input file.
%INX-S-CREATED, 'PSQ:[PRIVATE.THEO]HHG2VAXDOC_INDEX.TEX;l' created
[Text Formatting Index] •••
%TEX-I-PAGETOOSHORT, Page too short - on page [INDEX-2]
%TEX-I-PAGESOUT, 2 pages written.
-TEX-I-OUTFILENAME, 'PSQ:[PRIVATE.THEO]HHG2VAXDOC_INDEX.DVI_LN03'

3.1 Overview
Once the SDML files have been converted into TEX files by translating the specified
tags into 'IEXt Processor commands, the 1EXt Processor is called to read the TEX file and
corresponding design files to format the text into the so-called device independent DVI files.

Just as the Tag Translator recognizes a collection of "global" and "doctype specific" tags,
the JEXt Processor knows a standard set of commands (known as macro definitions) and
doctype specific commands. Unlike the Tag Translator, the Text Processor is an integral
part of the DOCUMENT.EXE image.

For those familiar with the T:sX system of Donald Knuth or the LaT:sX variety by Leslie
Lamport, the T:sXt Processor will look very familiar, yet it contains some alterations from
the "standard" T:sX program. In fact, DOCUMENT' s T:sX version no longer passes the
"T:sX test suite" and may hence not be called T:E)<. As such, plain T:sX or LaT:sX files
cannot be processed by VAX DOCUMENT. One of the main differences is that the T:sXt
Processor is not used for cross reference resolving. This has already been done by the
Tag Translator. Also the assignment of chapter numbers, table numbers and such has
been accomplished by the Tag Translator.

The TEXt Processor 3-1

Digital Internal Use Only

The 1E;Xt Processor scans the source . TEX file. It

1. Reads all required hyphenation patterns and TE)<t macro definitions from various
sources

2. Processes the source TEX file in one pass and writes information into a table of
contents file or index file if the /CONTENTS or /INDEX ~ere specified.

3. Processes the table of contents file and sorts the index file. Also outputs a separate
contents and index file if the /CONTENTS and /INDEX qualifiers were specified.

3.2 Loading TEXt macro definitions
The T:E)<t Processor reads all required macro definitions from several sources. A
"standard" set of files is read, but others are read only when triggered by an \input
command in such a TE)< file. Whenever only a filename and type is specified, the TE)(t
Processor uses the logical name DOCS $FORMATS: as a search list logical name. This logical
name is defined during the execution of DOCUMENT and currently defaults to a search
list of the three DOCS* _FORMATS: logical names.

The files normally read are

1. Standard VAX DOCUMENT macros and hyphenation pattern

2. Additional locally (re)defined macros

3. Document-specific macros

The last two are read from DOC$STANDARD_FORMATS:TEX$STARTUP.TEX which in tum
invokes a set of other files. The first one "comes naturally" with the invokation of the
T:E)<t Processor.

3.2.1 Standard VAX DOCUMENT TE)(commands

The TE)(t Processor starts by reading a file that contains all standard available macro def­
initions. These files are also known as "format file" and have extentions .FMT_MACRO.
Which file to use, is defined in the file DOCS DESTINATIONS. DAT for each destination spec­
ified. The main program DOCUMENT.EXE has set up a logical name DOC$$DEVICE_MACROS
to point to the one needed during processing.

When this does not specify a full file specification, DOCUMENT prefixes it with the
logical name DOC$$FORMATS: which it has defined itself as being a searchlist of the three
DOCS* _FORMATS: logical names.

The destination-dependent format file allows you to use different n standard" definitions,
depending on the destination chosen.

A typical entry (for PostScript) in the destination file is:

DESTINATION POSTSCRIPT PS -
/dvi_filetype=.DVI_PS -
/exclude_action=(print) -
/fonts_filetype=.POST_FONTS -
/format file=SDMLPS -
/output:filetype=.PS -
/print=(queue=PS_LPSPG,parameter=data_type=postscript) -
/special_characters=TEX$PSCHARS
parameter number HORIZONTAL_OFFSET
parameter number VERTICAL_OFFSET
parameter string STARTING_PAGE
parameter string ENDING_PAGE
parameter number NUMBER_OF_PAGES

3-2 The TEXt Processor

Digital Internal Use Only

The /forrnat_file= entry specifies the macro format file to use. The standard set of
format files provided by the VAX DOCUMENT kit are found in DOCSSTANDARD_FORMATS:
directory:

DOC$STANDARD_FORMATS:SDMLLPR.FMT_MACRO
DOC$STANDARD_FORMATS:SDMLLPS.FMT_MACRO
DOC$STANDARD FORMATS:SDMLHEBREW PS.FMT MACRO
DOC$STANDARD=FORMATS:SDMLLN03.FMT_MACRO
DOC$STANDARD_FORMATS:SDMLVOILA.FMT_MACRO

depending on the fact whether it is a line printer, PostScript or LN03 type destination.
The Hebrew version is special, since the Hebrew language runs from right to left. It is
made only in PostScript destination.

Other format files are also read by the TE)(t Processor, depending on the value of the
logical name DOCSLANGUAGE. Given a valid translation, it will also read the format file
containing the corresponding hyphenation rules, specified in language.FMT_HYPH10.

Whenever hyphenation errors occur (since the rules only catch about 95% of all word hy­
phenations) these can be rectified within the file DOC$STANDARD_FORMATS: TEX$EXCEPTIONS. TEX
which is read as one of the last files.

These FMT format files are a binary version of their original source files, DOCS ELEMENTS. TEX
and oocssoML.TEX that were compiled by a special version of the TE)(t Processor, known
as INITEX. This SDML*.FMT_MACRO file contains definitions for all primitive ("simple")
TE)(t Processor macros such as those that specify "new paragraph", "indent left margin".

Many macro definitions will resemble the "plain 1]3X" definitions but many new ones
are defined as well. Unfortunately, the VAX DOCUMENT group has sofar refused to
publicize their macro definitions, so you must find out by guessing and trial and error
what their specific impact is. In fact they discourage you to fiddle around with macros
and a special doctype design tool (appropriately called DDT) is in preparation for a next
release, so that the TEX layer will be invisible for almost all users other than the born
die-hard hacker type11 . ·

3.2.2 TEX$STARTUP.TEX: additional definition files read
After reading the standard definitions from *. FMT_MACRO and *. FMT_HYPH the TE)(t
Processor reads the file DOC$STANDARD_FORMATS:TEX$STARTUP.TEX next. This file only
contains some additional \input commands to read other files. It contains:

\input DOC$LOCAL_ELEMENTS:
\input DOC$$DOCTYPE MACROS:
\input DOC$$DEVICE_MACROS:
\input DOC$$FORMATS:TEXSEXCEPTIONS.TEX

The files specified (either explicitly or by their logical names which were defined by
DOCUMENT at run time) may in turn call other files to be read and included too.
The first one loads the additional site- or company specific definitions, the next loads
the definitions that go with the selected document design and the third reads special
definitions to match each character typed with a particular character from the fonts used
for the selected destination. The last one reads a list of words that the hyphenation rules
don't catch correctly and need "manual overrule". This list can be empty or very long,
depending on the quality of the hyphenation rules supplied.

10 In Vl.1 hyphenation was supported through a separate destination rather than by logical name. Eventually it will all
depend on <LANGUAGE> (language)

11 Some of 'IEX's processing can be seen when you define the global symbol TEX$$HACKERs .. HTRUE" before you start
processing. At least the name is obvious.

The TEXt Processor 3-3

Digital lntern~I Use Only

3.2.2.1 DOC$LOCAL_ELEMENTS: Site-specific modifications

This logical name either points to the NL: null device or to some . TEX file that defines
additional standard TEX macros or redefines them. This is currently the case if you have
the Internal Kit installed. The logical name refers to a file (CUPSLOCAL_ELEMENTS. TEX) that
contains additional macro definitions such as the Digital logo: If you have the European
language support installed, the logical name points to CUP$EUROPEAN_ELEMENTS. TEX which
starts off by including the ,, general Digital,, file CUP$LOCAL_ ELEMENTS. TEX and then goes
on by including yet another file, TEXSLANGUAGE_STRINGS. TEX which contains redefinitions
of standard heading words written by DOCUMENT such as 11 chapter" and 11 table" into
the language specified by the <LANGUAGE>(language) at the begin of the source SDML file.
("Hoofdstuk" instead of the default "Chapter" header text by redefining the \ Chaptername

macro's string value).

Unlike the standard * .FMT_MACRO file, the remaining files that the TE)(t Processor uses
are all in readable TE)(t format. Each of these can contain additional \input macros to
read additional files. This may partly explain the relatively long time VAX DOCUMENT
spends in the text formatting phase as all macros must be internally compiled first12 .

The algoritms used to make a "pleasing looking page" also consume quite a bit of CPU
time as MicroVAX users will no doubt nave discovered.

3.2.2.2 DOC$$DOCTYPE: Standard Doctype-specific macros setup

From the command line, the DOCUMENT main program has determined the doctype
specified.

From the DOC$DESIGNS.DAT file where it found the doctype definition, it also found the
file that the TE)(t Processor must read to obtain all doctype specific information. A
process logical name was set up to indicate the file in question: DOC$$DOCTYPE_MACROS.

This doctype specific macro file was indicated by the /macros=filespec qualifier on the
doctype definition line, that specifies the filename of the doctype design file.

The design file's full specification is filename.DESIGN. It is found in the directory of the
DOCSDESIGNS. DAT file that contains the doctype definition.

It contains general formatting information about page size, left and right margin, footers,
headers, chapter formatting and such. It also contains information on what sort of fonts
to use for headers, plain text, code examples etc.

More information on this is found in the VAX DOCUMENT Doctype Designer's Guide.
This book is also available to customers. In addition to this, the book The TEXbook by
Donald Knuth is indispensable for a good understanding of the TEX program (even if
DOCUMENT uses a modified version).

Again, when the doctype design file is based on another design file, you will see that the
current doctype • DESIGN file will start with a \input macro and then continues to add
or redefine several macros that make the difference between the standard and "custom­
made" design file.

12 This is a similar situation as with the Tag Translator that must process GDT files instead of just loading the STT

3-4 The TEXt Processor

Digital Internal Use Only

3.2.2.3 DOC$$DEVICE_MACROS: output device specific definitions

The third macro definitions referenced by TEXSSTARTUP. TEX is one that contains de­
vice specific macros (hence always the same ones regardless of doctype but depen­
dent on destination). The DOCUMENT main program has set up a logical name
DOCSSDEVICE_MACROS and it translates to a . TEX file, as found in the destination defi­
nition in DOCSDESTINATIONS.DAT with the/ special_ characters=. With the current FTl.2
kit, these qualifiers all point to either one of the following filespecs:

DOC$LPR_FONTS:TEX$LPCHARS.TEX
DOC$POST FONTS:TEX$PSCHARS.TEX
DOC$LN03:FONTS:TEX$LN03CHARS.TEX
DOC$VOILA_FONTS:TEX$VOILACHARS.TEX

These files contain macro definitions that are introduced by the Post Processor during the
Tag Translation Phase and define specific characters and their position (0-255) within
the font (e.g. all <MCS> characters). The LPR file contains additional page sizing setups.

3.2.2.4 TEX$EXCEPTIONS.TEX: hyphenation exceptions

The final file referenced by TEXSSTARTUP. TEX is one that contains "corrected" words that
were not hyphenated correctly by the used hyphenation rules. Mostly, the contents
of this file depends on experience and discovery, as about 95% of the words will be
hyphenated correctly by DOCUMENT. Thereby DOCUMENT has the best hyphenation
rules available of all DTP typesetting programs. Most come only near the 70%.

Depending on the <LANGUAGE> (language) definition, the Tag Translator has generated a
TEX macro \LANGtextstrings where "LANG" are the first four characters of the language
specified (e.g. DUTC for dutch, GERM for german). This will invoke the redefinition of
all standard headings in TEX$LANGUAGE_STRINGS.TEX but also in this TEXSEXCEPTIONS.TEX
file it will invoke the macro \LANGexceptions. For dutch13 e.g. ·

\gdef \DUTCexceptions{
\hyphenation{

voor-deur-de-lers-re-ge-ling
be-drijfs-klaar

}
}

Additional words can be added. The hyphen indicates where DOCUMENT should
hyphenate the word. No other locations than those specified are used14.

3.3 Processing source TEX file
After having loaded the standard macro definitions, local elements, and all doctype
specific design macros, the T:E)<t Processor finally starts to read the user's source file
that was produced by the Tag Translator. In principle no. errors should be found in this
process, if we assume that the tag definitions had correct T:E)<t macro translations. If the
end-user does discover errors, he should refer to the ·doctype designer, as there is little
he can do about the error himself.

13 This language is "forgotten" in Frl.2 - well, it shows no one is perfect
14 The exceptions used to be included in TEXSLANGUAGE_STRINGS.TEX in Vl.1 and in fact are still present there in

FTl.2

The TEXt Processor 3-5

Digital Internal Use Only

Note
In this context it is useful to know that any line number that is mentioned in the
error messages by the TE)(t Processor refer to line numbers of the TEX file, not
those of the original SDML file. By looking into the TEX file the neighboring text
will probably quickly point you to the corresponding lines in the SDML file and
limit the number of invalid or incorrectly coded <TAG> definitions.

The TEXt Processor reads the input TEX file paragraph by paragraph. Using a special
bonus/malus point system 15, it computes the best looking setting of each paragraph,
using lines that are as full as possible with as few hyphenations as possible. The afore
mentioned T£Xbook contains full details on this.

When the 'IEXt Processor encounters an \input command in the user's source file (which
is the translation of the undocumented but highly popular <INCLUDE_ TEX_FILE > (filespec)) it
temporarily suspends processing the current TEX file and starts reading in and processing
the specified \input TEX file.

Note
Using the <INCLUDE_ TEX_FILE > tag is yet another way to redefine on a personal
basis any definition made in any of the loaded TE)(macro definition (design) files.

To determine how much will fit on a line, the TEXt Processor needs to know the width and
height of each individual character that will appear in the final print. This information
is stored in so-called TEXt Font Metric files. Judged on this size information, the TEXt
Processor can fill out lines and pages and can complain about "underfull" and "overfull"
lines when it cannot find suitable points for hyphenation. It does this by putting each
character in a box of its own. A word is a horizontal box consisting of several character
boxes glued together. A line is several word-boxes together and a page is a number of
line boxes stacked on top of each other. The whole "page building" is kept together by
"glue". And TEX keeps stretching and shrinking the glue to make everything look nice on
the page. Once that is done, the page is "frozen" and the glue becomes "rigid". Then
the page is written into the DVI file.

Depending on the destination chosen, the TEXT Font Metric files are found in one of the
following four directories:

DOC$LN03_FONTS:*.TFM
DOC$LPR_FONTS:*.TFM
DOC$PS_FONTS:*.TFM
DOC$VOILA_FONTS:*.TFM

These directories also contain the actual font files, with filetype • NFT (Normal Fon T -
TEX could also handle enlarged or magnified fonts) or • *PXL pixel fonts.

The required fonts are specified in the doctype's .DESIGN file, and for the stan­
dard doctypes they are summarized in Appendix B of the Doctype Designer's Guide.
There you will find symbolic names like \nonnaltextfontspecs to refer to a partic­
ular font macro, e.g. \ tenpoint. This \ tenpoint is associated with a true physi­
cal file in DOCS*_FONTS by combination information from the DOC$DESTINATIONS.DAT
and DOCSDESIGNS.DAT files. The filename is found in the definition of the doctype in
DOCSDESIGNS.DAT through the /fonts=. The associated file type is found in the destina­
tion definition in /fonts_filetype=. The splitting of name and type allows to use the
same file name but different types for different destinations. By using the same doctype
but a different destination, different font definition files can be referenced.

15 Referred to by me as the "scrabble routine". Since it looks only for letter combinations, there is no huge dictionary
needed of words. This makes hyphenation by 'IEX a lot faster than dictionary look-ups. See the lEXbook Appendix H
for more details on hyphenation.

3-6 The TF)(t Processor

Digital Internal Use Only

In the current FTl .2 set, the names are always one of the following four:

DOC$STANDARD_FORMATS:TEX$STANDARD_FONTS.LINE_FONTS
DOCSSTANDARD FORMATS:TEXSSTANDARD FONTS.POST FONTS
DOC$STANDARD=FORMATS:TEX$STANDARD=FONTS.LN03=FONTS

DOC$STANDARD FORMATS:CUP$VOILA.VOILA FONTS
- I - I

from doc$designs.dat doc$destinations.dat

In the TEX$STANDARD_FONTS.LN03_FONTS file you will find that e.g.

\readfont\tenex{arnxlO}

meaning that wherever the font \ tenex is used in fact the characters are to be output
are stored in the file AMXlO. NFT while their metrics are stored in AMXlO. TFM. When the
PostScript output is used, the fonts refer to its own resident fonts, e.g. the Times font.

Note
As a slightly more complicated example on the standard font: the \nor­
maltextfontspecs translated to \tenpoint. This in 'turn translates into
\let\tenpoint=\paltenpoint. This means that this definition is identical to
\paltenpoint. And that translates to (some parts were omitted)

0

' % Process \paltenpoint

' \readfont\paltenrrn{palaclO}
\readfont\paltenit{palacilO}
\readfont\paltenrni{amrnilO}
\readfont\paltenbf {palacblO}
\readfont\paltenbi{palacbilO}
\readfont\paltensy{arnsylO}

\def\paltenpoint{%
\norrnalbaselineskip=llpt%

% text
' italic
% math italic
% bold
% bold italic
% math symbols

leaded one point

m \def\rrn{\farn0\paltenrrn\let\superfarn=\rrn}%
\def\it{\farn\itfarn\paltenit\def\bf{\bi}\let\superfarn=\rrn}%
\def\bf{\farn\bffarn\paltenbf\def\it{\bi}\let\superfarn=\bf}%
\def\bi{\farn\bifarn\paltenbi\let\superfarn=\bf}%

}%

with the following annotation:

0 Font associated with \paltenrm

6 start of definition of the \paltenpoint macro

ll defines the standard line width. It is taken 11 points: one point more than
the font height, leaving a little space between lines.

m defines the "roman" appearance of the tenpoint font when the \rm is
postfixed to \tenpoint or \paltenpoint . Then the \paltenrm font is used.
This is already defined on the line marked with callout 1. Subsequent lines
define the italic, bold, bold-italic, (as opposed to bold, italic or small capitals
or sans serif), which refer to fonts defined at the top of the example.

It is possible to define your own set of fonts by modifying the above font definition
files, and to create new fonts (or adapt existing ones from the Public Domain) using a
special program called MetaFont. You must however make sure that all font characters
are positioned exactly on the same locations as they are with the supplied fonts of VAX
DOCUMENT. Needless(?) to say that, especially in symbols and MCS characters, the

The TEXt Processor 3-7

Digital Internal Use Only

default MetaFont output does not put characters at the same font position as where VAX
DOCUMENT expects them ...

There are two books by Donald Knuth that describes this program: MetaFont book and
MetaFont: The Program. The program produces both the required TFM font metric file
and the required printer font file. Designing fonts is a complicated business and requires
more than computer skills.

Wherever figures are to be included through the < FIGURE_FILE >, < ICON_FILE > and similar
tags to include figures that are not to be touched during text processing, the T:E)<t Processor
reserves the indicated amount of blank space and inserts a so-called "special" command
into the DVI file to be produced. This "special" command is recognized by the device
converter and it will include the specified graphics file in the final output without further
modification. This "blind spot" or ignorance on the T:E)<t Processor's part also explains
why text and graphics can run into each other or overlap if insufficient space is reserved
for inclusion.

Finally, the following files are produced by the 'JEXt Processor:

• A source.DVI_device file

• A source_CONTENTS.DVI_device index file

• A source_INDEX.DVI_device index file

The file extentions are again defined in the DOCSDESTINATIONS.DAT file through the
/dvi_filetype= qualifier.

Depending on the presence of the <INDEX_FILE> or <CONTENTS_FILE> tags, the index
and contents files will be included in the final printer file by the Device Converter or
they will be processed as separate printable files.

3.4 Summary
The following files are read or written by the T:E)<t Processor:

1. Read DOCS STANDARD_ FORMATS: *. FMT _MACRO: standard TE)< macros for the printer as
indicated in the destination definition

2. Read the DOC$STANDARD_FORMATS: *. HYPH file that contains the hyphenation pattern
indicated by logical name DOCSLANGUAGE

3. Read DOC$STANDARD_FORMATS:DOC$STARTUP.TEX that in tum invokes:

a. Read file by logical name DOCSLOCAL_ELEMENTS: Add or modify macros on local
system (the file refered to may do several \input file).

b. Read DOCS*FORMATS:doctype.DESIGN: Doctype specific macros

c. Read the device font definition file belonging to the destination selected

d. Read the file DOC$*FORMATS:TEX$EXCEPTIONS.TEX containing corrections on incor-
rectly hyphenated words

4. Read any file specified by < INCLUDE_TEX_FILE > in SDML source

5. Write source.DVI_destination file

6. Write source_CONTENTS.DVI_destination file

7. Write source_INDEX.DVI_destination file

3-8 The TEXt Processor

Digital Internal Use Only

Chapter 4
The Device Converter

[Device conversion] •••
%DVC-I-INCLUDING, including input file:
PSQ: [PRIVATE.THEO]HHG2VAXDOC_CONTENTS.DVI_LN03; .
%DVC-I-INCLUDING, including input file:
PSQ: [PRIVATE.THEO]HHG2VAXDOC_INDEX.DVI_LN03;
%DVC-I-PAGESOUT, 27 pages written to file:
PSQ: [PRIVATE.THEO]HHG2VAXDO~.LN03

4.1 Overview
The device converter is by far the simplest component from the user's point of view: there
is nothing we can do to influence it other than the /DEVICE qualifier on the command line.
It will pick up the DVI file produced by the TEXt Processor and produce the final output
file. It may include table of contents, index and graphics files along with the main text.
The final file type is again defined in DOC$DESTINATIONS.DAT with /output_filetype=
qualifier.

4.2 Device Independent Files
From the command line it was clear for what type of device the output had to be
generated. It may look funny that the 1EXt Processor outputs a so-called Device
Independent file with filetype .ovr_ctevice that looks as if it is not at all independent.

In fact, most of the contents of the DVI files is device independent, and conforms to
the file structure described in Donald Knuth's book TEX The Program. It is printer type
dependent with respect to special commands only useful for specific printers, often using
fonts that are available on only one type of device. For instance, to include sixel files for
LN03 printers, line art for line printers and PostScript drawings for PostScript printers.
The places where these files are to be inserted into the final output file is indicated by
the "special" commands written into the DVI files by the TE)(t Processor.

The destination however, can also be output for another piece of software. FTl.2 supports
VOILA output, which is not a printer at all, but a software program. Also MAIL as
destination is not really a printer device.

4.3 Font files
Currently, the Device Converter basically comes in four separate flavours:

1. A DVI to ASCil converter for Line Printer and MAIL and TERMINAL output

2. An DVI to LN03 converter to read LN03 font files to produce LN03 files

3. A Postscript generator 'to convert the DVI file into a PostScript page description file.

The Device Converter 4-1

Digital Internal Use Only

4. A DVI to VOILA output for Bookreader accessible files

Each of these "flavours" in fact is an entirely different callable routine, that is called
from the DOCUMENT main program. They are implemented as a set of three shareable
images and a command procedure:

DOC$ROOT: [TEX.LPR.TOOLS]DVC$LPRSHR.EXE
DOC$ROOT: [TEX.POSTSCRIPT.TOOLS]DVC$PSSHR.EXE
DOC$ROOT: [TEX.LN03.TOOLS]DVC$LN03SHR.EXE
DOC$ROOT: [TEX.VOILA.TOOLS]DVC$DRIVEVOILA.COM

Depending on the destination chosen, one of these images is called. Note that for VO ILA
output a command procedure is invoked. Only the LN03 converter reads the required
(and licensed) font files from directory DOC$LN03_FONTS, the PostScript driver only some
bitmapped fonts not available inside the PostScript printer from DOCS PS_ FONTS, while the
lineprinter doesn't read any fonts: they are either permanently available on the printer
belt or very obviously missing.

4.3.1 Producing LINEPRINTER files
The Device Converter will use the text written in the DVI_LINE file to produce an ASCII
file. As the fonts are fixed to the monospaced fonts available on the printer belts or the
built-in laser printer typewriter fonts, the final information in the output file consists of
the ASCil characters that make up the words, and additional form feeds for new pages
(as well as single carriage returns for bold overstrike). It doesn't read any <FIGURE_

FILE> (LINE\filespec\size) as this is already done by the T:E)(t Processor (it's not different than
a normal literal piece of text, except that it is read from another file).

4.3.2 Producing POSTSCRIPT files
The Device Converter will output the text of the .ovr_Ps 16 file, but also insert additional
PostScript commands. In this respect the DVI representation of the T:E)(t language is
now translated into the Page-Independent Encapsulated Postscript file format of Adobe
Systems, Inc.

The PostScript device driver does not have to load any fonts since most of them are
resident inside the printer itself. Since the DVI file was processed with the T:E)(t Processor,
and TE)(normally knows nothing about PostScript, the font specifications (like \tenpoint)
that were translated into the DVI file make no sense to PostScript. Hence, the Postscript
device converter uses the file DOC$PS_FONTS:DVC$FONT_CONFIG.DAT to "translate" the TE)(
font names to the appropriate Postscript fonts, and also indicates which fonts need to
be downloaded as they are not part of a normal PostScript printer font set. The end of
this font configuration file contains sufficient information for further reading.

The standard Postscript fonts families are different from the LN03 font families and
as such also produce a differently looking text page. The device driver will download
bitmapped fonts from DOC$PS_FONTS (mostly the *.*PXL fonts).

Any indicated PostScript figure file will be included too. The device converter will read
the bounding box comment of an encapsulated PostScript file and places the graphic so
that the lower left of the bounding box is placed at the lower left of the space reserved for
the graphic17 . It may take quite a while for the PostScript printer to print files containing
graphics.

16 .DVI_POST in Vl.O
17 The Vl.0 behaviour is obtained under Vl.2 by editing the PostScript graphic file and placing a carriage return, space or

any PostScript statement except a comment at the top of the file. This will disable automatic positioning of the graphic

4-2 The Device Converter

Digital lntern~I Use Only

Some fonts not resident on the Postscript printer can still be used, if they are downloaded
to the printer in the document. This is the case with a number of AM* and *.PS fonts
available in DOC$PS_FONTS directory.

4.3.3 Producing LN03 files
The Device Converter will read the text from the DVI file and examine which fonts are
required to print them. By scanning the DVI file for the fii-st time, a list of required
fonts and characters is setup. Then, at the second pass, the final LN03 file is output.
The file starts with specific LN03 commands to load the required fonts into the cartridge
memory modules of the LN03. This must be done, as VAX DOCUMENT does not use
any printer-resident fonts, but always downloads its own required set. The fonts thus
defined are temporary, consisting only of those characters and fonts actually used in the
document.

As some documents are rather large or contain many different font types, it may not
be possible to load all fonts up front in the final LN03 file .. The LN03 printers-even
with their memory cartridges-may not have sufficient font memory to contain it all.
Hence for large documents, the Device Converter will cycle its two passes repeatedly
on subsequent sections of the file until the entire document is processed. Hence, the
font loading may be repeated during printing. This explains why sometimes the printer
temporarily stops printing and seems to enter a state of Deep Thought before continuing
with refreshed memory and a different (font) state of memory.

After the font load, the LN03 file contains instructions to activate any particular font just
loaded and to use this for printing the text that was also written in the DVI. Whenever
figure files for destination LN03 are found, they are opened, checked for the "sixel mode
start" escape characters and if found to be correct, included into the LN03 file. Whenever
the printer will get to the sixel picture processing, it will temporarily halt, load the sixel
picture in internal memory (not the font memory cartridges) and when completed, print it.
An LN03 + has a much larger internal memory and can produce much more complicated
pictures than a simple LN03.

When printing an LN03 file, it will require a fair amount of time to download these fonts
before the printer starts printing. Issuing a /COPIES -10 of a particular LN03 file will
cause this downloading to happen ten times. Currently there is no way to address the
fonts already loaded from a previous print run. A walk to a photocopier may be a much
quicker way.

4.3.4 Bookreader
The internal kits also support the VOILA_ ONLINE bookreader format. When this
destination is chosen (with corresponding doctype ONLINE), a command procedure
DOC$VOILA_TOOLS:DVC$DRIVEVOILA.COM is executed. The bookreader format uses its own
special (screen) font set and format and produces a. VO ILA output. The output is different
from ordinary paper-to-screen mapping, since it makes connections between references
in the text (in the contents, index, references) and the text referenced to. Simply clicking
on the reference will open another window on the screen and display the text. This makes
reading a book very easy as all relevant pages can be displayed next to each other. A
separate notesfile deals with the ONLINE output: the Online Documentation Systems
onMOSAIC::ONLINE_INFORMATION.

The Device Converter 4-3

Digital Internal Use Only

4.4 Knitting files together
When a <CONTENTS_FILE> or <INDEX_FILE> tag was requested in the SDML source
file and the DOCUMENT command line contains the /CONTENTS and /INDEX qual­
ifiers, the TE)<t Processor produced the corresponding source_CONTENTS.DVI_device

or source_INDEX.DVI_device files and left special insertion commands in the main
source. DVI_ device file to instruct the Device Converter to in.Clude those contents/index
files at the appropriate places in the final output file.

In fact, one can include any DVI file that is suitable for a particular device type at any
place in a document by using the < CONTENTS_FILE > or < INDEX_FILE > tags with a single
argument. When omitted this argument defaults to the standard contents or index DVI_
device file18. Along the same line, the internal tag <MEMO_FILE>(filespec) works similarly.

However, when you would like to include a special document inside another document
(e.g. a slide inside a report) this can not be done on SDML level since the Tag Translator
and the TE)<t Processor will protest about undefined, illegal or conflicting tags and macros
or will, at least, format all pages according to a single doctype. When we process both
files separately upto the DVI stage, then only the Device Converter has to do its work and
this one doesn't care about any formatting. It only wants to knit files together and load
the corresponding fonts. This can now-be done easily. It is obvious that page numbering
will be out of order as well as the index since this information is written by the TE)<t
Processor for each individual source file and was unaware of our intention to combine
the two.

Remember, too that a file included by the < CONTENTS_FILE > or < INDEX_FILE > tags
cannot, in turn, include another file by the same mechanism.

4.5 Summary
The following files are read or written by the Device Converter:

1. Read source. DVI_ device to collect a list of required fonts ·

2. Read all DOCS* _FONTS: font files referred to by the DVI file and use possible
translation tables to translate from TEX fonts to PostScript

3. Read all DVI and graphics files indicated by the '!EXt Processor through "special"
Device Converter commands in the DVI file. This includes figures but also contents
and index files.

4. Write final device file, containing all font information, text and graphics

18 In Vl.0 you should only specify file names, Vl.1 accepts file types too

4-4 The Device Converter

Digital Internal Use Only

Appendix A
Bibliography

The TeXbook
Donald Knuth, Addison & Wesley, 1986
Describes how to program in TEX and make your own designs

The Metafont book
Donald Knuth, Addison & Wesley, 1986
Describes how fonts for the TEX program can be generated

TeX: The Program
Donald Knuth, Addison & Wesley, 1986
Describes the TEX program and the DVI file layout

The VAX DOCUMENT Doctype Designer's Guide
part of the VAX DOCUMENT documentation set
Describes how to modify designs for VAX DOCUMENT

The Tag Designer's Guide
Describes how to create <TAG> definitions.
Available only for Digital internal use by DEC employees

Digital Internal Use Only

Bibliography A-1

Index

A
AUTODEST, 1-4

B
Bitmapped files, 4-2

c
Contents, 3-8, 4-4
CUP$VOILA. VOILA_FONTS, 3-7

D
DEFINE tag

example, 2-4

DEFINE tag - See Tag
DESIGN file, 3-4, 3-6
destination, 1-1, 1-3
Destination, 4-1
Device Converter, 1-1, 4-1 to 4-4
Digital watches, i
DOC$$DEVICE_MACROS, 1-4
DOC$$DOCTYPE_MACROS, 1-3
DOC$$FORMATS, 1-2, 1-4
DOC$DESIGNS.DAT, 1-2, 2-1, 3-4, 3-7
DOC$DESTINATIONS.DAT, 1-4
DOC$ELEMENTS. TEX, 3-3
DOC$LN03_FONTS, 4-2
DOC$LOCAL_ELEMENTS, 3-4
DOC$PS_FONTS, 4-2
DOC$SDML. TEX, 3-3
doctype, 1-1, 1-2

design file, 1-3, 3-4
designs, 1-2
DOCTYPE_SIT, 2-4
GLOBAL_SIT I 2-4

DVC$DRNEVOILA.COM, 4-2
DVC$LN03SHR.EXE, 4-2
DVC$LPRSHR.EXE, 4-2
DVC$PSSHR.EXE, 4-2
DVI file, 3-1, 3-8, 4-1
DVI_PS, 4-2

E
EDITGDX. COM, 2-5

F
Figure file, 3-8, 4-1

PostScript, 4-2
sixel, 4-3

FIXGDX.COM, 2-5
Font

Font (cont'd.)
bitmapped, 4-2
Creating, 3-7

Font file, 4-1

G
Generic Tag Definition - See GTD
Glue, 3-6
GTD, 2-2, 2-3

H
hacker

born
diehard, 3-3

hyphenation
american, 3-3
foreign, 3-3

Hyphenation, 3-6

Icon file, 3-8
Index, 3-8, 4-4
Initex, 3-3
\input macro, 3-4
INT_TEX file, 2-1, 2-6

K
Knuth, Donald, 2-4, 3-4, 3-8

L
Lamport, Leslie, 3-1
LaT:sX, 3-1
Line Printer, 4-2
LN03, 4-3

M
macro

default, 3-2
doctype specific, 3-4
input, 3-4, 3-6
local system defined, 3-3
readfont, 3-7

MCS character set, 3-5
MetaFont, 3-7

N
NFT, 4-4
NFT file, 3-6
Normal Font - See NFT

p
Panic, i, ii
PostScript, 1-4, 4-2
printer

line, 4-2
LN03, 4-3
PostScript, 4-2

Printer Queue, 1-4
PXL file, 3-6

R
Reference resolving, 2-6

s
Saved Tag Table - See STT
SAVE_TAGS tag, 2-3
SDMLHEBREW_PS.FMT_MACRO, 3-3
SDMLLN03.FMT _MACRO, 3-3
SDMLLPS.FMT_MACRO, 3-3
SDMLLRP.FMT_MACRO, 3-3
SDMLVOIIA.FMT_MACRO, 3-3
Sixel File, 4-3
STT, 2-2, 2-3, 2-4, 2-6

T
Tag

Alias codes for TE)(, 2-4
Creating STT, 2-3
DEFINE, 2-3
doctype specific, 1-2, 1-3, 2-1
general, default, 2-1
global, 1-2
INCLUDE_TEX_FILE, 3-6
loading, 2-1
private, 2-2
reference, 2-6
specification, 1-2
user defined, 2-2, 2-4

TAG$LOCAL_TAGS, 2-2, 2-6
TAG$SDML_TAGS.STT, 2-2
Tag Translator, 1-1

Pass 1, 2-5
Pass 2, 2-6
Passes, 2-1

TE){, 3-1
tex$$hacker, 3-3
TEX$LN03CHARS. TEX, 3-5
TEX$LPCHARS. TEX, 3-5
TEX$PSCHARS. TEX, 3-5
TEX$STANDARD_FONTS.UNE_FONTS·, 3-7
TEX$STANDARD_FONTS.LN03_FONTS, 3-7
TEX$STANDARD_FONTS.POST_FONTS, 3-7

Index-2

TEX$STARTUP.TEX, 3-3
TEX$VOILACHARS.TEX, 3-5
TEX file, 2-6
TE)Ct Font Metric - See TFM
TE)Ct macros, 3-1
TE)Ct Processor, 1-1, 3-;1 to 3-8
TFM file, 3-6, 3-8

x
XREF file, 2-6, 3-8

